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ABSTRACT 

THE DIMENSIONALITY OF COGNITIVE STRUCTURE: 
 A MIRT APPROACH AND THE USE OF SUBSCORES 

By 

Yi-Ling Cheng 

             The present study explored the dimensionality of cognitive structure from two 

approaches. The first approach used a famous relation between Visual Spatial Working Memory 

(VSWM) and calculation to demonstrate the multidimensional item response analyses when true 

dimensions are unknown. The second approach explored the detectability of dimensions by using 

person fit indices. Findings from the first study demonstrated that there were shared dimensions 

between VSWM and calculation. Additionally, error analysis with the MIRT approach revealed 

only one dimension, the Number dimension, of VSWM is related to subtraction and division. 

These results showed the usefulness of the MIRT analysis in analyzing cognitive structure. The 

result of the second study revealed that person fit indices, however, were insensitive to the 

simulated dimensions when estimated ability parameters were used. More sensitive detection 

indices need to be developed. The present study combines several dimensionality analyses with 

perspectives from diverse areas in the hope of providing insights into the dimensionality of 

cognitive structures. 
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CHAPTER ONE 

 INTRODUCTION 

Dimensionality  

                The idea of dimensionality has been studied extensively in psychology (Carroll, 1993; 

Cattell, 1941; Spearman, 1927; Thurstone, 1947), measurement areas (Ackerman, Gierl, Walker, 

2003; Reckase, 1997; 2009) and neural science (O'Toole, Jiang, Abdi, Pénard, Dunlop, & Parent, 

2007). These studies may have used different terminology because they were in different 

disciplines, but the interest in exploring the concept of dimensionality has never died down.  The 

influence of these studies has gone deeper and wider. For example, studies in measurement have 

generated research about one form of estimation after another and one model after another to 

understand it better. Other than studies in measurement, researchers in other areas have studied 

problems that are implicitly related to dimensionality without knowing that they were. A basic 

example that appears in many areas is that researchers have often studied how some constructs 

can predict another construct by identifying the shared variance or explained variance. The 

shared variance among studied variables is that these variables cross paths on one dimension in 

this universe to a varying degree. Another example can also be found in the education or 

psychological field is training studies. Researchers frequently explore an intervention and wish 

to see how it results in improving an outcome. Although it is often not outlined in the article 

itself, we cannot expect such an outcome to materialize unless the intervention and the outcome 

have something in common, meaning the overlaps on their dimensions. Finally, studies in neural 

imaging are often used to show how different brain areas are activated to separate the cognitive 

processes of particular constructs. These cognitive processes can also be seen as some aspect of 

dimensions.  
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          Overall, many studies are related to the understanding of dimensionality, although they 

may not explicitly give it this name. On these studies that actually specified the interests on the 

dimensionality of constructs, however, often focused on the interpretation of the validity of the 

constructs. Therefore, in previous studies the idea of exploring dimensionality mostly lays in the 

understanding of the validity of the construct, which was sometimes limited by the way in which 

it was defined at the first place. Though these studies contributed to refining the boundaries of 

the constructs, not many studies went beyond this to consider what the elements underlying these 

constructs are.  

              Among all the studies on dimensionality, the most popular topic is studies about the 

structure of cognitive abilities. The growing interest in understanding cognitive abilities is 

developed from its predictive power on students’ STEM achievement (i.e., science, technology, 

engineering, and mathematics; Best, Miller, & Naglieri, 2011; Deary, Strand, Smith, & 

Fernandes, 2007; Gustafsson and Balke, 1993; Passolunghi & Lanfranchi, 2012; Rohde & 

Thompson, 2007; Spinath, Spinath, Harlaar & Plomin, 2006). This relationship impacts on 

national wealth and economic growth, and as Rindermann and Thompson’s study (2011) points 

out, these economic outcomes are largely the result of the development of STEM-based 

employment sectors. Therefore, improving students’ cognitive abilities is not only critical for 

children’s STEM academic achievement, but also has important implications for societal 

outcomes.  

              Though the influence of this relationship on social outcomes appears in adulthood, the 

relationship itself actually develops in early childhood. Studies demonstrate that early cognitive 

gain (i.e., before school enrollment) is critical for later mathematics skills (Campbell, Pungello, 

Miller-Johnson, Burchinal, & Ramey, 2001; Clark, Pritchard, & Woodward, 2010). This relation 
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progresses further and deeper when children enter school.  For example, Floyd, Evans, & 

McGrew (2003) find that multiple cognitive abilities (including fluid intelligence, working 

memory, processing speed) are consistently associated with mathematics calculation skills and 

mathematics reasoning skills in persons from six to 19 years old. These intertwined, predictive 

relations between cognitive abilities and academic achievements from early childhood to later 

life suggest that improving children’s early cognitive abilities has a long-lasting effect on their 

academic achievement, in addition to raising overall national growth. 

General and Specific Approaches 

General and specific abilities 

Although the relationship between children’s cognitive abilities and academic 

achievement seems to be strong in general, not every type of cognitive ability predicts academic 

achievement (Floyd, Evans, & McGrew, 2003). As a result, the aim of many studies is finding 

the most predictive cognitive ability. One popular approach is to identify whether general or 

specific abilities are more critical to children’s achievement. This distinction between general 

and specific abilities comes from three strata theory (Carroll, 1993; Cattell, 1941; Spearman, 

1927; Thurstone, 1947). General ability refers to the general intelligence underlying all cognitive 

abilities, whereas specific abilities refers to more narrowly defined cognitive abilities, such as 

processing speed, visual spatial thinking, or working memory (Carroll, 1997). Studies have 

found that general ability is the one and only important factor in predicting academic 

achievement (Deary, Strand, Smith, & Fernandes, 2007; Rohde & Thompson, 2007). The 

correlation is so high (r = .82; Frey & Detterman, 2004) that some even consider academic 

achievement tests such as the Scholastic Achievement Test (SAT) to be isomorphic to general 

ability tests.  
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Surprisingly, even though the relationship between general ability and academic 

achievement is strong, some studies can still identify the unique predictive power of specific 

abilities when testing their influences on academic achievements. For example, Gustafsson and 

Balke (1993) measured the cognitive abilities and academic achievement of 866 ninth graders 

with 16 aptitude tests and 17 course grades. They found that specific factors, in addition to the 

general factor, accounted for significant variance in achievement test scores. The same result is 

found with younger children. Passolunghi and Lanfranchi (2012) tested 70 kindergarten and first 

grade students on their mathematics achievement and found that specific cognitive abilities 

predicted mathematics achievement, in addition to general ability. These studies, however, leave 

open the question whether this finding is consistent for the same person over time. To explore 

this question, Geary (2011) conducted a longitudinal study of students from first grade to fifth 

grade and found that after controlling for general intelligence, some specific abilities (e.g., 

processing speed), but not all specific abilities contributed to different academic achievements 

(e.g., reading or mathematics).  Overall, the literature not only supports the conclusion that 

general ability is a significant predictor of academic achievement, but also showed the 

contributions of specific abilities to academic achievements. Nonetheless, it seems as though the 

predictive power of a specific ability may not be consistent across different samples and different 

developmental stages. 

Diagnostic testing and training 

            Similar conclusions about the predictive power of general and specific abilities are made 

in the area of diagnostic testing. Researchers often find that subtests of the intelligence test (e.g., 

the Wechsler Intelligence Scale for Children) fail to provide useful diagnostic information over 

and above the composite score (McDermott, Fantuzzo, & Glutting, 1990). One might argue that 
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the unidimensionality of intelligence tests made it less likely that any significant predictive 

power of specific abilities would be found. However, when researchers further examined data 

consisting of multiple subject matters (e.g., reading, mathematics…etc.), the same conclusion 

was found (e.g., Sinharay, Haberman, & Puhan, 2007).  

           Researchers further considered that this finding might have resulted from using certain 

types of subscore in previous studies. Most of them used the subscores that were based on 

Classical Test Theory (CCT)（e.g., raw scores from Classical Test Theory (CCT) in McDermott 

et al., 1990; Sinharay et al., 2007). However, recent developments in modern testing theory have 

helped researchers to find that subscores offered additional information when multidimensional 

item response models (MIRT) were applied to generate subscores (Thissen & Edwards, 2005; 

Yao & Boughton, 2007). Although the usefulness of subscores is still under debate, this shows 

that it is possible to extract useful information from subscores in addition to the total score.  

            Despite uncertainty about the predictability of specific abilities, general ability (g) 

remains the most powerful predictor of academic achievement in both applied measurement and 

psychological testing.  Therefore, researchers in the area of cognitive training hypothesized that 

training g should generate improvement in most cognitive tasks, including academic 

achievement. The results are, however, mixed (Jaeggi Buschkuehl, Jonides, & Shah, 2011; 

Redick, Shipstead, Harrison, Hicks, Fried, Hambrick, Kane, & Engle, 2013). Despite its strong 

predictive power, training g has limited effects on other tasks (for a review, see Shipstead, 

Redick, & Engle, 2012) or even on improving itself (te Nijenhuis, van Vianen, & van der Flier, 

2007).  

  There are several possible explanations for this. Some researchers argue that training 

programs are not designed properly. For example, te Nijenhuis, van Vianen, and van der Flier 
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(2007) analyzed tasks using factor analysis and found that most training programs are not g-

loaded. The authors argue that, as a result, g cannot be improved.  However, this seems an 

unclear reason to disqualify these training programs because the training was adapted from the 

tests that had been used to measure general ability (e.g., IQ tests).   

Another possible reason for the discrepancy is that training a higher order function such 

as g to improve itself requires a combination of many cognitive processes. This combination 

itself may be burdening people with a large cognitive load. Training such a complex process 

would probably lead to learning less about each specific aspect of the task. As a result, 

individuals may demonstrate less mastery on the trained tasks, let alone improved overall ability. 

This process is similar to mastering a sport such as basketball. Athletes learn how to move the 

ball, how to pass a ball, and how to score a basket. The mastery of each specific process is 

needed to ultimately master basketball as a whole. This step-by-step learning process is likely 

similar in the brain. Learning one specific cognitive process at a time may help to encourage the 

thought process needed for a task or may even transfer to other tasks that have applied these 

specific processes. This type of training might then provide a better outcome than the learning of 

many different processes at one time.  

Some studies have provided supportive evidence that training specific abilities indeed 

improves general ability. For example, some researchers investigated training that was more 

focused on a smaller part of g; for example, more specific cognitive abilities (e.g., working 

memory) that are significantly correlated with g. It was found that training sometimes improves 

g. However, when further examining the transfer effect to academic achievement such as 

mathematics or reading skills, the results are inconclusive (Jaeggi, Buschkuehl, Jonides, & Shah, 

2011).  
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These inconclusive results suggest that the rationale of using significant correlations 

between two constructs in the expectation that training one will improve the other may be 

unfounded. Specifically, when two constructs are related, it suggests that they share a certain 

amount of variance. However, no testing or training is certain to be effective unless the specific 

shared variance is identified.  

The Structure of Cognitive Abilities 

The mixed results described above suggest the need to further examine the overall 

structure of cognitive abilities. More specifically, it is important to examine the relationships 

between general and specific abilities, the relationships between cognitive ability and academic 

achievement, and the way in which the specific sub-dimensions of these abilities are divided.    

Hierarchical structure of cognitive ability  

         In the past, the most common way to study the structure of cognitive abilities was through 

factor analysis (e.g., Carroll, 1993). Over the years, researchers have come to a similar 

conclusion from analyzing the interrelations of various cognitive tasks and different 

populations—that the structure of cognitive abilities is hierarchical. The hierarchical structure 

has also represented the relations between general and specific abilities. However, different 

theories may label the same structures differently. An example of these theories is the three strata 

theory (Carroll, 1993; Cattell, 1941; Spearman, 1927; Thurstone, 1941). The hierarchical 

structure starts from the highest level: general ability (g). Under g is a second level consisting of 

eight or ten broad abilities, such as Gf (fluid intelligence) and Gc (crystallized intelligence), Gv, 

Gs, Glr, Ga, Gsm, and Gq.  For instance, Gf is the ability to reason or engage in high order 

thinking, and Gc reflects the knowledge and experience that were obtained in the past, such as 
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mathematics skills (Cattell, 1941). Last, the lowest level consists of sixteen different abilities 

(e.g., processing speed or auditory processing; see Figure 1). 

 

Figure 1. The structure of three-stratum theory. Adapted from “The Three-Stratum Theory of 

Cognitive Abilities: Test of the Structure of Intelligence Across the Life Span,” by Bickley, Keith, 

and Wolfle, 1995, intelligence, 20(3), p. 314. 
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            Nevertheless, because such a structure is generated from factor analysis, people have 

argued that it could be an artificial product of the statistical factor model and not directly related 

to the cognitive processes (e.g., Wechsler, 1950). Therefore, a somewhat different approach 

proposed to use neuropsychological methods to study brain connectivity on cognitive processes. 

However, this approach also suggests a hierarchical structure of cognitive abilities (Das, Kirby & 

Jarman, 1975; Kirby & Das, 1990; Luria, 1971; Naglieri & Otero, 2011). The difference is that 

this model theorizes (as PASS theory) the hierarchical structure of the model from lower level 

functions such as attention, simultaneous and successive, to higher-level functions, such as 

planning.  

            Although there are both brain imaging studies and behavioral evidence for a hierarchical 

structure of cognitive abilities, researchers do not always agree on defining the divisions of 

cognitive abilities. Most arguments lie in the division of the unit or in the levels within the 

hierarchy, neither of which is crystal clear. For obvious reasons, the three strata and PASS 

theories vary in their definitions and categorization on each level.  Even within the same theory, 

disagreements can arise. For example, the supporters of the three strata theory still dispute which 

specific abilities should be included in each level (e.g., Carroll, 2003; Johnson & Bouchard, 

2005). Among the sub-divisions, for example, the boundary between academic achievement and 

cognitive ability is not well defined. Specifically, in PASS theory, it was suggested that different 

achievements required different combinations of cognitive processes (e.g., planning and attention; 

Naglieri, & Rojahn, 2004). This implies that PASS theory posits each academic achievement as 

several sub-divisions of cognitive processes. Similar perplexity can be found in the three strata 

theory, where the broad factors Gsm and Gq are classified as second level cognitive abilities, but 

at the same time are also often classified as latent factors of academic achievement (e.g., 
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Kaufman, Reynolds, Liu, Kaufman, McGrew, 2012).  This unclear division is prevalent in these 

theories and questions the role of academic achievement in the structure of cognitive abilities. 

Is academic achievement part of cognitive abilities? 

Many studies have found significant relationships between academic achievement and cognitive 

abilities (Best, Miller, & Naglieri, 2011; Deary, Strand, Smith, & Fernandes, 2007; Gustafsson 

and Balke, 1993; Passolunghi and Lanfranchi, 2012; Rohde & Thompson, 2007; Spinath, 

Spinath, Harlaar & Plomin, 2006). The range of correlations is wide, from .40 to .90. Despite 

their spread, these fairly high correlations made researchers wonder whether cognitive ability 

and academic achievement are isomorphic. When the correlation is high (r = .83; Kaufman et al., 

2012), 31% of the variance is still left unaccounted for, which demonstrates that these two 

constructs are not the same. However, even the lowest correlation, r = .40, accounts for at least 

16% of variance, suggesting these two constructs share certain number of cognitive processes. A 

logical reason for this similarity is that they are both influenced by the same general ability. As 

evidence for this reasoning, Lynn and Meisenberg (2010), using factor analysis, found after 

correcting the unreliability (using attenuation procedure from Ferguson, 1971) that the 

correlation between the general factor extracted from cognitive tests and the general factor 

extracted from scores on achievement tests over the course of one school year is 1.0.  This 

perfect relationship suggests that these two general factors might actually represent the same 

latent construct. Therefore, each score for an academic achievement (e.g., reading, mathematics, 

or science) can possibly be viewed as a sub-dimension under the broader construct of general 

ability.  
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The level of processing 

 The indistinct boundary between academic achievement and cognitive abilities is not the 

only issue related to the categorization of dimensions. Overall, the categorizations of these 

dimensions do not stay constant in different studies. To resolve this issue, therefore, the 

methodology used to divide these dimensions is critical and therefore needs further clarification. 

It is important to evaluate how dimensionality is defined, how it is studied psychometrically and 

biologically, and how these methods can be integrated.   

             The definition of dimensionality. The identification of construct dimensionality 

depends on one’s perspective.  Specifically, constructs can be viewed in some circumstances as 

unidimensional but in others as multidimensional. A construct is considered unidimensional 

when psychologically it is theorized as the same cognitive function. Statistically, it also needs to 

be high inter-item correlations within the construct. If both conditions are met, an individual’s 

score on the construct can be placed on a continuum. However, sometimes several separated 

clusters of items/subsets sometimes appear within a given construct. When they do, the 

items/subsets are closely related within the clusters but not between the clusters. In this case, this 

construct is therefore viewed as multidimensional. This is one way to define the dimensionality 

of cognitive ability. Yet, in a hierarchical structure, a general ability may be unidimensional at its 

higher level but can also be viewed as multidimensional when the components of general ability 

are considered. This also can be a case to each component of general ability. Each can be 

considered unidimensional, but may also be multidimensional if the lower level dimensions are 

the ones being identified in this component.   

            One example of this is spatial ability. The dimensionality of spatial ability can be 

described in both unidimensional and multidimensional terms. When researchers conducted 
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factor analysis with several representative visual spatial tasks, a one-factor model was the best 

fit, suggesting unidimensionality (e.g., Lohman, 1979; Mix et al. in press). However, the 

components of spatial ability, mental rotation for example, when examined, might yield evidence 

to suggest that they are multidimensional. To illustrate, a dimension of mental rotation can be 

that the additional understanding of the figure structure adds another dimension to an 

individual’s thought processes (Shepard & Metzler, 1988). This suggests that when examining a 

series of spatial tasks together, the shared variance among all spatial tasks reflects a shared 

common dimension. However, when examining items within each task, some items may demand 

different cognitive understanding from that demanded by other items. Each spatial task can be 

considered to be unidimensional at one level and multidimensional when examined at another. 

Therefore, the issue of dimensionality concerns the level at which the researchers examine a 

given construct (Reckase, 2009).  

          It may seem as though researchers studying the same level of dimensionality should arrive 

at similar conclusions, but they do not always appear so. Researchers sometimes disagree when 

identifying the dimensionality of cognitive abilities even at the same level, for several reasons. 

The cognitive abilities were mostly classified with factor analysis. Statistically, the 

categorization of the constructs depends on whether the common variance is strong enough to 

form an independent factor. Therefore, the technique of factor analysis is critical to the 

differentiation of the cognitive abilities and therefore informs the theoretical construction of 

cognitive abilities. For example, a review by Willis, Dumont, & Kaufman (2011) indicates that 

Thurstone and Spearman disagreed over whether a general factor existed because they used 

different factor analysis techniques. Another example can be found in Carroll’s review (2003). 

When confirmatory factor analysis was invented, Gustafsson and Undheim (1996) were able to 
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suggest the possible existence of different types of broad abilities, Gf (fluid intelligence) and Gc 

(crystallized intelligence), while previous exploratory factor analysis sometimes found only a 

single general factor (Thurstone, 1947). Hence, the development of methods also had influence 

on whether the levels of cognitive abilities were detected.  

           The methodology for studying dimensionality. The dimensionality of cognitive abilities 

has been studied extensively with factor analysis. One representative study that was conducted 

by Carroll (1993) reanalyzed 400 studies to confirm the hypothesis of a hierarchical model of 

cognitive ability. A different way of identifying dimensionality can also be informed with the 

findings from psychological dual-task studies or cognitive error analysis. In dual-task studies, 

researchers tried to discover what two tasks people can do or cannot do at the same time, 

researchers gain clues about whether these two tasks share the same functional processes in the 

human brain (Pashler, 1994). Recent developments in brain imaging research have extended this 

approach by determining whether two tasks activate similar brain areas and are therefore using 

the same processes (e.g., Hubbard, Piazza, Pinel & Dehaene, 2005). In cognitive error analysis 

studies, researchers attempted to discover participants’ thinking processes through analyzing 

their error patterns (Radatz, 1979; Tatsuoka, 1984). This pattern recognition analysis also has 

been made to connect with statistical models such as item response theory (e.g.,Tatsuoka, 1990). 

           To see if the convergent evidence of cognitive structure can be obtained from different 

perspectives, some researchers have tried to map the cognitive structure from statistical analysis 

on findings from brain studies.  For example, Shaw et al. (2006) successfully associate higher 

general intelligence with the thicker cerebral cortex in later childhood. Comparisons from 

different studies have sometimes brought supportive evidence to the structure of cognitive 

abilities.  For example, Guilford (1975, 1988) proposes that memory can be divided into memory 
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recording and memory retention. Recent findings of brain imaging studies suggested that 

memory is indeed processed in two different systems: one for appearance and one for location 

(Darling, Della Sala, & Logie, 2009).  Although this is somewhat different from Guilford’s 

categorization of memory, Darling et al.’s finding supports Guilford’s claim that memory has 

subdivisions.  

There are also differences emerging from the psychometric and neuroimaging approaches 

and these differences contribute to understand the dimensionality of cognitive abilities. For 

example, the review by Harris, Hirsh-Pasek and Newcombe (2013) compares and contrasts the 

studies of tasks in mental rotation and mental folding from both perspectives. These researchers 

find that, although factor analysis had suggested these two tasks were distinct, the brain 

activations while performing both tasks are in similar areas. Das, Kirby, and Jarman (1975) also 

examined the findings from brain connectivity studies that suggest that simultaneous and 

successive cognitive processes are separated (e.g., Luria, 1971), and they used factor analysis to 

confirm that these two were indeed separate latent factors. 

           The connections between methods. Although the findings of brain imaging studies and 

dimensionality analysis (e.g., factor analysis) are sometimes different, the statistical analyses to 

produce the result in each approach are not. Brain imaging studies identify the shared variance 

by examining the correlation between a participant’s item response and brain activity (e.g., Shaw 

et al., 2006). The tasks shared enough significant variances in their activation to suggest that they 

may share cognitive processes (for a review, see Hubbard, Piazza, Pinel & Dehaene, 2005). 

Similarly, dimensionality analysis uses the covariance among people’s performances of a task to 

identify those tasks that have shared dimensions. The difference made by statistically analyzing 

the items is that it can provide a more complete picture of the structure of these items/tasks by 
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analyzing the performance responses simultaneously, whereas, in brain imaging studies, 

researchers use the paired association tasks on a group of item responses to provide physical, as 

opposed to statistical, evidence of shared cognitive processes. Each approach, however, provides 

unique information about the cognitive processes, as well as converging or divergent evidence 

for understanding the components of cognitive structure. An example that may help to explain 

what is meant here is the distinction between a visual spatial working memory task, a task asking 

people the location of targets on briefly shown pictures, and calculation, a task asking people to 

carry out basic mathematical operations.  While visual spatial working memory (VSWM) and 

calculation are separate constructs, studies have demonstrated their significant correlations 

(Alloway & Passolunghi, 2011; Ashkenazi , Rosenberg-Lee, Metcalfe Swigart & Menon, 2013; 

Bull, Espy, &Wiebe, 2008; Kyttala, Aunio, Lehto, Van Luit,, & Hautamaki, 2003; ; Mclean & 

Hitch, 1999). However, a study conducted by Zago and Tzourio-Mazoyer (2002), based on 

previous significant relations between these two, showed that, although VSWM and calculation 

shared common activation in the right-hemisphere frontal-parietal system in the brain, it was also 

indicated that calculation activated a left inferior parietal area which might not shared much with 

VSWM. This suggests that VSWM and calculation do not share all of their respective cognitive 

processing. However VSWM and calculation are not complete separate processes because 

previous studies have found them to be significantly correlated (e.g., Alloway & Passolunghi, 

2011). It is not clear, though, which components are shared between VSWM and calculation, and 

further examination is therefore required to understand this relationship. An item level analysis 

would help break down the components, revealing the pattern of relationships between the items 

of VSWM and items of calculation.  
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Item response models 

         A common way to do item analysis is to apply item response theory (IRT) models. 

Specifically, the interactions between the person’s characteristics and the item parameters 

produce the probability of correct responses on each item (Reckase, 1997).  Therefore, the 

difficulty and discrimination parameter and the person’s ability parameters are considered 

together (Reckase, 2009), and IRT provides information on the interactions between persons and 

items simultaneously. Item response models are applied mainly across a whole field. For 

example, recent studies have used item response models to understand learning (Embretson, 

1991) and growth change (McArdle, Grimm, Hamagami, Bowles, & Meredith, 2009), and to 

explore the structure of a cognitive ability such as phonological awareness (Schatschneider, 

Francis, Foorman, Fletcher, & Mehta, 1999). An extension of IRT models, multidimensional 

item response models, was also used to identify the dimensionality of a ninth grade mathematics 

test (Ackerman, Gierl, Walker, 2003), and a test for English language learners (Reckase & Xu, 

2014) or the dimensionality of mathematics knowledge (Reckase et al., 2012).  Item response 

models have been applied extensively in the construction of achievement tests, but they are not 

often applied to exploring the structure of cognitive abilities, which is a major goal of the present 

study. 

The Present Study 

             To understand further the structure of cognitive abilities with item response processes, I 

propose two approaches in the current study. The first approach targets a specific and well-

known connection between cognitive abilities and academic achievement (VSWM and 

Mathematics Calculation) to study the condition when the true number of dimensions is 
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unknown. The purpose is to explore how the constructs might be interrelated at a 

multidimensional level. In this first part, I examine how strong the two constructs (VSWM and 

Calculation) can interact. When two tasks are closely related but can still be defined as different 

constructs, several methods were proposed to identify what are generally shared dimensions 

between them. The present study hopes to provide understanding of the connections among 

dimensionality of cognitive abilities.  

             In the second approach, I examine the possibility of detecting dimensions in subgroups 

when the true numbers of dimensions are known.  The purpose of doing so is to test whether 

there are sensitive indices that can provide information to support the use of subscores. 

Specifically, the second part of the study asks whether it would be possible to detect the specific 

characteristics of an examinee’s irregular item responses when a general ability dominates in the 

examinees’ performance. Although diagnostic testing has been shown to identify students’ 

weakness and strengths in some cases (e.g., Betts, Hahn & Zau, 2011), the decision whether to 

report subscores, such as mathematics or reading, has been a subject of debate in previous 

studies (Sinharay, Punah, & Haberman, 2011). As a solution, the second part of the study 

proposes to use sensitivity indices previously developed for detecting unusual patterns in 

examinees’ responses. The application of these indices aims to test whether the values of 

subscores can be found, even when the data are well represented by a unidimensional model.  

 The remainder of this paper is ordered in the following way. Chapters Two and Three 

provide a literature review for the two approaches of the study. Chapters Four and Five explain 

the methods and results from the two enquiries. Finally, Chapter Six discusses the results, the 

limitations of each study, and the possibilities for future research.  
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CHAPTER TWO 

THE DIMENSIONALITY BETWEEN VSWM AND CALCULATION  

Introduction 

           Spatial abilities are suggested to be the critical cognitive abilities that influence a child’s 

achievement in mathematics (Newcombe, 2010; Rohde & Thompson, 2007; Wai, Lubinski, & 

Benbow, 2009). Visual Spatial Working Memory (VSWM), in turn, is one of the spatial abilities 

especially important to mathematics. Although many studies have shown a significant 

relationship between the two (e.g., Alloway & Passolunghi, 2011; Ashkenazi , Rosenberg-Lee, 

Metcalfe Swigart & Menon, 2013; Bull, Espy, &Wiebe, 2008; Kytta¨la¨, Aunio, Lehto, Van 

Luit,, & Hautamaki, 2003; Mclean & Hitch, 1999; Rasmussen & Bisanz, 2005; St Clair-

Thompson & Gathercole, 2006; Simmons, Wills, & Adams, 2012), training VSWM to improve 

mathematical ability has not  yielded overall positive conclusions so far.  

           The multidimensionality of VSWM (Mammarella, Pazzaglia , Cornoldi, 2008; Pickering, 

2001; Vecchi, Monticellai, & Cornoldi, 1995) and mathematics (Ashcraft, 1982; Dehaene & 

Cohen, 1995, 1997; Dehaene et al., 2003) may be the reason that training has not so far been 

successful. In order to determine which aspect of VSWM should be trained to improve 

mathematics ability, the shared dimensions between the two should be fully understood. The 

proposed study aims to examine this relationship on the basis of a simple form of VSWM task, 

which is a static VSWM, and one mathematics achievement task, a calculation test. The 

relationship between the static VSWM and calculation, which appears to be mixed in previous 

studies (Ashkenazi, Rosenberg-Lee, Metcalfe, Swiigart, Menon, 2013; Berg, 2008; Simmons, et 

al., 2012; Lee & Kang, 2002; Rasmussen et al., 2005), motivates the present study. The mixed 

results described above suggest the need to further examine the relationship between VSWM and 



	

				 19	

mathematics before training studies are conducted. Using a multidimensional item response 

theory approach, the current study aim to find the shared dimensions (if any) between VSWM 

and mathematics calculation. To do so, it is important to examine the generalized effect between 

cognitive tasks, the specific relationships between VSWM and mathematics, and the possible 

dimensionality of the two. 

The Generalized Effect 

             Previous studies have asked whether training in one task can have a generalized effect on 

other tasks (Wright, Thompson, Ganis, Newcombe, & Kosslyn, 2008). An example would be 

using VSWM training to improve mathematics achievement. However, such effects have been 

elusive (Chase & Ericsson, 1981; Holmes, Gathercole, & Dunning, 2009; Jaeggi et al., 2011; 

Kyttala, Kanerva & Koresbergen, 2015; St Clair-Thompson, Stevens, Hunt, & Bolder, 2010; Van 

der Molen et al., 2010). VSWM is found to be trainable even when other cognitive abilities are 

not (e.g., Owen, Hampshire & Grahn, 2011). Even so, the generalizability of VSWM training is 

inconsistent across measures. For example, in an experiment reported by St Clair-Thompson et 

al., (2010), children aged five to eight were trained in working memory techniques, including 

image rehearsal strategies, for six to eight weeks. The training did not improve their performance 

in the active VSWM task (the block recall task), but it did improve mental calculation 

performance. This suggested that training VSWM to improve mathematics performance is 

possible, even when the training did not improve other type of VSWM tasks. This specific 

relationship between VSWM and mathematics might be bidirectional, such that mathematics can 

improve VSWM as well. For example, Lee, Lu, and Ko (2007) discovered that a year’s 

mathematics training (given once a week) in the use of the mental mathematics abacus (a 

Chinese mathematics calculation tool) improved the performance of 12-year-old children in 
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simple spatial span tasks, but not in complex spatial span tasks (a task that involves both an 

equation and a presentation of dots in squares). Overall, training one type of VSWM task does 

not necessarily improve other types of VSWM tasks, but it might improve some types of 

mathematics tasks; additionally, training specific mathematics tasks can improve specific types 

of VSWM.  These studies showed that VSWM and mathematics have some cross-

generalizability, but it is task-specific.  

             Perhaps some processes shared between the trained tasks and improved measures 

underlie the above generalizable examples. Previously, studies had posited some potential 

mechanisms behind a successful transfer. An example is Wallace and Hofelich’s (1992) study. In 

the study they had some participants complete training in mental rotation, who were then tested 

in a geometric analogies task. They also had the other groups of participants complete training in 

a geometric analogies task, and then tested them in a mental rotation task. Specifically, in the 

geometric analogies task, the participants were asked to view several shapes, all of which could 

be combined as an object which still involved one missing piece; they were then asked to also 

identify which of five options was the missing piece. In the mental rotation task, the participants 

were asked to identify whether the orientation of objects was standard or mirrored. They found 

that training in either task improved the performance in both, even though these two tasks did not 

share similar contexts. The possible mechanism, as explained by Wallace and Hofelic (1992), is 

Process Theory (Kosslyn, 1983), which stresses the importance of similar cognitive processes on 

task transfer.  The argument for this effect is that when two tasks emphasize the same processes, 

training in either of them should be able to produce a generalized effect on the other. 

Additionally, this study demonstrated that the improvement between cognitive tasks can be 

bidirectional. 
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            This phenomenon is not limited to mature adults. Kloo and Perner (2003), for example, 

found that training children ages three to four in an executive control task and a theory of mind 

task led to improvement on both. Executive control was trained and assessed with a Dimensional 

Change Card Sorting task (DCCS; Frye, Zelazo, & Palfai, 1995), and the theory of mind test was 

trained for and assessed using false-belief tasks. The improvement of both suggests that the 

generalization of training effects is possible with children.  Kloo and Perner (2003) made a 

similar argument to Wallace and Hofelic’s (1992), suggesting that there may be a specific 

underlying common factor in these two improved tasks. 

           Drawing on both studies, it seems that one should first identify the connection that links 

two tasks together if one expects to find a generalized effect between them. Once the connection 

is targeted correctly, the training effect can be such a powerful tool that it overcomes the surface 

dissimilarity, and carries over the training effect so that it can be applied to multiple tasks. 

Therefore, a generalized effect between VSWM and mathematics would have to be preceded by 

finding links between VSWM and mathematics performance.      

The Relationship between VSWM and Mathematics Achievement 

          In general, VSWM and mathematics performance seem to be associated at many levels 

and across different populations. For example, in a sample of children with a mathematics 

disability, neural imaging studies have found co-existing deficits of VSWM and arithmetic 

(Ashkenazi et al., 2013).  Even in typical children, studies have also found a close relationship 

between VSWM and mathematics (e.g., Bull et al., 2008). Indeed, VSWM may be more closely 

related to mathematics achievement compared to other cognitive abilities, such as verbal ability 

or central executive ability. For example, Bull et al. (2008) conducted a longitudinal study to 

examine the relationships between verbal, spatial, and mathematics abilities. They found that 
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different VSWM tasks (e.g., cosi span forward and cosi span backward) predicted mathematics 

achievement at different time points when reading ability was controlled. As further evidence for 

this relationship, St. Clair-Thompson and Gathercole (2006) examined the relations among 

specific working memory tasks, including shifting, updating, inhibition, verbal working memory, 

VSWM, and school achievement among children aged 11 to 12. They discovered that inhibition 

(r = .36, after controlling for VSWM) and VSWM (r = .50, after controlling for inhibition) had 

significant relationships with children’s mathematics achievement.  

It is not surprising that VSWM and mathematics are connected. VSWM and mathematics 

achievement are part of different broad factors of intelligence (Gv and Gq, respectively), and 

both factors are influenced by general ability. The shared influence might explain why some 

studies have shown that the relationship between VSWM and mathematics is mediated by 

general intelligence (e.g., Kyttala & Lehto, 2008). However, in some cases, the relationship 

between VSWM and mathematics is stronger than can be explained by their connection to 

general ability.  An example of this is that VSWM was a significant predictor of mathematics 

ability in nine-year-old children, whereas non-verbal general ability was a non-significant 

predictor (Szucs, Devine, Soltesz, Nobes, & Gabriel, 2014).  These studies showed that VSWM 

and mathematics might share a stronger link than their connection to general ability. Such a 

relation also showed developmental significance that gains in VSWM predicted later 

mathematics learning (Li & Geary, 2013). 

             One reason for this closer association may be that VSWM is required at every step in 

mathematics problem solving. For example, Männamaa, Kikas, Peets, & Palu (2012) discovered 

that VSWM was significantly correlated with all mathematics cognitive domains: recalling, 

computing, and applying. Alternatively, however, the same study also discovered that four out of 
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five latent factors of Working Memory (including latent VSWM factor) are not directly 

associated with latent mathematics factors. Although these two findings seem to be contrary, 

both of them could be correct—if the dimensionality of VSWM is taken into consideration. 

Specifically, it could be possible that different dimensions of VSWM tasks were correlated with 

different mathematics domains in the researchers’ initial analysis, but when the researchers tried 

to extract a unidimensional latent factor from the VSWM task they used, this common factor 

might not associate with the mathematics latent factor domains much. Some studies, when they 

applied a multidimensional view of VSWM, have discovered similar findings that not all types 

of VSWM tasks are related to all types of mathematics problems (e.g., Kyttala & Lehto, 2008).  

              However, it also appears that the identification of dimensionality of VSWM is not 

consistent across different studies. One study splits VSWM into static and dynamic processing 

(Vecchi et al., 1995), whereas another study splits it into passive simultaneous VSWM, passive 

sequential VSWM, and active VSWM (Holmes, Adam, Hamilton, 2008; Kyttala & Lehto, 2008; 

Mckenzie et al., 2003). Different divisions of VSWM correlate with their own types of 

mathematical performance. For example, Kyttala and Lehto (2008) found that passive 

simultaneous VSWM predicts success at mental arithmetic problems, active VSWM predicts 

problems of geometrical understanding, and passive sequential VSWM predicts mathematics 

word problems in children ages 15 to 16.  

What is more surprising is that very specific sub-areas of VSWM and mathematics 

interact differentially. For example, although mathematics calculation is significantly related to 

VSWM overall (Ashkenazi, Rosenberg-Lee, Metcalfe, Swiigart, & Menon, 2013; Berg, 2008; 

Simmons et al., 2012; Lee & Kang, 2002; Rasmussen et al., 2005), it also appears that not all 

types of calculation operations are related to VSWM. Specifically, Lee and Kang (2002) 
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observed that when they asked participants to do a dual cognitive processing task procedure 

(e.g., to hold images in their minds while doing calculation), asking people to hold visual spatial 

images impaired their ability to do subtraction, but not their ability to do multiplication. 

Similarly, Simmons, Wills, and Adams (2012) found that VSWM was significantly related to 

multiplication (r = .33) in children aged seven to eight, but that the same VSWM task was not 

related to addition (r = .11) in children aged five to six, even though both multiplication and 

addition are considered as part of mathematics calculation. 

           Reflecting on the fact that the connections are different when examining this relation at 

different levels, it is unlikely that VSWM training will have an effect on all types of mathematics 

problems. VSWM and mathematics are related overall but these correlations are specific to tasks, 

such that only the training of the related VSWM can improve the related mathematics skill. To 

give an example, it would be impossible to expect that training in a passive type of VSWM can 

guarantee significant improvement in geometry achievement in children ages15 to 16, in that 

they are not significantly related in the literature. Consequently, training will be effective to the 

extent that the links between VSWM and the types of mathematics problems are captured. 

However, without a systematic examination of the dimensions of VSWM and mathematics, it 

may be difficult to see what these connections are. 

The Dimensionality of VSWM 

              As is the case for many cognitive tasks, the dimensionality of VSWM can be identified 

as both unidimensional and multidimensional. Some studies consider VSWM as a unitary 

construct, particularly when VSWM is compared with other working memory tasks. For example, 

a single, independent factor of VSWM can be isolated through confirmatory factor analysis when 

other working memory tasks are in the same model (Kane, Hambrick, Tuholski, Wilhelm, Payne, 
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& Engle, 2004; Miyake, Friedman, Rettinger, Shah & Hegarty, 2001). Similarly, Kane et al. 

(2004) were able to separate VSWM from general working memory, and they confirmed that one 

VSWM latent factor can be extracted from three VSWM tasks (rotation span, symmetry span, 

and navigation span). A unidimensional view of VSWM defines it as a psychological construct 

that temporarily holds visual and spatial information (Baddeley, 1986; 2000; Quinn et al, 2008; 

Reuhkala, 2001). However, even with this unidimensional view of VSWM, different subsets of 

VSWM (e.g., static VSWM and dynamic VSWM) were used in different studies, causing the 

variations on the use of VSWM tasks across those different studies.  The composition of VSWM 

therefore can be viewed as multidimensional. An example that can be illustrated here is that the 

cognitive processes of static VSWM and dynamic VSWM are independent (Vecchi et al., 1995), 

meaning these processes can be considered two separate dimensions within VSWM.     

  Furthermore, when examining VSWM more closely across many different VSWM tasks, 

there are more than two sub-dimensions. For example, Mammarella, Pazzaglia, and Cornoldi 

(2008) examined the components of VSWM using confirmatory factor analysis on third and 

fourth graders. They found that four dimensions co-exist within VSWM: sequential-spatial, 

simultaneous-spatial, visual, and visuo-spatial active factors. In their study, the division of 

dimensionality of VSWM seemed to be task specific, such that each factor could be extracted 

from two or three similar VSWM tasks, suggesting that these similar tasks shared a common 

dimension. However, in each VSWM task, the cognitive processes can be hypothesized to reveal 

more than one dimension. The hypothesis, theorized from Kosslyn’s (1983) classical work on 

mental images, speaks of two types of spatial processing within image generation. One is with a 

categorical spatial relationship, and the other is with a coordinating spatial relationship.   A 

categorical spatial relationship is the categorizing processing by which people remember the 
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appearance of stimuli, and a coordinating spatial relationship is the location recoding process by 

which people remember where stimuli are located. This suggests that people understand spatial 

relationships through two different systems, according to their appearances and the location of 

the objects under scrutiny.  

            Similarly, Vecchi et al. (1995) found that the amount of information and the structure (the 

location of the objects) of the VSWM stimuli are two important factors that influence the storage 

capacity of VSWM. Concluding from these behavioral studies, how people remember these 

changes in structure and how people remember the number of stimuli may be allocated to 

different dimensions. This multidimensional view of VSWM is not only supported by 

researchers in behavioral studies (e.g., Logie and Van Der Meulen, 2009), but also from neural 

imaging studies.  A recent neural study has demonstrated that there might be two separate 

cognitive subsystems operating within VSWM (Darling, Della Sala, Logie & Cantagallo, 2006). 

Overall, these findings point to the possibility that multiple dimensions may exist within one 

type of VSWM task.  

              Few studies, however, have investigated how or whether these dimensions in one type 

of VSWM (e.g., static VSWM, the basic form of VSWM) can be separated. Based on the 

literature, it can be speculated that there may be at least two dimensions in static VSWM, 

depending on the location and appearance of the stimuli in the task. Furthermore, studies also 

imply the possibility of global VSWM processing configuration (e.g.,Borst, Ganis,, Thompson & 

Kosslyn, 2012) when people combine different memory systems when performing VSWM tasks. 

Consequently, possible interactions between these two memory systems might lead to an 

increase in the dimensionality of the VSWM task. 
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The Dimensionality of Calculation 

               Although mathematics achievement has been considered as multidimensional (for a 

review, see Mix & Cheng, 2012) with hierarchical levels (Männamaa, Kikas, Peets, & Palu, 2011) 

overall, few studies have looked into the cognitive requirements for performing a single 

mathematics task, which may also require a multidimensional perspective. A few studies have 

clearly demonstrated how separate cognitive processes operate within a single mathematics 

calculation task (Singley & Anderson, 1989; Rickard, Healy, & Bourne, 1994). Among these, it 

is found that learning one type of mathematics calculation does not transfer successfully to 

another type of mathematics calculation without some variations. This suggests additional 

understanding is required, and therefore posits the possible existence of multidimensionality 

even in a single mathematics calculation task.  

            The difficulty of transfers on calculation skills has shown some specific directions 

(Singley & Anderson, 1989; Rickard, Healy, & Bourne, 1994). For example, Rickard et al. 

(1994) found no transfer of skills between division problems, even when both questions required 

the same rules but with slightly different formats (the participants practiced 56 / 7 = 8 and were 

tested on 56 / 8 = 7). However, the transfer did take place between similar multiplication 

problems (e.g., 6 x 8 = 48 vs. 8 x 6 = 48). A similar pattern can be observed when comparing 

addition and subtraction in other studies. For example, Campbell et al. (2006) found that skill 

transfer took place between addition problems (6 + 8 = 14 vs. 8 + 6 = 14), but not for subtraction 

(14 - 6 = 8 vs. 14 - 8 = 6). Such a transfer effect seems to be found only in particular situations in 

mathematics, which may suggest that the mental representations of different types of 

mathematics calculation can be quite specific even though the problems that do not transfer are 

quite similar on the surface (e.g., 57 / 7 = 8 vs. 56 / 8 = 7).  The above studies used adults as 
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participants; it is unknown whether a similar transfer difficulty is held to be true in children. 

However, it seems that for children, transfer between calculation problems required even more 

additional understanding. For example, Gilmore (2006) tested eight- and nine-year-old children’s 

understanding of inverse problems (4+ ? = 6). They found that the children’s performance was 

affected by several dimensions within the tested tasks (e.g., conceptual mathematics 

understanding and the locations of the missing parts of the equations). The difficulty of 

transferring these processes across children and adults in similar calculations may result from the 

complexity of the cognitive demands in different types of mathematics problems.  

          Specifically, a review by Ashcraft (1982) claims that fact retrieval, carrying, and encoding 

in mathematics requires different kinds of brain function. If this is so, addition and multiplication 

may be related to fact retrieval, whereas subtraction and division are not, and therefore they 

belong to different cognitive processes in calculation. Neurodevelopmental evidence further 

supported that mathematics representations are multi-faceted and that different types of 

mathematics representation are associated with specific areas of the brain. A triple-code model 

proposed by Dehaene and his colleagues (Dehaene & Cohen, 1995, 1997; Dehaene et al., 2003) 

suggests that there are three brain areas responsible for the codes of representation in 

mathematics tasks: the bilateral posterior superior parietal lobe (PSPL), the bilateral horizontal 

segment of the intraparietal sulcus (HIPS), and the left angular gyrus (AG). The PSPL involves 

tasks such as manipulating numbers or their orientation; for example, moving numbers when 

executing subtraction equations or when carrying out more complex operations such as 

borrowing. The HIPS involves the non-verbal quantity system, used for comparison or 

estimation tasks. The AG involves learning or retrieving rote verbal facts in mathematics, such as 

multiplication tables. Overall, the diversity of brain pathway associations in mathematics 
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problems suggests that different cognitive process might be called upon in solving different 

mathematics problems.  

          Laboratory and physiological evidence both suggest multidimensionality in VSWM and 

mathematics, respectively. There are also studies that demonstrate that there might be multiple 

connections between VSWM and mathematics problem solving. However, less is known about 

how the multidimensionality of VSWM and calculation interact. From the understanding of 

previous studies, the relations between VSWM and calculation have mixed results. It is less 

likely that 1) an unidimensional model fits across both tests, or 2) each test belongs to separate 

dimensions. Alternatively, the relation is likely to be intertwined. For example, hypothetically, 

the items of VSWM that require the memory of location may be likely in the same dimension as 

missing terms problems because they both require identification of the locations. It is further 

possible that items of VSWM that require more storage might be on the same dimension as 

multi-digit division problems because they both require more memory spaces. To examine these 

hypotheses, a detailed item analysis on the division of dimensionality between VSWM and 

Mathematics is required.  

A Measurement Approach: Multidimensional Item Response Theory 

Previously, several approaches have been developed to examine the shared connections 

between VSWM and mathematics at an item response level. One approach is from cognitive 

psychology. Researchers often examine the level of connection between two tasks by using the 

dual task paradigm or error analysis. For example, in terms of dual tasks, if the two tasks 

interfere with each other when they are presented at the same time, they are considered to share 

the same cognitive processes.  Lee and Kang (2002) observed that in dual processing tasks, 

holding visual spatial images impairs the ability to do subtraction. A second approach is to 
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identify locations of brain activity when doing tasks. When both tasks activate the same brain 

areas, it is inferred that those two tasks may share the same neural connections in the brain. For 

example, Ashkenazi et al. (2013) found such a connection between VSWM and symbolic 

number processing: the right intraparietal sulcus was activated during both tasks in typical 

children aged seven to nine.  

Although both approaches provide evidence for the possible shared cognitive processes 

of the paired VSWM task and mathematics task, it might be difficult to use brain-imaging studies 

to understand how the items and person interacted on an overall scale simultaneously.  Second, 

item response analysis in experimental design is often limited to a small sample size. Therefore, 

to be able to generalize a representative understanding of this relation, a larger-scale study is 

needed.  

              A more sufficient technique to understand what is commonly distributed among items is 

using a psychometric approach. A prevalent model for this application is an extension from IRT 

models: multidimensional item response theory (MIRT). Specifically, by applying a MIRT 

model, it is possible to examine item responses in a test simultaneously within a large sample. In 

this approach, any close proximity among the items is fully revealed. That is, the test items that 

have the closest proximity can be categorized when they are assessing in in the same dimensions 

(Reckase, 2009).  

           Some have considered item factor analysis and MIRT to be the same concept. However, 

item factor analysis is more concerned with the common variance among variables, and it 

removes the differences between items, whereas MIRT is more concerned with the item 

characteristics of a test. In psychological studies, where the unidimensional assumption of IRT is 

often violated, MIRT was developed to understand the cognitive structure that was formed from 
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the complex interaction between persons and item responses over two dimensions. In contrast to 

the function of the data reduction method in factor analysis, MIRT seeks to provide information 

that will help with the understanding of the structure of the data matrix using as many 

dimensions as are needed to represent relationships (Reckase, 2009).   

              MIRT has been applied across different studies of dimensionality. A primary purpose of 

the use of MIRT is the analysis of dimensionality of a test (e.g., Ackerman et al., 2003; Walker, 

Zhang & Surber, 2008; Reckase, McCrory, Floden, Ferrini-Mundy & Senk, 2015).). In such 

cases, the multidimensionality of the test often comes from the influence of another ability. For 

example, Walker et al. (2008) have demonstrated that students’ reading ability influences their 

probability of success in certain items of the mathematics test. Ackerman et al. (2003), when 

analyzing a ninth grade algebra test, also discovered that although the test content was 

considered to be unidimensional, the items were multidimensional in that some items were only 

measuring spatial ability. In some cases, MIRT also can be used to identify competing models. 

For example, Leighton, Gokiert, and Cui (2007) applied nonparametric methods to identify the 

dimensionality of a science assessment; the purpose was to distinguish whether a content-based 

model or a psychological process-based model fit better with the dimensionality of the tests. 

Overall, these studies demonstrate the practicality of MIRT when the multidimensionality among 

test items is hypothesized. Therefore, to understand the dimensionality between VSWM and 

calculation, the current study applies MIRT in its approach. 

Research Questions 

1. What is the dimensional structure of the VSWM task?  

2. What is the dimensional structure of the mathematics calculation test? 

3. Do VSWM and mathematics calculation share dimensions? 
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CHAPTER THREE 

ARE SUBSCORES WORTH REPORTING?  

The Use of Subscores 

            The proposal to use subscores comes from the practical needs of examinees and 

practitioners, who often notice the useful information revealed by subscores, even when the total 

scores do not show any significant differences between different examinees. For example, 

Lawrence and Curley (1989) discovered that although the total scores between males and 

females are quite similar, these two groups have different subscores for their reading 

comprehension in the SAT verbal test. Haladyna and Kramer (2004) also found that there are 

consistent subscore differences worth reporting to the participants in a National Dental 

Examination (2004) test program. In both cases, the test results carried high stakes, and detailed 

information on subscores seemed to be in need to help examinees improve their future 

performance.  

             Although it seems straightforward to report the differences between subscores and total 

scores to satisfy a market need, the subscores need to be reported following pre-determined 

procedures, and the psychometric value of using subscores must first be demonstrated. It is 

suggested that inaccurate subscores may have a worsening effect on students’ remedial actions if 

they are fed false information (Sinharay et al., 2011).  In addition, the standards for educational 

and psychological testing suggest that reporting subscores calls for adequate reliability and 

validity as criteria (Sinharay et al., 2011;AERA, APA & NCME, 1999-2008). Overall, the use of 

subscores have supported for reliability for intended used and for the validity of inference from 

the scores. 



	

				 33	

               There has been a continuing debate about the value of using subscores.  In Classical 

Test Theory, researchers mostly failed to find their value in practice (e.g., Sinharay, 2010). In 

particular, researchers have shown that in order for subscores to have added value, the necessary 

condition is that the observed subscores should be more predictive than the predictor that was 

generated from the total score on the true score of the subscore.  Otherwise, this would suggest 

that subscores generate more error by reporting its observed value (Sinharay, 2010). To evaluate 

this, Sinharay (2010) developed a criterion for judging this condition. The criterion works by 

using the mean square error (MSE) on the predictors to generate the error variance for the 

subscores and the total score. By using these two values, researchers are able to compare the 

proportional reduction in mean square error (PRMSE).  A higher PRMSE value of subscores 

than its value in the total score suggests that the subscores have added value beyond just 

reporting the total score. Using this approach, it shows that in most conditions, subscores do not 

offer any added value. This was also confirmed by Babenko (2013), who tested three different 

Classical Test Theory approaches:  attenuation, r’ (which is the corrected correlation); the 

proportional reduction of the mean squared error, PRMSE (Haberman, 2008; Sinharay et al., 

2007); and the augmented method (Kelley, 1923). Babenko (2013) found that none of the 

approaches demonstrated that subscores confer additional added value over and above that of the 

total score.  

             This finding leads researchers to question when or whether it is worthy to report 

subscores. To test this, Sinharay, Puhan and Haberman (2010) used the two-parameter logistic 

multidimensional item response (MIRT) model to generate simulated multidimensional data, and 

they experimented with the conditions when the subscores may have further added to value. By 

using estimated parameters from operational data in simulation, they found that in order to have 
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subscores reported, several conditions must be satisfied in advance. First, a sufficient number of 

items (say, 20) should be included in each subset. The subsets should be distinct from each other 

(say, the correlation should be less than r = .85), so that the psychometric properties of the 

subscores meet acceptable standards. However, because these two conditions are necessary 

requirements, if for example subscores have a correlation of .70, then they might not have any 

added values even if the subscore has only 10 items. Therefore, to generate meaningful 

subscores, a long test that has low correlations among subsets would be required.  

         Another issue is that many current tests designed to screen participants over a single 

continuum would probably not be able to provide essential, reliable, or valid subscores 

information because the items that did not fit unidimensional models would be deleted from the 

test (Yao & Boughton, 2007). The attempt to fit unidimensional model is prevalent in 

measurement area, but as Tate (2004) posits, harmful results may be generated when researchers 

apply a unidimensional model to data that are multidimensional. Finding methods to generate 

meaningful subscore information has become another potential solution to this problem.  

Multidimensional Item Response Theory (MIRT) Approach 

             Following this notion, another group of researchers tried to show the merit for using a 

multidimensional item response approach to generate subscores. Specifically, researchers 

compare different methods on either simulated or real data. For example, Haberman and 

Sinharay (2010) found that by using subscores generated with the two parameter logistic MIRT-

based models approach, the added values of the subscores were slightly improved over the value 

of the raw total score. However, in their five datasets, it appeared that the data that were 

unidimensional (Test B and Test D) did not always shown improved precision with MIRT model 

based subscores. Other researchers have found similar results. Stone, Ye, Zhu, and Lane (2010), 
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using an eighth grade unidimensional mathematic test, showed that the augumented score reports 

subscores more precisely than do the subscores generated by the MIRT models. 

Overall, although it seems as though the result of the model fit is based on the 

psychometric nature of the data, MIRT models show some promising effect. This has motivated 

researchers to investigate different estimation methods to stabilize the outcome of reliable 

subscore estimations from the MIRT models. For example, de la Torre and Patz (2005) propose 

that using a hierarchical Bayesian framework can improve the estimations in MIRT testing. 

Regardless of how many estimations methods are proposed, the estimation methods still require 

a good fit with the MIRT models, which would require the data to be multidimensional in nature.  

The Psychometric Property of the Data 

          The decision of reporting subscores seems then to be defined by the nature of the 

constructs that are being measured. Haberman and Sinharay (2010) conclude that when 

subscores are valuable to report, the subscores and total score are usually the result of measuring 

different constructs. However, this is not always the case. 

As introduced earlier in Chapter one, Researchers often find that subtests of the 

intelligence test (e.g., the Wechsler Intelligence Scale for Children) or achievement test (e.g., a 

composite test of reading, language, and science) fail to provide useful diagnostic information 

over and above the composite score (McDermott, Fantuzzo, & Glutting, 1990; Sinharay et al., 

2007). Considering the hierarchical structure of cognitive abilities, this might not be a surprise. 

For example, Templin and Bradshaw (2013) compared several unidimensional and 

multidimensional diagnostic models to fit data with a hierarchical structure. It appears that when 

the data were hierarchically multidimensional, such that students needed to master the pre-

requisite traits before they could master other higher order traits, the results still showed that the 
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unidimensional models fit better. Therefore, the linearity of the traits made it impossible to show 

any added value from tested subscores with those traits, because they would be masked by the 

linear relationship of the attributes. Consequently, students who had never mastered the low level 

skills would suffer from the fact that they were notified only of their overall scores.   

            Furthermore, detecting the difference between subscores and the total score can be 

beneficial for determining whether there are differing psychological processes for each subgroup 

or individual child. These different processes could be divided into two categories: children who 

overachieved compared to their estimated ability, and children who underachieved compared to 

their estimated ability. Both situations could happen with the curriculum modifications. Some 

research has demonstrated that differences in curriculum led to differences in student 

performance (e.g., Geier et al., 2008). The first category could create a subdimension. For 

example, some children may show overachievements on test scores if they were the only group 

being taught the concepts that were targeted in the exam. Another example of overachievement 

could be that some groups of children are more familiar or comfortable with the context of some 

test items than other children. For example, if a group of items were based on basketball rules, 

children who are familiar with basketball could grasp the concepts better and therefore 

potentially perform better. Conversely, the second category could also create a subdimension if a 

small subgroup of children did not receive proper education while all other children did. An 

example of this might be that a group of children did not attend class some days if they were all 

sick because of an infectious disease that was passing around the class. Reporting subscores 

might be able to reflect theses variations if there is any information that can be taken into 

consideration. Therefore, methods that could detect whether differences in subscores might 

indicate certain subgroup differences that would be masked if only looking at the total score.  
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             Last, researchers have suggested a different approach that subscores reporting might not 

be useful for everyone (Raymond & Feinberg, 2015), but only for those students whose total 

scores cannot predict their true subscores. Therefore, deciding subscores’ values by comparing 

these with total scores might not be the best method for those individuals, and finding alternative 

procedures to determine those subgroups’ differences to report could still be meaningful for 

subgroups’ future remediation (e.g, Raymond & Feinberg, 2015).  

Person Fit Indices 

               To sum up, the current methods for detecting the use of subscores may not offer much 

value when unidimensional model is a good fit. In order to explore this problem and add 

understanding to the gaps in the previous literature, an alternative measure is needed to 

determine whether it is possible to extract information from individual differences the data that 

fits a unidimensional model well.  

              To detect individual differences in testing, one possible approach is through the methods 

for detecting outliners. Specifically, a line of research in measurement has been trying to 

generate optimal appropriateness indices to identify irregular response patterns in the data 

(Drasgow, Levine, & McLaughlim, 1987; Levine & Drasgow, 1984). Irregular response patterns 

could result either from cheating behaviors (which increase the correct response rates) or from 

participants’ omitting behaviors (which lower the correct response rates). Both patterns are 

threats to test reliability and validity. Among all the appropriateness indices proposed in previous 

studies, the Lz and T2 index was shown to be most efficient in detecting whether examinees are 

showing unusual response patterns (Drasgow et al., 1987). It is worth noting that although the 

detecting rate of Lz can very depending on the ability range of participants, the detecting rates 

generally are high. For example, Lz showed a 94-99% detection rate regarding 30% suspiciously 
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high scores on low ability group (0- 30% ability range), and a 92-98% detection rate with 30% 

suspiciously low scores with a high ability group (65%-100%) and 70-82% detecting rate with a  

middle ability group (31-64 ability range). T2 has also shown a 96%-98% detection rate 

regarding 30% suspiciously a high scores on a low ability group (0- 30% ability range), and a 90-

99% detection rate with 30% suspiciously low scores with a high ability group (93%-100%) and 

60-81% detecting rate with a middle ability group (31-64 ability range). Given its relatively high 

detection rate compared to other indices, as well as the ease of using it in future testing 

applications, these two indexes was chosen to be our primary detection method in the current 

study.  

       The goal of using Lz and T2 is to determine whether the sensitivity of the index could be 

utilized for detecting subscore differences. The construction of Lz  is as follow  

(Drasgow et al, 1987): 

u!= dichotomously scored item response (1 or 0) for item i (i=1.2……..n)  

a, b, c are item parameters estimates. D is the constant 1.702 

Lz =  
ℓ!!!(!)

!(!)
!/! 

The logarithm of the three-parameter logistic likelihood function evaluated at the maximum 

likelihood estimate θ of θ. 

ℓo = u! logP! θ + (1− u! ) logQ! θ
!

!!!
 

𝑄! θ = 1− 𝑃! θ  

P! θ = c! +
1− c!

1+ exp −Da!(θ− b! )
 

The conditional expectation of ℓ!: 
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M θ = P! θ logP! θ + Q! θ logQ! θ
!

!!!

 

The conditional variance: 

S θ = P! θ Q! θ log P! θ /Q! θ
!

!

!!!

 

         Overall, Lz is comparing the estimated logistic likelihood function with its conditional 

expectation value and then divided by its conditional variance to generate the standardized value. 

The rationale focusing Lz is that it has demonstrated its sensitivity in identifying unusual patterns 

within data. The application of the Lz index may be able to detect these even from a seemingly 

unidimensional data structure and may be to help researchers to, for example, pinpoint the 

children who have unusually low or high responses for some items according to their 

performances on other items.  

The Formula of T2 is as follow (Tatsuoka, 1984). 

𝐺!  = !
!

𝑃!"!
!!! (𝜃!), and 𝐺 =!

!
𝐺!!

!!! , 

T2 = !! ! !!! [!!!!]

[ !!(!)!!(!)(!!!!)!]
!
!
 

            Although previous studies provided good detecting rates on both Lz and T2, It is possible 

that we might not obtain the same promising result. A review conducted by Meijer and Sijtsma 

(2001) has suggested that type of misfitting patterns, test length, and trait level (theta) could vary 

the result of person fit indices.  The misfitting patterns of the current study are less powerful 

comparing to previous studies. Although the b parameters were shifted between ±2 range, it is 

still less strong than altering the responses to all zero. Secondly, it is worth noting that in 

previous studies, person fit indices often use true θ, and previous studies (Snijders, 2001; Magis, 

Raiche, & Beland, 2012, Nering, 1995 ) have pointed out that Lz is not an optimal index when 
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trying to apply it to real data. In our studies, we however use estimate θ to be closer to a real life 

condition on large scale testing. 

 

 

Research Questions 

1. Can person fit indices detect the subscores created by the differences between subgroups?  

2. If so, under what conditions can person fit indices detect the differences?   



	

				 41	

CHAPTER FOUR  

STUDY ONE RESULTS 

Method  

Participants 

537 third graders participated in this study. Data was from the IES funded project: Spatial 

Ability as a Malleable Factor for Mathematics Learning. The data were collected in spring 2013 

and spring 2014. Thirty-three schools, across rural, suburban, and urban areas in Michigan and 

Chicago, have participated this study. The rate of average free/reduced lunch was 42.87% (range 

from 0%-99%). The mean age was 9.05 year (SD = .36). There were 238 boys in the sample.    

Measures  

          VSWM. Visual Spatial Working Memory was adapted from the Kaufman ABC test 

(Kaufman & Kaufman, 1983). The Kaufman VSWM task measures the static types of VSWM. It 

has been used widely in previous studies (e.g., Mariani & Barkley 1997; Wang, Woodin, Kreps-

Falk, & Moss, 2000). In each trial a 14 cm x 21.5 cm grid is divided into two different numbers 

of squares (e.g., 3 x 3 and 4 x 3). On each grid, different objects are shown inside the squares. 

The locations of these objects on the grids are what the children need to remember and mark on 

their sheets. To vary the difficulty of the items, the numbers of objects were between two and 

seven and were randomly displayed on the squares in each trial. There were 17 items in this test.  

       For group administration, the original paper version was transformed into a computerized 

version that was displayed on the computer. Children viewed these images from 100 centimeters. 

At the beginning of each task, children were told that the stimulus would be displayed for only 5 

seconds, and they needed to remember where these pictures were. Each slide was set to 

disappear after 5 seconds and the screen arrangement was replaced with an identical blank grid 
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(with no objects inside the squares). When the pictures were made to disappear from the screen, 

the children marked where these pictures were on their booklet. The test was first introduced 

with three practice items. The children received feedback on the correctness of their answers on 

these three items. They were also allowed to compare their results to the correct answers.  Before 

the last practice item they were also told that when the practice session was over there would be 

no more feedback; each picture would be given only once so they needed to look at them 

carefully. It took approximately 20 to 25 minutes for each child to complete the test.  The 

reliability of the test on the sample that was used here was α = .67.  

             Calculation. The Calculation tests were adapted from the Michigan focal point on 

matched grade level mathematics questions.  There were 24 items. The questions included both 

single digit and multi-digit problems. These problems included addition, subtraction, 

multiplication, division, fraction and missing terms problems (A list of these items is in Table 2). 

The test was administered in groups. Children were given paper and pencil copies of these 

questions. It took approximately 20 minutes for the children to complete the test. Test reliability 

on the sample that was used here was α= .75.     

Analytic procedure 

           As the primary purpose of the study is to examine the dimensionality of cognitive 

structure within cognitive abilities, the current study used two types of cognitive abilities: visual 

spatial working memory and calculation to explore their possible shared dimensions and hope to 

reveal the cognitive processes. The item responses from both measurements were used for the 

analysis. The data analysis plan closely followed the MIRT analysis steps from Reckase, 

McCrory, Floden, Ferrini-Mundy and Senk (2015). The dimensionality analysis was also carried 

out with more confirmatory approaches, based on the results of expert reviews, convergent 
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evidence from the literature review of neural imaging studies, and error analysis on the patterns 

of item responses. These analyses are described in more detail below. 

Data analysis: exploratory approaches 

          Identifying the dimensions. The first analysis was to examine the item responses from 

these two tests separately for tests of unidimensionality. This is because it only makes sense for 

further multidimensional item analysis if both of the tests presented multidimensionality. To do 

so, DIMTEST (Stout, Nandakumar, Junker, Chang, & Steidinger, 1992) was carried out to test 

whether the matrix of item responses is well fitting with a single person parameter (one θ). So, 

item responses from VSWM were tested for whether a single VSWM construct can represent this 

dataset and item response from calculation also were tested for whether a single calculation 

construct can represent this calculation dataset. After that, both datasets were combined to test 

whether a single general ability construct can well represent this combined dataset (denoted as 

CVC for the following analysis).  

  Dimensionality. If the unidimensionality is rejected, the item responses from CVC then 

were used to proceed with further MIRT analysis to determine the number of dimensions in the 

data. First, a parallel analysis was conducted to compare the eigenvalues between the CVC data 

and the parallel-simulated dataset. This parallel dataset was simulated to have the same sample 

size and the same item proportional correctness but the relationships among the items were 

random.  The eigenvalues from both datasets were compared. The numbers of eigenvalues in 

CVC that were bigger than the eigenvalues from simulated dataset were used for initial 

indication of the number of dimensions to support this dataset.  After that, an exploratory MIRT 

analysis was done using a MIRT package in R (Chalmers, 2012). The a parameters generated 

from the MIRT program were also compared with the a parameters generated from the same 
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estimated procedure from FlexMIRT (Cai, 2012) to confirm similar parameter values were 

generated from different programs.  These a parameters were then used to calculate angles 

between variables. The generated angular distances were then used to cluster the items. Ward’s 

method of cluster analysis in R was used for the clustering procedure.  

 Data analysis: confirmatory approaches   

              The distribution of these items on the dimensions could also vary in several different 

scenarios. One possibility is that even though there are three dimensions, the data still present a 

simple structure. In this case, items don’t cross load on dimensions. For example, there might be 

two dimensions that exist in these VSWM items and one dimension exists in the calculation 

items. Another possibility is that these three dimensions could come from a more complex 

structure but items don’t cross load on different dimensions, such as one dimension is spatial, 

one dimension is calculation, and another dimension is the interaction between spatial ability and 

mathematics ability (such as this interaction creates a different dimension). The third possibility 

is that each item is distributed in multiple dimensions. For example, these items all require 

memory of location, in which this “memory of location” could be one dimension. Some of these 

items might also require “counting”, which will be another dimension. In this case, the 

dimensions in this dataset are quite a complex structure.  

To give a clearer picture on these dimensions, content analyses were also conducted to 

generate several possible explanations for these dimensions. Ackerman et al. (2003) suggested 

that a content analysis might provide directions for further assessments of dimensionality. 

Therefore, the current study conducted content analyses to construct confirmatory models.  

These contents analyses included an expert review, a review of neural imaging studies, and an 

error analysis.   
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        Content analyses. In the expert review, three content experts reviewed the contents of the 

VSWM and calculation tests and identified the possible dimensions based on the reviewers’ 

expertise. They coded items according to the cognitive process of the items into three different 

categories: number (mathematics), location (spatial), or both. In the neural review, a through 

literature review was conducted to decide each item’s category in a neural model. If the results 

within the literature conflicted, the majority was followed. In the error analysis, the 537 item 

responses are recoded to two different directions. One was recoded with whether the children 

correctly answered the number of items in each VSWM stimulus, and the other was recoded with 

whether the children correctly identified the location of these items in each VSWM stimulus.    

       Confirmatory MIRT Analysis. The exploratory approaches are meant only to provide the 

possible dimensionality of the dataset. A two-parameter logistic MIRT model was applied to 

provide further understanding of the cognitive structure of these two tasks. The results tell us 

whether the calculation performance requires certain high VSWM dimensions. To conduct this 

step of analysis, confirmatory MIRT analyses (e.g., Mplus) were used. 

 

Results 

Exploratory approaches 

          Multidimensionality of the data. First, to identify whether there are shared dimensions 

between VSWM and calculation, the multidimensionality of VSWM and calculation need to be 

confirmed separately. Separate tests for unidimensionality were carried out with DIMTEST 2.0 

for each test. The null hypothesis of unidimensionality was rejected for both VSWM, t = 3.5471, 

p = .0002, and calculation, t = 3.1479, p = .0002. These results indicate that multidimensionality 

might exist in VSWM and calculation separately. A third test for unidimensionality was also 
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carried out for the data that combined both VSWM and calculation (denoted as CVC below). 

This test also rejected the null hypothesis of unidimensionality, t = 5.9791, p <. 0001.  

  Dimensionality. Because the multidimensionality of the CVC was confirmed, the next 

step was to identify how many dimensions are in the data. To do so, parallel analysis (Horn, 

1965) and hierarchical cluster analysis were carried out. Parallel analysis provides information 

about the possible numbers of dimensions of the data by comparing the real data with simulated 

data, which is a parallel comparison with another dataset with the same sample size, the same 

number of items, and the same item difficulty distribution among items, but no relations among 

these items. To simulate such a dataset, I randomly replaced the item responses in each item in a 

loop to create a random distribution of the responses. For example, each item has 537 responses 

(0 or 1). For example, for item four there are 537 responses. 100 responses are zero and 437 

responses are one. I randomly replaced these responses 537 times, so that the item still had the 

same difficulty but there will be no relations with other items. In this way, the proportion of 

correct scores was intact, which ensures the simulated data has the same item difficulty 

distribution as the original data. The simulation went through 100 replications. Both real data and 

simulated data each generated their eigenvalues from their correlation matrices. All the 

procedures were conducted in R 3.2.4. The results indicated that the biggest first four 

eigenvalues in the real data were 5.60, 2.28, 2.00, and 1.56. For simulated data, the mean and 

standard deviation of the first three biggest eigenvalues were 1.57(0.03), 1.50(0.03), and 

1.46(0.03). It appears that the first three eigenvalues of the real data are much bigger when 

compared to simulated datasets. Therefore, the result suggests that the interactions between 

persons and items can be represented by three dimensions. 
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          To confirm this number of dimensions, a hierarchical cluster analysis was also carried out 

on the CVC. The analysis was carried out with two different approaches. One approach is using 

the item score (binary responses) to generate a distance matrix, and another approach is using 

angular distance generated from a MIRT model estimating a parameters with six dimensions. In 

the approach utilizing MIRT a parameters, the six dimensions were decided by doubling the 

numbers of dimensions from the parallel analysis. Both approaches were conducted with the 

hierarchical cluster analysis package in R 3.2.4 with Ward’s algorithm. Both approaches showed 

three clusters, but the combination of items in the clusters were slightly different between the 

two methods. Based on the results of the parallel analysis and hierarchical cluster analysis, the 

number of dimensions seems to be established as three dimensions.   

Confirmatory approaches 

         For the next step, confirmatory MIRT analysis was carried out to investigate the items 

located on each dimension. Note that although the number of dimensions was identified, these 

methodologies were exploratory approaches. Therefore those results only suggest there are three 

major dimensions in this data. To identify the meaning of the dimensions from the perspective of 

theoretical understanding, content analyses were conducted to further assist the constructs on 

hypothesized cognitive process in the combined data. 

           Expert review. Three experts reviewed the items from both VSWM and calculation. 

They categorize these items into spatial (the location of stimulus), mathematics (quantify 

numbers), or an interaction between these two processes. Two of the three experts were graduate 

students who have done research related to spatial ability and mathematics performance, and the 

third expert was a professor who has expertise in this area. Prior to the review, the three experts 

had a meeting to discuss what possible dimensions might exist in CVC. Then each expert 
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individually categorized items into three categories: spatial process, mathematical process, and if 

the item has both processes then it was categorized as both. The percentage of agreement was 

calculated among three experts. Because the agreement is quite low (39%), the models suggested 

from each expert were carried out separately to identify the best-fit model.  

        For model comparisons, because these three models were not nested, the approach to use 

chi-square difference tests to check the relative model fit is not an option here. The best model fit 

therefore was identified by finding the lowest Akaike information criterion (AIC; Akaike, 1974), 

Bayesian information criterion (BIC; Schwarz, 1976), and Sample Size Adjusted Bayesian 

Information Criteria (SABIC) from these models. These criteria were suggested by previous 

studies (Bozdogan,1987; Burnham & Anderson, 2004; Lubke & Neale, 2006; Raftery, 1995; 

Vrieze, 2012). Using these indices, it appears that the second model is the best fit (see Table 1).  

Table 1. 

Model comparisons among three expert models 

Models Number of 

parameters 

AIC BIC SSABIC 

Model 1 85 19097.599 19461.909 19192.091 

Model 2 84 18952.050 19312.073 19045.429 

Model 3 85 19039.304 19403.614 19133.796 
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Table 2. 

The item distribution of Expert 2 Model 

Dimensions VSWM Calculation 

Spatial (location) 
 

vswm3x3_85 
vswm3x3_95 
vswm3x3_105 
vswm4x3_55 
vswm4x3_66 
vswm4x3_76 
vswm4x3_87 
vswm4x3_97 
vswm4x3_107 
vswm4x3_117 

 

Mathematics  (Number) 
 

 C1_1+6 
C11_347-129 
C12_8753-3497 
C3_378+146 
C4_4098+1567 
C9_7-3 
M1_7+?=10 
M2_5-?=2 
M3_6+3=5+? 
M4_8-4=6-? 

Both 
 

vswm3x3_54 
vswm3x3_64 
vswm3x3_73 
vswm4x3_12 
vswm4x3_24 
vswm4x3_34 
vswm4x3_43 

C10_26-17 
C13_2/5=1/5+?/5 
C14_4/7-1/7=?/7 
C15_42/7 
C16_800/80 
C2_24+18 
C5_1/2=?/6 
C6_3/4=6/? 
C7_40x3 
C8_50x12 
M5_9x?=63 
M6_56/? =8 
M7_48x2=24x? 
M8_105/5=210/? 

*the 3x3 and 4x3 in VSWM represented the grids, the first digit after that is the item order in that 

grid, the second digit represents the number of objects in the grid. For example, vswm4x3_43 
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means that it is a stimulus has 4x3 grid and it was the fourth item given in 4x3 grid and there 

were three objects in this grid.  

              Neural imaging review. Although expert review provided psychological justification 

for the categorization of these items, reviewing findings from neuroimaging studies could 

potentially provide different insights over the cognitive processes associated with each of these 

items. Therefore, a different categorization was developed derived from findings of neural 

imaging studies was adapted to identify the cognitive processes in these items. One common 

method of categorization in neuroimaging studies is using hemispheric specialization such as 

identifying the lateralization of different brain functions. To do so, previous neuroimaging 

studies were reviewed in order to classify items into three dimensions: left hemisphere, right 

hemisphere, or bilateral. Hemispheric specialization was suggested by previous studies to 

understand the mechanism (Semmes, 1968) and to identify the cognitive encoding of tasks from 

neural perspectives (e.g., Slotnick & Moo, 2006).  The literature review began by searching for 

neuroimaging studies that used VSWM and calculation in a typical population. For the 

categorization of VSWM items, although there are some discussions about the 

multidimensionality of VSWM (e.g., categorization vs. coordination), the nature of the VSWM 

task that was used here did not generate the categorization responses similar to previous studies 

because we asked children to indicate the location of the pictures rather than using a spatial 

frame of reference (e.g., above or below a reference point). Therefore, VSWM task was divided 

based on previous studies on its relation of subitizing (Piazza, Fumarola, Chinello, & Melcher, 

2011) and counting (Kyttälä, Aunio, Lehto, Van Luit, & Hautamäki, 2003). Subitizing is the 

ability to correctly identify the quantity of a small set of items in a brief moment (the quantity is 

usually smaller than 4).  (Kaufman, Lord, Reese, & Volkmann, 1949). It was recalled that in our 
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VSWM task, the number of objects within items was between two and seven. Therefore the 

items were categorized with four or fewer objects as subitizing and items with more than four 

objects as non-subitizing.       

           In previous studies, subitizing has showed bilateral advantages (Dehaene and Cohen, 

1994; Delvenne, Castronovo, Demeyere, & Humphreys, 2011; Vuokko, Niemivirta, & Helenius, 

2013), while a few studies suggested a right hemisphere advantage (e.g., Pasini & Tessari, 2000). 

In here the present study followed what was said in most studies. The rest of VSWM items were 

categorized as non-subitizing type of items, which might require more on counting and more 

spatial memory. Previous studies have demonstrated right hemisphere advantage on spatial 

memory (Thomason et al., 2009; Weintraub & Mesulam, 1987). Therefore, we categorized the 

rest of items are on right hemisphere while “subitizing items” are bilateral.  

        Regarding hemispheric specialization in the calculation test, a meta-analysis by Arsalidou 

and Taylor (2011) concluded that addition has more left hemisphere activity, subtraction is 

bilateral, and multiplication has more right hemisphere activity. However, as Arsalidou and 

Taylor (2011) indicated, because not many studies have analyzed calculation with division as a 

separate operation, they were not able to conclude the hemispheric specialization for division. 

There is, however, evidence suggesting that division and multiplication are highly correlated 

(Lefevre & Morris, 1999) and multidigit multiplication and division have some overlapping 

activations in similar brain areas (Fehr, Code, & Herrmann, 2007). Therefore in this study, 

multiplication and division are categorized together.  For fractions, to the author’s best 

knowledge, no literature has addressed how fractions activate which brain area(s), so it is 

difficult to categorize its hemispheric specialization.  For this reason, the four fractions were 

removed from the comparison between expert models and the hemispheric specialization model. 
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Specifically, Model 2 (which was the best fit from the previous expert review session) was used 

as a comparison with this hemispheric specialization model (Model 4). Therefore fraction items 

were taken out from Model 2 (which is Model 2.1 here) for further comparisons. One might 

wonder whether Model 2 will still be the best model compared to Models 1 and 3 after taking out 

the four fraction items. To test this, this analysis was re-run on Models 1, 2, and 3, and Model 2 

was still found to be the best. Therefore, Model 2.1 (which is Model 2 with four fraction items 

removed) and Model 4 (the hemispheric specialization model) were compared with AIC and BIC 

indices. The results suggested Model 2.1 is the better model (see Table 3). 

Table 3. 

Model comparison between Expert 2.1 Model and neural imaging model 

Models Number of 

parameters 

AIC BIC SSABIC 

Model 2.1  76 16565.990 16891.725 16650.476 

Model 4  81 19206.949 19554.114      19296.993 

 

         Error analysis. Another type of confirmatory approach is to identify the dimensions 

through error analysis in advance. Previous studies have used this type of analysis to understand 

cognitive processes (Radatz, 1979;. Tatsuoka, 1984, 1990). To do so, the children’s original 

VSWM responses were recoded and separated into two different datasets. In one set of data, 

these responses were recoded by whether children were correct about the number of pictures, and 

another was recoded by whether they correctly marked the location. Both responses were coded 

as a dichotomous response (0 and 1). To begin with, only the items that have under 85% correct 

rates in the original dataset were recoded, because the items that have high correct rates would 
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have correct responses on both datasets. This would have caused these two dimensions to be very 

similar if items over 85% correct were included. The recoding procedure proceeded as follows: 

for the dataset that was recoded by the numbers (denoted Number VSWM), the score was 

counted as 1 when the child answered correctly on the numbers of pictures within each stimulus, 

even though the location of the pictures were marked wrong in original responses. For the dataset 

that was recoded by the location, the original responses were used, because when a child 

correctly marked the location, these responses matched what were originally coded in the 

VSWM dataset. This location dataset is denoted as Location VSWM.  

         To identify whether these two datasets are too similar to begin with (if they are very similar 

then the attempt to separate the dimensions with error analysis might have failed), the correlation 

of the sum scores between Number VSWM and Location VSWM was calculated. The 

correlation was r (537) =  .62. Compared to the criteria for strong correlation r = .8, it is not high. 

After this step, each dataset was combined with the calculation data and was processed with the 

MIRT analysis (denoted as Number VSWMCT and Location VSWMCT).  

          Figure 2 and Figure 3 showed two different sets of clusters by using the a parameters that 

were generated from MIRT analyses with Number VSWMCT and Location VSWMCT, 

separately. Surprisingly, while Location VSWM grouped only two calculation items, the Number 

VSWM grouped with subtraction, multiplication, and division items. This might suggest that the 

Number dimension of VSWM is what really correlated with arithmetic in previous studies (e.g. 

De Smedt, Janssen, Bouwens, Verschaffel, Boets, & Ghesquière, 2009; Rasmussen & Bisanz, 

2005), and the location dimension of the VSWM might not have a high correlation with most of 

the calculations.            
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Figure 2. Number VSWM and Calculation. NVSWM is Number VSWM. All “CT “and “M” 

items are calculations. 

 

Figure 3. Location VSWM and calculation. LVSWM is Location VSWM. All “CT “and “M” 

items are calculations. 
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Discussion 

The number of dimensions  

          The result suggested that there is converging evidence that multiple dimensions exist in 

this CVC dataset from both parallel analysis and cluster analysis. If VSWM and the calculations 

are both unidimensional, the CVC dataset should generate one dimension for spatial ability and 

another dimension for mathematics calculation, which would show as two dimensions here for 

CVC. The result therefore is somewhat different from what was found in some previous studies, 

that VSWM was unidimensional (e.g., Miyake, Friedman, Rettinger, Shah & Hegarty, 2001), but 

was supported by several other claims that VSWM and the calculations are multidimensional 

(e.g., Darling, Della Sala, Logie & Cantagallo, 2006; Männamaa, Kikas, Peets, & Palu, 2011).  

          Another piece of supportive evidence for the existence of three dimensions is that, aside 

from the results of parallel analysis and cluster analysis, it appears the relative model fit of three 

dimensions is better than two dimensions (e.g., for Expert 2 Model with two dimensions, BIC 

was 19515.830, and with three dimensions, BIC was 19312.073). Specifically, this occurs when 

comparing the model fit between two dimensions (which lump these interaction items with both 

spatial and mathematics dimensions because they might weigh equally on both processes) and 

three dimensions (which put these interaction items in an independent dimension). 

What are these three dimensions? 

        Among all of these models, the Expert 2 Model is the best one. When reexamining the 

categorization of the Expert 2 Model, it appears that the Expert 2 Model has quite a similar 

categorization with the neural imaging model (see Table 2). Recall in the initial expert review 

that these items were categorized as more spatial or mathematics, and as more number or 

location. Such a categorization is a heuristic process. To help interpret the result, the finding 
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from neural imaging studies was used. Specifically, by identifying which functions are not 

grouped together in the same areas, their underlying cognitive processes can possibly be 

identified. In this study, this would mean identifying the functions that are not in the same 

dimensions. The categorization of the Expert 2 Model is presented in Figure 1, which shows 

several clear patterns. First, it appears that there might be a distinction between VSWM stimuli 

that have 2 to 4 pictures and the VSWM stimulus that has 5 to 7 pictures, suggesting these two 

might be separate cognitive processes. Previous studies have shown that there is a relation 

between VSWM and subitizing (Piazza, Fumarola, Chinello, & Melcher, 2011). Perhaps when 

children were processing the VSWM items with 2 to 4 pictures, they also used their subitizing 

ability, and when they were processing VSWM items with 5 to 7 pictures, they switched to use 

their counting ability. Evidence from previous studies also suggests that subitizing and counting 

are two different cognitive processes (Pasini & Tessari, 2001).   

         It also appears that in terms of calculation, addition and subtraction make up one dimension, 

while multiplication and division make up another dimension. This is also supported by the fact 

that neural studies have found addition and multiplication are on separate dimensions (Arsalidou 

& Taylor, 2011). However, the difference between the neural imaging studies and the Expert 2 

Model is the categorization of subtraction. In the neural imaging model, subtraction and addition 

are in separate dimensions, which is different from what was defined in the Expert 2 Model that 

had subtraction and addition in the same dimension. However, because the Expert 2 Model is 

statistically better when compared to neural models, this might suggest that subtraction could be 

more likely to function on the left side rather than bilaterally. One possible reason could be that 

in previous neural imaging studies the subjects are mostly adults, but the subjects in the present 

study is children ages 9 and 10. However, overall, the neural imaging model and the Expert 2 
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Model are mostly similar despite the small difference in subtraction. This possible difference 

between children and adults also corresponds with general evidence that has shown that despite 

developmental changes in the brain, the overall core system is similar, regardless of the 

operations of the calculations. However, there is a shift in brain regions when specific cognitive 

processes occur (Kawashima et al., 2004).     

          Finally, in terms of shared dimensions between VSWM and the calculations, it appears 

that the ability to subitize items might be important for more difficult calculations. For example, 

all of the fraction, multiplication, and division items are in the same dimension as the subitizing 

in VSWM.  One possible explanation could be that these “difficult” calculation items and the 

subitizing of VSWM items both require more processing in the right hemisphere. Therefore, they 

are more likely to be located in the same dimension. The finding from the error analysis also 

supported this finding. Recall that while Location VSWM was not grouped with most of the 

calculation items, Number VSWM was grouped with subtraction and division items. Apparently, 

the ability to correctly grasp or subitize the numbers of items on a target, in a brief given time, is 

related to these calculation items. When performing these calculation items, it is possible that 

children maintain the necessary elements in the process of calculation on their memory board. 

For example, one strategy of calculating 347-129 is to split it into six numerical elements, as in  

(300+40+7) – (100+20+9), and two operated symbols (+ and -).  If the child did not grasp these 

elements of the equation well, they might not produce correct the answer on the calculation.  

           Overall, these findings might suggest that when training VSWM on children to improve 

their calculation performance, perhaps training does not need to focus on the location aspect of 

the VSWM. Instead, perhaps the training could focus on the number aspect of VSWM. For 

example, children can be trained by using exactly the same VSWM training but altering the 
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procedure by asking children to remember how many pictures are in the grid instead of marking 

their locations. 
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CHAPTER FIVE  

STUDY TWO RESULTS 

Simulation Study Design 

           The second study explored the possibility of reporting meaningful subscores by utilizing 

appropriate standardized measurement indices. Since the purpose of the current study is using the 

sensitivity of person fit indices, the most sensitive person fit indices were chosen. Although 

many person fit indices have been developed, Drasgow et al. (1987) showed Lz and T2 are the 

most sensitive indices. However, studies also have demonstrated that Lz does not have standard 

normal distribution when true abilities are replaced with estimated ability parameters and has 

suggested a formula for correction for Lz, denoting Lz* (Snijders, 2001; Magis, Raiche, & 

Beland, 2012). Therefore, Lz* is used instead of Lz here along with T2.  Also, as the true ability 

is unknown, the current study uses estimated ability parameters.  

             The research questions of the current study are two-folded. First, can person fit indices 

detect the differences in the atypical dataset of subscores that was created by the subgroups’ 

differences? If so, in what conditions can the indices detect the differences? To do so, the indices 

were first applied to a series of the simulated data to find out in what conditions the indices are 

sensitive to detect the difference. We also applied the indices to test their performances with a 

real data application. Specifically, the indices were applied to the dataset from Study 1 to 

examine the detection rate. 

Data simulation  

           The simulated data was generated by using the Wingen program 3.0 (Han, 2007; Han & 

Hambleton, 2007).  The purpose is to create samples that will be a good fit with unidimensional 

data overall, while embodying a set of items that represented an atypical subgroup. To do so, two 
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samples were simulated for each condition. First, an N=1000 normal sample was simulated, and 

another atypical N=100 sample was simulated later. The atypical sample was used to replace a 

certain percentage of the items in a subgroup in the normal sample. The data for the atypical 

sample were simulated in a way that they have an unusually low or high probability of correct 

response patterns, regardless of the students’ ability level in this particular subgroup. Note that 

no matter what purpose the sample was intended to generate (normal or atypical), the simulated 

data generation here used the same set of ability θ parameters and a parameters. The only 

difference between the original sample and the replaced sample is the +2 and -2 shift on the b 

parameters.  

          All the parameters were generated from a normal distribution, but the means and standard 

deviations were different in each type of parameters. . I applied a two parameter logistic IRT 

model to generate two sets of data in each condition, based on the same ability parameter θ. The 

ability parameter θ for simulated examinees was generated from the normal distribution N (0, 1) 

first. The normal dataset N=1000 was generated first. In this N=1000 normal sample, the a 

parameters were generated from ~N (1, .2). Then the b parameters were generated from ~N (0, 

.7). In the atypical N=100 sample, the same set of a parameters were used, but the mean of b 

parameters was generated with a shift on normal distribution from N (0, .7) to N (-2, .7) and N (2, 

.7). I randomly replaced the 100 simulated subjects in the normal sample with the atypical 

sample. The procedure was the same with +2 and -2 b parameters.  

         The conditions were varied by the percentage of atypicality (low 5%, middle 15%, high 

30%) in items, the percentage of participants in the total sample (5%, 10%, 20% of 1,000), the 

total number of items (30 items, 45 items, 60 items, 75 items, 90 items), and the shift of b 

parameters. Therefore, 180 conditions were generated.  
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        The percentage of replacement in the samples was aligned with what Drasgow et al. (1987) 

used in their study. The number of manipulations of items were also aligned with what had been 

used in previous studies (e.g., Haberman & Sinharay, 2010). The subtests in previous test 

programs had 13 to 35 items while the total number of items was around 49 to 119 questions. 

Therefore we divided our conditions into five categories (30 items, 45 items, 60 items, 75 items 

and 90 items). The sample size of 1000 was used here because Sinharay (2010) found in his 

simulation study that there was no difference between a sample size of 1000 and 4000 in the 

results. 

 Analytic procedure 

            In each condition three different analyses were conducted. First, the data in each 

condition were tested to see the fit for the unidimensional model. Note that although the original 

and replaced data were both generated by using the IRT model, it is possible that replacing part 

of the sample essentially changed its dimensionality dramatically enough to cause 

multidimensionality. Therefore, each modified dataset is checked for its dimensionality to see if 

the unidimensionality is still held in each condition. The reason for doing this was to make sure 

that the simulated dataset was properly generated to fit the unidimensional model well and that 

the simulation had successfully generated the proper psychometric property needed for the study.  

            Secondly, to estimate the new ability parameters and item parameters on the sample that 

we had already replaced with some atypical subgroups, we used Ltm package in R. To check the 

validity, the parameters from Ltm were compared with IRTpro  (Cai, Thissen, & du Toit, 2011) 

and their correlation was quite high (r >.90).  A new set of 𝜃 parameters were generated for each 

condition.  Thirdly, using these new 𝜃 parameters with true a and b parameters, the Lz* index 

was used to calculate the person fit value for each person in the simulated data. Because the Lz* 
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index is a standardized index, the criteria for identifying whether the Lz* index had detected an 

atypical sample that have values over ± 1.65. Thus any value over the absolute value of 1.65 

would indicate atypical responses. The Lz* index was written by using R program 3.2.4. 

However, in 2015, there is also a person fit package in R developed. The Lz and Lz* functions in 

that program were also used to compare the detecting rates that were generated from the present 

study. The results were the similar.  

 Real data application 

             The person fit index was also applied to the dataset produced from Study 1 to check its 

function when applied to authentic data. 537 third graders participated in that study. Data were 

obtained from IES funded project: Spatial Ability as a Malleable Factor for Mathematics 

Learning. The data were collected in the Michigan and Chicago areas in spring 2013 and spring 

2014.  

Simulation Study Results 

           The results are presented in Table 1 to Table 4. Table 1 and Table 2 showed -2 and +2 b 

parameters shift when using indexes Lz*. Table 3 and Table 4 showed -2 and +2 b parameters 

shift when using indexes T2. Each number indicated the average from 5 replications with its 

standard deviation denoted as (standard deviation). 
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Table 4. 
Lz* with -2b parameters (rate of detection)  
 Replaced 5% Items 

 

Percentage 
people 
replaced 
 

 
   30Items 

 
  45Items 

 
   60Items 

 
   75Items 

 
    90Items 

 
5% 

 
18% (3) 

 

 
14% (1) 

 

 
11% (2) 

 

 
15% (1) 

 

 
 16% (2) 

 
 
10% 

 
19% (1) 

 
17% (2) 

 
14% (2) 

 
16% (1) 

 
  16% (2) 

 
 
20% 

 
18% (1) 

 

 
16% (1) 

 

 
14% (1) 

 

 
14% (1) 

 

 
    16% (1) 

 Replaced 15% Items 
 

Percentage 
people 
replaced 
 

 
   30Items 

 
  45Items 

 
   60Items 

 
   75Items 

 
    90Items 

 
5% 

 
17% (1) 

 

 
15% (1) 

 

 
14% (2) 

 

 
14% (2) 

 

 
 16% (3) 

 
 
10% 

 
  21% (2) 

 

 
 15% (2) 

 

 
 16% (3) 

 

 
      15% (1) 

 
  16% (2) 

 
 
20% 

 
       22% (1) 

 
       16% (2) 

 
       18% (2) 

 
15% (1) 

 

 
       16% (1) 

  Replaced 30% Items 
 

Percentage 
people 
replaced 
 

 
   30Items 

 
  45Items 

 
   60Items 

 
   75Items 

 
    90Items 

 
5% 

 
17% (2) 

 

 
19% (2) 

 

 
19% (4) 

 

 
 17% (1) 

 

 
 16% (4) 

 
 
10% 

 
  21% (2) 

 

 
  17% (3) 

 

 
  21% (3) 

 

 
  17% (1) 

 

 
  18% (3) 

 
 
20% 

 
     22% (2) 

 
     18% (2) 

 
     23% (2) 

 
     19% (1) 

 
     18% (2) 
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Table 5. 
Lz* with +2 b parameters (rate of detection) 

 Replaced 5% Items 
 

Percentage 
people 
replaced 
 

 
   30Items 

 
  45Items 

 
   60Items 

 
   75Items 

 
    90Items 

 
5% 

 
16% (2) 

 

 
14% (2) 

 

 
11% (2) 

 

 
14% (2) 

 

 
 14% (2) 

 
 
10% 

 
17% (1) 

 
17% (1) 

 
12% (2) 

 
14% (1) 

 
  14% (1) 

 
 
20% 

 
17% (1) 

 

 
16% (1) 

 

 
13% (1) 

 

 
14% (0) 

 

 
    14% (1) 

 Replaced 15% Items 
 

Percentage 
people 
replaced 
 

 
   30Items 

 
  45Items 

 
   60Items 

 
   75Items 

 
    90Items 

 
5% 

 
16% (2) 

 

 
16% (1) 

 

 
10% (3) 

 

 
11% (1) 

 

 
 20% (2) 

 
 
10% 

 
  17% (2) 

 

 
 18% (1) 

 

 
 12% (2) 

 

 
      14% (1) 

 
  18% (2) 

 
 
20% 

 
       18% (2) 

 
       16% (1) 

 
       13% (2) 

 
16% (2) 

 

 
       21% (2) 

  Replaced 30% Items 
 

Percentage 
people 
replaced 
 

 
   30Items 

 
  45Items 

 
   60Items 

 
   75Items 

 
    90Items 

 
5% 

 
16% (3) 

 

 
18% (2) 

 

 
13% (4) 

 

 
 13% (3) 

 

 
 26% (5) 

  
10% 

 
  19% (2) 

 

 
  19% (1) 

 

 
 15% (2) 

 

 
  17% (2) 

 

 
  24% (4) 

 
 
20% 

 
       18% (1) 

 
       20% (2) 

 
       17% (2) 

 
       22% (3) 

 
       26% (3) 
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Table 6. 
T2 with -2 b parameters (rate of detection) 
 
 Replaced 5% Items 

 
Percentage  
people 
replaced 

 
  30Items 

 
   45Items 

 
   60Items 

 
    75Items 

 
     90Items 

 
5% 

 
7% (2) 

 

 
8% (2) 

 

 
13% (2) 

 

 
9% (3) 

 

 
 11% (1) 

 
 
10% 

 
6% (1) 

 
9% (2) 

 
11% (1) 

 
10% (1) 

 
  10% (1) 

 
 
20% 

 
8%(1) 

 

 
9% (1) 

 

 
10% (1) 

 

 
10% (0) 

 

 
    10% (1) 

 Replaced 15% Items 
 

Percentage  
people 
replaced 

 
  30Items 

 
   45Items 

 
   60Items 

 
    75Items 

 
     90Items 

 
5% 

 
8% (1) 

 

 
7% (1) 

 

 
11% (3) 

 

 
8% (2) 

 

 
   12% (2) 

 
 
10% 

 
 8%(2) 

 

 
 8% (1) 

 

 
 11% (1) 

 

 
      10% (1) 

 
  11%(2) 

 
 
20% 

 
       9% (1) 

 
       10% (1) 

 
       10% (1) 

 
10% (1) 

 

 
     11% (2) 

  Replaced 30% Items 
 

Percentage  
people 
replaced 

 
  30Items 

 
   45Items 

 
   60Items 

 
    75Items 

 
     90Items 

 
5% 

 
8% (1) 

 

 
10% (2) 

 

 
 14% (3) 

 

 
 8% (2) 

 

 
 12% (2) 

 
 
10% 

 
  10%(1) 

 

 
  11% (1) 

 

 
  12% (1) 

 

 
  8% (2) 

 

 
  11% (2) 

 
 
20% 

 
   10% (1) 

 
    11% (1) 

 
       10% (0) 

 
       8% (1) 

 
     11% (1) 
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Table 7. 
T2 with  +2 b parameters (rate of detection) 
 
  Replaced 5% Items 

 

Percentage  
people 
replaced 

 
  30Items 

 
   45Items 

 
   60Items 

 
    75Items 

 
     90Items 

 
5% 

 
6% (2) 

 

 
8% (1) 

 

 
9% (3) 

 

 
9% (2) 

 

 
 10% (1) 

 
 
10% 

 
7% (2) 

 
10% (1) 

 
9% (1) 

 
10% (1) 

 
  9% (1) 

 
 
20% 

 
10%(1) 

 

 
11% (0) 

 

 
8% (1) 

 

 
10% (1) 

 

 
    10% (1) 

 Replaced 15% Items 
 

Percentage  
people 
replaced 

 
  30Items 

 
   45Items 

 
   60Items 

 
    75Items 

 
     90Items 

 
5% 

 
6% (2) 

 

 
8% (0) 

 

 
11% (1) 

 

 
8% (2) 

 

 
 10% (2) 

 
 
10% 

 
 7%(2) 

 

 
 9% (1) 

 

 
 10% (1) 

 

 
      10% (2) 

 
  8%(1) 

 
 
20% 

 
       9% (2) 

 
       11% (1) 

 
       10% (1) 

 
10% (1) 

 

 
       9% (1) 

  Replaced 30% Items 
 

Percentage  
people 
replaced 

 
  30Items 

 
   45Items 

 
   60Items 

 
    75Items 

 
     90Items 

 
5% 

 
8% (3) 

 

 
11% (2) 

 

 
10% (3) 

 

 
 8% (2) 

 

 
 9% (1) 

 
 
10% 

 
  8%(2) 

 

 
  12% (1) 

 

 
  11% 2) 

 

 
  8% (1) 

 

 
  9% (1) 

 
 
20% 

 
       8% (1) 

 
       13% (2) 

 
       10% (1) 

 
       10% (1) 

 
       7% (1) 
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           Also, because the current study has two (Lz* and T2) by two (-2 b parameter and + 2 b 

parameter) by three (5%, 15%, 30% item replacement) by three (50, 100, and 200 people 

replacement) by five (30, 45, 60, 75, 90 item length) factors, these factors generated 180 

conditions. When a specific condition is referred in the context, it is denoted as (index, shift in b 

parameters, percentage of people replaced, the number of replaced items, total item numbers) in 

a basket. For example, for the condition using Lz*, -2 b parameter, 100 people replaced, 

15%items replaced, 60 item in total will be denoted as (Lz*, -2, 100, 9, 60). 

Type 1 error rates   

The type 1 error rates here refer to the misdetection rate on these non-replaced item responses in 

the original data. On average the type 1 error rates were around 12% -18% across different 

conditions with Lz* index. On average the type 1 error rates were around 8% -11% across 

different conditions with T2 index. The type 1error rates tend to go up when higher number of 

total items were used with Lz* but not with T2 (e.g., in two of the replications of 90 items 

conditions, the type 1 error rate was 17% and 20% with Lz*). The higher type 1 error rate in the 

present study might relate to the estimated parameters that were used here.   

Rate of detection between Lz* and T2 

         In terms of rate of detections between these two person fit indices, it appears that Lz* has a 

better rate of detections than T2 has across all conditions. Lz* generally has an 11%~26% rate of 

detection while T2 generally has a 6%~12% rate of detection. Although this rate of detecting is 

far smaller than what was found in Dragow et al. (1987), the rate of detection of T2 is usually 

smaller than Lz (which is the uncorrected version of Lz*) in Dragow et al. (1987). For example, 

in Dragow’s 15% replacement conditions, Lz has a 72% rate of detection and T2 has a 54% rate 
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of detection. Therefore it seems to be reasonable that Lz* also had a better rate of detection than 

T2 had.  

Rate of detection between -2 b and +2 b parameter shift. 

         In terms of the rate of detection between the shift of -2 and +2 on the b parameters among 

conditions, the result showed that the rates of detection of the corresponding conditions are 

mostly symmetrical. What symmetrical means here is that when the rate of detection in the 

correspond conditions between -2 and +2 are in close range. For example, ( Lz*, +2, 50, 23, 75) 

and (Lz*, -2, 50, 23, 75 ) both have 14% rate of detection.  However, in some conditions +2 b 

parameters conditions tend to show a better rate of detection than  -2 b parameters conditions. 

For example, in the +2 b parameter (Lz*, +2, 200, 30, 90) condition, higher rate of detection is 

shown than in the corresponding condition of -2 b parameter (Lz*, -2, 200, 30, 90). The 

difference is (26% vs. 18%).  

Rate of detection among different percentages of replacements on people        

           When replaced with a different percentage (5%, 10%, 20% of 1000 simulated subjects) of 

atypical people, it appears that the rate of detection does go up. However, when the number of 

replaced items is low (e.g., 5% of the total), even though 20% of the people were replaced, the 

rate of detection seems to be similar. For instance, the difference of rate of detection ranges 

between 0% and 1 % across conditions. However, when 30% of the total is replaced, the rates of 

detection tend to rise, from 5% of people to 20% of people across conditions. For example, (Lz*, 

+2, 200, 23, 75) has a 9% greater rate of detection than ( Lz*, +2, 50, 23, 75). However, in 

general, despite the proviso that replacing 20% of people tended to produce a higher percentage 

of people being detected, the percentage of people being detected does not change dramatically.  
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Rate of detection among different numbers of replaced items and total items.         

         It appears that when a higher number of items was replaced, the rate of detection did go up 

using Lz*, but this was not the case for T2. In addition, even in the condition of having a total of 

30 items, it seems that nothing changed much, even though the number of replaced items went 

up regardless of whether Lz* or T2 was used. However, in other conditions, with 45, 60, 75 and 

90 items in total, the rate of detection went up in a linear way as more items were included. For 

example, in the condition using Lz*, a shift on +2 b parameter appeared to increase when the 

length of the total item increased as well (45 items: 4%, 60 items: 4 %, 75 items: 8 %, and 90 

items: 12%). In general, the rate of detection is not high compared to what was found in previous 

studies when people used these person fit indices to detect cheating or slipping behaviors.   

Real data application 

The Lz* index also was performed on the CVC data from the first study. The detecting rate of 

CVC dataset is 17%, which is not great. This is surprising considering that CVC is a 

multidimensional dataset. However, it further demonstrated that the insensitivity of Lz* index 

when estimated parameters were used.  

Discussion 

            Although the person fit index has proven in previous studies to be quite sensitive (e.g., 

Dragow et al., 1987), the current study did not find similar results.  One possible reason may be 

that previous studies mostly used true ability parameters, while the current study used estimated 

ability parameters. Since the true parameters are usually unknown, the use of true parameters  in 

previous studies is often criticized (e.g., Magis et al. 2012). However, the low rate of detection 

on both simulated data and real data suggested that either Lz* and T2 were not sensitive enough 

to detect the changes in the simulations when estimated parameters were used.   
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            The second possible result is that the shift of difficulty in the present study may be less 

severe than the shift in previous studies. For example, Dragow et al. (1987) shifted the 

percentage of altered responses to be all correct responses (for example, if a sequence of 

response was originally 0,1,1,0,0, the response was then shifted to 1,1,1,1,1). This is the 

maximum amount of “treatment” when altering the original responses. Therefore the treatment 

was much more severe than the treatment in the present study. In addition, this type of strong 

treatment was used to test whether a higher rate of detection is possible even with estimated 

parameters. The results suggest that the improvement is better (e.g., 18%~53% across (Lz*, +2, 

200, 27, 90  condition with replications) but still not as high as previous studies. The true 

parameters were also used in one condition to test whether the detection rate would become 

higher, and it did (went up to 70%). However, it will not make sense for the current study used 

the true θ parameters or a stronger alteration, since true ability parameters are unknown and 

stronger alteration is not realistic in the real life.  These findings also imply that perhaps the main 

reason for the low rate of detection is the sensitivity of the person fit indices for the simulated 

conditions in the present study.    

                 Therefore, a different way of thinking about this result is to ask whether a more 

sensitive index can be developed. After all, an effective index should be able to identify the 

person responsible for bizarre response patterns if they are detected more than a certain number 

of times (e.g., 3 times or 5 times), notwithstanding the presence of random errors. However, one 

might need to ask whether a more severe condition could be representative of the conditions in 

actual tests. Since the goal of the present study was to see whether person fit indices can detect a 

small number of unusual sub-scores, it does not seem realistic to increase the degree of 

irregularity in response patterns.  When comparing the response patterns with the people who are 
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detected and not detected, it seems that the person fit indices sometimes identify people who 

have severe responses. For example, the Lz* detected a simulated subject that had five bizarre 

responses but did not pick out a simulated subject who had eight mildly bizarre responses. This 

may have something to do with the cumulative index values gathered from each item. However, 

eight mildly bizarre responses from a child’s test might also indicate the need for some cautious 

remediation as well. For example, if a child missed some instructions in part of the mathematics 

curriculum, but had a good understanding of other mathematics contexts, the misfiting response 

patterns might not severe. Therefore, a sensitive index can be beneficial only if it can identify 

this child correctly. Perhaps it would reap more profits to also identify such a child than to just 

identify a child who makes one severely bizarre response, as a result perhaps of a clerical error. 
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CHAPTER 6 

GENERAL DISCUSSION 

Implication 

             The present study explores the dimensionality of cognitive structure. As the previous 

chapter illustrated, identifying dimensionality can be critical for training and testing. 

dimensionality can be useful when identifying the necessary training components for an 

intervention. For example, a cognitive training program might fail if the program did not offer 

training on the components that are in the same dimension as the targeted improvement of 

ability. Also, dimensionality can also be helpful when diagnosing certain score drops on sub-

scores that may reflect the fact that students missed certain instructional episodes. However, 

despite its usefulness, the true number of dimensions is hard to identify.  This is because a 

meaningful dimension can be identified only when it has a sound theoretical construct and a 

proper psychometrical property. Therefore, to recover the true number of dimensions, the 

construct needs to be well defined on the basis of all sources of evidence and the methodology to 

detect dimensions also needs to be reliable, valid and sensitive.  

Multidimensionality analysis 

             The present study addresses these issues from several perspectives. First, when the true 

number of dimensions is called into question, it asks what the reasonable methods are to 

construct the best possible models to help researchers get close to the truth. The first phase of the 

present study has demonstrated several possible methods by using an example. Recalling what 

was discussed at the beginning of the introduction, the dimensions between cognitive ability and 

academic achievement were not clear. Such an unclear relationship is reflected in the vague 

outcomes of cognitive training (e.g., Jaeggi et al., 2011; Redick et al., 2013). Specifically, 
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training specific abilities seems to have some effect, but it was unclear what the training program 

should target because not all specific cognitive abilities are predictive. However, in this situation, 

when the true number of dimensions is unknown, a possible way forward seems to be to examine 

the overlapping dimensionality between cognitive ability and academic achievement.  

            To solve this problem, in the first study, the tests from two traditional psychological 

constructs, VSWM and calculations, were combined and re-analyzed by using their item 

responses from a perspective of cognitive processes. Several types of MIRT analyses were 

proposed to address this situation. The results indicated that with psychometric models, three 

dimensions were detected in this combined dataset MIRT analysis, and further content analysis 

was proposed to identify their theoretical constructs. Several possible theoretical models were 

then proposed and a better model was eventually projected after a process of model competition. 

Using this process, the possible candidates for dimensions were revealed. For example, 

subitizing and counting processes represent the two dimensions of VSWM. Note that the items 

belonging to these two dimensions of VSWM are the same in their general testing procedure and 

the surface similarity of the stimuli being used. Another finding from the present study was the 

partition of calculation items, such that addition and subtraction occupied one dimension, while 

multiplication and division occupied another. More importantly, these partitions generated from 

MIRT analysis are also partially parallel to the findings from neural imaging studies (Arsalidou 

& Taylor, 2011), specifically on the categorization between addition and multiplication. Findings 

from these neural imaging studies provided a theoretical standpoint for these dimensions while 

the MIRT analysis provided evidence of the psychometrical properties on them. The results 

showed that the collaboration between neural science and measurement brought insights into the 

understanding of dimensions. The third proposed method comes from the analysis of error in 
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item responses. By isolating two different types of error patterns in the item responses, two 

dimensions in VSWM were separated. Different patterns of groupings were observed when 

Number VSWMCT and Location VSWMCT were submitted separately for analysis.  

Design of cognitive training  

            While the validity of the results still needs to be corroborated by another independent 

study, these MIRT analyses brought insights into the dimensionality of the tasks and point to 

possible directions for future research. Overall, there is a repeated pattern in the analysis that not 

all dimensions of VSWM are related to calculation. Perhaps not all dimensions of the VSWM 

task have to be trained in order to gain improvement in calculation. One direction is that these 

findings can in turn inform the design of cognitive training. For example, considering the fact 

that calculation and VSWM only shared dimensions on subitizing and multiplication/division, it 

might be possible that when conducting VSWM training, asking children to subitize “how many 

objects there are” is more practical and effective than asking children to “mark where these 

objects are.” Another direction that could be considered is how to train subitizing within VSWM 

contexts. Previous studies have suggested that subitizing is related to the capacity of VSWM 

(Piazza, Fumarola, Chinello, & Melcher, 2011; also see the discussion in Cutini & Bonato, 2012). 

However, the time interval for subitizing probably should be shorter than the usual VSWM tasks 

for each stimulus. For example, in this study, the VSWM stimulus was shown for five seconds, 

but for the purpose of training subitizing, perhaps restricting the time interval to one or two 

seconds would be sufficient.   

          Lastly, the results also suggest that within calculation, only subtraction and division are 

related to the Number VSWM, therefore it makes sense to train in Number VSWM to improve 

subtraction and division. This relation seems to suggest that the ability to simultaneously 
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perceive multiple objects is particularly important for these two operations within calculation 

(compared to addition and multiplication).  Perhaps in order to compute addition or 

multiplication, the psychological process requires fewer steps for attention to multiple objects 

compared to subtraction and division. For example, to compute 6x7=42, a child might recruit the 

answer from memory, but to compute a similar problem such as 42/7=?. It requires at least one 

more step. That is, a child uses his/her memory from multiplication to reverse the equation while 

simultaneously maintaining all elements of the equation in his/her memory board. Previous 

studies showed that learning from addition and multiplication is difficult to transfer to compute 

subtraction and division (Campbell et al., 2006). Therefore, although these inverse operations 

seem to be similar in their psychological processes, the actual learning outcome said otherwise. 

Perhaps the attention to multiple simultaneous steps is the key difference here between addition 

and subtraction, and multiplication and division as well.          

Detectability of dimensions 

          While the first study explored multiple approaches in conditions when the true dimensions 

were unknown, the second study addressed the detection of dimensions. Specifically, it asked 

whether there is a possible method of detecting dimensions when they exist only on a subgourp 

of sample. Recalling that previous studies had difficulty on finding the proper psychometric 

properties of the (dimensions) sub-scores, the second study started from a slightly different 

approach and asked whether, if the dimensions existed, they could be detected. In this 

perspective, the true dimensions need to be known beforehand so that what is being detected can 

not be questioned. To do so, the second study created simulations to generate the condition that 

the dimensions are embedded in unidimensional models. These were then tested with person fit 

indices. However, it turns out that even with the highest replacement rate of atypical items, the 
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detecting on these dimensions (sub-scores) is not high (the highest rate of detection rate was 

26%) compared to previous studies. The use of estimated parameters and less severe treatment 

may account for this result. Recalling that in our simulations, the shift of b parameter was not 

comparable to the most severe condition in previous studies (which shifts every response from 0 

to1), however, it is still a significant change because the shift was two standard deviations below 

and above the means of the original parameters. However, it still reflects the difficulty of 

detecting sub-scores when they are small and only exist in subgroups. Only in the condition of 

30% misfitting responses and 200 people replaced was there an increase in the detection rate. 

This result corresponded with what Meijer and Sijtsma (2001) have suggested that type of 

misfitting patterns, test length, and trait level  (θ) could influence the result of person fit indices. 

This also implies that the dimensions from the first group might not be smaller dimensions and 

therefore can well represent the dataset when conducting dimensionality tests. However, in terms 

of detecting the dimensions that were generated from the misfiting responses of subgroups, a 

more sensitive index should be developed to help identify the dimensions.    

General ability vs. specific abilities  

      The third question that the present study addressed was whether the dimensions (sub-scores) 

still can be observed when general ability scores (total scores) are presented. The result seems to 

depend on the analyses and conditions. In the first study, while VSWM and calculation are both 

under the influence of “g”, the dimensions were still presented with MIRT analysis.  One might 

argue that this is because the cluster analysis started from high dimensions (where every item is a 

dimension) and thus multiple dimensions could be presented, possibly the opposite direction to 

that in the factorial analysis method which first extracted what was common to the two 

constructs. Although this may have been the case, recalling that three clusters eventually become 
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two clusters, but the cluster indices C-index (one of the best cluster indices, see Milligan & 

Cooper, 1985 simulation study) indicated that 3 clusters are better than 2 clusters (3 clusters vs. 2 

clusters: 0.03 vs. 0.27, smaller number is better). So the conclusion about three dimensions holds 

here. In other words, the dimensions in VSWM and Calculation may be significant; hence it 

appears their existence in these analyses, even under the power of general ability. However, the 

dimensions from the second study were much smaller ones and therefore the rate of detection 

was not high. This suggested that, when the dimensions existed only in some subgroups, person 

fit indices might not be an ideal procedure to detect. Although the overall rate of detection was 

not high, the comparisons among tests of different lengths still suggested that longer tests helped 

to uncover the existence of dimensions. In addition to this finding, the comparison between 

different percentages of replaced items also suggested that when a higher number of subgroups 

possess this dimension, the dimensions may be easier to detect.  

Limitations 

          There are several limitations in the present study. First, because the first study used a 

particular dataset of VSWM and calculation, the results cannot be generalized to all the relations 

between cognitive ability and academic achievement. However, for tasks that apply the same 

psychological concepts, the results might be informative. For example, some previous studies 

have demonstrated significant relations among several spatial tasks compared to other spatial 

tasks (Mammarella et al., 2008). In particular, Mammarella et al. (2008) found that the visual 

patterns task (Della Sala et al., 1997), which is a task very similar to the VSWM task used in 

present study, along with another two spatial tasks, dots reproduction and static mazes (Pickering 

et al., 1989), contributed significantly to a passive, simultaneous spatial factor in their model. 

Therefore, it is possible to extend the finding of VSWM from the current study to the use of 
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these three spatial tasks. The findings of the current study on the relations between VSWM and 

calculation might also be able to extend to other grades depending on whether the significant 

relations were found in previous studies. For example, Berg (2008) found a significant relation 

between VSWM and calculation in sixth graders, while Rasmussen and Bisanz (2005) only 

found a significant relation in preschoolers but not first graders.  

           Furthermore, the technique of MIRT analysis that was demonstrated in the present study 

can be applied to understanding the dimensions of other constructs. In addition, new approaches 

were adapted instead of previous forms of MIRT analysis. The validity of these new methods 

still needs to be examined.  Second, the sample size in the first study is on the low end for IRT 

analysis (Reckase, personal communication), which may generate some error in the results of the 

first study. However, because convergent evidence was found from a different analysis of the 

dimensionality, it appears that even though some error is present, it is likely to be marginal. 

Third, the neural imaging models were constructed from previous findings in the literature, 

including a meta-analysis from previous studies. While the tasks used in the neural studies may 

have similar concepts to those underlying the tasks we used in the first study, they are still 

different tasks. Our study may show signs of parameter drift.  It is possible that a different 

conclusion might be derived if an actual MRI scan was made using the tasks in the present study. 

Furthermore, when constructing the neural imaging models, even though we mainly followed the 

methods observed in previous studies, most studies in this area were conducted with adult 

subjects, whereas our subjects were children. Individual differences, then, may be expected from 

the present study.  

          The second study also has several limitations. First of all, because not all person fit indices 

were tested, it is possible that there are other person fit indices that would show better rates of 
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detection, though we used the two most sensitive indices shown in previous studies (Dragow, 

1987). The second limitation is that the present study used a specific range of IRT parameters. 

For example, we chose ‘a’ parameter on the basis that the mean is 1 and the SD is .2, and the ‘b’ 

parameters on the basis that the mean is .7 and the SD is 1 and θ had a mean of 0 and an SD of 1. 

Although the range of a and b parameters was not a critical factor in previous review (Meijer & 

Sijtsma, 2001) and these parameters were also normally distributed in the current study, previous 

studies have demonstrated that high ability participants could be easier to detect than subjects 

with other ability levels (Dragow et al., 1987). It is possible that a different range of 

parameterization might generate different results. However, because the present study was more 

interested in a normal distortion of θ parameters, participants with particularly high or low ability 

levels were not tested. Perhaps further research can be done with a different range of parameters 

than those in the present study.  

Future Directions for Research 

          From a theoretical standpoint, it has already been established that studies in many areas are 

all closely related to the dimensions of the cognitive structure. However, different disciplines 

discussed this topic in slightly different ways (e.g., total scores vs. sub-scores in 

measurement/general ability vs. specific ability in cognitive psychology/common areas vs. 

specific areas in neural imaging studies) and cross communications among these different 

disciplines has not been well established yet. A few examples have showed, however, that when 

the connection is made, better insight can be brought to the understanding of dimensionality of 

constructs (e.g., Harris, Hirsh-Pasek and Newcombe, 2013; O'Toole, Jiang, Abdi, Pénard, 

Dunlop, & Parent, 2007). Therefore, one direction for future studies of dimensionality should be 

to devote themselves to making connections between related studies from different disciples. 
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While the present study established some findings by merging studies from education, cognitive 

science, and measurement, still further improvement is possible. For example, when constructing 

neural imaging models we used finding from past neural imaging studies. One way to improve 

on this might be to connect MIRT analysis with actual neural imaging procedures. For example, 

perhaps the activation response outputs from MRI scanning could be used instead of using the 

paper-and-pencil responses elicited from traditional tests.   

           From a practical standpoint, the present study on dimensionality has useful applications in 

several areas.  For example, one area that has been popular in previous dimensionality studies is 

diagnostic testing. Perhaps one possibility is to extend the findings from the current dissertation 

by developing more sensitive measurement indices to identify children’s weaknesses and 

strengths in academic learning. Specifically, a more sensitive index could be developed to 

identify the mismatched results between children’s underlying abilities and their performance 

response patterns. A second plan is to develop a research project that aims to use advanced 

quantitative methods and sensitive measurements to detect the efficiency of educational training. 

For example, one possibility would be to apply quantitative methods in order to identify whether 

training or intervention is effective and to evaluate the reliability for the expected sample of 

examinees and validity of the influences made from the outcome measures. In combining these 

two plans, one might be able to develop thorough diagnostic testing to identify students’ 

weaknesses and then give them custom-designed cognitive training to improve their academic 

outcomes, such as mathematics. 

           A second practical direction that could be derived from dimensionality studies is their 

application to automated item generation (AIG). AIG is a new and growing method of 

development items by using specific algorithms to generate large numbers of high quality test 
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items (Alves, Gierl, & Lai, 2010).  The development of AIG requires both a deep understanding 

of the cognitive process of item dimensionality and the ability to select effective algorithms from 

measurements. Studies have used the understanding of dimensionality to develop AIG methods 

on figural matrices (e.g., Arendasy & Sommer, 2005). While this line of research seems to be 

promising, further studies will be needed to better understand the validity of inferences from the 

test scores and reliability scores obtained from tests produced using AIG methods. 

               Overall, research that has worked on this aspect has made a great impact on the design 

of methods for testing, cognitive training, and understanding of the function of human brains. 

However, even though many attempts have been made, the separation of dimensionality still 

seems a controversial issue. Different studies with different datasets have often found different 

results with different analyses. Secondly, because the developments between theoretical 

understanding and the advance of statistical techniques are often not synchronized, studies have 

claims that they have theoretical reason to pursue certain separation on dimensions but unable to 

find statistical support for it, or statistical models were developed without considering the real 

world situation, further research is needed on collaborating both. The present study combines 

several dimensionality analyses with perspectives from different areas in the hope of providing 

some insights into the dimensionality of cognitive structures.  
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