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ABSTRACT

Local Regularization Methods for Nonlinear Volterra Integral Equations

of Hammerstein Type

By

Xiaoyue Luo

We develop a local regularization theory for the nonlinear Volterra problem of

Hammerstein type. Our method retains the causal structure of the original Volterra

problem and allows for fast sequential numerical solution. The fundamental differ-

ence between our method and the previous existing local regularization method for

Hammerstein equations (Lamm and Dai, 2005) is that for our method we do not need

to solve a nonlinear equation at every step of a numerical implementation. We only

have to solve a nonlinear equation for the first step. We prove the convergence of the

regularized solutions to the true solution as noise level in the data shrinks to zero

with a certain convergence rate.
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CHAPTER 1

Introduction

Volterra integral equations arise in a great many applications. For example, in pop-

ulation dynamics [23] [24], epidemic diffusion, reaction-diffusion in small cells [25], in

nuclear reactor kinetics [2] and in general in evolutionary phenomena incorporating

memory.

Of special interest are Volterra integral equations of Hammerstein type. In many

applications, the problem can be written in terms of a Volterra integral equation

of Hammerstein type, as for example in chemical absorption kinetics, in epidemic

models, and also in situations when Laplace transform techniques are used to reduce

systems of ordinary or partial differential equations to Volterra integral equations.

In this paper, we will study the solution of a nonlinear Volterra problem of Ham-

merstein type of the following form

Fu = f, (1.1)

where F is the nonlinear Volterra operator given by

f,

Fu(t) = [0 k(t,s)g(u(s)) d5 (1.2)



for suitable kernel k, nonlinear function g and f in the Range of F which will be

clarified later. Before we get into details of this nonlinear problem, we will first give

some brief introduction for the linear counterpart to this problem. Let us consider a

linear first-kind Volterra integral equation for (1.1), where F is defined by

t

Fu(t)=/0 k(t,s)u(s)ds (1.3)

with the kernel I: E L2 ((0, T) x (0, T)), where f is in the range of F and our goal is

to find ii 6 L2(0, T) or C[0,T] which solves equation (1.1).

However, such problems are generally ill-posed due to the fact that the solutions

116 which are obtained by solving (1.3) using imprecise measurement data f5 do not

depend continuously on data, i.e., very small errors in the measurement data f6

6
could lead to large deviations in the solution u as compared to the true solution

21. What we usually see for these kinds of ill-posed problems are highly oscillatory

solutions using measurement data. This is very troublesome because in practice we

never have exact data in hand. Since the available data always contain uncertainty,

regularization methods have to be employed to stabilize the problem.

A classic and well-known example is the Inverse Heat Conduction Problem

(IHCP). The problem can be stated as follows: applying heat on one end of a semi-

infinite bar which we call location :1: = O, we measure the temperature f(t) as a

function of time t at some location away from the heat source, which for simplicity

we call location a: = 1. The problem is to recover the temperature u(t) at the heat

source a: = 0, and this problem can be formulated as solving equations (1.1) and ( 1.3)

for u with the kernel given by k(t, s) = n(t — s), where

 
1 —1 4t

K“) = Qfit3/2e / '



This problem is a severely ill-posed linear Volterra problem.

One well—known regularization theory is that of Tikhonov regularization. The idea

of Tikhonov regularization is that, instead of solving for u satisfying Fu = f5, we

solve a constrained minimization problem for rig,

mjn ”Pu — f6||2 + aIILUIIQ, (1.4)

where f6 is noisy data, a is the regularization parameter and L is a suitable (usually

identity or differential) operator. The Tikhonov theory gives conditions under which

there is choice of a such that as the noise level 6 —) 0, a(6) —-+ 0, and the corresponding

Tikhonov solution u‘; (6) to (1.4) converges to the true solution 17.

However, there is a drawback associated with using Tikhonov regularization in

solving Volterra problems. Volterra problems have a nice physical structure called

causal structure. That means the solution u at any given time t does not affect the

data f on the interval [0, t). Therefore in finding u(t), it makes sense to use future

data I on the interval [t,T] and it does not make much sense to use all data f on the

whole interval [0, T]. Tikhonov regularization however converts a causal problem to a

non-causal problem, and this leads to nontrivial increases in costs of implementation.

In the mid-1990’s, P. K. Lamm established the local regularization theory which

is a generalization of a regularization scheme for the discretized IHCP developed by

J. V. Beck in the late 1960’s. While Beck’s method was an approach developed to

handle a finite dimensional problem, the local regularization theory can be placed in

both finite and infinite dimensional settings. The theory can be applied to a wide

class of linear first-kind Volterra problems [4] [5] [6]. Local regularization methods

preserve the causal structure of the Volterra problems and therefore they have com-

putational advantages over the classical regularization methods. For example, while

Tikhonov regularization requires 0(N3) flops for a discretized problem of dimension



N (or 0(N2) if special structure is accounted for), local regularization requires 0(N2)

flops (or 0(NlogN) flops in the case of special structure). See Section 2.1 for some

background of local regularization methods for linear first kind Volterra problems.

We now turn to some background on the regularization of nonlinear problems.

Consider solving for u that satisfies equation (1.1), where F : D(F) Q X —) Y is a

nonlinear operator between Hilbert spaces X and Y. We assume that

(1) F is continuous and

(2) F is weakly (sequentially) closed, i.e. for any sequence {un} C D(F)

such that an _1 u in Xand Fun —* f in Y, then u 6 D(F) and Fu = f.

Also assume equation (1.1) has a solution. Then there exists a u‘-minimum-norm

solution u+ for the data f E Y, i.e.,

Fu+ =f and |]u+ -u*|] =min{||u—u*]]: Fu=f}.

(This is by the weak closedness of F, and follows from the attainability assumption

that equation (1.1) has an exact solution [17].)

If the nonlinear operator F is compact, one can give a sufficient condition for

ill-posedness of ( 1.1) which is similar to its compact linear counterpart.

Proposition 1.0.1. [17] Let F be a nonlinear compact and weakly closed operator

between two Hilbert spaces X and Y, and let D(F) be weakly closed. Moreover, assume

that Fu+ = y and that there exists an e such that Fu = 3'] has a unique solution for

all 37 E R(F) (1 35(1)). If there exists a sequence {an} g D(F) such that

+ +
Un—‘u but un—Hu,

then F—l (defined on R(F) fl B€(y)) is not continuous in y.



Tikhonov regularization

As in the linear case, we can replace problem (1.1) by minimization problem:

llFu — f5”? + allu - wit? a min, a e D(F). (1.5)

where a > 0, f6 E Y is an approximation of the exact right-hand side f of (1.1) and

u‘ E X, I] f6 — fl] 3 6. As in the linear case, any solution to (1.5) will be denoted by

6
ua.

Tikhonov regularization gives the following convergence rate analysis

Theorem 1.0.1. [17] Let D(F) be convex, F continuous and weakly closed. Let

f‘5 E Y with I] f — f6” 3 6 and let u+ be an u*-minimum-norm solution. Moreover,

let the following conditions hold:

(i) F is Fréchct-diflerentiable,

(ii) there exists 7 2 0 such that ||F’u+ — F’ull g yllu+ —- all for all

u. E D(F) in a sufiiciently large ball around u+,

(iii) there exists w E Y satisfying u+ — u“ = (F'u+)"w and

(iv) o/lel < I.

Then for the choice ofa ~ 6, we obtain Hug — u+]l = 0(\/6).

An example of the application of Tikhonov regularization to a particular

1-smoothing convolution nonlinear Volterra Hammerstein problem is given in [17].

The problem is to consider the Hammerstein integral equation

F : Him, 1] —) L2[0,1]

t

Fu(s) :=/() (t — s)u3(s) ds.



Since F is continuous, weakly closed, compact and injective [17], Proposition 1.0.1

implies that the problem of solving Fu = f is ill-posed.

Consider the application of Tikhonov regularization method to this problem. In

order to satisfy assumption (iii) about the source condition, u+ and u" have to satisfy

quite strict smoothness conditions and particular boundary conditions. For example,

u+ and u‘ E H'4 , u§(0) = u3(0), u'sl"(1) = 213(1), u+(1) - u§S(1) = u"(1) —u§3(1) and

”338(1): “333(1) [17]-

From the above example, we see that in order to use Tikhonov regularization the-

ory on nonlinear Volterra problems of Hammerstein type, strict assumptions on the

smoothness of the source conditions and particular boundary conditions are needed

in order to achieve the desired convergence rate. Also, as for the linear Volterra prob-

lems, another disadvantage of Tikhonov regularization methods are that they destroy

the causal nature of the Volterra problems and lead to nontrivial computational costs.

Lavrentiev’s regularization

We now turn to the second common form of regularization for inverse Volterra prob-

lems, i.e. Lavrentiev Regularization. The idea of Lavrentiev Regularization is to solve

an equation of the form

au+Fu = f. (1.6)

Definition 1.0.1. Let f : R” —i R”. We say that f is monotonic if

< x-y,f(:v) -f(y) >2 0, Viny-

Consider the problem of solving for u that satisfies

t t .

f0 k(t,s)u(s)ds+/0 F(t,s,u(s))ds =f(t), t6 [0,T]. (1.7)



It is proved in [18] that one can adapt the Lavrentiev method to identify u by solving

the following equation

t t t -

au(t)+/O k(t,s)u(s)ds+/O F(t,s,u(s))ds=l/0 e_lli(t_3)f0(s)ds. (1.8)

(1

Under suitable assumptions given by the next theorem, this equation is solvable on

the interval [0, T] and the solution ugly to (1.8) approaches the true solution a as noise

6 —> 0 in an appropriate sense. See [22] for an introduction of the Lavrentiev method.

Theorem 1.0.2. [22] Assume: 1. The vectors y, u belong to R”, k(t,s) : A —> R",

F(t,s,u) : A x IR” —-> R” where

A:={(t,s):OSsStST}.

2. F is continuous and the partial derivative Ft(t,s, u) exists for a.e. (t, s) E A and

for all u E R".

3. For each u, v E R" and a.e. (t,s) E A we have

H150, 3, v) - 60.8.11)“ S NU, 8)||v - ull, Ilfi‘tlt, Siu) - PAW, 3, v)” S L(t,8)llv - ull

and

t t

sup / L2(t, 3) ds g L, sup / N2(t, 5) ds = N.

tE[O,T] 0 te[0,T] 0

4. For every t E [0,T], the function u —> F(t, t, u) : R” ——> IR" is monotonic.

5. The kernel k(t,s) is continuous for 0 S s S t S T and k(t,t) = I fort E [0, T].

6. The derivative D1k(t,s) exists a. e. and supt E [0, T] jot Ille(t,s)||2 (13 g C.

7. The true solution ii is piecewise W1’2(0,T).

If “[6 — fl] 3 6, where 6 > 0 is a known tolerance, then for the choice ofa = 0(6)



such that

6—->0+0‘

6
equation (1.8) has a unique solution ua and tr?! —> a in L2 ((0, T), R”).

Notice that by assumption 5, this theorem can only be applied to 1-smoothing

(both convolution and nonconvolution type) Volterra problems of Hammerstein type.

In this case, the nonlinear function g in (1.2) has to be monotonic. The advantage of

this method over Tikhonov regularization is that it still preservas the causal structure

of the Volterra problem. However because the added penalty term on does not

take the given operator F into consideration, the approximation is not as good as

local regularization theory at least for the nonlinear Hammerstein problem from our

numerical results. One reason this is the case is that convergence of ug, to u E C[0, T]

in the uniform norm is impossible if u(0) 75 0, unless information about u(0) (which

is rarely known accurately) is built into the approximate equation (1.8). This fact

tends to lead to bad approximations near t = 0. If (1.8) is solved sequentially (the

usual case), this can lead to large errors on the entire interval. Please see Example 1

in Chapter 4 of the thesis and we refer to Figure 2 in [18] for comparison.

Since the results in [18] do not give a convergence rate in the case of noisy data,

we briefly mention the work in [33] where the Lavrentiev method (1.6) is applied to

equation (1.1), in the case of the operator F satisfying assumptions similar to those

in Theorem 1.0.1 (for Tikhonov regularization) along with additional monotonicity

and hemicontinuity assumptions on F. In this case the rate Hug, — u+|| = 0(61/2) is

achieved, so that the rate for Lavrentiev regularization can be seen to be the same as

that for Tikhonov regularization under similar smoothness hypotheses on u+.

There are other regularization methods for nonlinear problems in the literature,



for example, Landweber methods [26], where one may seek a solution vi such that

ui+1=ui+(F'qu:)*(f(S — Fug) (1.9)

for k = 0, 1, ..., where 11.3 = uO is the initial guess. A modified Landweber-

method [29] based on the idea that for the numerical realization of (1.9), the use of a

rough approximation Fm to F within the first iteration steps has no influence on the

quality of the iterates, as long as the iteration is continued with a sufficiently good

approximation to F. This leads to the iteration formula

ai+1=ui+(F‘y'.(k)'u.i)"‘(f(S — Fr(k)ul5c)'

Other regularization methods include Levenberg-Marquardt methods [28] where the

author studied a Levenberg—Marquardt scheme for nonlinear inverse problems where

the corresponding Lagrange (or regularization) parameter is chosen from an inexact

Newton strategy; conjugate gradient methods [27], where the basic idea is to compute

an approximate solution for the linearized problem in each Newton step with the

conjugate gradient method as an inner iteration; iteratively regularized Gauss-Newton

methods [31] [32]; and other Newton-like methods [30], etc. We refer [21] for extensive

discussions of such methods.

In recent years, local regularization methods have been extended to some nonlinear

Volterra problems, for example, the autoconvolution problem [12]. In 2005, Lamm

and Dai studied the nonlinear Volterra Hammerstein problems and their idea is that

if one treats g(u(t)) as the solution of (1.1) where F is given by (1.2), then solving

for g is nothing more than solving a linear Volterra problem. However, this local

regularization method requires one to solve a nonlinear equation at each step of

numerical iteration which can be difficult in practice. See Section 2.2 for details.



Driven by applications and the need to have a regularization scheme that is easy

to implement, we develop a local regularization method that not only preserves the

causal structure of the Volterra problems but also gives accurate approximations and

is easy to implement in practice.

We organize the paper in the following way: in Chapter 2, we first give some

background on the local regularization methods for linear problems and nonlinear

Hammerstein problems. Then we give our main results on the new local regular-

ization theory for nonlinear Volterra integral equations of Hammerstein type with

V-smoothing convolution kernels. In Chapter 3, we extend our results to nonlinear

Volterra integral equations of Hammerstein type with 1-smoothing nonconvolution

kernels. In Chapter 4, we present some numerical results using our regularization

theory.

10



CHAPTER 2

Hammerstein problem with

V-smoothing convolution kernel

We first motivate our work on the local regularization method for the Hammerstein

problem by giving some background on the existing theory for the linear Volterra

problem.

2. 1 Linear Problems

We consider the problem of finding a E C[0, T] solving

Fu = f (2.1)

where F is the Volterra operator of convolution type given by

t

Fu(t) =/0 k(t — s)u(s) ds, t E [0, T], (2.2)

and f is in range of F.

A discussion of the existence and uniqueness of solutions of (2.1) may be found in

[13] in the linear case. We call k the kernel of the operator F. Throughout we will

11



assume that F satisfies a u-smoothing condition for some V = 1,2,. . ., that is the

kernel k satisfies

1: e CV[0, T], 1437(0) = 0, j = 0,1, . . .,u — 2, W ‘1)(0) 7e 0, (2.3)

where without loss of generality, we will take k(V — 1)(0) = 1. It is well-known

that the degree of ill-posedness of problem (2.1) is characterized by the degree of

smoothness of the kernel k and the behavior of k at 0, the larger the value of u, the

worse the ill-posedness is. We will assume the desired a of (2.1) satisfies the H'o'lder

condition

[17(1) - i2(S)! S [Vlt - 8|”. (2-4)

for 0 < u S 1, N := N(t‘i) > 0, and t, s in the interval of interest.

To motivate the sequential local regularization method for linear Volterra prob-

lems, we let R > 0 be a small fixed number and r 6 (0, R] a small parameter. Assume

that equation (2.1) holds on an extended interval [0, T + R]. If data is not available

past the original interval, then this can always be accomplished by decreasing the size

of T slightly. Then it solves

t+p

f0 k(t +p— s)u(s) ds = f(t +p), t E [0,T], p E [0,T].

Split the integral at t, then change the variable of integration, we have

t p

/O k(t + p — s)u(s) ds +/0 k(p — s)u(t + 3) ds = f(t + p), t E [0,T], p E [0, 1'].

Now we integrate both sides of the equation with respect to a suitable Borel measure

12



77r(P) (which will be clarified later) on [0,r], so we have

f0" for k(t + p — s) dn.,~(p)u(s) ds + for [Op k(p — s)u(t + s) as darn)

=/0 f(t+p)dnr(/)), tEMT]- (2-5)

For simplicity, we define the following notations which we will use throughout this

paper:

||'||==||°||Loo(0,T), Il-Ilooi=||-||Loo(0,T+R)a ||-l|r==||‘”L°°(0,r)

and M1 := sup |q($)|-

x E I

Note that 17. still satisfies (2.5) exactly. However, in practice, we only have in hand

imprecise measurement data or perturbed data f6 E C[0, T + R], instead of the true

data f E C[0,T + R] , where f‘5 satisfies

||f5 — flloo gt for some 8> 0. (2.6)

Since solving for u from equation (2.5) when f6 is in place of f is an ill—posed

problem due to lack of continuous dependence on data, some regularization method

needs to be employed.

The idea is if we momentarily hold u constant on a small interval [t,t + r], then

we can replace u(t + s) by u(t) in the second term of equation (2.5). And r serves as

the regularization parameter. Then we obtain the regularization equation

t ~-

a(r)u(t) +/0 kr(t — s)u(s)ds = ff.)(t), t E [0,T], (2.7)

13



where

W) =/0 k(t+p)dnr(p), (2-8)

flu) = [0 f5<t+p> (1w). (2.9)

r p

a(r)=/é ‘/0 k(p—s)dsdnr(p). (2.10)

Notice that equation (2.7) is a well-posed second kind integral equation in u provided

that a(r) 74 0. Sufficient conditions for stability and convergence of solutions u to it

include the hypotheses on the measures 717‘ given below:

The signed Borel measures TIr(P) on [0, r] satisfy the following conditions:

0 (H1) For i = 0, 1, ..., u, there is some a 6 IR and c,- = 0,-(11) 6 Roy > 0

independent of r, such that

T . .

[0 pt dnr(p) = rt + “(c.- + a(r)). as r —» o.

0 (H2) The parameters ci, 2' = 0, 1, ..., V, satisfy the condition that all roots of

the P01yn0mial [Jr/(A) defined by

C __

E (ix—1)! 1! 0!

have negative real part.
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0 (H3) There exists a C 2 0 independent of r such that

for MP) d'flr(.0)] S éllhllri‘a.

 

for all h E C[0, r] and all r > 0 sufficiently small.

It is worth noting that there are an infinite number of continuous and discrete

families {n7},. > 0 of measures which are easily constructed and which satisfy the

above assumptions. In what follows we provide two classes of measures satisfying

(H1) — (H3) and we refer to [10] for the proof. The first measure is a continuous

measure.

Lemma 2.1.1. [10] Let V = 1,2, . .. be arbitrary and let 1,0 6 L1(0, 1) be given such

that

1

f0 p”¢(p) dp > 0-

Then the ‘density’ 721‘ for r E (0, R], 0 < R _<_ 1, defined by

[G gamma: [0 gait-(mp. geolon.

where W E L1(0,r) is given by

¢r(p)=¢(p/r), a-e- pE [0,T],

satisfies condition (H1) (with cu = fol thMp) dp and o = 1) and condition (H3).

Further, for all V = 1, 2, and given arbitrary positive 5, m1, m2, . .. and my,

there is a unique polynomial if) of degree V so that the resulting family {qr} satisfies

(H1) with cu = E and o = 1, (Hg) with the roots of the polynomial pp in (H2) given

by(—m,-), i=1, ..., V and (H3).
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The second measure is a discrete measure.

Lemma 2.1.2. [10] Let V =1, 2, ..., be arbitrary and let fit, T1 6 IR, 1 = 0, 1, ...,

L, be fixed so that

OSTO<Tl<-~<TL_1<TLSI, (2.11)

and

L

2 am" > 0. (2.12)

r = 0

Then the discrete measure 7})- dcfined via

L

[Grandma = Z @9017"), 9 6 C[0,T],

l = 0

satisfies condition (H1) (with cu = 21L: 0 51er and o = 0) and condition (H3).

Further, for all V = 1, 2, and given arbitrary positive 5, m1, m2..., and my

and for L = V, there is a unique choice of 60, 51 . . . , ,81/ satisfying (2.12) (for each

given collection of {T1} satisfying (4.4)) and such that the resulting discrete measure

721‘ satisfies (H1) with cu = E and 0' = 0, (H2) with the roots of the polynomial pu in

(H2) given by(-m,~), i=1, 2, ..., V and (H3).

Under the conditions on the measure rjr the following lemma shows that a(r) aé 0

for all r > 0 sufficiently small and all V-smoothing k. Therefore the regularization

equation (2.7) is always well-posed in these cases so that the solution to (2.7) depends

continuously on data f6.

Lemma 2.1.3. [10] Assume 17¢ satisfies (H1) and (H3). Then

a(r) = $40 + l/(1+ O(r)),

so that a(r) > 0 for all r > 0 sufficiently small.
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Using the above lemma, it is easy to see that

a(r) Z gar" + V > 0 for r > 0 sufficiently small. (2.13)

V.

Further, under this construction we have from [10] the following theorem.

Theorem 2.1.1. [10] Let it denote the solution of (2.1) given “true” data

f E C[0, T + R] and assume it satisfies the HBlder condition (2.4) on [0,T + R] with

Hélder exponent p 6 (0,1] and R > 0 small. Assume k is V-smoothing and that

{gr} is a family of signed Borel measures satisfying hypotheses (H1) — (H3) for all

r E (0, R]. Then there is a constant C > 0 (depending only on the c,- defined in (H1)

and independent of r) such that if

IMWa<a

and if f6 E C[0,T + R] satisfies (2.6), then

6

awrmmsap+aw man.

for some Cl, 02 _>_ 0, so that the choice

gives

uniform in t E [0,T].

We would like to point out that the above convergence result can be obtained

using not only signed Borel measures but also positive Borel measures for V-smoothing
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Volterra problems with V = 1, 2, 3, 4. There is to date no convergence theory for

positive Borel measures with V > 4 and in fact a sufficient condition for convergence

is known to fail in these cases. For details, see [3], [4], [6] and [10].

2.2 Existing results for the local regularization of

nonlinear Hammerstein problems

While the theory for the local regularization methods of linear Volterra problems is

rather complete, the same can not be said for the nonlinear theory. In recent years

the local regularization theory has been extended to the nonlinear autoconvolution

problem [12] and to the nonlinear Hammerstein problem [11]:

t

[0 k(t — s)g(s,u(s)) ds = f(t) for t E [0,T], (2.14)

where g is a nonlinear function on IR. A discussion of the existence and uniqueness of

solutions of (2.14) can be found in [16]-[17]. Based on the idea for the linear problem,

we let R > 0 be a small fixed number and assume that equation (2.14) still holds on

an extended interval [0,T + R]. We may define the following nonlinear regularized

equation

t~ ~s
a(r)g(t,u(t)) +/0 kr(t — s)g(s,u(s)) ds = f7.(t), t6 [0,T], (2.15)

where kr, fig and a(r) are given by (2.8) — (3.4) using a signed measure nr satisfying

(1],) — (Hg). In a note in 2005, Lamm and Dai observed that if one lets u(t) =

g(t, u(t)), then equation (2.15) is nothing more than equation (2.7) in the new variable

u(t), that is

l

a(r)v(l) +/(; kr(t — s)v(s) ds = fg(t), t E [0, T]. (2.16)
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By the linear theory, if f6 E C [0, T + R], then there exists a unique solution vé E

C[O, T] of (2.16). But the goal is to find u E C[O, T] which solves (2.15). So the

question is how to stably recover u from inverting the function g. For g : [0, T] x IR —* IR

continuous with

(g1) lim g(t,.x) = +00, lim g(t,x) = —00, t E [0, T],

x —> +00 x -—+ —oo

(92) (g(t,x) — g(t, y))(x — y) > 0, for all t E [0,T] and x,y E IR with x # y,

then there exists a unique ué E C[O, T] such that g(t,u,6.(t)) = vé(t), t E [0, T]. The

6
convergence of ur to it is given by the following theorem:

Theorem 2.2.1. [11/ Let n denote the solution of (2.14) given “true” data f E

C[0,T+ R] and assume it satisfies (2.4) on [0,T+ R]. Assume k is V-smoothing and

that {m} is a family of signed Borel measures satisfying hypotheses (H1) — (Hg) for

all r E (0, R]. Assume further that g, gt, g3; : [0,T + R] x IR —» IR are continuous

with 9t: 9;; bounded on set [0,T + R] x I, where I is a bounded open interval in IR,

such that u(t) E I fort E [0,T + R]. Assume also that g satisfies (gl) — (g2) for

t E [0,T+ R] and

(93) there exists 51 2: 51(1) > 0 such that (g(t,x)—g(t,y))(x—y) Z Ellx-yl2,

for all t E [0,T+ R] and x,y E I.

If ”k(t/NI.» < C, for the constant C given in Theorem 2.1.1 above, then if f‘5 E

C[0,T + R] satisfies (2.6) then the choice

r = 7(5) N 5H 3: V (2.17)
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gives

(uéa) — a(t)| = oat/7%) as 8—» 0, (2.18)

fort E [0, T].

Remark 2.2.1. Notice that from the above theorem, we derive the same convergence

rate as in the linear case. The assumptions (gl) - g(2) guarantee a unique solution

ué E C[0, T] for the regularized equation (2.15). Assumptions on g, 9t: ya; on I make

6
sure that “r converges to the true solution 21.

However, notice that this theory given by (2.15) requires inverting the nonlinear

function g in order to find the solution ué. In terms of numerical implementation

this means the method requires solving a large-scale nonlinear system or numerous

nonlinear equations which can be difficult in practice. Therefore our goal is to

design a local regularization theory which avoids solving large number of nonlinear

equations. That is, we want to derive a regularization equation such that the solution

to this equation depends continuously on data and it converges to the true solution

it when noise level shrinks to zero. At the same time, we want to be able to solve

our regularization equation without solving a nonlinear equation at each step of a

numerical iteration. Keeping this goal in mind, we present our local regularization

theory in the next section.
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2.3 New local regularization theory for Hammer-

stein equations

To motivate the sequential local regularization method for nonlinear Hammerstein

problems, we let R > 0 be a small fixed number and assume that

t

[0 k(t - s)g(u(s)) ds = f(t) a.e. t E [0, T] (2.19)

holds on an extended interval [0,T + R]. Assume g E C1(I), where I C IR is a

bounded open interval, with g’ bounded on I. The true solution a to (2.19) satisfies

(2.4) and 17(6) E I for t E [0,T + R]. Note that these are the same assumptions that

required in [11]. We will let T E (0, R] be a small parameter. Then the “true” solution

a of (2.19) satisfies

t+p

f0 k(t — s +p)g(u(s))ds = f(t +p), a.e. tE [0,T], p E [0, r].

Proceeding as in the linear problem, we obtain an approximate equation in u valid

for a.e. t E [0, T], such that

t

[0 as—s>g<u(s)>ds+a<r>g<u<t>> =fr<t). (2.20)

where kr, ffl and a(r) are given by (2.8)-(3.4) for f6 E C[O, T+ R]. The true solution

a still satisfies the following equation

t r
r p

f()/() k(t—s+p)d0r(P)9(fl
(s))ds+/O

f0 k(p—s)g(u(s+t))dsd
r)r(p)

=/o f(t+p)dnr(p), a.e. tE[0,T]. (221)

Since our goal is to solve for u numerically and avoid solving nonlinear function
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g, we need to linearize the function g. Notice that for suitable functions u(t) E I,

g(u(t)) z g(u(t—r))+g'(u(t—r))(u(t)—u(t—r)), where r = r(t) is assumed to satisfy

0 < r(t) < min{t,r}, if 0 < t S T and r(0) = 0. Thus in (2.20), we replace g(u(t))

outside the integral by its approximation and we obtain our regularized equation in

u valid for a.e. t E [0, T],

t

[O (“are — s)g(u(s)) ds + a<r>g'<u<t — r))u(t)

= -a(7‘)y(N(t - 7)) +a(7')!1'(U(t - T))“lt - T) + RU): 3-9- i E [0,T] (222)

So we seek a solution u(t) = u§§(t), u(t) E I for t E [0, T] satisfying the regulariza-

tion equation (2.22).

We hOpe to show that our regularization equation (2.22) is well-posed and the

solution u to (2.22) approximates the true solution 11 in some appropriate norm

(which will be clarified later) for suitable choices of the parameter r.

Subtracting (2.21) from (2.22) gives

1‘.

[O m — s) [g(u(s» — 907(8))1 ds

- r p

=s(t>+ f0 f0 k(P—3)9(fi(s+t))d5d77r(P)—a(7‘)9(u(t-T))

- a(r)g’(u(t — r))u(t) + a(r)g'(u(t — r))u(t — r), a.e. t E [0, T], (2.23)

where

tab/0 6(t+p)dnr(p). 6<t>=f5<t>—f<t), ll5ll0035. some 8>0. (2.24)
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Assume g’ satisfies

(93') there exists a constant 51 := 51(1) > 0 such that |g'(x)| _>_ 51 > 0 for x E I.

Remark 2.3.1. Theorem 2.2.1 is still true under a weaker hypothesis than (93),

namely,

(g3a) 3C1 > 0 such that |g(t,x) — g(t,y)| 2 cllx — y],

fort E [0,T + R] and all x, y E I. This latter hypothesis implies (g3’) if g’ exists

9(x + h) — g(x)

h

regularization method has to utilize g’ term, it makes sense to assume (93’) in our

on I since
 

  

Z 51 > 0 for [h] sufficiently small. Because our local

problem.

By (g3’) and Inverse Function Theorem, we derive g‘1 E C1(D), where D := 9(1).

Let v(t) = g(u(t)), for t E [0,T + R]. Motivated by equation (2.23), we will seek a

solution v, v(t) E D a.e. t E [0, T], of the following equation:

t~ _

[DSTk1‘(t — s) [v(s) — v(s)] ds

= (>+/ [up (s + t) delirlpl — a(W — r)

— a(r)g’ (9(v(t — T)))g 1‘0(0) + “(09' (KI—1(1)“ — 7») 9—104t — T)),

01‘

t

[0 kr(t — s) [v(s) — 6(3)] ds + a(r)[v(t) (t)]: Cr((v)(t), a.e. t E [0,T],

(2.25)

23



where for w E L00 ((0, T), D),

Gr(w)(t) = a(T) [1110) - 27(1)] + 5,.(13) + fr jp k(P — 8)17’(3 + 0618 d77r(p)
0 0

— a(T)‘5(t — T) — a(T) [w(t - T) - “W — T)I - a«(T)9' (9—1000 - T))) 940110))

+ a(r)g'(g"1(w(t —- r))) g'1(w(t — r)), a.e. t E [0,T]. (2.26)

Since 6 E C[0,T + R], then

Cr : L00 ((0, T), D) —) LOO(0, T).

Define

Br : L°°(o, T) —+ L°°(0,T),

where

t ~

Br(w)(t) 2: f0 kr(t — s)w(s)ds, a.e. t E [0,T],

so that we can write (2.25) as:

(a(r)I + Br) (v — v)(t) = Cr(v)(t), a.e. t E [0, T]. (2.27)

The following lemma is obtained using Theorem 3.1 of [10].

Lemma 2.3.1. [10] The operator (a(r)I + Br) : L°°(0, T) -—> L°°(0, T) is invertible

with (a(r)I+Br)-1 e £(L°°(0,T),L°°(O,T)) and, if ||k(V)||oo g c, for the (1

given in Theorem 2.1.1 above, then

 WMAI+BT )5
)‘1 Hr: (L°°(0, T), L°°(0, r)

for r > 0 sufficiently small, where rn is independent of r.
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Now we are ready to prove the main results.

Theorem 2.3.1. Let u denote the solution of(2.19) given “true” data f E C[O, T+R]

and let the same assumptions hold as in Theorem 2.2.1 for 11, kernel k and signed

Borel measures {gr}. Let g E C1(I) with g’ bounded on I , where I C IR is an open

bounded interval, assume g satisfies (g3’). Assume further that

(94) there exists a constant N > 0 such that |g'(x) —g’(y)| S N|x — y] for

x,yEI.

Let R > 0 be sufficiently small and let T E (0, R] be arbitrary. Then there exists a

9 independent of r such that, if f‘5 E C[0,T + R] satisfies (2.24) with 6 S klrt‘ + V,

then there is a unique solution v of (2.27) satisfying [[v — 17]] 3 9r”. Further, the

mapping f‘5 E {w E C[0,T+ R], [lw — flloo _<_ 6} H v E L°°((0,T), D) is continuous

for all r E (0, R].

Before proving Theorem 2.3.1, we need some lemmas.

Lemma 2.3.2. If t7(x) = g(fi(x)), x E [0,T + R], then

W1?) - T1(y)l S Ilg’lller - ill”

for a.e. x, y E [0,T + R] and p defined in (2.4).

Proof. We have

v(x) - 17(3)) = 90163)) - 90101))

= g’(€(fi,x, y))(fi(x) - 1761)),

where §(t‘i,x, y) E I since I is an open interval. Thus [v(x) — v(y)l S ”9'”;le — y]”,

for a.e. x, y E [0,T + R]. C]
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Lemma 2.3.3. Assume that 9 satisfies assumption (93’). Then

[SJ—1&7) -9'1(y)| S [:17 - y] for x,y E D.

S
'
I
H

Proof. As stated earlier, our assumptions on g give 9’1 E C1(D); further, D can be

seen to be an Open interval due to the continuity of g and g‘l. For any x, y E D,

|9‘1(~T) - 9‘1(y)l = (9")’(€(T, y))(x - y), where 6(3. 31) E D- But

1

g’(9‘“‘(€(:r, y)))

1

51

 
S|(g")'(€(rv,y))l =

  

since g‘1(€(x,y)) E I. So

Now we are ready to prove the above theorem.

Proof of Theorem 2.3.1. Since a(r) E I, so D(t) E D. Consider the ball M := {v E

L°°(0, T) : ||v — 17H S 6rt‘} for some number 6 (independent of r) to be determined

and [1 defined in (2.4). We claim that any v E M, we have v(t) E D for a.e.

t E [0, T] when r > 0 is sufficiently small. Indeed, since 1‘) is continuous, the set

R(v) = {v(t), t E [0,T]} is a closed bounded interval [a,b] in D. Since D is open,

the interval [a — 9r)”, b + drf‘] C D for r > 0 sufficiently small. Therefore the claim

is true.

For v E M, C7-(v) E L°O(0,T), so it makes sense to apply the operator
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(a(r)I + B'r)‘1 on Cr(v). Thus

v = (a(r)I + Br)_1 Cr(v) + 17 = Hr(v),

where

Hr : LOO ((0,T), D) —» L°O(0, T),

is given by

Hr(v) := (a(r)I + Br)_1C7-(v)+ i3.

6
Our goal now is to show that there is a unique solution v7~ E L00 ((0, T), D) solving

the equation:

v = Hr(v),

so that such a v will uniquely solve (2.27).

We will prove by the contraction mapping theorem: so we want to Show that

Hr : M —> M and is a contraction. First we show that Hr maps M to M for r > 0

sufficiently small.

By Lemma 2.3.1 and for v E M,

llHrtv) — an = n (a(r)I + Br)“ are)“

.<. H (a(r)I + BM ”5 (mm, ”(amylase)“

1+m

s a(r) llGr(U)ll' 

We will add and subtract a(r)r§(t — r), a(r)g’(g‘1(v(t - r)))g‘1(t7(t)) and

a(r)g’(g‘1(v(t — r)))g‘1(t’2(t — r)), then regroup on the right hand side of (2.26),
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we obtain

)-—-t67~())+/0 /0pk(p v()s+t)dsdr)7~(p)—a(r)17(t—r)

+ a(r) [v(t) — v()1 — a<(Th/(9 (v(t — r)))g-kvtt» + a(r)g’(g"(v(t — avg-lav»

— a(r)lv(t — r) — w — r)t + a<r>g'(g-1<v(t— r)))g-‘vtt — r))

— awry-w ~ r)))g-lett — 7-))

— a(r)g'<g((t — r>>>g-‘(v<t>)+ a(r)g’(g“(v(t — r>>>g-1(v<t— r))

«WM/0[up v—ve—omsdw)

+ a(r) [v(t) — v(t) — g(g(v(t - T))) (g-‘(vttv — g-1<v<t)))i

— a(r) [v<t — r) — v(t — r) — gig-lav — r)))(-1(v<t— 7)) — g"(v(t — T)))]

—a(r)g’(.q:1<v<z—r)))(.q-louh—g(lav—r))) tear]. (228)

Therefore, for a.e. t E [0,T],

where

TM) = |5r(t)l.

   " +t) - 1701- T))dsdnr(p) .

Trg3)(t) = a(T) [v(t) - 17(0- 9'(9‘1(v(t - T))) (9‘1(v(t)) - 9’1(17(t)))|, (2-29)

TWO) = 0(T) W - T) - W - r) 9’(g(v(t - T))) (Ifl(v(’ - 7-)) - y“‘('¢7(t - T)))],

(2.30)

(t) = a(T) |.<J'(g‘l(v(t - T)))(9‘1(I7(t))- 9—1070 - T)))], (2-31)
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and where we have used the fact that a(r) > 0 for r > 0 sufficiently small from

Lemma 2.1.3. By (H3), we can show that

1

(Ti lat = S C6r0.[0 at +p)dnr(P)
  

Now consider the second term on the right hand side of (2.28):

let p(p, t) := f6) k(p — s)(t7(s + t) — 17(t — 7)) ds. By Lemma 2.3.2

p —

Ipmvl s [O lk(p — snug'nizvts + r))”ds

, - P

s llkllrlly ”IN [0 (s + r)“ds

S ||k]]rllg'ler2f‘rt‘+1 a.e. t E [0, T]

and by assumption of the above theorem, p(-, t) E C [0, r] for any t E [0, T] Further,

for any 3 E [0, r]

 

 

 

k(s>=(,_1,,,s”‘1+RV_1(s>.

where

RV—1(3) = k(t?! )8“.

O < 5 < 3. Therefore 1 ( )

V - V

llkllr s (’1‘, _ 1), + “k V, ”Tr”.

So for a.e. t E [0,T],

_ 7.V—1 [k(t/)l I _ TV+

|P(p,t)| S |[9'll1N2/t7‘”+ 1W (1 + —|V IT’" 5 “9 ll1N2fl+1 _
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for r > 0 sufficiently small. So by assumption (H3) on the measure, we obtain

2 ~ ~ I _ 7.V+u+0'

Tl kt) .<_ Cllpllrr" 3 Gig “1N2“ +1W,

for r > 0 sufficiently small.

For a.e. t E [0, T], we use the fact that (g'l)’(x) = I for suitable x, to

g (9‘1($))

write

TQM) = a(r) [(v(t) - v(t))u — g’(g‘1(v(t — r)))(g‘1)'<€(v. .7, MI

a r r)) g’(g“(€(vn7,t)))-g’(g“(v(t-T)))

5 ( )9 g’(g‘1(€(v,fi,t)))
 

6r“

< a(T)—.C.1-N| '1(€(v, v, t)) — .(I"l(v(t — T))l

Tu
= a(r)€_—-N-_-1-]€(v, 17, t) — v(t — r)[

Cl cl

where we have used Lemma 2.3.2 and Lemma 2.3.3. Further, for a.e. t E [0, T],

min{v(t), 17(t)} < {(vfl, t) < max{v(t)a 170)},

so [€(v, t“), t) — v(t)] 3 Br“ and €(v,D, t) E D for r > 0 sufficiently small. Therefore

[filial-Tat) - v(t " 7)] _<_ [HUM—lat) — g(t)|+ [17(0- i7(t — T)| + Wt — T) - ”(t — T)l

5 0r“ +][g'||1Nr“ + 6r“

=2srlt+||g'||,Nr/‘, a.e. tE [0,T],
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and thus

a 41 _
Time) s a(r)—IQ—Neerr + llg’ller”)

C

1

= a(r)%N(26 + (|g'n,N)r2#, a.e. t e [0,r]. (2.32)
C

1

Similarly, for r > 0 sufficiently small,

(4) _a, _, _,_, _T 9’(g“(€(v.t7..t-T)))-9’(g“(v(t-r)))
T. (v— ()(lt ) (r. )) g,(g_,(,(v,,,,_m) 

 

6 “N

s a(r) ’12 lav. at — r) — v(t — r))

01

62N

S a(r)—31‘2“, a.e. t E [0,T], (2.33)

c1

because [{(v, t“), t — r) — v(t — r)[ g [v(t — r) — v(t — r)[ 5 0r, a.e. t E [0,T].

Finally the last term on the right hand side of (2.28) is

Time) = a(r) |g'<g-1<v<t— r)))l (a(r) — a(t — 1))

g a(r)]lg'lerr” a.e. t E [0,T] and r sufficiently small. (2.34)

It follows that

llGr(v)ll 3 68rd + (3)9th + ,1- V _

9 , - 921v

+ a(r):2-N(26 + My ”IN>13“ + a(T) 52 7‘2”
1 1

 

C
‘

+ a(r)]lg'IIINr“, for r > 0 sufficiently small.
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Thus, we have from Lemma 2.1.3,

1+m

a(r)

 
llHr(v) - 17H S llGr(v)ll

(1 + m) ~l~

— (cu/2V!)r"

1+m V ~ -
+ 2(# + zlL—C—‘LCHQ'HINTM

V

2

 

6 — 6 N

+(1+rn.)3N(20+|]9’]]1N)T2”+(1+m) _2 T?”

C C

1 1

+ (1 + "T)Ilg'ller“,

for all r > 0 sufficiently small.

Let 6 = 6(r) satisfy 6 g klrl‘ + V, for some k1 > 0. Then

 

(1+m) .. ~l€1Vl

—— < u

((tV/2VI)T‘V 06 - 2(1 + m)C CV r ,

for all r > 0 sufficiently small.

 

So

- ~k1v! U.+2,(1+m)u~ , — , - ,,
llHr(v)-v||_<. 2(1+m)C—c—+2 —C—-Cllg ||)N+(1+m)||9ll1N r

V V

9 - 62N
+ [(1+m)_—N(26+|]9’ll1N)+(1+m) _2 r2”.

C C

1 1

To have |[Hr(v) — 17]] S 97‘“ for some 0 > 0 and all r > 0 sufficiently small, a sufficient

condition is

Q~k ! 1 ~ - -

2(1+m)C—j” +2r+2—(f,m)”CIIg'ii,N+(1+m)ng'n.N <
V ,1/ (

\
D
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for r > 0 sufficiently small. So let

-1, l .. _ _

o < 0 < 2(2(1+ nae—11 + 2” + 3( "Cllg’lliN + (1 + m)ll9'||1N). (2.35)
1 + m)

Cu CV

Then llHr(1’) — 17]] S 07'“ for r > 0 sufficiently small where 0 is defined by (2.35).

Therefore

HrzM—2M

for r > 0 sufficiently small provided 6 = 6(r) satisfies 6 g klrf‘ + V for all such r.

Now we want to show that for any v1,v2 E M = {v E L°O(0,T) : llv — ill 5 Or“),

we have

llHr(7~’1)— Hr(v2)ll S allvl “ v2”,

for 0 g 0: < 1. Since

1 +772.

a(r)

we note that for r > 0 sufficiently small, we have for a.e. t E [0, T],

 

llHr(v1) - Hr(v2)ll S llGr(v1) - Gr(v2)||,

falGrlth) — Gr(v2)(t)l

= [M0 - v2(t)l - [v1(t- T) - v2(t - T)I

- g'(g'1(v1(t - T)))l9'1(v1(t)) - 9’1(v2(t))l

+ 9’(s‘1(v2(t - T)))[9'1('01(t - T)) - 9‘1(v2(t - T))l

- g‘l('v2(t))l9'(g‘1(v1(t ~ T))) ._. .q'(9"(v2(t *- T)))I

— y“(v1(l- r))[g'a-‘(vzu - r))) — g’tq-‘(vtv - T))))

3 .

= Z sl'la), (2.36)

i=1
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87(1)“): [v1(t) - v2(t) -.<J’(9r‘1(v1(t - T))) (9(M0) -g"1(v2(t)))l (2-37)

51(2)“) = [9'1(v1(t- T)) - 9‘1(v2(t))] [g’(g‘1(v1(t - T))) - .q’(s“(vz(t - T)))] -

(2.39)

Use similar arguments to those used in obtaining (2.32), for r > 0 sufficiently small

we have

8%) = ((v1(t)— v2<t))[1— g’(9‘1(v1(t — T)))(g'l)’(€(v1,t))ll

5 Maureen r))) — gig-1w: - r)))l
C1

U U _ _

s l—‘g—i—“ng 1<(v .v2.t))—g lulu-r)))

'U ’U

s —”—1.:.—"’—”Nlav vat) — (u(t-T)I
l

S MNBBN‘ +llg’ll1Nrf‘], a.e. t E [0,T],

l

where here we have used the fact that for a.e. t E [0, T],

min{v1(t),v2(t)} < {(01,112, t) < max{v1(t),v2(t)}

and

{(v1,v2,t) E D for a.e. t E [0, T],
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so that

l§(U11U21t) — U1(t - T)I

S [5(“111’21 tI) " 17(1)] + [17“) — 1W - T)I + If)“ — T) - 121(1. — T)I

S 267‘” + llg'llINr” + 9rft

_<_ 301'“ + llg’lllNr“, a.e. t E [0,T].

Similarly, using arguments like those used to obtain (2.33),

(2) _ 1. -1-.. _T g'<g-1(:<v1.1)2.t—T)))—g'(g-l<v2<t—r)))
5‘ “l‘ (1“ l 2“ ” g'<g-1e<v1.v1,t—r)))

N

s ”11— U2ll§l€(vl1v2at — r) — vztt — T)I
l

N

5 llvl — vgll§20r”, a.e. t E [0,T],

1

because [{(v1,v2,t — r) — v2(t — r)[ S lv1(t — r) — v2(t — r)[ S 2dr“, a.e. t E [0,T].

Finally,

, _-(9l(“1((t- T))-9'1(1I2(l))) ‘ l9'(9'1(v1(i - T))) - 9'(9’1(v2(l “ T)))ll

3 _—(2e + Iig'II1N)r“N.—Hv1 — v2“
Cl c1

1 , _

=:2-(26+llgll1N)Nr“llv1-vzll. a.e. t6l01Tl1
C

1

where we have used

194(1)1<t—r))— 91(v2(t))l

s inn(1- r) — v(t — T)I + u(t — T) — v<)l + (v(t) - v2(t)ll

«El—(2a + [[9 ((,/V)” a.e. re [0,r].
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Thus

 

1+m

llHrlvl) - Hr(v2)ll _<_ a(r) llGr(v1) - Gr(v2)|l

N u , ‘u N. u 1 r _ u
S (1+ 7”) 3(397‘ +|lg||1NT )+ 329’" + 3(29 + ”9 ll,N)Nr llvl — U2”

C C C

1 I 1

= a(T)||v1- v2|l1

where

1 + m Nr” , -

avr=$——§L——cr+ugmw)
ti

Therefore

llHr(v1) — Hr(v2)|| S 01(7‘)||U1 — v2H1

where a(r) E [0, 1) provided r > 0 is sufficiently small.

Thus H)— is a contraction in the ball M for all r > 0 sufficiently small, provided

6 = 6(r) satisfies 6 _<_ klr” + V for all such r. Therefore equation (2.27) has a unique

solution v76~ E L00 ((0, T), D) and |va - all 3 6r“ where 6 is defined by (2.35).

Now we show that this solution v5: depends continuously on the data f6. Fix r > 0

sufficiently small and let 6 = 6(r) satisfy 6 S klr“ + V. Let fig, f3 E C[0,T + R]

satisfy

ns—nmsti=t2

Replace 6r(t) in equation (2.28) by 6,.‘1-(t) where 6r,,-(t) is defined as in (2.24) using

6-infits instead of f6 respectively for i = 1, 2. Then there exists a unique solution vr 1

ball M which is defined in Theorem 2.3.1 solving v = Hr, ,(v) respectively for i = 1, 2.
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Further, using arguments similar to those used to prove HT is a contraction,

llv§,1— vigil = NH. 1(1)? 1) — H. 26:22)“

1+m

<———(T)——uc.~ 1(1),. 1)— 0.3622)”

1+m

0"("lll1/7: 1_ v7: 2]] + a(r)

 for (fie + p) — rte + p)) a(r)]

2(1 + mot/inf? — rig)...

 

 
s a(r)llv3,1 — v.22“ +

  

CyTV ,

so 6

’7") 1 T) 2 _ 1 - a(r) cer

where a(r) E (0, 1) for this fixed r. Thus continuous dependence of solutions on data

is obtained for equation (2.25). This completes the proof. E]

Remark 2.3.2. The only new assumption we need for our theorem is assumption (94)

on g’ which is not surprising since our theory use 9’ explicitly so we expect to have

some assumptions on g’. Also our assumption (93’) is in fact weaker than assumption

(g3a) (which could have been used in place of (93) in [11]) in the case when 9’ exists.

Using (g3’) alone guarantees existence of a unique solution ué E L°°(0,T) which

solves ur(t)—- g‘l(vr(t)) a. e. t E [0, T] where v5(tt) E D for a.e. t E [0,T].

Corollary 2.3.1. Assume '17., f, and g still satisfy the assumptions given in Theorem

2.3.1. Fork = 1, 2,. ,let f6k E C[O, T+R] satisfy (2.24) with16k > 0 where 6k1—> 0

as k —-> co and let rk-— rk(6k) > 0 be selected satisfying ()1ng < Tk—< d26k—-F_

for some constants d1, (12 > 0 and 6k -—> 0 as k —> 00. Then for k sufficiently large,

6

equation (2.22) has a unique solution ué’]; = u k(g ) E LO°((0,T), I) satisfying

T

k k

a ..+

k—angcai‘ ”k as k ——> 00 for some C independent ofk and 6k. (2.40)
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. 6

Further, the mapping fék E {w}C E C[0,T+ R],llwk — flloo 5 6k} )—> url’: E

LOO((0,T), I) is continuous for all k sufi‘iciently large.

Remark 2.3.3. The rate of convergence in (2.40) is in fact the optimal rate for

local regularization of linear V-smoothing problems under the assumption of 12 H6lder

continuous with Holder exponent n E (0, 1].

Proof of Corollary 2.3. 1. By Theorem 2.3.1, for each fixed k sufficiently large, equa-

tion (2.27) has a unique solution vffiEEL°°((0, T). D) satisfying llvrk — vll < Brk.

Therefore, we can define

date) was))

and we obtain that uéflt) E I for a.e. t E [0, T].

Therefore,

viro— 17(()-—-l lg1.,,))— g(u(t))]

= lg(anti. 1-. t))(u‘l’;(t) — a(t))|

251 urk(t()-a(t)l a.e. tE[0,T]. (2.41)

So

ur’;(t)——u(t)lgiliré:(t)—v(t) _<_£(rk)f‘:=C(rk)l”, a.e. tel0,T],

~ 6

where C = :—. The above is true for any k sufficiently large. Therefore the

Cl

approximate solution all"k converges to the true solution it with order (rkW in

LOO-norm as k —> 00.

Continuous dependence of all: on f6k follows from continuous dependence of vll:

on f6" and estimates like (2.41). C]
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CHAPTER 3

Hammerstein Problem with

nonconvolution kernel

3.1 The regularized Hammerstein equation

We study the following nonlinear Volterra problem:

Fu = f, (3.1)

where F is the nonlinear operator given by

t

Fu(t) =/0 k(t,s)g(u(s)) ds a.e. t E [0,T], (3.2)

where f E Range(F) Q L°O(0,T) for u E L°O(0,T) suitably defined.

Here k(t, s) is called the nonconvolution kernel. We will assume the kernel k is a

1-smoothing kernel, that is

kECl([0,T+R]x[0,T+RI), and k(t,t)7éO for tE[0,T+R].
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Without loss of generality, we assume k(t,t) = 1. For a large class of kernels k,

the solution of (3.1) is a ill-posed problem due to the fact that the solution of (3.1)

does not depend on data in a continuous way. It is for this reason that some kind of

regularization of (3.1) must occur. In order to motivate our method, we will make

the same type of assumptions that we have for the convolution problems in Chapter 2

for the nonlinear function g and the true solutions 11. That is, we will let g E 01(1).

Assume the true solution 1’1 E C ([0, T + R], I) of (3.1) satisfies Holder inequality (2.4)

and u(t) E I for t E [0,T + R] . We will let r E (0, R] be a small parameter. Then

using the same idea as in Chapter 2 for the nonlinear problem: we extend the integral

slightly into the future, split the integral and do a change of variable to the second

integral, we obtain

t 9

f0 k(t + p, s)g(u(s)) ds +/0 k(t + p, t + s)g(u(t + 3)) ds = f(t + p) a.e. t E [0,T].

Then integrate with respect to a signed Borel measure {17,} which satisfies (H1)-— (H3),

and change the order of integration to the first integral, we then obtain for a.e.

te [0,T],

[0 [0ktt+p.)p)gsdnkt((su))ds+[0[kk(+p1t+s)9(u(t+s))dsdnr(p)=fr(t).

where frIt) =fo f(t + p) d77r(P)

If we approximate k(t + p, t + s)g(u(t + 3)) by k(t, t)g(u(t)) = g(u(t)) in the second

integral above, we then have an approximating equation

t r

f0/0k(t+018)d9r(p)9 (u(8))ds+a(r)9 (11a)): fr(t1) a.e. relax]

where a( =[0 ptlnr (p) and f7. is defined by (2.9). If we linearize g(u(t)) at u(t —r),
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we then obtain our regularization equation

[[111111,)dnr(99u)((8))ds+a(r)l9(u(t-T))

g’(u (t —- r))(u(t) —- u((t— 7'))]= fr(t,) a.e. tE [0,T]. (3.3)

From (H1) we have

T 1 1 1
11(1) =[0 pdnr(p)= + “(Cl + 0(1)) 2 Eclr +0 > o, (3.4)

for r > 0 sufficiently small. The true solution 11 satisfies for a.e. t E [0, T],

[0 [0 k(t+p,s)dnr(99)(u(8))ds

+ [0 [0 ktt+p.t+s)gtatt+s>>dsdn1tp)=f1tt> (3.5)

Because the assumption on k limits the convergence theory to mildly ill-posed

problems of solving for (3.1), we make the following remark.

Remark 3.1.1. We note that this 1-smoothing assumption on k is standardly found in

the theoretical convergence arguments for methods which preserve the Volterra nature

of the original problem. The hypotheses of several well-known methods which preserve

causality are discussed in [7/ and [8]. Local regularization theory has been extended to

the linear nonconvolution problem using the assumption of k 1-smoothing [7]. In 2000,

Lamm and Scofield observed that the theoretical assumption k(t, t) aé 0 does not appear

to be needed in numerical method for the local regularization method they present for

the linear problem. Numerical examples for k not satisfying the assumption k(t, t) = 0

may be found in [4]. Thus the 1-smoothing assumption in nonconvolution problems

is more a theoretical limitation than a practical one. Here we extend the existing
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theory for 1-smoothing nonconvolution linear problems to l-smoothing nonconvolution

Hammerstein problems.

Subtract (3.5) from (3.3) and regroup the terms by adding and subtracting, we

obtain for a.e. t E [0,T],

t r

[0 /0 W + p’ 3) “WW [991(0) - 9(I‘I(S))I d8 + a(T)[9(II(t)) - g(a(1))]

——’a(”QM)) ”HM(’l +/0 fopk(t+p1 t+ 9)9(I‘1(1+ 9))d8dnr(p)

- a(T)9(fi(t - T)) - a(T)[9(U(t - T)) - 9(fi(t - T))l

- a(T)9'(U(t - r))u(t) + a(T)9’(u(t - r))u(t - T) (3-6)

where 8,.(1) is defined by (2.24)

By (3.4), we know that a(r) > 0 for r > 0 sufficiently small. So for fixed r > 0

sufficiently small, we can divide a(r) on both sides of equation (3.6) to obtain for a.e.

te [0,T],

1)[[kt111,1,dnktp[g(u -9(9(s))lds+l9(u(t))-9(9(t))l

[g(u1))—g(11()))+_(1__)5,.(1))

337, [0 [0 k(t+p1t+s)9(9(t+s))dsdnr(p)l-9(I1(t-r))

—(g(11(1-— T)) - 9(1‘I(t - T))) - 9’(11(1 - T))u(.1)+9’(11(1 - T))II(t - T) (3-7)

Assume 9 satisfies (q3’) and let 17(1):——— g(u(l)) for t E [0, T + R]. By (93’) and

Inverse Function Theorem, we derive g‘1 E C1(D), where D := 9(1). Motivated

by (3.7), for fixed r > 0 sufficiently small, we will seek a solution 1), v(t) E D a.e.
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t E [0, T] of the following equation:

(31 + 002 — 1) = 11(1), (3.8)

where

Br : L°°(0, T) —1 L°°(0,T), (3.9)

defined by

Br(v)(t) := 71—) [0t [0 ktt + 1018) d91(p)v(s) ds. (3.10)

If 6 E LOO(0,T + R), then F7- : L°°((0,T), D) -+ LOO(0,T) is defined by

Fr(v)(t) := (v(t) — 1(1)) + 325319)

1 T P _ >
+ a—(f)/(‘) f0 k(t + p, t + s)v(t + 8) ds dmlp)

— v(t —- r) — (v(t — 7') -— 17(t — r))

- 9' (9"1(v(t - T))) 9'1(v(t)) + 9’ (9‘1(v(t - T))) 9‘1(v(t - T))

5,.(1) + for f6" (k(t + p, 1 + s)e(1+ s) — 17(1- 1)) 111 1111101)

— a(r) a(r)

+ [v(t) — Wt) — 9' (9—104t — T))) (9—1040) - 9-107(0)”

- ['v(t - T) - 9(t - T) - 9’ (9‘1(v(t - T))) (9"('v(t - T)) - 9"(T'(t - T)))]

- 9’ (971(110— T))) (9'1(I7(t))- 9_1(17(t- T)))1 (3-11)

 

for a.e. t E (0,T).
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3.2 Convergence and well-posedness results

Before we present our main results, we will study the properties of the operator

Br + I first.

Lemma 3.2.1. For any r > 0 sufficiently small, let Br be given by (3.9)-(3.10). If

k E C1([0,T+ R] x [0,T+Rl), then the operator Br+I is invertible with (Br+I)—1 E

$(LOO(0,T),L°O(0,T)) and there exists a constant C independent of r, such that

”(Br + Il—lllg (LOO(01 T), L°°(0,T)) S C for all r > 0 sufficiently small.

Proof. For any r > 0 sufficiently small, by Taylor expansion

ft)" k(t + 191 S)d9r(10)
 

 

 

a(r)

= ltilk(t18) + D1k(€(t1p)18)pld9r(p)

9(7)

=W.1t1,1) 1 f6" 019925)).911119)

= 5%,—S)“ + Kr“, S),

where

6,. 1:fl= f(lpd’flrlp)

f6 6911(9) [6 d77r(p)

and

6101-9) ;= Id D1k(€(:(l:‘))13)PdTIr(P).
 

Consider the equation

(B.+1)(w)(1) f(1), a.e. tElO,Tl. (3.12)

This is a second kind integral equation in w. If f E LOO(0, T), then
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there exists a unique w E LOO(0, T) which solves equation (3.12), i.e.

(Br + I)”1 : LOO(0, T) —+ L°O(0, T) [13]. This is true for any r > 0 sufficiently small.

By definition

[16" D1k(€(t1p)1s)pdnr(p)l
 

 

 

ll-Y7‘(t,8)l 1'

[It pdrirlp)

9191111111 +0 < 29101911

— r1+ ”(c1 + 0(r)) — C1

for r > 0 sufficiently small and t E [0, T + R]. Therefore,

2C'lllelloo

llRTlloo S

Cl

From the proof of Lemma 4.1 of [9] we have

- - 26' D k

llwll S “lefllexp(||01)1||00 +2
%)

= Cllf—IL

. ._ 267 D k

where C := 2exp (lllelloo +2M2) independent of r. Since

Cl

llwll = |l(B1~ + I)‘1flls Cllfll,

we obtain

_1 e

C]

If 6 E 1.100(0, T + R), then by Lemma 3.2.1, for r > 0 sufficiently small, equation
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(3.8) is equivalent to

(11 — 11) = (31 + I)_1Fr(v), (3.13)

01'

v(t) = Hr(v)(t), a.e. t E [0,T], (3.14)

where

Hr : LOO((0,T), D) —+ LOO(0,T),

is defined by

Hr(v) := (Br + I)-1Fr(v) +17. (3.15)

N0w we present our main results.

Theorem 3.2.1. Let 1‘1 denote the solution of (3.2) given “true” data f E C[0,T+ R]

and let the same assumptions hold as in Theorem 2.2.1 for 11 and signed Borel measure

{gr}. Let g satisfy the some assumptions as in Theorem 2.3.1. Assume k is 1-

smoothing, i.e. k E C1([0,T+ R] X [0,T+ R]) and k(t,t) = 1. Let R > 0 be

sufliciently small and let r E (O, R] be arbitrary. Then there exists a 0 independent of

1 such that, if f5 e C[0,T + R] satisfies (2.24) with 8 g 1111!1 + 1, for 11 the Hélder

exponent on 1'1, then there is a unique solution v of (3.8) satisfying llv — 17]] S 0r”.

Further, the mapping f‘5 E {w E C[0,T+ R], [[111 — flloo S 6} 1—1 v E L°°((O,T), D)

is continuous for all r > O sufficiently small.

Proof. We will use the same type of arguments like in Theorem 2.3.1. That is, we

will first define a ball

M := {v e L°°(0. T) : llv - 9H S 914‘},

for some 0 independent of r and p E (0, 1] defined by (2.4), then use the Contraction

Mapping Theorem to prove our result.
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Since u(t) E I , so v(t) E D. By previous discussion in Chapter 2, we know D is

an open interval and for any v E M, we have v(t) E D for a.e. t E [0,T] when r > 0

is sufficiently small. We will show that there exists a unique solution v solving the

equation

’U 2 117(1)),

so that such a U will uniquely solve equation (3.8). First we will show that Hr maps

M into M.

For v E M, by Lemma 3.2.1,

Mme) — an = “(Br + I)"1Fr(v>n

S ”(Br + 1)_1llg(LOO(0, T), LOO“), T))“Fr(vlll

S éllFrWHI-

For 1‘ > O sufficiently small, by equation (3.11), we have for a.e. t E [0, T],

5 (i)
wow: .2: PT (t).

  

 

 

i =1

where

(1) ._ WI
P. (t .— a(r) .

(2) ._ [f5 [6’ (k(t + p,t + s)17(t+ s) —- v(t — T)) dsdn,~(p)l

Pr (t) .— , a(r) .

P5300) := [v(t) - 17(0- 9' (9"1(v(t - T))) (9-1040) - 9'1('l7(t))) ,

PW!) == IUU - T) - W - T) - 9’ (9—104! - T))) (9’1('U(’- - T)) -!1'1(27(t- T)))Ia

105%) := Ig' (g-‘(ve — 7») (9'1(17(t>)— g-W — r)))l,
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and where we have used the fact that a(r) > 0 for r > 0 sufficiently small.

By (H3), we have

  

(1) If; 6(t +p)d77r(p) 55.0 265
PT (I) S 1 -<— 1 =

§C1T1+o §c1r1+0 617‘

for r > 0 sufficiently small. If 6 g klr“ + 1, then

 

2Ck1
P£1)(t)SM1r” where M1:= c

1

(3.16)

Now consider the integrand of P,£2)(t). We have for t E [0, T], s, p E [0, r],

|k(t + p, t + s)u(t + s) — v(t — 7)]

S |k(t + p, t + s)u(t + s) — k(t + p,t + s)v(t — T)I

+ |k(t + p, t + s)u(t — r) — k(t + p, t)v(t — T)I

+ [k(t + p, i)v(t — r) -— k(t, t)o(t — r)|

S ||k||oo||g’||1N2“r“ +ll02kllooT|l9H1

+ ||D1k||oorllgl|1 = “7127’” + M31“, (3-17)

where Mg := 2fl||klloo||g’||1N, 11713:: ||D2klloo||gl|1 + ||D1k||oo|lg||1, and where we

have used Lemma 2.3.2. Therefore by (H3), for r > 0 sufficiently small,

  

  

"MIL 1V1 -0 261F411 A7

_C r1 + o 01

2 1

26337 201?!
where A12 := 2, M3 := 3.

C1 C1

Notice that 13793)“), R,(.4)(t) and P,(.5)(t) are exactly the same as T£3)(t), T54)(t)
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and T76) (1) respectively defined by (2.29) — (2.31), under the same assumptions on g

.. 1 .

and it, except for a factor of a(r), i.e. P£Z)(t) = —T,gz)(t) for i = 3, 4, 5. Therefore

a(r)

by similar arguments, we derive for r > 0 sufficiently small and a.e. t E [0,T],

 

0 _

14%): 3N(29 +Ilg’II1N)r2“, (3.19)
61

2

144%,) < 6:12”, (3.20)

C

1

14%) s Ilg’ller“ = My“, (321)

and where M4 := “Q’IIIN. Therefore by (3.16)-(3.21), we have

”117(1) — an s C[(Ml + big + M4)r# + My + o(r’”‘)].

For r > O sufficiently small, to have |]H7~(v) — 27]] S 6r“ for some 0 > 0, a sufficient

condition is

A

C(M1+M2+M3+M4) <

(
\
D
I
Q
D

So let

9 := 26(1111 + 1112 + M3 + M4),

then we have |]Hr(v) -’l7|] S 01'” for r > 0 sufficiently small. Therefore Hr : M —> M.

Now we want to Show for any v1, 122 E M = {v E LOO(0, T) : ]|v -— 27]] S Orff}, we

have ||Hr(v1) — Hr(v2)|] S 0]le — v2” for O S a < 1 and r > O sufficiently small.

Since ||H,.(v1) _ 111.09)” g (2*
  
Fr(vl) — Fr(v2)|], using similar computations as in
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Chapter 2 to derive (2.36), we have

3 (i)
Fr(v1)(t) — Fr(v2)(t) = 2 3 Sr (t). (3.22)

i=1

where 87(1) are defined by (2.37), (2.38) and (2.39) for i = 1, 2, 3 respectively. There-

 

fore

, “1’1 -v2]] )1 I ‘ ,u

IlFr(v1) — ”(12)” _<_ —E2——N(3‘9T + ”9 “INT )

1

N u 1 , ‘ u+Ilv1- toll-55261" + 3(26 +||9|l1NlNT uvl — v2“

1 Ci

Nrf‘ I _

= ”'01 — ell-306 + 2]]9H1N)

Cl

= fi(7‘)llv1 - v2”,

N741 , _

where fl(r) := _2 (76 + 2|]g ]]1N).

C1

80 we have

IIHT(v1) —- Hr(v2))|| s OIIFr(v1)— Fr<v2)ll

= 6(r)llv1- v2”,

where a(r) :-—- Cfi(r).

Hence for v1, v2 E M, we have ||H7~(v1) —Hr(v2)|| S a(r)]lvl —v2]|, and a(r) E [0,1)

provided r > O is sufficiently small. Thus equation (3.8) has a unique solution

vé E L00 ((0, T), D) in ball M for r > O sufficiently small.

For the proof of continuous dependence on the data, by the same type of arguments
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that we have used in the proof of Theorem 2.3.1. Let U? i denote the solution of (3.8)

associated with data f? and Hf;S — flloo S 6 , i = 1, 2. For fixed r > 0 sufficiently

small, we obtain

((1)21 — vigil = “Hr, 10$, 1) — 11.3322)“

 

 

 

S CllFr, 1(1)? 1) — Fr,2<v§,2)u

_ 5 5 . 16' (ff(t+p)—f§<t+p))dm~(p)

-<- “(T)“vr. 1 — ”r. 2“ + C a(r)

“1*. 6 5
266 —

3&(r)|lvg,1—v52 + "1 ’2"°°.
7" H 617‘

So

 

1 266

- 1,, MS - 13“.».
,6 6

“77,1 _ ”n2” 5 1_ a(r)

where a(r) E (0,1) for this fixed r. The above arguments are true for any r > 0

sufficiently small. Therefore, continuous dependence of solutions on data is obtained

for equation (3.8) for r > 0 sufficiently small. El

Corollary 3.2.1. Assume all the assumptions hold as in Theorem 3.2.1. Then for

1 1

rk = rk(dk) > 0 selected satisfying dldz‘q‘. S rk S dgdzr" for some constants d1,

d2 > 0 and for 5k —+ 0 as k -> 00, equation (3.3) has a unique solution (if: =

145.20%) E L°O((0,T), I) satisfying

6): Elli—V

as k —> 0 for some constant 5 independent ofk and 5k. Further, the mapping

Mk 6 {wk E C[0,T+ R], “wk — fHOO S 5k} ,_, u‘lk
7,. e L°°((0,T).I)
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is continuous for all k sufficiently large.

The proof of the above corollary is similar to the proof for Corollary 2.3.1.
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CHAPTER 4

Discretization and Numerical

Implementation

4.1 u-Smoothing Convolution Kernel

We first consider the implementation for our regularized equation with V-smoothing

convolution kernel. Recall the regularized equation is

t

[0 Mt — s)g(u(s)) ds + a(r)g'<u<t - r))ue) + a(r)g(u(t — r))

— a(r)g'(u<t - r))uu — r) = fie). (4.1)

which came from a linearization of certain terms in the equation

t ~

[0 m — s)g(u(s))ds + a(r)g<u<t)) = lie). (42)
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where h, f}; and a(r) are defined by (2.8), (2.9) and (3.4). Let N = 1, 2, 3, ..., and

partition our interval [0, T] into N equally spaced subintervals. That is, we let

Let xj(t) be the usual characteristic functions on the interval [tj_ 1,tj) for

j = 1, 2, ..., N. We seek constants c-, j = 1, 2, ..., N, so that the step function

N

u(t) ;= Z cJ-xj(t), t e [0,r], (4.3)

j = 1

satisfies (4.2) at the collocation point t1 (since u(t) in (4.3) has no “past” information

on the interval [0, t1), and satisfies (4.1) att = ti fori = 1, 2, . . ., N—l. Let r := RAt,

where R is the number of future subintervals that we will use. Note that it is not

practical if the number of future intervals is more than the number of subintervals

on [0,T]. Therefore we take R E {1,2, . . .,N}. By our requirements on r from

Chapter 2, we will let

T = At, for solving ci, for i = 2, 3, ..., N. (4.4)

In order to solve for CI, we solve the equation (4.2) at t as t —-> t'l', that is

t N N -

lim / k7-(t—s)g Z cjxj(s) ds+a(r)g Z cjxj(t) = lim f2“),

tat? 0 '=1 '=1 t——>t,’

or

[$1 ~ ~

gel) [0 W1 -— s) as + a(r)g<c1) = 1901),
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since ift E [0,t1), then xJ-(t) = 1, forj = 1 and XJ-(t) = 0 for j = 2, 3, ..., N.

Or we can write the above equation as

A19(01) + a(T)9(61) = fr (t1), (4-5)

where

t1

Ajltl(=/(;kr(t‘ —S618-] /+p-S dnr()dS,

forj=1,...,N—1.So

_ fan)
9(01) —m-

To find c2, C3, . . . , cN, we solve the following collocation equation:

11,- ~ N N N

[0 kr(ti—5)g 2 Cij(8)) d8+a(7‘)9' Z CijUi—T) 2 Cijh

'=1 '=1 j=1

N N N

+a(T)9 Z CijUi—T) -0-(T)9' Z CijUi-T) Z CijUi—T)

'=1 '=1 j=1

~

=f1‘l(tz-), fori=1,2,...,N—1, (4.7)

where ti—r=ti_1fori=1,...,N—1, therefore

1, ifj = i,

xflh—fl=

0, otherwise,

1, ifj = i + 1,

XjUi) =

0, otherwise.



So the first term on the left hand side of (4.7) is

Otikr(tz- —s)g (izlcCij (3)) ds= k:1/t’:1kr(,-)gt—s(ck)ds

t1~

gel.) [0 me.- — (s + t). _1))ds.

g(ck)Ai—k+1 i=1,...,N—1.II
II

P
S
“

P
?

H
M
-

n
M
”

)
—
|

H

The second term on the left hand side of (4.7) is

N N

r)9’ (:1award) 2 Cij(ti)

]=1

()2CJXJ'(i-1)N)ZCCJ'XJ“z

j=1

— )Cl'i‘l) 2:1)" ,N—l.

The third term on the left hand side of (4.7) is

N N

T)I) (J: Cij(%‘ - T)) = a(r)!) (Z (IijUz' — 1)) = a(T)9(Cz‘),

'= l '= 1

fori=1,--- ,N—l.

And the last term on the left hand side of (4.7) is

N N

T)9' Z CijUi—T) 21 CijUi—T)
. = 1 j—_

N

=a(r)g' chxj(t,_1))N20cjxj(Z-_1) =a(r)g(c,)c,-, i=1,---,N—1.

'=1 j=1
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Therefore our collocation equation (4.7) can be written as

Z 9(61)A1_1~ + 1 + a(T)9'(Ci)Ci + 1 + a(T‘)9(Ci) - a(T)9'(Ci)Ci = fr (ti),

k = 1

fori=1,--- ,N—1.

We note that only equation (4.6) is a nonlinear equation, which we must solve

for CI. Once c1, c2,. . ., cz- are found, we can solve for c,- + 1 by the following linear

equation:

1 -

C1+ 1 =m frat) ' “(T)I/(Ci) +9 )9(9)61" 1.21%0km2' — k +1

(4.3)

fori=1, 2, ,N—l.

The computation of a(r), f7.(t), and A1; rely on the choice of the measure 17. We

will show their computation in Section 4.3 for one particular measure.

4.2 1-Smoothing Nonconvolution Kernel

In this section, we consider the discretized equation for 1-smoothing nonconvolution

kernel (not necessarily satisfying k(t, t) = 1). Using the same method as in the above

section for deriving equation (4.6) and (4.8) , we derive the following formulas to

compute c1 and Cj for j = 2, ..., N respectively,

1901)
g(cl) = ,

a(r)k(t11t1)+ A1,0

 

where



and

t1 T

Ai,j3=/0 f0 k(ti+p,s+tj)d17r(p)ds,

fori=1,...,N—1;j=0,...,N—2. And

2 +1 — a(T)k(tz', ti)9’(ci)

 

fori=1,2,...,N-1,

4.3 Numerical Results

For all numerical examples in this thesis, we used Matlab to evaluate the collocation-

based discretization over the space of piecewise constant functions (defined on a uni-

form grid of N+1 points starting from 0 and ending at T). For simplicity, we used

Lebesgue measure, i.e.

[or 771(1)) (WW := for 771(1)) dp,

for m E C[0, r]. For the V-smoothing convolution examples, we defined the kernel to

be

tV_1

k(t) = (V——1)_!’

while for the 1-smoothing nonconvolution case, we used as an example

k(t, s) = ts +1.

Remark 4.3.1. Notice that Lebesgue measure is a positive Borel measure that satisfies

assumptions (H1)—(H3) forz/ S 3 [6]. Itfails assumption (H2) fOT‘V = 4 [6] and it has

been shown in [3] that there exists no family of positive Borel measures that satisfies
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(H2) for the case V Z 5. Therefore, by this choice of measure, we will only consider

V-smoothing problems for 1/ S 3. However, it is worth noting that it does not mean

that our method only applies to u-smoothing problems for V S 3. In order to use our

method for higher u-smoothing problems, an appropriate signed Borel measure needs

to be picked, for example, see Lemma 2.1.1 and Lemma 2.1.2 for the construction of

such measures. Also, we want to point out that the above choices of kernel k are only

for the purpose of simplicity. There are infinite number of choices for the kernel k

available.

Using Lebesgue measure, we have

— 7‘ p(p_3)l/—1 _rV-l-l

a(r)-fol) (1)—1)! d3dp_(u+1)!’

for V = 1, 2, 3 for the convolution examples. And

r r2

‘ = d :—

a(7) for) p 2.

for the nonconvolution examples.

Further, we used the approximation

Rr

/ m(p)dpzAt Z m(tj_1),

SO

7 R

M.) = 15(t.+p)dp=At Z 1%... -_1).
0 J

 

i=1

For the convolution examples,

1 1 1 1 +1
A = [t- V+ —tV+ —t V+ t'f ]7 (u+1)' (34'7“) J (]_1+T) +3—
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for j = 1, 2, , N - 1, and for the nonconvolution examples,

2 i 2

A11: (t,r+—2—)—2-+ (atj +1)r+tj-2— t1)

fori=1, ..., N-1;j=0, ...,N—2.

We selected our true solution 11 ahead of time, then generated the data function

f by f(—t)- f0k((ts,)g(u(s)) ds for t E [0, T]. We then added random uniform noise

to f at discrete values of f(t) for t = ti) where i = 1, 2, ..., N, to generate noisy

data f6. We let 6 to represent the relative error. In each of the examples, we show

the recovered solution with regularization using our method against the true solution

11. In all pictures below, the dashed line represents the true solution a and the

solid line expresses the approximate solution computed according to our method.

Example 1— Example 6 are for convolution kernels, while Example 7— Example 8 are

for nonconvolution kernels.

Example 1. In this example, we consider a 1-smoothing kernel k(t) = 1 with true

solution

1 + c032t cosZt > 0,

aft) = 0 cos2t = 0,

—1 + c0321. cos2t < 0,

for t E [0,10]. And we choose our nonlinear function g to be g(u) = u + u3. Below

are three pictures corresponding to three relative errors. See Figures 4.1—4.3. See

[18] for a comparison of local regularization to Lavrentiev regularization 0n the same

example.
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Figure 4.1. Example 1 (a 1-smoothing kernel): solution with regularization, 6 = 10%,

N = 1000, R = 45.
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Figure 4.2. Example 1, continued: solution with regularization, 6 = 5%, N = 1000,

R235.
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Figure 4.3. Example 1, continued: solution with regularization, 6 = 1%, N = 1000,

R=20.

Example 2. In this example, we consider a 3-smoothing kernel k(t) = 0.5t2, with

the true solution 11 = 8(t — .4)2 + 1, t 6 [0,1], and g(u) = u3. Compare to the same

example handled by solving a nonlinear equation for every 2', i = 1, ..., N, in [11].

See Figures 4.4—4.7.
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Figure 4.4. Example 2 (a 3—smoothing kernel): solution with regularization, 6 = 5%,

N=60,R=20.
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Figure 4.5. Example 2, continued, solution with regularization, 6 = 1%, N

R = 11.
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Figure 4.6. Example 2, continued, solution with regularization, 6 = 0.1%, N = 60,

R = 7.

64



4.5 -

3.5 - ."

 

Figure 4.7. Example 2, continued, solution with regularization, 6 = 0%, N = 60,

R = 3.

Example 3. In this example, we still consider the kernel k(t) = 0.5t2, and function

g(u) = u3 with discontinuous true solution.

0.9 1 .
——-—(0.3)1/2t2 1f ost<0.3,

a(t)= t+1.2 if 0.3gz.<0.6,

' 15 81
__ _ 'f . <t< .l 4t+20 1 06_ _1

See Figures 4.8—4.10.
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Figure 4.8. Example 3, (a 3-smoothing kernel): solution with regularization, 6 = 1%,

N = 100, R =16.
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Figure 4.9. Example 3, continued, solution with regularization, (5 = 0.3%, N = 100,

R=12.
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Figure 4.10. Example 3, continued, solution with regularization, 6 = 0%, N = 100,

R = 4.

Example 4. We consider a 1-smoothing kernel k(t) = 1 and the same nonlinear

function g(u) = u3 as in the above example. The true solution is a periodic function

u(t) = sin(2t) + 2, for t 6 [0,10].

Remark 4.3.2. Notice that this true solution it is similar to the true solution a as in

Example 1 with the same kernel k(t) = 1 fort 6 [0,10]. However, this true solution

is hard to recover and it is due to the fact that the nonlinear function g in Example I

guarantees that |g’(u(t))| 2 1 > 0 no matter what u(t) is fort 6 [0,10], while in

Example 4 if u gets close to the t-axis due to measurement error, then g’ gets close to

0. Therefore, in Example 4, really small errors are needed in order to keep 9’ bounded

away from 0.

See Figures 4. 1 1—4. 13.
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Figure 4.11. Example 4 (a 1-smoothing kernel): solution

 
 

with regularization, 6 =

0.05%, N = 200, R = 11.
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Figure 4.12. Example 4, continued, solution with regularization, 6 = 0.005%, N =

200, R = 7.
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Figure 4.13. Example 4, continued, solution with regularization, 6 = 0%, N = 200,

R = 2.

Example 5. We consider a 2-smoothing kernel k(t) = t and the same nonlinear

function g(u) = u3 as in the above example. The true solution is a(t) = sin(2t) + 2,

for t E [0, 10]. See Figures 4.14—4.16.
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Figure 4.14. Example 5 (2-smoothing kernel): solution with regularization, 6 =

0.005%, N = 200, R = 27.
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Figure 4.15. Example 5, continued: solution with regularization, 6 = 0.0005%, N =

200, R = 21.
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Figure 4.16. Example 5, continued, solution with regularization, 6 = 0%, N = 200,

R = 3.

Example 6. We consider a 3-smoothing kernel k(t) = 0.5t2 and the same nonlinear

function g(u) = u3 as in the above example. The true solution is a(t) = sin(2t) + 2,

for t 6 [0,10]. See Figures 4.17—4.19.
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Figure 4.17. Example 6 (3-smoothing kernel): solution with regularization, 6 =

0.001%, N = 200, R = 42.
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Figure 4.18. Example 6 (3—smoothing kernel): solution with regularization, 6 =

0.0001%, N = 200, R = 35.
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Figure 4.19. Example 6 (3—smoothing kernel): solution with regularization, 6 = 0%,

N = 200, R = 4.

Example 7. We consider the 1-smoothing nonconvolution kernel k(t, s) = is + 1,

and g(u) = u3 with true solution

1/0.151, 0 g t < 0.15,

-—10/3t+1.5, 0.15 g t < 0.3,

5(1) = 0.5, 0.3 g t < 0.5,

7.5t — 3.25, 0.5 g t < 0.7,

-—20(t — 0.8), 0.7 g t g 1.

See Figures 4.20—4.22.
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Figure 4.20. Example 7 (l-smoothing nonconvolution kernel): solution with regular-

ization, 6 = 5%, N = 100, R = 7.
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Figure 4.21. Example 7, continued: solution with regularization, 6 = 1%, N = 100,

R = 5.
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Figure 4.22. Example 7, continued, solution with regularization, 6 = 0%, N = 100,

R = 2.

Example 8. We consider the same 1-smoothing nonconvolution kernel k(t,s) =

ts + 1, as in the above example with continuous true solution a(t) = —3t + 5, for

t 6 [0,1], and g(u) = e“. See Figures 4.23—4.26.

75



5.5 F

4.5 r

35 " \

2.5 .

 

Figure 4.23. Example 8 (l-smoothing nonconvolution kernel): solution with regular-

ization, 6 = 5%, N = 100, R = 65.

Figure 4.24.

R = 53.
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Example 8, continued, solution
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Figure 4.25. Example 8 continued: solution with regularization, 6 = 0.1%, N = 100,

R = 25.
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Figure 4.26. Example 8, continued, solution with regularization, 6 = 0%, N = 100,

R = 2.
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