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ABSTRACT

EXPLORING AND EXPLOITING RESONANCE IN
COUPLED AND/OR NONLINEAR
MICROELECTROMECHANICAL OSCILLATORS

By
Jeffrey F. Rhoads

Mass sensors utilizing resonant microelectromechanical systems (MEMS) have re-
cently garnered significant interest from the engineering research community. While
motivations vary, this interest is generally attributed to the fact that resonant mi-
crosensors offer the potential for increased mass sensitivity, in addition to all of
the benefits typically attendant to microelectromechanical devices, namely, minimal
power consumption, small size, seamless integration with existing integrated circuit
technologies, and comparatively low cost. Pertinent to the present study is the fact
that the majority of resonant microsensors utilize linear resonance structures. While
this approach offers unquestionable utility, because most uncoupled, linear microsen-
sors feature a single dominant degree-of-freedom and a single functionalized surface,
these devices are generally capable of detecting only a single analyte. Likewise, since
Lorentzian resonance structures are employed, sensor metrics are often constrained
by the devices’ scale and difficult to control independently.

The present study seeks to overcome the aforementioned limitations by examin-
ing the use of non-traditional microresonator architectures in resonant mass sensing
applications. Specifically, the work considers the design, modeling, analysis, and im-
plementation of (i) single input - single output (SISO), multi-analyte sensors based
on arrays of coupled microbeam oscillators, (ii) electrostatically-actuated microbeams
utilizing purely-parametric excitations, and (iii) resonant microcantilevers utilizing

magnetomotive transduction. Each of these systems is believed to be capable of



rendering simpler mass sensing systems and/or sensors with improved metrics.

The first portion of the present study considers the design and development of
a SISO, resonant mass sensor capable of detecting multiple target analytes. This
device, much like its traditional counterparts, employs linear resonance shifts to in-
dicate a detection event. Here, however, a coupled resonator architecture is used, in
conjunction with mode localization, to yield a comparatively-simpler, multi-analyte
sensor. While the present work details the sensor’s development from conception to
testing, particular emphasis is place on system modeling, analysis, and design.

The second portion of the work examines the use of electrostatically-actuated
microbeam systems with purely-parametric excitations. These devices, which utilize
symmetric electrostatic actuation, are of direct interest here, because they, unlike
their traditional variable-gap counterparts, feature a number of desirable frequency
response characteristics, including nearly-ideal stopband rejection, in addition to high
noise robustness and high mass sensitivity. In this investigation, particular emphasis
is placed on system modeling, nonlinear analysis, and device design.

The final portion of this dissertation focuses on resonant microcantilevers that uti-
lize electromagnetic actuation and sensing, or so-called magnetomotive transduction.
These devices have recently garnered increasing interest due to their scalability and
‘self-sensing’ capabilities, both of which are highly desirable in resonant mass sensing
applications. The first part of this investigation details the modeling, analysis, and
predictive design of a representative nonlinear device. This effort is intended to serve
as a precursor to the development of self-sensing, nonlinear resonant mass sensors.
The latter portion of the investigation examines (analytically and experimentally) the
implementation of parametric amplification in a linear, electromagnetically-actuated
microbeam system. This low-noise resonance amplification technique should facilitate

the development of self-sensing, linear mass sensors.
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CHAPTER 1

Introduction

Since the advent of the first electromechanical resonant gate transistor in mid-1965,
interest in resonant microelectromechanical systems (MEMS) has steadily increased
[1-3]. Though the devices still have not fully met early industrial expectations, re-
search advances over the past twenty years have allowed resonant microsystems to
emerge as viable alternatives to conventional electrical and mechanical resonators,
such as those based on integrated RLC circuits or vibrating quartz crystals, and,
ultimately, to become integral components in a number of emergent technologies,
including high-frequency signal filters [4-8], highly-sensitive chemical and biological
sensors [9-32], tactical-grade inertial sensors [33-39], and atomic force microscopes
(AFMs) [40-43]. While this wide applicability has undoubtedly generated some tech-
nical interest, the principal appeal of microresonators stems from the numerous ad-
vantages inherent to MEMS, namely, in comparison to their macroscale counterparts
they consume minimal power, occupy minimal space, are highly integrable with ex-
isting integrated circuit (IC) technologies, and, when bulk fabricated, can be realized
at comparatively low cost. Furthermore, these systems can be designed to feature
inherent nonlinearities and be widely tunable, both of which are highly desirable in
the context of the present study.

To date, the vast majority of research related to microresonators has focused on

isolated, single-degree-of-freedom (SDOF) oscillators that utilize a linear frequency



response structure. While these oscillators (described in greater detail in Section 1.1)
are well suited for applications such as radio-frequency (RF) signal filtering and mass
detection, they offer comparatively little flexibility (in both design and operation)
and are generally well understood by the MEMS research community. Accordingly,
the present work focuses on less traditional resonator implementations, namely those
based on coupled oscillators, oscillators with nonlinear frequency response structures,
and/or oscillators that are parametrically excited. These systems, with careful de-
sign, are believed to be capable of yielding performance metrics superior to their more
traditional counterparts, and could potentially supplant their directly-excited, linear
brethren in the near future. It is important to note that while the systems described
herein are believed to be novel, the present investigation of coupled and/or nonlinear
microelectromechanical (MEM) devices is by no means singular in nature. Accord-
ingly, Sections 1.2-1.4 briefly outline prior research in each of the aforementioned
areas (nonlinear microresonators, coupled microresonators, etc.). Following this re-
view, Section 1.5 presents information specific to resonant mass sensing, the proposed
application for the systems detailed herein. The chapter concludes in Section 1.6 with

a brief preview of the work’s subsequent chapters.

1.1 Linear Microresonators

Though, as noted above, investigations of microelectromechanical resonators began
as early as the mid-1960s, research in the area remained largely stagnant until the
late-1980s when electrostatically-actuated resonant microbridges and comb-driven mi-
croresonators [44-48], as well as dynamic-mode AFMs [40], first emerged. These sys-
tems triggered a bevy of research on resonant microsystems with linear and nonlinear
frequency response structures, respectively, that continues to this day.

Early investigations of linear microresonators primarily focused on electrostat-

ically actuated and sensed devices, specifically those utilizing interdigitated comb



drives or parallel-plate capacitive structures [38,44-49]. As microfabrication technolo-
gies matured, however, a multitude of linear devices based on alternative transduction
mechanisms emerged, including systems utilizing piezoelectric [4,50, 51], piezoresis-
tive (38,39, 52], electromagnetic [6,53,54], thermal [55-57], and optical [58,59] ac-
tuation and/or sensing elements. Concurrent with this technological maturation
was a growth in application. Most notably, systems originally proposed for RF sig-
nal filtering and resonant mass sensing applications were adapted for use in inertial
sensing, pressure sensing, radiation sensing, magnetic field sensing, cooling (micro-
fans), resonant pumping (diaphragm pumps), and optical scanning systems (see Ref-
erences [38, 39,49, 60-63| for a general overview of these systems).

The majority of modern microresonators, much like their earlier counterparts,
utilize harmonically-forced, linear resonators, which exhibit a Lorentzian frequency
response structure (see, for example, Figure 1.1). These devices are highly valued by
the MEMS community because they can be realized at small scales (resonators with
feature sizes on the order of a few nanometers have been produced - see, for example,
References [53,64-66]) using comparatively simple geometries (typically prismatic
beams or thin plates) and have a frequency response structure which is dependent
on only three distinct parameters: the resonator’s natural frequency (wn), quality
factor (@), and normalized excitation amplitude. Though this simplistic approach
possesses unquestionable utility (the design, fabrication, and integration of linear
microresonators is projected to become a multi-billion dollar industry by the end
of the decade), the lack of flexibility attendant to these systems (due to the small
number of free design parameters and rigid Lorentzian frequency response structure)

constrains their ultimate potential.



1.2 Nonlinear Microresonators

Nonlinearities in resonant microsystems generally arise from three distinct sources:
large structural deformations, displacement-dependent excitations, and tip/sample
interaction potentials, such as the Lennard-Jones potential, which arise in atomic force
microscopy [43]. As tip/sample interactions have received an abundance of attention
in both the physics and engineering communities, other sources of nonlinearity are
emphasized here.

Despite the fact that many MEMS devices feature inherent nonlinearities, nonlin-
ear frequency response structures traditionally have been avoided within the MEMS
research community. In fact, nonlinear microresonators have received meaningful at-
tention only within the past five to ten years. Early on, investigations of nonlinear
microresonators emphasized forced harmonic oscillators, typically planar comb-driven
devices, with nonlinearities arising from large elastic deformations. These devices ex-
hibited classical Duffing frequency response structures, which offered a number of at-
tendant benefits (e.g., lower sensitivity to damping), but were deemed to be inferior to
their Lorentzian counterparts for most applications [67]. Nonlinear, electrostatically-
actuated, variable-gap structures drew slightly more attention from the MEMS com-
munity, due to their highly tunable nature [68-73]; but, only recently, with the release
of a multitude of studies focusing on the nonlinear response of microsystems undergo-
ing large elastic deformations in the presence of multi-physics excitations, have nonlin-
ear microresonators garnered serious attention (see, for example, References [74-77]).
While motivations vary, this increase in attention is generally attributed to the broad
conclusion that while microresonators based on nonlinear frequency response struc-
tures are more difficult to design and analyze than their linear counterparts, they
offer a degree of tunability unattainable with a linear device and have the potential
to exhibit superior performance metrics. Furthermore, an appreciable understanding

of nonlinearity is essential to the future development of functional nanoresonators, as



these devices operate in the presence of an elevated noise floor and lowered nonlinear

‘ceiling’ (i.e. they have a severely limited linear dynamic range) [70, 78].

1.3 Coupled Microresonators

Coupled microresonators have received significant attention in the MEMS community
since the early-1990s, but primarily within the context of RF signal filtering. Nguyen,
for example, showed as early as the mid-1990s that microelectromechanical (MEM)
analogs of RLC ladder filters could be constructed using finite-length chains of mi-
croresonators mechanically coupled in a nearest-neighbor configuration [5, 8, 79-82].
These systems were found to exhibit high-frequency, multi-resonance passbands with
effective quality factors orders-of-magnitude larger than those of their purely-electrical
or mechanical predecessors. Subsequent studies have expanded upon Nguyen’s work
by incorporating alternative coupling architectures, such as cyclic chains [83], as well
as alternative coupling mechanisms, including gap-dependent electrostatic coupling
[84-87].

In 2003, the effects of frequency mistuning and nonlinearity in coupled resonator
systems were systematically analyzed for the first time at the microscale. These
studies revealed that mistuning and/or nonlinear coupling could lead to the spa-
tial localization of energy (mechanical manifestations of Anderson localization) or
so-called localized modes [88-96]. Though these early investigations largely ignored
practical application, in late 2005, Speltzer, et al. demonstrated that spatially local-
ized modes can be advantageous in resonant mass sensing [97,98]. The first portion
of the present work, namely Chapter 2, focuses on a related investigation, which was
completed concurrent with this study.

Before proceeding, it is prudent to note that other collective behaviors have re-
cently been identified and/or investigated in coupled microelectromechanical systems.

For example, Cross, et al. showed in 2004 that coupled, nonlinear microelectrome-



chanical oscillators, under certain conditions, can synchronize [99,100]. This col-
lective behavior, as the authors note, offers one potential method of overcoming
process-induced variations in coupled oscillator systems. In other work, Hoppen-
steadt and Izhikevich noted that certain collective behaviors predicted to occur in
coupled microresonator systems have the potential to serve as memory elements in
next-generation computing systems [101]. Though neither of these research directions
are directly considered herein, both should be considered plausible extensions of the

present work.

1.4 Parametrically-Excited Microresonators and Parametric

Amplification

Though they could be categorized with their time-invariant counterparts detailed
above, parametrically-excited microresonators, or microresonators with periodic,
time-varying coefficients, are reviewed independently here due to their prominence
in the latter portions of the present work. Parametric resonance in MEMS was first
reported by Turner, et al. in the late 1990s [102]. Since this initial investigation, para-
metric resonance has been identified and, ultimately, exploited in a wide variety of
microelectromechanical (MEM) resonators, including electrostatically-actuated tor-
sional, planar shuttle mass, and microbeam resonators [87,103-118], optically-excited
disk resonators [119,120], and piezoelectrically-excited microbeams [121]. Likewise,
such devices have been proposed for use in a wide variety of applications, includ-
ing resonant mass sensing, RF signal filtering/frequency-selective switching, scanning
probe microscopy, resonant microscanning, and inertial sensing (microgyroscopes).
Generally speaking, parametric resonance in MEMS is coveted due to the
nearly-ideal stopband rejection (non-resonant, noise floor response) attendant to a

parametrically-excited oscillator’s frequency response (see Figure 1.2 for a represen-



tative nonlinear response). However, recent work has indicated that parametrically-
excited systems are also less sensitive to damping and more robust to additive noise
than their time-invariant counterparts [108,111,122], feature an extremely sharp re-
sponse roll-off [106], and offer a degree of tunability that is unmatched in MEMS [106,
107,116]. As each of these benefits, as well as the fundamentals of parametrically-
excited systems, in general, are discussed at great length in prior work by the author,
additional details are omitted here. Those seeking additional background are referred
to References [107,123-125).

While parametric excitation, in and of itself, is of interest in the present work, a re-
lated phenomenon of equal interest is mechanical-domain parametric amplification, or
the process of amplifying mechanical vibration (namely, a given system’s resonance)
with a time-varying pump. While this nearly-noise-free amplification approach has
been utilized for nearly a century in electrical and optical systems [126-128], the
technique wasn’t introduced into the mechanical domain until 1991, when Rugar
and Griitter showed that significant resonance amplification could be realized in a
piezoelectrically-base-excited cantilever by adding an electrostatic pump at twice the
beam’s natural frequency [129]. Though the study initially received little attention,
the explosion of MEMS research in the 1990s resulted in a number of subsequent
investigations, which showed that gains of more than 20 dB can be realized, via para-
metric amplification, in a wide variety of microelectromechanical systems, including
torsional microresonators [103, 130], electric force microscopes [131], optically-excited
micromechanical oscillators [132], micro ring gyroscopes [133], MEMS diaphragms
[134], coupled microresonators [135], and microcantilevers [136-139]. Similar work
has recently demonstrated that parametric amplification can be realized in macroscale
mechanical systems, as well [140, 141]. As detailed below, Chapter 6 demonstrates
the use of parametric amplification in an emerging class of microresonators, which

utilize magnetomotive transduction principles.



1.5 Resonant Mass Sensing

While the microresonator systems described herein can be utilized in a wide range of
applications, the emphasis in the present work is on resonant mass sensing. Though
perspectives vary, the first application of microresonators in this context is generally
credited to either Thundat, et al.,, who in the early-1990s inadvertently discovered
that the natural frequency of a microcantilever changes with varying humidity [17,
142,143], or Howe and Muller, who reported an integrated microbridge vapor sensor in
1986. Since these initial reports, resonant microsensors have received an appreciable
amount of attention in the chemistry, physics, and engineering communities and have
been proposed for use in a wide variety of chemical and biological sensing applications,
including those relating to public health and safety (e.g., in chemical detectors capable
of monitoring the environment for compounds such as mercury), medical research and
diagnostics (e.g., in detectors capable of identifying the presence of a certain protein
or strand of DNA), and national security and defense (e.g., in sensors capable of
detecting the presence of chemical and biological agents or explosive compounds) [11-
15,18,20-27,29-32,144-152]. While resonant microsensors offer all of the inherent
advantages of MEMS, they also offer the potential for higher mass sensitivity (a
quantification of the smallest change in mass that can be measured with a given
sensor) [11,17,20]. Of particular note is recent work by Yang, et al, which reported
the detection of zeptogram-scale mass particles with nanoscale beam resonators [152].
This performance dwarfs that of most, if not all, conventional competitors.
Pertinent to the present work is the fact that the vast majority of modern reso-
nant microsensors operate on a resonance tracking principle (the term is used loosely
here to describe the subsequently-explained phenomenon). That is, the resonant
frequency of the sensor, typically comprised of an isolated, single-degree-of-freedom
(SDOF) oscillator, is determined prior to implementation, and then during the course

of operation the location of this resonance is tracked (see Figure 1.1). As shifts in



the resonant frequency are attributable to mass or stiffness changes in the oscillator,
caused by absorption, desorption, local stress stiffening, or a similar chemomechanical
process, these shifts can, in turn, be used to identify the presence of a target analyte
[11,153,154]. Unfortunately, since existing microsensors typically feature a single
dominant degree-of-freedom and a very limited number of analytes can be uniquely
detected with a single functionalized surface, sensors utilizing this approach are gen-
erally capable of detecting only a lone analyte or a class of closely related analytes.
Arrays of uncoupled linear oscillators, each individually functionalized for the detec-
tion of a specific analyte, have been implemented to overcome this limitation, but
the greater hardware and signal processing requirements associated with such sensors
lead to added expense and complexity [11]. As detailed below, Chapter 2 of this work
introduces a new single input - single output, coupled-array architecture, which facil-
itates multi-analyte detection, while avoiding most, if not all, of the aforementioned
limitations.

While the majority of research related to resonant mass sensors has focused on
linear resonator implementations, recent work has indicated that mass sensors based
on nonlinear frequency response structures may be capable of exhibiting higher sen-
sitivities [111,155-157]. These nonlinear devices operate much like their linear coun-
terparts in that they utilize resonance shifts induced by a chemomechanical process
(itself initiated by the presence of a target analyte). Here, however, the system’s
bifurcation structure is actively exploited (see schematic in Figure 1.2). Specifically,
a given device is first driven slightly below an identified subcritical bifurcation point.
When a small amount of mass interacts with the resonator, the system transitions
across the subcritical instability, moving from a stable no-motion state to an unstable
no-motion state (in the case of a nonlinear parametrically-excited resonator). This
transition results in a larger response amplitude (a by-product of a jump bifurcation),

which can be directly correlated to an analyte detection event. While this approach
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Figure 1.1. Frequency response plots, (a) amplitude and (b) phase, for a linear reso-
nant mass sensor. Note that the induced resonance shift (approximately 20%) has been

exaggerated for illustrative purposes.
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Figure 1.2. A representative frequency response plot (resonator amplitude versus nor-
malized excitation frequency) for a nonlinear mass sensor based on parametric resonance
(solid lines indicate a stable steady-state response, dashed lines an unstable response). Note
that a small shift in the system’s natural frequency drives the system across the subcritical
pitchfork bifurcation causing a dramatic increase in the device’s response amplitude. This
increase can be directly correlated to an analyte detection event.

still utilizes resonance shifts in the course of sensing, because the detection event is di-
rectly correlated to a jump in response amplitude, in addition to a frequency shift, the
need for attendant frequency tracking/identification hardware, such as phase locked
loops, can be (at least partially) negated. As such, the approach potentially allows
for smaller, reduced power, chemical and biological detectors with higher sensitivi-
ties. As detailed below, Chapters 3 and 5 of the current work examine the behavior of
two distinct classes of microresonators that are believed to have promise as nonlinear

resonant mass Sensors.

1.6 Dissertation Overview

As detailed above, the present work focuses on non-traditional microresonator im-
plementations, specifically those based on nonlinear, coupled, and/or parametrically-
excited oscillators, which are believed to have practical utility in resonant mass sens-
ing applications. Given the breadth of this research topic, particular emphasis is

placed on three distinct systems: (i) novel, single input - single output, multi-analyte
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sensors based on arrays of linear oscillators coupled in ‘master-slave’ configurations,
(ii) electrostatically-actuated microbeams utilizing purely-parametric excitations, and
(iii) resonant microcantilevers utilizing magnetomotive transduction. Completed re-

search related to each of these respective systems is briefly previewed below.

1.6.1 A Single Input - Single Output, Multi-Analyte Sensor

As stated in Section 1.5, the majority of chemical and biological sensors based on
resonant microstructures utilize isolated microresonators (capable of detecting a sin-
gle analyte) or dynamically-uncoupled resonator arrays. While the latter systems
facilitate the detection of multiple analytes with a single sensor, they are typically
multiple input - multiple output (MIMO) devices, and, thus, poorly suited for sys-
tem integration and, ultimately, analyte assessment. Chapter 2 of the present work
introduces a new class of single input - single output (SISO) resonant mass sensor
that is capable of simultaneously detecting multiple analytes. These sensors utilize
a coupled-resonator architecture, namely a ‘master-slave’ resonator configuration, in
conjunction with mode localization and resonance tracking (detailed above) to facil-
itate detection.

Chapter 2 of the present work outlines the results of a joint analytical and exper-
imental investigation of the aforementioned sensor. Following a brief introduction,
the work details the development of a simple, linear system model that is capable of
capturing the behavior of a representative device, and then proceeds with the analysis
of a desirable form of the system’s frequency response. The chapter then takes an
experimental turn with the examination of a series of experimental results obtained
from a first-generation sensor design. Pertinent system metrics, as well as relevant
design and integration issues, are subsequently discussed, and the chapter concludes

with an outline of ongoing research.
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1.6.2 Electrostatically-Actuated Microbeam Resonators with Purely-

Parametric Excitations

Though, as detailed above, the majority of electrostatically-actuated resonant mi-
crobeam systems reported to date have been based on linear resonance structures,
a number of recent studies have indicated that the performance metrics associated
with such devices can be dramatically improved by exploiting inherent system non-
linearities [68,71,104,118,158-160]. While a number of distinct mechanisms in these
systems can lead to nonlinearity, some of the most interesting nonlinear effects are
those generated by variable-gap electrostatic forces, which, due to their position-
dependent nature, generally lead to some combination of direct and/or nonlinear
parametric excitation [104, 160]. In a typical microbeam design these excitations arise
simultaneously, which renders a predictable response, but eliminates (or reduces) the
inherent benefits associated with purely-parametric excitations. In particular, known
benefits, such as nearly-ideal stopband attenuation, comparatively higher sensitivity,
and high noise robustness, are believed to be deteriorated (see, for example, Refer-
ences [106, 161]). Chapter 3 investigates a modified microbeam resonator design that
is intended to recover the aforementioned benefits through the implementation of a
novel electrode configuration. In particular, the chapter shows that through the use
of symmetric electrostatic actuation (as realized through the exploitation of a three
plate capacitor design) direct excitation (and certain parametric excitation) effects
which hinder device performance can be eliminated or at least reduced to largely
insignificant levels. This results in nonlinear microbeam systems that are well suited
for mass sensing.

Chapter 3 of the present work details the modeling and analysis of a representa-
tive nonlinear microbeam system with symmetric electrostatic actuation. The chapter
begins with the development of a distributed-parameter system model that is capa-

ble of adequately capturing the microsystem’s dynamics. This model is reduced to a
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comparatively-simpler, lumped-mass model using modal projection, and subsequently
analyzed using standard perturbation techniques. The chapter proceeds with a dis-
cussion of various design and implementation issues, and concludes with a brief look

at resonant mass sensing.

1.6.3 Electromagnetically-Actuated Microbeam Resonators

While the first two chapters of the present work focus on electrostatically-actuated mi-
crosystems, Chapters 4-6 focus on microresonators that utilize electromagnetic actua-
tion and sensing, or so-called magnetomotive transduction. Though these microscale
devices were reported in literature as early as 1994 [162,163], electromagnetically-
actuated and sensed devices have garnered increasing interest in recent years, due
to their scalability (magnetomotive transduction is easily realized at the nanoscale)
and ‘self-sensing’ capabilities. Collectively, these traits have spurred the rapid im-
plementation of electromagnetically-actuated and sensed resonators in a number of
engineering applications [6, 53, 54, 164-170].

The present work focuses on electromagnetically-actuated (EMA) microresonators
that are implementable as linear or nonlinear resonant mass sensors, in isolated or
coupled-array device configurations. Specifically, the work emphasizes resonators sim-
ilar to those previously introduced in References [157,171] and shown in Figure 1.3,
which consist of a silicon microcantilever actuated electromagnetically using a Lorenz
force (which is generated by the interaction between an external, chip-scale permanent
magnet and an integrated current loop) and sensed using an induced electromotive
force (emf) (which results from the movement of the integrated current loop through
the magnetic field). Particular architectures of interest include isolated, EMA mi-
crocantilevers undergoing large deflections (Chapter 5) and isolated, parametrically-
amplified, EMA microcantilevers (Chapter 6).

Chapter 4, the first chapter in the work concerned solely with electromagnetically-
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Figure 1.3. Representative electromagnetically-actuated microcantilevers. Note that the
microbeams incorporate two independent current loops — one for sensing and another for
actuation (Note that Figure 1.3b is from Reference [171]).
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actuated microbeams, focuses on system modeling. A spatiotemporal nonlinear sys-
tem model capable of accounting for large elastic deformations in the presence of
multi-directional Lorentz force excitations is derived, reduced to a comparatively-
simpler lumped-mass model through modal projection, and, ultimately, scaled and
nondimensionalized for analytical purposes. Using the results of Chapter 4, the work
continues in Chapter 5 with an examination of a representative microbeam system’s
nonlinear behavior. Given that previously-obtained experimental data indicated the
need for a higher-order nonlinear model than that previously described by the au-
thor in References [106,107,124], a fifth-order nonlinear model is used as the basis
of study. This model is systematically analyzed using the method of averaging, and
various frequency response structures, which are pertinent to the stated application,
are examined. Chapter 6 deviates from nonlinear analysis with an investigation of
parametric amplification. Though this amplification technique, as detailed above,
was previously implemented in a number of resonant microsystems, it proves to be
of particular use in electromagnetically-actuated systems, due to the inherent limi-
tations on drive current that exist in such systems, due to material breakdown and

device burnout thresholds.
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CHAPTER 2

A Single Input - Single Output,
Multi-Analyte Sensor

As noted in the introduction, this chapter of the work details a novel chemical and/or
biological sensor design that allows for the detection of multiple analytes using a sin-
gle sensor input and a single sensor output. Unlike their more conventional, isolated
counterparts, these devices utilize a coupled-system architecture in which a number
of frequency-mistuned microbeam resonators, each individually functionalized for the
detection of a specific analyte, are attached to a common shuttle mass (see Figure 2.1),
which, in turn, is used for both actuation and sensing (measurement readout) pur-
poses. Providing sufficient vibration localization in the set of mistuned oscillators,
this innovative architecture allows for frequency shifts in any, or all, of the individual
microbeams to be measured using solely the response of the common shuttle mass.
Accordingly, a single, single input - single output (SISO) device proves sufficient for
the detection of multiple target analytes.

This chapter specifically details an analytical and experimental investigation of
the SISO microsensor design described above (Note that the investigation was pre-
viously reported in References [172-174]). The chapter begins with a brief overview
of the device’s topology, and then proceeds with the derivation of a representative

lumped-mass system model and an analysis of a desirable form of the sensor’s fre-
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Figure 2.1. A ing elect; i ph of a translational, SISO, multi-analyte sensor.
Key device features have been labeled for reference purposes as follows: the device’s shuttle
mass is labeled SM; the four individual microbeam oscillators are each labeled M; the
electrostatic comb drives are labeled CD; and each of the four folded beam flexures are
denoted with an S. Also note that the principal direction of motion is designated by the
included double-pointed arrow (From Reference [172]).

quency response. Experimental results, including those acquired from a simulated
mass detection event, are subsequently detailed, and the chapter concludes with a
brief examination of sensor metrics, a discussion of pertinent design and integration

issues, and a brief overview of ongoing and future work.

2.1 System Modeling

Though a variety of geometries can be developed based on the sensor topology de-
scribed herein, the translational design depicted in Figure 2.1 was selected for exam-
ination here due to its relative simplicity. As shown, this design consists of a single
shuttle mass (SM), which is suspended above the substrate by four folded beam flex-
ures in such a way that in-plane, unidirectional motion is dominant. Actuation is

provided electrostatically through one bank of interdigitated comb drives (CD), the
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Figure 2.2. A mass-spring-dashpot analog of the sensor topology depicted in Figure 2.1
(From References [172-174]). Note that the larger mass M represents the sensor’s shuttle
mass and the comparatively smaller masses m;, ma, etc. represent the microbeam oscilla-
tors.

second bank, though not presently utilized, can be used for sensing (measurement
readout). In final implementations, active sensing surfaces will be individually de-
posited on each of the four microbeam oscillators (M) (this number could easily be
expanded to facilitate the detection of a larger number of analytes), which are at-
tached to the common shuttle mass. It should be noted that each of these microbeams
deviate slightly in length to ensure ample separation of the coupled system’s resonant
frequencies, which is necessary to ensure sufficient localization.

Given the geometric complexity of the sensor design depicted in Figure 2.1, it
proves convenient for analysis to model the device using a simple lumped-mass analog,
such as that shown in Figure 2.2. Here the shuttle mass is represented by the larger
mass denoted M and the microbeams are represented by the comparatively smaller
masses designated mj, mg, etc., elasticity is captured by the linear spring elements
designated kj, (for the primary system) and kj, kg, etc. (for the microbeams), and
intrinsic and extrinsic dissipation (arising primarily from aerodynamic effects, but also

including material dissipation) are captured by the linear dashpot elements designated
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¢p (for the primary system) and cy, cp1, €2, Cp2, €tc. (for the microbeams). The net
electrostatic force, which is applied solely to the shuttle mass, is denoted by the forcing
term F(t). Though this topology is believed to be novel in the sensors community,
it is important to note that topologies akin to that presented here have been studied
in unrelated contexts, namely, broad-band noise control and vibration suppression
[175-177).

Using the lumped-mass model depicted in Figure 2.2, it can be shown that the

equations of motion governing the system depicted in Figure 2.1 are given by

Mi+) mi(E+ )+ )y (& + %) + e + kpz = F(t), (2.1)
i i
m; (£ + %) +cpi (F+ %) + iz + kizi =0,  i=1,...,N (2.2)

where z; is the relative displacement of the ith subsystem, given by
2, =Y, — X, i-——l,...,N, (2.3)

N specifies the number of microbeam subsystems (active sensing elements) attached
to the shuttle mass, and z and y; represent the absolute displacements of the shuttle
mass and ith subsystem, respectively. Providing ample device thickness (approxi-
mately 10 pym or larger) and minimal fringe field effects, the applied electrostatic

force F(t), which appears in Equation (2.1), can be approximated by

F(t) = %@, (2.4)

where ¢( represents the free space permittivity, n the total number of comb fingers
in the electrostatic comb banks, g the gap between adjacent comb fingers, and h
the device thickness. Given a harmonic voltage excitation with amplitude V4 and
frequency w, the resulting net force features both AC and DC components and takes

the form
_ eonhvz

F(t) = =5

(1 + cos2wt) = Fy (1 + cos2wt) . (2.5)
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The explicit appearance of the DC excitation can be resolved by redefining the dy-

namic variables z and z; by translation according to
T=z-T=z--— Z; = z;. (2.6)

Nondimensionalizing the resulting displacements by a characteristic length of the
system zq (e.g., the maximum allowable shuttle mass displacement, as limited by
the interdigitated comb drives — note that the selection of the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>