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ABSTRACT

IMPROVING REGIONAL CLIMATE MODELING IN EAST AFRICA
USING REMOTE SENSING PRODUCTS

By
Jianjun Ge

Accurate representation of the land surface in regional climate models is
becoming unprecedentedly crucial as numerous studies are now focused to
simulate the influences of human modification of the Earth’s surface on regional
and global climate. The unique advantages of remote sensing technique in
monitoring the land surface have been recognized for decades. The climate
modeling community, however, has yet to fully utilize this technique, especially
the recently developed remote sensing products which have been proven to be
more suitable for global change studies. The objectives of this study are to
improve the representation of the land surface and to investigate the impacts of

land cover classification accuracy on regional climate modeling in East Africa.

Several land cover datasets from different sources now exist in almost
any region of the world. A new statistical measure Q is developed to evaluate the
land cover classification specifically for the purpose of climate modeling. In terms
of this Q measure, Global Land Cover 2000 (GLC2000) is ranked the best

among four land cover datasets.

To better represent the land surface newly developed MODIS Leaf Area

Index (LAI) and Vegetation Fractional Cover (VFC) imageries are incorporated



directly in the Regional Atmospheric Modeling System (RAMS). The default land
cover dataset is updated by GLC2000 as well. The impact is examined by
comparing the model simulated land surface temperature (LST) and precipitation
with MODIS LST and precipitation from the Tropical Rainfall Measuring Mission
(TRMM) satellite. This study finds that the incorporation of MODIS LAl and VFC
greatly improves the spatial and temporal characteristics of LST. The

precipitation, however, is less sensitive to the improved land surface conditions.

The uncertainty originating from the land surface and its propagation need
to be examined to truly improve the representation of the land surface in climate
models. This study focuses on the land cover classification accuracy, which is
the first such investigation. This study finds that classification accuracy under
80% has significant impact on simulated precipitation, especially when the land
surface has a greater control of the overlying atmosphere. As the accuracy
worsens, the effect becomes much stronger. In remote sensing community, an
85% overall accuracy has been brought up as a guideline of classification quality
control. This study shows that this accuracy target can indeed satisfy the
requirement of climate modeling in the East Africa region. In reality, however, the
classification accuracy can be much lower as historically reconstructed and
future projected land cover datasets are extensively used in many climate

modeling studies.
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Chapter 1

Introduction
1.1 Climate modeling and the importance of land surface

Modern climate change is dominated by human influences, which are now
likely large enough to exceed the bounds of natural variability (IPCC, 2001). It is
believed that climate changes resulting from human impacts are slow to develop
and, therefore, may not become apparent until their effects have become
irreversibly advanced. At global scale, anthropogenic emissions of greenhouse
gases, such as CO; that results from the combustion of fossil fuels, change the
atmospheric composition and influence the natural flows of radiant energy. At
regional scale, human activities are transforming the land surface at an
accelerated pace, which is often more pronounced where people live, work, and
grow food. Deforestation in Amazonia (Hahmann and Dickinson, 1997) and
desertification in the Sahel (Xue, 1997) are two instances where evidence

suggests there is likely to be significant human influence on regional climate.

Over the past four decades, climate models have been employed as
primary tools to enhance understanding of past climate changes and to aid
prediction of future climates. In climate models, the behavior of the atmosphere is
described using a set of differential equations that describe external forcings to
the system and the response of the atmosphere to the forcing. Historically,

modeling of the atmospheric component of the climate system has received the



most attention. As the availability of computers has become greater and
computer storage capacity and speed of computation have increased, climate
models have increased in complexity. More efforts have been concentrated on
including four major components — atmosphere, oceans, sea ice and land
surface — and the interactions and feedbacks among them (McGuffie and

Henderson-Sellers, 2001; Washington and Parkingson, 2005).

The land surface is the lower boundary of the atmosphere and thus a key
component of climate models. It controls the partitioning of available energy at
the surface between sensible and latent heat, and it also controls the partitioning
of available water between evaporation and runoff. Lewis F. Richardson was the
father of today’s climate models. In the first description of a method for
constructing a weather forecasts numerical calculations Richardson recognized

the importance of the land surface (Richardson, 1922). He noted:

“The atmosphere and the upper layers of the soil or sea form together a
united system.

Leaves, when present, exert a paramount influence on the interchange of
moisture and heat. They absorb the sunshine and screen the soil
beneath. Being very freely exposed to the air they very rapidly
communicate the absorbed energy to the air, either by raising its
temperature or by evaporating water into it. A portion of rain, and the
greater part of dew, is caught on foliage and evaporated there without
ever reaching the soil. Leaves and stems exert a retarding friction on the

air.

These is increasing evidence from modeling studies that the influence of

the land surface on climate is significant and that changes in the land surface can



influence regional to global scale climate on time scales from days to millennia.
Studies have demonstrated the sensitivity of climate to land surface albedo
(Charney et al., 1977; Cunnington and Rowntree, 1986; Laval, 1986; Sud and
Fennessy, 1982; Lofgren, 1995). Recently, Betts (2000) shows that the positive
radiative forcing induced by decreases in albedo can offset the negative forcing
that is expected from carbon sequestration by afforestation. Studies have found a
change in global temperature and precipitation following a prescribed change in
leaf area index (LAI) (Chase et al., 1996). Precipitation patterns in the tropics are
altered substantially in a Global Circulation Model (GCM), where two 10-year
simulations were performed: one with the current global seasonally varying LAI
and one with the potential seasonally varying leaf area index (Nemani et al.,
1996). A new area of recognition in climate models is the role of plant roots. Zeng
et al. (1998) found, for example, that the root distribution influences the latent
heat flux over tropical land. Kleidon and Heimann (2000) concluded that in order
to realistically represent the tropical climate system deep-rooted vegetation must

be adequately represented.

Instead of focusing on a single parameter change, many studies examined
the climate change caused by land use/cover change (LUCC) (Chase et al.,
1996, 2000; Pielke et al., 1999; Betts, 2000; Zhao et al., 2001a,b; DeFries et al.,
2002; Taylor et al., 2002; Feddema et al., 2005), deforestation (Bonan et al.,

1992; Henderson-Sellers et al., 1993; Lean and Rowntree, 1997), and



desertification (Xue, 1997; Nicholson et al., 1998). All these studies have found

significant continent-scale changes in temperature, rainfall and other variables.

1.2. The role of remote sensing

Ever since Deardorff's (1978) pioneering work on parameterizations for
both soil and vegetation, land surface submodels within climate models have
evolved from quite simple treatments of the surface energy, moisture and
momentum exchanges to increasingly complex descriptions (Dickinson, 1991;
Sellers et al., 1997; Pitman, 2003; Yang, 2003). Also, our ability to sense
characteristics of the land surface remotely has improved dramatically, enabling

much better data to be input to the more sophisticated parameterizations.

The land surface in climate models is usually represented by a discrete
set of land cover types, each characterized by a suite of biophysical parameters
(e.g. LAI, vegetation fractional cover (VFC), albedo, root depth and roughness
length). Until the last decade, the land cover products used in most climate
models were initially compiled from maps, ground surveys, and various national
sources, which have inherent limitations (Mathews 1983, Olson et al. 1983,
Cihlar 2000). In the mid-1990s, global-scale land cover products generated from
remotely sensed images became available. The Global Land Cover
Characteristics Database (Loveland et al. 2000), generated from one year 1 km

Advanced Very High-Resolution Radiometer (AVHRR) data, have been widely



implemented in various major soil-vegetation-atmosphere transfer (SVAT)
schemes, such as the Biosphere-Atmosphere Transfer Scheme (BATS;
Dickinson et al. 1986), the Simple Biosphere Model (SiB and SiB2; Sellers et al.
1986, Sellers et al. 199643, b), the Land Ecosystem-Atmosphere Feedback Model
(LEAF; Lee 1992, Walko et al. 2000), and the National Center for Atmospheric
Research Land Surface Model (NCAR LSM; Bonan 1996, Oleson and Bonan,
2000)

For more accurate specification of landscape patterns, many climate
modeling studies have also attempted to use biophysical variables derived from
AVHRR imagery, particularly spatial and seasonal vegetation structure
information. For example, AVHRR normalized difference vegetation index (NDVI)
was used to determine the temporal variation of LAl and fraction of absorbed
photosynthetically active radiation (fPAR) in the revised Simple Biosphere Model
(SiB2) (Sellers et al. 1996a,b). Oleson and Bonan (2000) studied the effect of
plant functional type and LAl derived from AVHRR imagery on the simulation of
surface fluxes for boreal forest using the NCAR Land Surface Model and found a
substantial impact of spatial heterogeneity. LAl from AVHRR NDVI was
incorporated into the Regional Atmospheric Modeling System (RAMS) to
investigate the sensitivity of regional climate simulations to changes in vegetation

(Lu 2002).



For many years, terrestrial ecosystem monitoring at moderate spatial
resolutions suitable for climate studies, relied almost exclusively on AVHRR
imagery. However, reliance on AVHRR imagery with its associated spectral and
geometric constraints has limited the ability of the land research community to
develop the range of products needed for global change research (Cihlar 1997).
Now a new sensor, the Moderate Resolution Imaging Spectroradiometer
(MODIS), is providing a series of products of unparalleled quality and
sophistication for biophysical observation of the terrestrial environment. MODIS
is designed to satisfy the requirements of three different disciplines: atmosphere,
ocean and land, with spectral bands and spatial resolution selected to meet

different observational needs (Salomonson et al. 1989).

Standard products produced from MODIS imagery include LAl, fraction of
photosynthetically active absorbed radiation (fPAR), enhanced vegetation index
(EVI), land surface temperature (LST), net primary productivity (NPP), land
cover, albedo, etc (Justice et al. 2002). Initial results of validation have suggested
that there is good agreement between MODIS LAl product values and field
measurements as well as those scaled-up from very high spatial resolution
satellite data (Myneni et al. 2002). Through the BigFoot project (Running et al.
1999), the MODIS LAl algorithm has been assessed for distinct biomes over the
world, such as savannah and shrub in southern Africa (Tian et al. 2002),

broadleaf forest in eastern United States (Shabanov et al. 2003), an agricultural



and broadleaf forest site in North America (Cohen et al. 2003), and the tundra of

Alaska (Verbyla 2005).

The enhanced vegetation index (EVI) was developed to optimize the
vegetation signal to improve vegetation monitoring by considering the canopy
background signal and a reduction in atmospheric influences. The MODIS EVI
has been demonstrated to have improved capability to capture multi-temporal
vegetation variations, land cover variations, and biophysical parameter variations

(Huete et al. 2002).

Along with the new MODIS land cover products (Friedl! et al. 2002), the
Global Land Cover 2000 dataset (GLC2000) has recently become available (Fritz
et al. 2003). Sponsored by the Joint Research Center (JRC) of the European
Commission (EC), GLC2000 was developed from SPOT VEGETATION 1 km
data with enhanced spectral, spatial, radiometric, and geometric quality.
Compared to the AVHRR-based land cover datasets, these two products are
more suitable for monitoring land surface properties at regional to global scales
and have great potential to be employed in climate modeling systems in the

future (Latifovic et al. 2004, Giri et al. 2005).

Remote sensing data can not only be used to provide better initial and
boundary conditions, but also to evaluate the model performance and the

accuracy of the forecasts. Currently, validation of global and regional climate



models is based on the comparison between model outputs of standard
meteorological fields and meteorological observations. The main problem with
traditional meteorological observations when used to validate models is their
poor representation of the grid-point average simulated by a model. Well
documented station observations of climate variables are mainly located in
populated and industrialized regions. Observations are very sparse both spatially
and temporally over many rural regions of the world, which brings inevitable

challenges for climate modeling studies.

Several climatic variables can now be measured from space. Rainfall and
land surface temperature (LST) are of the two most important ones. Since late
1997, the Tropical Rainfall Measuring Mission (TRMM; Kummerow et al. 2000)
has been successfully collecting passive microwave and radar-derived tropical
precipitation data over both the land and ocean. The latest rainfall data product
(3B42 version 6) has a quarter-degree spatial resolution and 3-hour temporal
resolution covering from 50 degree south to 50 degree north globally. Although
the primary objective of TRMM was to improve climate models and to aid them in
climate prediction (Kummerow et al. 2000), very few studies have fully utilized

this dataset for model validation and rainfall data assimilation.

AVHRR derived LST was compared with the output from the NCAR
Community Climate Model version 2 (CCM2) coupled with BATS to illustrate the

differences between air temperature and skin temperature at the global scale (Jin



et al. 1997). Since then, few other efforts have attempted to apply satellite LST in
climate modeling. This is partly because the algorithm of AVHRR LST was a
simple extension of the sea surface temperature (SST) method, which
sometimes produced to unacceptable errors (Price 1984, Becker, 1987). AVHRR
data are not suitable for accurate cloud detection over land which is required for
an operational LST algorithm. With multiple thermal-infrared bands specifically
designed for LST retrievals. MODIS is providing a much more accurate LST

product for both regional and global climate modeling (Wan et al. 2002, 2004).

1.3. Land cover accuracy and uncertainty assessment

Modeling of the climate system which has a wide variety of components is
a formidable task, and as a result climate models have uncertainties (Mahiman
1997, Palmer 2000, Vidale et al. 2003). Simulated climatic variables differ
considerably between models. The uncertainties in the climate models originate
from several components, of which the SVAT scheme is believed to be very
important. The primary aim of SVAT is to take into account the essential land
surface processes and provide estimates of latent and sensible heat fluxes
between the land surface and atmosphere. The uncertainties in SVAT schemes
arise from three elements: the model parameterization, meteorological forcing

data, and vegetation/soil inputs.



In SVAT schemes, land surface features are differentiated by land cover
types, and then biophysical parameter sets are assigned to each land cover type.
While numerous studies have been conducted to investigate the sensitivity of the
climate model to some particular biophysical parameters (e.g., Franks et al.
1997, Bastidas et al. 1999, Lynch et al. 2001), some attention has been given to
the uncertainty stemming from the land cover dataset. By examining the impact
of different land cover datasets (digitalized vs. satellite derived) on the predicted
variables, Molders et al. (1997) found that the distribution of daily averages of
temperature and humidity changed less than 0.2 °C (1%) and 0.2 g/kg (1.5%) if
the coverage of the various land-use and soil types differed by only about 5%
between the datasets. Pauwels and Wood (2000) compared the effect of
differences in spatial resolution of land cover data to land-atmosphere model
results relative to the effect of differences in land cover sensors and classification
schemes. They found that the uncertainty in model results arises mainly from the
land cover classification and that the lack of spatial resolution had a lower effect.
Overall, an uncertainty of approximately 15% in modeled energy and water fluxes

and states has to be assigned in evaluating the model simulation.

Until all important biophysical parameters in any SVAT scheme can be
mapped directly by satellites, land cover datasets will continue to play a key role
in representing the land surface conditions. No land cover product is 100%
accurate even those produced from the most advanced remote sensing imagery.

The uncertainties caused by the classification inaccuracy thus need to be

10



investigated. Because several land cover datasets are sometimes available for a
study, the effect of land cover classification accuracy on model results can help
climate modelers to decide which one to select. For land cover dataset
producers, the effect of classification accuracy can be used as a guideline for the
accuracy assessment and quality control. If the effect is not significant, no extra

efforts are needed to pursue higher mapping accuracies.

In the remote sensing community, some target accuracy thresholds have
recently been recommended in an attempt to provide guidelines to the
classification quality. Thomlinson et al. (1999), for example, set as a target an
overall accuracy of 85% with no class less than 70% accurate. However,
classification accuracy is usually interpreted differently from the viewpoint of
various users. The effect of land cover accuracy for a particular application, such
as climate modeling in this study, remains an unanswered question. The
accuracy targets commonly specified have largely not been tested from the
perspective of the operational use of land cover data. As anthropogenic impacts
on the land surface and climate at various scales are attracting more and more
attention from both scientists and policy makers, an effective way to evaluate
classification accuracy needs to be developed specifically for climate modeling
studies and the impact of classification uncertainty on climate simulations needs

to be fully investigated.
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1.4. Research objectives

The overall research objectives in this study are to improve the
representation of the land surface in a regional climate model using newly
developed remote sensing products and to address the uncertainty of land cover
classification and its impact on model simulations. The specific research

objectives are:

1. To develop a new method to evaluate various land cover products for
regional climate modeling

2. To improve the representation of the land surface in a regional climate
model using the highest-quality land cover product from Objective 1 and
newly developed MODIS biophysical products (LAl and VFC).

3. To investigate the land cover classification uncertainty and its impact on

regional climate simulations.

The new classification accuracy evaluation method is designed specifically
for regional climate modeling, addressing the shortcomings of traditional methods
used in the remote sensing community. Impacts of improved land surface
representation will be examined by comparing model outputs with remote
sensing observations (TRMM and MODIS LST). This will be the first study to
directly incorporate MODIS biophysical products into a regional model and to use
TRMM and MODIS LST to evaluate the model performance in a region where

station observations are extremely scarce. Also, a classification accuracy
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threshold will be identified by the third objective. This will provide an additional
guideline for land cover accuracy assessment in the remote sensing community.
When the classification accuracy is low, climate simulations must be interpreted
with caution, especially when historically-developed and future-projected land

cover products are used.

The dissertation is outlined as follows:

Chapter 2 describes the methodology of this study. A more detailed
discussion of the various remote sensing products is provided and where and
how they are used is illustrated. In addition, the regional climate model used in

this study is briefly introduced.

Chapter 3 (Objective 1) focuses on the theoretical development and
application of a new statistical method to evaluate land cover classification
accuracy. The most appropriate land cover product is identified from several

existing ones.

Chapter 4 (Objective 2) describes the implementation of the new land
cover product identified by Objective 1 and new MODIS LAI and VFC products.
Spatial and temporal characteristics of the improved land surface map are

compared with the default representation in the regional model. The impact of the
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improved land surface characterization is examined by comparing model-

simulated LST and precipitation with MODIS LST and TRMM data respectively.

Chapter 5 (Objective 3) investigates the impacts of land cover
classification accuracy on simulated precipitation. A threshold of accuracy is

identified.

Chapter 6 is the conclusion. Future studies in this area are discussed.
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Chapter 2

Research Design
2.1. Regional Atmospheric Modeling System (RAMS) overview

The regional climate model used for the numerical simulations in this
study is the Regional Atmospheric Modeling System (RAMS) Version 4.4 (Pielke
et al. 1992, Cotton et al. 2003). RAMS is a three-dimensional, nonhydrostatic,
general purpose atmospheric simulation modeling system, which solves
equations of motion, heat, moisture, and mass continuity in a terrain-following
coordinate system. It is an atmospheric model which is capable of both numerical

weather prediction and regional climate simulation.

The SVAT scheme employed in RAMS is the Land Ecosystem-Atmosphere
Feedback model, version 2 (LEAF-2) (Lee 1992, Walko et al. 2000). LEAF-2
represents the storage and vertical exchange of water and energy in multiple soil
layers, temporary surface water or snow cover, and vegetation and canopy air.
The special feature of LEAF-2 is its ability to represent fine-scale surface
variations by dividing surface grid cells into sub-grid patches, which are assigned
based on the land cover types in a model grid cell. Each patch has one land
cover type and influences the overlying atmosphere in its own unique way
according to its fractional area of coverage. The biophysical characteristics, such
as albedo, leaf area index, fractional vegetation cover, etc., are prescribed for the

land cover type in each patch. However, as in many other SVAT schemes
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seasonal variation of vegetation is characterized by simple mathematic

equations.

2.2, Research design

The following flowchart summarizes the research design in this study.

LC#1
LC#2

LC#3 |

}

Assessment

'

Selected RAMS MODIS LAI
LC — - MODIS VFC

_———
e’
v

Uncertainty

<:> MODIS LST
TRMM

Figure 2-1. Flowchart of research design in this study



A new land cover product and one-year monthly MODIS LAI & VFC
datasets will be directly ingested into RAMS to improve the land surface
conditions both spatially and temporally, and the effects of these new land cover
and biophysical products will be examined separately. RAMS will be run three
times: As a control, the first run uses the default land cover dataset and
prescribed LAl & VFC. The second run uses a new land cover product, but
prescribed LAl & VFC. For the third run, both new datasets will be used. Model-
simulated precipitation and LST will be compared with TRMM precipitation and
MODIS LST. RAMS does not have LST as an output variable. An algorithm thus
will be used to calculate LST based on the temperature of vegetation and soil in

a grid cell.

A new statistical evaluation method is developed and applied to several
existing land cover products to select the most appropriate one for climate
modeling in the study region. Therefore, various land cover products will be

evaluated and compared before running the RAMS model.

To study the uncertainty effect of land cover classification inaccuracy, a
range of misclassifications (5% - 50% at 5% interval) will be simulated on the
baseline land cover dataset. During this process, spatial locations (excluding
water) will be randomly selected and original land cover types will be converted

to random predominant types. RAMS will then run multiple times, each with a
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different amount of classification error. Model outputs will be compared and the
threshold of classification accuracy will be identified. Also, the influence of model

configuration will be examined.

Images in this dissertation are presented in color.
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Chapter 3
Biophysical Evaluation of Four Land Cover Products for

Regional Climate Modeling
3.1 Introduction

3.1.1 Study area

This study focuses on the East Africa region (Figure 3-1), which covers
Kenya, Uganda, Rwanda and Burundi, as well as parts of Congo and Tanzania
and a small section of the Indian Ocean. The geographic coordinates for the
upper-left and lower-right corners of this study area are (3.71°, 23.80°) and (-
9.34°, 41.80°), and the size is about 2000km by 1500km. This region contains
some of the most varied topography in the world, including large lakes (e.g., Lake
Victoria), rift valleys, and snow-capped mountains (e.g., Mount Kilimanjaro) on
the equator. This region also has a wide range of land use/cover types: from
savannas to forest to intense agriculture. Rainfall in East Africa mostly occurs
during the boreal spring (long rains, March-May) and autumn (short-rains,
September/October-December) seasons as the intertropical convergence zone

(ITCZ) migrates through the equator from south to north, and vice versa.
The land surface in this region has been substantially changed by human

activities during the past decades due to increased population and other factors,

which may likely trigger climate change. At the same time, people in this region

19



are highly vulnerable to climate variability and change. Much of the region is arid,
semi-arid or sub-humid and yet highly populated by pastoralists and agro-
pastoralists dependent on rainfed pasture and crops. This study is in the context
of the Climate-Land Interaction Project (CLIP), which integrates diverse methods
to quantify the two-way interactions between land use and regional climate

systems.

3.1.2 Land cover classification evaluation

To represent the land surface conditions realistically, RAMS needs an
accurate land cover dataset as input. Traditional land cover classification
accuracy assessment is primarily based on ground-based surveys or
interpretation of high spatial resolution aerial photos and satellite images. By
comparing the classified land cover with ground-truth data, error metrics can be
developed to report the commission and omission errors (Congalton 1991).
Shortcomings of this traditional method are apparent. Firstly, it is not cost
effective. Secondly, reported accuracy is highly susceptible to sampling error
when the sample taken is far sufficient to represent the study area, especially
when classifications have regional and global coverage. Thirdly, the ground-truth
data are usually obtained at one particular time, which can’t take into account the
phenological consistency within each class. Finally, classification accuracy is
often interpreted differently from different users (Lark 1995, Brown et al. 1999).

The traditional method is not designed for the purpose of climate modeling.
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Figure 3-1. Study area illustrated by GLC2000 for Africa. Area 1, 2, and 3 refer to
Lake Victoria, Rwanda, and Burundi, respectively.
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Researchers have proposed to use biophysical products with observable,
unambiguous, and continuous structural variables to make an optimized
classification for specific needs (Running et al. 1995, DeFries et al. 1997, Cihlar

2000). This idea has not yet been used in the phase of classification assessment.

In this study, a new statistical method, called Q, is developed to
biophysically evaluate the seasonal consistency of classification. This method

eliminates sampling error and is designed specifically for climate modeling.

3.2 Methodology

In the RAMS model, land cover types in a grid cell are treated as subgrid
‘patches’, each with its own vegetation, soil, canopy air, and etc. (Walko et al.
2000). The surface characteristics of a patch are then represented by a group of

biophysical parameters: LAI, VFC, albedo, etc.

Biophysical parameters are now available from remote sensing products.
For each patch, biophysical parameters can be taken directly from corresponding
remote sensing products. As a result, variation of these parameters in a patch
can be used to indicate if this patch (land cover type) has been appropriately
assigned (classified). Aggregating all patch-level variations spatially can be used

to evaluate land cover products from the perspective of climate modeling. The
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statistical measure Q presented in this paper is developed on LAl which is one of

the most important biophysical parameters.

3.2.1 Q development

For an area of interest (a RAMS grid cell) with k classes, LAl variation, V,
within one class i can be calculated using statistical error sum of squares
(Stapleton 1995).

Pi .
Vi= Z'](LAlm ~LAIf (3-1)

n=1
where p; is the total number of pixels for class i, n refers to any particular pixel,

and LAl; is the mean LAl value. Also, seasonal changes of LAl must be taken
into account. Including the temporal dynamics of vegetation is expected to
improve the evaluation. By adding this temporal LAl information, equation (3-1)

can be rewritten as:

.
W=D Vi |IT (3-2)
t=1

where t represents time. In this paper two years of monthly LAl data (January
2002 to December 2003) are used with t ranging from 1 to 24, and T therefore
equals the maximum number of time periods used (For some areas not all 24
time periods can be used because of quality control for LAl pixels. This is

discussed later.) Summing W; for all classes will give a good indication of within-
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class LAl variation. However, there is still another very important issue left out.
For a given geographic area, different land cover products may classify an
unequal number of classes to it because of different classification schemes.
Therefore, summation of Wi must be normalized by (N — k) to yield the final
statistical measure Q. It is expressed as:
1 k
Q= N=K) ; Wi (3-3)

where N is the total number of pixels for the area of interest (e.g., a grid cell in
RAMS) and is the same for different land covers, and k is the total number of
classes. It is assumed here that N is larger than one. In most regional climate
modeling studies, the spatial resolution is usually coarser than 10km because of
the limitation on computing resources. By combining equation (3-1) and (3-2),

equation (3-3) can be written as:

1 T pi

(N = k)Z ZZ(LAIM m”)z T (3-4)

=1\ \{=1n=1

Q=

In summary, Q aggregates LAI variation in each land cover type for each
time period for an area. A smaller Q value indicates more consistent biophysical
characteristics over a two-year time period and therefore, a more appropriate

classification for climate modeling.
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3.2.2 lllustration

As an illustration, Figure 3-2 represents a simulated area with 4x4 pixels.
The LAl value in each pixel is also presented at one particular time. For the
purpose of clarity, in this study this type of rectangular area will be referred as
‘quadrate’ to differentiate from ‘pixel in image processing and ‘grid cell in climate
modeling. One quadrate is composed of smaller image pixels and corresponds to
a grid cell. In this illustration two quadrates in Figure 3-2 represent two different
classifications for one area. Quadrate a) has two classes and its Q value is 0.02.
In comparison, quadrate b) has three classes and its Q value is 0.47. These two

Q values suggest quadrate a) is more properly classified.

Figure 3-2. A simulated 4x4 pixel area. Quadrate a) has 2 classes and quadrate
b) has 3 classes. Numbers shown are LAl values.

3.2.3 Evaluation design
Non-overlapping equal size quadrates are tiled completely for the study
area. Q values were calculated quadrate by quadrate for each land cover

products. The mean Q value was utilized as the final evaluator. By doing so, the
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effect of spatial resolution of the climate model can be studied by adjusting the
quadrate size. As quadrate size becomes smaller, the Q value may decrease. In
the case where the size of the quadrates is one pixel, there would be just one LAI

value and thus no variation at all.

For the climate modeling in this study, the grid spacing of RAMS is 50 km.
This resolution was designed based on the topographical characteristics in the
study area and computational requirement. The evaluation was extended to
quadrate size of 30x30km and 100x100km to study how resolution affects the
application of Q. In the following sections, Q values for all four land covers for
quadrate size of 30x30km, 50x50km and 100x100km will be calculated and

analyzed.

3.3 Data description

3.3.1 Land cover products

Q was applied to the following four land cover products, which exist for

climate modeling in East Africa:

1) GLC2000 for Africa (See Figure 3-1)

This product was developed by the Joint Research Centre’s Global

Vegetation Unit based primarily on SPOT VEGETATION daily 1km data, which
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were acquired from 1 November 1999 to 31 December 2000 (Mayaux et al.
2004). Other data sources such as NDVI, radar and Defense Meteorological
Satellite Program (DMSP) were also used. GLC2000 uses the Land Cover
Classification System (LCCS) developed by the Food and Agriculture
Organization of the United Nations (FAO) and the United Nations Environment
Programme (UNEP), which contains 27 land cover classes (Di Gregorio et al.
2000). The GLC2000 for Africa was downloaded at http://www-gvm.jrc.it/glc2000.
It was in geographic coordinates and then reprojected to Lambert Azimuthal

Equal-area projection.

2) MODIS land cover

This product (MOD12Q1) was developed by MODIS Land Cover group at
Boston University. It was prepared using MODIS Terra daily data acquired from
15 October 2000 to 15 October 2001, except for June 2001, which is missing due
to instrument down time. This product was based on the International
Geosphere-Biosphere Programme (IGBP) global vegetation classification
scheme which has 17 classes (Friedl et al. 2002). MOD12Q1 for Africa was
downloaded from http://duckwater.bu.edu/lc/mod12q1.html and was already in

Lambert Azimuthal Equal-area projection with 1km resolution.

3) OGE
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This is the Global Land Cover Characterization database (version 2.0)
using the Olson Global Ecosystem legend (Olson 1994a, b). It was developed by
the U.S. Geological Survey (USGS), the University of Nebraska-Lincoln (UNL),
and the European Commission's Joint Research Centre (JRC), based on 1km
AVHRR data spanning April 1992 through March 1993. It is archived at the
EROS Data Center http://edcdaac.usgs.gov/glcc/glcc.html. This dataset is called

OGE for short in this paper.

4) LEAF

This is the default land cover used in LEAF-2 within the RAMS model,
termed LEAF herein. LEAF aggregates the OGE dataset into 31 classes to use

the BATS land-surface parameters (Walko et al. 2000).

3.3.2 MODIS LAI product

The purpose of this evaluation is to select an appropriate land cover for
climate simulations at a time period of interest (2002-2003) rather than to
examine whether these land covers were accurately mapped when they were
produced. 1km monthly MODIS LAI data from January 2002 to December 2003
were used in this evaluation. The newly reprocessed MOD15_BU LAI C4.1 data
were downloaded at ftp://primavera.bu.edu/pub/datasets/MODIS/. They were
reprojected to Lambert Azimuthal Equal-area projection with 1km resolution. For

LAI pixels with normal values (0-7), Quality Assessment (QA) flags were used to
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detect cloud contamination in each pixel (Myneni et al. 2002). Only high quality
LAI pixels having QA values from one to four were selected for Q assessment.
These pixels were produced by the main algorithm, without saturation under
clear sky conditions. For LAl pixels with fill values (200, pixels outside projection;
253, Barren, desert, or very sparsely vegetated; 254, water; 255, non-computed
pixels or missing pixels), only 253 and 254 were used by replacing them with
zero. It needs to be noted that there is persistent cloud cover over part of the
Congo forest in the study area, especially during the wet season. But, this is not

a problem since Q can be calculated with only one month of data.

3.4. Results

3.4.1 Q values

Q values were calculated quadrate by quadrate for all four land cover
products at three quadrate sizes (30%30, 50x50 and 100x100km). Only Q values
at quadrate size of 30x30km are graphically presented here (Figure 3-3). It is
noticeable that Q has a similar spatial pattern for all land covers. It has larger
values for areas with complex and heterogeneous landscapes, such as ecotone
boundaries, and has smaller values for more homogeneous areas, such as
forests and deserts. Large water areas like Lake Victoria have Q of zero because

of no LAI variation.
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Figure 3-3. Q maps for four land covers at the quadrate size of 30x30 km:
GLC2000 (a), MODIS land cover (b), OGE (c), and LEAF (d).

Having Q values at quadrate level, the mean Q value was calculated and
used as the indicator of evaluation. The mean Q values for each land cover
product at three different quadrate sizes are plotted in Figure 3-4. The mean Q
value for GLC2000 is the smallest, while the Q value for LEAF is greater than the
other three land covers for every quadrate size. The rank for mean Q values for
all four landcovers is QgLc < Qmopis < Qoce < Qear. This suggests that GLC2000
has the best land cover classification and LEAF has the least appropriate
classification in terms of LAl variation. Also, MODIS land cover is better than

OGE. As expected, for a given land cover, Q values increase as the size of
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quadrates increases. For example, the mean Q value for GLC2000 increases

from 0.69 for 30x30 to 0.80 for 100x100.

W r—— e
BGLC MMODIS 0 OGE OLEAF
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~
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Quadrate size

Figure 3-4. Mean Q for all land covers at three scales

3.4.2 Significance test

A null hypothesis that mean Q values from the four land cover products
are all equal was tested using the One Way Analysis of Variance (ANOVA)
(Scheffe 1959). One advantage of using ANOVA, rather than multiple t-tests, is
that it gives one p value for a large number of groups. It would have required six
pairs for the t-test to evaluate the four land cover classifications in this study. Like
other statistical tests, ANOVA assumes that within each sample the values are
independent and normally distributed. This may not be satisfied for Q values

since they may be spatially correlated, which is common for most spatially
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distributed data. In this study, | assumed there was no spatial correlation for Q
values. A significance level of 0.05 was chosen to conduct the test for each
quadrate size. Sample sizes (number of quadrates) for four land cover
classifications are equal on all three scales: 3484 for 30x30km, 1240 for
50x50km and 300 for 100x100km. The resulting p-values for each test are
0.0002, 0.0054, and 0.0739, respectively. This analysis suggests that mean Q
values at the quadrate size of 30km and 50km are significantly different (0.0002,

0.0054 << 0.05), while mean Q values at 100km are not significantly different.

In order to identify specific differences between pairs of groups, Tukey's
method of the multiple comparison procedure (MCP) was used following the
ANOVA (Zhuang et al. 1995, Stapleton 1995). ANOVA only tells whether there is
a difference among the four land cover products, but not which ones are
significantly different. MCP provides which land cover classification is different if

significant difference has been found by ANOVA.

Figure 3-5 presents part of the results from the MCP for quadrate sizes
30x30km (Figure 3-5 a) and 50x50km (Figure 3-5 b). In this figure, the positions
of the dots represent the differences between sample means for Q. Parenthesis
and dashed lines indicate the extent of the confidence intervals for differences
between population means. If a confidence interval does not contain zero, the
difference for that pair is significant. As Figure 3-5 illustrates, GLC2000 has a

significantly smaller Q value than LEAF at both the 30km and 50km quadrate
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sizes, and at 30km quadrate size GLC2000 is also significantly different from
OGE. All other paired differences are not significant. Since ANOVA determined
that there is no significant difference among the four land cover classifications at
the 100x100km quadrate size, it was not necessary to conduct MCP at this

scale.

glc-leaf
glc-mod
glc-oge
leaf-mod
leaf-oge
mod-oge

0.0 002 004 006 0.08

glc-leaf
glc-mod
glc-oge
leaf-mod
leaf-oge

mod-oge

-0.16 -0.12 -0.08 -0.04 0.0

Figure 3-5. Multiple comparison (Tukey’s method) results for mean Q values for a
quadrate size of 30x30 km (a) and 50x50 km (b). MOD means MODIS land
cover. Confidence intervals were built on significance level of 0.05.

3.4.3 Single class investigation

For illustrative purposes, Q was also applied to a single class in GLC2000

to investigate the LAI variation within that class. The croplands (>50%) class was
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selected for this study because it is one of the most prevalent land cover types,
occupying about 19% of the study area (Figure 3-1). It is defined as regions of

intensive cultivation and/or sown pasture.

In Figure 3-6a, Q values of this single class calculated at the quadrate size
of 30x30km are presented. Map cells in white represent those quadrates not
containing any croplands. The mean Q value for this class is 1.017, which is
higher than that for all other classes of GLC2000. This is because agricultural
fields in Africa are usually small and mixed with savanna and fallow patches,
which preclude a reliable mapping at 1km spatial resolution. The spatial pattern
is very similar to the map in Figure 3-3a. High Q values (yellow and red) tend to

occur in areas with complex landscapes.

A hotspot with high Q values was identified visually in Figure 3-6a.
Geographically, it is in the Mount Elgon area that straddles the border between
Kenya and Uganda (Figure 3-1). In the Q map it consists of four contiguous
quadrates (total size of 60x60km). The mean Q value for this area is 3.265,
which is much higher than the total mean value (1.017). The spatial distribution of
the croplands (>50%) class in this hotspot area is presented in Figure 3-6b. It
occupies 1069 1km pixels (about 29.7%) in the original GLC2000 dataset. To
further investigate the cause of the high Q, Africover land cover at 100m
resolution was examined for this patch classified as croplands by GLC2000

(Figure 3-6¢). Africover was produced from a visual interpretation of TM data
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from the year 2000 to 2001 (Jansen et al. 2003). It is considered as ground truth
here because of its much higher resolution (30 x 30m). Africover shows the
GLC2000 cropland patch in this hotspot area is actually composed of up to five
diversified land cover types: forest, open shrubland, closed shrubland, savanna
and crop. Integrating such a complex landscape to one single type will certainly

produce high within-class LAl variation.
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closed shrub
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Figure 3-6. Q was applied to a single class, croplands (>50%), in GLC2000. (a) is
Q map at 30x30km quadrate size; (b) croplands in the hotspot in (a), pointed by
two lines; (c) Africover corresponding to (b).
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3.5. Conclusion and discussion

Based on the needs of climate modeling, a statistical measure, Q, was
developed to biophysically evaluate four land cover products: GLC2000, MODIS
land cover, OGE and LEAF, using the monthly MODIS LAI product. Evaluations
were conducted at three spatial scales (quadrate sizes): 30x30, 50x50 and
100x100km. This evaluation found that in terms of Q, GLC2000 ranks the best
and LEAF ranks the lowest at every scale. MODIS land cover is better than OGE.
As quadrate size increases, the differences between the land cover products
tended to decrease. For the quadrate sizes of 30km and 50km, GLC2000 is
significantly better (i.e., the smallest mean Q value) than LEAF, and for the
quadrate size of 30km GLC2000 is also significantly better than OGE. This
suggests that the LEAF dataset (built into the RAMS model) needs to be updated
by GLC2000 in order for the model to better capture the surface conditions in

East Africa.

There are several comments to be made on the proposed approach. First,
the time period of LAl data should be fairly long. Based on the quality control
flags, only high quality LAl pixels should be picked. Thus, not every LAI pixel is
valid for Q calculation. If for example only a couple of months of LAl are used,
there might not be enough high quality LAI pixels to calculate Q in some
quadrates. This is especially true for tropical areas, where persistent cloud cover

could exist for months.
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The second comment is related to the overall quality of the MODIS LAI
data. The accuracy of using Q to evaluate alternative land cover classifications
depends on the accuracy of LAl product used. Two measures were taken to
address this issue. One was using monthly LAl data, composited from 8-day data
by selecting high quality pixels over a month period. The accuracy of the 8-day
LAl product is about 0.5 LAI (Wang et al. 2004). The other was further filtering
the LAI pixels finally used by Q according to the quality assessment flags. Only
pixels produced by the main algorithm under clear sky conditions were selected.
Nonetheless, the overall LAl quality in this region is still not well known. Some
publications have already shown that the LAl product has limitations (Wang et al.

2004).

Finally, LAl is only one of the biophysical variables representing surface
properties of land cover in climate modeling. Other biophysical variables (e.g.,
fractional vegetation cover or albedo) are equally important. Q may also be
applied to these variables. More complete conclusions may be drawn by
evaluating alternative land cover classifications using a suite of biophysical

variables.
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Chapter 4
Improving the Land Surface Representation in RAMS

and Impacts Analysis
4.1 Introduction

The land surface plays a prominent role in climate modeling, since it
exchanges momentum, energy, water, and other important chemical constituents
with the atmosphere. The land surface is characterized by pronounced spatial
heterogeneity that spans a wide range of scales. In the last decade or so, the
importance of representing land surface heterogeneity representation, especially
at the subgrid scale, has been increasingly recognized in a large number of
climate modeling studies. Ideally, surface heterogeneity effects could be
accounted for by running a coupled atmosphere-surface model at a very high
spatial resolution, so that the heterogeneity is explicitly captured. However, this
approach is too computationally demanding even for most regional modeling.
The land surface heterogeneity, therefore, needs to be parameterized within the

framework of complex land surface process schemes.

The Land Ecosystem-Atmosphere Feedback modél version 2 (LEAF-2),
which is the SVAT scheme in RAMS, represents subgrid heterogeneity through a
discrete number of homogeneous subregions, also referred to as “patches” or
“tiles” (Avissar and Pielke 1989). Patches are selected on the basis of the land

cover types (evergreen broadleaf forest, savanna, water, etc), and they directly
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exchange fluxes with the atmosphere independently of each other. Each patch
occupies a fractional horizontal area of a grid cell in RAMS. Net momentum,
moisture, sensible heat, longwave, and shortwave fluxes are integrated over all
patches, weighted by the corresponding patch fractional areas. This approach
does not keep track of the actual geographical location of the patch within the
model grid cell; all the subareas belonging to a given land cover class are treated

equally.

The LEAF-2 components and the flux pathways between them are
illustrated in Figure 4-1. This example includes two patches beneath an
atmospheric column (A) within a single RAMS grid cell. Both patch 1 and patch 2
have partial vegetation cover (V) and patch 2 alone has snowcover (S). Two soil
layers (G) and canopy air (C) are also shown in this figure. Fluxed are denoted
by smaller letters. The prefix (w, h, or r) indicates whether the flux involves the
transfer water, heat or longwave radiation, and the two suffix letters denote the
source and the receptor (g for ground, s for snow, v for vegetation, ¢ for canopy,
and a for reference height air). The one exception is wgvc, which denotes a flux
of water from the soil to the canopy air through the vegetation by the means of

transpiration.
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Figure 4-1. Schematic representation of heat and moisture transfer between
components of LEAF-2 for two patches within a model grid cell (Walko et al.
2000). See text for detailed description.

In LEAF-2, the standard land cover map that generates the subgrid
patches during the initialization of RAMS is the Global Ecosystem dataset (OGE,
Olson 19944, b). Currently, the 94 ecosystem classes in OGE have been cross
referenced to the 18 BATS classes (Dickinson et al. 1986) plus some additional
classes, which were referred to as LEAF-2 cover in Chapter 1. The RAMS user
decides the number of patches, and LEAF-2 fills those patches with the most

predominant classes.
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These various land cover types (patches) are characterized by a suite of
biophysical parameters: leaf area index (LAI), vegetation fractional cover (VFC),
displacement height, roughness height, albedo, and emissivity. Some of these
biophysical variables are specified from observations in field experiments, while

others are educated guesses.

Table 4-1. Biophysical parameters for some important land cover types

Evergreen .
Crop/Mixed Open
LC types Eroadleaf Farming Shrubland Grassland Woodland
orest
Albedo 0.06 0.20 0.12 0.11 0.08
Emissivity 0.95 0.95 0.97 0.96 0.96
LAl 6.00 6.00 6.00 2.60 5.70
D LAI 1.00 5.50 5.40 2.00 2.30
VFC 0.80 0.85 0.22 0.73 0.80
D VFC 0.10 0.60 0.12 0.1 0.17
Roughness | 5 54 0.06 0.08 0.04 0.83
length ) ’ ’ ) ’
Displacement
height 20.7 0.7 0.2 0.2 7.4
Root depth 1.20 1.00 0.60 0.70 1.00

Table 4-1 presents the default biophysical parameters in LEAF-2 for some
important land cover types in the study area. LAl and VFC are maximum leaf
area index and vegetation fractional cover; D LAl and D VFC are the maximum

decrease in leaf area index and vegetation fractional cover. See
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http://www.atmet.com/html/docs/rams/RT 1-leaf2-3.pdf for more detailed

biophysical characteristics of all land cover types defined in LEAF-2.

Of these biophysical variables, LAl and VFC are assumed to have a
simple seasonal dependence (Figure 4-2), which is the function of a cosine
distribution, latitude and time in a year. Vegetation is assumed to peak in late
July (Julian day = 200) in the northern hemisphere and the reverse in the
southern hemisphere. For locations close to the equator, such as a large part of
East Africa in this study, LEAF-2 assumes that seasonal variation is reduced to
zero. According to Figure 4-2, the built-in spatial and temporal vegetation

variations are extremely unrealistic for near-equatorial regions.
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Figure 4-2. Built-in seasonal cycles of LAl (top) and VFC (bottom), illustrated by
Crop/Mixed Farming land cover type. “N5” and “S5” refer to 5 degree north and 5

degree south respectively.

In chapter 3, the default land cover dataset in LEAF-2 was found to have
significantly lower quality than the newly developed land cover products, such as
GLC2000. As previously discussed, there are major shortcomings of the built-in
vegetation characteristics in RAMS. This component of study is, therefore, to
improve the land surface representation in RAMS by updating the default land

cover dataset and the built-in spatial and temporal vegetation dynamics with
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GLC2000 and MODIS LAI and VFC products, respectively. Impacts of these

improvements will also be investigated.

4.2 Incorporating MODIS LAI & VFC in RAMS

The monthly, 1km MODIS LAI and EVI products for 2003 were
downloaded from MODIS group at Boston University

ftp://primavera.bu.edu/pub/datasets/MODIS/ (see Chapter 3 for more details).

These images were transformed to a Polar Stereographic projection centered at
(33°E, 2°S), which corresponds to the projection of the RAMS domain. The LAI

data were converted to binary files so that RAMS can read them directly.

It needs to be mentioned that MODIS LAI has a meaning different than
that in RAMS. As is standard in the remote sensing community, MODIS LAl is
defined as “the area of green leaves per unit area of ground” (Curran 1983, Price
1992), which is sometimes referred to as “effective” LAl. In contrast, LAl in LEAF-
2 (Table 4-1) and other land surface models is defined as “the number of leaf
layers over the vegetated part of the pixel” (Dickinson, personal communication),
which is also referred to as “clump” LAl (Choudhury et al. 1994). Therefore,
MODIS LAl was divided by MODIS VFC so that the ingested LAl has the same

meaning as defined in RAMS.
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VFC data were developed from the 1km monthly MODIS Enhanced
Vegetation Index (EVI) product (see Chapter 1 for more description). Compared
to the traditional Normalized Difference Vegetation Index (NDVI), EVI takes full
advantage of MODIS’ state-of-the-art measurement capabilities and has much
improved quality (Huete et al. 2002). One noticeable advantage of EVI is that it
does not become saturated as easily as NDVI when viewing tropical rainforests

and other areas of the Earth with large amounts of green biomass.

Calculating fractional cover from vegetation indices is based on the theory
of “Mosaic Pixel”, which assumes that a remote sensing pixel has a patchy
(mosaic) structure (Kerr et al. 1992, Valor and Caselles 1996). A quantity

measured by satellite (¢, e.g. vegetation index) for a pixel can be interpreted as

the sum of linear contribu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>