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ABSTRACT

Galois Structure of Modular Forms of Even Weight

By

Erhan Gilrel

We calculate the equivariant Euler characteristics of an even power of the canonical

sheaf on modular curves over Z with a tame action of a finite abelian group. As

a consequence, we obtain information on the Galois module structure of “twisted”

modular forms of even weight having Fourier coefficients in a ring of algebraic integers
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Introduction

The normal basis theorem implies that if N/K is a finite Galois extension of number

fields with Galois group G, then N is a free K[Cl-module of rank one. In particular, N

is a free Q[G]-module. Let 0N and OK be the ring of integers of N and K respectively.

Then we can ask for the analogous statement, namely, “IS ON a free module over the

group ring Z[G]?” The first observation regarding this question belongs to E. Noether.

Theorem 0.1 (E. Noether) Let N/K be a finite Galois extension of number fields

with Galois group G. Then the ring of integers, ON is a projective Z[G]—module if

and only if N/K is at most tamely ramified.

When N/K is tamely ramified, the obstruction to ON to be a stably free Z[G]—

module is the class (ON) in the class group Cl(Z[G]). Frbhlich’s conjecture, proved

by M.Taylor in [T], gives an interesting description for this class:

Theorem 0.2 (M. Taylor) We have the following equality,

(ON) = WN/K (1)

in Cl(Z[G]). Here WN/K is the “root number class”; the class WN/K has order two

and is given by the signs of the e-constants in the functional equation of the Artin

L-functions of symplectic representations of G.



It was natural to try to extend Frohlich’s conjecture by relating the e-constants

with the Galois modules attached to a group action on an arithmetic scheme. How-

ever, the right formulation of the generalized conjecture was not clear until the

work of Chinburg and of Chinburg, Erez, Pappas and Taylor ([CEPT], [CPTD . Let

7r : X —+ Y = X/G be a geometric tame G-cover of projective flat regular schemes over

Z. In [CEPT], the authors define an equivariant deRham Euler characteristic class

x(X, G) in Cl(Z[G]) using equivariant Euler characteristics of differential sheaves.

When X = Spec(ON) this generalizes the class of the ring of integers (ON). They

also define a root number class WX/y (similar to WN/K) and introduced a ramification

class RX/y which depends on the e—constants of the branch locus of the covering 7r.

The definition of these classes was motivated by the prior work of Chinburg [C] who

considered the same constructions for covers of varieties over a finite field. Under

some additional technical assumptions on X and Y they show

Theorem 0.3 ([CPTj) We have

X(X, G) = WX/Y + RX/Y (2)

in Cl(Z[G]).

This generalizes Frohlich’s conjecture to higher dimensional varieties over Z.



It turns out that one can consider more general equivariant projective Euler char-

acteristics: Suppose that X is a scheme projective and flat over Z which supports a

tame action of the finite group G. For any coherent sheaf .7: on X which supports

a G-action that is compatible with the action of G on X one can define following

Chinburg [C] the equivariant projective Euler characteristics ")2? (X, .77) E Cl(Z[G]).

The calculation of these Euler characteristic often connects to other fundamental

problems in Number Theory. A recent method, developed by Chinburg, Pappas and

Taylor in [CPTl], shows how to calculate the Euler characteristic of coherent sheaves

on projective flat schemes over Z on which a finite abelian group acts tamely. Unlike

other techniques, this one does not neglect any torsion information if the base scheme

has dimension less than 5. Roughly speaking, the idea in their paper was that Euler

characteristic should differ by computable terms from classes in Grothendieck groups

which have “n—cubic” structures. This idea was motivated by previous works of

Pappas in [P] and [P1]. In this recent paper, a precise formula is given for the Euler

characteristic. Furethermore, they determined the structure of the lattice of weight

2 cusp forms for I‘] (p) which have integral Fourier expansions as a module for the

action of the finite group of diamond Hecke operators. This is done by calculating

the equivariant Euler characteristic 7”(X, Ox) where X is a certain integral model

of the modular curve X1(p).

In this thesis, we calculate the equivariant Euler characteristic of k-th power of

the “twisted” canonical sheaf over an integral module of the modular curve X1 (p)

(here some twists are allowed along a fibral divisor at p for some technical reasons).

Moreover, we find a lower bound to the degree of the twist which guarantees that

the first cohomology group vanishes. Consequently, the structure of the lattice of

“twisted” cusp forms of weight 2k and Nebentypus character can be obtained as a

module for the diamond Hecke operators. Here twist means that we allow the Fourier

coefficients to have denominator a certain (bounded) power of the uniformizer over p



(see below).

More properly, let p E 1 mod 24 be a prime and F = (Z/pZ)* / {21:1}. Suppose

X : I‘ —> p, C Z[(,.]“ is a character of prime order r|(p —— 1) with r > 3. Let

52k,5(I‘1(p),p‘5kZ[Cr])x be the Z[C,.]-module of “twisted” cusp forms of weight 21:,

level p and of Nebentypus character x (for some technical reasons some twists to the

dualizing sheaf on the modular curve is allowed and this 6 represents the order of the

pole that we allow along the twist). In addition, we ask that the Fourier expansion

an ' .

Weizmnz where the coefficrents

7121

an belong to Z[(,.]. The locally free Z[(,.]-module 82k,5(I‘1(p),p‘5’°Z[C,.])X is of rank

n(x) = (2k — 11):!) — 25). For a E (Z/rZ)* let {a} be the unique integer in the range

of these modular forms is of the form F(2) =

 

0 < {a} < r having residue class a, and let on E Gal(Q((,.)/Q) be the automorphism

for which 00(9) = (TM. Define to, : (Z/rZ)* —+ Z; to be the Teichmuller character.

The ring Z (resp. Z,) is embedded into the pro-finite completion Z = H, prime Z, of

Z diagonally (resp. via the factor I = r). Then a modified quadratic Stickelberger

element of Z[Gal(Q(C,.)/Q)] can be defined by

02: Z %}¥({a}2—w.<a)2)a;1. <3)
a€(Z/rZ)*

We also define truncated Stickelberger element [:91] by

[91] = Z m(ka7")qaq_1 (4)

0<qgkr—1+[Z;—2_%] ,(q,r)=1



where m(k,r) is an integer depending on k and r. The truncated sum-element [do]

can be also defined by

[so] = Z n(k, 5, r)o;1. (5)

0<q£kr—1+[Z;2Tk1r;],(q,r)=1

where n(k, 6, r) is an integer depending on k,6 and r.

Since the ideal class group Cl(Z[C,.]) is finite, 62, [01] and [60] all act on this group.

Let ’PX be the prime ideal of Z[(r] over (p) with the property that the reduction of X

modulo ’PX is the 1}] power of the identity character (Z/pZ)* ——) F13.

Let X1 be an integral model of the modular curve X1 (p) and I‘ = (Z/pZ)*/{:i:1}

be the group acting on X1 faithfully. Let H be a subgroup of F of index r, we let

XH be the quotient X1 /H and let u : X1 —+ XH be the quotient map. The special

fiber of X1 over p has two irreducible components. The unramified component DEX, is

distinguished from the other component by the fact that D; intersects the cuspidal

section 00.

Theorem 0.4 Suppose 21 C Z[Cr] is an ideal with ideal class 02 - [’PXO] —— [61] - [’PXO] —

[00] ~ [’PXO]. Then we have

for”, (Mwwkwiohw) ”—‘r ZlCrl"(X)‘1€B 91

as Z[C,.]-modules.

Theorem 0.5 Assuming the same terms as in the preceding theorem, for 6 > 2 + r,

S2k,5(l“1(p),p‘6kZ[Cr-l)x 2’ ZlC.-]"(’"“1 ea 21

as Z[Cr] -modules.



This extends the corresponding theorem of [CPTI] to higher weight cusp forms.



CHAPTER 1

Definitions and Preliminaries

This chapter contains basic definitions and facts of tame covers of schemes, modular

forms, Tate curves and moduli schemes of elliptic curves.

1.1 Tame covers of schemes

Let us recall the definition from [C].

Definition 1.1 Let Y be a normal scheme of finite type over R and let D be a closed

subset of Y which is of codimension at least one. A morphism f : X ——> Y is tamely

ramified covering of Y relative to D if the followings hold:

a. f is finite,

b. f is etale over Y — D,

0. Every irreducible component of X dominates an irreducible component of Y.

d. X is normal,

e. Let y on D have codimension one in Y and let a: be a point of X over y, then

Oxrt/Oy‘y is tamely ramified extension of DVR’s.



Definition 1.2 Let f : X ——> Y and D be as in the previous definition and let G be a

finite group. Then f : X ——> Y is tame G—cover relative to D if X x (Y — D) H Y - D

is a G—torsor when G is regarded as a constant group scheme over Y ~— D.

Definition 1.3 The G-action on X is called tame if for every closed point :1: E X,

order of inertia subgroup I1c C G is relatively prime to the charactetistic of the residue

field k(.'r).

Definition 1.4 Let f : X —+ Y be a tame G—cover. A quasi-coherent OX—G-module

F is quasi-coherent Ox-module having an action G which is compatible with the

action of G on OX. i.e. suppose at E X, g E G and let 1:9 be the image of a: under

9. The action of g on OX and F gives homomorphism of stalks OX‘xg H 0x4. and

F39 i—+ Fx; both of these homomorphism is denoted by qt, and ¢(am) = qb(a)qb(m) for

all a E OX,3:9 and m 6 Fry.

1.2 Modular Forms and Diamond Operators

Definition 1.5 Let k be an integer. We say a function f is modular of weight 2k if

it is meromorphic on the upper half plane and 00 also satisfying following condition

 (:12) = (cz+d)2’°f(z) (1.1)

a b

for all 6 SL2(Z).

c d

Definition 1.6 A modular function is called as modular form if it is holomorphic

everywhere including 00.

Definition 1.7 A modular form is called as cusp form if it is zero at 00.



A modular form of weight 2k can also be written as a series,

f(2) = Zanq" (1.2)

n=0

27riz

where q = e and verifies the identity

f(1/Z) = We) (1.3)

So, a0 = 0 when f is a cusp form.

Let .7) denote upper half plane {2 E CIS‘z > O} on which we have SL2(Z) action

as follows:

a b az+b

z: .

d cz+d

 (1.4)

When we extend the upper half plane by adding cusps P1(Q)(= QU{oo}) to f)" we

can extend this action on cusps using the same fractional transformation. We have

two subgroups of SL2(Z), namely F0(N) and I‘1(N) defined as:

I‘O(N) := { a b E SL2(Z)| c E 0 mod N} (1.5)

d

a b

F1(N):={ ESL2(Z)| c_=_—0 modN, aEdEI modN} (1.6)

c d

One can easily see that F1(N) is a normal subgroup of F0(N) and when we take the

quotient we get,

F0(N)/F1(N) ’5 (Z/NZ)* (1- ‘
J
v



H d (1.8)

We can define space of modular forms (cusp forms) of weight 21: and level N by

a b

restricting to F1(N) and we can denote it by M2k(I‘1(N)) (Sgk(F1(N))).

c d

There is a F0(N) action on SQk(F1(N)) by

a b __ ~ _2k az+b

Since the action of F1(N) is trivial, we can define an action of (Z/NZ)* using the

isomorphism 1.7 as follows:

b V

< d > f :2 f (1.10)

This operator < d > is called as Diamond Operator.

1 .3 Tate Curves

Let R be a noetherian local ring which is complete with respect to ideal qR. The

Tate curve Eq proper smooth scheme over R[q‘1] defined (as in [CSS]) by following

equation on an affine chart :5 74 0:

  

y2+xy=r3+a4(q)1:+a6(q) (1.11)

where

0° n3q" 0° (5n3 + 7n5)q” .

= —5 E . — — E 1.12‘



The following series gives us parametrization of the curve.

— oo Hg" 00 (In

Ell“) = ; “(filly + 2; (1 _qnqn)2 (1 14)

They induce homomorphism

:c u , u ifu ¢ Z;

qu‘lquz -> EARICI‘II), UH ( ( ) y< )) q

0, iquqz,

This map is bijective when R is a complete discrete valuation ring.

1.4 Coarse Moduli Scheme of Elliptic Curves

A moduli problem is roughly given by two ingredients. First, a class of objects

together with a notion of being family of such objeCts over a scheme B. Second, an

equivalence relation ~ on the set of S(B) of all such families over B. We can define

a moduli functor F from the category of schemes to that of sets by F(B) = S(B)/ ~

for our moduli problem. The functor F is representable if there is a scheme on and

isomorphism i/J between F and the functor Mor(o, 931). If that is the case, then we

say that am is fine moduli spcheme for the moduli problem F. When a fine moduli

exists, every family over B is the pullback'of universal family Q: via a unique map

of B to mt. This allows us to translate information about the geometry of families

of our moduli problem to information about geometry of the moduli space an itself.

Unfortunately, most of the time it is not possible to have a fine moduli scheme.

Definition 1.8 A scheme {Di and a natural transformation 2/29); from the functor F to

the functor of points Mor(0, an) of am is a coarse moduli scheme for the functor F if

i. The map 'l/Jspecar) : F(Spec(lF)) —> 931(IF) is a bijection for every algebraically

11



closed field IF.

ii. Given another scheme Dfl’ and a natural transformation pm from F to

Mor(0,9fl’), there is a unique morphism (,b : 931 —> Dfl’ such that the associ-

ated transformation (I) : Mor(o, 931) —+ ll/Ior(-, 91W) satisfies Il’m = (I) 0 Il'wt

Often the moduli functor is represented by a more general type of object, a moduli

stack. In our case, we will use the moduli stack ”1‘10” that classifies triples (E, C, 7)

where E ——> S is a generalized elliptic curve i.e. n-gons are allowed (see [DR], or

[CES]), G a locally free rank p subgroup of the smooth locus E8m and 7 : (Z/pZ)3 ——>

CD a “generator” (in the sense of [KM, Ch. 1]) of the Cartier dual of C; we require

that C intersects every irreducible component of every geometric fiber of E ———> 5'.

(Notice that a group scheme embedding [1,, H E"m gives data C and 7; in fact, if p is

invertible on 8, giving C together with 'y as above exactly amounts to giving a group

scheme embedding pp <——) Em.) We denote by X1 = X1 (p) the corresponding coarse

moduli scheme over Spec (Z). The group (Z/pZ)* acts on ml‘dp) via

(a modp) - (E, C, 7) = (E, ng o a”). (1.15)

(When p is invertible, this action sends the corresponding j : up H E8m to the

composition j o (z i—> z“) : up c—r Esm.) This produces a faithful I‘ = (Z/pZ)*/{:i:1}-

action on X1. When H is a subgroup of I‘ we let XH be the quotient X1 /H, and

set X0 = X1‘. The singularity structure of XH is explicitly given in [CBS] depending

on the order of H. When they analyze non-regular points they use deformation

theory. In our case we used it as follows: Let 72,, be the formal deformation ring of

the point 3 = (E, Z/pZ C E, 0) in the moduli stack 911130,). Then 72,, supports an

action of Aut(E) >< (Z/pZ)* . Let H’ be the inverse image of H under the surjection

12



(Z/pZ)* —+ F, and let 3’ be the image of s on XH. The completion of the local ring is

beam. 2 (Raw (1.16)

as ring with G = (Z/pZ)* /H’-action. It tells us that we can get the deformation of

coarse moduli scheme X1/H from the deformation of the moduli stack 911nm. As it

is mentioned in [CES], checking the regularity along the cusps can be done by using

the Tate curve. We will have similar calculations using the Tate curve, therefore it

is better to mention here what is the place of the Tate Curve in the Moduli scheme.

The Tate curve Cm/qZ over Spec (Z[[q]]) together with the embedding up C gm/qZ

(see [DR, VII]) gives a morphism r : Spec (Z[[q]]) ——> XH. We call the support of the

corresponding section Spec (Z) —> Spec (Z[[q]]) —> XH the 00 cusp. Over (C, provided

we trivialize up(<C) via (,0 = 627””, this corresponds to the ”usual” 00 cusp and the

parameter q to e27” with z in the upper half plane if). The morphism 7' identifies

Spec (Z[[q]]) with the formal completion of XH along 00.

13



CHAPTER 2

Coarse Moduli Schemes X1,X0 and

XH

We will assume that p E 1 mod 24, and hence using the genus formula [pg.23, Sh],

H V2 V3 Voo
= 1 — ————— —— 2.1

9 + 12 4 3 2 ( l

where u = p+1 and V2 = V3 = 1100 = 2, then we have go of (Xolc is (p — 13)/12. The

following theorem is deduced from the works of Deligne and Rapoport [DR], Katz

and Mazur [KM] and Conrad, Edixhoven and Stein in [CBS] by Chinburg, Pappas

and Taylor and available in [CPTl]. We directly barrow from them.

Theorem 2. 1

a. The scheme XH ——> Spec (Z) is a flat projective curve, XH is normal Cohen-

Macaulay and XH[1/p] —) Spec (Z[1/p]) is smooth ( where XH[1/p] = XH <8);

Z[1/p]). The special fiber of XH over p has two irreducible components Do”; and

D51 distinguished by the fact that D50 intersects the cuspidal section 00; these

have multiplicities 1 and (p — 1) / (2 - #H) respectively.

b. The scheme XH has at most two non-regular points which are rational singu-

14



ii.

larities and lie on DS’ - (Dg’ 0 Dig). Their exact number depends on #H

mod 6: In particular, if 6 divides #H then there are no such points and XH is

regular. In particular, when H = {1} there are two non-regular points on X1.

There is a morphism b : Xi —+ X1 which is a rational resolution of those two

singular points and a morphism c : Xi —-> X1 which is a sequence of blow-downs

of exceptional curves such that X1 is regular and all the geometric fibers of

X1 -—> Spec(Z) are integral. Let U = X1 — Dél} C X1. Then U —+ Spec (Z) is

smooth, b and c are isomorphisms on b‘1(U) and X1 — c(b‘1(U)) has dimension

0.

. The special fiber of X0 over p is reduced with simple normal crossings. Each

of the two irreducible components Doo = D; and D0 = D}; are isomorphic to

P}; and D0 - D00 = g0 +1 = (p— 1)/12.

Assume that 6 divides the order #H.

The morphism 7rH : XH -—> X0 is a tame G = I‘/H cover of regular projective

curves and 7rH[1/p] : XH[1/p] ——+ X0[1/p] is a G-torsor.

The morphism 7r” is totally ramified over the generic point of D0, and unrami-

fied over the generic point of D00. The irreducible components DS’ and D0}: of

XH ®z F1, are the (reduced) inverse images of Do and Doc under my The char-

acter X06! giving the action of G on the cotangent space of the codimension 1

generic point of Db, equals w‘2'#H , where w : (Z/pZ)* ——> F; is the Teichmuller

(identity) character.

Proof: Check Theorem 4.2 and Theorem 4.3 in [CPTl].

15



CHAPTER 3

Lattices of cusp forms

If R is a subring of (C we will denote by Sgk(F1(p), R) the R—module of cusp forms

F(z) 2 Zn?! anew“ of weight 2k for the congruence subgroup F1(p) C PSL2(Z)

whose Fourier coefficients on belong to R. (These are the Fourier coefficients “at

the cusp 00”). For simplicity, we will also denote “twisted modular forms” by

an .

— where an in
p6}:

32k,5(l"1(p),p“”°R) when its Fourier coefficients are in this form

R. Particularly, if 6 = 0, we assume 52k,0(I‘1(p), R) = 32k(F1(p), R).

Proposition 3.1 There are F-equivariant isomorphisms

3....(r.(p).p-6'°Z) 2 H°(X1.w§f/z<k60:.>) (3.1)

where the F—action on 52k,5(I‘1(p), p‘5kZ) is via the diamond operators and

wx1/z(6D;o) denotes the twisted canonical (dualizing) sheaf of X1 —+ Spec (Z) along

the divisor 60:0. El

PROOF. Let G(q) = %—q" E 52k,5(I‘1(p),p'5kZ) with q = 62”” and consider

n21

G(q)(dq/q)®k as a regular differential over Spec (Z[[q]]). A standard argument using

the Kodaira-Spencer map shows that G(q)(dq/q)®’c extends to a regular differential

over X1[1/p] (cf. [Ma, 11 §4]). This extension must also be regular in an open

neighborhood of the section at 00. Hence there is an open subset U’ of the set U C X1

16



defined in Theorem 2.1 (b) such that G(q)(dq/q)®k is regular on U’ and U - U’ is a

finite set of closed points. We obtain an injective F-equivariant homomorphism

<I> : 52k,,(r (p),p5m) —-> H°(U', wU,'/Z(k6D1 )). (3.2)

The equalities,

HO(U’,wwU,/Z(k(5D1))=H0(X1,wX1/Z(k6Dl))= H0(X1,wxf/Z(kal )), (3.3)

follow from the fact that b : X; ——> X1 and c : Xi ——> X1 are rational morphisms

which are isomorphisms on b"1(U’) and that X1 — c(b‘1(U’)) has codimension 2 in

X1 and the following lemma, which proves that O’th cohomology of the k’th power

of the dualizing sheaf is preserved under blow-up of two Singular points on X1 and

blow-down of a —1 curve. The surjectivity of ‘1) follows from pulling back elements

of H0(X1,r.oX:c/Z(k6D1 )) via 7' : Spec (Z[[q]]) -—> U and using the Kodaira—Spencer

isomorphism.

We keep the same notation as in Theorem 2.1.

Lemma 3.1 Let X1 i» X1 be the blow-up of the surface X1 at some point Q. Let

wgl(6D;o) and wx1 (6Déo) be the twisted dualizing sheaves respectively. Then,

H°(X1,w§§f(k61§;o)) = H°(X,,w,;f (1:61)1 )) (3.4)

PROOF. As it is explained in [pg.380, CES], X1 has two singular points corresponding

to j = 0 and j = 1728 which we call them OE and Q1: respectively. When we blow-up

QB we get one exceptional curve E such that E2 = —2. Similarly, when we blow-up

Qp we get another exceptional curve F such that F2 = —3. Both of these curves are

isomorphic to P1.

17



CASE 1. (j = 0) and (j = 1728)

Since we will follow the same routine, we consider both cases together. First, we

will show that QE and QF are rational singularities in the sense of Artin [pg.268, Ar]:

Recall that the point Q is a rational singularity if the stalk of R1 f...(9)g1 at Q is zero

for every desingularization X1 —f+ X1. We will Show that every singular point Q with

multiplicity oz (i.e. when Q is blown-up we get an exceptional curve C, isomorphic to

P1, whose self intersection is —a < —1) is a rational singularity.

Let Fi = [iLnHi(Cn, 00") where 0,, is closed subscheme of X1 defined by I" and

I is the ideal sheaf of the exceptional curve C.

We have,

0 —-> I"/I"+1 —> 00.,“ —+ 00,, —> 0 (3.5)

We also know that I/I2 2 (90(0) then l'”/IZ'"+1 2 SKI/1'2) 2 00(an).

Since C is just 1P", H'(C’, 00(an)) = 0 for i > 0 and n > 0. By writing the long

exact sequence, we will get the following for i > 0

Hi(C, 00,“) = H‘(C, 0a,). (3.6)

When n = 1, 00, = 00, therefore Hi(C,OCn) = O for i > 0. So, Fi = 0 for i > 0.

Since it is supported just at Q, Fi = 0 for i > 0. So, when we take o = 2 and or = 3

we prove that QE and Qp are rational singularities respectively. If the point Q with

multiplicity a > 1 is a rational singularity, then coil 2 f‘wxl by proposition 5.1 in

[Ar] .

Remark 3.2 Since QE is a double point singularity, the canonical sheaf of the X1

is locally around QE 8. line bundle and we could get the equality toX, = f*wx1 by a

calculation which uses the adjunction formula. However, it is not true for the point

Qp; the canonical sheaf of X1 is no longer a line bundle in a neighborhood of QF.
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We need to show that

H0021, r(w;‘3f(k60;.))) 2 H°(X..w§i°(k60;.)). (3.7)

Using the projection formula, we get

R‘f.(f‘(w§f(kao;o))) 2 defacing) a 127.0,2. (3.8)

By taking i = 0, we get

Rof.(f‘(w§f(k50éo))) 2 wfflkwio) (39)

because, (9X, = f*0X1 which simply follows from the fact that X1 is normal and f is

birational. Now, using the Leray spectral sequence,

Him, ij.(f*(w§f(k60;.)))) => H‘+J‘(X1,r(wif<k60;.)>) (3.10)

and by choosing i = j = 0 we get the desired result.

CASE 2. (j # 0,1728)

Let X1 —f+ X1 be the blow-up of the surface X1 at a regular point Q. We have an

exact sequence

0 —> 0231 —-* 0X1(kE) -* 0kg(kE) -—> 0 . (3.11)

By tensoring the sequence by f* (a)??? (k6DAO)), we obtain an exact sequence

0 —> f*(w§f(k6D;O)) 8) OX, —> f*(w§’f(k6D;o)) <8) OX1(kE) ——>
1'

—> f*(w?&f(k603,o)) ® 01.13MB) —» 0 (3.12)
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Since

213(61):.) '—‘-’ f*(wx.(5D§o))(E) (3.13)

we have

wngfllDéo) 2 f*(w§3f(k50;0))(kE) . (3.14)

By restricting to [CE we get

wifawtnw 2 r(w?2:°<k60;.))(kE>i.E 2 claws) (3.15)

Let’s try to show that H°(E, Okg(kE)) is trivial. We have

0 —> 1”“‘1/1"c —-> Oil/I“ -—* OX/Ik"1—+ 0 (3.16)

where I is the ideal sheaf of E. After twisting the sequence by the divisor (ICE) and

since E is just 1P”, 1""1/1" 2 03(l) therefore degree in the each summand becomes

negative. By induction on k we obtain, H°(X1,0k3(kE)) is trivial.

Using the above calculation on the following cohomology long exact sequence,

0 2 H003 Nahum») —» matey/cans» —> We 0.3km) 2 - --

(3.17)

We conclude, H°(X1,f*(w§:°(k60;o))) 2 H°(X1,w%°(k6D;o)). Now, the only thing

that we need to show is that, H°(X1, f*(w§f(k6D;o))) 2 H°(X1,w§f(k6D;C)).

Again, using the Projection Formula,

Rif.(f*(w§'zf(k60;.))> 2 22(21):.) 2 R‘wx, - (3.18)

The standard argument from Hartshorne (pg. 387, Prop.3.4) gives RfLOX-1 = 0
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if i > 0, and ROLOXI = 0x, for i = 0. Now, using the Leray spectral sequence,

Hive. Barrera/c623)» => Hi+j(X1.f*(w§f(kéDéo))) (3.19)

and by choosing i = j = 0 we get the desired result.

Proposition 3.1 gives us explicit relation between R-module of the “twisted” cusp

forms of weight 2k and the global sections of the k’th power of the dualizing sheaf.

If we follow the same argument as in the proof of the proposition, we can get the

similar relation for cusp forms. This is given in the following:

Corollary 3.3 There are F-equivariant isomorphisms

sump), Z) 2 H°(X1.w§?f)z)- (3.20)
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CHAPTER 4

Galois structure of modular forms

Let’s start this section by defining the module of the “twisted” modular forms of

weight 2k on XH which will be called as 82k,5(I‘H(p),p"5’°Z). We can define it as

follows:

523,5(FH(P),P_6kZ) 3: 52k.5(F1(P)1P—6kZ)H

We will try to calculate it here. Let u : X1 —+ XH be the quotient morphism. Since

u is a finite morphism, Rip... = 0 for j > 0. Now, using the Leray spectral sequence,

H’(XH. Rju*((w§?f(k50lo)))) => Hi+j(X1,w3”Ef(k5Déo)) (4-1)

fori=0,j=0weget:

H°(XH, M*w§f(k50;c)) 2 H°(X1,w§%f(k60;.)). (42)

Therefore

shamans—“6%) = H°(X1.w§~?f(k60;.))” (4.3)
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and

H°(X1,w§f(k50éo))" ’1 H°(XH.M*(W§f(k5Dio)))” 1'

2’ H°(XH. (u*(wféf(k50io)))”)- (4-4)

Since 111wa (6Dfo)) and tax, (6Déo) are line bundles, one of them can be written

as a twist of the other. This twist- is supported along the ramification locus since the

line bundles are isomorphic on the complement of the ramification locus. N0w we can

write

wx.(5Dio) ’2 u*(wxh(5Dfo))(Rl) (4-5)

where R1 is supported on the ramification locus. Also, when p E 1 mod 24 then the

ramification locus of the map 71' : X1 —+ X0 is D3, j = 0 and j = 1728. Their rami—

fication degrees are ”3:1, 2 and 3 respectively. A local calculation like in [pg.74 Ma],

shows that R1 = (23125 +{73i‘ +2W1 where 3:6? andm‘

are closure of the generic point of each lines j = 0 and j = 1728 on X1. When we

take the k-th power of the sheaves we get

overhung.) 2 u‘(w?éf;(k6D£’o))(le) . (4.6)

After taking the H—invariants, we obtain

(wry/c6033)” 2 (u*(w§f,(k600’i)(kR‘))” . (4.7)

We know that

(u‘wimww := (wit (1.3053,) eox, on)” (4.8)
H
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(42%(14605’0) @019, 0x1)” =wxk(k5DH)®ox,, 0x. =wx,,”4519”) (4-9)

Therefore,

(u.<wh.<k601))> 2wxg,(k60”>®o. (403.4431))” (410)

Notice that OX,(kR1) is allowing poles of at most order 19 times along ml, at

most 2k alongmand k(L———'2’) along D3,. The group H acts on the sheaf

By writing the sheaf as a direct sum of the eigenspaces with respect to the different

characters of H we can see that it is a direct sum of an invertible sheaf and its

powers. When we take H-invariants, only the powers that correspond to multiples of

ramification degree remain. This happens when 2, 3, or 9% divides k. Therefore, we

can write explicitly,

 

(llll—“ll—l
where [t] means the rational number t is rounded to the next smaller integer number.

Thus,

(u*(wx, (k513i.))l”

Wllll*llw)
 

(4.12)

Now, we will state a key proposition that allows us to understand how we can

relate the lattice of modular forms and Cl(Z[(,]). This is based on results of [Hi] (see

[CPTn)
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Proposition 4.1 Let x : F —+ Z[Cr]* be a 1-dimensional character of prime order

r 2 5 with kernel H. Let G = P/H and suppose M is a finitely generated torsion-free

Z[G]-module. Define MX to be the Z[(,]-module (M 8) Z[Cr]x'")G.

a. There is a unique homomorphism e; : G0(Z[G]) —-> C1(Z[C,.]) such that for all M

as above, either MX = {0} and e;(([M]) = O or MX is isomorphic to Z[C,,’ 635.1

for some integer s 2 0 and a Z[C,]-ideal 5.1 in the ideal class e;([M])

b. There is a unique isomorphism tx : K0(Z[G]) -—> Z®C1(Z[Cr]) such that

tx([P]) = (rankz[G](P),ex([P])) if P is a projective Z[G]-module, where {—P]

is the image of P in Cl(Z[G]) and ex : C1(Z[G]) —* C1(Z[C,.]) is the unique

homomorphism such that eX([P—]) = e;((f([P])) for all projective P, where
\

f : K0(Z[G]) —> G0(Z[G]) is the forgetful homomorphism.



CHAPTER 5

Proof of Main Theorem

We now compute the image of 7”(XH, (11.4wa (lcr’iD;Q)))H ) under the injective homo—

morphism O 2 O3 : C1(Z[G]) ——> CZ(G, 3), which is defined in [CPTl], by applying

their main result and using the isomorphism (4.11). This result allows us to calculate

the equivariant Euler characteristic of a sheaf if there is a tame cover and if the sheaf

can be written as a pullback from the quotient. In our case, let my : XH —-> X0 be our

cover. Since the index of H in I‘ is the prime r 2 5, the order of H is divisible by 6.

By Theorem (2.1) 7m is ramified only at the fiber over p. By (4.11) we already get the

sheaf ()u,,(wXl (kriD1)))H in terms of ka(kaH) twisted by a certain divisor. Also,

a)?“ (k6Dg) can be written as pull back of the sheaf w§:(k6Doo) with some twist.

Therefore, (11,.(wX’“(kciD1)))H can be written as pull back of the sheaf w§§(k5Doo)

with some twist. Let’s try to see the relation between them.

Making the similar local calculations in [pg.74 Ma], we can say

(11?: (deH)——— 7”,on”(kciDH + k(r—— 1)D(§1).

And hence,

(aiwiflkéDQDH 2 7th(12513” + RH + n03?) (5.1)

Here, we denote by RH the divisor [g] {j = 0}H + [231'] {j = 1728}H on XH , which
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can be identified as pull back of the divisor R0 = [g] {j = 0} + [2-3’5] {j = 1728} on

X0. We also note 7] = k(r —— 1) + [W].

We have this fundamental sequence ;

0 —> OXH(—77D51)—> OX” ——> (9an —+ 0 (5.2)

and tensoring by ngwfflkéDg + RH + nDé’ ) we get,

0 —+ hyweflhaogm’i) —» n3w§§(k6D£+RH+nDé’) 2 hywxflchDHmHmDHMM. —» 0.

(5.3)

Since (114wa(deéoD) 2 nHwXKkaH + R” + 71D”), then our sequence becomes,

0 —> rng’chiDl + R”) (h.(w§3f(kcso;o)))H —» c —+ 0 (5.4)

where C = 7r;,(u.X0(k6DH + R” + nDo))[nDu is also supported on D”.

The sequence implies the following relation between equivariant Euler character-

istics,

YP(XH1(H*(wX1(k6Dc1>o)))H):XP(XH17erx:(k6DH+RH))+XP(XHvC) (5-5)

On the right hand side, the first equivariant Euler characteristic will be calculated

easily using the main theorem of [CPTl], and the second one will be calculated using

the adjunction formula as follows:

We have the following exact sequence ;

0 —+ I'M/1" —> OxH/l" —+ (OM/1"—1 —» 0 (5.6)

where I is the ideal sheaf of 03,". By induction on 77 and tensoring each sequence by
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wgwfiydeg + R” ) we get the following sum for the equivariant Euler characteristic

of C

n—l

YP(XH,C) = 7P(Xn,lfii1w;®2§(k50§o + R”)®(1"/1"+1)l|pg!). (5-7)

q=0

Let us denote by N5”, the conormal bundle of D5. Then (5.7) gives

17—1

for”, C) = 27PM”, [nawrmwé’o + RH)®(N1\351®Q)HD§)- (5.8)
q=0

Let us revisit the calculation of the Euler characteristic XP(XH,C). Since the

group G acts trivially on D5! , the Euler characteristic 7”(XH, C) is just the numerical

Euler characteristic times the class of the character of [X0] of the group G. Here the

class of a character [X0] is defined as follows: As we know [X0] is a homomorphism

from G to field Q. We can extend this homomorphism to Z[G] the kernel of this

homomorphism, which is an ideal in Z[G] gives a class in Cl(Z[G’]). This class is

referred as a class of a character. The numerical Euler characteristic of the sheaf

7r},w§§(k6Dfo + R”) <8) (Ngéf®q)]|DOH on 135’ for any q can be calculated by using

Riemann-Roch. We obtain

XP(XH:l7r;iw§:(k6D<1>o + RH) ®(N1\$gl®qll|0{,*) =

= deg(7rFJW§f(k5D£ + R") ®(N}$51®q)|ng) + 1 - 9(XH) (59)

where degree of the sheaf in the formula above can be calculated by adjunction for—
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mula: we get,

degmwfiykw; + R") e (Ngfqnpg) =

 

 

 

_ _kr(p- 1) k(7‘- 1)(p-1)

— 12 + 2k 127‘ +

kr6(p - 1) k 2k (p — 1)

+ 12 +([2]+[3])r qn 12 . (5.10)

So, we can write the Euler characteristic as,

n—l

fume) = 23mm,m + We. 6,r))1x31 (5.11)
:0

for integers

m(k 7‘) = -n(p_1) (5.12)
’ 12

and

_ kr(p —— 1) k(r -—-1)(p — 1) kr6(p — 1) k 2k

n(k,6,r) —— 12 +21: 127‘ + 12 +( 2 + 3 )7‘ (5.13)

depending 011 k,5 and 7".

Now let’s turn to the calculation of XP(XH, wfiwfig(deg + RH)). Since we will

use the main result of [CPTI] for this calculation, it is better to recall the theorem.

For the convenience of the reader we will report the main theorem and some of the

arguments for our calculation from [CPTl].

5.0.1 Main Theorem of [CPTI]

Let R be the ring of integers of a number field K. Let 7r : X —» Y be a G-cover,

which is tame, i.e. for every closed point x E X, order of inertia subgroup 1,; C G

is relatively prime to the charactetistic of the residue field k(:1:), and also domestic,

i.e the residue field characteristic of each point of Y which ramifies in 7r : X —> Y is

29



relatively prime to the order of the group G. Denote by S the finite set of rational

primes such that the cover 7r : X —> Y is only ramified at points above S. By our

assumption assumption, p E S implies p[#G. Denote by SK the set of places of K

that lie above 8. Suppose g is a locally free coherent Oy—sheaf on Y and consider

the G-sheaf .7: = «*g on X. Consider the injective homomorphism

6) = 9d” : C1(R[G]) = Pic(R[G]) —> CR(G;d + 2)

where CR(G; d+ 2) is the isomophism classes of the objects which has cubic structure.

For a finite place 12 of K, we denote by w” a uniformizer of the completion R4, and fix

an algebraic closure 1?” of its fraction field K1,. Also any finite idele (a1), 6 A;.K[Gd+2]

gives the element (flv(Rv[Gd+2]av fl K[Gd+2]), 1) of CR(G;d + 2). Now let 1) 6 SK

(then (1), #G) = 1) and denote by R1, the complete discrete valuation ring R1, C K,

obtained by adjoining to R, a primitive root of unity of order equal to #G. Then

17),, is also a uniformizer for R1,.Let us consider the cover 7r1, : X (8);; R1, ——> Y (813 R1,

obtained from 7r by base change. Since R1, has residue field characteristic prime to

#G and contains a primitive #G-th root of unity. There is an isomorphism

Kled+2l* :* HomGaKRu/K.)(Ch(Gd+2)vsR1?) (5-14)

given by evaluating characters of Gd”. Also if (I) = (151 <8) - - - 18> ¢d+2 is a character of

G‘”2 given by a (1+ 2-tuple (gm),- of 1-dimensional R'v-valued characters of G, we have

GD(¢) = ($1 — 1) - - - (¢d+2 — 1) E Ch(Gd+2)v. The function Tug defined on R—valued

characters is defined in [CPTl] by an explicit formula and its definition implies that,

for all a E Ga1(Ku/Kv) and 11’ E Ch(G)v, we have

TMW) = new”).
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Hence, the map (1) +—> wJT"'G(e(¢)) gives a function in HomGal(Rv/Kv)(Ch(Gd+2)v, K3).

Theorem 5.1 With the above assumptions and notations,

9(2 ' XP(X,J"")) = (flv(Ru[Gd+2l/\v F1 KlGd+2l), 1)»

where (A1,)v E A}.K[Gd+2l is the (unique) finite idele which is such that

1, if ’U ¢ SK ;

¢(’\v) = (5.15)

__ . D
wv2Tv,Q(e (¢)), if’U 6 SK ,

for all Kv-valued characters ()5 of Gd”.

If the “usual” Euler characteristic x(Y, Q) = Zi(—1)irankR[Hi(Y, 9)] is even, then

we can eliminate both occurrences of the factor 2 from the statement: @0213(X, f))

is then given by the idele (11,). with ¢(,\;,) = 1 if v e SK, hug) :- he; “9‘90“” if

v E SK. D

The field (2,, already contains a primitive p — 1-st root of unity. Hence, we may

take R110) = Zp. We find that 8(7P(Xy,wf,w§1f(k60£ + R”))) E Gz(G; 3) is given

by the idele (b1), 6 A}.Q[G3] which is 1 at all places 22 75 (p) and is such that

(X (g) 95 ® ¢)(b(p)) = p_T((X—l)(¢—1)(¢—l)) (5.16)

with T : Ch(G)p —-> Q the function associated to the cover XH ®z 2,, —-> X0 (82 L,

in the main theorem . For a E Z/TZ let {a} be the unique integer in the range

0 s {a} < 7‘ having residue class (1. Using the eqn (3.15) in [CPTl], T becomes

+ (1 —2k(1+6))g—(w1200) TM”) =
p — 1 . _g(l/)1D0)2

12 2
) +(1— 2k<1+ Myth 00)

(5.17)
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 = 2.1221. @1522. _ (1 — 2k(1+ 6))%) + (1 — 2k(1+ 6)){:}". (5.18)

where 1,!) = )6“, X0 = coma-12 and w : (Z/pZ)* ——> Z; is the Teichmuller character.

For a E Z/T‘Z define wr(a) = 0 if a = 0, and otherwise let wr(a) E Z. C Z be the

Teichmuller character associated to 7'. Define

  W) = J” 1‘21 (5(a)?) and 13(5) = (1 — 2k(1+ 5)) {‘2’ (5.19)
27‘2

where 1/) = x5“ as above. We extend 2,!) ——> 1110,12) to a function on the character ring

Ch(G)p by additivity. Since p E 1 mod 24 and rll—2‘f, we can define fl = (5,), with

,8. E Z @Z Z,[G]* by

1’
if v 74 (P);

1pm”) 2

(5.20)

p_T(¢)+T1(¢)+T2(‘/’), if U = (p)

Since Cl(Z[G]) is a torsion group, ,3 defines a unique class [B] in Cl(Z[G]).

We now show

rpm. whwi’éflkwé + 12“» = 161. (5.21)

Define D = [fl] —5(‘P(XH,7r;,w}9}§(k6Df° +RH)), and let R = Zifz': land R = Z

if z’ = 2. From (5.19) one has rill-(1p) E R and rill-(2,0) E a mod TR. It follows that for

all triples (x, (15,112) elements of C'h(G)p, Ti(x¢z/J — x¢ — (In!) — x1!) + x + a3 + w —— 1) lies

in R. Hence there are elements a,- = (ai,v)v E [1,, finite(R ®z Qv[G3]*) for which

1» if v 75 (P);

(X Q?) ab 69 whee-.5) = (5.22)

pr.-(x¢w—x¢—¢w—xw+x+¢+uv—1), if 1, = (p)
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We now conclude from (5.16), (5.17) and (5.20) that

1® G(D) = 61 + Cg (5.23)

in Z (812 CZ(G; 3), where c,- is the class associated to the element a,.

Let us first show

c2 = 0. (5.24)

For this it will suffice to show that there is a cubic element A E Q[G3]* such that Aag

is a unit idele of Q[G3]. Fix a primitive p—th root of unity (p E W, and let

7(2) = Z vex;

jE(Z/p)‘

be the usual Gauss sum associated to w. Let 7' be the unique extension of the

map 1/2 —> 701)) to a. homomorphism from BC to Q7. We let 7(3) be the element of

Hom(Rca,©7) which sends (x, (15,1/1) to

T(x¢w—x¢-¢w—xw+x+¢+¢-1)

From the behavior of Gauss sums under automorphisms of 7Q, and the factorization of

the ideals they generate (c.f. [La, §IV.3]), it follows that 7(3) is Gal(@/Q)-equivariant,

and corresponds to an element A E Q[G3]* of the required kind. This shows (5.24).

Turning now to Cl, let 0(3) be the automorphism of G which sends g E G to g3 for

s E (Z/TZ)*. By (CPTl) the action of Aut(G) on Zp[G]* corresponds to the action

of Aut(G) 011 f E H0m(Ch(G)p, Q?) defined by (0(8)(f))(X) = f(0(3)"1(X)) = f(X3)

for X E Ch(G)p. From the definition of the T1 in (5.19) and the multiplicativity of

the Teichmuller character we have (0(3)T1)(1p) = w.,.(s)2T1(2/2). It follows that the
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element 0(3) 2 0(3) — wr(s)2 sends 01 to the identity function, so

a(3)c1 = 0 (5.25)

Because 9 is Aut(G)-equivariant, we can now conclude from (5.23), (5.24) and

(5.25) that

1®(9(a(3)-D))=0 in Zeazcz(0;3). (5.26)

If A -—> B is an injection of abelian groups, and A is finite, then A = Z®ZA ——> Z®ZB

is injective, as one sees by reducing to the case in which A ——> B is the inclusion

n‘lZ/Z —-> Q/Z for some n 2 1. So (5.26) and the injectivity of 9 implies

02(3) - D = 0 in C1(Z[G]). (5.27)

Similarly, since r2T1(¢) is in Z, C Z and C1(Z[G]) is a torsion group, we see from the

injectivity of 9 that D is in the r-Sylow subgroup of Cl(Z[G]).

We now use the fact that Cl(Z[G]) is isomorphic to Cl(Z[C,]). Define C, to be the

group of classes c in the r-Sylow subgroup of Cl(Q(C,.)) for which (0(3) —-w,.(s)j)(c) =

0 for all s E (Z/r)*. We have shown 01 corresponds to a class in Cg. By the

Spiegelungsatz (c.f. [Wa, Theorem 109]), 02 = 0 if C_1 = 0. Herbrand’s Theorem

([Wa, Thm. 6.17)) shows that if G_1 aé 0, then the Bernoulli number B,_(,-2) = 82

.1.
6 and r 2 5, so we haveis congruent to 0 mod 71.. This is impossible since 82 =

shown 5.21.

To complete the proof of our theorem, we will find

—€x(7P(XH1(#a(w§f(k5055)))")) ah... calculating «Morse» and adding

with our result 5.21. By choosing a suitable element of A = Gal(Q(Cr)/Q) to apply,
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we can reduce to the case in which

111:1.)

x=X0=w r . (5.28)

With these conventions from the definition of ex in Proposition 4.1 we have

-€x(lX0l) == [PX] and hence

—ex(1x31>= 10:105.», if(a,r)=1 . am) = 0 otherwise. (5.29)

So, when we apply —ex to 7P(X3,6) we will get;

n—l

— €x(5C_P(XH,C)) ——- Zora/arm + n<k,6.r>>a;1 . [em] =

:0

q n—1 n—1

= m(k.r)q 5,-1 - [Px.1+ Zn(k.6,r)o;‘-1Px.1 (5.30)

q=0 q=0

From the definition of all terms, we get the following equality,

 

—ex(7”(xe, (a.(w§f<k60éa>>>”>> = 02172010 _ p52). _ 1) -01179...]—1611-1a.1—16011a.1

where

01 = Z {0.}01‘,‘1 E Z[A], (5.31)

aE(Z/r)*

[91] = Z m(k.r)qaq‘1 (532)

0<q§kr—1+[§;27k1r5],(q,r)=l

and
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__ —1

[60] — E n(k, 6, r)0q . (5.33)

0<QSkT—1+[(;l_kfi] ,(q,r)=1

Again, by Stickelberger’s Theorem, 01 annihilates Cl(Z[(,.]), so the proof is com-

plete.

5.0.2 Lower bound for 6

In this part we try to find a lower bound on 6 that allows us to calculate the Galois

structure of lattice of twisted cusp forms explicitly. In our main calculation, we

calculated the equivariant Euler characteristic for any value of 6, which is namely,

7pm. (waifawiano = 1H°(XH,(a..(w§:°(k60;.)>>)1—1H1(Xa,Mash/«60:01)»

(5.34)

in Cl[Z(G)]. If we arrange so that the first cohomology group vanishes then, we

obtain a precise formula for the twisted cusp forms. Details are given in the following

corollary.

Corollary 5.1 There is (50 such that for every 6 > 60, we have the following. Suppose

m C Z[Cr] is an ideal with ideal class 92 - [’PXO] — [01] - ['PXO] — [00] . [Pm]. Then,

S2k.6(rl(p)1ZlCrllx ’1 Z[C1~]"(""1 EB ‘21 (535)

as Z[CJ-modules.

PROOF. With the notations of the theorem, recall that Sgk,5(I‘1(p), p‘6kZ[(r])x is the

Z[CJ-submodule of 82k,5(1"](p), p‘akZKTJ) consisting of twisted cusp forms of weight

2117 and of Nebentypus character X whose n’th Fourier coefficients at 00 are in the
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form of 5E7,— where r in Z[Cr]. Proposition 3.1 and its proof together with the fact that

formation of the canonical sheaf commutes with the base change Z ——+ Z[CT] implies

that Sgk,5(I‘1(p),Z[C,.]) c: 52k,6(I‘1(p),Z) ®z Z[Cr]. Propositions 3.1 and ?? now give

an isomorphism of (torsion free) Z[CJ-modules

321,.(r1(p).p‘6’°Z[51)x 2 H°(XH, (max,(k619i.)))”)X

The projective class XP(XH,(u.(le(MD1)))”) E K0(Z[G]) has the property

that

f(XP(X11, (#a(W§'f(k5Dée)))” )) =

= 010(th(#:1015210'951?1))l")l - [H1(XH,(ua(wxf(kéDlo)))”)l (536)

where f : K0(Z[G]) —+ G0(Z[G]) is the forgetful homomorphism. If P is a projective

Z[G]-module, then Q ®z P is a free Q[G]-module, so rankz[g](P) = rankz(P)/r.

Therefore, using Riemann-Roch we get

raakzmHWXH, (Max:(1553,,m”) — rankzelnwxa, (#a(w§?f(k50éo)))”) =

  

where g(XH) is the genus of X”.

Because the generic fiber ofXH ——> X0 is étale of degree 7‘, by the Hurwitz Theorem,

we can say (9(XH) — 1)/r—-- g(X0) — 1 and we know that g(X0)= M hence,

n(X) = (2k —11)ép— 25) + [k(p(;:I)2r)] + [g] + {—2313} . (5.38)  

Let YP(XH, (u.(wX1‘(k6D1)))”) be the image of XP(XH, (,u..(w§f(k6Déo)))H) in

Cl(Z[G]). If we prove that H1(XH, (p.(w§f(k6D10)))”) vanishes when 6 > 50 for
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some 60, we can easily conclude from (5.36) and 4.1 that there is an isomorphism of

Z[CJ-modules

Sea,a(1‘1(p).Z1<.1)x 2 215.1110“ 6921 (5.39)

where fl is a Z[C,]-ideal having ideal class —eX(XP(XH, (12100331c (k6D10)))H ))

The only thing left is to prove first cohomology group is trivial when 6 > 60 for

some 60. This is done in following lemma.

Lemma 5.1 H1(XH, (,u...(wX1"(lcc5D1 )))H ) is trivial when 6 > 60 for some 60.

PROOF. If we can show that H1(XH, ((1l...(wX1‘(k6Dl )))”)V) is torsion free (which

is necessary condition for duality), then the result will follow by duality as follows:

H1(XH) (u.(w}‘?1°(k6D§o)))") = Homz(H°(XH,(0541531215131ll)” )V), Z) (540)

Here H°(XH,((11..(wX1°(k(5D1)))H )V) is trivial because of the degree of the sheaf is

negative.

To Show that H1(XH, ((1l..((.oX1°(kc5Dl )))H)V) is torsion free it is enough to check

that H°((XH)3, ((11...(wX1c (lrcch1)))H )V) it is trivial on each fiber B. If the fiber 3 7é p,

then it is just P1 and degree of the sheaf is negative implies result. Otherwise (fl = p),

we have two component namely, D5! and D011, one of them is totally ramified and the

other one is unramified. Let 3 be a global section of our sheaf, then its restriction to

D111, is zero since D11, is reduced. Let’s call W for the non-reduced component. So,

Wm“: D” and

0W 2 005; as N as N‘g’2 a; - - - 39 NW“ (5.41)

where N = OXH(—D5’)|D€.

Recall the following equation,

(111(wa(MDl)))H 2 #11onk(k6DH + R” +77DH) (5.42)
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Therefore, 3 is given by r-tuple of sections 3,- of the sheaf

N®‘((1 — k)KH . Dg’ -— 56001.05! — 171351.051 — R” 03,")

We know that

NW = 0Xu(-TD§)|D,§I = Oxymgllpg

then

 deg(N®") = 05.19;: = (pl—21)

which implies

 

We also know that

KH-(Dfo+ng’) =0=>KH-Do’1, = —rKH-D{,’

Adjunction formula gives,

(KH+D£IO)'D:!0 = 290:1. ‘2

and Hurwitz formula gives,

 

 

— 1 —— 1

290g) - 2 = 7(2ng — 2) + (T 112]) )

both together imply that

-— 1 — 1

KH-Dfoz—Dfo-Dg—2r+(r 1gp )

39

(5.43)

(5.44)

(5.45)

(5.46)

(5.47)

(5.48)

(5.49)

(5.50)



Also,

  

 

  

  

   

Dfo-(Do’f,+rD{,’)=0:>D£,-D11,=—rD{,’-Do’g=2.717112LL) (5.51)

So,

_15_Np-U (r-Dw—1Y_
Ky Doo — 12 + 12 27‘ (5.52)

and

-1) (T—1)(p-1)
K . H = __(£_____ _ .1. -

H D” 12 121' ' 2 (5 53)

If we plug all these into the degree calculation of our sheaf we get;

10—4) kflp—D 5—1) U-JXp-D

121‘ 12 + (1 k)( 12 127' + 2)+

k(p—1—2'r) 11—1 116 2

+1 (15—1) 1(127') ,2 3

Tw-J) kflp-D 0-1) 0—1) NW
< ——— — — — ._ 12 12 +(2k 1) 12 + 12? +2 3 (5 54)

We want to find a lower bound to 60 which guarantees that this term is negative, we

say

   

  

71’" 1) WP 1) (p- 1) (1U— 1) 10k

12 _ 12 + (2k — l) 12 + 127, + 2 “ T S 0 (5.55)

1 24 4O

6>2+—(r—1+—+(p_1))—(p_
1) (5.56)

and remember that 'r > 3 and 247" divides p — 1, therefore 7" + 2 is going to be enough

for 60 .
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