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ABSTRACT

THE EFFECT OF WEIGHTING IN KERNEL EQUATING
USING COUNTER-BALANCED DESIGNS

By

Yanxuan Qu

The Counter-Balanced (CB) design for test equating is often used in pilot studies
for testing programs when sample size is limited. When a CB design is used to conduct
equating, data are usually treated as an Equivalent Group design or a Single Group design
(Kolen & Brennan, 2004). On the other hand, von Davier, Holland and Thayer (2004)
proposed a new approach under the Kernel Equating (KE) framework which treats data
as a weighted synthesized mixture of data from the two groups. This new approach is
named as the two independent Single Group approach (2SG approach).

This study investigates the performance of the 2SG approach in comparison to
other data treatment approaches under different sample sizes and order effect situations.
Both linear and equipercentile equating methods under KE and traditional equating
frameworks were applied to two real datasets and six simulated datasets. The results from
traditional equipercentile equating on each simulated population data were considered as
the benchmark to which all the other equating methods were compared. Standard Errors
of Equating (SEE), Root Mean Square Error (RMSE), equating bias, and Standard Error
of Equating Difference (SEED) were reported for each equating of the simulated data.
The standard Error of Equating and Root Mean Square Error were reported for equating
of the real data samples.

The results indicated the 2SG approach unifies the Equivalent Group approach



and the Single Group approach into its flexible framework. The weighting mechanism in
the 2SG approach seemed to be sensitive to different order effects. Possible criteria for

selecting the best weights are discussed.
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NOTATION

Symbol Explanation

XY Names of two test forms to be equated

XY Scores on X and Y, random variables

P Population of examinees

T Target population of examinees on which the equating of X and Y takes
place

CB Counter-Balanced data collection design

EG Equivalent Group Design

SG Single Group Design

DF Design Function

X1 Test X that is taken first

X5 Test X that is taken second

Y, Test Y that is taken first

Y, Test Y that is taken second

F(x) Cumulative distribution of variable X

G(y) Cumulative distribution of variable ¥

J Number of possible X scores

K Number of possible ¥ scores

X; A possible score value for X, jis from 1 toJ

Vi A possible score value for ¥, kis from 1 to K

R Generic symbol for the population probability of X after pre-smoothing
for all designs

S Generic symbol for the population probability of ¥ after pre-smoothing
for all designs

r Estimated probabilities on target population 7, transformed by DF from
Rintor

s Estimated probabilities on target population 7, transformed by DF from
Sintos

éY (%) Estimated score x on Form X equated to Form Y

éx(») Estimated score y on Form Y equated to Form X

’:j An estimated specific value of r

K & An estimated specific value of s

p j Estimated probability of getting a score x jon X

Dk Estimated probability of getting a score y,onY

p Jjk Estimated joint probability of getting a score x j on X and a score Yy
on Y over the target population, 7.

ﬁ(12) Jjk Estimated population probability of getting a score x jon test X which

xill



P(21) jk

hy hy

X(hy)
Y(hy)
Jey (7,5)
JDF(}Q,S*)

is taken first and a score ) on test Y, which is taken second
Estimated population probability of getting a score x jon test X5 which

is taken second and a score )y on test Y| which is taken first

Bandwidth used to define the KE continuizations of F(x) and G(y). They
are positive numbers. Large values of the bandwidths lead to linear
equating, while smaller values give more “equipercentile-like” equating
functions.

Continuized random variable for scores on Form X

Continuized random variable for scores on Form Y
Jacobian matrix of the KE function, which is a function of Fand §

Jacobian matrix of the design function, which is a function of Rand §

X1V



Chapter I: Introduction

Test equating is an important statistical procedure in educational testing. It is used
to produce scores that are comparable across different but parallel test forms, both within
a year and across years. Although there have been many comparative studies
investigating the accuracy of different equating methods, very few studies have been
done for equating with a Counter-Balanced (CB) design. Traditionally as in Lord (1950),
Angoff (1971) and Kolen and Brennan (2004), data collected by a CB design were either
pooled together as a Single Group (SG) design or discarded as an Equivalent Group (EG)
design. Recently, a new approach of treating data collected by a CB design was proposed
by von Davier, Holland and Thayer (2004). This new approach involves weighting data
before pooling them together. To evaluate the performance of this new approach, this
study compared the overall equating accuracy of the two independent single group
approach, abbreviated as the 2SG approach, to the other approaches of treating data
collected by a CB design.

The rest of this chapter introduces the general procedure for equating using the
counter-balanced design and equating approaches for a CB design including the new 2SG
approach under the Kernel Equaiing (KE) framework, and gives a brief summary of
literature on KE equating. At the end of this chapter, the research questions and research
expectations of this study are presented. Chapter II describes the CB design and KE
framework as well as equating errors and the evaluation of equating results. Chapter III
describes the real and simulated datasets to which the equating methods were applied and
the procedure of this study. Chapter IV presents the study results and Chapter V discusses

the findings and limitations of this study.



1.1 Equating Procedure in General

Every equating procedure consists of two basic components: equating design and
equating methods. Typical equating designs include Equivalent Group (also called
random group) design, Single Group design, Counter-Balanced design, and Non-
Equivalent Anchor Test (NEAT) design. Typical equating methods can be classified into
the following three categories: 1) Classical observed score equating; 2) Item Response
Theory (IRT) true score equating; and 3) Item Response Theory observed score equating.
Classical observed score equating methods include the mean, linear, and equipercentile
equating methods reported by Kolen (1988). They define the score correspondence
between two forms by setting certain characteristics of observed score distributions for a
specified group of examinees. Item response theory true score equating defines the score
correspondence by setting the true scores of examinees to be equal (Cook & Eignor,

1991).

1.2 Counter-Balanced Design and Equating

Counterbalance or Latin Square is often used in pure experimental designs to
cancel out order effects (Montogomery, 2000). In educational testing, a CB design is
often used to collect data in pilot studies of testing programs. In a CB design, two
independent groups of examinees usually take two parallel test forms X and Y in
different order.

Various ways of dealing with data in a CB design test equating were described in
Lord (1950), Angoff (1971), and Kolen and Brennan (2004). None of these approaches is
satisfactory for situations when order effect cannot be cancelled out. In order to improve

the equating practice for a CB design, especially when order effects cannot be cancelled



out, von Davier, Holland, and Thayer (2004) proposed a new way of treating data
collected by a CB design under their Kernel Equating framework. This new way of
treating data is named the two independent single group approach (2SG approach), which
creates a synthetic target group by assigning different weights to the two tests taken in
different order, and applies linear and equipercentile equating methods to the synthetic
group. The significance of this approach is its weighting mechanism, which is supposed
to have the potential to provide optimal equating results with the smallest equating error
by using as much data information as possible. However, the effectiveness of this 2SG
approach hasn’t been evaluated.

The 2SG approach, the EG approach, and the SG approach are all about data
collection designs in an equating procedure. The 2SG approach is under the framework of
Kernel Equating. The equating methods related to this approach are KE linear or KE
equipercentile equating methods. The EG approach and SG approach can be implemented
under both KE and traditional equating framework. Therefore, the equating methods
related to these two approaches are the KE linear, KE equipercentile, traditional linear or

traditional equipercentile equating methods (see more details in Chapter II).

1.3 Literature Review

Descriptions about equating using a CB design can be found in Lord (1950),
Angoff (1971), Kolen and Brennan (2004), Zeng and Cope (1995) and von Davier,
Holland, and Thayer (2004). The 2SG approach of treating data collected by a CB design
was mentioned in von Davier, Holland, and Thayer (2004). The only study compared the
performance of this 2SG approach with the EG and SG approach in improving equating

accuracy of a CB design equating is conducted by Qu and von Davier (2006). They



compared the 2SG approach to the SG and EG approach under KE framework using a
real data collected by a CB design. It was found that, when order effect can be cancelled
out, the 2SG approach with equal weights produce similar equating results as the SG
approach under KE framework. It is still unclear how the 2SG approach performs when
order effects cannot be cancelled out. Moreover, it is not well documented in the
literature how to test whether the order effects can or cannot be cancelled out.

The 2SG approach is carried out under the KE framework. KE is a unified
approach to test equating based on a flexible family of equipercentile-like equating
functions that contain the linear equating function as a special case. It belongs to the
category of classical observed score equating. Studies comparing the KE methods with
other equating procedures concluded that the KE procedure can improve or approximate
the equating results of corresponding traditional equating methods.

Livingston (1993a) compared KE methods with traditional linear and
equipercentile equating methods using small samples collected by a NEAT design. He
evaluated the equating methods in terms of random equating error and equating bias and
found that the KE methods with log-linear smoothing provided more accurate equating
results, when compared to traditional equating methods without smoothing. He also
found that, compared to the empirical standard error of equating, the analytic standard
error of equating calculated by the delta method is larger at the lower or higher score
rarige when sample size is less than 200.

Mao and von Davier (2005) compared Kernel Equating methods with their
corresponding traditional equating methods using real data in a NEAT design and an EG

design. For the NEAT design, they compared the traditional frequency estimation



equipercentile equating with KE post-stratification equating method and the Tucker
method with the KE linear post-stratification equating method. They found that KE
methods and their corresponding traditional equating methods have very similar equating
results. Von Davier, Holland, and others (2005) did a similar study using a pseudo-test
data with a NEAT design and drew the same conclusion.

Han, Li, and Hambleton (2005) compared KE with IRT true score equating
methods using data collected by a NEAT design. Again, they found the KE methods

provide similar equating results as those of the IRT equating methods.

1.4 Research Questions

This study intends to quantify differential order effects, to compare the 2SG
equating procedures under KE framework with other traditional equating procedures, and
to discover whether the weighting mechanism can enhance the equating accuracy under
different order effect situations. The specific research questions are:

1) How should differential order effects in CB designs be quantified?

2) Are the KE methods better than their corresponding traditional equating

methods?

3) Does the weighting in the 2SG approach provide better results under certain

order effect situation?

4) What weight should be used for a 2SG approach?

Table 6 displays the 22 equating procedures compared in this dissertation. What
distinguishes them from each other are the way they treat the data collected by a CB
design (EG, SG or 2SG with weighting) and the equating method (linear or

equipercentile) they adopted. To compare the performance of KE with traditional



equating methods, the equating results of two KE procedures are compared to the
equating results of their corresponding traditional equating procedures (as listed in table

5).

1.5 Research Expectations

1) The KE equating methods and their corresponding traditional equating methods
provide similar equating results.

2) As DOE increases, the weights of the 2SG approach assigned on tests taken first
increases accordingly.

3) Decision on the selection of an equating function with the optimal weights may

vary when using different statistical criterion to evaluate the equating results.

As presented above, the literature on any CB design equating is sparse. Since CB
design is still used in research projects and in the pilot study of testing programs (Yu,
2003) when examinees are hard to find, it is useful to comprehend the 2SG approach and
to evaluate how much it can enhance overall equating accuracy when compared to other
methods in various order effect situations. Such a study will contribute to the general
knowledge about a CB design and the methods available for equating using data collected

by a CB design.

Chapter II: Theoretical Framework

This chapter first introduces the equating designs related to a CB design, the
linear and equipercentile equating methods and the Kernel Equating framework, and then

describes the concept of equating error and the criteria used for evaluating equating



results.

2.1 Counter-Balanced Design

A CB design is often used .in practice when administering two forms to examinees
where it is difficult to obtain sufficiently large group of examinees (Kolen & Brennan,
2004). To explain the CB design in more detail, a brief description about EG design and
SG design is necessary:

Equivalent Group Design

TABLE 1. Equivalent-Groups design

Population  Sample X Y
P 1 v
P 2 vV

In an EG design, two independent random samples are drawn from a common
population of examinees, P. Each group of examinees is randomly assigned to take one of

the two parallel forms X and Y as shown in Table 1.



Single Group Design

TABLE 2. Single-Group design

Population = Sample X Y

P 1 N J

In a SG design, only one random sample of examinees is selected from population
P, and all the examinees take the two test forms X and Y in one administration as shown
in Table 2. Because the two test forms are parallel and they are taken by the same
examinee, it is almost certain that the examinee’s performance on the second form will be
affected by their performance on the first form. The effect may be a “practice/learning
effect,” or “fatigue effect.” If familiarity with the test increased performance, then Form
Y could appear to be easier than Form X. On the other hand, if fatigue is a factor in
examinee performance, then Form Y could appear relatively more difficult than Form X
because examinees would be tired when administered Form Y (Kolen & Brennan, 2004).
For simplicity, all such possible effects will be named as “order effect” (Lord, 1950). If
the two test forms are administered in the same order to all examinees, as in a SG design,
it is impossible to obtain any estimate of the amount of order effect. Consequently, to
control for the order effect, it is usual to counterbalance the order of administration by
dividing the group in a SG design into two random halves and giving two test forms to

each group but in different order. This design is what is often called a CB design.

TABLE 3. Counter-Balanced design

Population ~ Sample X Y, X5 Y,
P 1 v v
lis 2 v v

*The subscripts of X and Y indicate the order. Eg., X| means take test X first, Y, means take test Y second.

Table 3 illustrates a CB design, in which, two samples of examinees were



randomly chosen from a same population P and were randomly assigned as sample 1 and

sample 2. Sample 1 takes test X first (denoted as X;), test Y second (denoted as Y), and
sample 2 takes test Y first (denoted as Y;) and test X second (denoted as X»). The

purpose of counterbalancing the order of testing is to ensure any order effects are present
equally in the scores obtained for both test forms X and Y such that the order effects on
Form X and Form Y can be cancelled out.

Theoretically, if random selection and random assignment of the examinees are
carried out strictly in operation, the purpose of canceling out “order effect” can be
accomplished by collecting data using a CB design. However, in practice, the assumption
of random selection is often violated. Usually, random sampling is replaced by random
cluster sampling. The violation of these two assumptions leads to the interaction between
group abilities and form difficulties, which is the reason why the order effects often
cannot be cancelled out. For example, some group of people might do better on the
second test after practicing on the first test, while the other groups might do worse.

There have been different definitions for order effects in literature. Lord (1950)

and Angoff (1971) defined the order effect on Form X

asKy =X,—-X) =C0‘X1 =C0'X2 = CO y , and the order effect on test Form Y as

Ky=Y,-Y=Co Y, = C Oy, = Coy (where C is a constant). They assumed that

order effects are constant for all examinees and are proportional to the standard
deviations. Kolen and Brennan (2004) explained order effects without assuming they are

constant for each examinee. They defined Differential Order Effect (DOE)

as(X| — ¥) — (X, — ¥>) and suggested that a significant DOE would indicate that order



effects cannot be cancelled out in a CB design. However, there is not a significance test
described in their book. In chapter III, this dissertation adopted their definition of DOE,
described a hypothesis testing for the statistical significance of DOE and suggested using

the effect size statistics for the magnitude of DOE.

2.2 Equating Using Counter-Balanced Designs

Like every equating procedure, equating using a CB design has two parts: data
collection design and equating methods.

2.2.1 Approaches to Treating Data in a CB Design: The nature of CB design
leads to different ways of dealing with data. Comparing tables 1, 2 and 3 we see that CB
design actually contains both EG and SG designs. For example, there are two (dependent)

EG designs, one for X, and Y, and the other for X, and Y. In addition, there are two
(independent) SG designs, one for X; and Y5, and the other for X, and Y. Finally, the
two groups of examinees can be pooled together and all the data from X, Y;, X5 and Y,

can be treated as a pooled SG design.

Because of these different ways of considering data in a CB design, several data
treatment approaches have been used to equate test forms X and Y. Lord (1950) and
Angoff (1971) described a linear equating method that actually treated the data as pooled
single group design. They assume constant order effect and bivariate normal distributions
of test X and Y in the population. By constant order effect, they mean that order effects
are the same for all examinees and are proportional to the relevant standard deviations.
Kolen and Brennan (2004) did not assume constant order effects across examinees. They
suggested using the pooled SG approach when order effects can be cancelled out.

Otherwise, only the EG approach with X; and Y should be used, since it is perhaps the

10



only unbiased way of treating data in a CB design.
Nonetheless, each of these two approaches for treating data has its own

weaknesses. Although The EG approach using X; and Y; only is unbiased, it throws

away half of the data and makes no use of the correlation between X and Y, which is
implicit in the SG aspects of the CB design. The pooled SG approach is considered
problematic when order effects cannot be cancelled out because it is hard to interpret the

pooled distribution of X; and X, (or Y; and Y,) when they each have a different

distribution (von Davier, Holland, & Thayer, 2004).

In an attempt to find a better way of using data collected by a CB design, von
Davier, Holland, and Thayer (2004) proposed the 2SG approach, a new approach using
all data information as much as possible and more flexibly. It is expected to be able to
unify the other three approaches into one single approach and provide an optimal
equating solution while taking into account different sizes of order effects. Section 2.3
explains this approach under the KE framework in detail.

Table 4 summarizes different ways of dealing with data in a CB design discussed

in literature review.
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TABLE 4. Ways of treating data in a CB design appearing in the literature

EG design  Explanation Use data from X and Y only
for X and Random selection from a single population & random
Yjonly  Assumptions assignment
Suggested when DOE is significant
Advantage/Disadvantage  Unbiased/loss of half data
Source Kolen and Brennan (2004), von Davier et al. (2004)
EG design Explanation Use data from X5 and Y, only
for X3 and Random selection from a single population; random
Y only Assumptions assignment
Definitely not when DOE is significant
Advantage/Disadvantage  /biased; loss of half data
Source Kolen and Brennan (2004)
EG Explanation Average two EG equating functions
pooling . Random selection; random assignment
approach ~ Assumptions DOE is not significant
Advantage/Disadvantage leJqssa f?rllgdfit:clt?g?]:‘wtlon/lgnore dependency between two
Source Von Davier et al. (2004)
SG design  Explanation Use data from X and Y5 only
for Xy and . Random selection
Y3 only Assumptions DOE is not significant
Advantage/Disadvantage  /loss of data information
Source Kolen and Brennan (2004)
SG design  Explanation Use data from X7 and Y only
for X3 and . Random selection
Yy only Assumptions DOE is not significant
Advantage/Disadvantage  /loss of data information
Source Kolen and Brennan (2004)
Pooled SG . Use all data from X, Y, X3 and Y5 equally when order
approach Explanation effect can be cancelled out
Assumptions Random selection; random assignment
DOE is not significant
Advantage/Disadvantage Qse _full data information/not applicable when DOE is
significant
Source Kolen and Brennan (2004), Lord (1950), von Davier et al.
(2004)
2SG . Use all data information unequally when different order
approach Explanation effects present

Assumptions

Advantage/Disadvantage
Source

Random selection & random assignment
All kinds of DOE

Use full data information/

Von Davier et al. (2004)

* Approaches 2, 3, 4, 5 are possible ways of treating data in a CB design but are of no interest to this study

2.2.2 Equating Methods for a CB Design: Linear or equipercentile equating

12



methods following KE or traditional equating procedure are the equating methods related
to a CB design found in literature.

Every equating method defines a target population 7, on which scores on the two
test forms are to be made equivalent (for the population as a whole, not necessarily for
every individual in the population) (Livingston, 2004; von Davier, Holland, & Thayer
2004; etc.). The target population depends on the data collection design. This study
focuses on the CB, EG, and SG designs where there is only one population P of test
takers from which particular samples are drawn. For these designs the target population T
is assumed to be the same as the underlying population P (von Davier, Holland, &
Thayer, 2004). The linear equating method is appropriate when tests X and Y have the
same distribution on the target population while the equipercentile equating method
adjusts for the differences in the distribution.

Linear equating defines the equating relationship as the equivalence of Z-scores,
whereas equipercentile equating method defines equating relationship as the equivalence
of cumulative distribution functions of X and ¥ in the population. Equation (1) and
equation (2) define the equating relationship for linear and equipercentile equating when

equating X onto ¥, which means each of the raw scores, X, is transformed to ey(x;) or y by
these equating functions, i.e., a raw score of x; on test X is interchangeable with a raw

score of ey(x;) or y on test Y.

X—Hy _Y-Uy — y=uy+0—y(x—ux) a)
Ox Oy Oy
G(y)=F(x) > y=G"(F(x)) @

Equation 2 holds only when X and ¥ are continuous. KE applies the Gaussian
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Kemel continuization procedure (von Davier, Holland, & Thayer, 2004). While the
traditional equipercentile equating in this study uses linear interpolation to continuize

score distributions.

2.3 Equating with a CB Design under the Kernel Equating Framework

The KE framework accommodates both linear and equipercentile equating
procedures with pre-smoothing and continuization. Pre-smoothing is the log-linear
smoothing before scores are equated. Continuization is used to convert discrete score
distributions to continuous distributions by using a normal (Gaussian) “kernel” (Holland
& Thayer, 1989; von Davier, Holland, & Thayer, 2004). In the case of a CB design, the
KE framework incorporates three different ways of treating data -- the EG approach, the
pooled SG approach, and the 2SG approach. Both linear and equipercentile equating
methods are available to each of the three ways of treating data. The following section
introduces the five steps of the KE framework particularly for a CB design and presents

how the three approaches differ with respect to each of these five steps.

2.3.1 Step 1. Log-linear Pre-smoothing

In pre-smoothing, the empirical score distributions are smoothed. Smoothing can
remove irregularity in the empirical score distributions and make them as smooth as the
population score distribution relationship. Smoothing is necessary, especially when
sample size is small (Livingston, 1993). KE conducts pre-smoothing using a log-linear
method. Compared to the other pre-smoothing methods, the log-linear method has the
flexibility of accommodating many distributions and is well-behaved and relatively easy

to estimate. Because the log-linear models are a part of the exponential families, the
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estimated distribution can match the sample distribution by as many moments as possible
(Holland & Thayer, 2000; Kolen & Brennan, 2004).

In this step, a log-linear model with best fit is selected to fit the sample data and to
estimate discrete score probabilities. The fit of the log-linear models can be evaluated by
examining changes in the likelihood ratio chi-square index over different models and

conditional Freeman-Tukey residual plots. The Freeman-Tukey residual plot displays the
deviation between e, (X) and Y or between e,(Y) and X. A log-linear model with
good fit will have conditional Freeman-Tukey residuals randomly distributed within 3
units above or below the zero line. In addition, the fit of a log-linear model can be
somehow reflected by the Standard Error of Equating introduced in step 5. A bad model

fit could lead to large SEE.

Let J and K denotes the total number of possible scores on Form X and Form Y

respectively, x j Tepresents a possible score value for test X, j=1 toJon X; y represents
a possible score value fortest Y, k=1to KontestY; p Jjk =Prob{X=x;, Y=y | T }=the
bivariate score probability of X=x j and Y=y, over the target population T; let 3’s be

the slope parameters that will be estimated by maximum likelihood method, @ and o *

are the normalizing constants selected to make the sum of population score probabilities
equal to one; let Ty and Ty denote the number of moments matched between the fitted

probabilities and the observed score probabilities; and let 7 and L denote the number of

cross moments matched between the fitted and the observed score probabilities. Then,
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A univariate log-linear model takes the form of:

! i 3)
log(p;) =0+ _ZIBi(xj)
1=

A bivariate log-linear model takes the form of:

I o X i T i L L il (4)
og(pjp)=a + % Bx(x;) + X fy(ye) + ZIZ Bixjyk
i=1 i= i=11=1

For the SG KE method, one single bivariate log-linear model is fit to the pooled
data to get the probability of an examinee getting a score of j on Form X and a score of £
on Form Y (that is p k-

For the 2SG KE method, two separate bivariate log-linear models are fit to two

groups of data to get two sets of probability estimates f’(l 2) jk and ‘5(21) jk » Where

ﬁ(l 2) jk is the estimated population probability of getting a score x jon test X1, which

is taken first and a score ) on test Y, which is taken second; f’(21) Jjk is the estimated

population probability of getting a score x jon test X5 which is taken second and a score

Yy on test Y which is taken first.

For the EG approach, data is fit by two univariate log-linear models.

Alternatively, the EG with X; and Y; only KE method can be considered as a special case

of the 2SG KE method with weights of (1, 1).

2.3.2 Step 2. Estimating Score Probabilities on the Target Population

In this step, a Design Function (DF), either linear or non-linear, is applied to map

the estimated population score probabilities from step 1 into the estimated score
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probabilities for X and Y on the target population T, denoted as # j and Sk -

In the KE method of EG with X; and Y, only, the DF is an identity function, i.e.,
the estimated probabilities on target population T (7 j or Sk ) is identical to the estimated
population probabilities, p jor Dy, - For both pooled SG and 2SG KE methods, a non-

identity DF is needed to transform the estimated population probabilities from step 1,

which is relevant to the data design, into the estimated probabilities over target
* *
population T. For the pooled SG KE method, ¥ g and §}, is the sum of the joint

probabilities over k and j respectively. For the 2SG KE method, ¥ 'j or Sy is the weighted

average of the two sets of estimates from the two groups.

f; =2Djk> ©)
k
Sk =2Djk> ©
J
Fj = x%f’(IZ)jk +(- Wx%f’(zl)jk’ @
Sk = Wny’(Zl)jk +(1—Wy)Zﬁ(12)jk’ ()
J J

Where w,. and Wy, indicate the weights placed on the test forms taken first.

Depending on the size of DOE, they can be adjusted somewhere between 0.5 and 1 to

emphasize information collected from tests taken first. When both w,. and W, are set to

be 1, data from test forms taken second are completely discarded. Thus the 2SG approach
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becomes the EG approach with X; and Y| only. On the other hand, when both w, and

w

) are set to be 0.5, the 2SG approach approximates the SG approach by treating the

data equally from tests taken first and second.

2.3.3 Step 3. Continuization

Livingston (1993) clearly explained this step. In all equipercentile equatings,
score x on Form X and score y on Form Y are equated in a population of test-takers if and
only if they have the same percentile rank in that population. In the real world of
educational testing, since the observed test scores are discrete, it is rare to find a score on
Form Y that has exactly the same percentile rank in the test-taker population as score x on
Form X. In order to do equipercentile equating, discrete percentile rank score distribution
has to be continuized. In the KE framework, this “continuization” of the distribution is
accomplished when it replaces the frequency at each discrete score value with a
continuous frequency distribution centered at that value. In contrast, the traditional
equipercentile method uses linear interpolation to continuize discrete score distributions.

By adding a continuous random variable V distributed as N (0, 1), the discrete

random variables X and Y are transformed into continuous variables X (hy )andY (hy)

in KE:
X(hy)=ax(X+hxV)+(-ay)uy ®)
Y(hy)=ay(X +hyV)+(1-ay)uy (10)

In the above formula, 4y and Ay can be any positive number. They are the
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bandwidth of the replaced normal distributions for each discrete score; / y and 0'/2\z

denote the mean and variance of variable X over target population 7,

2
c
Hx =ijrj,afy = Z(xj -Ux )Zr' ; af\r =7L7 is an adjusting constant.
J J ox +hx

Since variable ¥ has a continuous normal distribution, it is obvious that X + Ay V will
be continuous and so does X (A y ). It can be proved that the transformed continuous

variable X (hy ) and Y (hy) has the same mean and standard deviation as the discrete

variables X and ¥ respectively.

The selection of &y (or hy) determines the equating method. The KE Optimal
(simply as “KE” in Table 6) equating method selects hy (or #y) automatically by
minimizing the difference between the probability distributions of X (or ¥) before and

A 7 2
after continuization Z(r Jj T Ih 3 (x;))”, where I/ s the density of X(hy)). While
J

the KE_Linear (linear) equating method can be approximated by using a large
“bandwidth” value which is usually larger than 10 times of the standard deviation of an

observed score distribution.

2.3.4 Step 4. Equating
KE defines the equating relationship as the equivalence between the continuized
cumulative distributions of X (hy )and Y (hy ). For example, the equating function for

equating X to Y on target population T is given by:

Gy (139) = Fyy (1:7) = § = G | (Fyy (7)) & 8,(0) = G (B, ()
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(11

Where F(hy ) and G (hy) represent cumulative density functions of

X (hy)andY (hy) respectively. The linear equating method is considered as a special

case in KE framework.

2.3.5 Step 5. Calculating Standard Error of Equating (SEE) and Standard Error of

Equating Difference (SEED)

KE provides a formula for calculating SEE derived from the delta method (see

von Davier, Holland, and Thayer, 2004):

5 c 28 — t t
SEE(éy (x)) = SEE(ey (x;7,5)) = \/Jey (#5)/DF (R $)%R,57ev (1 §)/ DF (7,5) (12)
Here Rand S are used as generic names over all the designs for the population

score probabilities of X and ¥ estimated by the log-linear pre-smoothing model in step 1,

A

R
like ﬁj Dk f’(l 2) jk» and 13(21) Jjk ete. When sample size is large, ( ] is
S

R
asymptotically normally distributed with mean of (S) and variance matrix of

z ¢ with dimension ((JK + JK) X (JK + JK)); Fand § are the estimated population
score probabilities of X and ¥ over target population T; X B3 is the covariance matrix of
RandS . The estimated equating function is a composition of éy and DF

(éy(x)=ey(x;F,5)= G} (F(x))); the design function (DF) is a function of
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Ié andS' ;0 J ey (,8) and J DF( R, .§) are Jacobian matrices (in formula 13 and 14) related

to the equating function and the design function respectively. J ey (7,5) isa(1x(J+K))-

row vector of the first derivatives of the estimated equating function with respect to each

estimated score probabilities 7and § over target population T, and J DF(R §) isa

((J + K)X(JK + JK)) - matrix of the first derivatives of the DF with respect to each of

the output variables from the pre-smoothing procedure:

Jey (7,5) = (aeff a—ey-) (13)
oF ~ 95 Jix(J+K))
OF oF

JDF(RS)z 81%’85' 14
% 3 (4

ﬁ,g (J+K)X(JK+JK))

Kemel Equating provides an analytic tool to calculate standard error of equating.
It is known as the delta method (also known as Taylor Series method) and provides a
statistical procedure widely used to estimate the variance or standard error of a function
of some statistical estimates with known asymptotic distributions (Kolen & Brennan,
2004; von Davier, Holland, & Thayer, 2004).

In addition to calculating the conditional SEE’s at each score point, KE also
provides the SEED statistics for calculating the standard error of equating difference
between two KE functions at each score point. Von Davier, Holland, and Thayer (2004)
used SEED to decide whether the equating results of two KE methods are significantly

different from each other.
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2.4 Equating Error

Equating error reflects the difference between the equated scores estimated from
the sample and the equated scores from the population. It consists of two sources of error
— random equating error and systematic equating error. Random equating error is the
error simply due to sampling. Systematic equating error arises if 1) the equating design is
inappropriately executed; 2) the statistical assumptions of an equating method are
violated; 3) equating procedure is inappropriately implemented, for example, applying an
IRT equating to a multidimensional test. The definition of random error and systematic
error defermines that the magnitude of the random equating error closely depends on the
sample size, while the systematic equating error does not depend on the number of

examinees in the equating (Kolen & Brennan, 2004).

2.5 Evaluating the Results of Equating

After equating is conducted, the results of equating can be evaluated with several
criteria. According to Harris and Crouse (1993) and other evaluation studies of KE, the
evaluation criteria for equating results include:

1) Standard error of equating conditional on scores;

2) Root Mean Squared Deviation (RMSD) index and “average equating
error” index (Klein & Jarjoura, 1985; Livingston, Dorans, & Wright,
1990) for evaluating overall equating accuracy;

3) Conditional equating bias and “average equating bias” (Livingston, 1993);

4) Root Mean Square Error (RMSE) for overall adequacy of equating (Mao,
von Davier, & Rupp, 2005);

5) Standard Error of Equating Difference calculated under the KE framework
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(von Davier, Holland, & Thayer, 2004).

2.5.1 Standard Error of Equating

The Standard Error of Equating (SEE) is useful in indicating the amount of
random error in equating which is due to sampling of examinees. There are two ways of
calculating SEE’s: analytic methods, and computational methods such as a bootstrap
resampling method or other empirical methods. The delta method is an analytic method
replying on asymptotic statistical assumptions. It uses normal distribution to approximate
the probability distribution of a statistical estimator. The assumption of asymptotic
normality holds only when sample size is relatively large. When sample size is small, the
delta method will not be accurate unless strong normality assumption holds for the
population.

Using a real data with a common item nonequivalent group design, Hanson, Zeng,
and Kolen (1993) compared the delta method standard errors of equating with the
bootstrap standard errors of equating for Levine observed score and true score linear
equating. The sample size is over 700. The results of their study indicate that compared to
the bootstrap SEE, the random equating errors for scores at the higher end were
overestimated by the delta method with a normality assumption while the random
equating errors for scores at the lower end were underestimated. Lu and Kolen (1994)
used the delta method and the bootstrap method to estimate SEE’s of Tucker linear
equating for a common item nonequivalent group design. They compared the differences
between standard errors derived from the delta method and the bootstrap method given
different sample sizes and different number of bootstrap replications. They also found

that the difference between standard errors calculated by the delta method and the
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bootstrap method become larger as sample size decreases and as the number of bootstrap
replications decreases.

Bootstrap method refers to the resampling procedure of selecting random samples
with replacement from a given sample with size N repeatedly. The theoretical framework
for the bootstrap method and the applications of the bootstrap method were decribed in
Efron (1982), Efron and Tibshirani (1993) and Kolen and Brennan (2004). Suppose in a
random equivalent group design, two groups of examinees of size n; and n, took test
forms X and Y respectively, Form Y is equated to Form X using equating method B,
Then a typical bootstrap method has the following steps: 1) Draw a sample of size n; with

replacement from the group of examinees taking test form X (size = n;); 2) Draw a
random bootstrap sample of size n, with replacement from the group of examinees taking
test form Y (size = n,); 3) Conduct equating on the random bootstrap samples and obtain

an equating function; 4) Repeat step 1 through step 3 for a large number of times and
equate Y to X every time; 5) All the equating results at each score point form a
distribution. Calculate standard deviation of the equating results at each score point. The
result is called the estimated bootstrap standard error of equating conditional on every
score point. Then the bootstrap standard error of this equating procedure conditional on

each score level will be:

1 » =
SEE = ;Tlge,y(yk)—ex(yk»z as)

where # is the total number of replications; y; represents the th score on Form Y;

ex (¥ ) is the equated score on Form X corresponding to score yy ; EX (¥g ) is the mean
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of equated scores at score y;, over the » replications. Parshall, Houghton, and Kromrey

(1995) used bootstrap standard error of equating and statistical bias in equating to study
the adequacy of equating. Their results incidate that as sample size decreased, equating
bias remains stable but the bootstrap SEE increased substantially. Therefore, they argued
for using the bootstrap method instead of the delta method to calculate SEE for samall
samples (Tsai, 1995).

Livingston (1993a) compared the standard errors of kernel equating methods with
traditional equipercentile methods using a common item nonequivalent group design. He
calculated random standard error of equating using an empirical method different from
the typical bootstrap method. He selected 50 small random samples of size » without
replacement from a big population dataset of size N. He then obtained equating results for
each of the 50 small samples. Standard deviation of the 50 equated scores from the
population criterion equating result at each raw score point is regarded as the conditional

standard error of equating at each score point. Instead of using the mean of the 50
equated scores for each raw score point (gX (¥t ) in formula 15), he used the equated

score on the population criterion.
The simulation study in this dissertation follows the same procedure as described
in Livingston (1993) to calculate empirical standard error of equating. The bootstrap

method was applied on the real datasets to calculate standard error of equating.

2.5.2 Root Mean Squared Deviation (RMSD)

The root mean squared deviation (RMSD), is a measure of the overall equating
accuracy (Livingston, Dorans, & Wright, 1990; Livington, 1993; Schmitt, Cook, Dorans,

& Eignor, 1990). It can be calculated by:
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2y, (Xy, —xy, )
RMSD = (16)

\ 2ny,

where x Ve is the equated score on Form X corresponding to score y using the

criterion equating method; X Vi 1s the equated score on test form X corresponding to

score y using other equating methods; n Vi is the number of observations at each score

level of test Y. The RMSD is basically an average of the conditional random equating
errors. An alternative summary statistics is the average equating error, which is simply

the average of the conditional standard error of equatings over all the score points on test

Form Y (Klein & Jarjoura, 1985).

2.5.3 Equating Bias

Equating bias is useful in indicating systematic error in equating. In equating
practice, equating bias is often estimated when comparing equating results with an
arbitrarily selected sound criterion. Generally, results from equipercentile equating are a
good candidate for such a criterion. Yen (1985) suggested using the results from
equipercentile equating as a criterion because it is as accurate as the IRT-based equating
results. Livingston (1993a and 1993b) used the equipercentile equtaing results for a very
large sample as a baseline criterion. Alternatively, the true equating relationship can be
found from simulated data. In simulation studies, the population equating relationship is
known and can be reckoned as a comparison criterion for calculating equating bias, but
the degree to which the simulated data can represent real data is questionable.

Use the same notation defined above, the equating bias conditional on each score
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level can be caculated by:
Xy =Xy, 17

The overall bias of equating can be calculated by:

Ly, (Xy, —xy, )/ 2ny, (18)

2.5.4 Root Mean Square Error

As described above, SEE and RMSD reflects random equating error and
systematic equating error respectively. Tsai (1995) and Mao, von Davier, and Rupp
(2005) adopted the Root Mean Square Error (RMSE) index. Tsai (1995) explained why
this statistics takes into account the random equating error and systematic equating error

simultaneously.

RMSE=\/(2)2 +(sdy )2 (19)

Where d is the mean of the equating differences at each score level, and sd; is the
standard deviation of the equating differences between two methods. It reflects how

biased and how accurate the equating results are comparing to an equating criterion.

2.5.5 Standard Error of Equating Difference

SEED calculated in KE can be used to determine whether the equating difference
between two KE methods is significant or not. Von Davier, Holland, and Thayer (2004)
used SEED to decide if equating bias in a CB design is significantly big. When equating
using a CB design, the equating function of the 2SG approach with weights of (1, 1) is

unbiased since the data from tests taken first is not affected by order effects. If a 2SG
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method with certain weights is compared with the unbiased 2SG(1, 1) method, and their
equating difference falls within the range of + 2SEED, then the equating bias of this 2SG
method is small enough to be neglected. The standard error of equating will become the

only statistics to compare when selecting an equating function.

TABLE 5. KE methods and corresponding traditional equating methods

2SG(.5, .5) KE linear Traditional SG linear equating

2SG(1, 1) KE linear Traditional EG linear equating

2SG(.5, .5) KE equipercentile Traditional SG equipercentile equating
2SG(1, 1) KE equipercentile Traditional EG equipercentile equating
2SG with other weights Not available
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TABLE 6. All equating methods compared in this study for simulated data

Equating Explanation
28G 2SG(.5,.5) Log-linear smoothing; Treat data as two independent groups; Using
Design weights of (.5,.5) for Xand Y
Line 2SG(.5,.75)  Log-linear smoothing; Treat data as two independent groups; Using
near weights of (.5,.75) for X and Y
2SG(.6,.5) Log-linear smoothing; Treat data as two independent groups; Using
weights of (.6,.5) for X and Y
2SG(.6,.6) Log-linear smoothing; Treat data as two independent groups; Using
weights of (.6,.6) for X and Y
2SG(.75,.5)  Log-linear smoothing; Treat data as two independent groups; Using
weights of (.75,.5) for X and Y
2SG(.75,.75) Log-linear smoothing; Treat data as two independent groups; Using
weights of (.75,.75) for X and Y
2SG(.9,.5) Log-linear smoothing; Treat data as two independent groups; Using
weights of (.9,.5) for X and Y
2SG(.9,.9) Log-linear smoothing; Treat data as two independent groups; Using
weights of (.9,.9) for X and Y
2SG(1,1) Log-linear smoothing; Treat data as two independent groups; Using
weights of (1,1) for X and Y
2SG 25G(.5,.5) Log-linear smoothing; Treat data as two independent groups; Using
Design weights of (.5,.5) for X and Y
Equi 2SG(.5,.75)  Log-linear smoothing; Treat data as two independent groups; Using
qur- weights of (.5,.75) for X and Y
percentile . . . .
2SG(.6,.5) Log-linear smoothing; Treat data as two independent groups; Using
weights of (.6,.5) for X and Y
2SG(.6,.6) Log-linear smoothing; Treat data as two independent groups; Using
weights of (.6,.6) for X and Y
2SG(.75,.5)  Log-linear smoothing; Treat data as two independent groups; Using
weights of (.75,.5) for X and Y
2SG(.75,.75) Log-linear smoothing; Treat data as two independent groups; Using
weights of (.75,.75) for X and Y
258G(.9,.5) Log-linear smoothing; Treat data as two independent groups; Using
weights of (.9,.5) for X and Y
2SG(.9,.9) Log-linear smoothing; Treat data as two independent groups; Using
weights of (.9,.9) for X and Y
2SG(1,1) Log-linear smoothing; Treat data as two independent groups; Using
weights of (1,1) for X and Y
SG design  SG_Lin Linear-interpolation; Traditional linear equating
SG_Equi Linear-interpolation; Traditional equipercentile equating
EG design EG Linear Linear-interpolation for continuization; Traditional linear equating
EG Equi Linear-interpolation for continuization; Traditional equipercentile equating

Among these methods, the EG linear, EG equipercentile, SG linear and SG

equipercentile equating methods are the corresponding traditional equating methods for
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the 2SG(1, 1) linear, 2SG(1, 1) KE, SG KE linear and SG KE methods.
Chapter III: Methods

3.1 Quantification of Differential Order Effect

This study draws on DOE as (X 1= }_’l) —(X )= )_’2) (Kolen and Brennan, 2004)
to further introduce Hypothesis Testing and effective size and estimate order effects in a
CB design.
The following is a derivation for a hypothesis testing of the statistical significance

of DOE:
DOE = (fx, - iy)) = (Ax, = fy,) = (fx, + Ay,) = (Ax, + f1y)
(58

NN Ny, N

2(X1+Y,) Y(Xp+RK) . .
N, - N, =Hx+Y,) ~H(X,+1) (20)

where ﬁ( X,+Y,) is the average sum scores of X; and Y, for sample 1,[1( X,+Y) isthe
average sum scores of X, and Y, for sample 2; N, is the number of examinees in sample
1, and N, is the total number of examinees in sample 2.

Therefore, the hypothesis testing for the significance of DOE is actually
equivalent to a two independent sample t-test for the mean difference of Suml2 and

Sum21. The null hypothesis for DOE becomes: H0 :/u(x,ﬂa) —lu(an',) =0;

. DOE
and the ¢ testis: = 21)

mom
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where s, is the square root of the pooled vanance of the two sum scores,

12 12
o o D0 * 2 DSy o
)=
n+ny— 2

The statistical significance of DOE, however, relies heavily on sample sizes. To
avoid the influence of sample size on the quantification of differential order effects, the

effect sizes of DOE can be calculated:

~ Mean — Mean
Effect size d = ——21112) (B+X,)

(23)

Sp

3.2 Data

This study uses 2 real datasets and 6 simulated datasets with CB designs. The six

simulated datasets are generated in a systematic way with different sizes of DOE.

3.2.1 Real Data

Real data 1: Von Davier, Holland, and Thayer (2004) provided a real dataset from
a small field study of an international testing program. In their dataset, both test forms X
and Y are number-right scored. They have 75 items and 76 items respectively and their

correlation is 7 x, v,) =" x,,y) = 0.88 .
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TABLE 7. Summary statistics for real data 1

X; Y, X; Y, X Y Suml2  Sum2l
N 143 143 140 140 283 283 143 140
Mean 52.65 5142 50.64 51.39 51.66 5141 104.07 102.04
SD 12.41 11.03 13.83 12.18 13.15 11.59 22.72 25.23
Skew -0.52 -0.37 -0.54 -0.58 -0.55 -0.49 -0.45 -0.57
Kurt -0.15 -0.64 -0.82 -0.52 -0.50 -0.55 -0.40 -0.67
Min 16 27 19 18 16 18 45 45
Max 74 71 72 71 74 71 142 142

*X and Y are scores for combined groups; Sum2 is the sum of scores on test X, and Y for the first group;
Sum21 is the sum of scores on test X; and Y, for the second group.

The differential order effect in this dataset is DOE = (X 1— )71) —(X 5= )72) =
2.03, which has an effect size of 0.08 approximately. T-test is not significant.

Real data 2: The second real data was collected using a CB design for an algebra
test. Each of the equating forms has 25 multiple-choice items. Group one has 399
students, who took Form X first and Form Y second, and Group two has 362 students,

who took Form Y first and Form X second. Both test forms X and Y are number-right

scored and their total score correlations are n X.%) = (.64 and K X5.%)~ 0.74

respectively.

TABLE 8. Summary statistics for real data 2

X; Y, Y, X, X Y Suml2 Sum?21
N 399 399 362 362 761 761 399 362
Mean 13.04 13.00 12.14 11.84 12.47 12.59 26.04 23.98
SD 3.94 4.35 4.15 4.66 433 4.27 7.50 8.22
Skew -0.22 -0.25 0.25 0.22 -0.03 -0.01 -0.07 0.37
Kurt 0.21 0.40 -0.34 -0.15 -0.06 -0.02 0.19 -0.28
Min 0 0 2 0 0 0 0 4
Max 23 25 23 25 23 25 48 48

*X and Y are scores for combined groups; Sum/2 is the sum of scores on test X and Y for the first group;

Sum21 is the sum of scores on test X5 and Y for the second group.

The differential order effect in this dataset is 2.06, which has an effect size of 0.26

approximately.
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3.2.2 Simulated Data

In compliance with Davey, Nering, and Thompson’s (1997) purpose of simulating
realistic item response data, this study made an effort to generate data as close as possible
to the first real data described earlier. The reason for selecting real data 1 as a target is
that the two test forms in this dataset have equal test-retest reliabilities, which is an
important assumption for linear and equipercentile equating. There are 75 items on each
simulated test form.

Six population datasets were simulated with different sizes of order effects using a
3 parameter logistic Item Response Theory model (3PL IRT model). In Lord (1980), a
3PL IRT model takes the form as below:

l1-c
1+e-1.7a(9-b) (24)

Rey=c+

where @ is the underlying ability to be measured, a is the item discrimination
parameter, b is item difficulty, and c is the item guessing parameter indicating the
probability that a person completely lacking in ability will answer the item correctly.

Each of the six simulated datasets has two samples, each with size of 100,000.
Each sample takes two tests X and Y but in different order. A 75 by 100,000 item-person
response matrix with 0 and 1 scores was generated for each sample using the 3PL IRT
model. The scores on each item were then totaled to get an observed test score for each
examinee. After the simulation of data for two independent group taking two test forms
in different order, data from the two independent samples were simply combined together

to form the dataset with a pooled SG design. Please see the design below:
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samplel : ( X, ,Y-
For a CB design: P ( ! 2)
sample2:(X5,1)

X Yz)

For a SG design: pooled sample =
X2 h

However, one drawback of using real data 1 is its lack of item response data.
Without the item response block, it is more difficult to estimate the item parameters of
the real test items and use the estimated parameters for simulation. In this simulation, the
parameter distributions were decided based on empirical experience.

To ensure that the generated item discriminant parameter a and item guessing
level c are positive, parameter a’s were randomly selected from a log-normal distribution,
and parameter ¢ s were randomly selected from a beta distribution. Furthermore, in order
to make the simulated data more realistic, means and variances of the distributions of
parameter a, b, and ¢ were adjusted to be certain values to best emulate the first real data
set used in this study. Specifically, the mean and variance for the log-normal distribution
of parameter a was fixed as 1 and 0.12; the mean and variance for the normal distribution
of parameter b was fixed as -0.3 and 0.8 and the mean and variance for the beta
distribution of parameter ¢ was fixed as 0.25 and 0.008.

Order effects were considered as a second dimension of examinee’s underlying
abilities when taking the second test and the size of order effects varies across examinees.
Assume that the changes in examinees’ performances reflect the changes in their

underlying abilities, then,
Bok =61k 01 (sample 1); (25)

o5 =651k 0y (sample 2); (26)
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where £ is the number of examinees;

6 1k denotes the underlying abilities of examinees in sample 1 taking the first test
X1

6,7 denotes the abilities of examinees in sample 1 taking the second test (Y5);

01) denotes the order effects of examinees in sample 1 taking test X first and Y
second;

6,1y denotes the underlying abilities of examinees in sample 2 taking the first test
(Y1)

657 denotes the abilities of examinees in sample 2 taking the second test (X);

0y denotes the order effects of examinees in sample 2 taking test Y first and X
second;

It was assumed that & ; and 8, (or 81, and )y ) follows a bivariate
normal distribution with the same standard deviations. The correlation between 91 1k and

817y (or 6»14 and 655} ) may not be perfect since order effects are not constant across
examinees. It was set to be 0.94 in this study in order to achieve a correlation of observed
score at 0.88. 04 and 05 both have variances of (1-0.94)2. When all the parameters a,
b, c, and @ were randomly selected, calculate the probability of each examinee with
certain @ level answering each item correctly from the 3PL IRT model. If the probability
of a correct response is greater than a random number from a uniform distribution, the

item response for a person on a specific item will be 1, otherwise it will be 0.

In this study, the effect sizes of differential order effects were controlled to be
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changing from 0 to 0.2 in the simulated datasets. In order to meet this restriction and

make simulated data as real as possible, different means for the distributions of & | and

6> (or 851 and 65, ) were tried and DOE’s were calculated afterwards until order

effects are within the range and the simulated test scores share similar descriptive
statistics as test scores in the first real dataset. The distributions and descriptive statistics
of the six simulated datasets are provided below. As shown in table 9 to table 14, the
simulated data has similar distribution moments as the first real dataset.

Simulated data 1 with insignificant order effects (DOE = -0.04)

e Sample 1 (N=100000):

2
o, =1 (0] =.94
0~ (#611 =0 /[612 =001), 6“ 0“?2
0-611012 =.94 0'612 =1

e Sample 2 (N=100000):

2
o, =1 (o] =.94
) 6,6
0~ (ﬂezl =0 ﬂ622 :001), 21 21222
=.94 o, =1
06,,6,

)

a ~(;¢a =1,067 =0.12); b~ (y,, =-0.3,07 =0.8);
c~{u. =02507 =0.008
(:uc »Uh )

TABLE 9. Descriptive statistics for simulated data 1

Test Min. Max. Mean Std Skewness Kurtosis
X1 10 75 52.52 13.78 -0.46 -0.67
Y; 9 75 50.50 13.57 -0.32 -0.81
X3 10 75 50.51 13.59 -0.31 -0.81
Y 8 75 52.55 13.80 -0.45 -0.68

rixi, y2) = revi, x2) = 0.88
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Y (skewness=-0.32)

o
0 10 20 30 40 50 60 7075

X, (skewness=-0.31)

Simulated data2 with significant order effects (DOE= -0.58, effect size of DOE = 0.025)

Sample 1 (N=100000):
0~ (g, =0 wug,=-0.025),

Sample 2 (N=100000):

O (/1921 =0 Hgy, =0'025)’

2 5= =
%, =1 og,,=94

= 20

0'9“912 =.94 0'312 =1

2 s =
%, =1 0g,,6,, =94

= 2 2

0'921022 =.94 0'922 =1
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a~(py =104 =0.12); b~ (1, =-03,07 =03);

o~ (e =025,07 =0.008)

TABLE 10. Descriptive statistics for si)

lated data 2

Test Min. Max. Mean Std Skewness _Kurtosis
X 9 75 52.01 13.71 -0.43 -0.71
Y2 10 75 50.54 14.01 -0.27 -0.89
X, 11 75 51.15 13.90 -0.30 -0.87
Y 10 75 5198  13.66 041 0.73
rex1, v2) =revi, x2) = 0.88
3000 3000
250 25001
200 200
1501 1501
1000
500

Pt
0 10 20 30 40 50 60 7075

X (skewness=-0.43)

ob——
0 10 20 30 40 50 60 7075

Y (skewness=-0.41)

3000,
250
200
1500}

1000}

500
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Simulated data3 with significant order effects (DOE= 1.41, effect size of DOE = 0.05)

e Sample 1 (N=100000):

2
o, =1 o, =.94
6~ (/la“ =0 4g, =0.05), gl 3“?2
08,6, =.94 0'612 =1

e Sample 2 (N=100000):

&, o -
0'02I =1 0621322 =94

0= (/‘521 =0 1, =_0‘05)’ 2
0'021022 =.94 0'922 =1

a~(,ua =1,0f =o,12); b~(,ub =-03,07 =0.38);

e~ (1 =0.25,07 =0.008)

TABLE 11. Descriptive statistics for simulated data 3

Test Min. Max. Mean Std Skewness _Kurtosis
X 9 75 52.01 1371 -0.43 -0.71
Y, 10 75 51.54 13.90 -0.34 -0.84
Xz 11 75 50.15 14.00 -0.24 -0.92

Y, 10 75 51.98 13.66 -0.41 -0.73

rexi, y2) =revi, x2) = 0.88

3000
25i
200
1501
1000}
500

oL o
0 10 20 30 40 50 60 7075 0 10 20 30 40 50 60 7075

X (skewness=-0.43) Y (skewness=-0.34)
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oL—
0 10 20 30 40 50 60 7075 0 10 20 30 40 50 60 7075
Y (skewness=-0.41) X, (skewness=-0.24)

Simulated data4 with significant order effects (DOE= -2.75, effect size of DOE = 0.1)

e Sample 1 (N=100000):

- =
0'3“ =1 04,6, =.94

e (/13“=0 /1912=—0.1), % 2 _
0'9“312—.94 0'912—1

e Sample 2 (N=100000):

2} \ut =
%, =1 09,,6,, =94

2

g (#921 =0 4y, =0'1)’ o Sh A
010, =+ 6y

a~(py =1,0% =0.12); b~ (1, =-03,0% =0.8);

e~ (1 =0.25,0% =0.008)

TABLE 12. Descriptive istics for simulated data 4

Test Min. Max. Mean Std Skewness _Kurtosis
X 10 75 50.34 13.50 -0.31 -0.80
Y2 10 95 48.64 13.57 -0.29 -0.84
Xz 1 75 5135 1327 045 0.67
Y, 9 75 50.39 13.56 -0.30 -0.81

rexn, v = reve, x2) = 0.88
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Y (skewness=-0.30) X, (skewness=-0.45)

Simulated data5 with significant order effects (DOE= -3.76, effect size of DOE = 0.15)

e Sample 1 (N=100000):

2

o, =1 o, =.94
0| (g, =0 sg,=01)| MM
O'gllglz=.94 0012=1

e Sample 2 (N=100000):

2

o, =1 o, =.94
- 5 6, 6162
0z (/1921 =0 4, _0'2)’

= 2t 5t
0'021922 =.94 0'922 =1
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a~(py =103 =0.12); b~(, =-03,0% =0.8);
o~ (4 =0.25,07 =0.008)

TABLE 13. Descriptive statistics for simulated data 5

Test Min. Max. Mean Std Skewness _Kurtosis
X 10 75 50.99 14.07 -0.29 -0.89
Y2 9 75 48.50 13.65 -0.11 -0.88
X2 11 75 52.33 13.36 -0.34 -0.75
Y 9 75 50.92 14.10 -0.29 -0.88

rexi, v2) =reve, x2) = 0.88

3000
250

200
1501

500

y

10 20 30 40 50 60 7075

0

0 10 20 30 40 50 60 7075

X (skewness=-0.29) Y, (skewness=-0.11)
3000
1000
500
o— e
0 10 20 30 40 50 60 7075 0 10 20 30 40 50 60 7075

Y, (skewness=-0.29) X, (skewness=-0.34)
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Simulated data 6 with significant order effects (DOE= -5.22, effect size of DOE = 0.2)

e Sample 1 (N=100000):

0';“=1 0'9“312=.94
0 (/1,9“=0 'u912=_0'2)’ £5u o
96,6, = O

e Sample 2 (N=100000):

2
0'02] =1 0'921022 =.94

6% (#921 =0 ;1322=0.2), o o s
06,6y, = 9., =

a~(pa =104 =0.12); b~ (4, =-03,07 =08);

o~ (1 =025,07 =0.008)

TABLE 14. Descriptive statistics for simulated data 6
Test Min. Max. Mean Std Skewness _Kurtosis
X 9 75 52.52 13.78 -0.26 -0.88
Y3 9 75 4775 1379 -0.05 -0.96
X3 11 75 52.93 13.24 -0.37 -0.79
Y, 11 a5 52.55, 13.80 -0.25 -0.89

rexi, v2) = revi, x2) = 0.88

3000

250
200t
1501

oL— o—
0 10 20 30 40 50 60 7075 0 10 20 30 40 50 60 7075

X (skewness=-0.26) Y, (skewness=-0.05)
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3.3 Analysis

The analysis of real data and simulated data in this study differs slightly. For the
two real datasets, the bootstrap method was employed to calculate standard error of 14
out of the total 22 equatings (as listed in Table 15 and Table 16). The equating results

were evaluated by SEE and RMSE. For the simulated d: empirical dard errors

of equating were calculated for 22 equating methods as displayed in Table 6. The
equating functions were evaluated by SEE, equating bias relative to the large sample
standard, RMSE and SEED. Computer software SAS, MATLAB, Compagq Visual

Fortran, and MATLAB were used to simulate data and conduct equating procedures.

3.3.1 Equating Methods Applied for Simulated Data

Table 6 lists the names of all the equatings conducted for simulated data in this
study and provides detailed explanations for each equating. The results of the traditional
equipercentile equating (EG_Equi) on each population dataset were considered as
criterion equating results. All the other equating results were compared to this criterion

equating for each population. In this study, all the equatings are from test Form Y to test



Form X, i.e., the equating function takes the form ofe,.(’) , which is a function of score

y.

3.3.2 Procedure for Estimating Empirical SEE for Simulated Data

Once the population datasets were generated, 500 random samples were selected

from each of the four populations without replacement. The estimation of empirical SEE

for the simulated datasets followed procedures as below:

1.

Randomly select one sample (»=50) from each of the two independent
samples from population 1 without replacement. Selected sample 1 has
scores for Form X, which is taken first and Form Y, which is taken
second. Selected sample 2 will have scores for Form X, which is taken
second, and Form Y, which is taken first. Data from the two
independent samples were simply combined to form a data with the
pooled single group design.

Apply the 22 equatings to the samples selected from the population.
When the sample size is greater than 100, two log-linear models were
fit to the data for all the KE equating methods. The first log-linear
model (model (2, 2, 1)) preserves the first bivariate moment (the
correlation of scores on Form X and Form Y) and the first two
univariate moments of each variable (mean and standard deviation). The
second log-linear model (model (4, 4, 1)) preserves the first bivariate
moment and the first four univariate moments of each variable.

Replace the test-takers into the corresponding population and repeat
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sampling for 500 times. Then the 500 replications build up a conditional
distribution of equating results at each score point. The mean of this
conditional distribution is the equating results at each score point and
the standard deviation of this conditional distribution is the empirical
conditional SEE at each score point.

4. Repeat step 1 to 3, change the selected sample size from 50, to 100,
300, 500 and 1000.

5. Repeat the above procedures for simulated data 2 to data 6.

The bandwidth for KE linear equating was set at 200. The weighting parameter

Wy or W took values from 0.5to 1.

y

3.3.3 Evaluating Equating Results from Simulated Data

For the simulated data, traditional equipercentile equating results with the EG
design were considered as the criterion. All the other equating methocis were compared to
this criterion and were evaluated in terms of Standard Error of Equating, equating bias
relative to the large sample standard, Root Mean Square Error and Standard Error of
Equating Difference. For the two real datasets, only bootstrap SEE and RMSE were
reported.

Equating Bias Relative to the Large Sample Standard

To calculate equating bias at each score point, for each of the 22 equatings under
each of the six population conditions, the mean of the 500 replications’ equating results
were subtracted from the criterion equating results (EG_Equi) at each score level (as in
formula 17). Conditional equating bias was not reported for simulated data. Instead, the

average of all the conditional biases at each score level was calculated and reported in
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chapter IV.
Root Mean Square Error (RMSE)
The Root Mean Square Error of each equating compared to the criterion equating

is equal to the square root of the sum of squared average bias and variance of bias over

—\2 -
possible score points: RMSE = \/ (d ) + ( sd g )2 , where d is the mean of the equating

differences and sd is the standard deviation of the differences between the equating

results of one method and the criterion equating results. It reflects how biased and how
accurate the equating results are compared to the population criterion.

Standard Error of Equating (SEE)

The empirical conditional standard error of equating was considered as the
standard deviation of the conditional distribution formed by the equating results for 500
replications. It can be calculated using the following formula. In chapter IV, only the

average of these conditional SEE’s over different score points was reported for each

equating method.
1 500 A 2
SEE = [— 2 (ex(yx) —ex (%)) @7

where j = 1 to 500 is the number of selected samples; k=1 to K is the possible
score points on Form Y; & 'y () is the equated score from Form Y to Form X for the jth
replication; e y () ) is the equated score of X corresponding to score y; from the

population dataset.

In this study, SEED was calculated directly by the KE software.
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Chapter IV: Results

4.1 Real Data 1

Real data 1 has a DOE of 2.03, which is not statistically significant (+=.713,
se=2.85, p=.476, df=281), i.e., the order effect can be almost cancelled out by pooling
together the two groups of data in this specific example. The effect size of DOE is 0.08.
Levene’s test of homogeneity of variance (Levene, 1960) is not significant (F=1.67,
p=-197). The best fit model for the KE methods is model (2,2,1): Ty =Ty =2 and [ =

L = 1. The following figures show the observed score distributions for X, Y,, X5, and

Y and their fitted data distributions.
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FIGURE 1. Observed score distributions for X; and Y in real data 1.
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FIGURE 2. Observed score distributions for X, and Y, in real data 1.

4.1.1 Selecting the Best Equating Function Using RMSE

All equating methods were compared to the traditional equipercentile equating
with an EG design (EG Equi.). It shows that, when DOE is insignificant, 2SG(.5,.5) and
SG_KE has similar equating results with almost the smallest SEE’s over the whole score
point scale, but they have bigger RMSE compared to the EG design. Not much difference
was found between the equating results of traditional equating and Kemnel Equating. No
large difference was found between linear and equipercentile equating methods except
for traditional EG linear and traditional EG equipercentile. This is because the sample
size for EG design is only about 70 for each sample in this dataset, which is too small for
equipercentile equating. Equating results of 2SG (.75, .75) have relatively small SEE and

RMSE. It is the only method that best represents the criterion equating results.

49



TABLE 15. Evaluation of equating results from real data 1
2SG KE SG EG
(5.5  (5.75) (75,5  (75.75)  (1,1) traditional traditional

Linear

Mean SEE 0.663 0.839 0.884 1.252 2.381 0.663 2.384
SD SEE 0.313 0.371 0.42 0.565 1.113 0.313 1.118
Min. SEE 0.32 0.44 0.425 0.646 1.164 0.32 1.164
Max. SEE 1.334 1.634 1.776 2.433 4.674 1.334 4.648
Mean Diff 2.066 1.769 1.229 0.908 -0.403 2.066 -0.418
RMSE 2.92 2.5 2.1 1.76 1.68 2.92 1.69
Equipercentile

Mean SEE 0.692 0.833 0.846 1.147 2.196 2.133 3.1
SD SEE 0.343 0.346 0.343 0.408 0.928 2.241 1.926
Min. SEE 0.332 0.385 0.419 0.429 0.491 0 0
Max. SEE 1.384 1.485 1.43 1.714 3.557 6.778 6.821
Mean Diff 2.29 2.04 1.518 1.262 -0.062 1.369 0
RMSE 3.09 2.72 2.31 1.98 1.42 2.26 0

*Criterion equating = traditional EG equipercentile equating
The 2SG approach with weights of (1, 1) has the smallest RMSE when taking the
EG traditional equipercentile equating function as a baseline. Therefore, the 2SG (1, 1)

equipercentile method is the best equating function when using RMSE as an index.
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4.1.2 Selecting the Best Equating Function Using SEED
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FIGURE 3. Equating difference between 2SG(1, 1) linear and 25G(.5, .5) linear and the

* 2SEED confidence interval band around zero line, real data 1.
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FIGURE 4. Equating difference between 2SG(1, 1) equipercentile and 2SG(.5, .5)

equipercentile and the X 2SEED confidence interval band around zero line, real data 1.

Figure 3 and Figure 4 indicate that the differences between the two KE linear and
the two KE equipercentile methods using weights of (1, 1) and weights of (0.5, 0.5) are
small in comparison with the + 2SEED band. According to von Davier, Holland, and
Thayer (2004), this indicates that the equating bias introduced by order effects is small
enough to be ignored. Thus, the best equating function can be selected solely based on
the random equating error, i.e., the standard error of equating. In this case, the 2SG linear
or equipercentile equating with weights of (.5, .5) will be considered as the best ones.
Their equating difference can be tested against SEED again to decide which one to

choose.
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and the T 2SEED confidence interval band around zero line, real data 1.

As shown in Figure 5, the difference between the KE linear and the KE
equipercentile equating functions falls beyond the 95% confidence intervals along the
whole score scale except the lower end. The equating function deviates from a linear
function. Therefore, the 2SG equipercentile equating function with weights of (.5, .5) is
preferable to the 2SG linear equating function with weights of (.5, .5) (von Davier,

Holland, & Thayer, 2004).

4.2 Real Data 2

The second real data has a DOE of 2.06. This is significant as the order effect can

not be cancelled out by pooling together the two groups of data in this example. The
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effect size of DOE is 0.26. The best fit model for the KE methods is model (2, 2, 1)
(Ty =Ty =2,1=L=1) for group 1 and model (4,4, 1) (Ty =Ty =4,1=L=1) for
group 2. The following figures show the observed score distributions for Xy, Y5, X5, and

Y and their best-fit log-linear models.

50 4 « Obsened 50 - « Observed
40 - e %o  ~Fitted 40 - . ., -Fitted
> “ . >
2 30 { - - 2 ] .
8 ‘. -- g 30 e ot o
g 20 - . . g 20 - e .-
: -
10 &S ‘. 104 e o5,
0 4 ate AN 0 + o :Oo:
0 5 10 15 20 25 0 5 10 15 20 25
X1 Scores Y1 Scores

FIGURE 6. Observed score distributions for X;, and Y, in real data 2
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FIGURE 7. Observed score distributions for X, and Y, in real data 2.
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4.2.1 Selecting the Best Equating Function Using RMSE

TABLE 16. Evaluation of equating results from real data 2
2SG KE SG EG
(5.5 (575  (75.5  (75.75)  (1,1) traditional traditional

Linear

Mean SEE 0.205 0.223 0.243 0.296 0.51 0.205 0.51
SD SEE 0.07 0.068 0.079 0.083 0.143 0.07 0.143
Min SEE 0.117 0.138 0.145 0.193 0.333 0.117 0.333
Max SEE 0.341 0.354 0.403 0.454 0.767 0.341 0.767
Mean Diff 0.749 0.498 0.448 0.198 -0.387 0.774 -0.29
RMSE 1.007 0.832 0.753 0.638 0.876 1.161 0.673
Equipercentile

Mean SEE 0.254 0.284 0.25 0.304 049 . 0.382 0.54
SD SEE 0.114 0.124 0.075 0.077 0.113 0.241 0.274
Min SEE 0.134 0.166 0.165 0.224 0.343 0 0
Max SEE 0.484 0.548 0.399 0.463 0.72 0.845 0.96
Mean Diff 0.671 0.526 0.505 0.362 0.033 0.965 0
RMSE 0.97 0.857 0.774 0.681 0.624 1.317 0

*Criterion equating = traditional EG equipercentile equating.

In Table 16, the 2SG equipercentile equating with weights of (1, 1) has the
smallest RMSE when taking the EG traditional equipercentile equating function as a
baseline. Therefore, the 2SG (1, 1) equipercentile method is the best equating function

when using RMSE as an index.
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4.2.2 Selecting the Best Equating Function Using SEED
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FIGURE 8. Equating difference between 2SG(1, 1) linear and 2SG(.5, .5) linear and the
* 2SEED confidence interval band around zero line, real data 2.
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FIGURE 9. Equating difference between 2SG(1, 1) equipercentile and 2SG(.5, .5)
equipercentile and the  2SEED confidence interval band around zero line, real data 2.

Figure 8 and Figure 9 indicate that the differences between the two KE linear and
the two KE equipercentile methods using weights of (1, 1) and weights of (0.5, 0.5) are
beyond the + 2SEED band in the middle part of the score scale, where most of the scores
distributed. For von Davier, Holland, and Thayer (2004), this indicates that the equating

bias introduced by the use of the data from form X; and Y, cannot be ignored. The best

solution would be to discard data from tests taken second, that is, to treat the data
collected by a CB design as an EG design. After the weights are decided, the SEED plots
can be used again to decide which equating function to choose, the 2SG linear equating

with weights of (1, 1) or the 2SG equipercentile equating with weights of (1, 1).
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FIGURE 10. Equating difference between 28G(1, 1) linear and 2SG(1, 1) equipercentile,
and the £ 2SEED confidence interval band around zero line, real data 2.

As shown in Figure 10, the difference between the 2SG (1, 1) linear and the 2SG
(1, 1) equipercentile equating functions falls beyond the 95% confidence intervals at the
lower and the middle score scale end. This indicates the equating function deviates from
a linear function. Therefore the 2SG(1, 1) equipercentile equating function is preferable

to the 2SG (1, 1) linear equating function (von Davier, Holland, & Thayer, 2004).
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4.3 Simulated Data

All the simulated data can be fitted by a log-linear model of (2, 2, 1) with
adequate model fit. Fitting a model with more parameters did not reduce the likelihood
ratio chi-square statistics significantly. In addition, the Freeman -Tukey residual plots are
within the range of (-3, +3) for all the simulated data when fitted with a model of log-

linear model of (2, 2, 1) like in Figure 13.
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FIGURE 11. One example of Freeman-Tukey residual plot for POP3.

4.3.1 Model Fit

Various log-linear models were fitted to the simulated sample datasets. The
results indicate that, when sample size is 50, model (2, 2, 1) is the best fit model. When

sample size is 100, 300, 500 or 1000, both model (2, 2, 1) and model (4, 4, 1) have
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fairly good model fit. In this study, only the equating results of fitting model (2, 2, 1) are
reported since the equating results of fitting model (4, 4, 1) are very similar to the

equating results of fitting model (2, 2, 1).

4.3.2 FEvaluating the Equating Results by RMSE

As shown in Table 17 and Table 18, the pooled SG and 2SG(.5,.5) approaches
under the KE framework have the lowest SEE and RMSE when DOE is almost zero. This
indicates that when order effect can be cancelled out, the pooled SG method or 2SG(.5,.5)
method can both provide optimal equating results.

Table 19 and Table 20 show the equating results for population data 2 where DOE
has an effect size of 0.025. The 2SG linear and equipercentile equating methods with
weights of (.5, .75) for X and Y have the smallest RMSE. When the differential order
effect gets larger, as in data 3 where the effect size of DOE is 0.05, the 2SG linear
equating methods with weights of (.9, .9) have the smallest RMSE (Table 21 and Table
22). When the effect size of DOE approaches to 0.1, the pooled SG approach and the
2SG(.5, .5) approach are apparently not the best (Table 23 and Table 24). Instead, the
2SG linear equating method with weights of (1, 1) (i.e., EG KE linear method) or the EG
traditional linear method has the smallest RMSE. Furthermore, in population data 5 and
data 6 when the effect size of DOE is around 0.15 and 0.2, the benefit of using weights of
(1, 1) in the 2SG approach becomes outstandingly bigger. As shown in Table 25 to Table
28, the EG KE linear or EG traditional linear methods have much smaller RMSE than

those methods which treat data as a single group design.
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