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ABSTRACT

THE EFFECT OF WEIGHTING IN KERNEL EQUATING

USING COUNTER—BALANCED DESIGNS

By

Yanxuan Qu

The Counter-Balanced (CB) design for test equating is often used in pilot studies

for testing programs when sample size is limited. When a CB design is used to conduct

equating, data are usually treated as an Equivalent Group design or a Single Group design

(Kolen & Brennan, 2004). On the other hand, von Davier, Holland and Thayer (2004)

proposed a new approach under the Kernel Equating (KE) framework which treats data

as a weighted synthesized mixture of data from the two groups. This new approach is

named as the two independent Single Group approach (28G approach).

This study investigates the performance of the 28G approach in comparison to

other data treatment approaches under different sample sizes and order effect situations.

Both linear and equipercentile equating methods under KB and traditional equating

frameworks were applied to two real datasets and six simulated datasets. The results from

traditional equipercentile equating on each simulated population data were considered as

the benchmark to which all the other equating methods were compared. Standard Errors

of Equating (SEE), Root Mean Square Error (RMSE), equating bias, and Standard Error

of Equating Difference (SEED) were reported for each equating of the simulated data.

The standard Error of Equating and Root Mean Square Error were reported for equating

of the real data samples.

The results indicated the 28G approach unifies the Equivalent Group approach



and the Single Group approach into its flexible framework. The weighting mechanism in

the 28G approach seemed to be sensitive to different order effects. Possible criteria for

selecting the best weights are discussed.
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Chapter I: Introduction

Test equating is an important statistical procedure in educational testing. It is used

to produce scores that are comparable across different but parallel test forms, both within

a year and across years. Although there have been many comparative studies

investigating the accuracy of different equating methods, very few studies have been

done for equating with a Counter-Balanced (CB) design. Traditionally as in Lord (1950),

AngofT (1971) and Kolen and Brennan (2004), data collected by a CB design were either

pooled together as a Single Group (SG) design or discarded as an Equivalent Group (EG)

design. Recently, a new approach of treating data collected by a CB design was proposed

by von Davier, Holland and Thayer (2004). This new approach involves weighting data

before pooling them together. To evaluate the performance of this new approach, this

study compared the overall equating accuracy of the two independent single group

approach, abbreviated as the 28G approach, to the other approaches of treating data

collected by a CB design.

The rest of this chapter introduces the general procedure for equating using the

counter-balanced design and equating approaches for a CB design including the new 28G

approach under the Kernel Equating (KE) framework, and gives a brief summary of

literature on KE equating. At the end of this chapter, the research questions and research

expectations of this study are presented. Chapter 11 describes the CB design and KB

framework as well as equating errors and the evaluation of equating results. Chapter 111

describes the real and Simulated datasets to which the equating methods were applied and

the procedure of this study. Chapter IV presents the study results and Chapter V discusses

the findings and limitations of this study.



1.1 Equating Procedure in General

Every equating procedure consists of two basic components: equating design and

equating methods. Typical equating designs include Equivalent Group (also called

random group) design, Single Group design, Counter-Balanced design, and Non-

Equivalent Anchor Test (NEAT) design. Typical equating methods can be classified into

the following three categories: 1) Classical observed score equating; 2) Item Response

Theory (IRT) true score equating; and 3) Item Response Theory observed score equating.

Classical observed score equating methods include the mean, linear, and equipercentile

equating methods reported by Kolen (1988). They define the score correspondence

between two forms by setting certain characteristics of observed score distributions for a

specified group of examinees. Item response theory true score equating defines the score

correspondence by setting the true scores of examinees to be equal (Cook & Eignor,

1991).

1.2 Counter-Balanced Design and Equating

Counterbalance or Latin Square is often used in pure experimental designs to

cancel out order effects (Montogomery, 2000). In educational testing, a CB design is

often used to collect data in pilot studies of testing programs. In a CB design, two

independent groups of examinees usually take two parallel test forms X and Y in

different order.

Various ways of dealing with data in a CB design test equating were described in

Lord (1950), Angoff (1971), and Kolen and Brennan (2004). None of these approaches is

satisfactory for situations when order effect cannot be cancelled out. In order to improve

the equating practice for a CB design, especially when order effects cannot be cancelled



out, von Davier, Holland, and Thayer (2004) proposed a new way of treating data

collected by a CB design under their Kernel Equating framework. This new way of

treating data is named the two independent single group approach (ZSG approach), which

creates a synthetic target group by assigning different weights to the two tests taken in

different order, and applies linear and equipercentile equating methods to the synthetic

group. The significance of this approach is its weighting mechanism, which is supposed

to have the potential to provide optimal equating results with the smallest equating error

by using as much data information as possible. However, the effectiveness of this 2SG

approach hasn’t been evaluated.

The 2SG approach, the EG approach, and the SG approach are all about data

collection designs in an equating procedure. The 2SG approach is under the framework of

Kernel Equating. The equating methods related to this approach are KE linear or KE

equipercentile equating methods. The EG approach and SG approach can be implemented

under both KB and traditional equating framework. Therefore, the equating methods

related to these two approaches are the KB linear, KE equipercentile, traditional linear or

traditional equipercentile equating methods (see more details in Chapter II).

1.3 Literature Review

Descriptions about equating using a CB design can be found in Lord (1950),

Angoff (1971), Kolen and Brennan (2004), Zeng and Cope (1995) and von Davier,

Holland, and Thayer (2004). The 2SG approach of treating data collected by a CB design

was mentioned in von Davier, Holland, and Thayer (2004). The only study compared the

performance of this ZSG approach with the EG and SG approach in improving equating

accuracy of a CB design equating is conducted by Qu and von Davier (2006). They



compared the 28G approach to the SG and EG approach under KE framework using a

real data collected by a CB design. It was found that, when order effect can be cancelled

out, the 28G approach with equal weights produce similar equating results as the SG

approach under KE framework. It is still unclear how the 2SG approach performs when

order effects cannot be cancelled out. Moreover, it is not well documented in the

literature how to test whether the order effects can or cannot be cancelled out.

The 28G approach is carried out under the KB fi'amework. KE is a unified

approach to test equating based on a flexible family of equipercentile—like equating

functions that contain the linear equating function as a special case. It belongs to the

category of classical observed score equating. Studies comparing the KB methods with

other equating procedures concluded that the KB procedure can improve or approximate

the equating results of corresponding traditional equating methods.

Livingston (1993a) compared KE methods with traditional linear and

equipercentile equating methods using small samples collected by a NEAT design. He

evaluated the equating methods in terms of random equating error and equating bias and

found that the KB methods with log-linear smoothing provided more accurate equating

results, when compared to traditional equating methods without smoothing. He also

found that, compared to the empirical standard error of equating, the analytic standard

error of equating calculated by the delta method is larger at the lower or higher score

range when sample size is less than 200.

Mao and von Davier (2005) compared Kernel Equating methods with their

corresponding traditional equating methods using real data in a NEAT design and an EG

design. For the NEAT design, they compared the traditional frequency estimation



equipercentile equating with KE post-stratification equating method and the Tucker

method with the KB linear post-stratification equating method. They found that KE

methods and their corresponding traditional equating methods have very similar equating

results. Von Davier, Holland, and others (2005) did a similar study using a pseudo-test

data with a NEAT design and drew the same conclusion.

Han, Li, and Hambleton (2005) compared KE with IRT true score equating

methods using data collected by a NEAT design. Again, they found the KB methods

provide similar equating results as those of the IRT equating methods.

1.4 Research Questions

This study intends to quantify differential order effects, to compare the 2SG

equating procedures under KE framework with other traditional equating procedures, and

to discover whether the weighting mechanism can enhance the equating accuracy under

different order effect Situations. The specific research questions are:

1) How Should differential order effects in CB designs be quantified?

2) Are the KB methods better than their corresponding traditional equating

methods?

3) Does the weighting in the 2SG approach provide better results under certain

order effect situation?

4) What weight should be used for a 28G approach?

Table 6 displays the 22 equating procedures compared in this dissertation. What

distinguishes them from each other are the way they treat the data collected by a CB

design (EG, SG or 28G with weighting) and the equating method (linear or

equipercentile) they adopted. To compare the performance of KE with traditional



equating methods, the equating results of two KE procedures are compared to the

equating results of their corresponding traditional equating procedures (as listed in table

5).

1.5 Research Expectations

1) The KE equating methods and their corresponding traditional equating methods

provide similar equating results.

2) As DOE increases, the weights of the 28G approach assigned on tests taken first

increases accordingly.

3) Decision on the selection of an equating function with the optimal weights may

vary when using different statistical criterion to evaluate the equating results.

As presented above, the literature on any CB design equating is sparse. Since CB

design is still used in research projects and in the pilot study of testing programs (Yu,

2003) when examinees are hard to find, it is useful to comprehend the 2SG approach and

to evaluate how much it can enhance overall equating accuracy when compared to other

methods in various order effect situations. Such a study will contribute to the general

knowledge about a CB design and the methods available for equating using data collected

by a CB design.

Chapter II: Theoretical Framework

This chapter first introduces the equating designs related to a CB design, the

linear and equipercentile equating methods and the Kernel Equating framework, and then

describes the concept of equating error and the criteria used for evaluating equating



results.

2.1 Counter-Balanced Design

A CB design is Often used in practice when administering two forms to examinees

where it is difficult to obtain sufficiently large group of examinees (Kolen & Brennan,

2004). To explain the CB design in more detail, a brief description about EG design and

SG design is necessary:

Equivalent Group Design

TABLE 1. Equivalent—Groups design
 

 

Population Sample X Y

P l J

P 2 \/
 

In an EG design, two independent random samples are drawn from a common

population of examinees, P. Each group of examinees is randomly assigned to take one of

the two parallel forms Xand Y as shown in Table 1.



Single Group Design

TABLE 2. Single-Group design
 

Population Sample X Y
 

P 1 v J

In a SG design, only one random sample of examinees is selected from population

P, and all the examinees take the two test forms Xand Y in one administration as shown

in Table 2. Because the two test forms are parallel and they are taken by the same

examinee, it is almost certain that the examinee’s performance on the second form will be

affected by their performance on the first form. The effect may be a “practice/learning

effect,” or “fatigue effect.” If familiarity with the test increased performance, then Form

Y could appear to be easier than Form X. On the other hand, if fatigue is a factor in

examinee performance, then Form Y could appear relatively more difficult than Form X

because examinees would be tired when administered Form Y (Kolen & Brennan, 2004).

For simplicity, all such possible effects will be named as “order effect” (Lord, 1950). If

the two test forms are administered in the same order to all examinees, as in a SG design,

it is impossible to obtain any estimate of the amount of order effect. Consequently, to

control for the order effect, it is usual to counterbalance the order of administration by

dividing the group in a SG design into two random halves and giving two test forms to

each group but in different order. This design is what is ofien called a CB design.

TABLE 3. Counter-Balanced design
 

 

Population Sample X1 Y1 X2 Y2

P 1 x/ ~/

P 2 v v
 

*The subscripts ofX and Y indicate the order. Eg, X1 means take test X first, Y2 means take test Y second.

Table 3 illustrates a CB design, in which, two samples of examinees were



randomly chosen from a same population P and were randomly assigned as sample 1 and

sample 2. Sample 1 takes test X first (denoted as X1), test Y second (denoted as Y2), and

sample 2 takes test Y first (denoted as Y1) and test X second (denoted as X2). The

purpose of counterbalancing the order of testing is to ensure any order effects are present

equally in the scores obtained for both test forms X and Y such that the order effects on

Form X and Form Y can be cancelled out.

Theoretically, if random selection and random assignment of the examinees are

carried out strictly in operation, the purpose of canceling out “order effect” can be

accomplished by collecting data using a CB design. However, in practice, the assumption

ofrandom selection is often violated. Usually, random sampling is replaced by random

cluster sampling. The violation of these two assumptions leads to the interaction between

group abilities and form difficulties, which is the reason why the order effects often

cannot be cancelled out. For example, some group ofpeople might do better on the

second test after practicing on the first test, while the other groups might do worse.

There have been different definitions for order effects in literature. Lord (1950)

and Angoff (1971) defined the order effect on Form X

asKX = X2 —X1 = CO'X1 = C'O'X2 = COX, and the order effect on test FormYas

KY = Y2 — Y1 = CO'Yl = CO'Y2 = CO'Y (where C is a constant). They assumed that

order effects are constant for all examinees and are proportional to the standard

deviations. Kolen and Brennan (2004) explained order effects without assuming they are

constant for each examinee. They defined Differential Order Effect (DOE)

as (X1 - I71) — (X2 — I72 ) and suggested that a significant DOE would indicate that order



effects cannot be cancelled out in a CB design. However, there is not a significance test

described in their book. In chapter 111, this dissertation adopted their definition of DOE,

described a hypothesis testing for the statistical significance ofDOE and suggested using

the effect size statistics for the magnitude ofDOE.

2.2 Equating Using Counter-Balanced Designs

Like every equating procedure, equating using a CB design has two parts: data

collection design and equating methods.

2. 2. I Approaches to Treating Data in a CB Design: The nature Of CB design

leads to different ways of dealing with data. Comparing tables 1, 2 and 3 we see that CB

design actually contains both EG and SG designs. For example, there are two (dependent)

EG designs, one for X1 and Y1, and the other for X2 and Y2. In addition, there are two

(independent) SG designs, one for X1 and Y2, and the other for X2 and Y1. Finally, the

two groups of examinees can be pooled together and all the data from X1, Y2, X2 and Y1

can be treated as a pooled SG design.

Because of these different ways of considering data in a CB design, several data

treatment approaches have been used to equate test forms X and Y. Lord (1950) and

Angoff(1971) described a linear equating method that actually treated the data as pooled

single group design. They assume constant order effect and bivariate normal distributions

of test X and Y in the population. By constant order effect, they mean that order effects

are the same for all examinees and are proportional to the relevant standard deviations.

Kolen and Brennan (2004) did not assume constant order effects across examinees. They

suggested using the pooled SG approach when order effects can be cancelled out.

Otherwise, only the EG approach with X] and Y1 should be used, since it is perhaps the
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only unbiased way of treating data in a CB design.

Nonetheless, each of these two approaches for treating data has its own

weaknesses. Although The EG approach using X1 and Y] only is unbiased, it throws

away half of the data and makes no use of the correlation between X and Y, which is

implicit in the SG aspects of the CB design. The pooled SG approach is considered

problematic when order effects cannot be cancelled out because it is hard to interpret the

pooled distribution of X1 and X2 (or Y, and Y2) when they each have a different

distribution (von Davier, Holland, & Thayer, 2004).

In an attempt to find a better way ofusing data collected by a CB design, von

Davier, Holland, and Thayer (2004) proposed the 2SG approach, a new approach using

all data information as much as possible and more flexibly. It is expected to be able to

unify the other three approaches into one single approach and provide an optimal

equating solution while taking into account different sizes of order effects. Section 2.3

explains this approach under the KE framework in detail.

Table 4 summarizes different ways of dealing with data in a CB design discussed

in literature review.

11



TABLE 4. Ways oftreating data in a CB design appearing in the literature
 

 

 

 

 

 

 

EG design Explanation Use data from X 1 and Y1 only

for X1 and Random selection from a single population & random

Yl only Assumptions assignment

Suggested when DOE is significant

Advantage/Disadvantage Unbiased/loss of half data

Source Kolen and Brennan (2004), von Davier et al. (2004)

EG design Explanation Use data from X2 and Y2 only

for X2 and Random selection from a single population; random

Y2 only Assumptions assignment

Definitely not when DOE is Significant

Advantage/Disadvantage /biased; loss of half data

Source Kolen and Brennan (2004)

EG Explanation Average two EG equating functions

pooling , Random selection; random assignment

approach AssumptIons DOE is not significant

Advantage/Disadvantage 3:;fprlllgdfaltracitpcfpgnauon/Ignore dependency between two

Source Von Davier et al. (2004)

SG design Explanation Use data from X1 and Y2 only

for XI and , Random selection

Y2 only Assumptions DOE is not significant

Advantage/Disadvantage /loss of data information

Source Kolen and Brennan (2004)

SG design Explanation Use data from X2 and Y1 only

for X2 and , Random selection

Y1 only Assumptions DOE is not significant

Advantage/Disadvantage /loss of data information

Source Kolen and Brennan (2004)

Pooled SG . Use all data from X1, Y1, X2 and Y2 equally when order

approach Explanation effect can be cancelled out

, Random selection; random assignment

AssumptIons . . .

DOE Is not SIgnIficant

Advantage/Disadvantage Use full data information/not applicable when DOE is

Significant

Kolen and Brennan (2004), Lord (1950), von Davier et al.

Source (2004)

ZSG , Use all data information unequally when different order

approach Explanation effects present

Assumptions

Advantage/Disadvantage

Source

Random selection & random assignment

All kinds ofDOE

Use full data information/

Von Davier et al. (2004)

 

* Approaches 2, 3, 4, 5 are possible ways of treating data in a CB design but are of no interest to this study

2. 2.2 Equating Methodsfor a CB Design: Linear or equipercentile equating
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methods following KB or traditional equating procedure are the equating methods related

to a CB design found in literature.

Every equating method defines a target population T, on which scores on the two

test forms are to be made equivalent (for the population as a whole, not necessarily for

every individual in the population) (Livingston, 2004; von Davier, Holland, & Thayer

2004; etc.). The target population depends on the data collection design. This study

focuses on the CB, EG, and SG designs where there is only one population P of test

takers from which particular samples are drawn. For these designs the target population T

is assumed to be the same as the underlying population P (von Davier, Holland, &

Thayer, 2004). The linear equating method is appropriate when tests X and Y have the

same distribution on the target population while the equipercentile equating method

adjusts for the differences in the distribution.

Linear equating defines the equating relationship as the equivalence of Z—scores,

whereas equipercentile equating method defines equating relationship as the equivalence

of cumulative distribution functions ofX and Y in the population. Equation (1) and

equation (2) define the equating relationship for linear and. equipercentile equating when

equating X onto Y, which means each of the raw scores, xj is transformed to e Y(xJ-) or y by

these equating functions, i.e., a raw score ofxj on test X is interchangeable with a raw

score of efix!) or y on test Y.

.x___-“X=__y‘“Y 2. y=aY+"—Y(x—ux) (I)
0X 0r 0X

60») -—- F(x) 2 y = G‘1<F(x>) <2)

Equation 2 holds only when X and Y are continuous. KE applies the Gaussian
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Kernel continuization procedure (von Davier, Holland, & Thayer, 2004). While the

traditional equipercentile equating in this study uses linear interpolation to continuize

score distributions.

2.3 Equating with a CB Design under the Kernel Equating Framework

The KE framework accommodates both linear and equipercentile equating

procedures with pre-smoothing and continuization. Pre-smoothing is the log-linear

smoothing before scores are equated. Continuization is used to convert discrete score

distributions to continuous distributions by using a normal (Gaussian) “kernel” (Holland

& Thayer, 1989; von Davier, Holland, & Thayer, 2004). In the case of a CB design, the

KB framework incorporates three different ways of treating data -- the EG approach, the

pooled SG approach, and the 2SG approach. Both linear and equipercentile equating

methods are available to each of the three ways of treating data. The following section

introduces the five steps of the KB framework particularly for a CB design and presents

how the three approaches differ with respect to each of these five steps.

2.3.] Step 1. Log-linear Pre-smoothing

In pro-smoothing, the empirical score distributions are smoothed. Smoothing can

remove irregularity in the empirical score distributions and make them as smooth as the

population score distribution relationship. Smoothing is necessary, especially when

sample size is small (Livingston, 1993). KB conducts pre-smoothing using a log-linear

method. Compared to the other pro-smoothing methods, the log-linear method has the

flexibility of accommodating many distributions and is well-behaved and relatively easy

to estimate. Because the log—linear models are a part of the exponential families, the
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estimated distribution can match the sample distribution by as many moments as possible

(Holland & Thayer, 2000; Kolen & Brennan, 2004).

In this step, a log-linear model with best fit is selected to fit the sample data and to

estimate discrete score probabilities. The fit of the log-linear models can be evaluated. by

examining changes in the likelihood ratio chi-square index over different models and

conditional Freeman-Tukey residual plots. The Freeman—Tukey residual plot displays the

deviation between ey (X) and Y or between ex(Y) and X. A log-linear model with

good fit will have conditional Freeman-Tukey residuals randomly distributed within 3

units above or below the zero line. In addition, the fit of a log-linear model can be

somehow reflected by the Standard Error of Equating introduced in step 5. A bad model

fit could lead to large SEE.

Let J and K denotes the total number ofpossible scores on Form X and Form Y

respectively, xj represents a possible score value for test X, j=l to J on X; yk represents

a possible score value for test Y, k = l to K on test Y; pjk =Prob {X=xj , Y= yk | T }=the

bivariate score probability ofX=xj and Y= yk over the target population T; let ,6 ’s be

the slope parameters that will be estimated by maximum likelihood method, a and a *

are the normalizing constants selected to make the sum ofpopulation score probabilities

equal to one; let TX and TY denote the number of moments matched between the fitted

probabilities and the observed score probabilities; and let I and L denote the number of

cross moments matched between the fitted and the observed score probabilities. Then,

15



A univariate log-linear model takes the form of:

I .

10g<p,—)=a+ .zlfii(le' ‘3)

A bivariate log-linear model takes the form of:

l _ * TX i i TY i V i I L i 1 (4)
08(ijl-a’ + ZflXOCj) + ZflYO’k) + 2121511ij

i=1 i=1 i=1 =1

For the SG KE method, one single bivariate log-linear model is fit to the pooled

data to get the probability of an examinee getting a score ofj on Form X and a score of k

on Form Y (that is pJ-k ).

For the 25G KE method, two separate bivariate log-linear models are fit to two

groups of data to get two sets of probability estimates 13(1 2)jk and p<21)jk, where

P(12)jk is the estimated population probability of getting a score xj on test X], which

is taken first and a score yk on test Y2 which is taken second; [301)jk is the estimated

population probability of getting a score xj on test X2 which is taken second and a score

yk on test Y1 which is taken first.

For the EG approach, data is fit by two univariate log-linear models.

Alternatively, the EG with X1 and Y1 only KE method can be considered as a special case

Of the 25G KE method with weights of (l , 1).

2.3.2 Step 2. Estimating Score Probabilities on the Target Population

In this step, a Design Function (DF), either linear or non-linear, is applied to map

the estimated population score probabilities from step 1 into the estimated score

16



probabilities for X and Y on the target population T, denoted as fj and §k .

In the KB method ofE0 with X] and Y1 only, the DF is an identity function, i.e.,

the estimated probabilities on target population T ( fj or 53k ) is identical to the estimated

population probabilities, 131- or pk . For both pooled SG and 25G KE methods, a non-

identity DF is needed to transform the estimated population probabilities from step 1,

which is relevant to the data design, into the estimated probabilities over target

A* A* o n -

population T. For the pooled SG KE method, rj and Sk IS the sum of the jornt

probabilities over k andj respectively. For the 2SG KE method, Fj or §k is the weighted

average of the two sets of estimates from the two groups.

f; =Zf’jk’ (5)
k

5i: ZED/ca (6)

]

fj = xEPazyk + (1— Wx)§l3(21)jk, (7)

§k = WyZfi(21)jk +(1— Wy)Z_ 13(12)jk, (8)

J J

Where Wx and Wy indicate the weights placed on the test forms taken first.

Depending on the size of DOE, they can be adjusted somewhere between 0.5 and l to

emphasize information collected from tests taken first. When both Wx and Wy are set to

be 1, data from test forms taken second are completely discarded. Thus the 2SG approach

17



becomes the EG approach with X1 and Y1 only. On the other hand, when both Wx and

Wy are set to be 0.5, the 2SG approach approximates the SG approach by treating the

data equally from tests taken first and second.

2.3.3 Step 3. Continuization

Livingston (1993) clearly explained this step. In all equipercentile equatings,

score x on Form X and score y on Form Y are equated in a population of test-takers if and

only if they have the same percentile rank in that population. In the real world of

educational testing, since the observed test scores are discrete, it is rare to find a score on

Form Y that has exactly the same percentile rank in the test-taker population as score x on

Form X. In order to do equipercentile equating, discrete percentile rank score distribution

has to be continuized. In the KB framework, this “continuization” of the distribution is

accomplished when it replaces the frequency at each discrete score value with a

continuous frequency distribution centered at that value. In contrast, the traditional

equipercentile method uses linear interpolation to continuize discrete score distributions.

By adding a continuous random variable Vdistributed as N (0, l), the discrete

random variables X and Y are transformed into continuous variables X(kX ) and Y(hy)

in KE:

X(hX)=aX(X+hXV)+(1—0X)HX (9)

Y(hr)=aY(X+h)/V)+(1rar)llr (10)

In the above formula, hx and by can be any positive number. They are the
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bandwidth of the replaced normal distributions for each discrete score; ,uX and 0'};

denote the mean and variance of variable X over target population T,

2
a

[1X =ijrj ,o/2Y = 2(xj - ,uX )Zr- ; div =—2—L7 is an adjusting constant.

J j 0X+hX

Since variable Vhas a continuous normal distribution, it is obvious that X + hXV will

be continuous and so doesX(hX) . It can be proved that the transformed continuous

variable X(hX) and Y(hy) has the same mean and standard deviation as the discrete

variables Xand Y respectively.

The selection of hX (or hY) determines the equating method. The KE Optimal

(simply as “KE” in Table 6) equating method selects hX (or hy) automatically by

minimizing the difference between the probability distributions ofX (or Y) before and

A " 2

after continuization 20'j "- fhX (xj l) , where fhX is the density ofX(hX ) ). While

J

the KE_Linear (linear) equating method can be approximated by using a large

“bandwidth” value which is usually larger than 10 times of the standard deviation of an

observed score distribution.

2.3.4 Step 4. Equating

KE defines the equating relationship as the equivalence between the continuized

cumulative distributions ofX(hX ) and Y(hy) . For example, the equating function for

equating X to Y on target population T is given by:

Ghy (yo) = Ft, (xi) => 5» = 6,7,1 <th (mm) a» éy<x> = 6;; (137., (x»
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(11)

Where F( 11X) and G(hy) represent cumulative density functions of

X(11X ) and Y(by) respectively. The linear equating method is considered as a special

case in KE framework.

2. 3.5 Step 5. Calculating Standard Error ofEquating (SEE) and Standard Error of

Equating Difference (SEED)

KE provides a formula for calculating SEE derived from the delta method (see

von Davier, Holland, and Thayer, 2004):

SEE(éY(x)) = SEE(€Y(X;f,§)) = JJey (f,§)JDF(1},§)2R,§~/eyz1i §)JDFE;,§) (12)

 

Here R and S are used as generic names over all the designs for the population

score probabilities ofX and Y estimated by the log-linear pre-smoothing model in step 1,

A

R

like [9]- ,pk , P(l2)jk , and [3mm etc. When sample size is large, .. is

S

asymptotically normally distributed with mean of (S) and variance matrix of

2 with dimension ((JK + JK) x (JK + JK)) ; f and S are the estimated population
RS

score probabilities ofX and Y over target population T; ZR 3 is the covariance matrix of

R and S . The estimated equating function is a composition of éy and DF

(éY (x) = eY (x;f,§) = G_1(F(x)) ); the design function (DF) is a function of
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R andS ; Jell“,g) and JDF(R,S) are Jacobian matIices (in formula 13 and 14) related

to the equating function and the design function respectively. J8), (,2,§) is a (1X (J + K))-

row vector of the first derivatives of the estimated equating function with respect to each

estimated score probabilities r" and § over target population T, and JDF(R 5) is a

((J + K) x (JK + JK)) - matrix of the first derivatives of the DF with respect to each of

the output variables from the pre-smoothing procedure:

 

JeY(fa§) : (86,): age—3:) (13)

r as (lx(J+K))

a: a)
JDF(R,$‘) = OR US (14)

US US

  
\gfi,$/((J+K)X(JK+JK))

Kernel Equating provides an analytic tool to calculate standard error of equating.

It is known as the delta method (also known as Taylor Series method) and provides a

statistical procedure widely used to estimate the variance or standard error of a firnction

of some statistical estimates with known asymptotic distributions (Kolen & Brennan,

2004; von Davier, Holland, & Thayer, 2004).

In addition to calculating the conditional SEE’S at each score point, KE also

provides the SEED statistics for calculating the standard error of equating difference

between two KE functions at each score point. Von Davier, Holland, and Thayer (2004)

used SEED to decide whether the equating results of two KE methods are significantly

different from each other.
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2.4 Equating Error

Equating error reflects the difference between the equated scores estimated from

the sample and the equated scores from the population. It consists of two sources of error

— random equating error and systematic equating error. Random equating error is the

error simply due to sampling. Systematic equating error arises if 1) the equating design is

inappropriately executed; 2) the statistical assumptions of an equating method are

violated; 3) equating procedure is inappropriately implemented, for example, applying an

IRT equating to a multidimensional test. The definition ofrandom error and systematic

error determines that the magnitude of the random equating error closely depends on the

sample size, while the systematic equating error does not depend on the number of

examinees in the equating (Kolen & Brennan, 2004).

2.5 Evaluating the Results ofEquating

After equating is conducted, the results of equating can be evaluated with several

criteria. According to Harris and Crouse (1993) and other evaluation studies of KE, the

evaluation criteria for equating results include:

1) Standard error of equating conditional on scores;

2) Root Mean Squared Deviation (RMSD) index and “average equating

error” index (Klein & Jarjoura, 1985; Livingston, Dorans, & Wright,

1990) for evaluating overall equating accuracy;

3) Conditional equating bias and “average equating bias” (Livingston, 1993);

4) Root Mean Square Error (RMSE) for overall adequacy of equating (Mao,

von Davier, & Rupp, 2005);

5) Standard Error of Equating Difference calculated under the KB framework
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(von Davier, Holland, & Thayer, 2004).

2. 5. 1 Standard Error ofEquating

The Standard Error of Equating (SEE) is useful in indicating the amount of

random error in equating which is due to sampling of examinees. There are two ways of

calculating SEE’s: analytic methods, and computational methods such as a bootstrap

resarnpling method or other empirical methods. The delta method is an analytic method

replying on asymptotic statistical assumptions. It uses normal distribution to approximate

the probability distribution of a statistical estimator. The assumption of asymptotic

normality holds only when sample size is relatively large. When sample size is small, the

delta method will not be accurate unless strong normality assumption holds for the

population.

Using a real data with a common item nonequivalent group design, Hanson, Zeng,

and Kolen (1993) compared the delta method standard errors of equating with the

bootstrap standard errors of equating for Levine observed score and true score linear

equating. The sample size is over 700. The results of their study indicate that compared to

the bootstrap SEE, the random equating errors for scores at the higher end were

overestimated by the delta method with a normality assumption while the random

equating errors for scores at the lower end were underestimated. Lu and Kolen (1994)

used the delta method and the bootstrap method to estimate SEE’S of Tucker linear

equating for a common item nonequivalent group design. They compared the differences

between standard errors derived from the delta method and the bootstrap method given

different sample sizes and different number of bootstrap replications. They also found

that the difference between standard errors calculated by the delta method and the
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bootstrap method become larger as sample size decreases and as the number of bootstrap

replications decreases.

Bootstrap method refers to the resampling procedure of selecting random samples

with replacement from a given sample with size N repeatedly. The theoretical framework

for the bootstrap method and the applications of the bootstrap method were decribed in

Efron (1982), Efron and Tibshirani (1993) and Kolen and Brennan (2004). Suppose in a

random equivalent group design, two groups of examinees of size n, and n2 took test

forms X and Y respectively, Form Y is equated to Form X using equating method B,

Then a typical bootstrap method has the following steps: 1) Draw a sample of size n, with

replacement from the group of examinees taking test form X (size = n 1); 2) Draw a

random bootstrap sample of size n2 with replacement from the group of examinees taking

test form Y (size = n2); 3) Conduct equating on the random bootstrap samples and obtain

an equating function; 4) Repeat step 1 through step 3 for a large number of times and

equate Y to X every time; 5) All the equating results at each score point form a

distribution. Calculate standard deviation ofthe equating results at each score point. The

result is called the estimated bootstrap standard error of equating conditional on every

score point. Then the bootstrap standard error of this equating procedure conditional on

each score level will be:

 

l n ,, 7:

SEE: Z:E(ex(yk)-ex(yk))2
(15)

where n is the total number of replications; yk represents the kth score on Form Y;

eX (yk) is the equated score on Form X corresponding to score yk; 5X (yk) is the mean
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of equated scores at score yk over the n replications. Parshall, Houghton, and Kromrey

(1995) used bootstrap standard error of equating and statistical bias in equating to study

the adequacy of equating. Their results incidate that as sample size decreased, equating

bias remains stable but the bootstrap SEE increased substantially. Therefore, they argued

for using the bootstrap method instead of the delta method to calculate SEE for samall

samples (Tsai, 1995).

Livingston (1993a) compared the standard errors of kernel equating methods with

traditional equipercentile methods using a common item nonequivalent group design. He

calculated random standard error of equating using an empirical method different from

the typical bootstrap method. He selected 50 small random samples of size n without

replacement from a big population dataset of size N. He then obtained equating results for

each of the 50 small samples. Standard deviation of the 50 equated scores from the

population criterion equating result at each raw score point is regarded as the conditional

standard error of equating at each score point. Instead of using the mean of the 50

equated scores for each raw score point (EX (yk) in formula 15), he used the equated

score on the population criterion.

The simulation study in this dissertation follows the same procedure as described

in Livingston (1993) to calculate empirical standard error of equating. The bootstrap

method was applied on the real datasets to calculate standard error of equating.

2. 5.2 Root Mean Squared Deviation (RMSD)

The root mean squared deviation (RMSD), is a measure of the overall equating

accuracy (Livingston, Dorans, & Wright, 1990; Livington, 1993; Schmitt, Cook, Dorans,

& Eignor, 1990). It can be calculated by:
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ZnYk (jay/c _ xJ’k )2

RMSD = (16)

\ ZnYk

 

 

where xyk is the equated score on Form X corresponding to score y using the

criterion equating method; 55yk is the equated score on test form X corresponding to

score y using other equating methods; nyk is the number of observations at each score

level of test Y. The RMSD is basically an average of the conditional random equating

errors. An alternative summary statistics is the average equating error, which is simply

the average of the conditional standard error of equatings over all the score points on test

Form Y (Klein & Jarjoura, 1985).

2. 5.3 Equating Bias

Equating bias is useful in indicating systematic error in equating. In equating

practice, equating bias is often estimated when comparing equating results with an

arbitrarily selected sound criterion. Generally, results from equipercentile equating are a

good candidate for such a criterion. Yen (1985) suggested. using the results from

equipercentile equating as a criterion because it is as accurate as the IRT-based equating

results. Livingston (1993a and 1993b) used the equipercentile equtaing results for a very

large sample as a baseline criterion. Alternatively, the true equating relationship can be

found from simulated data. In simulation studies, the population equating relationship is

known and can be reckoned as a comparison criterion for calculating equating bias, but

the degree to which the simulated data can represent real data is questionable.

Use the same notation defined above, the equating bias conditional on each score
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level can be caculated by:

xyk _ xyk (17)

The overall bias of equating can be calculated by:

ZnJ’k (jeYk _ xyk l/ZnJ’k (18)

2.5.4 Root Mean Square Error

As described above, SEE and RMSD reflects random equating error and

systematic equating error respectively. Tsai (1995) and Mao, von Davier, and Rupp

(2005) adopted the Root Mean Square Error (RMSE) index. Tsai (1995) explained why

this statistics takes into account the random equating error and systematic equating error

simultaneously.

 

RMSE=\/(d)2+(sdd)2 (19)

Where d is the mean of the equating differences at each score level, and sdd is the

standard deviation of the equating differences between two methods. It reflects how

biased and how accurate the equating results are comparing to an equating criterion.

2. 5.5 Standard Error ofEquating Difference

SEED calculated in KE can be used to determine whether the equating difference

between two KE methods is significant or not. Von Davier, Holland, and Thayer (2004)

used SEED to decide if equating bias in a CB design is significantly big. When equating

using a CB design, the equating function of the 286 approach with weights of (l, l) is

unbiased since the data from tests taken first is not affected by order effects. If a 2SG

27



method with certain weights is compared with the unbiased ZSG(l, 1) method, and their

equating difference falls within the range of j: ZSEED, then the equating bias of this 28G

method is small enough to be neglected. The standard error of equating will become the

only statistics to compare when selecting an equating function.

TABLE 5. KE methods and correggonding traditional equating methods
 

 

 

 

 

  

ZSG(.5, .5) KB linear Traditional SG linear equating

2SG(1, 1) KB linear Traditional EG linear equating

ZSG(.5, .5) KB equipercentile Traditional SG egmipercentile equating

2SG(1, 1) KB eguipercentile Traditional EG equipercentile equating

286 with other weights Not available
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TABLE 6. All eqpating methods compared in this studyfor simulated data
 

 

 

 

 

Equating Explanation

28G ZSG(.5,.5) Log-linear smoothing; Treat data as two independent groups; Using

Design weights of (5,5) for X and Y

L' 28G(.5,.75) Log-linear smoothing; Treat data as two independent groups; Using

"war weights of(.5,.75) for x and Y

28G(.6,.5) Log-linear smoothing; Treat data as two independent groups; Using

weights of(.6,.5) for X and Y

ZSG(.6,.6) Log-linear smoothing; Treat data as two independent groups; Using

weights of (6,6) for X and Y

ZSG(.75,.5) Log-linear smoothing; Treat data as two independent groups; Using

weights of(.75,.5) for X and Y

28G(.75,.75) Log-linear smoothing; Treat data as two independent groups; Using

weights of(.75,.75) for X and Y

ZSG(.9,.5) Log-linear smoothing; Treat data as two independent groups; Using

weights of (.9,.5) for X and Y

ZSG(.9,.9) Log-linear smoothing; Treat data as two independent groups; Using

weights of (9,9) for X and Y

2SG( l ,l) Log-linear smoothing; Treat data as two independent groups; Using

weights of(l,l) for X and Y

ZSG ZSG(.5,.5) Log-linear smoothing; Treat data as two independent groups; Using

Design weights of (5,5) for X and Y

E , ZSG(.5,.75) Log-linear smoothing; Treat data as two independent groups; Using

qul- , weights of(.5,.75) for X and Y

percentile _ . . ,

ZSG(.6,.5) Log-linear smoothing; Treat data as two Independent groups; Usmg

weights of (6,5) for X and Y

ZSG(.6,.6) Log-linear smoothing; Treat data as two independent groups; Using

weights of(.6,.6) for X and Y

28G(.75,.5) Log-linear smoothing; Treat data as two independent groups; Using

weights of(.75,.5) for X and Y

28G(.75,.75) Log-linear smoothing; Treat data as two independent groups; Using

weights of(.75,.75) for X and Y

ZSG(.9,.5) Log-linear smoothing; Treat data as two independent groups; Using

weights of (.9,.5) for X and Y

ZSG(.9,.9) Log-linear smoothing; Treat data as two independent groups; Using

weights of (9,9) for X and Y

28G(l ,1) Log-linear smoothing; Treat data as two independent groups; Using

weights of(l,l) for X and Y

SG design SG_Lin Linear-interpolation; Traditional linear equating

SG_Equi Linear-interpolation; Traditional equipercentile equating

EG design EG Linear Linear-interpolation for continuization; Traditional linear equating

EG Equi Linear-interpolation for continuization; Traditional equipercentile equating
 

Among these methods, the EG linear, EG equipercentile, SG linear and SG

equipercentile equating methods are the corresponding traditional equating methods for
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the ZSG(1, 1) linear, 28G(l, 1) KB, SG KE linear and SG KE methods.

Chapter III: Methods

3.] Quantification ofDifferential Order Effect

This study draws on DOE as (A71 _ 171) — (X2 — )72) (Kolen and Brennan, 2004)

to further introduce Hypothesis Testing and effective size and estimate order effects in a

CB design.

The following is a derivation for a hypothesis testing of the statistical significance

OfDOE:

DOE=(/3X1‘Il7I/1)-(flx2 ’flY2)=(flX1+flY2)—(flXz H113)

: 2X1+ZY2 _ 2X2 +221

N1 N1 N2 N2

Z(X1+Y2) Z(X2+YI)_ ~ .

N1 ‘” N2 _'U(X1+Y2) —’u(X2+Yl) (20)
 

where AZ(Xl +Y2) is the average sum scores ofX1 and Y2 for sample 1,fl(X2+Y1) is the

average sum scores ofX2 and Y, for sample 2; N1 is the number of examinees in sample

1, and N2 is the total number of examinees in sample 2.

Therefore, the hypothesis testing for the significance of DOE is actually

equivalent to a two independent sample t—test for the mean difference ofSum]2 and

Sum2]. The null hypothesis for DOE becomes: H0 :IU(X,+Y2) —’u(X2+YI) = () ;

. DOE

and the t test 15: t = (21)
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where sp is the square root of the pooled variance of the two sum scores,

 

2 2

s _ (n1 1)S(X1"'Y2)-i-(n2 1)S(Y1+X2) (22)
p—

n1+n2—2

 

The statistical Significance of DOE, however, relies heavily on sample sizes. To

avoid the influence of sample size on the quantification of differential order effects, the

effect sizes of DOE can be calculated:

.. Mean —Mean .

Effect size at = (X1+Y2) (Y1+X2)
 

(23)

Sp

3.2 Data

This study uses 2 real datasets and 6 simulated datasets with CB designs. The six

simulated datasets are generated in a systematic way with different sizes of DOE.

3.2.] Real Data

Real data ]: Von Davier, Holland, and Thayer (2004) provided a real dataset from

a small field study of an international testing program. In their dataset, both test forms X

and Y are number-right scored. They have 75 items and 76 items respectively and their

correlation is le,y2) = r(X2,Y1) = 0.88 .
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TABLE 7. Summary statisticsfor real data I

X1 Y2 X2 Y1 X Y Sum12 Sum21

N 143 143 140 140 283 283 143 140

Mean 52.65 51.42 50.64 51.39 51.66 51.41 104.07 102.04

SD 12.41 11.03 13.83 12.18 13.15 11.59 22.72 25.23

Skew -0.52 -0.37 -0.54 -0.58 -0.55 -0.49 -0.45 -O.57

Kurt -0.15 -0.64 -0.82 -0.52 -0.50 -0.55 -0.40 -0.67

Min 16 27 19 18 16 18 45 45

Max 74 71 72 71 74 71 142 142  
*X and Y are scores for combined groups; Sum12 is the sum of scores on test X, and Y; for the first group;

Sum21 is the sum of scores on test X2 and Y, for the second group.

The differential order effect in this dataset is DOE == (X1 - )71) — (A72 - 172) =

2.03, which has an effect size of 0.08 approximately. T-test is not significant.

Real data 2: The second real data was collected using a CB design for an algebra

test. Each of the equating forms has 25 multiple-choice items. Group one has 399

students, who took Form X first and Form Y second, and Group two has 362 students,

who took Form Y first and Form X second. Both test forms X and Y are number-right

scored and their total score correlations are r(X1,Y2) = 0.64 and r(X2 ’ Y1 ) = 0.74

respectively.

TABLE 8. Summary statisticsfor real data 2
 

 

X, Y; Y, X; X Y SumIZ Sum21

N 399 399 362 362 761 761 399 362

Mean 13.04 13.00 12.14 11.84 12.47 12.59 26.04 23.98

SD 3.94 4.35 4.15 4.66 4.33 4.27 7.50 8.22

Skew -0.22 -0.25 0.25 0.22 -0.03 -0.01 -0.07 0.37

Kurt 0.21 0.40 —0.34 -0. 15 -0.06 -0.02 0.19 -0.28

Min 0 0 2 0 0 0 0 4

Max 23 25 23 25 23 25 48 48 
 

*X and Y are scores for combined groups; Sum12 is the sum of scores on test X1 and Y2 for the first group;

Sum21 is the sum of scores on test X2 and Y1 for the second group.

The differential order effect in this dataset is 2.06, which has an effect size of 0.26

approximately.
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3.2.2 Simulated Data

In compliance with Davey, Nering, and Thompson’s (1997) purpose of simulating

realistic item response data, this study made an effort to generate data as close as possible

to the first real data described earlier. The reason for selecting real data 1 as a target is

that the two test forms in this dataset have equal test-retest reliabilities, which is an

important assumption for linear and equipercentile equating. There are 75 items on each

simulated test form.

Six population datasets were simulated with different sizes of order effects using a

3 parameter logistic Item Response Theory model (3PL IRT model). In Lord (1980), a

3PL IRT model takes the form as below:

1— c

-l .7a(t9-b) (24)

 

P9 26+
() 1+e

where 19 is the underlying ability to be measured, a is the item discrimination

parameter, b is item difficulty, and c is the item guessing parameter indicating the

probability that a person completely lacking in ability will answer the item correctly.

Each of the six simulated datasets has two samples, each with size of 100,000.

Each sample takes two tests X and Y but in different order. A 75 by 100,000 item-person

response matrix with 0 and 1 scores was generated for each sample using the 3PL IRT

model. The scores on each item were then totaled to get an observed test score for each

examinee. After the simulation of data for two independent group taking two test forms

in different order, data from the two independent samples were simply combined together

to form the dataset with a pooled SG design. Please see the design below:
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sam lel: X ,Y

ForaCB design: [9 ( 1 2)

sample2:(X2,Y1)

X1 Y2]
For 3 SG design: pooled sample:

(X2 Y1

However, one drawback of using real data 1 is its lack of item response data.

Without the item response block, it is more difficult to estimate the item parameters of

the real test items and use the estimated parameters for simulation. In this simulation, the

parameter distributions were decided based on empirical experience.

To ensure that the generated item discriminant parameter a and item guessing

level c are positive, parameter a ’s were randomly selected from a log-normal distribution,

and parameter c ’s were randomly selected from a beta distribution. Furthermore, in order

to make the simulated data more realistic, means and variances of the distributions of

parameter a, b, and c were adjusted to be certain values to best emulate the first real data

set used in this study. Specifically, the mean and variance for the log-normal distribution

ofparameter a was fixed as 1 and 0.12; the mean and variance for the normal distribution

ofparameter b was fixed as -0.3 and 0.8 and the mean and variance for the beta

distribution of parameter c was fixed as 0.25 and 0.008.

Order effects were considered as a second dimension of examinee’s underlying

abilities when taking the second test and the size of order effects varies across examinees.

Assume that the changes in examinees’ performances reflect the changes in their

underlying abilities, then,

612k = 611k +01k (sample 1); (25)

622k = 621k + 02k (sample 2); (26)
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where k is the number of examinees;

611k denotes the underlying abilities of examinees in sample 1 taking the first test

(X1);

31 2k denotes the abilities of examinees in sample 1 taking the second test (Y2);

01k denotes the order effects of examinees in sample 1 taking test X first and Y

second;

621k denotes the underlying abilities of examinees in sample 2 taking the first test

(Y1);

622k denotes the abilities of examinees in sample 2 taking the second test (X2);

02k denotes the order effects of examinees in sample 2 taking test Y first and X

second;

It was assumed that 611k and 612k (or 621k and 622k) follows a bivariate

normal distribution with the same standard deviations. The correlation between 611k and

012k (or 621k and 922k ) may not be perfect since order effects are not constant across

examinees. It was set to be 0.94 in this study in order to achieve a correlation of observed

score at 0.88. 01k and 02k both have variances of (1-0.94)2. When all the parameters a,

b, c, and 6 were randomly selected, calculate the probability of each examinee with

certain 6 level answering each item correctly from the 3PL IRT model. If the probability

of a correct response is greater than a random number from a uniform distribution, the

item response for a person on a specific item will be 1, otherwise it will be 0.

In this study, the effect sizes of differential order effects were controlled to be
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changing from O to 0.2 in the simulated datasets. In order to meet this restriction and

make simulated data as real as possible, different means for the distributions of61 1 and

612 (or 621 and 622) were tried and DOE’s were calculated afterwards until order

effects are within the range and the simulated test scores share similar descriptive

statistics as test scores in the first real dataset. The distributions and descriptive statistics

of the six simulated datasets are provided below. As shown in table 9 to table 14, the

simulated data has similar distn'bution moments as the first real dataset.

Simulated data 1 with insignificant order elfectsLDOE = -0.04)

0 Sample 1 (N=100000):

2

0 =1 0 =94

HN (”511:0 ”612:0'01)’ 911 611:]2
06119122294 0012=1

0 Sample 2 (N=100000):

2

0 =1 a :94
9 6 t9

6'" (111621 :0 #622 20.01), 21 21222

=.94 0 =1
0921922 922

a ~ (,ua =10; =0.12); b ~ (72,, =—0.3,a,3 =08);

C~ (726 = 025,05 = 0.008)

 

TABLE 9. Descriptive statisticsfor Simulated data I

 

Test Min. Max. Mean Std Skewness Kurtosis

X1 10 75 52.52 13.78 0% -0.67

Y2 9 75 50.50 13.57 -032 -0.81

X2 10 75 50.51 13.59 -031 -0.81

Y1 8 75 52.55 13.80 -045 -0.68
 

"(X1, Y2) = "(Y1, X2) 2 0-88
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3000

   

   

  

25

200

150

1000 . 1000.

500 500

   

 

0— _

01020304050607075 0 10 2030 40 50 607075

X] (skewness=—O.46) Y2 (skewness=—0.32)

 

0 —10 20 30 4O 50 60 70 75 00 —1—0 20 30 4O 50 60 70 75

Y] (skewness=—0.45) X2 (skewness=-O.3l)

Simulated data2 with significant order @tects (DOE= —0. 58, e ect size 0 DOE = 0.025

0 Sample 1 (N=100000):

2 _ __
0611—1 0611612_'94

19~ (719”:0 77612 =—0.025), _ 94 2 1

0611612 —. 0612 _

0 Sample 2 (N=100000):

2

0' =1 0 =94
_ _ 1921 921322

t9~ (#921 _0 21,922 _0.025), _ 94

0921922 _' 0622 _
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a ~(ya =10; =0.12); b~ (,ub =—0.3,0'§ =08);

c ~ = 0.25 02 = 0.008
(#6 7 b )

TABLE 10. Descrytive statisticsfor simulated data 2
 

Test

 

 

Mm. Max. Mean Std Skewness Kurtosis

X1 9 75 52.01 13.71 -0.43 -0.7]

Y2 10 75 50.54 14.01 -0.27 -O.89

X2 11 75 51.15 13.90 -0.30 -0.87

Yl 10 75 51.98 13.66 -0.41 -0.73

7?le Y2) = For], X2) z 0.88

3000 3000

250

200

150

 

1000-   

 

   

500

  

O _

0 10 20 30 40 50 60 7075

X1 (skewness=—0.43)

3000

250

200

‘150

500

Q _

0 10 2O 30 40 50 60 7075

Y1 (skewness=-0.4l)

 

500   
0 _

C 10 20 30 40 50 60 7075

Y2 (skewness=-0.27)

500

 

o _

0 ‘10 20 30 4O 50 60 7075

X2 (skewness=-0.3)

38



Simulated data3 with significant order etZects (DOE= 1.41, etZect size of DOE = 0. 05 2

0 Sample 1 (N=100000):

0'2 =1 0' = 94
611 611912 '

0~ (7191 =0 #91 =0.05),

1 2 o = 94 02 —1
611912 ' 612

0 Sample 2 (N=100000):

 

 

2 _ _
0'921 —1 0921922 —.94

0~ (#9 =0 #9 =—0.05),

2‘ 22 — 94 0'2 —1
0921922 _' 1922 _

_ 2 _ . _ 2 _ .
a~ ,ua —1,ob —0.12 ,b~ ,ub ——0.3,0'b —0.8,

6 ~ (flc =0.25,a§ =0.008)

TABLE 1 1. Descriptive statisticsfor simulated data 3

Test Min. Max. Mean Std Skewness Kurtosis

X1 9 75 52.01 13.71 -043 .071

Y2 10 75 51.54 13.90 -0.34 -0.84

X2 11 75 50.15 14.00 -024 -0.92

Y1 10 75 51.98 13.66 -0.41 -0.73
 

rm, Y2) = ’01,,1’2) = 0-88

3000  

  

25

200

150

1000-

500   

 

0 —— 0 __

0 10 2° 30 40 50 60 7075 0 10 20 30 40 50 60 7075

X1 (skewness=-0.43) Y2 (skewness=-0.34)
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3000

     
O _

o 10 20 30 40 so 60 7075 0 1° 20 30 4° 50 6° 7°75

Y1 (skewness=-0.41) X2 (skewness=-0.24)

Simulated data4 with significant order eflects [DOE= -2. 75, etZect size at DOE = 0.12

0 Sample 1 09400000):

02 =1 0 = 94
01 1 61 1612 .

6~ (“1911:0 #912=_0'1)’ 2
0011612='94 0612=1

. Sample 2 (N=100000):

07-1
621 : 0.021022 :94

_. 2 _
0321322 -—.94 0922 ——1

6~ (#921:0 #4922 =0‘1)’

a ~ ()2, =10; =0.12); b~ (77,, =—0.3,a§ =08);

c~ =025 0'2 =0.008
(lac 2 b )

TABLE 12. Descriptive statisticsfor simulated data 4
 

 

Test Min. Max. Mean Std Skewness Kurtosis

X1 10 75 50.34 13.50 -0.31 —0.80

Y2 10 75 48.64 13.57 -0.29 -0.84

X2 11 75 51.35 13.27 -0.45 -0.67

Y1 9 75 50.39 13.56 -0.30 —0.81
 

r(Xl, Y2) = rm,X2) ‘~' 0-88
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3000 3000

25

200

150

1000-

500

0 —— 0 _

0 10 20 30 40 50 60 7075 0 ‘IO 20 30 40 50 60 7075

X] (skewness=—0.31) Y2 (skewness=-0.29)

3000 3000

250

200

150

1000-

500

0—10 20 3O 4O 50 60 7075 O0 —‘l_0 20 30 40 50 60 7075

Y] (skewness=—0.30) X2 (skewness=-0.45)

Simulated data5 with significant order fins (DOE= -3. 76, etZect size of DOE = 0.152

0 Sample 1 (N=100000):

2
0 =1 0' =94

611 911312

6~ (#1911:0 #312=_0‘1)’ 2
0011012 =.94 0612 =1

0 Sample 2 (N=100000):

2

0' =1 0 :94
1921 921922

6~ (#921=0 #922 :0'2)’
0 - 94 0'2 —1
621622 —. 622 _
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a ~(,ua =1,a§ =0.12); b~ (#7, =—0.3,a§ =08);

c~ =0.25 02 =0.008
(#0 2 b )

TABLE 13. Descriptive statisticsfor simulated data 5
 

 

Test Min. Max. Mean Std Skewness Kurtosis

X1 10 75 50.99 14.07 -0.29 -0.89

Y2 9 75 48.50 13.65 -0.11 -O.88

X2 11 75 52.33 13.36 -0.34 -0.75

Y1 9 75 50.92 14.10 -0.29 -0.88

 

r(Xl, Y2) = r02], xz) z 0.88

3000 3000

 

250

200

150

1000 '

500

0

  

A
10 20 30 40 50 60 7075

   

    

01020304050607075

  

X1 (skewness=-0.29) Y2 (skewness=—0.l l)

3000 3000

250 7

200

150

1000 1000.

500 500

0 — 0 —

0 ‘10 20 30 40 50 60 70 75 0 10 20 30 40 50 60 70 75

Y] (skewness=—0.29) X2 (skewness=0.34)
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0 Sample 1 (N=100000):

0' —1 =94
_ _ 611 911912

6~ (#611—0 fl912_—0'2)’ 94 2 _1

0311912 — 0612 T

0 Sample 2 (N=100000):

0'32] =1 0321922 .94

0~ (#1921:0 1“1922 =0°2)’ 2
0' = 94 0' —1
921922 ' 1922

a ~ (ya :10; =012); b~ (,ub =—03,a§ =08);

c~ =0.25 02 =0.008
(#c 2 b )

TABLE 14. Descriptive statisticsfor simulated data 6

Test

 

 

Min. Max. Mean Std Skewness Kurtosis

X1 9 75 52.52 13.78 -0.26 -0.88

Y2 9 75 47.75 13.79 -005 -0.96

x2 11 75 52.93 13.24 -0.37 -079

Y1 11 75 52.55 13.80 -025 -0.89

 

rm, Y2) = r(Yl,X2) z 088

 

3000

2509

   

  

200

150

1000 -

500   

 

0 _.

0 ’10 20 30 40 50 60 7075

X1 (skewness=-0.26)
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3.3 Analysis

The analysis of real data and simulated data in this study differs slightly. For the

two real datasets, the bootstrap method was employed to calculate standard error of 14

out of the total 22 equatings (as listed in Table 15 and Table 16). The equating results

were evaluated by SEE and RMSE. For the simulated datasets, empirical standard errors

of equating were calculated for 22 equating methods as displayed in Table 6. The

equating functions were evaluated by SEE, equating bias relative to the large sample

standard, RMSE and SEED. Computer sofiware SAS, MATLAB, Compaq Visual

Fortran, and MATLAB were used to simulate data and conduct equating procedures.

3.3.] Equating Methods Appliedfor Simulated Data

Table 6 lists the names of all the equatings conducted for simulated data in this

study and provides detailed explanations for each equating. The results of the traditional

equipercentile equating (EG_Equi) on each population dataset were considered as

criterion equating results. All the other equating results were compared to this criterion

equating for each population. In this study, all the equatings are from test Form Y to test
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Form X, i.e., the equating function takes the form ofex (y) , which is a function of score

y.

3.3.2 Procedurefor Estimating Empirical SEEfor Simulated Data

Once the population datasets were generated, 500 random samples were selected

from each of the four populations without replacement. The estimation of empirical SEE

for the simulated datasets followed procedures as below:

1. Randomly select one sample (n=50) from each of the two independent

samples from population 1 without replacement. Selected sample 1 has

scores for Form X, which is taken first and Form Y, which is taken

second. Selected sample 2 will have scores for Form X, which is taken

second, and Form Y, which is taken first. Data from the two

independent samples were simply combined to form a data with the

pooled single group design.

Apply the 22 equatings to the samples selected from the population.

When the sample size is greater than 100, two log-linear models were

fit to the data for all the KB equating methods. The first log-linear

model (model (2, 2, 1)) preserves the first bivariate moment (the

correlation of scores on Form X and Form Y) and the first two

univariate moments of each variable (mean and standard deviation). The

second log-linear model (model (4, 4, 1)) preserves the first bivariate

moment and the first four univariate moments of each variable.

Replace the test-takers into the corresponding population and repeat
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sampling for 500 times. Then the 500 replications build up a conditional

distribution of equating results at each score point. The mean of this

conditional distribution is the equating results at each score point and

the standard deviation of this conditional distribution is the empirical

conditional SEE at each score point.

4. Repeat step 1 to 3, change the selected sample size from 50, to 100,

300, 500 and 1000.

5. Repeat the above procedures for simulated data 2 to data 6.

The bandwidth for KE linear equating was set at 200. The weighting parameter

Wx or w took values from 0.5 to 1.
y

3.3.3 Evaluating Equating Resultsfrom Simulated Data

For the simulated data, traditional equipercentile equating results with the EG

design were considered as the criterion. All the other equating methods were compared to

this criterion and. were evaluated in terms of Standard Error of Equating, equating bias

relative to the large sample standard, Root Mean Square Error and Standard Error of

Equating Difference. For the two real datasets, only bootstrap SEE and RMSE were

reported.

Equating Bias Relative to the Large Sample Standard

To calculate equating bias at each score point, for each of the 22 equatings under

each of the six population conditions, the mean of the 500 replications’ equating results

were subtracted from the criterion equating results (EG_Equi) at each score level (as in

formula 17). Conditional equating bias was not reported for simulated data. Instead, the

average of all the conditional biases at each score level was calculated and reported in
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chapter IV.

Root Mean Square Error (RMSE)

The Root Mean Square Error of each equating compared to the criterion equating

is equal to the square root of the sum of squared average bias and variance of bias over

 

possible score points: RMSE:JW +(2de) ,where d is the mean of the equating

differences and sdd is the standard deviation of the differences between the equating

results of one method and the criterion equating results. It reflects how biased and how

accurate the equating results are compared to the population criterion.

Standard Error ofEquating (SEE)

The empirical conditional standard error of equating was considered as the

standard deviation of the conditional distribution formed by the equating results for 500

replications. It can be calculated using the following formula. In chapter IV, only the

average of these conditional SEE’s over different score points was reported for each

equating method.

 

1 500

SEE= —— Z (8X(yk) eX(yk))2 (27)
499 j—_1

wherej = 1 to 500 is the number of selected samples; k = 1 to K is the possible

score points on Form Y; éX (yk) is the equated score from Form Y to Form X for thef“

replication; 8X (yk ) is the equated score ofX corresponding to score yk from the

population dataset.

In this study, SEED was calculated directly by the KB software.
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Chapter IV: Results

4.1 Real Data 1

Real data 1 has a DOE of 2.03, which is not statistically significant (t=.713,

se=2.85, p=.476, dfi281), i.e., the order effect can be almost cancelled out by pooling

together the two groups of data in this specific example. The effect size of DOE is 0.08.

Levene’s test of homogeneity of variance (Levene, 1960) is not significant (F=1 .67,

p=.197). The best fit model for the KB methods is model (2, 2, 1): TX = TY = 2 and I =

L = 1. The following figures show the observed score distributions for X1, Y2, X2, and

Y1 and their fitted data distributions.
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FIGURE 1. Observed score distributionsforX1 and Y, in real data 1.
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FIGURE 2. Observed score distributionsfor X2 and Y2 in real data 1,

4.1.1 Selecting the Best Equating Function Using RMSE

All equating methods were compared to the traditional equipercentile equating

with an EG design (EG Equi.). It shows that, when DOE is insignificant, 2SG(.5,.5) and

SG_KE has similar equating results with almost the smallest SEE’s over the whole score

point scale, but they have bigger RMSE compared to the EG design. Not much difference

was found between the equating results of traditional equating and Kernel Equating. No

large difference was found between linear and equipercentile equating methods except

for traditional EG linear and traditional EG equipercentile. This is because the sample

size for EG design is only about 70 for each sample in this dataset, which is too small for

equipercentile equating. Equating results of ZSG (.75, .75) have relatively small SEE and

RMSE. It is the only method that best represents the criterion equating results.
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TABLE 15. Evaluation ofequating resultsfrom real data 1
 

 

 

 

 

 

ZSG KE SG EG

(5,.5) (.5,.75) (.75,.5) (.75,.75) (1,1) traditional traditional

Linear

Mean SEE 0.663 0.839 0.884 1.252 2.381 0.663 2.384

SD SEE 0.313 0.371 0.42 0.565 1.113 0.313 1.118

Min. SEE 0.32 0.44 0.425 0.646 1.164 0.32 1.164

Max. SEE 1.334 1.634 1.776 2.433 4.674 1.334 4.648

Mean Diff 2.066 1.769 1.229 0.908 -0.403 2.066 -0.418

RMSE 2.92 2.5 2.1 1.76 1.68 2.92 1.69

Equipercentile

Mean SEE 0.692 0.833 0.846 1.147 2.196 2.133 3.1

SD SEE 0.343 0.346 0.343 0.408 0.928 2.241 1.926

Min. SEE 0.332 0.385 0.419 0.429 0.491 0 0

Max. SEE 1.384 1.485 1.43 1.714 3.557 6.778 6.82]

Mean Diff 2.29 2.04 1.518 1.262 -0.062 1.369 0

RMSE 3.09 2.72 2.31 1.98 1.42 2.26 0
 

*Criterion equating = traditional EG equipercentile equating

The 2SG approach with weights of (1 , 1) has the smallest RMSE when taking the

EG traditional equipercentile equating function as a baseline. Therefore, the 28G (1, 1)

equipercentile method is the best equating function when using RMSE as an index.
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4.1.2 Selecting the Best Equating Function Using SEED
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Figure 3 and Figure 4 indicate that the differences between the two KE linear and

the two KE equipercentile methods using weights of (1 , 1) and weights of (0.5, 0.5) are

small in comparison with the i 2SEED band. According to von Davier, Holland, and

Thayer (2004), this indicates that the equating bias introduced by order effects is small

enough to be ignored. Thus, the best equating function can be selected solely based on

the random equating error, i.e., the standard error of equating. In this case, the 2SG linear

or equipercentile equating with weights of (.5, .5) will be considered as the best ones.

Their equating difference can be tested against SEED again to decide which one to

choose.
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As shown in Figure 5, the difference between the KB linear and the KB

equipercentile equating functions falls beyond the 95% confidence intervals along the

whole score scale except the lower end. The equating function deviates from a linear

function. Therefore, the 28G equipercentile equating function with weights of (.5, .5) is

preferable to the 2SG linear equating function with weights of (.5, .5) (von Davier,

Holland, & Thayer, 2004).

4.2 Real Data 2

The second real data has a DOE of 2.06. This is significant as the order effect can

not be cancelled out by pooling together the two groups of data in this example. The
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effect size of DOE is 0.26. The best fit model for the KB methods is model (2, 2, 1)

(TX=TY=2,I=L=1)forgrouplandmodel(4,4,1)(TX=TY=4,I=L=1)for

group 2. The following figures show the observed score distributions for X1, Y2, X2, and

Y1 and their best-fit log—linear models.
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4. 2. 1 Selecting the Best Equating Function Using RMSE

TABLE 16. Evaluation ofequating resultsfrom real data 2

23G KE SG EG

(.5,.5) (.5,.75) (.75,.5) (.75,.75) (1,1) traditional traditional

 

 

 

 

 

 

Linear

Mean SEE 0.205 0.223 0.243 0.296 0.51 0.205 0.51

SD SEE 0.07 0.068 0.079 0.083 0.143 0.07 0.143

Min SEE 0.117 0.138 0.145 0.193 0.333 0.117 0.333

Max SEE 0.341 0.354 0.403 0.454 0.767 0.341 0.767

Mean Diff 0.749 0.498 0.448 0.198 -0.387 0.774 -0.29

RMSE 1.007 0.832 0.753 0.638 0.876 1.161 0.673

Equipercentile

Mean SEE 0.254 0.284 0.25 0.304 0.49 . 0.382 0.54

SD SEE 0.114 0.124 0.075 0.077 0.113 0.241 0.274

Min SEE 0.134 0.166 0.165 0.224 0.343 0 0

Max SEE 0.484 0.548 0.399 0.463 0.72 0.845 0.96

Mean Diff 0.671 0.526 0.505 0.362 0.033 0.965 0

RMSE 0.97 0.857 0.774 0.681 0.624 1.317 0
 

*Criterion equating = traditional EG equipercentile equating.

In Table 16, the ZSG equipercentile equating with weights of (1 , 1) has the

smallest RMSE when taking the EG traditional equipercentile equating function as a

baseline. Therefore, the 2SG (1, 1) equipercentile method is the best equating function

when using RMSE as an index.
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4. 2.2 Selecting the Best Equating Function Using SEED
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Figure 8 and Figure 9 indicate that the differences between the two KE linear and

the two KE equipercentile methods using weights of (1, 1) and weights of (0.5, 0.5) are

beyond the :t ZSEED band in the middle part of the score scale, where most of the scores

distributed. For von Davier, Holland, and Thayer (2004), this indicates that the equating

bias introduced by the use of the data from form X2 and Y2 cannot be ignored. The best

solution would be to discard data from tests taken second, that is, to treat the data

collected by a CB design as an EG design. After the weights are decided, the SEED plots

can be used again to decide which equating fimction to choose, the 28G linear equating

with weights of (1 , 1) or the 28G equipercentile equating with weights of (1 , 1).
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FIGURE 10. Equating diflerence between ZSG(I, 1) linear and ZSG(1, I) equipercentile,

and the i 2SEED confidence interval band around zero line, real data 2.

As shown in Figure 10, the difference between the 2SG (1 , 1) linear and the 28G

(1, 1) equipercentile equating functions falls beyond the 95% confidence intervals at the

lower and the middle score scale end. This indicates the equating function deviates from

a linear function. Therefore the 2SG(1, 1) equipercentile equating function is preferable

to the 28G (l , 1) linear equating function (von Davier, Holland, & Thayer, 2004).
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4.3 Simulated Data

All the simulated data can be fitted by a log-linear model of (2, 2, 1) with

adequate model fit. Fitting a model with more parameters did not reduce the likelihood

ratio chi-square statistics significantly. In addition, the Freeman -Tukey residual plots are

within the range of (-3, +3) for all the simulated data when fitted with a model of log-

linear model of (2, 2, 1) like in Figure 13.

2-5- Freeman-Tukey Residual (AIX)

24

1.54 /

  3

 

 

     
 -2- Score

FIGURE 1 1. One example ofFreeman-Tukey residual plotfor POP3.

4.3.] Model Fit

Various log-linear models were fitted to the simulated sample datasets. The

results indicate that, when sample size is 50, model (2, 2, 1) is the best fit model. When

sample size is 100, 300, 500 or 1000, both model (2, 2, 1) and model (4, 4, l) have
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fairly good model fit. In this study, only the equating results of fitting model (2, 2, l) are

reported since the equating results of fitting model (4, 4, 1) are very similar to the

equating results of fitting model (2, 2, 1).

4.3.2 Evaluating the Equating Results by RMSE

As shown in Table 17 and Table 18, the pooled SG and ZSG(.5,.5) approaches

under the KB framework have the lowest SEE and RMSE when DOE is almost zero. This

indicates that when order effect can be cancelled out, the pooled SG method or 2SG(.5,.5)

method can both provide optimal equating results.

Table 19 and Table 20 show the equating results for population data 2 where DOE

has an effect size of 0.025. The 2SG linear and equipercentile equating methods with

weights of (.5 , .75) for X and Y have the smallest RMSE. When the differential order

effect gets larger, as in data 3 where the effect size ofDOE is 0.05, the 28G linear

equating methods with weights of (.9, .9) have the smallest RMSE (Table 21 and Table

22). When the effect size of DOE approaches to 0.1, the pooled SG approach and the

ZSG(.5, .5) approach are apparently not the best (Table 23 and Table 24). Instead, the

28G linear equating method with weights of (1, l) (i.e., EG KE linear method) or the EG

traditional linear method has the smallest RMSE. Furthermore, in population data 5 and

data 6 when the effect size ofDOE is around 0.15 and 0.2, the benefit of using weights of

(1, 1) in the 2SG approach becomes outstandingly bigger. As shown in Table 25 to Table

28, the EG KE linear or EG traditional linear methods have much smaller RMSE than

those methods which treat data as a single group design.
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The results indicate the KB methods can approximate their corresponding

traditional equating methods. No large differences were found between the KB equating

methods and their corresponding traditional equating methods (e. g., KE linear and

traditional linear, KE equipercentile and traditional equipercentile). This is consistent

with the results of evaluation studies for KE, such as Mao, von Davier, and Rupp (2005),

von Davier, Holland, Livingston, and others (2005).

Compared to the standard error of equating, the equating bias index is more

sample size independent. Given the same equating method, the equating bias does not

change a great deal as sample size increases. However, the standard error of equating

decreases conspicuously as sample size increases. The more data we have, the more

information we can use to estimate the equating relationship; the less equating error there

will be. This feature of SEE is inherited from its calculation formula.

When using RMSE as a means of evaluating equating functions, it was found that:

a) When DOE is almost zero, pooling the two samples together or using the ZSG

approach with weights of (.5, .5) are the optimal equating methods with small standard

error of equating and small bias; b) As DOE increases, the 2SG methods under the KB

framework with different weights can provide optimal equating results with smallest

RMSE. The weights for the 2SG approach gets larger as DOE increases; 0) When the size

of DOE approaches to a certain point, treating data collected in a CB design as an EG

design will be the best equating solution. The weights of the 28G approach will become

1. The equating method could be either 28G (1 , 1) or traditional linear or equipercentile

method.
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4.3.3 Evaluating the Equating Results by SEED

Equating differences were compared against their 95% confidence intervals for all

the sample size conditions under each population. The last graph in Figure 12 plots the

equating differences between 2SG(.5, .5) linear and 2SG(.5, .5) equipercentile methods

for simulated data 1 when sample size is 1000. The straight horizontal line in the middle

is the zero line. The equating differences represented by solid dots are around the zero

line within the range of the i- ZSEED band. The other five graphs present the equating

differences between the 28G equipercentile equating with weights of (.5, .5) and (l , 1)

for different sample sizes drawn from simulated data 1.

It can be seen from these plots that SEED gets larger when the equating methods

are different from each other and when sample size decreases. Among the graphs in

Figure 12, the last graph exhibits the smallest SEED, showing that the 28G methods with

the same weighting parameters provide more similar equating results than the 2SG

methods with different weighting parameters. Furthermore, the plots in Figure 12 indicate

that under a certain order effect situation, the equating difference stays relatively

unchanged, but SEED decreases as sample size increases. Therefore, the significance of

the equating difference mostly depends on the sample size. If the equating differences

between two methods fall beyond the i ZSEED band when sample size is 500, they must

also be out of the band when sample size is 1000. Reversely, if the equating difference is

not significant when sample size is 1000, then it must not be significant when sample size

is 500.

More SEED plots are provided in the appendix. Most of the SEED plots are for

the differences between the 2SG(.5, .5) method and the ZSG(1, 1) method. The rational of
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not comparing the equating difference between the 28G(1, 1) method with the 2SG

method with any weights between 0.5 and 1 is provided here: In equating for a CB design

with differential order effect, the 28G approach with weights of (1 , 1) has no equating

bias. The ZSG approach with weights of (.5, .5) will have the biggest equating bias. If the

equating difference between 2SG(.5, .5) and 2SG(1, l) is not significant, then the

equating difference between 2SG(1, 1) and a 2SG approach with any weights between

0.5 and 1 will not be significant.

All the SEED plots for all the simulated datasets indicate that none of the equating

differences between methods 28G(.5, .5) and 28G(1, 1) under different sample size

conditions of population data 1, data 2 and data 3 are significant. Therefore the bias

introduced by using data from tests taken second can be ignored. Thus the 2SG approach

with weights of (.5, .5) can be selected as the best equating line for simulated data 1, data

2 and data 3 when the effect size of DOE is relatively small.
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As DOE increases in simulated data 4, the equating difference between methods

28G(.5, .5) and 28G(1, 1) falls beyond the 95% confidence interval when sample size is

1000. In this case, the 28G approach with weights of (1 , 1) is preferred to avoid the

equating bias introduced by including data from X2 and Y2. This is also the case for data

5 when sample size is 500 and 1000 and for data 6 when sample size is 300, 500 and

1000.

Table 29 summarizes the equating functions selected by using SEED plots for

different samples under different order effect situations. It reflects that the EG design (the

28G approach with weights of (1 , 1)) is more appropriate at the lower right corner when

DOE gets larger and when sample size gets bigger.

TABLE 29. Selected equatingfunction based on SEED
 

 

 

 

 

 

 

       
 

 

 

 

 

 

 

 

DOE n=50 n=100 n=300 n=500 n=1000

d=0 25C (.5, .5) 2SG (g .5) 286 (.5, .2 * 25C (.5, .5) 2SG (5, .5)

d=0.025 zsgj, .5) 236 (5, .5) 286 (5, .5) 2304.5, .5) 236 (.5, .3

d=0.05 2SG(5,3 236 (5, .5) 286 (.5, .5) 2SG (.5, .5) 286 (5, .5)

d=0.1 236 (5, .5) 2SG (.5, .5) 256 (.5, .5) 230 (.5, .5) 2SG (1, 1)

d=0.15 236 (5, .5) 236 (.5, .5) 236 (5, .5) 256 (1, 1) 256 (1, 1)

d=0.2 286 (5, .5) 250 (.5, .5) 25C (1, 1) 2SG (1, 1) 256 (1, 1)

TABLE 30. Selected equatingfunction based on RMSE

DOE n=50 n=100 n=300 n=500 n=1000

d=0 23C (.5, .5) 256 (.5, .5) 2SG (.5, .5) 236 (5, .5) 286 (5, .5)

d=0.025 256 (.5, .75) 286 (.5, .75) 286 (.5, .75) 2SG (.5, .75) 2SG (5, .75

d=0.05 28G (9, .9) 2SG (9, .9) 2SG (.9, .9) 2SG (9, .9) 2SG (.9, .9)

d=O.1 256 (1, 1) 28G (1, 1) 256 (1, 1) 236 (1, 1) 280 (1, 1)

d=0.15 236 (1, 1) 286 (1, 1) 236 (1, 1) 256 (1, 1) sz (1, 1)

=02 256 (1, 1) 236 (1, 1) 2SG (1, 1) 256 (1, 1L 256 (1, 1)      
 

Comparing Table 30 with Table 29, it can be found that the RMSE and SEED

statistical indices produce same results when DOE is almost zero and when DOE is large
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(effect size > 0.2 in this case). When the effect size of DOE is within a certain small

range, the RMSE can provide more fine-grained equating solution. This is when the

weighting method comes into place.

Chapter V: Discussion

5.1 Performance ofthe KB Methods

The results of this study are consistent with previous studies that compared the

KB methods with the traditional equating methods. In general, the KB methods produce

results very similar to their corresponding traditional equating methods. These

similarities in equating results support KE method as a promising unified approach to test

equating based on a flexible family of equipercentile-like equating functions. The entire

classic observed score equating methods can be incorporated into its framework. The

summary statistics in Table 17 to Table 28 indicate that the 28G(.5, .5) linear method and

the SG linear method produce very similar equating results in terms of SEE, equating

bias and RMSE. Similarly, the 2SG(1, 1) linear and traditional EG linear equating

methods provide equating results very close to each other; so are the 2SG(.5, .5)

equipercentile, SG KE equipercentile and traditional SG equipercentile equating

methods. The equating differences between ZSG(1, 1) equipercentile method and the

traditional EG equipercentile method are small as well. Although the summary statistics

in Table 17 to Table 28 indicate their equating difference'is relatively larger compared to

the equating differences between the other previously-discussed approximation pairs. The

actual differences of their equating functions are smaller than 1 raw score point for any

score point above chance score, which are not large differences. Figure A28 to Figure

A34 plot the equating differences between the 2SG(1, 1) equipercentile method and the
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traditional EG equipercentile method for selected cases. The equating differences

between these two methods are the biggest in simulated data 6.

KB provides the SEED statistics for examining the equating difference between

two KE methods. The usefulness of this statistics is discussed below.

5.2 Effects ofthe Weighting Method

The overall equating accuracy consists oftwo parts: random equating error (SEE)

and systematic error (equating bias). When a CB design is used to collect data for an

equating, the 28G approach under KE framework attempts to provide an optimal

equating solution with the least overall equating error, which is indicated by the

magnitude ofRMSE in this study.

In the rest of this section, the effect of the weighting method in enhancing overall

equating accuracy is discussed in terms ofboth equating bias and the overall equating

error.

The study results based on both real and simulated data indicate that the

weighting mechanism is effective in some extent. As DOE gets larger, the weights with

smallest RMSE also increase (as indicated in Table 30 for simulated data 2 and data 3).

Because random equating error increases as weights increase, the reduction in RMSE

must be due to the reduction of equating bias. Therefore, the results of this study

demonstrate that the ZSG approach can reduce systematic equating error by adjusting the

weights placed on the data from tests taken first. However, the reduction in equating bias

is not significant as indicated by the SEED plots (as indicated in Table 29 for simulated

data 2 and data 3). The reduction of equating bias is only significant when sample size is

large enough and when DOE is big enough. When this happens, the weights in the 28G
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approach will be (1, 1), which indicates an EG design.

The reason for the small amount of improvement in terms ofRMSE is because, as

DOE gets larger, examinee’s performance on the second test will be more affected by

order effects and will be less accurate. Thus the 2SG approach assigns more weights on

the tests taken first to reduce bias introduced by order effects. The bigger the order

effects, the more weights will be put on the tests taken first to reduce bias. However, the

more weights on the first tests, the bigger the random equating errors are. Because of this

trade-offbetween random equating error and system equating error, when both random

and systematic equating errors are considered together, the equating error in terms of

RMSE does not seem to be reduced much.

The findings of this study support the 28G approach as a sensitive approach with

the flexibility of using optimal data information as the size of order effects changes. The

RMSE index provides more detailed information and can help decide which weights to

use. However, the way of trying every possible weight between 0.5 and 1 to decide the

fine-grained weights using the criterion ofRMSE involves lengthy calculations.

Other possible ways of determining how to treat the data collected by a CB design

could be the hypothesis testing of DOE introduced in the method section and the SEED

method applied in this study. If the hypothesis test of DOE is not significant, the data

collected by a CB design shall be pooled together as a SG design. Otherwise, the data

shall be treated as an EG design. The SEED plot method tests the significance of the

equating difference between 2SG(.5, .5) and ZSG(1, 1). If the equating difference is not

significant, the 2SG(.5, .5) method will be used, i.e., data from the two samples will be

pooled together and will be treated as 3 SG design. Otherwise, if the equating difference
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is significant, the 2SG(1, 1) method will be used, i.e., the data in a CB design will be

treated as an EG design. These two methods may not be as accurate as the RMSE

method, but they are simpler to be carried out in practice. Further study can investigate

how consistent the decisions are when using these three methods to select the best

equating design.

Finally, the results of this study suggest that the advantage of collecting data using

a CB design over an EG design appears only when the magnitude ofDOE is small. When

DOE is within a small range, data from the two groups can be pooled together using

different weights to reduce the overall equating error. However, when DOE is large,

information from tests taken second will make no contribution to improve the overall

equating accuracy. On the other hand, this study alerts us to the importance of

implementing random sampling and random assignment in a CB design.

5.3 Limitations ofThis Study

One concern about real data 2 is that test X and test Y has different test-retest

reliabilities, e.g., r(X1,Y2) =0.64, r(X2, Y1 ) =0.74. Effort was made to enhance the

reliability of test X and to make it equal to the reliability of test Y. One way was to

remove items on test X that had low correlation with test score of Y2. This purpose has

not been achieved successfully. It turned out that the reliability of test Y increased by a

similar amount as the reliability of test X increased. As a result, the equatings were

conducted to real data 2 disregarding the issue of unequal reliabilities.

The average equating bias reported in this study also has its disadvantages. That

is, when averaging all the conditional equating differences, the negative bias at individual
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score levels will cancel out the positive bias at each individual raw-score level.

5.3.] Arbitrary Nature ofthe Equating Criterion

In this study, the equating criterion for each population was selected to be the

results of traditional equipercentile equating. It might be interesting to regard the results

of an IRT-based equating method as the equating criterion for each population. However,

this will not make too much change to the patterns of the equating differences between

different methods from the author’s point of view since Lord and Wingersky (1984)

found the IRT true score equating and equipercentile observed score equating yields

almost indistinguishable results using a sample of size around 3000.

5. 3.2 Problem with Simulated Data

Besides the 3PL IRT model, the one parameter IRT model and two parameter IRT

model were also applied to simulate data in this study. Comparing to the lPL or 2PL

model, the distributions of data simulated by using the 3PL model better represent the

distributions of real data 1 in terms of the minimum observed score level, the mean

scores, the skewness and the kurtosis statistics. Although efforts were made to make the

simulated data as close as possible to a real dataset, like many simulation studies, it is

unsure to what extent that the simulated data represents real order effects in a real CB

design.

5.4 Future Study

The 95% confidence interval in the current SEED plot is two times of the

conditional standard error of equating difference at each raw score level, which indicates
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that the current SEED plot conduct independent t-test at each score level to examine the

significance of equating difference. One drawback of the current SEED plot is that it does

not control the family-wise error rate. Since the error rate at each score level is 0.05, the

overall error rate across the whole score scale must be larger than 0.05. When the

attention is on the equating difference at a particular cut score or within a small score

range, it is fine to apply the i ZSEED confidence interval at each score level.

Nevertheless, when it is needed to make a statement on the overall equating differences

across the whole score scale, a multivariate global test will need to take into account the

dependency among each score point and to control for the family—wise error rate. Future

study can explore how to develop such an overall test for the significance of global

equating difference between two equating methods.
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TABLE A]. Standard error oflinear equatingfor real data I
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Datal ZSG KE SG EG

2SG 2SG 2SG 2SG 28G Traditional Traditional

X (.5,.5) (.5,.75) (.75,.5) Q5,.75) (l, 1) Linear Linear

0 1.334 1.634 1.776 2.433 4.674 1.334 4.648

1 1.311 1.607 1.745 2.393 4.533 1.311 4.575

2 1.288 1.579 1.715 2.354 4.405 1.288 4.503

3 1.265 1.552 1.685 2.315 4.355 1.265 4.431

4 1.242 1.525 1.655 2.276 4.326 1.242 4.359

5 1.219 1.497 1.624 2.236 4.287 1.218 4.287

6 1.196 1.47 1.594 2.197 4.215 1.195 4.215

7 1.173 1.443 1.564 2.158 4.144 1.172 4.143

8 1.15 1.415 1.534 2.12 4.072 1.149 4.071

9 1.127 1.388 1.504 2.081 4 1.127 3.999

10 1.104 1.361 1.474 2.042 3.928 1.104 3.928

11 1.081 1.334 1.444 2.003 3.857 1.081 3.856

12 1.058 1.307 1.414 1.965 3.786 1.058 3.785

13 1.035 1.28 1.385 1.926 3.715 1.035 3.714

14 1.013 1.253 1.355 1.888 3.643 1.013 3.643

15 0.99 1.227 1.325 1.849 3.573 0.99 3.572

16 0.967 1.2 1.296 1.811 3.502 0.967 3.501

17 0.945 1.174 1.266 1.773 3.431 0.945 3.431

18 0.923 1.147 1.237 1.735 3.361 0.922 3.361

19 0.9 1.121 1.208 1.697 3.291 0.9 3.291

20 0.878 1.095 1.178 1.66 3.221 0.878 3.221

21 0.856 1.068 1.149 1.622 3.151 0.856 3.151

22 0.834 1.042 1.12 1.585 3.082 0.834 3.082

23 0.812 1.017 1.092 1.548 3.013 0.812 3.012

24 0.79 0.991 1.063 1.511 2.944 0.79 2.943

25 0.768 0.965 1.034 1.474 2.875 0.768 2.875

26 0.746 0.94 1.006 1.437 2.807 0.746 2.807

27 0.725 0.915 0.978 1.401 2.739 0.725 2.739

28 0.703 0.89 0.95 1.365 2.671 0.703 2.671

29 0.682 0.865 0.922 1.329 2.604 0.682 2.604

30 0.661 0.841 0.894 1.293 2.537 0.661 2.537

31 0.64 0.816 0.867 1.258 2.471 0.64 2.471

32 0.62 0.793 0.84 1.223 2.405 0.62 2.405

33 0.6 0.769 0.813 1.189 2.34 0.6 2.34

34 0.58 0.746 0.786 1.155 2.275 0.58 2.275

35 0.56 0.723 0.76 1.121 2.211 0.56 2.211

36 0.54 0.7 0.735 1.088 2.148 0.54 2.148
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TABLE A1. Continued
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Datal 280 KB so EG

2SG 256 250 280 250 Traditional Traditional

8 (.5,.5) (.5,.75) (.75,.5) (.75,.75) (1, 1) Linear Linear

37 0.521 0.678 0.709 1.056 2.086 0.521 2.086

38 0.503 0.657 0.685 1.024 2.024 0.503 2.024

39 0.485 0.636 0.661 0.992 1.963 0.485 1.963

40 0.467 0.616 0.637 0.962 1.903 0.467 1.903

41 0.45 0.596 0.614 0.932 1.845 0.45 1.845

42 0.433 0.577 0.592 0.903 1.787 0.433 1.787

43 0.418 0.559 0.571 0.875 1.731 0.418 1.731

44 0.403 0.542 0.55 0.848 1.677 0.403 1.677

45 0.389 0.526 0.531 0.822 1.623 0.389 1.623

46 0.376 0.511 0.513 0.797 1.572 0.376 1.572

47 0.364 0.497 0.496 0.774 1.523 0.364 1.523

48 0.353 0.484 0.481 0.752 1.476 0.353 1.476

49 0.344 0.473 0.467 0.732 1.431 0.344 1.431

50 0.336 0.463 0.455 0.714 1.389 0.336 1.389

51 0.33 0.455 0.445 0.697 1.349 0.33 1.349

52 0.325 0.449 0.437 0.683 1.313 0.325 1.313

53 0.322 0.444 0.431 0.671 1.28 0.322 1.28

54 0.32 0.441 0.427 0.661 1.251 0.32 1.251

55 0.321 0.44 0.425 0.653 1.225 0.321 1.225

56 0.323 0.441 0.426 0.648 1.204 0.323 1.204

57 0.327 0.444 0.429 0.646 1.187 0.327 1.187

58 0.333 0.448 0.434 0.646 1.175 0.333 1.175

59 0.34 0.455 0.442 0.649 1.167 0.34 1.167

60 0.349 0.463 0.451 0.654 1.164 0.349 1.164

61 0.359 0.472 0.463 0.662 1.166 0.359 1.166

62 0.37 0.483 0.476 0.672 1.172 0.37 1.172

63 0.383 0.496 0.491 0.684 1.183 0.383 1.183

64 0.397 0.509 0.507 0.699 1.199 0.396 1.199

65 0.411 0.524 0.525 0.715 1.22 0.411 1.219

66 0.426 0.54 0.543 0.734 1.244 0.426 1.244

67 0.443 0.557 0.563 0.754 1.272 0.442 1.272

68 0.459 0.575 0.584 0.776 1.304 0.459 1.304

69 0.477 0.594 0.606 0.799 1.34 0.477 1.34

70 0.495 0.614 0.629 0.824 1.378 0.495 1.379

71 0.513 0.634 0.652 0.85 1.42 0.513 1.42

72 0.532 0.655 0.676 0.877 1.464 0.532 1.464

73 0.551 0.676 0.701 0.905 1.511 0.551 1.511

74 0.571 0.698 0.726 0.934 1.559 0.571 1.56

75 0.591 0.72 0.751 0.964 1.61 0.591 1.61        
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TABLE A2. Standard error ofequipercentile equatingfor real data I
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Datal 28G KE SG EG

2SG 25G 28G 28G 25G Traditional Traditional

X (.5,.5) (.5,.75) 1.75,.5) (.75,.75) (1 , D Equipercentile Equipercentile

0 1.218 1.269 1.169 1.272 1.778 0 0

1 1.354 1.432 1.349 1.511 2.328 1.159 1.025

2 1.384 1.477 1.409 1.609 2.664 2.318 2.049

3 1.383 1.485 1.428 1.657 2.896 3.478 3.073

4 1.369 1.478 1.43 1.683 3.068 4.512 3.981

5 1.348 1.464 1.424 1.698 3.2 5.325 4.751

6 1.324 1.445 1.414 1.707 3.303 5.928 5.341

7 1.298 1.424 1.4 1.712 3.383 6.335 5.791

8 1.27 1.401 1.385 1.714 3.444 6.65 6.231

9 1.241 1.378 1.369 1.714 3.49 6.724 6.366

10 1.212 1.353 1.352 1.712 3.523 6.774 6.485

11 1.182 1.328 1.335 1.708 3.545 6.777 6.551

12 1.152 1.303 1.317 1.703 3.556 6.762 6.582

13 1.122 1.278 1.298 1.697 3.557 6.755 6.622

14 1.092 1.252 1.28 1.689 3.551 6.747 6.673

15 1.063 1.227 1.26 1.679 3.536 6.758 6.744

16 1.033 1.201 1.241 1.668 3.515 6.778 6.821

17 1.004 1.176 1.221 1.655 3.486 5.972 6.441

18 0.975 1.15 1.2 1.64 3.451 5.548 6.292

19 0.947 1.125 1.179 1.624 3.41 5.347 6.214

20 0.919 1.1 1.158 1.606 3.363 3.977 5.787

21 0.892 1.075 1.136 1.586 3.311 3.277 5.531

22 0.865 1.05 1.113 1.564 3.254 1.957 5.042

23 0.839 1.026 1.09 1.541 3.193 1.516 4.665

24 0.813 1.001 1.067 1.516 3.127 1.284 4.371

25 0.788 0.977 1.043 1.49 3.058 1.018 4.131

26 0.763 0.953 1.018 1.462 2.987 0.866 3.697

27 0.739 0.929 0.993 1.433 2.912 0.801 3.397

28 0.715 0.905 0.968 1.403 2.837 0.786 3.201

29 0.692 0.881 0.942 1.371 2.759 1.121 3.049

30 0.669 0.858 0.916 1.339 2.681 1.197 2.39

31 0.646 0.834 0.889 1.305 2.603 1.267 2.266

32 0.624 0.811 0.862 1.271 2.524 1.201 2.194

33 0.603 0.788 0.836 1.237 2.446 1.027 2.283

34 0.582 0.765 0.809 1.202 2.368 0.762 2.493

35 0.561 0.742 0.782 1.167 2.292 0.835 2.671

36 0.541 0.72 0.755 1.131 2.217 1.085 2.757

37 0.521 0.697 0.728 1.096 2.143 1.344 2.797

38 0.502 0.675 0.702 1.062 2.071 1.305 2.848

39 0.483 0.654 0.676 1.028 2.001 1.279 2.884        
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Datal 2SG KE SG EG

2SG 28G 25G ZSG ZSG Traditional Traditional

X (5,5) (5,75) (75,5) (.75,.75) 1, ll Equipercentile Equipercentile

40 0.465 0.633 0.651 0.995 1.934 1.071 3.091

41 0.448 0.613 0.626 0.962 1.869 0.849 3.152

42 0.431 0.594 0.603 0.931 1.807 0.875 2.997

43 0.415 0.575 0.58 0.902 1.748 1.047 2.818

44 0.401 0.558 0.559 0.873 1.693 1.008 2.715

45 0.387 0.542 0.539 0.847 1.641 0.929 2.726

46 0.374 0.527 0.52 0.823 1.593 0.772 2.568

47 0.363 0.513 0.504 0.801 1.548 0.831 2.431

48 0.353 0.502 0.489 0.781 1.508 0.896 2.241

49 0.345 0.492 0.477 0.764 1.472 0.764 2.024

50 0.338 0.484 0.467 0.749 1.441 0.687 1.94

51 0.334 0.478 0.46 0.737 1.413 0.75 1.983

52 0.332 0.474 0.455 0.727 1 .3 89 0.934 1.989

53 0.332 0.473 0.454 0.721 1.369 0.988 1.907

54 0.334 0.473 0.454 0.717 1.353 0.745 1.832

55 0.338 0.476 0.458 0.715 1.339 0.619 1.626

56 0.344 0.48 0.464 0.715 1.328 0.59 1.442

57 0.352 0.487 0.472 0.718 1.319 0.574 1.353

58 0.362 0.495 0.482 0.722 1.312 0.539 1.322

59 0.374 0.504 0.494 0.727 1.306 0.541 1.276

60 0.387 0.515 0.508 0.734 1.299 0.5 1.242

61 0.401 0.526 0.522 0.741 1.293 0.534 1.308

62 0.416 0.538 0.538 0.748 1.285 0.623 1.442

63 0.432 0.551 0.554 0.755 1.276 0.86 1.501

64 0.448 0.563 0.569 0.761 1.265 0.928 1.51

65 0.464 0.575 ' 0.585 0.767 1.251 0.984 1.471

66 0.479 0.586 0.599 0.771 1.234 0.682 1.4

67 0.494 0.596 0.613 0.772 1.212 0.486 1.276

68 0.508 0.604 0.624 0.771 1.185 0.613 1.177

69 0.519 0.608 0.632 0.766 1 . 152 0.745 1.23

70 0.527 0.609 0.635 0.755 1.109 0.945 1.032

71 0.53 0.603 0.632 0.736 1.054 0.859 1.051

72 0.524 0.585 0.618 0.704 0.98 0.58 1.142

73 0.502 0.549 0.585 0.648 0.876 0.88 1.353

74 0.452 0.479 0.516 0.553 0.717 1.326 1.576

75 0.38 0.385 0.419 0.429 0.491 0 0        
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TABLE A3. Standard error oflinear equatingfor real data 2
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IDatal 2SG KE so EG

28G 2SG 286 28G 2SG Traditional Traditional

x (5,5) (5,75) (75,5) (.75,.75) Q, 1) Linear Linear

0 0.341 0.354 0.403 0.454 0.767 0.341 0.767

1 0.318 0.331 0.377 0.425 0.718 0.318 0.718

2 0.296 0.309 0.352 0.397 0.67 0.296 0.67

3 0.274 0.287 0.327 0.37 0.623 0.274 0.623

4 0.252 0.265 0.302 0.343 0.577 0.252 0.577

5 0.231 0.244 0.278 0.317 0.533 0.231 0.533

6 0.211 0.224 0.255 0.293 0.491 0.211 0.491

7 0.191 0.205 0.233 0.27 0.452 0.191 0.453

8 0.173 0.187 0.212 0.249 0.417 0.173 0.417

9 0.156 0.172 0.193 0.23 0.386 0.156 0.387

10 0.141 0.158 0.176 0.215 0.362 0.141 0.362

1 1 0.129 0.148 0.162 0.203 0.344 0.129 0.344

12 0.121 0.141 0.151 0.195 0.334 0.121 0.334

13 0.117 0.138 0.146 0.193 0.333 0.117 0.333

14 0.118 0.14 0.145 0.196 0.341 0.118 0.341

15 0.124 0.147 0.15 0.204 0.357 0.124 0.357

16 0.134 0.157 0.16 0.216 0.381 0.134 0.381

17 0.147 0.17 0.173 0.232 0.411 0.147 0.411

18 0.163 0.185 0.189 0.251 0.445 0.163 0.445

19 0.18 0.203 0.208 0.272 0.483 0.18 0.483

20 0.199 0.222 0.229 0.295 0.525 0.199 0.525

21 0.219 0.242 0.251 0.32 0.568 0.219 0.568

22 0.24 0.262 0.274 0.346 0.613 0.24 0.613

23 0.261 0.284 0.298 0.373 0.66 0.261 0.66

24 0.283 0.306 0.323 0.4 0.708 0.283 0.708

25 0.305 0.328 0.347 0.428 0.757 0.305 0.757         
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TABLE A4. Standard error ofequipercentile equatingfor real data 2
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IDatal 2so KB so EG

23G 2SG 2SG 286 286 LTraditional Traditional

X 95.5) (.5,.75) (.75,.5) (.75,.75) (1, 1) quipercentile Equipercentile

0 0.484 0.548 0.399 0.456 0.72 0 0

1 0.469 0.532 0.393 0.463 0.67 0.711 0.785

2 0.448 0.498 0.393 0.451 0.624 0.827 0.916

3 0.393 0.433 0.362 0.41 1 0.575 0.845 0.96

4 0.328 0.36 0.318 0.361 0.525 0.448 0.832

5 0.272 0.295 0.277 0.315 0.479 0.353 0.696

6 0.229 0.247 0.244 0.279 0.439 0.239 0.535

7 0.202 0.216 0.222 0.255 0.404 0.286 0.423

8 0.185 0.2 0.207 0.241 0.378 0.268 0.348

9 0.172 0.191 0.198 0.234 0.358 0.201 0.513

10 0.16 0.184 0.189 0.229 0.347 0.196 0.425

11 0.149 0.177 0.18 0.226 0.343 0.198 0.334

12 0.139 0.171 0.172 0.224 0.346 0.192 0.422

13 0.134 0.167 0.166 0.224 0.358 0.179 0.454

14 0.134 0.166 0.165 0.227 0.377 0.216 0.374

15 0.139 0.17 0.169 0.235 0.402 0.213 0.532

16 0.149 0.177 0.178 0.245 0.431 0.231 0.5

17 0.161 0.186 0.19 0.257 0.459 0.24 0.662

18 0.176 0.197 0.204 0.269 0.486 0.305 0.598

19 0.195 0.213 0.219 0.282 0.511 0.312 0.74

20 0.222 0.239 0.235 0.297 0.538 0.345 0.883

21 0.259 0.276 0.254 0.316 0.566 0.406 0.952

22 0.307 0.326 0.277 0.34 0.592 0.439 0.769

23 0.354 0.379 0.297 0.362 0.61 0.839 0.262

24 0.375 0.413 0.298 0.365 0.609 0.779 0.131

25 0.374 0.418 0.304 0.351 0.605 0.671 0         

90

 



91

l
5

f
T

I
1

Y
T

T
Y

 

-
E
q
u
a
t
i
n
g
D
i
f
f
e
r
e
n
c
e

°
2
S
E
E
D

.
-
Z
S
E
E
D

1

“
Z
e
r
o

L
i
n
e

  
 
 

P

 

o
o
o
o
o
o
o
o
o
°
°
°
°
°
°
o
o

0
0
0
0
0
0
0
0
0

0
o
“

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0

0
0
0
0
0
0
0

0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0
0

-
5
1

4
0
*

n
=
1
0
0
0

“

 
 

-
1
5

l
1

l

 

4
4
1

l

0
5
1
0
1
5
2
0
2
5
3
0
3
5
4
0
4
5
5
0
5
5
6
0
6
5
7
0
7
5

F
I
G
U
R
E
A
1
.
E
q
u
a
t
i
n
g
d
i
f
f
e
r
e
n
c
e
b
e
t
w
e
e
n
2
S
G
(
1
,
1
)

l
i
n
e
a
r
a
n
d
2
S
G
(
.
5
,
.
5
)
l
i
n
e
a
r
,
P
O
P
]
,
n
=
1
0
0
0
.

 

-
E
q
u
a
t
i
n
g
D
i
f
f
e
r
e
n
c
e

°
2
S
E
E
D

1
0

*
L

°
-
2
S
E
E
D

7
“
—
Z
e
r
o
L
i
n
e

  
 
 

O
0

0
0
°
0
0

0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
°
c

°
°
°
0
0
0
0
0
0

O

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
0
0
0
0
0
0
0

:
0

0
0
0
0
0

0
0
0

-
-
-
-

‘
o
o
o
o
°
°
°
°
°
°

o
o
-

-
-

0
0
0
0
0
0
0
0
0
0
.
.

0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

-
1
0
t

n
=
1
0
0
0

 
l

 
-
1
5

l
1

l

 

1
J

0
5
1
0
1
5
2
0
2
5
3
0
3
5
4
0
4
5
5
0
5
5
6
0
6
5
7
0
7
5

F
I
G
U
R
E
A
2
.
E
q
u
a
t
i
n
g
d
i
fl
e
r
e
n
c
e
b
e
t
w
e
e
n
2
S
G
(
1
,

I
)

e
q
u
i
p
e
r
c
e
n
t
i
l
e
a
n
d
2
S
G
(
.
5
,
.
5
)

e
q
u
i
p
e
r
c
e
n
t
i
l
e
,
P
O
P
]
,
n
=
1
0
0
0
.



92

1
5

T
1

7
I

1
I
f

I
I
 

-
E
q
u
a
t
i
n
g
D
i
f
f
e
r
e
n
c
e

°
2
S
E
E
D

L
e

‘
0

.
-
2
S
E
E
D

—
Z
e
r
o
L
i
n
e

  
 
 

0
0
0
0
0

‘
”
§
3
§
§
§
§
§
§
§
§
§
§
W
W
W
“
“
:

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

:-
--
-:
::
::
m§
°,
jl

I

 

O

-
5
.

.

n
=
1
0
0
0

-
1
0
*

‘

 
1

I
1

1

0
5
1
0
1
5
2
0
2
5
3
0
3
5
4
0
4
5
5
0
5
5
6
0
6
5
7
0
7
5

 
 

-
1
5

F
I
G
U
R
E
A
3
.
E
q
u
a
t
i
n
g
d
i
f
f
e
r
e
n
c
e
b
e
t
w
e
e
n
2
S
G
(
.
5
,

.
5
)
l
i
n
e
a
r

a
n
d
Z
S
G
(
.
5
,

.
5
)
e
q
u
i
p
e
r
c
e
n
t
i
l
e
,
P
O
P
]
,
n
=
1
0
0
0
.



93

 
I

T
I

I

 

°
Z
S
E
E
D

°
-
2
S
E
E
D

—
Z
e
r
o
L
i
n
e

1
0
1

 

-
E
q
u
a
t
i
n
g
D
i
f
f
e

 

1

 

 

0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0

0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-
5
~

-
1
0
~

n
=
1
0
0
0

 

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

 
 

1
:
5

1
1

1
1

1
1

1
1

1
1

1
,

1
.

-

0
5
1
0
1
5
2

2
5
3
0
3
5
4

4
5
5
0
5
5
6
0
6
5
7
0
7
5

F
I
G
U
R
E
A
4
.
E
q
u
a
t
i
n
g
d
i
f
f
e
r
e
n
c
e
b
e
t
w
e
e
n
2
S
G
(
1
,
1
)

l
i
n
e
a
r
a
n
d
Z
S
G
(
.
5
,
.
5
)

l
i
n
e
a
r
,
P
O
P
2
,
n
=
1
0
0
0
.

 

1
5

.
v

.
r

.
r

T
.

.
.

.
r

.

-
E
q
u
a
t
i
n
g
D
i
f
f
e
r
e
n
c
e

l
°

2
S
E
E
D

°
-
2
S
E
E
D

—
—
Z
e
r
o

L
i
n
e

 

1
0

 
 
 

A
‘
A
A
-

 

0
0
°

0
0
0
°

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
°
°
°
°
°
°
°

o
0
0
°

0
°

0
0
°
0
0
0
°

°
°
o

0
0
°
°
°
°
°

0
0
0
0
0
0
0
0
0
0
°
°

‘
1
0
1

n
=
1
0
0
0

‘

 
 

1
1

1
1

-
1
5
0

5
1
0

1
5
2
0

2
5

3
0

3
5

4
4
5

5
0

5
5
6
0

6
5

7
0

7
5

 

F
I
G
U
R
E
A
5
.
E
q
u
a
t
i
n
g
d
i
f
f
e
r
e
n
c
e
b
e
t
w
e
e
n
2
S
G
(
1
,

1
)

e
q
u
i
p
e
r
c
e
n
t
i
l
e
a
n
d
2
S
G
(
.
5
,

.
5
)

e
q
u
i
p
e
r
c
e
n
t
i
l
e
,
P
O
P
2
,
n
=
1
0
0
0
.



94

l
S
r
fi
W
I
r
 

1
0
*

F
F

I
I

I
I
  

°
E
q
u
a
t
i
n
g
D
i
f
f
e
r
e
n
c
e

°
Z
S
E
E
D

°
-
2
S
E
E
D

*
—

Z
e
r
o
L
i
n
e

 
 

 

10

0
:
:
:
§
§
§
§
§
§
§
§
§
§
§
§
8
8
9
8
0
0
m
:
:
:
:

-
5
»

-
1
0
~  

1

-
1
5

0

n
=
1
0
0
0

“  
J

1
_

1
 0
5
1
0
1
5
2
0
2
5
3
0
3
5
4
0
4
5
5
0
5
5
6
0
6
5
7
0
7
5

F
I
G
U
R
E
A
6
.
E
q
u
a
t
i
n
g
d
i
f
f
e
r
e
n
c
e
b
e
t
w
e
e
n
Z
S
G
(
.
5
,

.
5
)
l
i
n
e
a
r

a
n
d
2
S
G
(
.
5
,

.
5
)
e
q
u
i
p
e
r
c
e
n
t
i
l
e
,
P
O
P
2
,
n
=
1
0
0
0
.



1
5

I
I

I
I

I
I

I
I
 

 
1
’

I
fl

I
l

I
1
5

T
T

I
I

I
I

I
I

I
I

I

0
E
q
u
a
t
i
n
g
D
i
f
f
e
r
e
n
c
e

°
E
q
u
a
t
i
n
g
D
i
f
f
e
r
e
n
c
e

°
2
S
E
E
D

°
2
S
E
E
D

°
-
2
S
E
E
D

°
-
2
S
E
E
D

_
Z
e
r
o
L
i
n
e

”
*
—
Z
e
r
o
L
i
n
e

 

 

 
 

 
 

 

 

I

o
o
o
o
o
o
o
o
o

0
0
°
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
n
o
.
.
.
.
.
.
.
.
.
.

O
I

1
v

v
-
.
.

-
v
v
u
0
0
°
0
0

 
 

 

O
_

4

“
A
A
A
-

-
A
A
A
-
-
-

.
.
.
.
.

_
-

4
-

.
.
.
.
.
-

1
"

'
"
5
5
.
3
5
5
3
3
8
3
3
3
8
8
3
8
3
8
!
”

0
0
0
0
0
0
0
0
0
0

v
°
°

o
o
o
o
o
o
°
°
°
°
°
°
°
°
°
°
°

0
0
°

0
0
0
0

0
0
0
0
0
0
0

0
0

0
0
0
0
0

0
0
0
0
0
0
0

0
0

0
°
°
°
°

o
o
o
o
o
o

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
°
°
°
°

0
0
0
°

-
5
.

-
-
5
-

4

-
1
0
~

~
-
1
0
5

4

95

n
=
1
0
0
0

 
L

1
1

L
L

1
 
 

-
1
5

0
5
1
0
1
5
2
0
2
5
3
0
3
5
4

4
5
5
0
5
5
6

6
5
7
0
7
5

n
=
1
0
0
0

 
1

L
1

1
1

1
1

1
J

 
 

-
1
5

0
5
1
0
1
1
5
2
0
2
5
3

3
5
4
0
4
5
5
0
5
5
6
0
6
5
7
0
7
5

F
I
G
U
R
E
A
7
.
E
q
u
a
t
i
n
g
d
i
f
f
e
r
e
n
c
e
b
e
t
w
e
e
n
2
S
G
(
1
,
1
)

F
I
G
U
R
E
A
8
.
E
q
u
a
t
i
n
g
d
i
f
f
e
r
e
n
c
e
b
e
t
w
e
e
n
2
S
G
(
1
,

1
)

l
i
n
e
a
r
a
n
d
2
S
G
(
.
5
,
.
5
)

l
i
n
e
a
r
,
P
O
P
3
,
n
=
1
0
0
0
.

e
q
u
i
p
e
r
c
e
n
t
i
l
e
a
n
d
2
S
G
(
.
5
,

.
5
)

e
q
u
i
p
e
r
c
e
n
t
i
l
e
,
P
O
P
3
,
n
=
1
0
0
0
.



96

 

°
E
q
u
a
t
i
n
g
D
i
f
f
e
r
e
n
c
e

_
°

Z
S
E
E
D

1

1
0

o
-
2
S
E
E
D

—
Z
e
r
o

L
i
n
e

1
5

T
I

I
I

W
I

I
I

 

if  
  

 

I
0
0
0

‘

0
;
.
.
.
:
:
:
:
:
3
3
3
3
3
3
3
3
8
8
8
W
m
“
“
“
.
.
.
.
.
.
.
.
.
.
.
.
.
.

-
-
:
-

-
_
"
3
8
8
2
2
1
,

-
1
0
~

n
=
1
0
0
0

‘  
 

4

0
5
1
0
1
5
2
0
2
5
3
0
3
5
4
0
4
5
5
0
5
5
6
0
6
5
7
0
7
5

 
-
1
5

F
I
G
U
R
E
A
9
.
E
q
u
a
t
i
n
g
d
i
f
f
e
r
e
n
c
e
b
e
t
w
e
e
n
2
S
G
(
.
5
,

.
5
)
l
i
n
e
a
r

a
n
d
2
S
G
(
.
5
,

.
5
)
e
q
u
i
p
e
r
c
e
n
t
i
l
e
,
P
O
P
3
,
n
=
1
0
0
0
.



97

 
1
5

I
I

I
I

I
I

I
I

I
I

I
I

j

-
E
q
u
a
t
i
n
g
D
i
f
f
e
r
e
n
c
e

°
Z
S
E
E
D

1
0

1
~

°
-
2
S
E
E
D

—
—

Z
e
r
o
L
i
n
e

.
5

e
a

4

  
 
 

I
O
O
O
O
o

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

°
°
°
°
°
°
°
°
°
°
°
°
°
°
°
°
O
o
o
o
o
o
o
o
o
o
o
o
o
o
0
0
0
0
0
0
0
0
0
0
°
°
°
°
°
9

o
_
_
_
-
—
_
_
.
—
.
_
_
_

--
-
*4

._
_-

__
__

__
__

_1
-

:
r
r
r
r
3
3
3
3
9
5
;
:
3
‘

‘
v
v
v
v
v
8
8
8
1
!

.
.
.
.
.
.
.
.
.
.
.
.
.
.

v
0
0
5

0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

b
0
0
0
0
0

 

 

4

.
5

J

4
”

'
m
e

“

 
 

l
1

'
U
o
5
1
0
8
2
0
3
3
0
5
4
0
0
5
0
$
6
0
w
7
0
n

 

F
I
G
U
R
E
A
1
0
.
E
q
u
a
t
i
n
g
d
i
f
f
e
r
e
n
c
e
b
e
t
w
e
e
n
2
8
G
(
1
,
1
)

l
i
n
e
a
r
a
n
d
2
S
G
(
.
5
,
.
5
)

l
i
n
e
a
r
,
P
O
P
4
,
n
=
1
0
0
0
.

 

1
5
.
e
.
.
.
f
e
.
.
4
.
.
.
.
—

°
E
q
u
a
t
i
n
g
D
i
f
f
e
r
e
n
c
e

°
2
S
E
E
D

°
-
2
S
E
E
D

_
—
Z
e
r
o

L
i
n
e

5
*

i

  
 
 

0
0

0
0

0
°

 

 

o
.

"
V
A

'
v
‘

‘
A
“
-

A
A
A
A
A
A
A

“
.
.
.
”

3
3
3
3
8
8
8
V
V
V
V
V

V
m

"
"

v

o
v

o

0
0

0
0

0
0
0
0
0
0

°
°
°
O
o
o
o
o
o
o
o
o
o
o
°
°
°
°

_
1
0
.

a

n
=
1
0
0
0

 
 

1
1

L
L

1
1

1
1

0
5
1
0
1
5
2
0
2
5
3
0
3
5
4

4
5
5

5
5
6

6
5
7
0
7
5

 

-
1
5

F
I
G
U
R
E
A
1
1
.
E
q
u
a
t
i
n
g
d
i
f
f
e
r
e
n
c
e
b
e
t
w
e
e
n
2
S
G
(
1
,

1
)

e
q
u
i
p
e
r
c
e
n
t
i
l
e
a
n
d
2
8
G
(
.
5
,

.
5
)

e
q
u
i
p
e
r
c
e
n
t
i
l
e
,
P
O
P
4
,
n
=
1
0
0
0
.



98

 
1
5

I
I

7
I

I
I

I
I

-
E
q
u
a
t
i
n
g
D
i
f
f
e
r
e
n
c
e

°
Z
S
E
E
D

1
0
"

.
-
2
S
E
E
D

i

—
—

Z
e
r
o
L
i
n
e

  
 
 

I
9
.

0

0
~
:
q
m
m
m
m
m
m
m
m
m
u
s
g
g
—
f

0
0
°
0
0
0
0
0
0
0
0
0
0
0
0

a

-
1
0
*

n
=
1
0
0
0

.

 
 

-
1
5
 0

5
1
0

1
1
5
2
0

2
5

3
0

3
5

4
1
0
4
5

5
0

5
5

6
0

6
5

7
0

7
5

F
I
G
U
R
E
A
1
2
.
E
q
u
a
t
i
n
g
d
i
f
f
e
r
e
n
c
e
b
e
t
w
e
e
n
2
S
G
(
.
5
,

.
5
)
l
i
n
e
a
r

a
n
d
2
S
G
(
.
5
,
.
5
)
e
q
u
i
p
e
r
c
e
n
t
i
l
e
,
P
O
P
4
,

n
=
1
0
0
0
.



99

 

-
E
q
u
a
t
i
n
g
D
i
f
f
e
r
e
n
c
e

°
2
S
E
E
D

‘
0

.
-
Z
S
E
E
D

”

—
—
'
Z
e
r
o
L
i
n
e

5
*

~

1
5

I
I

I
I

I
I

I
I

 

 
  

I

 

-
-
-
-
-
-
-
-

-
e
-
_
-
-
3
-
0
3
8
3
3
9
.
.
0
0
0
0
0
0
0
0
0
0
0
3
3
0
8
3
3
0
0
8
0
3
.
0
0
.
.
.
.
O
O
O
O
s
a
fl

v
0
0
0
0
0
°

0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
°
°
°

5
4
1
0
°
°

_

-
1
0

~
1

n
=
5
0
0

 
 

1
1

0
45

1
0

1
5
2
0

2
5

3
0

3
5
4
0
4
5

5
0

5
5
6
0

6
5

7
0

7
5

 

-
1
5

F
I
G
U
R
E
A
1
3
.
E
q
u
a
t
i
n
g
d
i
f
f
e
r
e
n
c
e
b
e
t
w
e
e
n
2
8
G
(
1
,
1
)

l
i
n
e
a
r
a
n
d
2
S
G
(
.
5
,
.
5
)

l
i
n
e
a
r
,
P
O
P
5
,
n
=
5
0
0
.

1
5

1
0

-
1
0

-
1
5

 I
3
.
.
.
.
.
.
-
0
u

0
9
.
.
.
“
.
.
.

 

-
E
q
u
a
t
i
n
g
D
i
f
f
e
r
e
n
c
e

°
2
S
E
E
D

°
-
2
S
E
E
D

—
*

Z
e
r
o
L
i
n
e

I
I

f
7

I
I

I
I

 

 
  

.
.
1

0
°
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
°
0
0

0
°

°
°
O
o
o
o
o

0
°

°
°
°
°
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
°
0
0

0
0

°i
i

 

0
%

'
“

-
i
i
w
v
g
g
g
g
o
m
o
u
m
8
8
3
3
3
3
3
3
“
0
6
"

o
0

0
0
°
0
0

0
0
9
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

—
-
1

n
=
5
0
0

 
1

l
J

1
l

1
1

L
1

A
1
 0
5
1
0
1
5
2

2
5
3
0
3
5
4
0
4
5
5
0
5

6
0
6
5
7
0
7
5

F
I
G
U
R
E
A
1
4
.
E
q
u
a
t
i
n
g
d
i
f
f
e
r
e
n
c
e
b
e
t
w
e
e
n
2
S
G
(
1
,

l
)

e
q
u
i
p
e
r
c
e
n
t
i
l
e
a
n
d
2
S
G
(
.
5
,

.
5
)

e
q
u
i
p
e
r
c
e
n
t
i
l
e
,
P
O
P
5
,
n
=
5
0
0
.



100

 

°
E
q
u
a
t
i
n
g
D
i
f
f
e
r
e
n
c
e

°
2
S
E
E
D

1
0
"

.
~
2
S
E
E
D

"

*
Z
e
r
o

L
i
n
e

 

l
5

I
I

I
I

I
I
F

I
I

 
  

0
.

0
'
0

o
0
.

I
fi
fi
fl
t
z
g
fl
q
g
w
n
u
a
m
n
-
-
-
-
-
-
-
-
-
-
-
-
-
u
m
u
a
fi
w
w
u
u
m
w
fl
¥
9

.
.
.
.
.
.

v
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
°

 

0

-
5
»

_

-
1
0

~
~

n
=
5
0
0

 
 

1
I
;

J
1
4

1
l

1
1

0
5
1
0
1
5
2
0
2
5
3
0
3
5
4
0
4

5
0
5
5
6
0
6
5
7
0
7
5

 
-
1
5

F
I
G
U
R
E
A
1
5
.
E
q
u
a
t
i
n
g
d
i
f
f
e
r
e
n
c
e
b
e
t
w
e
e
n
2
S
G
(
.
5
,
.
5
)
l
i
n
e
a
r

a
n
d
2
S
G
(
.
5
,

.
5
)
e
q
u
i
p
e
r
c
e
n
t
i
l
e
,
P
O
P
5
,
n
=
5
0
0
.



101

 
1
5

I
I

I
I

I
I

T
l

0
E
q
u
a
t
i
n
g
D
i
f
f
e
r
e
n
c
e

°
2
S
E
E
D

1
0
*

l

 

°
-
2
S
E
E
D

_
Z
e
r
o
L
i
n
e

‘
5

a
_

 
 
 

1
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0

0

°
°
°
°
O
o
o
°
°
°
°
0
0
0
0
0
0
0
0
0
0
0
0

°
°
°
°
°
0
0
0
0
0

c
o
t

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

r
h
o
o
o
o
o
m
o
o
o
g
s
g
m
u
o
u
u
m
fl
m
m

0
0
0
0
0
°
°
°
°
°
°

-
5
-

4

P

 

°
°
°
°
°
°
°
°
°
°
°
°
°
°
°
°
°
°
°
°
°
0
0
°
0
3
°
°
°
°
°
°
°
3
8
8
0

‘
A
A
-

-
1
0
-

‘

n
=
1
0
0
0

 
1

1
1

l
I

1
l

0
5
1
0
1
5
2

2
5
3
0
3
5
4
0
4
5
5
0
5
5
6
0
6
5
7
0
7
5

 
 

-
1
5

F
I
G
U
R
E
A
1
6
.
E
q
u
a
t
i
n
g
d
i
f
f
e
r
e
n
c
e
b
e
t
w
e
e
n
2
S
G
(
1
,
1
)

l
i
n
e
a
r
a
n
d
2
S
G
(
.
5
,
.
5
)

l
i
n
e
a
r
,
P
O
P
5
,
n
=
1
0
0
0
.

1
5

I
l

I
I

I
I

I
I
 

 

-
E
q
u
a
t
i
n
g
D
i
f
f
e
r
e
n
c
e

°
2
S
E
E
D

°
-
2
S
E
E
D

—
“

Z
e
r
o
L
i
n
e

 
 
 

O

0
0

0
1
’

*
°
°
°

I
3
0
.
.
.

0
I
fi
fl

o
0
0
0
0

0
0
0

°
3
8

o
0
0
0
0
.
.
.
.
.
.

0
0
0
0
0
0
0
0
0
°
°
°
°
°

0
°
o
o

.
.
.
.
.
.
.
°
3
8
8
|
"
l
0
8
8
8
8
3
0
0
0
0
0
0
0
0
0
0

‘
_

I

°
O
o
o

o
o
o
o

0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
°
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0

0
0
0
0
0

0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

 

A‘

-
5
—

4

-
1
0
~

i

n
=
1
0
0
0

 
 

;
L

1
1

l

-
1
5
0

5
1
0

1
5
2
0

2
5

3
0

3
5
4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

 

F
I
G
U
R
E
A
1
7
.
E
q
u
a
t
i
n
g
d
i
f
f
e
r
e
n
c
e
b
e
t
w
e
e
n
2
S
G
(
1
,

1
)

e
q
u
i
p
e
r
c
e
n
t
i
l
e
a
n
d
2
8
G
(
.
5
,

.
5
)

e
q
u
i
p
e
r
c
e
n
t
i
l
e
,
P
O
P
5
,
n
=
1
0
0
0
.



102

1
5

I
l

I
I

I
I

I
I
 

-
E
q
u
a
t
i
n
g
D
i
f
f
e
r
e
n
c
e

°
Z
S
E
E
D

1
0
*

.
.
2
S
E
E
D

—
“

Z
e
r
o
L
i
n
e

  
 
 

‘
1
0
.
.

1
1
0
0
0
2
3
3
3
3
3
9
0
»

-
"
L

0
.
°
_
°
6
5
m
m
a
e
a
-
r
3
8
8
m
m
m
-
-
-
-
-
-

:
:
:
:
:
:
m
m
w
u
fi
s
é
’
r

I

0

 

'
1
0
"

n
=
1
0
0
0

,

 
1

 

J
_

1
1

1
1

I
I

0
5
1
0
1
5
2
0
2
5
3
0
3
5
4
0
4
5
5
0
5
5
6
0
6
5
7
0
7
5 

-
1
5

F
I
G
U
R
E
A
1
8
.
E
q
u
a
t
i
n
g
d
i
f
f
e
r
e
n
c
e
b
e
t
w
e
e
n
2
S
G
(
.
5
,
.
5
)

l
i
n
e
a
r
a
n
d
2
S
G
(
.
5
,

.
5
)
e
q
u
i
p
e
r
c
e
n
t
i
l
e
,
P
O
P
5
,
n
=
1
0
0
0
.



103

1
5

I
I

I
I

I
I

I
I
 

°
E
q
u
a
t
i
n
g
D
i
f
f
e
r
e
n
c
e

1
0

.
°

2
S
E
E
D

P

°
-
Z
S
E
E
D

—
“

Z
e
r
o
L
i
n
e

 

I
 

 
 

I
0
0
0
0
°
0
0
°

0
0

5
"

°
°

1
0
0
°

0
0
°

0
0
°
0
0
0
0

0
0
0
°

0
0
0
°

0
0
0
0

O
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

(
)
»
_
e

~
_
»

4
.
,

_
.

.
1

—
~
—
_
~
»

_
_
_
4
_
1
_
1
_
_
1
1
1
_
_
,
n
_
_
_
_
_
_
,
L
_
_
_
_
_
_
_
L
L
_
_
.
1
_
_
,
_
_
.
_
_
,
_
_

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-
-
-
8
3
8
9
.
.
.
.
.
o
0
0
3
8
8
3
3
3
2
0
0
0
0
0
.
0
0
0
0
0
0
0
0
0
0
0
3
8
8
.
3
0
0
0
0
1

0
0
0
0
°
°
°
°
°

5
_

*
0
0
0
0

0
°

.
{
l
(
)
{
‘

I
I
=
=
i
3
(
)
(
)

7

 
1

 
1

-
1
5
0

5
1
0
1
5

2
0

2
5

3
0

3
5
4
0
4
5

5
0

5
5

6
0

6
5

7
0

7
5

 

F
I
G
U
R
E
A
1
9
.
E
q
u
a
t
i
n
g
d
i
f
f
e
r
e
n
c
e
b
e
t
w
e
e
n
2
8
G
(
1
,

1
)

l
i
n
e
a
r
a
n
d
Z
S
G
(
.
5
,

.
5
)
l
i
n
e
a
r
,
P
O
P
6
,
n
=
3
0
0
.

  I
I

I
I

I
I

I
I

I
T

I
l

°
E
q
u
a
t
i
n
g
D
i
f
f
e
r
e
n
c
e

°
Z
S
E
E
D

°
-
2
S
E
E
D

—
_

Z
e
r
o
L
i
n
e

   
 

l

l

1

l

l

'1

—
1

n
=
3
0
0

 
1

4
J

1
1

1
J

I
4
L

1

 0
5
1
0
1
5
2
0
2
5
3

3
5
4

4
5
5
0
5
5
6
0
6
5
7
0
7
5

F
I
G
U
R
E
A
2
0
.
E
q
u
a
t
i
n
g
d
i
f
f
e
r
e
n
c
e
b
e
t
w
e
e
n
2
S
G
(
1
,

1
)

e
q
u
i
p
e
r
c
e
n
t
i
l
e
a
n
d
2
8
G
(
.
5
,

.
5
)

e
q
u
i
p
e
r
c
e
n
t
i
l
e
,
P
O
P
6
,
n
=
3
0
0
.



104

 
1
5

I
I

I
I

I
I

I
I

I
I

I
I

I

 

°
2
S
E
E
D

1
0
“

.
-
Z
S
E
E
D

—
—
Z
e
r
o

L
i
n
e

 

°
E
q
u
a
t
i
n
g
D
i
f
f
e
r
e
n
c
e

 
 

5
_ «
I
.

0

0
0

°

0
0

,
0

-
1
0
*

n
=
3
0
0

 
1

4
1

1

0
.
.

°
°
o
‘
3
8
m
.
.

0
.
-.
-e
0
0
2
0
0
0
0
0
0
,
3
:
3
8
3
W
a
u
m
m
m
m
a
e
m
e
e
m
a
m
a
s
e
e
o
:

0
°
°

8
3
:
0  
 

-
1
5

F
I
G
U
R
E
A
2
1
.
E
q
u
a
t
i
n
g
d
i
f
f
e
r
e
n
c
e
b
e
t
w
e
e
n
2
S
G
(
.
5
,

l
i
n
e
a
r
a
n
d
2
S
G
(
.
5
,

.
5
)
e
q
u
i
p
e
r
c
e
n
t
i
l
e
,
P
O
P
6
,
n
=
3
0
0
.

0
5

1
0

11
5

2‘
0

21
5

31
0
3
5

41
0
4
5

5
0

5
5

61
0
6
5

7
0

7
5

.
5
)



105

 
 

 
I

I
I

I
I

r
I

I
T

I
I

I

-
E
q
u
a
t
i
n
g
D
i
f
f
e
r
e
n
c
e

.
E
q
u
a
t
i
n
g
D
i
f
f
e
r
e
n
c
e

°
2
S
E
E
D

°
2
S
E
E
D

1
0
‘

°
-
2
S
E
E
D

“
10

*
.

-
2
S
E
E
D

"

*
—
‘
Z
e
r
o
L
i
n
e

—
Z
e
r
o
L
i
n
e

a
5

_
A

>
0
0
0

0
0
0
°

0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0

0
0
0
0
0
0
0
0
0

0
0
0
0
0

°
0
0

0
0
0
0
0

0
°
°
°
O
o
o

o
°
°
°
°
°
°
°
O
O
O
o
o
o
o
o
o
o
o
o
o
o
o
o
o
°
°
°
°
°
°
°
I
l

°
°
°
°
°
°
°
°
°
°
°
°
°
°
°
°
0
0
0
0
0
0
0
0
0
0
0
0
0
°
0
0
°

0
0

1
.
5

’
r
’

’
T
”

’
T
’

1
1

1
1

r
r

’
T
’

r
1

’
T
’

1
1
‘
5

 

 
 
 

 
 
 

5
y

0

0

0  
O
n
.

a
.
.
.
_
_

_
.
.
_
_
_
_
.
_
.
_
.
.
.
_
_
_
.

_
_
_
.
_
_
_
.
.
.
_
_
_
_
_
_
“
.
_
.
_
_
.
_
_
_
.
_
_
.
_
_
.
.

O

0

0
0
°
2
3
.
8

.

1
0
:
.
0
.
.
.
.
.
.

.
.
.

0
0
0
0
0
°
°
°
°
°

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
9
0
0
0
0
0
°

°
°

-
0
0

.
.
.
.
.
o
0
.

.
0

2
0
0
0
0

7
“
“

o
o

.
.
.
.
.
.
.
.
.
0
0
0
0
0
0
0
3
3
.
0
.
3

0
0
0
°
0
°
°
°
°
0
0
0
0
0
0
0
0
0
0
0
0
0

0

"
0
0
0
.
0
0
.
0
0
0
.
3
3
:
3
3
8
8
9
0
0
0
0
0
0
0
.
3
8

-
-
-

0

-
5
0
0
0
0
0
0
0
0
0
0
0
0

—
1

-
5

-
-
-

o
0

0
0
0

0
o
o

°
°
°
O
o
o
o
°
O
°
°
°
°
°

-
1
0
~

*
-
1
0
*

4

n
=
5
0
0

n
=
5
0
0

 
 

 
 

1
1
_

1
_

P
 
 

-
1
5

.
.
L
.
L

-
1
5

0
5

1
0

1
5
2
0

2
5

3
0

3
5
4
0
4
5

5
0

5
5

6
0

6
5

7
0

7
5

0
5

1‘
0

11
5

21
0
2
5

31
0
3
5

41
0

41
5
5
0

5
5

6
0

6
5

71
0
7
5

F
I
G
U
R
E
A
2
2
.
E
q
u
a
t
i
n
g
d
i
f
f
e
r
e
n
c
e
b
e
t
w
e
e
n
2
S
G
(
1
,

1
)

F
I
G
U
R
E
A
2
3
.
E
q
u
a
t
i
n
g
d
i
f
f
e
r
e
n
c
e
b
e
t
w
e
e
n
2
8
G
(
1
,

1
)

l
i
n
e
a
r
a
n
d
2
S
G
(
.
5
,

.
5
)
l
i
n
e
a
r
,
P
O
P
6
,
n
=
5
0
0
.

e
q
u
i
p
e
r
c
e
n
t
i
l
e
a
n
d
2
S
G
(
.
5
,

.
5
)

e
q
u
i
p
e
r
c
e
n
t
i
l
e
,
P
O
P
6
,
n
=
5
0
0
.



106

 
l
5

I
f

I
f

I
I

W
I

I
I

I
I

I
I

I

0
E
q
u
a
t
i
n
g
D
i
f
f
e
r
e
n
c
e

°
Z
S
E
E
D

1
0

o
-
Z
S
E
E
D

H

—
—

Z
e
r
o
L
i
n
e

  
 
 

O

O
O

i
o
°
°
°
:
.
.
.
.
3
m

o
.

0
0

o
9

-
-
-

.
.
.
.
.
‘

0
0

~
“
”
0
3
0
d
o
o
o
o
o
s
o
'
o
.
3
m
m
m
v
v
v
v

.
.
.
.
.
.
m
m
a
m
m
o
e
fi
o
o
~
_

O

#
0
0
0
0
0

T 

 

-
1
0
“

n
=
5
0
0

*

 
 

-
1
5

I
1

J
l
4

4
1

l

 

l

O
5
1
0
1
5
2
0
2
5
3
0
3
5
4
0
4
5
5
0
5
5
6
0
6
5
7
0
7
5

F
I
G
U
R
E
A
2
4
.
E
q
u
a
t
i
n
g
d
i
f
f
e
r
e
n
c
e
b
e
t
w
e
e
n
Z
S
G
(
.
5
,
.
5
)

l
i
n
e
a
r
a
n
d
2
S
G
(
.
5
,

.
5
)
e
q
u
i
p
e
r
c
e
n
t
i
l
e
,
P
O
P
6
,
n
=
5
0
0
.



107

 

 
1
5

Y
I

T
I

I
7

Y
I

I
f

I
I

1
5

I
I

I
I
f
f

T
I

I
I

I
I

0
E
q
u
a
t
i
n
g
D
i
f
f
e
r
e
n
c
e

'
E
q
u
a
t
i
n
g
D
i
f
f
e
r
e
n
c
e

o
Z
S
E
E
D

°
Z
S
E
E
D

o
-
Z
S
E
E
D

°
-
Z
S
E
E
D

—
—

Z
e
r
o
L
i
n
e

—
Z
e
r
o
L
i
n
e

5
»

i
5
”

“

l

 

 

 
 

 
 

 

 

'
0
0
0
0
0
0
0
0
9

0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0

o
m
m
“
1
0
°
0
0
‘
3
0
"
"
‘
-
"
°
¢
’
°
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
°
°
°
°
°
‘

0
-

5
5
5
5
M
_
I
_
_
_
_
_
.
_
A
.
_
_
_

--
.
4

0
1
’

O

o
-
_
_

-
“
“
“
“

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
‘

0
°
.
.
.
“

0
0
0
0
0
0
0
0
0
0
0
0
0
0

A
A
A
-
.
.

0
.
.
-
.
.
.
,

v

.

0
°

0
°

O
O
O
O
O
O
V
O
O
O

0
°

0
.
.
.
.

O

A
-
-
-

0

0
0
0
0
0
0
0
0
0
2
0
0
0
0

-
v

0
0
0
0
0
°
°
°
o
o
o
o
fl
a
u
m
g
n
h
v
-
-

i
m
m
fl
-
w
“

-
5

_
H

_
5

_

 
 

-
1
0
*

-
1
0
-

4
n
=
1
0
0
0

l
n
=
1
0
0
0

 
 

 
-
1
5
 

 
-
1
5

J
_

L
4

4
1

1
.
L

L

 

1
A

o
5

14
0

11
5

2‘
0

21
5
3
0

31
5

41
0
3
5

51
0

51
5

61
0

61
5

7‘
0
7
5

0
5

1
0

1
5
2
0

2
5

3
o

3
5
4
0

4
5
0

5
5

6
O

6
5

7
0

7
5

F
I
G
U
R
E
A
2
5
.
E
q
u
a
t
i
n
g
d
i
f
f
e
r
e
n
c
e
b
e
t
w
e
e
n
Z
S
G
(
1
,

1
)

F
I
G
U
R
E
A
2
6
.
E
q
u
a
t
i
n
g
d
i
f
f
e
r
e
n
c
e
b
e
t
w
e
e
n
Z
S
G
(
1
,

1
)

l
i
n
e
a
r
a
n
d
Z
S
G
(
.
5
,

.
5
)
l
i
n
e
a
r
,
P
O
P
6
,
n
=
1
0
0
0
.

e
q
u
i
p
e
r
c
e
n
t
i
l
e
a
n
d
Z
S
G
(
.
5
,

.
5
)

e
q
u
i
p
e
r
c
e
n
t
i
l
e
,
P
O
P
6
,
n
=
1
0
0
0
.



108

 

°
E
q
u
a
t
i
n
g
D
i
f
f
e
r
e
n
c
e

°
Z
S
E
E
D

°
-
Z
S
E
E
D

—
—

Z
e
r
o
L
i
n
e

5
r»

-<

«
I
.

  
 
 

o
(
I

0
l
o
g
o

.
0
0
.
.

o

O
{
0
0
0
:
2
2
3
3
8
8
§
§
3
9
8
8
8
3
8
m
m
x
x
m

-
:
:
:
:
:
m
o
m
u
m
m
u
§
§
€
r
§
’

 

-
1
0
»

l

n
=
1
0
0
0

 
 

1
_

-
1
5

L

 

1
4

I
I

O
5
1
0
1
5
2
0
2
5
3
0
3
5
4
0
4
5
5
0
5
5
6
0
6
5
7
0
7
5

F
I
G
U
R
E
A
2
7
.
E
q
u
a
t
i
n
g
d
i
f
f
e
r
e
n
c
e
b
e
t
w
e
e
n
2
S
G
(
.

5
,

.
5
)
l
i
n
e
a
r

a
n
d
2
S
G
(
.
5
,

.
5
)
e
q
u
i
p
e
r
c
e
n
t
i
l
e
,
P
O
P
6
,
n
=
1
0
0
0
.



Equating Difference, n=50, POP1
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FIGURE A28. Equating difference between ZSG(I, I) equipercentile and EG-

equipercentile, POP], n=50.

Equating Difference, n=100, POP1
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FIGURE A29. Equating difference between 2SG(1, I) equipercentile and EG

equipercentile, POP], n=1 00.
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Equating Difference, n=50, POP4
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FIGURE A30. Equating difference between 2SG(1, I) equipercentile and EG

equipercentile, POP4, n=50.

Equating Difference, n=100, POP4
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FIGURE A31. Equating difference between ZSG(I, I) equipercentile and EG

equipercentile, POP4, n=100.
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Equating Difference, n=300, POP4
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FIGURE A32. Equating difference between 250(1, 1) equipercentile and EG

equipercentile, POP4, n=300.

Equating Difference, n=50, POP6
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equipercentile, POP6, n=50.
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Equating Difference, n=1000, POP6
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