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ABSTRACT

IMAGES OF CERTAIN MANIFOLDS

UNDER MAPPINGS OF DEGREE ONE

By

Lawrence Edward Spence

This thesis considers two distinct problems. In the

second chapter a classification of the images of certain products

of Spheres under mappings of degree one is obtained. The principal

results are the following theorems.

Theorem 2.1: Let f: SIn X Sn.m a M be a mapping of

degree one into a closed, connected, orientable n-manifold M.

Then either M has the homotopy type of Sn, or f is a homotopy

equivalence.

Theorem 2.3: Let M be a closed, connected, orientable

3-manifold and f: S1 X S1 X S1 a M a mapping of degree one.

Then either f is a homotopy equivalence, or M has the homotopy

2

type of S1 X S or 33.

l l 1 2

In the third chapter S X S X S1 and S x S are

characterized in the class ml of closed, connected 3-manifolds

M having the property that each connected, finite-sheeted cover-

ing space over M is homeomorphic to M. Both S x S1 X S1

and S1 X 82 are members of this class with non-zero fundamental

groups; whether there are other such 3-manifolds remains unanswered.

1 1

But S1 X S X S and S1 X 32 can be shown to be the only



Lawrence Edward Spence

members of 5m satisfying certain additional conditions.

Theorem 3.1: Let M be a member of the class ml having

a non-zero, nilpotent fundamental group. Then M is homeomorphic

to SIXSIXS1 orto SIXSZ.

Theorem 3.6: Let M be a member of the class Fm such

that each double covering of M is proper. (A double covering

p: M a M is said to be prOper.if the non-trivial covering trans-

formation over p is homotopic to In.) If H1(M) is infinite,

1

then M is homeomorphic t0v S1 X S X S1 or to S1 X 82.
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INTRODUCTION

This thesis considers two distinct problems. In chapter

II a classification by homotopy type is obtained for those closed,

connected, orientable n-manifolds ‘M which admit a degree one

- l

mapping Sm X Sn m!» M. In the third chapter 81 X 81 X S and

S1 X 82 are characterized in the class 5]! of closed, connected

3-manifolds M having the property that each finite-sheeted

covering space over M is homeomorphic to M.

There is a well-known result which states: For n 2 5,

any closed, orientable n-manifold M admitting a degree one map

Sn a M is homeomorphic to Sn. The principal theorem of the

second chapter generalizes this result to the case in which the

domain consists of a product of two Spheres; of necessity, the

classification is by homotopy type rather than homeomorphism.

Two additional results are obtained by taking as domain certain

other products of Spheres.

In [5] Kyung W. Kwun asks which closed, connected,

orientable 3-mainfolds admit double coverings (or proper double

coverings) of themselves. More recently, Jeffrey L. Tollefson

has proved [12, Theorem 2] that a closed, connected, orientable

3-manifold properly covers itself k times for every prime k

if and only if it is the product of a 2-manifold and SI. The

class ‘Dl described above consists of those closed, connected

3-manifolds which admit no finite-sheeted coverings other than

1
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coverings of themselves. This class is examined in chapter III,

2

and S1 X S1 X S1 and S1 X S are shown to be the only mani-

folds in this class which satisfy certain additional conditions.



CHAPTER I

THE DEGREE OF A MAP

In this chapter two definitions of the degree of a proper

mapping between n-manifolds will be given. These definitions

will then be used to obtain two theorems (Theorem 1.1 and Theorem

1.4) which will be applied frequently in the next chapter.

The nth sheaf cohomology group of X with compact

supports will be denoted by 1120!; 8), where 8 is the constant

sheaf on X with stalk Z, the infinite cyclic group. For a

connected, orientable n-dimensional manifold M, HZCM; 8) - Z.

Each such manifold will be assumed to have a preferred free

generator pH 6 H201; 8).

The (algebraic) degree of a mapping is defined for

proper maps between connected, orientable n-manifolds. (A

mapping is proper if the inverse image of each compact subset

of the range is a compact subset of the domain.) If

f: (M, 5M) a (N, 5N) is such a mapping, then the degree of

f is the integer denoted by deg(f) which satisfies the

equality f*(pN) - deg(f)pM.

This purely algebraic definition of degree has no

geometric interpretation. In order to recognize the geometric

significance of the degree of a map, it is necessary to intro-

duce an alternate definition of degree. .The geometric degree

C(f) of a proper mapping f: (M, 3M) ... (N, 3N) between

3



n-manifolds is defined to be infinite unless there exists an

n-disk D in the interior of N such that f-IGD) is the

union of a finite number of disjoint n-disks each mapped

homeomorphically onto D under f. When such disks do exist,

G(f) is defined to be the minimal number of components in the

inverse image of each such disk.

The two definitions of degree are related by the in-

equality |deg(f)| s G(f), which is obvious if so?) is

infinite. If G(f) is a positive integer k, then there is

an n-disk D in the interior of N such that

f-1(D) - D1 U D2 U°--U Dk‘ is the union of k disks each mapped

homeomorphically onto *D under f. Let equal 1 or -1

‘1

according to whether f: Di a D is orientation preserving or

orientation reversing. Then deg(f) -=z:g1 ei [3, Lemma 2.1b],

so that ‘deg(f)| s G(f) in this case also.

The existence of a mapping f: (M, 5M) a (N, 3N) of

degree one between two connected, orientable n-manifolds has

important implications for the algebraic invariants of the

manifolds, as the following fundamental result shows.

Theorem 1.1: If f: (M, 3M) ~’(N, 5N) is a proper

mapping of degree one between connected, orientable n-manifolds,

then

(a.) the induced mapping of fundamental groups

f#:.111(M) ... n1 (N) is epimorphic;

(b.) the induced mapping of homology groups

f*: H*(M, 3M) e H*(N, 3N) is a split epimorphism.



Proof of (a.): Let p: N a N denote the covering space

of N corresponding to the subgroup f#(n10M)) of n1(N).

Then f can be lifted to a map f: Mw* N which is necessarily

proper (because f is proper). Now

1 - deg(f) - deg<p1> = deg<p>deg<%>.

and therefore deg(p) - 1:1. Thus N I‘N [3, §2], and hence

f# (11100) " "1(N) -

Proof of (b.): Since the Borel-Moore homology groups

of n-manifolds coincide with the corresponding singular homology

groups [1, V. 12.6], there is a commutative diagram

 

q * q
new) (a, L Hem)

f

in which the vertical maps are the Poincare Duality isomorphisms

induced by the cap product [1, V. 9.4 and V. 10.2]. That f*

is a split epimorphism follows from the cap product rule

f*(a'n f*(5)) - f*(a) n 5, which implies the commutativity of

the diagram.

The homotopy results used in chapter II often require

that the manifolds under consideration be simply connected. So

when f: (M, 3M) a (N, 3N) is a mapping of degree one between

manifolds which are not simply connected, it will be necessary

to pass to the universal covering spaces of M. and N. Thus

it is important to know conditions under which f will induce-a



 

 



mapping of degree one on the universal covering spaces of M

and N. One such situation is described in Theorem 1.4, the

proof of which requires two lemmas.

Lemma 1.2: Let f: X «'Y be a continuous function which

induces an epimorphism f#: n1(X) a n1(Y) of fundamental groups.

If p: T «’Y is a fibration with unique path lifting such that

Y is path-connected, then P, the fibered product of f and

p, is also path-connected.

Proof: In the diagram

P A)?

'13 JP

$YX

 

 

let f and 3 denote the maps induced by f and p, respectively.

Then 5 is a fibration with unique path lifting [10, 2.8.6].

In order to show that P is path-connected, it suffices

to prove that there is a path between any two points of p-1(x)

for an arbitrary x E X; so let (x,yi) 6 p-1(x) (i I 0,1).

Since T is path-connected, there is a path w: I «‘T from

y to yl. Now p(yi) 3 f(x) for i - 0,1, so that

0

[pm] 6 n1(Y,f(x)). Because f# is epimorphic, there is a loop

A: I n X based at x such that f) :.pm rel {0,1}. Let

X: I a P be a lifting of A such that X(0) - (x,yo). ’Now

WEEK] 3 [PEN] g [£51.] =1 [fA] '3 [PU-l] ‘- P#[w]-



 



But since p#: "1(§) w n1(Y) is a monomorphism [10, 2.3.4],

EX 3 w rel {0,1}. In particular, fi(1) - m(1) - yl. So

i(1) ' (x9y1)3 and X is the required path.

Lemma 1.3: In the commutative diagram

f

P >‘Y 

0
0
!

0
0

X 4¢‘W

let f and g be continuous maps of Hausdorff spaces, P be

the fibered product of f and g, and i and g be the maps

induced by f and g, reSpectively. If f is a prOper map,

then f is also a proper map.

Proof: Recall that P = {(x,y) 6 X X Y: f(x) I g(y)]

and that f and g are defined by f(x,y) - y and §(x,y) - x.

If X is a compact subset of Y, then f-1(X) is a closed sub-

set of P n (f-1(gK) X K). Because W is a Hausdorff Space,

P is a closed subset of X X Y [2, V11.l.5]. Moreover,

f-1(gK) X K is compact since f is proper and g is con-

tinuous. Thus f-1(K) is a closed subset of a compact set

in the Hausdorff Space X X Y and hence is compact.

Theorem 1.4: Let M and N be compact, connected,

orientable n-manifolds, and let f: M.~'N be a mapping of

degree one which induces a monomorphism f#: NICM) “'WICN)

of fundamental groups. If q: N ~>N is the universal covering

Space of N .and P is the fibered product of f and q, then:





(a.) The induced covering projection p: P a M is

the universal covering space of M;

(b.) If G(f) I 1, then any map f: P!» N induced

by f has geometric degree one;

(c.) If G(f) I 1, there is a proper map f: P.» N

of degree one such that qf = fp.

Proof of (a.): There is a commutative diagram

P f ) 

’
U

m

i
5
€
-
-
-
-
¢
z
:

.
.
O

M or?

in which both vertical maps are covering projections [10, 2.8.6].

Since f#p#: n1(P) a n1(N) factors through n1(N) = O, f#p#

is the zero homomorphism. But both p# and f# are monomorphisms;

so n1(P) I 0. Because P is path-connected by Lemma 1.2, P

is a simply connected covering space of M, and hence, the

universal covering Space of M [10, 2.5.7].

Proof of (b.): If G(f) I 1, there exists an n-disk D1

in the interior of N such that f-1(D1) is homeomorphic to

D1 under f. Choose an n-disk DZCD1 so that D2 lies in

some open subset of N which is evenly covered by q and so

that f-1(D2) lies in some open subset of ML which is evenly

covered by p. Let D be any component of q-1(D2); then q

maps D homeomorphically onto D2.

Since I is a proper map (Lemma 1.3), f-1(D) is compact.

l~-1 - - ~-1

Now f (D)<: p f 1(D2), and therefore f (D) is the union of



a finite number of disjoint disks, each of which is mapped

homeomorphically onto D by f. If (xi,yi) E f-1(D) (i I 1,2)

lie in the same fiber, then y1 I f(x1,y1) I f(x2,y2) I y2 and

hence f(xl) I p(y1) I p(y2) I f(xz). But since x1,x2 E f-ICDZ),

it follows that x1 I x2. 80 each fiber of f contains a single

point, and therefore G(f) I 1.

Proof of (c.): There is a map g: M.« N homotopic to

f and having geometric degree one [3, Theorem 4.1]. If Pg

denotes the fibered product of g and q, then the fibration

p': Pg I M induced by q is fiber homotopy equivalent to

p: P I’M [10, 2.8.14], and the fiber homotopy equivalences

between p and p' are easily seen to be homeomorphisms.

Hence P and P8 may both be identified with the universal

covering space M of M by part (a.). Denote the covering

projeCtion M1» M by n, and let H: M,X I I'N be a homotopy

from g to f. Let g: M.» N denote any mapping induced by

g; then G(g) I 1 by part (b.).

The homotOpy lifting property guarantees the existence

of a map H: M X I I»N such that H(x,o) I §(x) and qH(x,t) I

H(n X lI)(x,t) for all x E M, t E I. The desired map

f: M e‘N is defined by f(x) I H(x,1). In order to prove that

f is a proper map of degree one, it suffices to Show that H

is a proper map (for the degrees of properly homotopic maps

are equal). Since .nlz M X I a M, the projection onto the first

factor, is a homotopy equivalence, the homotopy commutative
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diagram

M X I j;N 

M

shows that H satisfies the hypotheses of part (a.). Thus

~

M X I is the fibered product of H and q, and H is proper

by Lemma 1.3.



CHAPTER II

IMAGES OF CERTAIN MANIFOLDS UNDER MAPPINGS OF DEGREE ONE

In this chapter those manifolds which admit a mapping of

degree one from certain products of Spheres will be classified.

The principal result (Theorem 2.1) gives a classification of such

manifolds by homotopy type for the case in which the domain is

a cartesian product of two Spheres. This theorem generalizes

the fact that for n 2 S the only n-manifold M. which admits

a mapping Sn I M of degree one is Sn itself. (This result

follows immediately from Theorem 1.1 and the n-dimensional Poincaré

Conjecture.) A similar result is obtained in Theorem 2.3 when

the domain is S1 X S1 X 51, and Theorem 2.2 proves that there

are no mappings of degree one from the n-dimensional torus Tn

(the product of n copies of 51) into an n-manifold with funda-

mental group equal to 151 Z.

i=1

Theorem 2.1: Let M be a closed, connected, orientable

n-manifold and f: Sm X Sn-m I'M (1 s m s n-m) a mapping of

degree one. Then either M has the homotopy type of Sn, or

f is a homotopy equivalence.

Proof: Since n1(M) is abelian (Theorem 1.1 (a.)),

11104) = ulna) is a direct summand of 111(3m x s“'“‘) = “1(3‘“ x 3““)

by Theorem 1.1 (b.). Thus, because the infinite cyclic group

is indecomposable, n1(M) is a free abelian group.

11
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If n I 2, so that m I n-l I l, the conclusion follows

easily from the classification theorem for closed, connected

2-manifolds [6, 1.5.1]. In fact, M must be homeomorphic to

either S2 or S1 x 81. Therefore it will be assumed that

n 2 3.

Suppose first that m I 1. Since 111(81 X Sn-l) I 2,

either n1(M) I 0 or n1(M) I Z.

Consider first the case that n1(M) I 0. In this case

H1(M) I 0, and Hn-1(M) I H1(M) I 0 by Poincaré Duality and

the universal-coefficient theorem for cohomology [10, 5.5.3].

Thus, by Theorem 1.1 (b.) , Hk(M) is trivial except for k I 0

or k I n, in which case it is infinite cyclic. The absolute

Hurewicz isomorphism theorem [10, 7.5.5] then implies that the

Hurewicz homomorphism m: "n(M) I Hn(M) is an isomorphism.

Let “M E Hn(M) and Vn E Hn(Sn) be the preferred generators,

and select a map g: Sn I M representing the class ¢-1(pM).

The definition of m shows that ”M I m[g] I 8*(vn); hence g

is a mapping of degree one. So g*: H*(Sn) I H*(M) is epimorphic

by Theorem 1.1. Since every epimorphic endomorphism of the

infinite cyclic group is an isomorphism, g* is actually an

isomorphism. It follows that g is a weak homotopy equivalence

[10, 7.6.25] and hence, a homotopy equivalence [10, 7.6.24].

Now assume that n1(M) I Z. As above, Theorem 1.1 implies

that f#: 111(S1 X Sn-1) I n1(M) is an isomorphism. Thus, in

order to prove that f is a homotopy equivalence, it suffices

1 -

to show that f#: nk(S X Sn 1) a nk(M) is an isomorphism for
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k 2 2. It follows from Theorem 1.4 that there is a commutative

diagram

P
'
h
l

R x Sn"1 % 

in which q: M I‘M is the universal covering space of M. and

f is a prOper mapping of degree one. If Hn_1(M) I 2, then

Hn_1(M) I 0 (Theorem 1.1). So the absolute Hurewicz isomorphism

theorem implies that M is contractible and thus implies that

M is a space of type (2,1) [10, 7.2.11]. But then M is

homotopically equivalent to S1 [15, 2.10.4], contradicting

~ ~ “-1 ~

that Hn(M) - 2. Therefore Hn_1(M) - z, and f*: H*(R x s ) ~H*(M)

~ -1 ~

is an isomorphism, As before, it follows that f#: nk(R X Sn ) I "k(M)

is an isomorphism for k.2 2, and so f#: nk(S1 X Sn-l) I NRC”)

is an isomorphism for k 2 2 [10, 7.2.11]. This completes the

proof of the case that m I l.

m n-m

For m 2 2 S X S is simply connected, and therefore

M is simply connected. Since the only non-trivial homology

m n-m . . .
groups of S X 8 occur in dimenSions 0, m, n-m, and n,

Hk(M) I 0 except possibly for k I 0, k I m, k I n-m, and

k I n. Moreover, Poincaré Duality implies that HO(M) I HnCM) I Z

a d that H (M) - H (M) Because H (8m x 3““) = 2 if
n m n-m ° m

m I n-m, either Hm(M) I O or Hm(M) I 2 if m I n-m.

If Hm(M) I 0, then the Hurewicz homomorphism ¢:‘"n(M)'T Hnflfl)

is again an isomorphism. As before, any representative of the
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class w-1(”M) is a mapping of degree one from Sn to M, and

such a map is necessarily a homotopy equivalence.

When Hm(M) - z, 13*: H*(Sm x 3““) -. H*(M) is an iso-

morphism. Hence f: Sm X Sn-m I M is a homotopy equivalence.

Suppose now that m I n-m. Since Hm(SIn X Sm) I Z @ Z,

it follows that Hm(M) I 0, HmCM) I Z, or HmCM) I Z 62. When

Hm(M) I O or Hm(M) I Z @>Z, the preceding arguments prove

that M has the homotopy type of Sn or that f is a homotopy

equivalence, reSpectively. So it remains to show only that

Hm(M) I Z is impossible. Assume that Hm(M) I Z, and choose

a generator a E Hm(M) I Hm(M). Poincaré Duality gives

<a, 0!] HM) I': l, where ”M is the preferred generator of

Hn(M)' If e: HO(M) ” Z is the augmentation, then

<aU a, uM>I e((aU a) n “‘M) " 2(an (an “M” ‘<oz, anuf‘i 1-

Hence a U a generates H2m(M), and therefore f*(a U a)

generates H2m(Stn X Sm). If 3 denotes a generator of H°(Sm)

and y denotes a generator of Hm(Sm), then u1 I a X y and

u2 I y x B generate Hm(Sm X Sm). So there are integers a

and b with f*(a) I au1 + buz. But then f*(a U a) I 0 if

m is odd [4, 24.8] and f*(a'U a) I (f*a) U (f*a) I 2ab(u1 U uz)

if m is even, contradicting that f*(a'U a) generates

H2m(Sm X Sm). This argument proves that Hm(M) I Z and completes

the proof of the theorem.

Both of the possibilities mentioned in the conclusion of

Theorem 2.1 can actually occur. The map which collapses the

equators of 8m and Sn m to a point is a mapping
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n: Sm X Sn-m‘d SD of geometric degree one, for any disk D in

Sm X Sn-m which is disjoint from both equators is the complete

inverse image of u(D). And clearly the identity map of Sm X Sn-m

is also a mapping with geometric degree one.

The proof of Theorem 2.1 shows that when M has the homotopy

type of S“, then M admits a mapping Sn'I M. of degree one.

Thus for n 2 5 the theorem.actually proves either that M is

homeomorphic to Sn or that f is a homotopy equivalence.

Theorem 2.3 is the analogue of the preceding result when

the domain of f is S1 X S1 X 81. The proof will depend upon

the fact that if f: S1 X S1 X S1 I M is a mapping of degree

one, then n1(M) I=Z €>Z. A similar result is true for n-manifolds,

as the following theorem shows.

Theorem 2.2: Let M be a closed, connected,orientable

n-manifold with n1(M) I Eé: Z. Then there exists no mapping

f: Tn I M of degree one.

Proof: Assume that f: Tn I’M is a mapping of degree

one. Since the Kernel of f#: n1(Tn) I n1(M) is Z, the cover-

ing space of Tn corresponding to the Kernel of f# is homeo-

morphic to Rn-1 X 81. Let p: Rn-1 X 31 I Tn denote this cover-

ing Space, and let q: M«I M. be the universal covering space

of M. An argument similar to that used in the proof of Theorem:

1.4 (c.) gives a commutative diagram
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 Rn‘l x s1 f _;174

P [<1

f
T“ 3M 

in which I is a mapping of degree one. Thus Theorem 1.1 implies

that f*: H.k(Rn-1 X SI) I H*(M) is an epimorphism. So M is

homologically trivial and hence contractible. But then [10,

n-l

7.2.11] implies that M is a Space of type (6 2,1) - an

i=1

impossibility.

This chapter concludes with the previously mentioned

analogue of Theorem 2.1.

Theorem 2.3: Let M. be a closed, connected, orientable

3-manifold and f: S1 X S1 X S1 I M a mapping of degree one.

Then one of the following is true:

(a.) M. has the homotopy type of 83;

(b.) M has the homotopy type of S1 x 82;

(c.) f is a homotopy equivalence.

Proof: It follows from Theorem 1.1 that H1(M) I 0,

H104) I Z, H1(M) I Z @Z, or H1(M) I Z 92 @Z; thus, in view

of Theorem 2.2, either 111(M) I 0, 111(M) I Z, or 111(M) I Z 6 Z 6 Z.

Moreover, H1(M) I H2(M) by Poincaré Duality and the universal

coefficient theorem for cohomology.

If n1(M) I 0, then the Hurewicz homomorphism

T“"3(M) I H3(M) is an isomorphism. As before, any representative

of the class m-1(uM), where “M is the preferred generator of
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H3(M), is a homotopy equivalence between M and 83.

When “1(M) I Z, then M is homotopically equivalent

to a prime manifold, for M has a decomposition as a connected

sum P1 # P2 #'°°# Pk of prime manifolds [7, Theorem 1], and

111(P1 # P2 #---# Pk) I n1(P1) * n1(P2) *--°* "1(Pk). Hence

M is homotopically equivalent to S1 X 82 or to an irreducible

3-manifold [7, Lemma 1]. If the latter were true, then the

universal covering space of M would be contractible. But then

M would be a Space of type (2,1) and would be homotopically

equivalent to SI. This contradiction shows that M is

homotopically equivalent to S1 X S2.

Finally, if nICM) I Z ® Z 6 Z, then f induces a mapping

~ 3 ...

of degree one f: R. I M on the universal covering spaces of

S X S X S and M. Thus M is contractible, and M. is a

space of type (Z (+3 2 ® 2,1). Hence there are isomorphisms

1 X 81) I«nkan) for all k, and therefore f isf#: nk(S1 x S

a homotopy equivalence.

Here, as in Theorem 2.1, the three possibilities in

the conclusion of the theorem actually occur, for two copies

of S1 can be collapsed to give 82, and the resulting 81 X 82

can be collapsed as before to give S



CHAPTER III

1 1 1 l 2
A CHARACTERIZATION OF S X S x S AND S X S

Kyung W. Kwun.[5] and Jeffrey L. Tollefson [12, 13]

have investigated conditions under which a 3-manifold admits a

finite-sheeted covering of itself. In this chapter a study

will be made of those closed, connected 3-manifolds M. with

the property that every connected finite-sheeted covering space

over M is homeomorphic to M. The ciass of such 3-manifolds

will be denoted by {02.

Notice first that any closed, simply connected 3-manifold

trivially belongs to ‘ML for a simply connected manifold has no

non-trivial, connected, finite-sheeted coverings. In fact, the

fundamental group of a manifold in ED! must be either zero or

infinite, else the universal covering space is homeomorphic to

the manifold. Moreover, since every manifold has an orientable

double covering, each manifold in ED! is orientabler

The only 3-manifold which is not prime and admits a

k-fold covering (k 2 2) of itself is P3 # P3, the connected

sum of two copies of projective 3-Space [13, Theorem 1]. Hence

any manifold in £0: with non-zero fundamental group is a prime

manifold (since S1 x 82 double covers P3 # P3) and thus is

homeomorphic to S1 X 82 or is irreducible. Furthermore, if

M Efm’ is irreducible and H1(M) is infinite, then [5, Theorem

2] shows that M fibers over S1 since the hypothesis that

18
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H1(M) contain no element of order 2 is required only for the

proof of [5, Proposition 5.1], where the assumption that HICM)

is infinite is clearly sufficient.

Both 81 X S1 X S1 and S1 X 82 are members of 5]!

having non-zero fundamental groups. Whether other Such 3-manifolds

exist remains unanswered. In this chapter two theorems will be

1 l 1 1 2

obtained which characterize S X S X S and S X S in the

class ER. The first of these appears below.

Theorem 3.1: Let M be a manifold in the class :13

with non-zero, nilpotent fundamental group. Then M is homeo-

l

morphic either to S1 X S X S1 or to S1 X 32.

Proof: If M is not homeomorphic to S1 X 52, then

M is irreducible. Since nICM) must be infinite, the universal

covering space of M is non-compact and hence, contractible.

Thus nk(M) I 0 for k 2 2, and 11104) has no elements of

finite order. It follows from [11, Theorem N] that 11104) I Z,

nICM) I Z Q Z 6 Z, or 111(M) is a split extension of Z e Z

by Z in which the action of Z is defined by the matrix

where m is a non-zero integer. Now n1(M) I Z, since otherwise

M would be a space of type (2,1), and 111(M) I Z 6 Z 6 Z implies

that M is homeomorphic to S1 X S1 X S1 [8, Theorem 1].

So it suffices to show that no 3-manifold in SI]! has

as its fundamental group a split extension of the type described
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above. In view of [8, Theorem 1] there is a unique irreducible

3-manifold N with fundamental group isomorphic to the Split

extension

1IZ®ZI111(N)IZ-ol

in which the action of Z is defined by the matrix

where m is a non-zero integer. From [11] it can be seen that

1 1
this manifold can be obtained from S X S X I by identifying

(e2n1a, 821115, 0) with (ezma, shim”), 1). Let 1?: be

the 3-manifold obtained from S1 X 81 X I by identifying

(eZTTia, ez‘fla, 0) with (e2"i°’, e2"i(3+2““), 1). A double

covering p: N I N is defined by p(e2flia, e21118

(e4nia’ ezflia, t). (That p is well-defined follows from the

equality

p(eZ1-ria, 82ni(3+2ma), 1) = (elm-rial, eZ-rri(a+2ma)’ 1)

(9.2111(201), e211i(3+m(2a)) 1) ~ (821110.01), e2nia, 0) 3

3

o 2 '

p<e2"‘°’. e “15, 0).)

Since H1(N) I Z {-9 Z 6-) zm and H1(N) I Z 6) Z ® ZZm’ N and

N are not homeomorphic. Therefore N does not belong to the

class EDI, and the proof is complete.

A double covering p: M I M is said to be proper if the

non-trivial covering transformation over p is homotopic to the
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1

identity map on M. Since n1(S X S2) has only one subgroup

of index 2, it follows that all double coverings of S1 X S2

(621110!
are equivalent to the map , x) I (e4n1a, x). For this

map the non-trivial covering transformation is a X l, where

1 l , 2 2

a: S I S is the antipodal map and 1: S I S is the identity

1

map, and hence this double covering of S X 82 is proper. The

next three results lead to the proof that every double covering

of S1 X S1 X S1 is also proper.

Proposition 3.2: There are exactly seven subgroups of
 

Z (+3 Z 6 Z with index 2, and each is completely determined by

those elements of the basis

((1,0,0). (0.1.0). (0,0,1)}

which are contained in the subgroup.

Proof: Let HI I {(a,b,c) E Z @Z @Z: a is even},

H2 = {(a,b,c) e z @z @z: b is even}, H3 - {(a,b,c) e 2 oz ez:

c is even}, H4 I {(a,b,c) 6 Z @Z 62: a +b is even},

H5 I {(a,b,c) E Z @Z @Z: b + c is even}, H6 I {(a,b,c) E Z $2 $2:

a + c is even}, and H7 I {(a,b,c) E Z @Z @Z: a +b + c is even}.

Each of the sets above is clearly a Subgroup of Z 6 Z 6 Z having

index 2. Let K be any subgroup of Z 6-) Z 9 2 having index 2.

Since {(1,0,0), (0,1,0), (0,0,1)} is a basis for Z 62 OZ, at

least one of the basis elements does not belong to K.

Suppose first that (0,1,0) and (0,0,1) lie in K but

(1,0,0) does not. Since KU [(1,0,0) +K] I Z @Z 62, either

(x,y,z) E K or (x-l,y,z) 6 K for each (x,y,z) e 2 £92 92.

Now (-1,0,0) é K, and therefore (2,0,0) 6 K. So K contains
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(2,0,0), (0,1,0), and (0,0,1) and hence contains H1. Because

both K and H1 have index 2, it follows that K I H1.

Similar arguments prove that when R: contains (1,0,0).and

(0,0,1),but not (0,1,0), or when K contains (1,0,0) and (0,1,0),

tun:not (0,0,1), then K I H2 or K I H3, respectively.

Let K contain (0,0,1), but not (1,0,0) or (0,1,0).

Since K U [(0,1,0) + K] I Z G) Z ® Z, either (x,y,z) E K or

(x,y-l,z) E K for each element (x,y,z) in Z G) Z 9 Z. Because

(1,0,0) é K and (0,1,0) d K, it follows that (l,-l,0) E K

and (0,2,0) 6 K. Thus K contains a generating set for H4,

so that K I H4.

If K contains (1,0,0) but not (0,1,0) and (0,0,1),

or if K contains (0,1,0) but not (1,0,0) and (0,0,1), then

similar arguments show that K I H5, or that K I H6, reSpectively.

Finally, suppose that none of the basis elements lie in

K; then (-l,0,0) and (0,-1,0) are not elements of K. As

before, either (x,y,z) E K, or (x+1,y,z) E K and (x,y+l,z) E K,

for each (x,y,z) E Z 6 Z 6 Z. So K contains the elements

(1,1,0), (1,0,1), and (0,1,1). But the set

{(1,1,0), (1.0.1). (0.1.1)}

generates H ° for if (a,b,c) 6 H7, then m I a+b-c is an even
7’

m m m
integer, and E(l,1,0) +-(a - E)(1,0,1) +-(b - E)(0,l,1) I (a,b,c).

Therefore K I H7.

Prgosition 3.3: If H and K are subgroups of 2 EB Z 9 Z
 

having index 2, then there exists an automorphism a of Z @ Z a Z
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with a(H) = K.

Proof: It suffices to exhibit automorphisms of Z 69 Z ® Z

I l,2,...,7), where H is thewhich carry H
i

1 onto Hi (1

subgroup defined in the proof of Proposition 3.2. Let a1 be

the endomorphism of 2 e Z 9 Z defined for each (a,b,c) E Z (43 Z 6 Z

by

U1(aabac) a (asbsc)

a2(a:bsc) (b,a,c)

a3(a,b,c) = (c,b,a)

a4(a,b,c) = (a-l-b,b,c)

a5(a,b,c) = (b,a+c,c)

a6(a,b,c) - (a+c,b,c)

a7(a,b,c) I (a+b+c,b,c).

Since each of these endomorphisms has an obvious inverse, each

ai is an automorphism of Z Q 2 e 2. Moreover, aiml) . Hi;

so a1,a2,...,a7 are the required automorphisms.

Lemma 3.4: There is a proper double covering

p':81xslxsl—.Slxslxsl.

1

Proof: Consider S as the set of complex numbers having

by P'(XaY:Z) I (xzsy,2). The non-

1 1

trivial covering transformation h': S1 X S1 X S1 I S X S1 X S

of p' is a X l X 1, where a: S1 I S1 is the antipodal map

and 1: S1 I S1

F: S1 X S1 X S1 X I I S1 X S1 X S1 from the identity map to h'

modulus 1, and define p

is the identity map. The required homotopy
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is given by F(x,y,z,t) I (enitx,y,z).

Theorem 3.5: Every double covering of S1 X S1 X S1 is

proper.

Proof: Let p: 81 X S1 X S1 I S1 X S1 X S1 be a double

covering and h the corresponding non-trivial covering trans-

formation, and let p' and h' be defined as in the preceding

lemma. There exists an automorphism a on Z 6 Z $ Z mapping

1 1 1

p# "l p#n1 X S ) (Proposition 3.3);

1 1 1 1 1 1

thus there is a homeomorphism h”: S X S X S I S X S X S

(S1 X S X 81) onto (S1 X S

such that h# I a [14, Corollary 6.5]. Lift h"p' over p to

~ 1
a map h: S1 X S1 X S1 I S1 X S X 81. Since h"p' and p

are both double coverings of S1 X S1 X SI, h is a covering

projection [10, 2.5.1] each fiber of which consists of a single

point. Therefore h is a homeomorphism. Because h maps the

fibers of p' onto the fibers of p, and because h' and h

are both non-trivial homeomorphisms which preserve the fibers

of p' and p, respectively, it follows that hh I hh',.8nd

thus that h I hh'h-1. Since h' is homotopic to the identity

1
map on S1 X S X 81, this equality implies that h is also

homotopic to the identity map. 30 p is proper.

Both 81 X S1 X S1 and S1 X 82 are 3-manifolds which

satisfy all of the following properties:

(a.) The fundamental group of the manifold is nilpotent.

(b.) The first homology group of the manifold is infinite.

(c.) All double coverings of the manifold are proper.
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Theorem 3.1 characterizes S1 X S1 X S1 and S1 X 52 among the

manifolds in SE satisfying condition (a.). The final result

1 1 1 1 2
shows that S X S X S and S X S are also the only

manifolds in £01 which satisfy both (b.) and (c.).

Theorem 3.6: Let M be a manifold in the class Sm

such that all double coverings of M are proper. If H1(M)

is infinite, then M is homeomorphic to S1 X S1 x S1 or to

S1 X 82.

Proof: Previous comments show that either M is

homeomorphic to S1 X 82 or that the conclusion of [5, Theorem

2] holds. Thus M. can be obtained from. N X R, where N is

a closed, connected, orientable 2-manifold, by identifying

(x,t) with (h(x), t+l) for all x E N and t E R, where

h is a homeomorphism from N onto itself with hk isotopic

to EN for some odd integer k. It follows from [9] that h

may be assumed to satisfy hk I IN. Denote by [x,t] the

equivalence class of (x,t) in M under the identifications

described above.

Let N.X S1 be considered as N X R with (x,t)

identified with (x,t+1) for each x 6 N and t E R, and

define p: N X S1 I M. by p(x,t) I [x, -kt]. That p is

well-defined follows from the equality

k

p(x,t+1) I [x, -kt - k] I [h (x), -kt] I [x, -kt] I p(x,t),

and p is easily seen to be a k-fold covering of M. (The

fiber over [x,t] is {(h-m(x), Efig): m I l,2,...,k}.)
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Therefore, if M belongs to the class n, then M is homeo-

morphic to N X S1. But if N is neither S1 X S1 nor 82
3

then finite-sheeted coverings of N can be constructed in which

the total space is not homeomorphic to N. So N X S1 {TR

unless N is homeomorphic to either 81 X 81 or $2.
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