
i
I

:
1
N
t
h
.
.
.

m.
..

_.
.
f
v
o
n
m
fi
t
t
r
f
r

#
2
.
,

\

Iv:
,.

_«:

’34.

9-“ 1'

an

.
K

n
.
.
.

z
.
»

I
.

I
.
f
'
1

r
t
.
.
.
’
3
1
:
:

a

.
.p

k
.
.
.

H
u
t

:
7
.
"
5
1
.
.
.
:

a
..

.
N

H
u
~
t
o

'
§
.

.

5
:
3
1
1
.

3
.

#
9
.
.
.
.

n
9

.

3

6qu

This is to certify that the

dissertation entitled

ENERGY EFFICIENT REPROGRAMMING FOR SENSOR

NETWORKS

(D

“:6
[>15 ET) 3‘ presented by

< c :29

a: cu ~

an .-=c_».
—' .C. .5. Limin Wang
._.| Q _

:Ll
has been accepted towards fulfillment

of the requirements for the

PhD. degree in Computer Science and

' Engineerinl

WM'

Major Professor’s Signature

wamj

Date

MSU is an afiinnative-action, equal-opportunity employer

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DAIEDUE DAIEDUE DAIEDUE

 6/07 p‘lCIRC/DateDue indd-p‘1

ENERGY EFFICIENT

REPROGRAMMING FOR SENSOR NETWORKS

By

Limin Want

A DISSERTATION

Submitted to

Michigan State University

In partial fulfillment of the requirements

For the degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science and Engineering

2007

ABSTRACT

ENERGY EFFICIENT .

REPROGRAMMING FOR SENSOR NETWORKS

By

Limin Wang

In this dissertation, we focus on the problem of reprogramming for sensor net-

works, which is an important and challenging problem as it is often necessary to

reprogram the sensors in place. Reprogramming can be done in two ways. For one,

one (or a few) sensor that has the entire program is dropped to the field. The sensor

then propagates the program to the remaining sensors in the network. We propose

MNP, a multihop reprogramming protocol, for this scenario. Another way of repro—

gramming is to assume that each sensor (or a subset of the sensors) in the network

has a part of the program initially. These sensors gossip among each other to get

the remaining parts of the program. We propose Gappa, a gossip—based multi—channel

reprogramming protocol, for this gossip among sensors.

Reprogramming of sensor networks needs to meet the following requirements.

First, reprogramming requires 100% reliability. Second, energy efficiency is important

in the context of sensor networks. For reprogramming, idle listening and message col-

lision are the two major sources of energy waste, and hence, must be reduced. Third,

if sensors are deployed in an untrusted environment, they must be able to verify that

the code is truely from a trusted source, i.e., authentication for reprogramming is

needed. We address these requirements for the two reprogramming scenarios men-

tioned above.

First, MNP and Gappa use an automatic repeat request (ARQ) scheme to provide

reliability. In this scheme, a receiver detects its own losses, and informs the sender

of the missing packets. The sender then retransmits the packets requested by the

receivers. Another way of providing reliability is to use forward error correction

(FEC). We also propose a hybrid scheme which combines ARQ and FEC techniques

to provide reliability in reprogramming protocols. We apply it to MNP and find that

using FEC can improve reprogramming performance.

Second, MNP uses a sender selection algorithm to reduce message collision. The

sender selection algorithm tries to guarantee that there is only one sender in a neigh-

borhood at a time. Gappa extends the sender selection algorithm from MNP to mul—

tiple radio channels. If a sensor loses sender selection on one channel, it completes

to transmit code on a different channel that is available. For Gappa, we propose two

policies for assigning radio channels, fixed channel allocation and variable channel

allocation. We note that the variable channel allocation scheme allows better uti-

lization of the available channels, and hence, performs better than the simple fixed

channel allocation scheme. In MNP and Gappa, the sensors that lose in the sender

selection algorithm and are not interested in receiving code from its neighbors are

put to sleep. In this way, MNP and Gappa effectively reduce the active radio time of

sensors and save energy.

Finally, to provide authentication to reprogramming protocols such as MNP, we

propose a symmetric key based authentication protocol. This protocol is based on

the secret instantiation algorithm that requires only O(log n) keys to be maintained

at each sensor. We show that the use of symmetric keys can significantly reduce the

cost of authentication compared to public key based schemes, especially in the cases

where moderate amount of data needs to be disseminated. We also propose additional

schemes to reduce the cost of secure data dissemination by adding redundancy to the

transmitted data.

Copyright by

LIMIN WANG

2007

Dedicated to my parents and my sister for their love and support.

ACKNOWLEDGMENTS

I owe my gratitude to many people that have assisted me along the way of pursuing

a PhD degree. They have made my graduate experience the one that I will cherish

forever.

First and foremost, I would like to express my deepest gratitude to my advisor,

Dr. Sandeep S. Kulkarni, for his guidance, encouragement, and support for the past 5

years. Sandeep has been a wonderful advisor. He is brilliant, resourceful, thoughtful,

supportive, patient, and cheerful. He is the one who inspired me to explore interesting

research problems, and guided me on the steps to achieve my goals. I appreciate the

countless hours he has spent with me discussing my research, commenting on my

writings, and critiquing my talks. I am grateful to him not only for his contribution

to this dissertation but also for the outstanding mentorship that he has provided me.

I would like to thank Dr. Betty H.C. Cheng, Dr. Li Xiao, and Dr. Rajesh

Kulkarni for serving in my dissertation committee. They gave me valuable comments

on my dissertation proposal and provided me important suggestions on extending the

proposed research.

I would like to thank all the faculty and staff in the Department of Computer

Science and Engineering at Michigan State University. I am thankful to Dr. Philip

K. McKinley and Dr. Alex X. Liu for taking a special interest in my research and

giving me valuable comments. I would like to express my gratitude to Dr. George

C. Stockman for his help in TA assignments, his care and encouragement. I am also

thankful to Dr. Eric Torng for his assistance in my application for Dissertation Com-

pletion Fellowship. Also, thank Ms. Linda Moore for her patience and cheerfulness

when performing administrative tasks.

As a member of the Software Engineering and Network Systems (SENS) Lab-

oratory, I want to express my gratitude to all the SENS faculty and students for

providing such a stimulating environment to work in. I benefit from the seminars

vi

and discussions in this group. I am thankful to Dr. Mahesh Arumugam, Borzoo

Bonakdarpour, Dr. Bru Bezawada, Dr. Sascha Konrad, Dr. Ali Ebnenasir, Karli

LOpez, Dr. Ji Zhang, Karun Biyani, Fuad Suleiman Abujarad, and Chad R. Meiners

for their help in proof reading my papers and providing constructive comments on

improving my presentations. I appreciate the friendship and generous help from Min

Deng, Chiping Tang, Eduardo Diaz-Sanchez, Yun Zhou, and Yi Huang.

Thank my advisor for providing me the opportunity to participate in the ExScaJ

project (funded by Defense Advanced Research Projects Agency (DARPA)), in which

I get to work with the professors and students from many universities. I would like

to express my sincere thanks to Dr. Anish Arora (at the Ohio State University), Dr.

Rajiv Ramnath (at the Ohio State University), Dr. Mohamed Gouda (at the Univer-

sity of Texas at Austin), Dr. Mikhail Nesterenko (at the Kent State University), and

Dr. Ted Herman (at the University of Iowa) for their generous help and important

suggestions on my work. I also want to thank Young-ri Choi, Dr. Hongwei Zhang,

Dr. Sandip Bapat, Vinod Kulathumani, Dr. Vinayak Naik, Mukundan Sridharan,

Dr. Santosh Kumar, and Chen Zhang for their help and friendship. We have spent

the memorable two weeks together preparing for DARPA field demonstration in Avon

Park, FL, in December 2004.

I want to thank all my friends at Michigan State University. Special thanks to

Jim Maher and John Oleszkiewicz. I am so fortunate to have them as my friends.

They made my life full of fun and laughter. I also want to thank my friendship family,

Bonnie and John Bankson, for their care and support.

Last but not the least, I would like to thank my parents and my sister for their

constant love, care and support. None of my achievements would have been possible

without the love and faith from my family.

vii

Table of Contents

LIST OF TABLES

LIST OF FIGURES

1 Introduction

1.1 Background: Sensor Networks Characteristics and Challenges

1.2 Energy Conservation

1.3 Reprogramming for Sensor Networks

1.4 Requirements and System Model of Reprogramming

1.5 Contributions of The Dissertation

1.6 Outline of The Dissertation

2 MNP: Multihop Reprogramming Protocol for Sensor Networks

2.1 MNP: Protocol Description

2.1.1 Sender Selection Algorithm

2.1.2 Tasks in Downloading a Segment

2.1.3 Reliability Issues: Loss Detection and Recovery

2.1.4 The Big Picture

2.1.5 When to Reboot

2.1.6 Optimization on Energy Conserving

2.2 Evaluation Results

2.2.1 Experiments with Mica2 Motes

2.2.2 Simulation Results

2.3 Discussion

2.4 Chapter Summary

3 Gappa: Gossip Based Multi—channel Reprogramming for Sensor Net-

works

3.1 Protocol Description

3.1.1 Operations on the Control Channel

3.1.2 Operations on Data Channels

3.1.3 The State Machine

3.2 Variable Channel Allocation

3.3 Evaluation

3.3.1 Varying Program Sizes and Network Densities

3.3.2 Varying Network Sizes

viii

25

25

27

69

72

74

78

81

84

85

91

3.3.3 Varying Number of Seeds 93

3.4 Comparing Fixed Channel Gappa with Variable Channel Gappa 94

3.4.1 Varying Program Sizes and Network Densities 95

3.4.2 Varying Network Sizes 98

3.4.3 Varying Initial Distribution of Segments 99

3.5 Chapter Summary 102

4 Proactive Reliable Data Dissemination 106

4.1 Packet Loss Pattern in MNP 107

4.2 A Hybrid Reliability Scheme for MNP 108

4.2.1 (n, k) FEC Coding Schemes 109

4.2.2 Adding FEC to MNP 109

4.3 Evaluation Results 111

4.4 Chapter Summary 117

5 Securing the Reprogramming Process 119

5.1 Threat Model and Security Requirements 122

5.2 Scheme for authenticating a data stream 123

5.3 Cost of Signatures In Sensor Networks 125

5.4 Protocol For Signing The Hash of The First Packet 126

5.5 Authentication Protocol For Mote-Class Adversaries 129

5.5.1 Protocol Description 129

5.5.2 Evaluation 131

5.6 Authentication Protocol For Laptop—Class Adversaries 135

5.6.1 Secure Single-hop Dissemination 136

5.6.2 Secure Multihop Dissemination with Fine-Grained Pipelining . 139

5.6.3 Secure Multihop Dissemination with Coarse-Crained Pipelining 142

5.7 Performance Enhancement of Authentication Protocol For Laptop-

Class Adversaries 142

5.7.1 Double Connected Hash Chain 143

5.7.2 Caching 144

5.7.3 Forward Error Correction 146

5.7.4 Evaluation of Enhancement 147

5.8 Discussion: Key Distribution and Updates 155

5.9 Chapter Summary 158

6 Related Work 161

6.1 Network Reprogramming 161

6.2 Forward Error Correction (FEC) 164

6.3 Secure Data Dissemination 165

7 Conclusion and Future Research 168

LIST OF REFERENCES 174

ix

1.1

1.2

1.3

2.1

2.2

2.3

2.4

3.1

3.2

LIST OF TABLES

Hardware configuration of some existing sensor platforms 2

Characteristics and Challenges in Sensor Networks 5

Charge required by various Mica operations 6

Compare MNP without init sleep and with init sleep. Program size: 2

segments (256 packets). Contention sleep period: 1605, tz-th : 163—5123 45

Compare MNP without noreq sleep and with noreq sleep. Program size:

2 segments (256 packets). Contention sleep period: 1603, t, - th :

16s -— 512s, init sleep period: 45 48

The performance of MNP and Deluge in a dense network (inter-node dis—

tance is 10 feet). 20x20 network. Program size: 256 packets (5.63KB)

for MNP, 240 packets (5.28KB) for Deluge. For MNP, contention sleep

period is 160 seconds when the base station is placed at the corner, and

80 seconds when the base station is in the center or 4 base stations are

places at four corners. 62

The performance of MNP and Deluge in a sparse network (inter-node dis-

tance is 15 feet). 20x20 network. Program size: 256 packets (5.63KB)

for MNP, 240 packets (5.28KB) for Deluge. For MNP, contention sleep

period is 40 seconds. 62

The base station node is in the center of the network or at the corner. The

dense case: inter-node distance is 10 feet. Program size: 384 packets

(8.45KB) for MNP and Deluge, 512 packets (11.26KB) for fc-Gappa. 89

The base station node is in the center of the network or at the corner. The

sparse case: inter-node distance is 15 feet. Program size: 384 packets

(8.45KB) for MNP and Deluge, 512 packets (11.26KB) for fC-Gappa. 90

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

LIST OF FIGURES

Example sensor network

Tasks of the source in sender selection algorithm

Tasks of the requester in sender selection algorithm

MNP: the state machine.

Init Sleep (Listen state is the same as Idle state). started is set to FALSE

initially. If an advertisement, request, or data is received, started is set

to TRUE. The radio is kept on after started becomes TRUE.

Indoor experiments for 5 by 5 grid with (a) power level = 2, time = 5

minutes; (b) power level = 1, time = 8 minutes. Program size: 1500

packets (33KB).

Outdoor experiments for 7 by 7 grid with (a) full power level, time = 25

minutes; (b) power level = 10, time = 35 minutes. Program size: 1500

packets (33KB)...............................

Outdoor experiments for 5 by 10 grid with (a) full power level, time = 35

minutes; (b) power level = 10, time = 45 minutes. Program size: 1500

packets (33KB).

Completion time, average active radio time per node and average energy

consumption per node at different contention sleep periods (203, 403,

805, 1605, 3203) for the dense network (inter-node space is 10 feet)

and the sparse network (inter-node space is 15 feet). 20x20 network.

Program size: 2 segments (256 packets). (a) Completion time vs.

contention sleep period (b) Average active radio time per node vs.

contention sleep period (c) Average energy consumption per node vs.

contention sleep period.

xi

18

21

22

26

27

33

2.10 Completion time, the average active radio time and energy consumption

per node at different contention sleep periods (203, 403, 805, 160$, 3203)

in a N x N network (N = 10,12,14,. ..,20). Inter-node distance: 10

feet. Program size: 2 segments. (a) Completion time vs. contention

sleep period (b) Average active radio time per node vs. contention

sleep period (c) Average energy consumption per node vs. contention

sleep period 40

2.11 The segment completion sequence (in a 10—second window) of nodes in a

10x10 network, when contention sleep period is (a) 205, (b) 403, (c)

808, (d) 1603, (e) 3203. Inter-node distance: 10 feet. Program size: 2

segments (256 packets). 42

2.12 Completion time, average active radio time per node and average energy

consumption per node at different contention sleep periods under the

three situations: one base station is placed at a corner, one base station

is placed in the center, four base stations are placed at four corners.

20x20 network. Inter-node distance: 10 feet. Contention sleep period:

1605. Program size: 2 segments. (a) Completion time vs. contention

sleep period (b) Average active radio time per node vs. contention

sleep period (c) Average energy consumption per node vs. contention

sleep period 43

2.13 Active radio time distribution in a 20x20 network. Contention sleep pe-

riod: 160$. tz—th: 163-5123. Inter-node distance: 10 feet. Program size:

2 segments (256 packets). (a) no init sleep (b) init sleep period: 43 . . 45

2.14 The average number of messages sent and received per node in a 20-second

window during and after reprogramming. Program size: 2 segments

(256 packets). Contention sleep period: 1603, t; — th : 16s — 5123 (a)

Messages sent: without noreq sleep (b) Messages received: without

noreq sleep (0) Messages sent: with noreq sleep ((1) Messages received:

with noreq sleep. Reprogramming completas at around 10 minutes

(623 seconds for (a) and (b), 609 seconds for (c) and (d)). 47

2.15 The segment completion sequence in a 10-second window. Program size:

2 segments (256 packets). contention sleep period: 1608. 49

2.16 Propagation progress for sending two segments in a 20x20 network. The

base station is at the left bottom corner. Inter-node distance: 10 feet.

Program size: 2 segments (256 packets). Contention sleep period: 1603.

Total completion time: 6095. (a) 1003 (b) 2008 (c) 3005 (d) 4003 (e)

5005 (f) 6003. A node covered by an unfilled square means that it has

received Segment 1; a node covered by a filled square means that it

has received Segment 2. 50

xii

2.17

2.18

2.19

2.20

2.21

2.22

2.23

2.24

Transmission and reception distribution. 20x20 network. Inter-node dis-

tance: 10 feet. Program size: 2 segments (256 packets). Contention

sleep period: 1603.

The distribution of active radio time. 20x20 network. Inter-node distance:

10 feet. Program size: 2 segments (256 packets). Contention sleep

period: 1608.

Performance in a dense network. 20x20 network. Inter-node distance: 10

feet. (a) completion time (b) average active radio time per node (c)

average energy consumption per node.

Transmissions and receptions in a dense network. 20x20 network. Inter-

node distance: 10 feet. (a) number of messages transmitted per node

(b) number of messages received per node.

Performance in a sparse network. 20x20 network. Inter-node distance: 15

feet. (a) completion time (b) average active radio time per node (c)

average energy consumption per node.

Transmissions and receptions in a sparse network. 20x20 network. Inter-

node distance: 15 feet. (a) number of messages transmitted per node

(b) number of messages received per node.

Performance in a N x N network where N = 10, 12,14, 16, 18, 20. Inter-

node distance: 10 feet. Contention sleep period is 403 when N = 10, 12;

contention sleep period is 805 when N = 14, 16; contention sleep period

is 1605 when N = 18,20. (a) Completion time vs. network size (b)

Average active radio time per node vs. network size (c) Average energy

consumption per node vs. network size

Propagation progress for sending a two-segment program in a 20x20 dense

network. One base station is in the center. Inter-node distance: 10 feet.

Program size: 2 segments (256 packets). Contention sleep period: 805.

Total completion time: 5363. (a) 100s (b) 2008 (c) 3008 (d) 4003 (e)

5003 (f) segment completion sequence in a 10-second window. In (a)-

(e), a node covered by an unfilled square means that it has received

Segment 1; a node covered by a filled square means that it has received

Segment 2.

xiii

54

56

57

2.25 Propagation progress for sending a two-segment program in a 20x20 dense

network. Four base stations are placed at the four corners. Inter-node

distance: 10 feet. Program size: 2 segments (256 packets). Contention

sleep period: 1605. Total completion time: 5305. (a) 1008 (b) 2003 (c)

3008 (d) 4008 (e) 5008 (f) segment completion sequence in a 10-second

window. In (a)-(e), a node covered by an unfilled square means that it

has received Segment 1; a node covered by a filled square means that

it has received Segment 2.

2.26 20x20 network. Inter-node distance: 10 feet. Program size: 256 packets for

MNP and MNP adaptive, 240 packets for Deluge. (a) completion time

(b) average active radio time per node (c) average energy consumption

per node.

2.27 20x20 network. Inter-node distance: 15 feet. Program size: 256 packets for

MNP and MNP adaptive, 240 packets for Deluge. (a) completion time

(b) average active radio time per node (c) average energy consumption

per node.

3.1 Example sensor network

3.2 Actions taken by a node that loses in the sender selection.

3.3 Gappa (fc—Gappa): the state machine.

3.4 Pseudo Code for Tasks in Advertise Stage on Control Channel

3.5 Inter-node distance: 10 feet. (a) completion time (b) average active radio

time per node (c) average energy consumption per node.

3.6 Inter-node distance: 10 feet. (a) number of messages transmitted per node

(b) number of messages received per node.

3.7 Inter-node distance: 15 feet. (a) completion time (b) average active radio

time per node (c) average energy consumption per node.

3.8 Inter-node distance: 15 feet. (a) number of messages transmitted per node

(b) number of messages received per node.

3.9 Active radio time distribution of (a) fc-Gappa and (b) MNP. Inter-node

distance: 10 feet. Program size: 14KB.

3.10 fc-Gappa: message transmissions and receptions. Inter-node distance: 10

feet. (a) transmissions (b) receptions...................

3.11 fc-Gappa: at inter-node distance 10 feet and 15 feet. (a) completion time

(b) average active radio time per node (c) average energy consumption

per node.

xiv

61

73

75

82

83

87

88

89

90

91

91

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

fc-Gappa at different network sizes. Inter-node distance: 10 feet. Program

size: 14KB. (a) completion time and average active radio time per node

(b) average energy consumption per node.

fc-Gappa: varying number of seeds. Inter-node distance: 10 feet. Program

size: 14KB. (a) completion time (b) average active radio time per node

(c) average energy consumption per node.

Comparison of fc-Gappa and vc-Gappa. Inter-node distance: 10 feet. (a)

completion time (b) average active radio time per node (0) average

energy consumption per node.

Comparison of fc-Gappa and vc-Gappa. Inter-node distance: 10 feet. (a)

number of messages transmitted per node (b) number of messages re-

ceived per node...............................

Analysis of message transmissions in fc-Gappa and vc-Gappa. Inter-node

distance: 10 feet. (a) number of data messages transmitted per node

(b) number of control messages transmitted per node..........

Comparison of fc-Gappa and vc-Gappa. Inter-node distance: 15 feet. (a)

completion time (b) average active radio time per node (0) average

energy consumption per node.

Comparison of fc-Gappa and vc-Gappa. Inter-node distance: 15 feet. (a)

number of messages transmitted per node (b) number of messages re—

ceived per node...............................

Comparison of fc-Gappa and vc-Gappa at different network sizes. Inter-

node distance: 10 feet. Program size: 14KB. (a) completion time (b)

average active radio time per node (b) average energy consumption per

node.

Comparison of fc-Gappa and vc-Gappa in the case where the UAV broad—

casts code segments on a single channel and has a small receiver set.

Inter-node distance: 10 feet. The program size is 2, 3, 5 segments.

The center two lines of sensors receive a code segment from the UAV

initially. (a) completion time (b) average active radio time per node

(0) average energy consumption per node.

Comparison of fc-Gappa and vc-Gappa in the case where the UAV broad-

casts code segments on a single channel and has a small receiver set.

Inter-node distance: 10 feet. The program size is 2, 3, 5 segments.

The center two lines of sensors receive a code segment from the UAV

initially. (a) number of messages transmitted per node (b) number of

messages received per node.

XV

93

94

96

97

97

98

99

100

101

3.22 Comparison of fc-Gappa and vc-Gappa in the case where the UAV broad-

casts code segments on a single channel and has a small receiver set.

Inter-node distance: 10 feet. The program size is 2, 3, 5 segments. The

line of sensors at the center of the network receive a code segment from

the UAV initially. (a) completion time (b) average active radio time

per node (c) average energy consumption per node.

3.23 Comparison of fc-Gappa and vc-Gappa in the case where the UAV broad-

casts code segments on a single channel and has a small receiver set.

Inter-node distance: 10 feet. The program size is 2, 3, 5 segments.

The line of sensors at the center of the network receive a code segment

from the UAV initially. (a) number of messages transmitted per node

(b) number of messages received per node.

4.1 Packet loss pattern in MNP. 10x10 network, inter-node distance: 10 feet,

program size: 8.4KB (384 packets).

4.2 Completion time and active radio time of (MNP + XOR) and (MNP + RS

codes), when the number of parity packets is from 1 to 32 packets per

segment (128 data packets/segment). (a) Completion time (b) Average

active radio time per node.

4.3 Average number of transmissions and receptions per node: (MNP + XOR)

and (MNP + RS codes), when the number of parity packets is from

1 to 32 packets per segment (128 data packets/segment). (a) Average

number of transmissions per node (b) Average number of receptions

per node.

4.4 The average number of control/encoding packets transmitted per node. (a)

control packets transmitted in (MNP + XOR) scheme (b) control packets

transmitted in (MNP + RS codes) scheme (c) encoding packets transmitted

in (MNP + XOR) scheme (d) encoding packets transmitted in (MNP + RS

codes) scheme. * 0 - means original MNP (No FEC/parity)

5.1 The basic hash chain (segment 2’)

5.2 Representation of a data packet P(i, j) in the basic hash chain.

5.3 Secret instantiation: an example.

5.4 Operation a node performs when it receives a data packet P(i,j)

xvi

103

104

108

115

123

131

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

Comparing MNP and SecureM MNP: delay and energy consumption of au-

thentication under different program sizes. (a) completion time vs.

program size (b) active radio time vs. program size (c) energy con-

sumption per node (not including the authentication cost) vs. program

Size.

Comparing MNP and SecureMMNP: communication cost of authentication

under different program sizes. (a) message transmission per node vs.

program size (b) message reception per node vs. program size.

Completion time in a single hop network. (a) hash tree approach (b)

hash chain approach. (For approaches with public key schemes, only

signing/verification cost is considered. Communication cost, although

possibly significant when the size of signature is large, is not considered.

But for our protocol, both signing/verication cost and communication

cost are considered.)

Completion time with window size = 4. (For approaches with public key

schemes, only signing/verification cost is considered. Communication

cost, although possibly significant when the size of signature is large,

is not considered. But for our protocol, both signing/verication cost

and communication cost are considered.)

The double connected hash chain (segment i).

135

144

Representation of a data packet P(i, j) in the double connected hash chain. 144

Completion time, active radio time and energy consumption of MNP and

SecureL MNP. (a) completion time vs. length of data stream (b) active

radio time vs. length of data stream (c) energy consumption per node

(not including the authentication cost) vs. length of data stream.

Communication cost of MNP and SecureLMNP. (a) Number of message

transmitted per node vs. length of data stream (b) Number of message

received per node vs. length of data stream.

SecureLMNP: comparison of the basic hash chain with the double con-

nected hash chain. (a) completion time vs. length of data stream (b)

active radio time vs. length of data stream (c) energy consumption per

149

150

node (not including the authentication cost) vs. length of data stream. 151

SecureLMNP: varying the data cache size from 8 packets to 64 packets.

(a) completion time vs. length of data stream (b) active radio time vs.

length of data stream (c) energy consumption per node (not including

the authentication cost) vs. length of data stream.

xvii

5.15 SecureLMNP: effect of using FEC. The data cache size is 8 packets. (a)

completion time vs. length of data stream (b) active radio time vs.

length of data stream (c) energy consumption per node (not including

the authentication cost) vs. length of data stream.

5.16 SecureLMNP: effect of using FEC (communication overhead). The data

cache size is 8 packets. (a) number of messages transmitted per node

vs. length of data stream (b) number of messages received per node

vs. length of data stream.

5.17 SecureLMNP: effect of using FEC. The data cache size is 16 packets. (a)

completion time vs. length of data stream (b) active radio time vs.

length of data stream (c) energy consumption per node (not including

the authentication cost) vs. length of data stream.

5.18 SecureL MNP: effect of using FEC. The data cache size is 32 packets. (a)

completion time vs. length of data stream (b) active radio time vs.

length of data stream (c) energy consumption per node (not including

the authentication cost) vs. length of data stream.

xviii

154

155

156

Chapter 1

Introduction

The recent advances in Micro-Electro—Mechanical Systems (MEMS) and low

power radio technologies have enabled the deployment of wireless sensor networks

for a wide variety of applications. These applications include intrusion detection and

tracking (e.g., A Line in the Sand [1], ExScal [2]), habitat monitoring (e.g., monitor-

ing seabird nesting behavior [44]), indoor surveillance (e.g., provide security in an art

gallery), hazard detection (e.g., forest fire detection), traffic analysis (e.g., monitor

vehicle traffic on a highway or a congested part of a city).

In these applications, the network is composed of a large number of densely

deployed, small, low-power devices, called sensors. The sensors are capable of (a)

sampling the physical environment, (b) performing local processing and computing

on the sampled data, which include acoustic, temperature, light, magnetic, and other

chemical and physical properties, (c) communicating the sampled/processed data to

other sensors or the base station through radio. Each sensor, due to small form-factor,

has limited processing capability and power supply, and can communicate only within

short distances. However, when coordinated with a large number of other sensors,

they have the ability to monitor the physical environment in great detail.

1.1 Background: Sensor Networks Characteristics

and Challenges

Sensor networks offer tremendous technology possibilities, and, at the same time,

pose a number of new challenges. The characteristics and challenges of sensor net-

works are discussed below.

Sensors have limited computation resources (e.g., processor, memory),

limited communication bandwidth, and limited power supply. In Table 1.1,

we list the hardware constraints of some existing sensor platforms. Specifically, the

sensors listed in Table 1.1 have only 4-10 KB RAM, which is shared among all the

operating components including the kernel and some application specific components

such as routing, synchronization, reprogramming, localization, sensing. The commu-

nication bandwidth is limited up to 250 kbps. Compared to other resource constraints,

energy is a even more scarce resource for sensors. Since sensors are normally powered

by batteries that are difficult to replace after they are deployed, it is critical to design

power management algorithm to utilize minimal energy. We will discuss energy

conservation for sensor networks in more details in Section 1.2.

In most situations, sensors, once deployed, are expected to operate unattended

for a long time. This leads to the problem of maintenance and reconfiguration

Table 1.1: Hardware configuration of some existing sensor platforms

Platform Processor Program RAM Non-volatile Radio

memory storage bandwidth

Mica2 [7] and 8—bit, 7 MHz 128 KB 4 KB 512 KB 19.2 kbps

XSM [10] ATmega128L (Manchester

encoded)

MicaZ [8] 8—bit, 7 MHz 128 KB 4 KB 512 KB 250 kbps

ATmega128L

TolesB [11] 16—bit, 8 MHz 48 KB 10 KB 1024 KB 250 kbps

TI MSP430

of the sensors. As the environment evolves over time, predicting the whole set of

actions that a sensor might need to perform is impossible in most applications. The

requirements are also likely to change. For example, with growing understanding of

the environment or with new technological advances, some assumptions are found

to be incorrect, and hence, the specification has to be modified accordingly. Hence,

reprogramming a sensor network, i.e., sending software updates to sensors to fix bugs

and/or improve features, is necessary. In Section 1.3, we will discuss the challenges

in network reprogramming in detail.

Due to the fact that sensor networks are often applied in a lot of domains that

handles sensitive information, there is a need to develop security approaches to pro-

tect the sensitive data from being disclosed to unauthorized third parties. Security

objectives for sensor networks are the same as those for traditional networks, which

include confidentiality (ensures that sensitive data is not revealed to unauthorized

third party), authentication (verifies that the data received is really sent by a trusted

sender), integrity (verifies that the data received is not altered when exchanged over

insecure networks), freshness (ensures that messages are fresh, i.e., not duplicated or

replayed by an adversary), availability (resilience to denial of service attacks). How-

ever, it is not efl‘icient, if not impractical, to apply the traditional security solutions

to the resourcestarved sensor nodes. For example, most authentication approaches

reply on asymmetric digital signatures, which typically require long signatures with

high communication overhead of 50-1000 bytes per packet and very complex process-

ing for generating and verifying the signatures. Key establishment and management

is also difficult due to the energy, communication bandwidth, and storage constraints.

It is necessary to design light-weight, efficient security solutions to address the

requirements in sensor networks.

Scalability is an important issue in sensor networks. The power of wireless

sensor networks lies in the ability to deploy a large number of small, low—cost sensors

to achieve complex tasks. The size of sensor networks has increased substantially

in the past few years. The largest sensor network that has been deployed so far is

ErScal [2,4], in which about 1200 sensors are deployed over 1.3km by 300m Open area.

Such sensor networks must be scalable. Unlike traditional wireless system such as cell

phone systems, where the quality of service degrades when there are too many wireless

devices (phones) in a small area, adding more sensor nodes to a network should only

improve the power of network, either by increasing the region that the network covers,

or by enabling stronger interconnection of the wireless sensor network. Any form of

central control point that would limit the number of working sensor nodes in a given

area is undesirable in a wireless sensor network.

One reason that sensor networks gain tremendous popularity is their low de-

ployment cost and their ability to self-configure. Unlike traditional networks,

which require expensive wiring or building high-power base stations, sensor networks

do not depend on pre—existing infrastructure, and can be deployed with minimal cost.

A typical deployment scenario is to drop the sensors from an aircraft when it flies over

the field. This is especially useful in some applications such as military surveillance or

disaster recovery, where the target region is inaccessible to humans and/or a network

for collecting critical data must be deployed in real-time.

After deployment, sensors must be able to self-configure and adapt to the envi-

ronment. Instead of communicating directly to the base stations, each sensor com-

municates only to its local neighbors. Data flow to/from the base stations are relayed

on thousands of tiny sensors in a multi-hop fashion.

Although the individual sensors are prone to failures (due to lack of power,

physical damage), sensor networks can achieve high robustness by automatically re-

placing the failed sensors by their neighbors. Moreover, sensors communicate through

wireless radio, which is low-bandwidth and unreliable. In most cases, loss of

data is not considered as a serious problem as data from sensors that are densely

deployed in the same region are highly redundant. However, for some crucial data,

e.g., software updates, aggregated reports, reliable communication is important.

In Table 1.2, we summarize the characteristics and corresponding challenges in

sensor networks.

1.2 Energy Conservation

Among all the resource constraints of a sensor node, the biggest one being power

supply. The sensor platforms that are listed in Table 1.1 are all powered by 2 AA

batteries. Due to the large scale of sensor networks and the embedded nature of

sensor nodes, once the network is deployed, it is very difficult to change batteries for

the sensors. Although recent work has shown that energy harvesting techniques, i.e.,

collecting the ambient energy from the environment, can significantly benefit some

applications, they are limited by the efficiency of the transducers and the availability

of the raw energy (e.g., solar, mechanical energy). Therefore, Energy conservation

operations are crucial for extending network lifetime.

According to our experience, without any energy conservation approaches, a

Mica2 mote transmitting a message every second can operate continuously for only

Table 1.2: Characteristics and Challenges in Sensor Networks

Characteristics Challenges

Sensors have limited CPU, memory Sensor network algorithms must

and radio bandwidth have low resource requirements

Sensors have limited power supply Power management

Sensors are left unattended for a long time Maintenance and Reconfiguration

Sensors are often used to handle sensitive data Security

Large number of sensors Scalability

Low deployment cost Ability to self-configure

Sensor are prone to failure Robustness against node failure

Wireless media is unreliable Reliable communication

about a week. However, if we reduce the frequency that sensors report data to once

every 3 minutes and apply appropriate power management techniques [52,73], the

estimated lifetime is 1-3 years (328-945 days) [53].

Previous work [54] shows that radio communication is an energy expensive oper-

ation. Pottie and Kaiser [54] compared the cost of communication and computation

and concluded that the energy cost of transmitting 1KB a distance of 100 meters is

approximately the same as executing 3 million instructions. Hence, the key to reduce

energy consumption is to minimize radio communication. A couple of techniques are

introduced to reduce the amount of communication. By in-network processing and

aggregation, sensors send data to the aggregation nodes, which perform local process-

ing, and forward the aggregated/filtered data to the next hop. A similar technique

is clustering, in which a cluster head collects data from the sensors in its cluster and

forwards the processed data to a neighboring cluster until it reaches the base station.

Moreover, even reducing the amount of radio communication is not sufficient.

In Table 1.3 (from [44]), we list the costs of various operations on a Mica mote with

a pair of AA batteries. As we can see, the energy cost of leaving a sensor node

in idle listening state for 1 second is the same as the energy cost of transmitting

62 messages. In fact, without power conservation approaches, more than 90% of the

energy is wasted on idle listening where sensors do not produce any useful output [73].

Therefore, it is necessary to put sensors to sleep mode when they are idle and wake

them up when required.

Table 1.3: Charge required by various Mica operations

Operation nAh

Transmitting a packet 20.000

Receiving a packet 8.000

Idle listening for 1 millisecond 1.250

EEPROM Read 16 Bytes 1.111

EEPROM Write 16 Bytes 83.333

Energy conservation can be performed on different network layers. For example,

S-MAC [73] and B-MAC [52] are two low power MAC layer protocols for sensor

networks, and there are numerous energy aware routing protocols (e.g., [21, 74]).

An energy conservation approach is most effective when it is incorporated in specific

applications, as relevant application layer information can help sensors to decide when

it should go to sleep and when to wake up. For example, several node scheduling

approaches [19, 62,69,71,72], including our recent work [3,67], have been proposed

for surveillance sensor networks to minimize energy consumption while maintaining

sensing coverage at the desired level. These approaches try to maintain a subset

of sensor nodes in working mode and put the remaining nodes to sleep, in order to

achieve a long network lifetime. In this dissertation, we focus on energy conservation

approaches during reprogramming.

1.3 Reprogramming for Sensor Networks

The success of sensor network technology hinges on its ease of maintenance.

Although some changes can be done by varying configuration parameters, or down-

loading scripts [35], more significant changes require sending the new binary image

of the program to all the sensors in the network. Due to the large scale of the sensor

networks and the deployment in environment with high access cost, even collecting

the sensors from the field for reprogramming is a daunting task. Therefore, repro-

gramming needs to be done in place, without physical contact with the sensors.

Reprogramming in sensor networks poses several new challenges and require-

ments. First, reprogramming requires 100 percent delivery. This is very different

from traditional sensor network applications, in which, occasional loss of data is tol-

erable and often expected.

Second, high communication bandwidth is needed in network reprogramming.

For the vast majority of sensor network applications, the generated sensing data from

an individual sensor node is small, usually of the order of bytes, and thus easily fits

the low wireless radio bandwidth. However, network reprogramming requires delivery

of the entire program image, of the order of kilobytes, over low-bandwidth wireless

radio, and hence consumes significant bandwidth.

Third, the problem of concurrent senders needs to be addressed. In network

reprogramming, code image is propagated from one sensor node to another. Every

node that has the new code image is a potential sender. Thus, it is likely that several

senders are transmitting at the same time. This causes a lot of message collisions and

congestion of wireless channel, and possibly results in failure of reprogramming.

Fourth, energy efficiency is important. Because sensor nodes have limited power

supply, the amount of energy consumed in network reprogramming may directly affect

network lifetime. Some of the possible sources of energy inefficiency include message

collision, overbearing, control message overhead, and idle listening. Among these, idle

listening is the major source of energy waste, as we discussed in Section 1.1. Reducing

the number of messages sent and received is also important.

Securing the process of network reprogramming is important in many scenarios.

Sensors must verify authenticity, check integrity, ensuring freshness of the received

program binary, before they boot to the new program. In some security intensive

applications such as military surveillance, the program itself can be sensitive data,

and must not be revealed to unauthorized third parties. In this case, confidentiality

is also required. However, providing security for reprogramming is challenging due

to the following reasons. First, since wireless radio is a broadcast media, an adver-

sary can easily inject a packet which passes CRC check at the link layer. Such an

attack must be detected immediately, otherwise the entire program that has been

downloaded must be discarded. Second, due to the extreme resource constraints, the

security solutions must use minimal computation, storage, and energy resources, as

we mentioned in Section 1.1. Third, as the energy cost of receiving a packet, storing

it to EEPROM and verify the program is high, an adversary can launch a Denial of

Service attack that aims to drain sensors’ power.

1.4 Requirements and System Model of Repro-

gramming

In this dissertation, we focus on the task of reprogramming for wireless sensor

networks. Reprogramming for sensor networks needs to deal with all the challenges

identified in Sections 1.1-1.3, i.e., it needs to be done in a reliable, energy efficient

way, and it must scale to large networks. In the case that sensors are deployed in

untrusted environments, authentication must be provided. Specifically, we identify

the basic requirements that a reprogramming protocol should meet as follows:

1. Reliability. This includes both accuracy and coverage requirements. By

accuracy, we mean that the exact program image is received by sensor nodes;

and by coverage, we mean that eventually every sensor node in the network is

reprogrammed with the new code.

2. Autonomy. Code should be propagated automatically, without human inter-

vention.

3. Authentication. Sensors must be able to verify the authenticity and integrity

of the received program.

4. Energy efiiciency. The energy used in code dissemination should be low so as

to affect the network lifetime minimally.

5. Speed. New program code should be propagated and installed quickly.

Among these requirements, reliability and autonomy are the basic and essential

requirements for the correctness of a code dissemination protocol. Authentication is

required if the sensors are deployed in an untrusted environment. Energy efficiency

and speed are the two important metrics we use to evaluate the performance of a

reprogramming protocol.

In all the protocols we propose in this dissertation, we make no assumptions about

the underlying network topology. We only consider networks with stationary nodes.

Sensor nodes do not need to have any location information or maintain neighbor

status. Each sensor node makes local decisions independently.

We divide the program image into segments, each of which contains a fixed

number of packets (with the exception of the last segment). Each segment is assigned

an ID that is strictly increasing. A sensor can advertise/transmit a segment only

when it has received the entire segment.

Moreover, we assume that reprogramming service has full control of a node’s

resources (including radio and hardware) during reprogramming (from the point that

a node receives a reprogramming signal (advertisement, request, data packet, etc.).

When a node reboots to a new program, or rolls back to the old program (because

of interruption or error during reprogramming), the application has control of the

resources.

1.5 Contributions of The Dissertation

In this dissertation, we defend the following thesis:

The sender selection algorithm that attempts to select one sender

in a neighborhood at a time can assist in improving energy effi-

ciency of reprogramming for sensor networks.

10

We consider two reprogramming models. In the first model, one (or a few) sensor

with the new program is dropped to the sensor field. This sensor then works as the

base station, and broadcasts the new program to all the sensors in the network via

radio. We propose a multihOp reprogramming protocol, MNP [33], for this model.

MNP provides a reliable and energy efficient service to propagate new program code

to all the sensors. To reduce message collision, MNP uses a sender selection algo-

rithm that attempts to guarantee that there is one sender in a neighborhood at a

time. Moreover, the sensors that lose in the sender selection algorithm and are not

interested in receiving code from its neighbors are put to sleep. In this way, MNP

reduces the active radio time of sensors during reprogramming and saves energy. To

our knowledge, MNP is the first reprogramming protocol for sensor networks that

addresses energy efficiency during reprogramming process and provides quantitative

measurements of energy saving. We implement MNP on Mica2 and XSM motes and

simulate it on TOSSIM [37], a discrete event simulator designed for TinyOS sensor

platform. We will present the evaluation results of both the hardware experiments

and simulation.

In the second model, we consider the case where each sensor (or a subset of

sensors) has one part of the new program. The sensors communicate with each other

to get the remaining parts of the program. We propose Gappa [66] for such gossip

among sensors. Gappa extends the sender selection algorithm from MNP to multiple

radio channels. The multi-channel sender selection algorithm tries to guarantee that

on each channel, only one sender transmits code in a neighborhood at a time. If

a sensor loses in the sender selection on one channel, it will compete to transmit

on a different channel that is available. We propose two types of channel allocation

schemes. Fixed channel allocation scheme assigns one channel to each segment, while

variable channel allocation scheme allows sensors to randomly select a channel from

all the available channels. We implement both schemes, and show that the variable

11

channel allocation scheme enables higher concurrency during reprogramming, and

hence, performs better. Similar to MNP, in Gappa, the sensors that are unable to

transmit on any channel and are not interested in receiving code from their neighbors

are put to sleep.

Moreover, observe that all the existing protocols on network reprogramming

[12,23, 30,47, 60], including MNP and Gappa, use automatic repeat request (ARQ)

scheme to recover from packet losses. We propose a new reliability scheme [65] which

is a hybrid approach of forward error correction (FEC) and ARQ. We perform a

case study on MNP, and study the effect of adding two different PEC codes: simple

XOR code and Reed-Solomon (RS) code, to MNP. We show the improvement on

reprogramming speed and reduction on energy consumption.

We also study the issue of providing authentication for reprogramming, and more

generally, bulk data dissemination. We propose a symmetric key based authentica-

tion protocol for reprogramming. This protocol is based on the secret instantiation

algorithm from [18,31], which requires only O(log n) keys to be maintained at each

sensor. We categorize the adversaries into two types, mote-class adversaries and

laptop-class adversaries. A mote-class adversary has limited energy, and cannot use

extensive denial of service attacks. A laptop-class adversary is more powerful and

can launch denial of service attacks. For the case where only mote-class adversaries

exist (e.g., a testbed environment), we propose a simple algorithm [68] and show that

it authenticates reprogramming process with low cost. For the case where laptop-

class adversaries exist, we develop a mechanism that allows sensors to authenticate

the data they receive before they store it to EEPROM (an energy consuming oper-

ation). In this way, the denial of service attacks from laptop-class adversaries are

mitigated. We consider the problem of bulk data dissemination in three scenarios:

multihop dissemination of large amount of data (e.g., reprogramming), multihop dis-

semination of moderate amount of data (e.g., network monitoring, difference—based

12

reprogramming), and single-hop dissemination (e.g., communication within a cluster

or a single-hop network). We show that using symmetric key based authentication

can significantly reduce the cost of secure dissemination of a moderate amount of

data compared to use of public keys, especially in the second and third scenarios. We

also propose additional schemes to reduce the cost of secure data dissemination in the

first scenario, and show the effectiveness of these schemes. We show the applicability

of our protocol by integrating it to the existing reprogramming protocols, including

MNP and Infuse [30], in the scenarios mentioned above.

1.6 Outline of The Dissertation

The rest of the dissertation is organized as follows. In Chapter 2, we present our

multihop reprogramming protocol MNP, which is designed for the case where one or

a few sensors have the entire new program initially, and they communicate the new

program to all the other sensors on a shared channel. We will describe the protocol

design, implementation issues, and evaluation results, which include experiments on

the hardware Mica2/XSM motes and simulation on TOSSIM.

In Chapter 3, we present Gappa, a gossip based multi—channel reprogramming

protocol designed for the scenario where each sensor (or a subset of sensors) has one

part of the new program initially and communicates with each other to get remaining

parts of the program. We will describe two variations of Gappa, the one with fixed

channel allocation (fc-Gappa) and the one with variable channel allocation (vc-Gappa),

and compare their performance. Energy efficiency is emphasized in both MNP and

Gappa, as we will show in protocol description and performance evaluation.

In Chapters 4 and 5, we focus on improving the reprogramming service from

two aspects: reliable communication and security. In Chapter 4, we propose to add

FEC to the ARQ based reliability approaches used in all existing reprogramming

13

protocols. Through a case study on MNP, we Show the effects of using FEC codes

in reprogramming, and the tradeoff between computation and performance: if more

computation resources are available, a more powerful coding scheme can be used to

achieve better performance. In Chapter 5, we propose a symmetric key based pro-

tocol for authenticating reprogramming process. We consider two cases. In the first

case, only mote-class adversaries exist. In the second case, laptop-class adversaries

also exist. We show that using symmetric keys can reduce the authentication cost

significantly compared to the case where a public key based scheme is used. We also

illustrate the applicability of our authentication protocol in other data dissemination

scenarios.

In Chapter 6, we survey related work on reprogramming protocols, FEC coding

schemes and secure reprogramming for sensor networks. In Chapter 7, we conclude

the dissertation and propose the scope of future research.

14

Chapter 2

MNP: Multihop Reprogramming

Protocol for Sensor Networks

In this chapter, we propose MNP, a multihop reprogramming protocol designed

for Mica2/XSM motes. MNP provides a reliable and energy efficient service to prop-

agate a new program from one (or a few) sensor to all sensors in the network over

wireless radio. As we have pointed out in Section 1.3, one of the problems in re-

programming is the issue of message collision. To reduce the problem of collision,

we propose a sender selection algorithm, in which source nodes compete with each

other based on the number of distinct requests they receive. The sender selection

algorithm attempts to guarantee that in a given neighborhood there is at most one

source transmitting the program at a time. Further, our sender selection is greedy in

that it tries to select the sender that is expected to have the most impact. Through

simulation on TOSSIM, we will show that this simple greedy approach is effective in

reducing the concurrent sender problem.

MNP uses pipelining to enable fast data propagation. Through simulation, we

will show the effectiveness of pipelining in large scale networks.

MNP is energy efficient because it reduces the active radio time of a sensor node

15

by putting the node into “sleep” state when its neighbors are transmitting a segment

that is not of interest. We call this type of sleep contention sleep. To further reduce

the energy consumption, we add noreq sleep, according to which, a sensor node goes

to sleep if none of its neighbors is interested in receiving the segment it is advertising.

Noreq sleep happens at the end of reprogramming, when a node observes that most

or all of its neighbors have received the new program. We also introduce an optional

init sleep to reduce the energy consumption in the initial phase of reprogramming.

We implemented MNP on TinyOS Mica2 and XSM mote platforms, evaluate its

performance through experiments on Mica2 motes, and investigate the performance of

MNP in different network settings through simulation on TOSSIM. In our simulation

study of MNP, our goal is two-fold. One goal is to study the tradeoff between different

metrics, e.g., completion time, energy usage, based on the choices made during repro-

gramming. Towards this end, MNP provides several tunable parameters. We study

how these parameters affect the completion time and energy usage. The second goal

is to demonstrate effectiveness of MNP itself. Towards this end, we simulate MNP

in different settings and compare it with Deluge [23]. We also show that even if the

tunable parameters are chosen suboptimally, the designer can still obtain a consider-

able energy savings. We also show parameters in MNP can be dynamically adapted

(based on the observations from the network during reprogramming) while preserv-

ing a large portion of energy savings. Furthermore, when network characteristics are

known in advance, the designer can utilize that information to minimize energy usage

(respectively, completion time) by choosing appropriate parameter values.

In Section 2.1, we present our code dissemination protocol, MNP. We focus on

the sender selection algorithm, reliability issues, and sleep conditions. In Section 2.2,

we evaluate the performance of MNP under different network settings. We summarize

this chapter in Section 2.4.

16

2.1 MNP: Protocol Description

In this section, we present the code dissemination protocol MNP. In Section

2.1.1, we present the sender selection algorithm, which is the core of MNP. In Section

2.1.2, we describe the sender-receiver behavior when a node is forwarding code to its

neighbors. In Section 2.1.3, we address the reliability issues, including loss detection

and recovery. In Section 2.1.4, we describe the operation of the protocol as a state

machine. In Section 2.1.5, we discuss the problem when the sensor nodes should

reboot with the received program. In Section 2.1.6, we analyze some optimization

approaches to save energy. We focus on various situations in which the sensor nodes

can be put to sleep.

2.1.1 Sender Selection Algorithm

To simplify presentation, we first consider the case where the program has only

one segment. In Section 2.1.1, we present the basic sender selection algorithm for

single-segment programs. In Section 2.1.1, we revise this algorithm so that it can be

used with programs that have multiple segments.

Basic Sender Selection algorithm

Before describing the algorithm in detail, we illustrate it using an example. To-

wards this end, consider the sensor network in Figure 2.1. Suppose A transmits the

code first and nodes B, C, D, E, and G receive this code. Now, these nodes should not

transmit simultaneously as it will cause significant collisions. Moreover, the choice of

the sensor that transmits next is not uniform. For example, G is a better choice than

D; some of the nodes that D can send data to have already received the data from A.

In our algorithm, each source node maintains a variable Rethr that indicates the

number of distinct requests (from different requesters) it has received so far. Rethr

17

H
e

E
>

a
n

E
r
a

H
'
s
!
a
n

fi
n

E
:

Figure 2.1: Example sensor network

is set to zero when a source starts advertising, and incremented by one every time it

receives a request that is destined to it from a “new” requester. (In order to decide

if a node is “new”, a node maintains a neighbor table that contains the lower byte

of the node IDs it has heard. The size of the neighbor table is restricted to 16 bytes,

hence, it can store up to 16 IDs (only the lower byte). If a node ID is not found in

the neighbor table, it is considered “new”.

We use two types of messages for sender selection: advertisement and request. An

advertisement message has information about the new program (program ID and size)

and the source node (source ID and Rethr value). It has two goals: announcing the

arrival of new program, and preventing the source nodes that have fewer requesters

from becoming a sender.

When a node, say j, receives an advertisement message from a source node, say

k, if j needs the new code, then it sends a request to k. The request sent by j also

contains the value of Rethr that I: sent in the advertisement message. While the

request is intended (destined) for k, it is sent as a broadcast message with k as one of

the fields. Thus, when another node, say l, receives the request, l is aware of the fact

that k is a potential source. This allows us to account for hidden terminal effect where

I could not have received the advertisement message from k. Moreover, by including

the value of Rethr in request message, we allow l to be aware of the number of

requests to 1:. Hence, l can utilize this information to determine who should transmit

the code first.

We note that a node sends a request to all senders that send the advertisement

18

messages. This ensures that a node is aware of all the requesters who are likely to

receive the code if it is chosen to transmit the code. However, if a node, say It, loses

to node I that has more requesters, then whenever k attempts to advertise again (e. g.,

after I has transmitted the code), It must reset its Rethr to zero, and recalculate its

requesters. This is due to the fact that some of old requesters of k may have already

received the code from 1.

Based on the above discussion, we describe our sender selection algorithm as two

parts: source part and requester part.

Tasks for source. In Figure 2.2, we present the tasks that a source node

performs in the sender selection process. This part contains the basic control logic

and the actions in response to the received messages.

A source node S broadcasts an advertisement message every random interval

(we use random interval to avoid message collision). Every time S receives a request

message, it checks to see if this message is destined to it. If the message is destined

to it, and is from a “new” requester that S has not seen before, S increments Rethr

by one. If the request message is destined to some other node and that node has a

higher Rethr value, then S stops advertising and goes to sleep state.

When S overhears an advertisement message from another source node, it com-

pares the Rethr value of that node with its own. If the other node has more requesters

than S does, it gives up advertising and goes to sleep state. (Note that this cannot

cause deadlock, as the node with the highest Rethr - with appropriate tie breaker

on node ID - will succeed.)

If S receives a “StartDownload” message or a data packet, i.e., some node in the

neighborhood has won this round of sender competition, S stops advertising and goes

to sleep state.

For a “sleeping” sensor node, nothing is active except a timer. When the “sleep”

timer fires, the source node wakes up, and listens to radio for a short amount of time

19

(e.g., 0.5 second) before it restarts advertising. During the listen interval, the node

could be put back to sleep if it finds that a neighboring node is transmitting or is

going to transmit a program (i.e., Rethr greater than 0) that it is not interested in.

Contention sleep. We have seen that a node goes to sleep when it loses in the

sender selection algorithm or detects ongoing traffic. In this case, sleep is caused

by contention for the shared wireless channel. We call this type of sleep, contention

sleep. The sleep action is triggered by the arrival of a message (an advertisement,

a request, or a data message). Due to the broadcast nature of wireless medium, a

message is received by all the sensor nodes that are within its transmission range.

These sensor nodes are put to sleep simultaneously and wake up at approximately

the same time to join the sender selection. The sleep duration should be determined

based on the expected transmission period and the network density.

The advertising phase ends when a source node has sent a given number of

advertisements successively (without “sleeping”). At this point, if it has received one

or more requests, it will become a sender and start transmitting code. Otherwise, it

will wait for t seconds, then restart advertising. t is set to t, initially, every time the

node fails to receive any request, the wait period t doubles. Once t reaches its upper

bound th, it stays constant.

Noreq sleep. When a source node is in wait period, it can turn its radio off and

go to sleep. We call this type of sleep noreq sleep. A source node goes to noreq sleep

when it observes that none of its neighbors is interested in the data it is advertising.

Noreq sleep is needed for energy efficiency, especially at the end of reprogramming.

Consider the scenario when all (or most) sensor nodes in the network have got the

new program, each of them advertises infrequently. With noreq sleep, these nodes go

to sleep when they are not advertising; while without noreq sleep, they have to stay

awake all the time.

Tasks for requester. In Figure 2.3, we show the tasks that a requester

20

Source: (in advertise state)

Broadcast an advertisement message every random interval

After advertising N times (without sleep):

if (myRethr > 0)

Become a sender, and start forwarding code

else

Wait for t seconds, then restart advertising

endif

During advertise interval:

(a)

if a request message Requg arrives

if (RequgDestlD == my.ID)

if (lsNew(Requg.Source/D))

my. Rethr ++

endif

else //the message is destined to some other node

if (Requg.Rethr > 0) and

((Requg.Rethr > my. Rethr) or

(Requg.Rethr == myRethr) and (Requg.Dest/D>my.lD))

Go to “sleep" state. myRethr = 0

endif

endif

endif

(b)

if an advertisement message Adesg arrives

if (Adesg.Rethr > 0) and

((Adesg.Rethr > myRethr) or

(Adesg.Rethr :2 myRethr) and (Adesg.50urce/D>my.lD))

Go to “sleep" state, myRethr = 0

endif

endif

(C)

if a ”StartDownload" message or a data packet arrives

Go to “sleep" state, myRethr = 0

endif

Figure 2.2: Tasks of the source in sender selection algorithm

21

performs in the sender selection process. If a node hears an advertisement that

announces the availability of a new program, it waits for a short random interval (we

use random backoff to prevent response implosion from multiple neighboring nodes).

Then, the node broadcasts a request message that is destined to the advertising node.

As mentioned earlier, it also puts the Rethr information of that advertising node in

the request message.

Req uester:

if an advertisement message Adesg arrives

if it is a “new" program

Prepare request message Requg‘.

RequgDest/D = Adesg.$ourcelD

Requg.ReqCtr = Adesg.ReqCtr

Send Requg after a short random interval

endif

endif
Figure 2.3: Tasks of the requester in sender selection algorithm

Sender Selection for Programs with Multiple Segments

In order to apply sender selection to the cases where the programs have multiple

segments, we make the following changes to the algorithm in Figures 2.2 and 2.3.

1. Each advertisement/ request message contains an additional field SegID (segment

ID).

2. When a node receives an advertisement message for a segment that it does not

have, it sends a request that contains the ID of the segment it expects to receive.

For example, if the advertisement is for segment 3, and the node has received

segment 1 in the past, it will request for segment 2.

3. When a node receives a request for segment y while advertising segment :1:, if

y < :r, then it starts advertising segment y. This is true even if the request is

22

not “destined” to this node.

4. When node l receives an advertisement for segment y from node k while l is

advertising segment 1:, if y < :r, and it has already received at least one request,

then 1 goes to sleep state. (We give higher priority to a lower segment.)

5. Timeouts are used so that a node can determine whether it should advertise

the current segment or the next one.

2.1.2 Tasks in Downloading a Segment

When a node decides to become a sender, it broadcasts a “StartDownload” mes-

sage to announce this fact, and then starts sending code packet by packet. A node

will change to download state once it hears a “StartDownload” message with expected

segment ID. Since a node always receives segments in order, the expected segment ID

is the highest segment ID the node has received so far plus one. The node in download

state sets the sender (the node that has sent the “StartDownload” message) to be its

parent (for that segment).

We note that although the sender selection algorithm attempts to keep only one

active sender in a given neighborhood, it is possible to have multiple active senders

due to time-varying link properties. Hence, a node may receive code from multiple

senders. In our protocol, we allow a sensor node to receive data packets from its

parent as well as other senders, as long as the segment ID is the expected one.

When a node is in download state, it receives the data packets and stores them

in EEPROM. At the same time, it keeps track of missing packets. The download

process ends when the receiver receives an “EndDownload” message from its parent.

At this point, if the node has successfully received the whole segment, it will go to

advertise state. Otherwise, the node goes to fail state.

Parent—children relationship is one—directional: the child knows who its parent

23

is. However, the parent does not know who its children are. It is possible that the

receiver never gets the “EndDownload” message. The reason can be the sender dies

as it is sending packets, or the “EndDownload” messages collide with other messages.

To avoid being stuck in download state, the node in download state sets a timer when

it is waiting for the next packet from its parent. It will wait for reasonably long time

until it concludes that this download process has failed. Then it goes to fail state.

We also notice that although the sender selection algorithm has effectively re-

duced the hidden terminal problem, the problem still persists to a certain extent. For

example, consider a scenario where nodes is and l are out of communication range

of each other, but both can send messages to and receive messages from node j.

Suppose I wakes up when j is in download state, and is receiving data packets from

its parent Is. Now, l listens to the radio for a while (it cannot hear k’s messages),

then starts advertising, and will probably transmit data if it gets requests from its

neighbors. The advertisements or data packets from I can cause collisions on j with

k’s transmission. We have tried to deal with this situation by letting the node that

is in download state (in this case, j) send a “quiet” message, asking its neighbors to

keep silent, if it receives advertisements or data packets that are not from its parent.

However, we found that the “quiet” messages sent by a node (j) interfere with the

transmission from its parent (k), and cause more collisions. Therefore, we allow a

certain degree of hidden terminal effect.

2.1.3 Reliability Issues: Loss Detection and Recovery

In MNP, each packet has a unique ID. Each receiver is responsible for detecting its

own loss. Since the size of the segment is small and predetermined, a node maintains

a bitmap (which we call Missing Vector) of the current segment it is receiving in

memory. Each bit in Missing Vector corresponds to a packet. All the bits are initially

set to 1. When a node receives a packet for the first time, it stores that packet in

24

EEPROM and sets the corresponding bit in Missing Vector to 0. In this way, we

guarantee that each packet in a segment is written to EEPROM only once. One

additional advantage of this mechanism is that a receiver can track packets, when the

packets in a segment are received out of order.

In MNP, each node has a Forward Vector, which is a bitmap of the advertised seg-

ment, and is an indicator of the packets the node needs to send if it becomes a sender.

When a node sends a request message, it puts the less information (its Missing Vector)

in the request message. When the advertising node receives the request, it marks its

Forward Vector according to the less information. Therefore, the Forward Vector of an

advertising node is the union of the Missing Vectors in the request messages that the

node has received. A node only sends the packets indicated in the Forward Vector.

We restrict the length of the segment to be no longer than 128 packets, so that the

maximal size of Missing Vector is only 16 bytes, and thus fits into a radio packet.

2.1.4 The Big Picture

In Figure 2.4, we show an overall picture of MNP. MNP operates as a state

machine. It includes the following states: idle, download, advertise, forward, sleep

and fail. Fail state is used to avoid infinite waiting. A node always sets a timer when

it is waiting for the next packet or the retransmitted packet from its parent. If it does

not receive any packet from its parent when the timer fires, it will temporarily go to

fail state. A node in fail state releases EEPROM resource, and switches to idle state

immediately.

2.1.5 When to Reboot

When a sensor node receives all the segments of a program, it can reboot with

the new program. One way to do it is that, a node reboots only when it receives an

external “reboot” signal. The time when the signal is sent is based on empirical data

25

Receive Adv with

Seng>my.NmbchRvd/

Send Req

Sleep

ldle
Receive Adv with ”

egID>my.NmbSengd Receive Adv or Req (to

Send Req -
other node) wrth Sleep timer

Receive "StartDownload" with Seng<=my.NmbSengd fires/Start Adv.

Seng=(my.NmbSengd+l v 3‘ RWCme-RWCWSC‘ my.Rethr=0
Set parent Sleep timer

Receive data

piktftfviifffir Receive "StartDownload" with 7

next packet T Seng=(my.NmbSengd+I)/ Set parent Receive Req (to

. me)! Increase

Download Advertise "‘3"ch

Receive "EndDownload" from

parent & No missing packets/

Receive . Sum Adv, my.Rethr=O Adv N times & F' - h f and

"EndDownload" Wait ff” next my.Rethr>O/ segti‘ilisent/OS‘fvan :25,

from parent & PaCkC‘ time 0W Broadcast '
, _ my.RethI=0

There are missm "StartDownload"

packets!

end segment

_ I F ard packet by

’ ‘ \ OI'W packet/

n Fail)

\ I

Figure 2.4: MNP: the state machine.

from experiments. Alternatively, reboot can happen automatically. For example, a

node reboots with the new program as soon as it receives the entire program. In this

case, the new program should include the reprogramming service, so that the node

can continue to serve as the source node after reboot. Yet another choice is to let

a node decide the time to reboot based on its local estimation of its neighbors. For

example, if a source node has sent K (a predetermined parameter) advertisements of

the highest segment ID and receives no request, it assumes that all its neighbors have

received the entire program, and reboots itself with the new program. We follow this

approach. The actual value of K is decided by the designer, based on the empirical

results from experiments and simulation.

26

2.1.6 Optimization on Energy Conserving

In this section, we propose several possible optimization approaches. In Section

2.1.6, we propose an optional sleep situation, init sleep, which can be used to reduce

energy consumption in the initial phase of reprogramming. In Section 2.1.6, we refine

the contention and noreq sleep conditions based on our observation.

Adding Init Sleep

Before reprogrannning starts, if the application running on the sensors does not

require radio communication, we can use some energy conservation approach (such as

TDMA [29,63], S-MAC [73]) to turn off the radio when it is not needed. Alternatively,

we use a simple approach, called init sleep, where nodes take short naps before the

“propagation wave” of the new program arrives. Specifically, in the initial state, a

sensor node keeps its radio on, and listens to the radio for a short amount of time

(e.g., 0.5 second), during which if it does not hear any advertisement, request, or

data, it goes to sleep. When the sleep timer fires, it wakes up and listens to the radio

again. This “listen-sleep” pattern continues until the node hears something that it is

interested in, upon which, it will keep its radio on (Figure 2.5).

started=FALSE &

Receive Adv or Req or Listen timer fires &

data! started = TRUE started=FALSEl Set sleep timer,

‘ SleepType=init

Idle/Listen Sleep timer fires & Sleep

SleepType=init! Set listen timer

Figure 2.5: Init Sleep (Listen state is the same as Idle state). started is set to FALSE

initially. If an advertisement, request, or data is received, started is set to TRUE.

The radio is kept on after started becomes TRUE.

 started = FALSE

Set listen timer

The purpose of init sleep is to reduce idle listening in the initial phase of repro-

gramming. Init sleep is optional, and can be replaced by any other energy conservation

approach. It can also be disabled if the underlying application running on the sensor

27

nodes (the “old” application) requires that radio is on.

Refined Contention and Noreq Sleep Conditions

Putting a node to sleep in the three situations (contention sleep, init sleep, noreq

sleep) saves energy and reduces overbearing. However, if a node sleeps for too long,

reprogramming process will be delayed due to the fact that the sleeping node misses

many advertisements from its neighbors or it does not send updates to its neighbors

in time. When a node meets the conditions of contention sleep (loses in the sender

selection algorithm or detects ongoing transmissions) or noreq sleep (has sent out N

advertisements but no request is received), it should backoff for a certain amount of

time before it restarts advertising. The backoff period corresponds to the contention

sleep period for contention sleep, and noreq wait period t for noreq sleep. During the

backoff period, a node decides to turn off its radio and go to sleep, or listen to the

channel with its radio on, based on its status and its knowledge about its neighbors.

To obtain adequate information of its neighborhood, a node does not sleep through

the entire backoff period. Rather, a sleeping node wakes up from time to time to

update its environmental knowledge, based on which, it decides its next action.

Short naps before activation. If a node has not received the entire program,

it should keep its radio on to wait for advertisements of higher segments. However,

this will keep nodes awake most of the time during reprogramming, which results in

increased energy consumption. Thus, we use an approach that is similar to init sleep.

Before a node gets the entire program, rather than keeping its radio on all the time,

it can take short naps, wake up and check the channel from time to time. A node

starts the “listen-sleep” pattern when it has just received a whole segment, and has

no idea when the next segment will arrive. Once it detects some activity of a higher

segment, it will keep its radio on continuously thereafter.

To implement this, a node keeps a boolean variable activated, indicating whether

28

it is in active updating phase. When a node receives an entire segment, it sets its

activated to FALSE. Whenever it receives any messages of higher segments, it sets

activated to TRUE. When a node meets the condition of contention sleep or noreq

sleep, if it has already received the entire program, it goes to sleep. Otherwise, if

activated is TRUE, it keeps radio on and listens to channel; if activated is FALSE,

it takes short naps, wakes up and checks the radio from time to time during the

contention or noreq sleep period. Once activated becomes TRUE, it enters active

updating phase and keeps awake from then on. If we set activated to FALSE in the

initial state, init sleep can be considered as a special case of this activating approach.

Adjusting noreq wait period t. In Section 2.1.1, we have mentioned that

if a node fails to receive any request continuously, its noreq wait period t increases

exponentially from t, to th. We identify two situations in which t is reset to t,.

First, if during the advertise and wait period, a node receives advertisements,

requests, or data messages that take it to a different state (download, forward, sleep,

or idle), when it returns to the advertise state, it will reset the wait period to t,.

Second, if the source node detects a potential requester, it will set t to it. Specifically,

a source node maintains a variable Lothr, which is the number of advertisements

and requests (including those that are not destined to it) that contain a lower segment

ID (the segment ID is lower than the highest segment ID this node has received) it

has heard so far. Lothr is reset to 0 whenever a node switches from “radio off” to

“radio on” or when a node starts advertising. Lothr is checked at the end of each

wait period t, before a node restarts advertising. If Lothr is greater than 0, which

means that one or more neighbors might need to be updated, then the next wait

period t will be reset to t,.

When a node is in noreq sleep, it wakes up every tn seconds, listens to the channel

for a short period (we use 0.5 second). If the messages received during this interval

make Lothr greater than 0, which means that one or more neighbors might need to

29

be updated, then the node will reset the next wait period t to t,, and start advertising.

As a result, the backoff period ends.

Note that when a node is in listen interval, although it does not send advertise-

ments, it still sends requests or turns to download state when necessary. If a node

receives an advertisement that contains the segment that it is interested in, it will

send requests to the advertising node. If a node receives a “StartDownload” message

or data message, and the node is interested in receiving the segment, it will turn to

download state. In this case, the backoff period ends.

2.2 Evaluation Results

Our target platform is TinyOS Mica2/XSM motes, with 433MHz radio. A

Mica2/XSM mote has 128KB of program memory, 4KB of RAM, a 7MHz 8—bit mi-

crocontroller, and 512KB external flash storage (EEPROM).

We fully implemented MNP on Mica2 and XSM mote platforms, and used two

methods to evaluate the behavior of MNP. The first method is to run the code on

TinyOS hardware, Mica2 motes. We experimented in a classroom and on a grass field

in a grid topology. The purpose of these experiments is to verify the correctness of the

algorithm and observe the effectiveness of the sender selection protocol. Due to the

limitation on the number of available motes and the space to perform experiments,

we were unable to experiment with networks of large scale. Therefore, the second

method is to use TOSSIM. TOSSIM is a discrete event simulator for TinyOS wireless

sensor networks. We use TOSSIM to investigate the behavior of MNP when it is

applied to a large network.

In the rest of this section, we first present the indoor and outdoor experiment

results with Mica2 motes. These results are based on the basic version of MNP

without pipelining. We did not use pipelining because the number of motes and

30

the space for performing the experiments were relatively small, and pipelining would

be significantly helpful only when the network is large and several non-overlapping

communication cells exist. In the second part, we present simulation results using

TOSSIM.

2.2.1 Experiments with Mica2 Motes

TinyOS allows developers to specify the power level a Mica2 mote uses for its

radio communication. The range of power level is from 1 to 255. In our indoor

experiments, we use the lowest power levels (1 and 2). In outdoor experiments, we

use power level 10 and default power level (255).

In these experiments, we place sensor nodes in a grid. The base station, which

has the new program image, is always put in the upper-left corner of the grid. We

expect that these results would be valid if the number of sensors is increased 4 times

and the base station is kept at the center.

We tested our algorithm in both indoor and outdoor environments. Due to

limitation of space for performing experiments, we fixed the inter-node distance, i.e.,

the distance between two neighboring nodes, to 8 feet. We repeated our experiments

under the same setting with different power levels. By using different power levels, we

change the communication range of sensors, and thus the number of hops to propagate

the program through the network.

The goal of the experiments is to examine the behavior of our sender selection

protocol. For this purpose, each node records the time when it gets the full program

image (“get code time”) and the ID of its parent (parent ID). Further, we synchronize

all the nodes before the experiment starts, so that the time reported by each node is

consistent. Note that this synchronization is not used by the algorithm. Rather, it is

used to collect data consistently.

31

Indoor Experiments

We deployed 25 sensor nodes in a classroom area (approximately 32’ by 32’), in a

5 by 5 grid. In order to see rnulti-hop effect, we chose the lowest power levels: power

level 2 and power level 1.

Figure 2.6(a) shows the parent-children relationship of the experiment with power

level 2. Each grey dot represents a sensor node. From each node, there is an arrow

pointing to its parent. According to the “get code time” value and parent ID, reported

by each sensor, we can compute the order of sensors becoming senders, which is

marked on the figure. As we can see in Figure 2.6(a), our sender selection protocol

worked pretty well, only two nodes, other than the base station, became senders one

after another. All other sensors that joined the sender selection were put in “sleep”

state.

In Figure 2.6(a), most of the sensors receive code directly from the base station.

When we reduce power level to 1, as shown in Figure 2.6(b), more sensors are not

covered by the base station, thus have to obtain code from other intermediate nodes.

Outdoor Experiments

We performed two sets of experiments on a grass field. In the first set of experi-

ments, we deployed 49 motes in a 7 by 7 grid, in a 48’ by 48’ area. In the second set of

I

.

’
9

1:; Offs e
1e e as

e 92¢. a e

e ale e e

e e 36 e e

(a)

Figure 2.6: Indoor experiments for 5 by 5 grid with (a) power level = 2, time = 5

minutes; (b) power level = 1, time = 8 minutes. Program size: 1500 packets (33KB).

32

experiments, we placed 50 motes in a 5 by 10 grid, in a 72’ by 32’ area. The purpose

of using this 5 by 10 grid topology is to better examine multi-hop behavior in the

code dissemination process. We used two different power levels: full power level (the

default value in TinyOS), and power level 10. Figure 2.7 shows the parent-children

relationship and the order of source nodes becoming senders for 7 by 7 grid. Figure

2.8 shows the results for 5 by 10 grid.

We notice that the nodes that are away from the base station are more likely to

become senders. This is desirable, because these nodes have a larger number of nodes

in their neighborhood that are not covered by the base station. As shown in Figure

2.6, 2.7 and 2.8, when nodes are working at a lower power level, more nodes become

senders, and each sender has a smaller group of followers. Therefore, more hops are

involved in propagating code to the nodes that are far away from the base station.

In our experiments, we did not observe the situation where two nearby nodes were

transmitting simultaneously. This shows that the sender selection algorithm, although

imperfect, achieves its goal of selecting a sender with the largest impact and selecting

at most one sender in a neighborhood.

We repeated our experiments several times. We found that the results are sim-

IFe’o
Q1 701%,,0

[3 o o 43119:“; 9

o 2%! 9940/9

S5 ‘0 rates ’0

(I a 6.63; l9 “-3.“

‘ ° les‘Es;.oiiiis**3e

9 97037—9 a g e

Figure 2.7: Outdoor experiments for 7 by 7 grid with (a) full power level, time =

25 minutes; (b) power level = 10, time = 35 minutes. Program size: 1500 packets

(33KB).

33

Figure 2.8: Outdoor experiments for 5 by 10 grid with (a) full power level, time =

35 minutes; (b) power level = 10, time = 45 minutes. Program size: 1500 packets

(33KB).

ilar. Although the actual sensor nodes that became sources differed from one run

to another, the sender selection algorithm ensured that two nearby sensors never

transmitted simultaneously. Moreover, in these experiments, the sender selection al-

gorithm selected nodes that were farther from the base station (respectively, previous

sources).

2.2.2 Simulation Results

In TOSSIM, the network is modelled as a directed graph. Each vertex in the

graph is a sensor node. Each edge has a bit-error rate, representing the probability

with which a bit can be corrupted if it is sent along this link. Asymmetric links exist

in this model since the bit-error rate for each edge is decided independently. We

decide the bit-error rate based on our experience with Mica2 motes. Specifically, the

packet loss rate on a one-hop (10 feet) link is around 5%. The loss rate increases with

34

distance, and after 50 feet, the loss rate is 100%.

Since TOSSIM does not model energy consumption, we calculate the energy

consumption by counting the operations performed during reprogramming. (Alter-

natively, we can also use PowerTossim [58] to evaluate power consumption. However,

since each simulation lasts for tens of hours, the trace file generated during simulation,

which is required by PowerTossim in order to compute the energy usage, becomes too

large (of the order of several gigabytes) to process.)

According to the data from Table 1.3, we use Equation 2.1 to compute the energy

consumption E (in joules), which is the product of charge Q (in coulombs, 1 nAh is

the same as 0.0036 coulombs) and voltage V (in volts).

E = Q - V

= 0.0036 - (20 - nmd + 8 - mew... + 1250 - tug,

+1.111.n..ad + 83.333 . nwrae) - 3

= 0.0108 - (20 - nsend + 8 - nrecewe + 1250 - tugs

+2.222 - nsenddata + 83.333 - 2 - nstmedata) (2.1)

In the above equation, mend and nrecewe are the number of packets transmitted

and received respectively during reprogramming, tidle is a node’s active radio time

(in seconds), nrmd and nwme are the number of reads and writes respectively exe-

cuted by EEPROM. EEPROM is read and written in 16-byte blocks (lines). Hence,

as each packet has 22 bytes data payload, each data packet transmitted involves 2

EEPROM reads, and each data packet stored corresponds to 2 EEPROM writes, i.e.,

nrwd = 2 . nsenddata, nwrite = 2 - nstoredata, where nsenddata is the number of data packets

transmitted, nstoredata is the number of data packets that are stored in EEPROM.

Equation 2.1 shows that energy consumption is decided by idle listening time

35

(tiara), message transmissions (nsend, nsenddata) and receptions (nreceive), and the num-

ber of data packets stored (nstmdam). Among these, nstmedam is decided by the size

of program (divided in packets) to be transmitted, because our algorithm guarantees

that each packet is written to EEPROM only once. Therefore, the key to reduc-

ing energy consumption is to reduce idle listening time and message transmissions

and receptions. Among these, idle listening time (or active radio time) is the most

important factor that affects the energy consumption.

In the current implementation, each segment has 128 data packets. Unless stated

otherwise, t; and th are 16 seconds and 512 seconds respectively, init sleep period (and

the short sleep period when a node is not activated) is 4 seconds, the wakeup interval

when a node is in noreq sleep tc is 4 seconds. The simulations are performed in a

grid topology. Due to the fact that the execution time of each simulation is of order

of tens of hours, we do not provide confidence intervals.

In Section 2.2.2, we evaluate the effect of the three sleep types in MNP: contention

sleep, init sleep, and noreq sleep. In Section 2.2.2, we show the performance of MNP

in different network settings. In Section 2.2.2, we further discuss the problem of

choosing appropriate contention sleep period.

Effect of Different Sleeps in MNP

We will first Show the effect of varying contention sleep period under different

network settings. The goal is to identify the guidelines for choosing a “good” con-

tention sleep period under a given network setting. Then we show how adding init

sleep and noreq sleep improves performance, especially, conserves energy. These sleep

types are in effect at different phases of reprogramming, i.e., contention sleep is effec-

tive during reprogramming, init sleep is effective at the beginning of reprogramming,

and noreq sleep has effect at the end of reprogramming (and in maintenance phase).

Hence, they are independent, and we can study them one after another.

36

Effect of Contention Sleep.

Varying Network Densities. We conducted the simulations under two network

densities, dense network where inter-node distance is 10 feet, and Sparse network

where inter-node distance is 15 feet. The simulation was done in a 20x20 network.

The base station, which has the new program initially, is placed at the corner of

the network. The program size is 2 segments (256 packets). We show the effect of

varying contention sleep period from 20 to 320 seconds in Figure 2.9. (Images in this

dissertation are presented in color.)

We note several things in Figure 2.9. First, for both densities, with the increment

of the contention sleep period, the completion time, active radio time and energy con-

sumption drop at the beginning, when the contention sleep period is greater than a

certain point, the time and energy starts increasing. The reason to this phenomenon

is that increasing contention sleep period essentially reduces nodes’ frequency of ad-

vertising during reprogramming, thus reduces contention. However, if the contention

sleep period is too long, delay increases. Hence, finding the optimal contention sleep

period is to find the balance point of reducing contention and not increasing delay.

Second, the turning points in a dense network and in a sparse network are differ-

ent. The optimal point for contention sleep period appears earlier in a sparse network

(in this case, 40 seconds) than in a dense network (correspondingly, 160 seconds). As

shown in Figure 2.9(a), when the contention sleep period is less than 40 seconds, data

is propagated faster in a sparse network than in a dense network; as we increase the

contention sleep period, the dense network starts performing better. This is because

in a dense network where each node has a large neighbor set, reducing message colli-

sion is a major task, which can be achieved by using a large contention sleep period.

On the other hand, in a sparse network, message collision is less. Hence, a long sleep

period is disadvantageous.

Third, the active radio time and energy consumption is consistently lower in a

37

1000 . . . 1000

+3— xlnter-node Space 15 ft

—a— Inter-node Space 10 It

800' ~ A 800»

13 -- 3’.

g 600 g 600»

c .9

S B

'3 400» J ‘5 400»

E .2
O

o 2200, , 200*W

«9- lnter-node Space 15 It

0 -8- Inter-node Space 10 ft 0 ‘ g .

0 100 200 300 400 0 100 200 300 400

Contention Sleep Period (5) Contention Sleep Period (3)

(a) (b)

5000

4000- 1

3
g

—
I

8 %

E
n
e
r
g
y
C
o
n
s
u
m
p
t
i
o
n
P
e
r
N
o
d
e

(
J
)

-A— Inter-node Space 15 it

-a- Inter-node Space 10 It

0o 160 200 300 400
Contention Sleep Period (3)

(c)

Figure 2.9: Completion time, average active radio time per node and average energy

consumption per node at different contention sleep periods (203, 403, 803, 160$, 3208)

for the dense network (inter-node space is 10 feet) and the sparse network (inter-

node space is 15 feet). 20x20 network. Program size: 2 segments (256 packets). (a)

Completion time vs. contention sleep period (b) Average active radio time per node

vs. contention sleep period (c) Average energy consumption per node vs. contention

sleep period.

38

sparse network than in a dense network, as shown in Figure 2.9 (b) and (c). The

reason to this phenomenon is that nodes in a dense network have more neighbors

and receive more messages, thus they spend more time in active updating phase (they

are “activated” earlier, but do not necessarily receive code earlier due to message

collision), during which their radio is on.

Varying Network Sizes. In Figure 2.10, we show the completion time, average

active radio time per node and average energy consumption per node at different

contention sleep periods in a N x N network, where N increases from 10 to 20. We

vary the contention sleep period from 20 to 320 seconds. The inter-node distance is

10 feet. We found that in 10 x 10 and 12 x 12 networks, when the contention sleep

period is 40 seconds, the completion time, active radio time and energy consumption

are the lowest. As we increased the network size to 14 x 14, 16 x 16, 18 x 18, the lowest

point of completion time, active radio time and energy consumption appears when

contention sleep period is either 80 seconds or 160 seconds (the performance does not

differ much when the contention sleep period is 80 seconds or 160 seconds). When we

further increased the network size to 20 x 20, the optimal point of contention sleep

period is 160 seconds.

We have already noted that when network density is reduced, the sleep period

should be reduced accordingly. Now, we found that the choice of sleep period also

depends on the size of the network.

To see why a large sleep period does not work well in a small network, we show the

segment completion sequence (in a 10-second window) of nodes in a 10x10 network,

when contention sleep period changes from 20 to 320 seconds, in Figure 2.11. We

notice that as the contention sleep period increases, the overlapping area of the two

segments (which indicates the degree of pipelining) shrinks, then disappears, and at

some point, a gap (during which no data is transmitted), between the completion

sequences of the two segments, appears and expands. When the contention sleep

39

m . . 350 . ~ ~

1000 —+— 20x20 + 212%3

18X18 30° ‘ + 16x16800* 4 + 16x16

A 14x14 @250 14x14

8’, .9. 12x12 2 1 ~43— 12x12

3 600, , —A— 10x10 ._ +10x1o

i: I; 200’ ‘

r: 5

g m 150.

g; 400» “f,
.2

o
13 100'

0 <

200 4 50

0 . i A 0 A . A

0 100 200 300 400 0 100 200 300 400

Contention Sleep Period (5) Contention Sleep Period (3)

(a) (b)

-+— 20x20

18x18

, + 16x16

14x14

~Q— 12x12

/~ , 4.. 10x10

S C

E
n
e
r
g
y
C
o
n
s
u
m
p
t
l
o
P
e
r
N
o
d
e

(
J
)

8

.
E

8
.

j
]

-

Go 160 260 360 400

Contention Sleep Period (8)

(C)

Figure 2.10: Completion time, the average active radio time and energy consumption

per node at different contention sleep periods (208, 403, 803, 160$, 3208) in a N x N

network (N = 10, 12, 14, . . . , 20). Inter-node distance: 10 feet. Program size: 2

segments. (a) Completion time vs. contention sleep period (b) Average active radio

time per node vs. contention sleep period (c) Average energy consumption per node

vs. contention sleep period

40

period is large (e.g., 320 seconds, 160 seconds), although propagating each single

segment is faster due to less collision, the overall completion time increases because

of the gap.

The gap appears when the contention sleep period is longer than the time to

propagate one segment through the network. The base station is put to sleep (con-

tention sleep) when one of its neighbors starts transmitting code. If the contention

sleep period is too long, then the base station is still in sleep state when all the sensor

nodes in the network have received the first segment. Because the base station is

the only node that has the second segment, all the nodes have to wait until the base

station wakes up.

From this example, we conclude that the contention sleep period should be no

longer than (usually less than half) the time for prOpagating one segment through

the network. Therefore, the contention sleep period needs to be reduced when the

network diameter is reduced. Moreover, noting that the reduction in size of the

network essentially reduces the average node density, hence, the conclusion we draw

here is consistent with that we had earlier, i.e., contention sleep period should be

reduced with the reduction of network density.

In a 10x10 network, when the contention sleep period is 40 seconds, reprogram-

ming consumes the least amount of time and energy, as shown in Figure 2.10 and

Figure 2.11. In Figure 2.11(b), we note that the overlapping area between Segment

1 and Segment 2 is very small, which indicates that pipelining does not have much

effect when the network is relatively small.

Placing Base Stations. In previous simulations, we kept the base station at one

corner of the network. In the following simulations, we test two other situations:

the base station is placed in the center of the network, and four base stations are

placed at four corners of the network. In Figure 2.12, we compare the completion

time, average active radio time per node and average energy consumption per node

41

U ' . - Segment1 w . - Segment1

14] [:l SegmentZ I: S ment2

12-
'U '0

2 3

a 10- a
E E
o 3' o
(I)

c . 8

s 6 s
2 Z

4»

2.

00 50 100 150 200 250 300 00 50 100 150 200 250

Time (s) Time (s)

(a) (b)

15 . . . 20

- Segment1 - Segment1

[:l Segment2 (:1 mentZ

15

E 10» . 3
_ 2

O. O.

s s
0 o 10

i i
E 5‘ I I I ‘ z

o I!

) 50 100 150 200 250 300)0

Time (s) Tlrne(s)

(C) (d)

‘J ’ - Segment1

Cl Segment2

20 -

“D

2

£15 -
E
O

O

8 10 <
'0

O

z

) 100 200 300 400 500

Time (s)

(6)

Figure 2.11: The segment completion sequence (in a 10-second window) of nodes in

a 10x10 network, when contention sleep period is (a) 205, (b) 405, (c) 805, (d) 1605,

(e) 3205. Inter-node distance: 10 feet. Program size: 2 segments (256 packets).

at different contention sleep periods under these three situations.

1 000 1%0

‘.;' BS at one comer

-A- BS in the center

A 300 -*— 385 at 4 corners

Tn‘ a

a o

E
E 3: 600

r: .9

.3, s
a 400* i:

E ,>

° ‘8

0 <

200 ..j;.. 83 at one comer

wer- BS in the center

0 77—!- 885 at 4 comers n

I 100 200 300 400 V0 100 200 300 400

Contention Sleep Period (s) Contention Sleep Period (5)

(a) (b)

7000

BS at one comer

6000 -A- BS in the center

+ 88s at 4 corners

E
A 8 O

N
(
A
)

8
8

O
0

E
n
e
r
g
y
C
o
n
s
u
m
p
t
i
o
n
P
e
r
N
o
d
e

(
J
)

8 O

0
:
3

160 260 360 400
Contention Sleep Period (5)

(C)

Figure 2.12: Completion time, average active radio time per node and average energy

consumption per node at different contention sleep periods under the three situations:

one base station is placed at a corner, one base station is placed in the center, four

base stations are placed at four corners. 20x20 network. Inter-node distance: 10 feet.

Contention sleep period: 1605. Program size: 2 segments. (3.) Completion time vs.

contention sleep period (b) Average active radio time per node vs. contention sleep

period (0) Average energy consumption per node vs. contention sleep period

In Figure 2.12, we show that when the base station(s) are placed at the corner(s),

the completion time, active radio time, and energy consumption hit the lowest point

when the contention sleep period is 160 seconds; and when the base station is placed

in the center, the completion time, active radio time and energy consumption are

the lowest when the contention sleep period is 80 seconds. On one hand, placing the

43

base station in the center or placing four base stations at corners effectively reduces

the network diameter by half. As we concluded from previous simulations, when the

network diameter is reduced, contention sleep period should be reduced accordingly

to lessen the effect of latency. On the other hand, the high network density requires

a long contention sleep period to reduce message collisions. For example, in the

case that four base stations are placed at the corners of the network, significant

collisions can occur when the propagation waves meet. Hence, the contention sleep

period should be higher than that is used in the small network case (e.g., 40 seconds

contention sleep period for a 10x10 network).

Summary on Choosing Contention Sleep Period. We note that long sleep period

helps in reducing message collision. We tend to use a long sleep period in a dense

network, because reducing message collision is the major task in a dense network.

However, a long sleep period also introduces latency. When the network is sparse,

the sleep period should be reduced because the latency caused by long sleep peri-

ods exceeds the gain from reducing message collision. Also, when the network size

is reduced, since it takes less time to propagate a single segment throughout the

network, the effect of sleep latency becomes significant. Therefore, choosing an ap-

propriate sleep period is a tradeoff between reducing message collision and reducing

sleep latency.

Effect of Init Sleep.

In order to show the effect of init sleep, we tested MNP when it does not apply

init sleep, i.e., nodes do not turn their radio off in the initial state. We conducted

simulations on a 20x20 network, with 10 feet nodes separation. The program size

is 5.6KB (2 segments, 256 packets). Contention sleep period is set to 160 seconds.

In Figure 2.13, we compare the active radio time distribution of MNP without and

with init sleep. In Figure 2.13(a), we show the active radio time of nodes without

init sleep. It shows that the nodes that are far away from the base stations keep

44

their radio on for most of the time during reprogramming. After we add init sleep,

as shown in Figure 2.13 (b), this phenomenon disappears, and energy consumption

distribution is more even.

400

300

200

Figure 2.13: Active radio time distribution in a 20x20 network. Contention sleep

period: 1605. tl-th: 165-512s. Inter-node distance: 10 feet. Program size: 2 segments

(256 packets). (a) no init sleep (b) init sleep period: 45

In Table 2.1, we show that, not only the active radio time and energy are reduced

(30%), but also reprogramming finishes faster. This is because adding more sleep

reduces the number of messages in the network, and hence the number of collisions.

Summary. Adding init sleep to MNP reduces completion time and energy con-

sumption of reprogramming. In the case that the application or lower layer services

(e.g., MAC layer protocol) provide energy conservation functionality, we can turn off

init sleep.

Table 2.1: Compare MNP without init sleep and with init sleep. Program size: 2

segments (256 packets). Contention sleep period: 1605, t — t), : 16s — 512s

no init sleep init sleep 45

Completion time 655.3 (s) 609.4 (5)

Active radio time /node 290.8 (s) 202.4 (5)

Energy consumption /node 4472.5 (J) 3274.1 (J)

Messages sent /node 96 84

Messages received /node 736 711

45

Effect of Noreq Sleep.

Now we test MNP when it does not apply noreq sleep, i.e., if a node has sent out

a given number of advertisements, but has not received any request, it keeps its radio

on and only reduces the frequency of advertising. In Figure 2.14, we show the average

number of messages sent and received per node in a 20-second window during and

after reprogramming. In Figure 2.14 (a) and (b), we Show the results for MNP without

noreq sleep. In Figure 2.14 (c) and (d), we show the results for MNP with noreq sleep.

In both cases, reprogramming took a little more than 10 minutes to finish. We let

reprogramming run for another 13 minutes after it finished. During reprogramming,

the pattern of message transmission and reception are almost the same in both cases.

Adding noreq sleep does not have much impact during reprogramming.

After reprogramming finishes, message transmission increases a little bit, then

decreases continuously (Figure 2.14 (a) and (c)). The initial increase is due to the

fact that data messages or control messages (advertisements or requests) that indicate

current or coming transmissions, which suppress the neighboring nodes from trans-

mitting, no longer exist. In other words, contention sleep no longer exists. After the

increase, the nodes still send advertisements, but they are not able to receive any

requests, therefore, the noreq wait period grows exponentially, and nodes advertise

less and less frequently.

Although the pattern of message transmission does not change when we add

noreq sleep, message reception after reprogramming (in the maintenance phase) is

reduced significantly. As shown in Figure 2.14(b), without noreq sleep, the number of

messages (advertisements) received is high after reprogramming. This is because all

the nodes in the network are awake. By contrast, with noreq sleep, after the sensor

nodes get the program, they sleep most of the time, and only wake up to advertise

infrequently to check if there is any node left not reprogrammed. In Figure 2.14(d),

we show that with noreq sleep, the number of messages received after reprogramming

46

u - advertisement 150

0 71 as request 0

5 data E
z e- a

r .. ,
E 5. E 100.

'3 §
3 4 n:

i i»
3 3 a 50

i2 f
, t
< 1 g

. <

0 _ .

(100 1500 500 1

Tune (s) Time (s)

(a) (b)

a - advertisement 15%

o 8 83 request

3 data 3

27] -
g If

.. 6‘

g E 100

w

.n 5 i
a m

it " 3

g a S.

a 3 5°
2 2- o

0

>

< 1 g

. I , <

0 -.I 0 . . .L-

(600 800 1000 1200 1400 0 600 800 1WD 1200 1400

Time (s) Timo(a)

(C) ((0

Figure 2.14: The average number of messages sent and received per node in a 20-

second window during and after reprograrmning. Program size: 2 segments (256

packets). Contention sleep period: 1605, t, ~ t), : 16s — 5125 (a) Messages sent:

without noreq sleep (b) Messages received: without noreq sleep (0) Messages sent:

with noreq sleep (d) Messages received: with noreq sleep. Reprogramming completes

at around 10 minutes (623 seconds for (a) and (b), 609 seconds for (c) and (d)).

47

is low (because most of the nodes are sleeping).

In Table 2.2, we compare the performance of MNP with and without noreq

sleep. As shown, adding noreq sleep not only conserves energy consumption after

reprogramming, but also reduces the completion time and energy consumption during

reprogramming.

Summary. Adding noreq sleep reduces energy consumption at the end of repro-

gramming since most sensor nodes are put to sleep state when most or all of them

have received the new program.

Performance of MNP

In this section, we present the performance of MNP. We first evaluate pipelining

and sender selection behavior. Then, we show how the algorithm performs under

various network settings, specifically program sizes, network densities, network sizes,

and base station positions.

We also compare the performance of MNP with that of Deluge [23]. MNP

and Deluge share some common features such as advertise-request-data handshaking

(based on SPIN [28]), dividing a code image into equally sized segments, and pipelin-

ing the transfer of segments. MNP uses sender selection algorithm to reduce message

collisions. By contrast, Deluge uses Trickle [39] as the suppression mechanism, and it

does not turn off nodes’ radio during reprogramming. Therefore, for Deluge, a node’s

Table 2.2: Compare MNP without noreq sleep and with noreq sleep. Program size: 2

segments (256 packets). Contention sleep period: 1608, t; — th : 163 - 5123, init sleep

period: 45

without noreq sleep with noreq sleep

Completion time 623.3 (S) 609.4 (8)

Active radio time /node 302.9 (s) 202.4 (3)

Energy consumption /node 4638.7 (J) 3274.1 (J)

Messages sent /node 91 84

Messages received /node 782 711

48

idle listening time is the same as the completion time. We simulated Deluge using

TOSSIM, under the same network settings as we simulated MNP. (Deluge sets the

default segment size to 48 packets. We simulated Deluge when the segment size is

set to 96 packets and 128 packets, we found that it performs best when the segment

size is 48 packets. Hence, we use 48 packets/segment for Deluge in our simulation.)

Validating Pipelining & Sender Selection.

We observe the pipelining and sender selection behavior of MNP on a 20x20

network, with 10 feet inter-node distance. The size of the program is 5.6KB (2

segments, 256 packets). We set the contention sleep period to 160 seconds. In Figure

2.15, we show the segment completion sequence in a 10—second window. Segment

1 is transmitted first, followed by Segment 2. There is an overlapping area where

some nodes start receiving Segment 2, while some are still receiving Segment 1. This

overlapping area ends when all the nodes have received Segment 1.

I):

‘d - Segment 1

l: Segmentz

N
o
d
e
s
C
o
m
p
l
e
t
e
d

3
a

8
U
I

d 200 600 ‘800400

Time (s)

Figure 2.15: The segment completion sequence in a 10-second window. Program size:

2 segments (256 packets). contention sleep period: 1603.

In Figure 2.16, we show the propagation progress for a two-segment program.

The segments are propagated gradually from corner to corner. At some point in time,

both Segment 1 and Segment 2 are propagating within separate areas of the network

(as shown in Figure 2.16(c)).

49

 .
.
.
.
.
.
.
.
.
.
0
0
0
0
0
0
0
0
0

-
-
-
-
-
-
-
-
0
0
0
0
0
0
0
0
0
0

-
-
-
-
-
-
0
-
0
0
0
0
0
0
0
0
0

-
-
-
-
-
-
-
-
-
-
-
-
0
0
0
0
0
0
0

-
-
-
-
-
-
-
-
0
0
0
-
0
0
0
0
0

.
.
.
.
.
.
.
.
.
.
0

D
D

.
D
O
D

.
.
.
.
.
.
.
.
.
.
D
D
D
D
D
D
D
D

-
-
-
-
-
-
-
-
0
0
0
0
0
0
0
0
0
0

L
-
-
-
-
0
«
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

-
0
0
0
-
0
0
0
0
0
0
0
0
0
0
0

DDDDDDD '

DDDDDDC} -

DDDDD - -

Cl ' UDDD

CJCJ- DUDE]

DDDDD-D

CID - DUDE]

ODD -DDCJ

DDDDDUU

DDDDDDC]

___r_B_nmr:L13r-rn
DULJUIDU

201510

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

-
-
-
-
-
-
-
-

D
O
U
G

-
D
D
D
D
C
J

D
D
D
U
D
D
D
D
D

DODGE]

15

(b)
nnmnnnhnnnnnnnnnnnnn

Y Uuuumuuuuwuvuuwuuuum

20

[
3
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0

D
D
D
D
D
D
D
U
D
O
D
D
D
D

D
D
D
O
U
D
D
D
D
D
D
D
D
D

U
D
U
O
D
D
D
D
D
U
D
D
D
D
I
I

D
D
D
D
D
D
D
D
D
D
U
D
D
I
I
I

D
D
D
D
D
D
D
D
D
U
I
D
I
I
I
I

D
D
U
C
J
C
I
D
U
D
D
I
I
I
I
I
I
I

U
D
D
D
D
D
D
D
I
I
I
I
I
I

D
D
D
D
D
U
D
I
I
I
D
I
I

ODD

ODD

C]

IIIUDCICJ

I

I

I

I

I

IIIIIII

IIIIIIIII

IIIIIIIII

I
I
I
I
I
I

D
D
I
I
I
I
I
I
I
I
I
I
I
I
I
I

C
l
C
l
D
I
I
I
I
I
I
I
I
I
I
I
I
I
I

U
D
D
I
I
I
I
I
I
I
I
I
I
I
I
I
I

UDDDDDDDDDDDUDDDDDDD

UDUDDUDDUDDDDDDDDD
6

e
&

18

16

4 14»

12

10

8

 E3

C
3

C
]

Wu

nnnnnnnnnnnnmnnn

‘ UUY—IUWUUUUWUUUU

DUDCICJDCJDUCIDU - -

20

J

a

Y

U
U
D
D
D
D
D
D
D
D
D
D
D
D
U
D
D
D

D
D
D
D
D
D
U
D
D
D
D
D
D
D
U
D
D
D

D
D
D
D
D
D
D
D
D
U
D
D
D
D
D
D
D
D

'
C
l
'
0

'
U
D
D
D
D
D
D
D
D
D
D
U
D

-
-
-
D
D

'
D
D
D
D
U
D
D
D
D
D
D
U

D
D
D
D
D
D
D
D
D
D
D
D
D

-
-
U
D
D
D
D
C
I
D

-
D
D
D
C
J
D
C
]

C
l

-
-
C
I
D
C
J
D

-
D
D
D
D
D
D
D
D

D
D
-
D
D
D
D
D
D
D
D
D
D
D
U
D

D
D
D
D

-
U
D
D
D
D
D
D
D
D
D
D

D
D
D
D
D
D
D
D
D
U
D
D
D
D
D
U

D
D
D
D
U
D
D
D
D
D
D
D
D
D
D
U

D
D
D
D
D
D
D
D
D
D
D
D
I
D
I
U

C
]

D

D
D
D
D
D
D
D
D
D
D
I
I
D
D
D

D
D
D
D
D
D
D
D
D
I
I
I
I
I
I

D
D
D
D
D
D
D
D
D
I
D
I
I
I
I
I

D
D
D
U
D
U
D
D
D
I
I
I
I
I
I
I

D
D
D
U
D
D
D
D
I
I
I
I
I
I
I
I

D
D
D
U
D
D
U
D
D
I
I
I
I
I
I
I

U
D
D
D
D
D
D
D
D
D
I
I
I
I
I
I

DDDDDUDDDUDDD -

l

4

N
5

é
m

e
&

1
-
1
-

18

16:

14+

20151O201510

(d)
ZO—v—I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-B-I-I-B—

I
I
I
D
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
C
l
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

U
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
C
J
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

20W

D
D
D
D
D
D
D
D
D
I
I
I
I
I
I
I
I
I

D
D
D
U
D
D
D
D
I
I
I
I
I
I
I
I
I
I

D
D
D
D
D
D
D
O
D
I
I
I
I
I
I
I
I
I

D
D
D
D
D
D
D
D
D
I
I
I
I
I
I
I
I
I

D
D
D
D
D
D
D
D
D
D
I
I
I
I
I
I
I
I

D
D
D
D
D
D
D
D
D
D
D
I
I
I
I
I
I
I

D
D
D
D
D
D
D
D
I
I
I
I
I
I
I
I
I
I

D
D
D
D
D
D
D
D
D
I
I
I
I
I
I
I
I
I

D
D
D
D
D
D
I
I
I
D
I
I
I
I
I
I
I
I

D
U
D
I
U
I
I
I
I
I
I
I
I
I
I
I

U
I
D
D
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
D
I
I
I
I
I
I
I
I
I
I
I

I
I
I
D
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I

I
I

A
A

A

a
b
c
b
é
d
r
é
é
o
c
o
v
m

P
F
C
-
P
1
-

15 20101510

(e) (0

Figure 2.16: Propagation progress for sending two segments in a 20x20 network. The

base station is at the left bottom corner. Inter-node distance: 10 feet. Program size:

2 segments (256 packets).

6095.

Total completion time:Contention sleep period: 1603.

(a) 1005 (b) 2003 (c) 3008 (d) 4005 (e) 5003 (f) 600s. A node covered by an

unfilled square means that it has received Segment 1; a node covered by a filled square

means that it has received Segment 2.

50

In Figure 2.17(a), we show the transmission distribution. We found that the

overall message transmission is low. Most nodes send less than 100 messages during

reprogramming process. Some nodes transmit more than others. These nodes are

distinct senders, i.e., they are selected as senders many times. Note that these distinct

senders are randomly distributed. In Figure 2.17(b), we show that the nodes in the

center receive more messages than the ones on the edge or at the corner. Comparing

Figure 2.16 and 2.17(b), we found that although the nodes in the center receive more

messages than the nodes on the edge, they do not get code earlier due to collisions.

— 500 a 1000

40° 2 800

3.. 6,,

.200 40,,

100 200
Figure 2.17: Transmission and reception distribution. 20x20 network. Inter-node

distance: 10 feet. Program size: 2 segments (256 packets). Contention sleep period:

160s.

In Figure 2.18, we show the distribution of active radio time. The nodes in the

center of the network have higher active radio time than the nodes on the edge. Recall

that initially a node takes short naps, and wakes up regularly to check if there are

any messages of higher segments. Once it detects any activity that it is interested

in, it enters active updating phase, during which its radio is continuously on. The

active updating phase ends when it has successfully received a whole segment (cf.

Section 2.3). This explains why the nodes in the center have higher active radio

time. These nodes receive many messages, thus they enter active updating phase at

51

an early stage. However, due to message collision, it takes longer for them to receive

an entire segment. The nodes in the center spend more time in active updating phase,

therefore, their active radio time is longer.

Figure 2.18: The distribution of active radio time. 20x20 network. Inter-node dis-

tance: 10 feet. Program size: 2 segments (256 packets). Contention sleep period:

1603.

Varying Program Sizes and Network Densities.

The simulation was done in a 20x20 grid topology, with a base station placed

at the corner. We first set the inter-node distance to 10 feet (a dense network).

The contention sleep period of MNP is set to 160 seconds. In Figure 2.19, we show

the completion time, average active radio time per node, and the average emery

consumption per node of MNP and Deluge, under different program sizes. As we can

see, for MNP, the completion time is linear with the program size, and the average

active radio time per node is about 40% of the completion time. Also, the energy

consumption increases linearly, as it is closely related to the active radio time.

We found that MNP outperforms Deluge in both completion time and energy

consumption. For example, to propagate a program of 8.45KB (384 packets), the

completion time of MNP is 896 seconds, which is only about 40% of the completion

time required by Deluge (2247 seconds) when it propagates a program of the same

size. Also, the energy consumption of MNP is only 17% of the energy consumption

52

nznn

dam

‘WU

—A— Deluge

19,— Deluge

3
MNP

a-..
MNP

2000

A
2000

E

3’.

Q

,

E 1500

7r ./-
1500*

c

.9

g

E

E.
1000

I:
1000‘

E

If

g

o

I

.Ay,.
/

'(3

500+

500

{yw
a“;

.273)»—

n

,
,1!

d

”I”

53*—

‘—.’€:,HN

“6‘

1o
1

20
“(F

5
1o

15

Program Slze (KB)

Program Size (KB)

(a)

(b)

—A— Deluge

" MNP

E
n
e
r
g
y

(
J
)

 as;

Program1glze (KB) 15

(C)

Figure 2.19: Performance in a dense network. 20x20 network. Inter-node distance:

10 feet. (a) completion time (b) average active radio time per node (c) average energy

consumption per node.

of Deluge. In Figure 2.20, we show that MNP has lower transmissions and receptions

than Deluge.

We then repeat the same set of simulations on a sparse network, i.e., the inter-

node distance is set to 15 feet. The contention sleep period of MNP is set to 40

seconds. We show the corresponding results in Figure 2.21 and 2.22. We found that

the completion time of MNP and Deluge are closer compared to the dense network

case, while MNP is still up to 30% faster than Deluge (Figure 2.21 (a), when the

program size is larger than 14KB). As shown in Figure 2.21 (c), MNP saves up to 75%

53

g 450 6000
o 0 L

2; 400» g +9» 33%”
0

Q. h 5000' ..

'o 350’ _. a

:9 ,15‘ g
g 300* ,./ .2 4000»

E 250» , if} 4 g

u .7 3000 ‘l

g, 200 ~ / , 3

J 3
g 150. ,, g 2000 4

.8 100’ $1, /r ? Qfi/fi

~ ,,..- w 3 1000- 9- +
'8 50" ;. E fl/

E / a
g d _/’

Z /’0’

“0‘ 5 10 15 20 "0‘ 5 10 15 20

Program Size (KB) Program Slze (KB)

(60 (b)

Figure 2.20: Transmissions and receptions in a dense network. 20x20 network. Inter-

node distance: 10 feet. (a) number of messages transmitted per node (b) number of

messages received per node.

of energy compared to Deluge. In Figure 2.22, we show that MNP has slightly lower

message transmissions compared to Deluge, and up to 60% less message receptions

than Deluge.

The simulation results in Figure 2.19-2.22 show that MNP outperforms Deluge

in both completion time and energy consumption. We show that MNP performs

well in both dense and sparse networks. For example, it takes a little more than 10

minutes to transmit a 5.6KB (2 segments) program to all the sensor nodes in a 20x20

network (either dense or sparse). And, a node’s active radio time is only 20—43% of

the completion time. By contrast, the performance of Deluge drops significantly when

the network density increases, as shown in our simulations, as well as in [23] and [39].

This is caused by the discrepancy between the observed density by the nodes and

the physical density (defined by the radio range), as pointed out in [39]. In Deluge

(Trickle), nodes listen to the channel, and adjust their advertising frequency based on

the observed density. When the network density increases, packets lose is more likely

due to hidden terminal problem. This causes nodes to hear less traffic, and hence

observe a lower density than the actual one (physical density). Unlike Deluge, the

54

2500

-A— Deluge -A— Deluge

:9— MNP 45‘— MNP

2000 r
A 2000 .

’0? 3

E E
i: 1500» t: 1500-

c .9

a E
31000» 0 1000-

E 2
O u

0 2

500 I J 500 ’ [IR/4E)

Meter-“‘9"

Mei-”"19” . .
(If 10 15 20 60‘ 5 10 15 20

Program Size (KB) Program Size (KB)

(3) (b)

4

35x 10 .

-A— Deluge

3); ”‘3‘“ MNP 4

2.5

5: 2.
>5

2’

3:: 1.5»

4 ,.

0.5+ _ '~l',§7j"'"" 67/” I

“0‘ 5 10 15 20

Program Size (KB)

(C)

Figure 2.21: Performance in a sparse network. 20x20 network. Inter-node distance:

15 feet. (a) completion time (b) average active radio time per node (0) average energy

consumption per node.

sender selection algorithm in MNP reduces the hidden terminal problem and message

collision, hence, enables fast reprogramming.

Varying Network Sizes.

Based on observation from Figure 2.10, we use different contention sleep periods

when the network size varies: 40 seconds for 10x10 and 12x12 networks, 80 seconds

for 14x14 and 16x16 networks, and 160 seconds for 18x18 and 20x20 networks. In

Figure 2.23, we show the completion time (a), the average active radio time per node

(b), and the average energy consumption per node (c) when the network dimension

55

4 D D

J
k

0
'
1

O

w '

0 77)
:;Tr

s-77
A .

128 ? 33:98
3 l ‘5- Deluge

fl

5 500 '
‘2’ 4000 w» MNP

a

as

u

a. 3500)

g 500

g

g
5 3000»

c b

E 400
E 2500»

m
s

g. 300- g 2000

m
a

m

o 1500
//O

E 200-
E

/

‘5

3 1000
w/ 7/9/

‘5 100-
3 / ’

g

E 500' /0

a

Z I. “5‘"

2

H J. y

“if 5 1o 15 20 u"- 5 10 20

Program Size (KB)
Program Size (KB)

(3»)
(b)

Figure 2.22: Transmissions and receptions in a sparse network. 20x20 network. Inter-

node distance: 15 feet. (a) number of messages transmitted per node (b) number of

messages received per node.

grows from 10x10 to 20x20. For comparison purpose, we also show the corresponding

simulation results of Deluge in Figure 2.23.

As shown in Figure 2.23(a), the slope of completion time for transmitting multiple

segments is close to that of a single segment, indicating the effectiveness of pipelining.

We also notice that the average active radio time per node (b) and energy consumption

per node increase gradually when the network size increases from 10x10 to 16x16,

and stabilize at the same level when the network size is larger than 16x16. This

indicates that a node is only affected by its local environment. After the network

size has increased to a certain point, further increase does not increase the energy

consumption. This shows that MNP is energy efficient and scales well to large network

sizes. From Figure 2.23, we also note that to transmit a program of the same size,

the time and energy required by MNP is much lower than that required by Deluge.

Placing Base Station(s).

Intuitively, by placing the base station in the center or adding more base stations,

we expect that the completion time would be significantly reduced, because the base

station(s) can serve as a starting point for each of the four 10x10 subnets. However,

56

“t?“ MNP 2.8KB

1A— MNP 5.6KB

-B- MNP 8.4KBé

E

E

o

I?

E
E 1500

F

c

2

§

3
a 1000

< a

E

J

8

s
I

5 <

500

E

l

. .

, J

4+ .‘._...._*U_,_
'*~»»»»»4

3%»

10x10 12x12 14x14 16x16 18x18 20x20

Network Dimension (nodes)

(8)

MNP 2.8KB

'A' MNP 5.6KB

3 -a- MNP 8.4KB

-I— Delu 4KB

E
n
e
r
g
y
C
o
n
s
u
m
p
t
i
o
n
P
e
r
N
o
d
e

(
J
)

 5E.

__.- ~e':->-~——T>~

MNP 5.6KB

-E- MNP 8.4KB

 ,,, ~—--sl.~~-~

10x10 12x12 14x14 16x16 18x18 20x20

Network Dimension (nodes)

(C)

Figure 2.23: Performance in a N x N network where N = 10, 12, 14,16, 18, 20. Inter-

node distance: 10 feet. Contention sleep period is 403 when N = 10, 12; contention

sleep period is 805 when N = 14, 16; contention sleep period is 1603 when N = 18, 20.

(a) Completion time vs. network size (b) Average active radio time per node vs.

network size (c) Average energy consumption per node vs. network size

57

it is not the case. As we have shown in Figure 2.12 , placing the base station in

the center (or adding more base stations at the corners) only reduces the completion

time by 12% (13%). Moreover, when putting the base station in the center (or adding

more base stations at the corners), the active radio time and energy consumption even

increase by 19% (14.3%) and 16.2% (12.3%) respectively.

The increase in active radio time is expected. Recall that the nodes that have

the highest active radio time are those spending the most amount of time in active

updating phase (cf. Section 2.2.2). When the base station is placed in the center or

multiple base stations are placed at the corners, the distance from the base station

to the farthest node is reduced by half, but the total reprogramming time is only

affected a little. This means that nodes are activated earlier, but finish at about the

same time; in other words, they spend more time in active updating phase. Therefore,

the active radio time is longer.

We show the propagation progress for sending a two-segment program in a. 20x20

network when the base station is placed in the center in Figure 2.24 (a)-(e). In

Figure 2.24(f), we show the corresponding segment completion sequence in a 10-

second window. Comparing with Figure 2.15 and Figure 2.16, we note that when the

base station is placed in the center of the network, the overlapping area of Segment

1 and Segment 2 is smaller. This shows that when network diameter is reduced,

pipelining effect is also reduced. There is a slow down in propagation when Segment

1 finishes and Segment 2 starts taking over. Recall one of the rules in pipelined

version of MNP is that whenever a node is aware that one of its neighbors needs

a lower segment or is going to transmit a lower segment, it will not advertise the

next segment (cf. Section 2.1.1). When the base station is placed in the center, it

has a larger neighbor set, thus is more severely suppressed. The base station starts

transmitting Segment 2 only when it observes that all the neighbors have received

Segment 1 and are ready to receive the next segment. Therefore, when data propagate

58

from the center to the edges, although it takes about 40% less time to propagate each

single segment, the reduction to the total completion time is not much due to the

latency between segments.

In Figure 2.25, we Show the propagation progress and segment completion se-

quence for sending a two-segment program in a 20x20 network when we put four base

stations at the four corners of the network. Code segments propagate fast as they

start from the corners, and slow down when they approach the center. This is because

when the source nodes are far away from each other, they transmit data in separate

communication cells simultaneously; as the propagation waves move to the center,

the sources nodes’ transmissions are suppressed by the sender selection algorithm, in

order to avoid collision.

The previous simulations are done on a dense network with 10 feet node separa-

tion. We have also done simulations on a sparse network with 15 feet node separation,

and the corresponding simulations for Deluge. We set the program size to 256 packets

(5.63KB) for MNP and 240 packets (5.28KB) for Deluge. In Tables 2.3 and 2.4, we

compare the performance of MNP and Deluge in a dense network and in a sparse

network with different placements of the base station(s). We found that placing the

base station in the center or adding more base stations at the corners reduces the

completion time. And, the reduction is more obvious in a sparse network than in a

dense network. For example, for MNP, moving the base station from the corner to

the center reduces completion time by 12% in a dense network, and reduces com-

pletion time by 22% in a sparse network. For Deluge, moving the base station from

the corner to the center reduces completion time by only 8% in a dense network, but

reduces completion time by 37% in a sparse network. In Tables 2.3 and 2.4, we also

show that MNP has lower energy consumption than Deluge, and it reprograms faster

than Deluge does in a dense network.

59

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

.
.

m
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
m

0
0
0

0
0
0
0
0
0
0
0
0
0
.
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
.
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
.

.
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
.
0
.

0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
:

0
0
0
0
0
0
0
0
0
0
.
.
.
.
.
.
.
0
0
w

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
=
fi

0
0

0
0
0
0
0
0
0

0
.
.
0
.
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
:

.
.
.
.
.
0
0
0
0
0
0
0

.
0
.
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
:

0
0
0
0
0
0
0
0
0
0
0
0
0
0

M
W
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

M
W

.
.
.
.
.
.
0
0
0
0
0
0
0
0
0
0
0
0
0
w

(
\
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
w

(
\

.
.
0
.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

H
m

0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

m
n

0
0
0
0
.
.
.
0
0
0
.
0
0
0
0
0
0
0
0
0
5

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5

m
m

0
0
0
.
.
.
.
.
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

W

0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

&

0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
.

0
0

0
0
0

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-
D

0
o

t

.
.

w
w

m
m

.0.

“
a
m
m
u
n
m
a
e
4
2

m
m
m
m
m
m
s
e
4
2

B
a
g
u
i
o
:

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

m
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
m

.

.
.
.
.
.
.
.
0
.
.
.
.
.
.
.
.
.
.

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

_

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

.

.
.
.
.
.
.
.
0
.
.
.
.
.
.
.
.
.

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

_

.
.
.
.
.
.
0
0
0
.
.
.
.
.
.
.
.
.

B
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6

_

.
.
.
.
.
0
0
0
0
0
0

.
_
.
.
.
.

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

a

.
.
.
.
.
.
0
0
0
0
0
0

.
.
.
.
.

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

n

0
0
0
0
0
0
0
.
.
.
.
.
.

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

n

0
0
0
0
0
0
0
0
0

.
.
.
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

n

.
.
.
.
.
.
0
0

0
0
0
0
0
.
0
0
.
0
m
)
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
w

\
l
n

.
.
.
.
.
.
.
.
0
0
0
0
0
0
0
0
0
0
0

a
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

C
.

.
.
.
.
.
.
.
0
0
0
0
0
0
0
0
0
.
0
0

(
\
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

(
\
_

.
.
.
.
.
0
0

0
0
0
0

0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

_

.
.
.
.
.
.

0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

_

.
.
.
.
.
.
.
D
D
.
D
.
U
D

5
a
n
D
D
D
D
D
D
D
D
D
D
D
D
U
D
D
U
D
m
u
—
O

_

.
.
.
.
.
.
.
0
0
.
.
.
.
.
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

_

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

H

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

B
D
D
D
U
U
D
D
D
D
U
U
D
D
D
D
D
D
D
G

n

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

n

0
r
0

n
u
8
6
4
2
0
8
6
4
2

n
u
8
6
4
2
0
8
6
4
2

n

6
‘
1

1
.
.

1
|

1
1

6
‘
1

1
1

1
1

n.

Figure 2.24: Propagation progress for sending a two-segment program in a 20x20

dense network. One base station is in the center. Inter-node distance: 10 feet. Pro-

gram size: 2 segments (256 packets). Contention sleep period: 80s. Total completion

time: 5363. (a) 100s (b) 2003 (c) 3003 (d) 400s (e) 5005 (f) segment completion se-

quence in a 10—second window. In (a)-(e), a node covered by an unfilled square means

that it has received Segment 1; a node covered by a filled square means that it has

received Segment 2.

60

 nnnnn--r—\nr—\nnr\nnr—1

 nnnn-

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
:
m

:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
=
m

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
:

0
0
0
0
0
0
0
0
0
.

0
0
0
0
0
0
0
0

=
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
=

0
0
0
0
0
0
0
.
.
.
.
.
0
0
0
0
0
0
0
6

:
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
=
fi

0
.
0
0
0
0
0
.
.
.
.
.
.
0
0
0
0
0
0

=
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
=

0
.
0
0
0
0
.
.
.
.
.
.
.
0
0
0
0
0
0

:
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
0
0
0
=

.
0
.
0
0
0
.
.
.
.
.
.
.
0
0
0
0
0
0

=
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
:

M

.
0
0
0
0

0
.
.
.
.
.
0
0
0
0
0
0
0

M
W
=
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
=

M
W

e
M
U

0
0
0
0
0
0
0
0
.
.
.
.
.
.
.
0
0
0
0
0
w
/
\
:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
=
m

/
\

m
(
\

0
0
0
0
0
0
0
0
.
.
.
.
.
.
.
0
0
0
0
0

=
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
=

T

0
0
0
0
0
0
0
.
.
.
.
.

0
0
0
0
0
0
0

=
0
0
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
0
:

0
0
0
0
0
0
0

.
.
0
0
0
0
0
0
0
0
0
0

:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
:

0
0
0
0
0
0
0
0
.
.
.
0
0
0
0
0
0
0
0
0

:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
:

0
0
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
0
0
0
5

:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
:
5

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
:

0
0
0
0

0
0
0
0
0
0
0
:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
:

0
0
0
0
0
0
0
0
0
0
0
0
:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
:

.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
:

0
0
0
0
0
0
0
0
0
0
0
0
:

0
0

“
w
w
n
m
w
w
s

w
m
u
u
w
a
s
.
.
.
‘

m
a
m
m
u
u
m
a
s
4
2

E
g
r
e
s
s
:

.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
:
m

:
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
.
.
0
.
0
0
0
0

0
0
0
:

:
0
0
0
0
0
0
0
0
0
0
0
0
0

”
0
0
0
0
0
.
0
.
.
.
.
.
.
0
0
0

0
0
0
:

:
0
0
0
0
0
0
0
0
0
0
0
0
0

”
0
0
0
0
.
.
.
.
.
.
.
.
0
0
0
0

0
0
0
:

:
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
.
.
.
.
.
.
.
.
.
.
0
0
0
0

0
0
0
0

:
0
0
0
0
0
0
0
0
0
0
0
0
0

.
.
.
.
.
.
.
.
.
.
.
.
.
.
0
0

0
0
0
0
6

:
0
0
0
0
0
0
0
0
0
0
0
0
0

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

0
0
0
0
0

:
0
0
0
0
0
0
0
0
0
0
0
0
0

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

0
0
0
0
0

:
0
0
0
0
0
0
0
0
0
0
0
0
0
0

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

0
0
0
0

:
0
0
0
0
0
0
0
0
0
0
0
0
0
0

.
.

0
.
.
.
.
.
.
.
.
.
.
.
.
.
.

0
0
0
0

:
0
0
0
0
0
0
0
0
0
0
0
0
0
0

.
0
0
.
.
.
.
.
.
.
.
.
.
.
.
.
.

0
0
0
0
w
1
1
:
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
.
.
.
.
.
.
.
.
.
.
0
0

0
0
0
0

C
:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
.
.
.
.
.
.
.
.
.
.
0
0
0

0
0
0
0

(
\
:
0
0
0
0
0
0
0
0
0
.
0
0
0
0
0
0

0
0
0
0
0
.
.
.
.
.
.
.
.
.
.
0
0

0
0
0
0

:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

.
0
0
0
0
.
.
.
.
.
.
.
.
.
0
0
0

0
0
0
:

=
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
.
0
0
0
0
.
.
.
.
.
.
.
0
0
0
0

0
0
0
:
5

=
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

.
0
0
0
0
0
0
.
.
.
.
.
.
.
.
0
0
0

0
0
0
:

:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
n

0
0
0
:

:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
:

:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
:

0
0
0
:

:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

O
.
0

8
6
4
2
0
8
6
4
2

n
u
8
6
4
2
0
8
6
4
2

n
u
8
6
4
2
0
8
6
4
2

1
1
1
1
.
1

6
‘
1
1
1
1
1

6
‘
1
1
1
1
1

Figure 2.25: Propagation progress for sending a two-segment program in a 20x20

dense network. Four base stations are placed at the four corners. Inter-node distance:

10 feet. Program size: 2 segments (256 packets). Contention sleep period: 1603.

Total completion time: 530s. (a) 1003 (b) 2003 (c) 3003 (d) 4003 (e) 5003 (f) segment

completion sequence in a 10—second window. In (a)—(e), a node covered by an unfilled

square means that it has received Segment 1; a node covered by a filled square means

61

that it has received Segment 2.

Table 2.3: The performance of MNP and Deluge in a dense network (inter—node

distance is 10 feet). 20x20 network. Program size: 256 packets (5.63KB) for MNP,

240 packets (5.28KB) for Deluge. For MNP, contention sleep period is 160 seconds

when the base station is placed at the corner, and 80 seconds when the base station

is in the center or 4 base stations are places at four corners.

MNP Deluge

BS at one BS in BSs at 4 BS at one BS in BSs at 4

corner center corners corner center corners

Completion time (s) 609 536 530 1114 1022 1183

Active radio time /node (3) 202 240 231 1114 1022 1183

Energy consumption /node (J) 3274 3804 3675 15732 14403 16757

Messages sent /node 84 99 109 181 124 273

Messages received /node 711 810 761 2463 1680 3300

Table 2.4: The performance of MNP and Deluge in a sparse network (inter-node

distance is 15 feet). 20x20 network. Program size: 256 packets (5.63KB) for MNP,

240 packets (5.28KB) for Deluge. For MNP, contention sleep period is 40 seconds.

MNP Deluge

BS at one BS in BSs at 4 BS at one BS in BSs at 4

corner center corners corner center corners

Completion time (s) 641 500 484 725 460 689

Active radio time /node (5) 163 164 157 725 460 689

Energ’ consumption /node (J) 2746 2761 2668 10365 6780 9899

Messages sent /node 160 155 170 174 173 210

Messages received /node 507 523 516 1132 1075 1259

Discussion: Contention Sleep Period

Our simulation results show that the performance of MNP varies when different

contention sleep periods are used. It suggests that we should manually configure

the contention sleep period based on the network density. It raises the question

whether an automatically adjusted contention sleep period should be used instead

of a manually determined one. To study this problem, we made a minor change to

MNP. A node in contention sleep wakes up periodically (every 8 seconds), listens to

the channel for a short amount of time (1 second), if, during this interval, it hears

an advertisement (or a request) that contains the same segment ID (or higher) as

the highest one it can provide, it goes back to sleep. Otherwise, it starts advertising

62

(or sends a request), and hence, contention sleep ends. In this way, nodes adaptively

adjust their contention sleep period based on their observed environment, which is

similar to the approaches used in Deluge (Trickle).

We simulated the modified algorithm in 20x20 networks with 10 feet inter-node

distance (dense networks) and with 15 feet inter-node distance (sparse networks).

The program size is 5.6KB (256 packets). We show the completion time, average

active radio time, average energy consumption of the modified algorithm (marked as

MNP adaptive) under different contention sleep periods in Figure 2.26 (for the dense

network case) and Figure 2.27 (for the sparse network case). For comparison, we also

draw corresponding performance of MNP and Deluge on the two Figures. It shows

that, with this modification, the reprogramming time and energy consumption are not

affected by the assigned contention sleep period (since the period can be dynamically

adjusted). In the dense network case (Figure 2.26), the modified algorithm (marked

as MNP adaptive on the Figure) has higher completion time, active radio time and

energy consumption than MNP when the contention sleep period is between 20 and

320 seconds, due to the increased message transmissions. In the sparse network

case (Figure 2.27), the modified algorithm performances similarly as MNP when the

contention sleep period is from 20 to 160 seconds.

If the network topology is unknown, we can always choose some default value

for contention sleep period. Since contention sleep period only specifies the degree

that transmissions should be suppressed, we expect that any value within 40 to 80

seconds range works reasonably well in all the network settings we have studied. In

many cases we do have some knowledge about the network topology and radio range,

we can utilize this knowledge to choose a more appropriate contention sleep period to

improve the performance of MNP, e.g., increasing the contention sleep period when

the network density is high.

63

 1500 v v v 1500

-e— MNP

4%- MNP Adaptive

 Deluge Deluge

31000*

§500 >

A
d
t
i
v
e
R
a
d
i
o
T
i
m
e

(
5
)

C
o
m
p
l
e
t
i
o
n
T
i
m
e

(
s
)

 [e- MNP

 a“ MNP adaptive

o 100 200 300 400 0 100 200 300 400

Contention Sleep Period (5) Contention Steep Period (3)

(a) (b)

‘l 6000

@— Miip De'ug"

+1 MNP Adaptive
 14000»

12000?

10000 ’

8000'

E
n
e
r
g
y

(
J
)

'w“ ‘-«- “1‘0”- g 0...... . ”M“. w... m-..”

4000 *

2000o 100 200 300 400
Contention Sleep Period (5)

(C)

Figure 2.26: 20x20 network. Inter-node distance: 10 feet. Program size: 256 packets

for MNP and MNP adaptive, 240 packets for Deluge. (a) completion time (b) average

active radio time per node (c) average energy consumption per node.

2.3 Discussion

In this section, we list the questions regarding MNP and try to provide answers.

Question: Since all nodes that receive an advertisement send a request (if they

need the segment that is advertised), can it lead to significant collisions?

Answer: Before a node sends a request, it delays for a short random interval.

This reduces message collisions. If a lot of sensors respond to a node’s advertisements,

the node does not need to record all of them (it can record up to 16 requesters, which

is normally enough). In the worst case, the sender that is elected by the sender

selection algorithm might not be optimal. But we do not guarantee it to be. Our

64

1000 v ‘r . 1000

-e- ~1pr

-+- MNP adaptive

A Delu e ’u? Delu
a ,_ , f"- . . - 9 v 9°

0 39/ ‘5’
.§ 600- ,3 600

l- 9

.3 '3

3 400» J E 400L

5
.2.

0 2

200»

-€- MNP

~t—~ MNP adaptive

0O 100 200 300 400 G0 100 200 300 400

Contention Sleep Period (5) Contention Sleep Period (3)

(a) (b)

12000

10000. .DelUQO

8000»

5.

5 6000*

8
u:

-9- MNP

0 ~40 MNP adaptive

0 100 200 300 400

Contention Sleep Period (5)

(C)

Figure 2.27: 20x20 network. Inter-node distance: 15 feet. Program size: 256 packets

for MNP and MNP adaptive, 240 packets for Deluge. (a) completion time (b) average

active radio time per node (0) average energy consumption per node.

simulation results Show that it works well in practice.

Question: MNP provides several parameters that can be tuned. How is perfor-

mance affected if these parameters are chosen suboptimally?

Answer: Our simulation results show that even if the tunable parameters are

chosen suboptimally, the performance of MNP is still reasonably well. For example,

in a 20x20 dense network, the optimal contention sleep period is 160 seconds, but

choosing any value in the range of 40 seconds to 320 seconds only affect the per-

formance by maximally 12.9% (respectively, maximally 24.4%) in completion time

(respectively, energy consumption).

65

When the network is unknown, we can use default values for parameters, or dy-

namically adapt parameters based on the observations from the network. Although

the parameter values chosen are probably suboptimal, we can still preserve a large

portion of energy savings. When network characteristics are known in advance, the

designer can utilize that information to minimize energy usage (respectively, comple-

tion time) by choosing appropriate parameter values.

Question: Does MNP require full control of the radio during reprogramming?

Answer: While our simulations assume that there is no other traffic during

reprogramming, it is possible that other traffic may exist. In the context of repro-

gramming, however, in most situations, the old application is to be replaced by a new

one. Hence, it is reasonable to assume that the previous application is suspended.

As long as the traffic from previous program is low, we expect that performance of

MNP would not be significantly affected. In particular, such traffic may cause some

additional packets of new program to be lost due to collision. However, if the rate of

messages sent by previous application were low, it would not affect performance of

MNP significantly.

Question: Does MNP depend on a specific MAC layer?

Answer: No. We have used the standard CSMA MAC layer provided by TinyOS

platform. If the MAC layer that provides TDMA implementation (or 80215.4), it

would in fact improve the effectiveness of sender selection, as the MAC layer would

improve the probability that a message gets to its destination. Hence, with such MAC

layers, MNP will continue to work.

2.4 Chapter Summary

In this chapter, we presented a multihop network reprogramming protocol, MNP,

that is targeted at Mica2/XSM motes. MNP uses a sender selection algorithm to

66

reduce message collision and the hidden terminal problem. When multiple sensor

nodes compete to become the sender, the sender selection algorithm attempts to find

a node whose transmission of the program code is likely to have the most impact, and

it tries to ensure that at a time at most one sender is active in any neighborhood.

Also, MNP propagates the code in a pipelined fashion.

To improve energy efficiency of MNP, we identify the conditions that nodes can

be put to sleep. In MNP, some nodes are selected to transmit the code whereas others

can “sleep” to save power and to prevent interference. We call it contention sleep.

Moreover, a node is put to sleep if none of its neighbors requests for the segment it

is advertising. This type of sleep is called noreq sleep, and is used to reduce the idle

listening during maintenance phase. We also introduce an optional init sleep to reduce

the initial idle listening at the beginning of reprogramming. Through simulation on

TOSSIM, we show the effect of varying contention sleep period, and the improvement

on energy efficiency by adding noreq sleep and init sleep to MNP.

Furthermore, we studied the choice for the appropriate contention sleep period

so that it effectively reduces message collision, without introducing too much latency.

We conclude that the sleep period should be chosen according to network density.

Our simulation showed that MNP performs well at any program sizes, network sizes,

and network densities.

Moreover, we can adjust the power level used in the advertisement message based

on the remaining battery level. Thus, a node whose battery level is low (e.g., if

it became a sender in previous reprogramming) advertises with lower power level.

Therefore, it is likely to have only a small number of requesters and, hence, it will

lose in the sender selection. It follows that with this modification, the probability

that a sensor node forwards the code to others depends on its remaining battery

level. Therefore, the responsibility of transmitting the code will be evenly divided

among the sensors.

67

MNP was demonstrated in the DARPA NEST team meeting in Columbus, OH,

May 2004 and during the ExScal project demonstration in Avon Park, FL, December

2004 [61]. In the first demonstration, we deployed 50 Mica2 sensors on a grass field

and reprogrammed all the sensors with Lites code [1]. In the second demonstration,

we reprogrammed a network of 100 XSM sensors with a program of 22.4KB in 7—8

minutes.

Although MNP was designed as a code dissemination protocol, it can be used

to disseminate any sort of data. By dividing the data into small segments, we allow

incremental data updates. Moreover, in the scenario that several subsets of the net-

work exist, rather than sending the data to the entire network, we can send different

types of data to several disjoint or non-disjoint subsets of the network. In this case,

our sender selection algorithm needs to be extended to take into account all these

messages types, for example, giving different priorities to different types of messages.

68

Chapter 3

Gappa: Gossip Based Multi—channel

Reprogramming for Sensor

Networks

MNP (as well as all other existing reprogramming protocols, such as [23, 30,47,

60]) is designed for the scenario that one (or a few) sensor, which has the entire new

program, is dropped on the field. This sensor then communicates the new program

to the remaining sensors in the network. Another way suggested for reprogramming

is with the help of an UAV (Unmanned Ariel Vehicle). Specifically, in this approach,

an UAV flies over the network and communicates the new code to the sensors.

The UAV divides a program into multiple segments, and transmits the segments

of code to the sensors when it flies over the network. Clearly, it is desirable that the

contact time required for the UAV is short. Hence, it is likely that the sensors only

get a part of the code from the UAV. One possible scenario is that at any time, only

the sensors that are directly below the UAV receive the segment transmitted by the

UAV at the time. Another possible scenario is that the UAV is equipped with a radio

device that can communicate at multiple frequencies at once. In this case, the UAV

69

can transmit each segment on a different frequency. The sensors themselves choose

one of these frequencies and receive the corresponding segment.

In both scenarios mentioned above, each sensor (or a subset of sensors) is asso-

ciated with one of the segments from the new program. The sensors then need to

communicate the remaining segments with each other utilizing multiple radio chan-

nels. We denote this problem as the gossip based multi-channel reprogramming of

sensor networks. In this approach, sensors are able to split the network traffic among

different channels by exploiting multi-channel resources. Moreover, there is data re-

dundancy, since every segment is associated with many sensor nodes. Compared to

the type of communication that originates from one or a few seed nodes, this gos-

sip based communication has the potential to enable higher concurrency and better

utilization of channel capacity.

In this chapter, we propose Gappa, a gossip based multi-channel reprogramming

protocol, for this gossip based reprogramming. Gappa utilizes multiple channels to

rapidly and reliably reprogram all the sensors in the network. Based on channel allo-

cation policies, we have two variations of Gappa, fixed-channel Gappa (fc-Gappa) and

variable-channel Gappa (vc-Gappa). fc-Gappa uses a simple fixed channel allocation

scheme, i.e., each segment is assigned one channel. On the other hand, in vc-Gappa,

each sensor randomly selects a channel from all the available channels. The variable

channel allocation scheme in vc-Gappa is a little more complicated than the fixed

channel allocation, however, it allows better utilization of the radio channels.

The features of Gappa are as follows.

1. Gappa uses a multi-channel sender selection algorithm, which tries to guarantee

that on each channel, only one sender is selected to transmit in a neighborhood

at a time. Moreover, the algorithm attempts to select the sender whose trans-

mission is expected to have the most impact on each channel. To better utilize

multi-channel resources, if a node loses in the sender selection on one channel,

70

it will compete to transmit code on a different channel that is available. In this

way, Gappa propagates code rapidly.

. Gappa conserves energy by putting a sensor node to sleep if all the channels that

it attempts to transmit code on are busy, and it is not interested in receiving

the code segments that its neighbors are transmitting.

. To enable gossip based communication, Gappa allows sensor nodes to receive

segments that are out of order. There is less dependency on special nodes

since every node that has a segment is a potential sender. This, combined with

multi-channel usage and pipelining technique, leads to high concurrency in data

exchange.

. We propose two variations of Gappa that use different channel allocation policies,

i.e., fixed channel allocation and variable channel allocation. We show that the

variable channel allocation policy works better than the simple fixed channel

allocation policy due to the fact that the sensors can utilize all the available

channels.

We implement Gappa (the basic version and its extension) in TinyOS [22, 38]

platform, and evaluate its performance using TOSSIM [37]. Through simulation, we

compare with MNP and Deluge [23], and show that Gappa reduces the reprogramming

time and energy consumption significantly. We also show that vc-Gappa performs

better than fc-Gappa due to better channel utilization.

In Section 3.1, we present the gossip based multi-channel reprogramming protocol

Gappa. We consider fc-Gappa, which uses a simple fixed channel allocation policy, in

this section. In Section 3.2, we propose vc-Gappa that uses variable channel allocation.

In Section 3.3, we evaluate the performance of fixed-channel Gappa (fc-Gappa) under

different network settings. We also present the performance comparison with MNP

71

and Deluge. In Section 3.4, we present the performance enhancement using variable

channel allocation. We summarize the chapter in Section 3.5.

3.1 Protocol Description

In this section, we present Gappa. We focus on the variation of Gappa that uses

fixed channel allocation (called fixed-channel Gappa, or fc-Gappa). The sensor nodes

are equipped with a single radio interface, thus can communicate on one channel at a

time. But they can switch to different channels at run time. The new program image

that is to be deployed is divided into n segments (n is normally a small number from 1

to 20). Each segment has a fixed number of packets. We assume 1 that the number of

available non-overlapping channels is at least it + 1. We select it + 1 non-overlapping

channels, which are indexed from 0 to 17.. Without loss of generality, we define channel

0 as the control channel and channels 1 to n as the data channels. The control channel

is used for transmitting the control messages (e.g., advertisements, requests), while

the data channels are used for the actual data transmissions. Each data channel

corresponds to one segment, i.e., segment I: (1 S k S n) is always transmitted on

channel It. The control channel is also the default channel, i.e., sensor nodes stay on

channel 0 unless they are transmitting or receiving data packets of a certain segment.

Before we describe the algorithm in detail, we illustrate it using an example in

Figure 3.1. The numbers marked on the sensor nodes represent the segments they

have received. The edges represent communication links. We note several things from

observing this simple network.

First, the nodes that have overlapping communication ranges cannot transmit

the same segment simultaneously as it will cause significant collision on the shared

data channel. For example, nodes A and B should not transmit segment 3 at the

1Note that this condition holds for most sensor platforms that are popularly used. For example,

Mica2/Mica2Dot motes operating in the 902-928 MHz frequency band have 54 channels on which

they can transmit [9].

72

Figure 3.1: Example sensor network

same time.

Second, on each channel, the choice of the sender that transmits next is not

uniform. If both nodes A and B want to transmit segment 3, B is a better choice than

A, since more nodes in the neighborhood are expected to benefit from the transmission

of node B.

Third, since sensor nodes can only communicate on one channel at a time, a node

that has multiple segments must select one segment as the preferred segment, and

will transmit this segment if it is selected as the sender. The choice of the preferred

segment is decided by the status of its neighbor nodes. For example, node D might

choose segment 2 as the preferred segment, because more nodes in its neighborhood

request for segment 2 rather than segment 3. However, if D finds that E has decided

to transmit segment 2, D cannot transmit segment 2 simultaneously as it will cause

collision with E on channel 2. In this case, transmitting segment 3 is a feasible

alternative for node D.

Our algorithm consists of two parts: the control logic on the control channel and

the operations on the data channels. We present these two parts in Section 3.1.1 and

Section 3.1.2, respectively.

73

3.1.1 Operations on the Control Channel

Initially, all the sensor nodes are communicating on the control channel. Nodes

perform two major tasks on the control channel: decide which nodes should switch

to a data channel to perform data communication; and identify the nodes that are

unlikely to contribute or receive data shortly and put them to sleep. The switching

policy tries to guarantee that for each segment, at most one node in a neighborhood

is selected to transmit the segment in the corresponding data channel. Moreover, it

tries to select the sender that is expected to have the most impact. To achieve this

goal, we extend the sender selection idea from MNP (cf. Chapter 2).

Multi-channel sender selection algorithm. In our algorithm, nodes perform

sender selection using advertisements and requests. Each node maintains a sequence

of <SegID, Rethr> pairs that indicate the segments it has received and the corre-

sponding numbers of distinct requests (from different requesters) for those segments

the node has received so far. Rethrs for all the segments are set to 0 when a node

starts advertising. When a node receives a request that is destined to it from a “new”

requester, it increments the Rethrs for the requested segments by one. Additionally,

a node maintains a preferred segment ID, which is the segment that is requested by

most number of nodes, i.e., has the highest Rethr. The preferred segment ID is

set to 0 if the node has not received any request, and is recalculated whenever the

Rethrs change. In the case that there are more than one segments have the highest

Rethr, the preferred segment is randomly selected from these segments.

A node advertises the segments it has received, its preferred segment, as well as

the Reth'rs for all the received segments. Hence, an advertisement message includes

the sequence of <SegID, Rethr> pairs, the preferred segment ID, and other informa-

tion (program ID and size, source ID). When a node, say j, receives an advertisement

message from a node, say k, if j needs any of the segments that are advertised, then

it sends a request to k. The request message sent by j contains not only the IDs of

74

the segments j expects to receive from k, but also k’s preferred segment ID and the

corresponding ReqC’tr of k for that preferred segment (computed from the sequence

of <SegID, Rethr> pairs that k sent in the advertisement message). While the re-

quest is intended for k, it is sent as a broadcast message with k as one of the fields.

Thus, when another node, say I, receives the request, I is aware of the fact that k is a

potential sender. This allows us to count for the hidden terminal effect where I could

not have received the advertisement message from k.

We note that a node sends a request to all senders that send the advertisement

messages containing the code segments the node is interested in. This ensures that a

node is aware of all the requesters who are likely to receive the code if it is chosen to

transmit the code. Moreover, the sender selection is performed only among nodes that

have the same preferred segment. (For example, if a node, say k, has preferred segment

3, and its neighbor I has preferred segment 1, they can transmit simultaneously on

different channels (channel 3 and 1) without interrupting each other.) If k loses to 1

that has more requesters for the preferred segment, It takes the two actions in Figure

3.2.

1. Mask the preferred segment, and check to see if it has any segments

that are not masked. If so, start advertising the remaining segments

(and try to transmit on a different channel that is currently available).

Otherwise, turn to idle stage.

2. Reset the Rethrs of all its segments to 0. Reset its preferred seg-

ment ID to 0. (This is due to the fact that some of the old requesters

of this node may be receiving code from the node that wins the sender

selection on a different channel.)

Figure 3.2: Actions taken by a node that loses in the sender selection.

A node on the control channel is in one of the two stages: advertise stage and idle

stage. Initially, if a node has a segment that it can advertise, then it is in advertise

stage; otherwise, it is in idle stage.

75

Tasks in advertise stage. A node S in advertise stage broadcasts an adver-

tisement message every random interval (we use random interval to avoid message

collision). It reacts to the requests, advertisements, and “SwitchChannel” messages

as described next.

1. Actions taken by an advertising node on receiving a request. Every time S

receives a request message, it checks to see if this message is destined to it.

If the message is destined to it, and is from a “new” requester that S has

not seen before, S increments the Rethrs of the requested segments by one,

and recalculates its preferred segment ID. If the request message is destined to

another node Q, Q has the same preferred segment-ID as S and Q has more

requesters, then S loses in the sender selection, and will take the actions in

Figure 3.2.

2. Actions taken by an advertising node on receiving an advertisement. When

S receives an advertisement message from a node Q, if S needs any of the

segments Q advertises, S broadcasts a request message destined to Q after a

short random interval (to avoid collision with other request messages sent to

Q). As mentioned earlier, it puts the ID and ReqC'tr of Q’s preferred segment

in the request message. In addition, S also checks to see if it loses to Q in the

sender selection algorithm. If so, S takes the actions in Figure 3.2. Note that

this sender selection procedure cannot cause deadlock, as the node with the

highest Rethr of the preferred segment - with appropriate tie breaker on node

ID - will succeed.

3. Actions taken by an advertising node on receiving a “SwitchChannel” message.

If S receives a “SwitchChannel” message from a node Q, which indicates that

Q is going to transmit its preferred segment in the corresponding data channel.

If S is interested in receiving the segment from Q, then S switches to the data

76

channel for that segment. Otherwise, if the segment that Q is going to transmit

is the same as S’8 preferred segment, which means that S has lost the sender

selection for this segment, then S takes the actions in Figure 3.2.

The advertise stage ends when a node has sent a given number of advertisements

continuously (without resetting Rethrs or switching channels). At this point, if it has

received one or more requests, it broadcasts “SwitchChannel” messages and switches

to the data channel that is assigned to its preferred segment. Otherwise, it turns to

idle stage.

Tasks in idle stage. A node in idle stage can choose to keep its radio on

to listen to the channel, or turn its radio off to save energy. Thus, a node in idle

stage is in one of the two states: listen state (with radio on) and sleep state (with

radio off). The length of time t a node stays in idle stage, and whether it keeps its

radio on (listen or sleep) when it is idle, are decided by the status of the node and

its observation of neighbors. Specifically, a node maintains two boolean variables:

TendToReceive and TendToSend, which indicates the node’s intention to receive or

transmit a segment. TendToReceive is set to false initially and when a node has

successfully received a complete segment. When the node hears an advertisement,

request, or “SwitchChannel” message, it checks to see if it needs any of the segments

that are advertised (or requested) in the message. If so, the node sets its TendToRe-

ceive to true. TendToSend is set to false when a node starts advertising. When the

node hears an advertisement or request message, if it finds that it has some segments

that other nodes do not have (requested or not advertised), it sets its TendToSend to

true.

When a node enters idle stage, if it has received the entire program, or its Tend-

ToReceive is false, then it goes to sleep state. Otherwise, it is in listen state. A node

in sleep state does not sleep through the entire idle stage. Rather, it takes short

naps (say, 4s), wakes up and checks the channel for a short amount of time (say,

77

0.58) between naps. If messages received during this interval causes TendToReceive

to become true, the node turns to listen state, and keeps its radio on for the rest of

time (in idle stage).

The length of idle stage t is exponentially increased, starting with a minimum

t, to a maximum ta. This allows us to dynamically adjust the rate of advertising:

nodes advertise aggressively when reprogramming is actively in progress and advertise

slowly to save energy when most nodes have received the code. t is reset to t; in two

situations. First, if a node switches to a data channel (to transmit or receive data),

when it returns to the control channel, it will reset t to t). Second, if a node receives

a request, or its TendToSend becomes true (i.e., it identifies potential requesters), it

sets t to t,.

Although a node in idle stage does not advertise or participate in sender selection,

it still sends requests or switches channel when needed. When a node S is in listen

state, it reacts to the advertisements and “SwitchChannel” messages as described

next.

1. Actions taken by a node in listen state on receiving an advertisement. If S

receives an advertisement message that advertises segments it is interested in,

S broadcasts a request message destined to that advertising node.

2. Actions taken by a node in listen state on receiving a “SwitchChannel” message.

If S receives a “SwitchChannel” message that contains the ID of the segment S

is interested in receiving, S switches to the data channel for that segment, and

as a result, the idle stage ends.

3.1.2 Operations on Data Channels

When a node S decides to become a sender, it broadcasts a “SwitchChannel”

message for a few times, then switches to the data channel that is assigned to its

78

preferred segment. When a neighbor node hears a “SwitchChannel” message from S,

if it needs the segment, it will switch to the corresponding data channel, and turn to

download state.

We note that although the sender selection algorithm attempts to keep only one

active sender in a given neighborhood on each channel, it is possible to have multiple

active senders due to time-varying link properties. Hence, when S enters the data

channel, it listens to the radio for a short amount of time (say, ls), which we call pre-

forward state, before it starts forwarding data. If S hears any message when it is in

pre—forward state, it realizes that another node is currently transmitting data on that

data channel. Hence, it will mask the segment it is going to transmit (to ensure that

it will not reenter this channel immediately), return to the control channel, and start

advertising the remaining segments. In this case, those nodes that have followed S to

this data channel (switched to this data channel after receiving S’s “SwitchChannel”

messages) are left on this channel. If the nodes are able to receive packets from

the current sender, they will stay on this channel and receive data from the current

sender. Otherwise, they will return to the control channel after a time out.

Gappa uses the a similar loss recovery mechanism as MNP. Each packet has a

unique ID. Each node maintains a bitmap, which we call Missing Vector, for each of

the segments it is receiving. Each bit in a Missing Vector corresponds to a packet.

All bits are initially set to 1. When a node receives a packet in a segment for the

first time, it stores that packet in EEPROM (external storage for motes), and sets

the corresponding bit in the Missing Vector for that segment to 0. In this way, we

guarantee that each packet in a segment is written to EEPROM only once. Note that

Gappa allows nodes to receive segments that are out of order. Thus, a node might have

received several incomplete segments. It is necessary for a node to maintain bitmaps

(Missing Vectors) for all the segments it has not completely received. For simplicity,

we assume that the Missing Vectors are in memory. We note that the extension for

79

storing them on EEPROM and loading only the Missing Vector for the segment that

is being received in memory is straightforward.

Each node also maintains a Forward Vector, which is a bitmap of the segment

that it is going to transmit, and is an indicator of the packets the node needs to send.

When the pre-forward stage times out, the sender node S turns to forward state, and

broadcasts a “StartDownload” message several times. S includes its ForwardVector,

which is initially set to 0 (i.e., all the bits are set to 0), in the “StartDownload” mes-

sage. When a node hears a “StartDownload” message, it waits for a short random

interval (to avoid collision with transmissions from other requesters), checks to see if

the Forward Vector contained in the “StartDownload” message has already included

all the packets it needs. If so, it keeps silent. Otherwise, it sends a “RequestPackets”

message to S. The “RequestPackets” message contains its loss information (Miss-

ing Vector) for this segment. When S receives a “RequestPackets” message, it unions

its Forward Vector with the Missing Vector contained in the message. This updated

Forward Vector is included in the “StartDownload” message that S sends next time.

In this way, S’s neighbor nodes are aware of the packets S is going to send, and hence,

will not send requests repeatedly. We restrict the length of the segment to be no longer

than 128 packets, so that the maximal size of Missing Vector and Forward Vector is

only 16 bytes, and thus fits into a radio packet.

After S has transmitted the “StartDownload” message for a few times, it starts

transmitting the packets indicated in its Forward Vector. The download process ends

when the receiver receives an “EndDownload” message from the sender. At this point,

if the node has successfully received the whole segment, it includes the segment in the

sequence it will use in future advertisements. When the download process ends, both

the sender and the receivers return to the control channel, and restart advertising.

It is possible that the receiver never gets the “EndDownload” message. The

reason can be the sender dies or returns to the control channel during pre-forward

80

stage, or the “EndDownload” messages collide with other messages. To avoid being

stuck in download state, a node in download state always sets a timer when it is

waiting for the next packet. If the timer expires, it returns to the control channel.

As we mentioned earlier, a node masks a segment when it loses in the sender

selection for that segment, or when it detects a busy data channel in pre-forward

state. In both cases, the node cannot advertise or transmit this segment until the

other node has finished transmitting the segment. Since this node does not know the

exact time when the other node finishes transmitting, it keeps the segment masked

for a certain amount of time. The mask bits are cleared when a node turns to idle

stage or starts forwarding packets on a data channel.

3.1.3 The State Machine

In Figure 3.3, we show an overall picture of Gappa (fc-Gappa). Gappa operates

as a state machine. Also, pseudo code of tasks in advertise stage on control channel

can be found in Figure 3.4.

3.2 Variable Channel Allocation

The fixed-channel Gappa (fc-Gappa) assigns each segment a separate channel.

Although this approach is simple and straightforward, sensors do not make full use of

the available channels. Consider the scenario that two neighboring sensors intend to

transmit the same segment. As the two sensors compete for the same radio channel,

only one of them is selected to transmit data at a time, even though multiple channels

are available. To make better use of the available channels, we make the following

modifications to the algorithm in Sections 3.1.1 and 3.1.2.

1. A sensor randomly selects a data channel among all the available (not masked)

data channels, and includes the channel number in its advertisement and

81

Control (l'hanncl

Idle Stage

Receive Adv &

Nccd scgs/

(wakeup periodically)

TcndToRcccivc=trucl

end ch

. \ Rcccivc

SwitchChanncl"

J Need seg/

TcndToRcccive

TcndToRcccivc Time out/

=truc/

_ __ _ _ _. _ _. _ _ l _____________

(Adv N times &

No ch) or

(all the segments Receive

are "1851‘ch Receive Req (to ”SwitchChanncl"

me)/ Increase 8‘ Need 5°

Receive Adv or Req or chCtrs

"SwitchChanncl" & losc ‘ Advertise

in scndcr sclection/

mask Prcfcheng, reset -

chCtrs Receive Adv

& Need segs/

Send Req

Adv N times &

Prcfchcng.chCtr >0/

Broadcasts

"SwitchChannel"

 Advertise Stage

A Data Channel

Rcccivc data packet/

store nccdcd packet,

wait for next packet

Download

Receive

”StartDownload"

& need more

pakccts/ Scnd

"chucstPackct"

Receive ”EndDownload"

or wait for next packet

time out! reset chCtrs

Receive

"chucstPacket'V

Finish update F0 ardVector

forwarding - Send

segment! reset segment

R oCtrs Forward "‘ ketby

packet

Hear transmission/ I

ask PreferSeng,

rcsct chCtrs Time out/ Send

"StanDownload"

Pro-Forward

Figure 3.3: Gappa (fc-Gappa): the state machine.

“SwitchChannel” messages.

2. When a sensor sends a request to an advertising node, it includes the data

channel number of the advertising node in the request message.

3. In Figure 3.2, the first action taken by a sensor that loses in the sender selection

needs to modified as follows.

0 Mask the winner’s data channel, stop for a while, and restart advertising.

When a sensor restarts advertising, it checks to see if its data channel is

masked. If so, it randomly selects another data channel that is available.

If all the channels are occupied, it turns to idle stage.

82

Figure 3.4: Pseudo Code for Tasks in Advertise Stage on Control Channel

Broadcast an advertisement message every random interval

After advertising N times (without resetting Rethrs or switching channels):

if (my. PreferSegID.Rethr > O)

Broadcast "SwitchChannel" messages. switch to Channel(my.PreferSeng).

else

Enter idle stage.

endif

(a)

if a request message Requg arrives

if (Requg.DestlD == my.ID)

if (IsNew(Requg.$ource/D))

Increment Rethrs of the requested segments by 1. update my.PreferSeng.

endif

else //the message is destined to some other node

if (Requg.PreferSeg/D.Rethr > 0) and (Requg.PreferSegID == my. PreferSeng) and

((RequgPreferSeg/D.Rethr > my. PreferSeg/D.ReqCtr) or

(RequgPreferSegIDRethr == myPreferSeg/DRethr) and (Requg.DestID> my.ID))

Mask my. PreferSeg/D. reset all Rethrs to 0. my. PreferSegID = 0

if (there are segments not masked)

Restart advertising the remaining segments.

else

Enter idle stage.

endif

endif

endif

endif

(b)

if an advertisement message Adesg arrives

(b1)

if (Need(any of Adesg.$egIDs))

Prepare request message Requg

Requg.DestlD = Adesg.$ourcelD

Requg.PreferSeg/D = AdesgPreferSeng

Find Adesg.Prefer$eg/D.Rethr from the <SegID, Rethr) pairs contained in Adesg

Requg. PreferSegID. ReqCtr = Adesg. PreferSeng. ReqCtr

Send Requg after a short random time

endif

(b2)

if (AdesgPreferSeg/D.Rethr > O) and (AdesgPreferSeg/D == my. PreferSeg/D)

((AdesgPreferSeg/D.Rethr > my. PreferSegID.Rethr) or

(Adesg.PreferSeg/D.Rethr == my. PreferSegID.Rethr) and (Adesg.$ourceID> my. ID))

Mask my. PreferSegID, reset all Rethrs to 0, my. PreferSeg/D = 0

if (there are segments not masked)

Restart advertising the remaining segments.

else

Enter idle stage.

endif

endif

endif

c

if a “SwitchChannel” message Switcthg arrives

if (Need(Switcthg.$eg/D))

Switch to Channel($witcthg.$egID)

else if (Switcthg.$eng == my. PreferSeg/D)

Mask my. PreferSeg/D, reset all Rethrs to 0. my. PreferSeg/D = 0

if (there are segments not masked)

Restart advertising the remaining segments.

else

Enter idle stage.

endif

endif

endif

83

4. On a data channel, if a sensor in pie-forward stage hears any message, which

means that another sensor is transmitting code on that channel, it masks the

channel, and returns to the control channel. Later when it starts advertising

in the control channel, it randomly selects a different data channel that is not

masked.

We Note that there are two major changes in variable—channel Gappa (or vc-

Gappa). First, the data channel is randomly selected, and is not related to the seg-

ments a sensor has. This allows maximal utilization of the available channels. Second,

when a sensor loses in the sender selection algorithm, instead of masking the segment,

it masks the data channel. In other words, the sensor can transmit the same segment

on a different channel. Hence, a sensor always advertises all the segments it has. Also

note that if a sensor loses in the sender selection algorithm, it needs to pause for a

short duration before it restarts advertising. This duration allows the winner of the

sender selection, as well as its followers, to switch to its data channel without being

interrupted.

3.3 Evaluation

We implement Gappa on TinyOS platform, and evaluate it using TOSSIM [37].

Radio transmission in TOSSIM is simulated as follows. Each node maintains a vari-

able radi0_active, which is set to 0 at the initial state. Every time a node transmits

a bit, it increments the radi0-active values of all its neighbors. In a lossy model, the

transmitted bit can be flipped if a bit error occurs. When a node finishes transmit-

ting, it decrements the radi0_active values of all its neighbors. A node hears a bit if

its radioactive value is 1 or greater. Although TOSSIM only models radio transmis-

sion on a shared channel, we can make a few changes so that it also simulates radio

transmission on multiple channels. Towards this end, each sensor node maintains

84

an additional frequency variable, which is the channel number the node is currently

communicating on. When a node transmits or stops transmitting, it only modifies

(increments or decrements) the radi0_active values of those neighbors that are on the

same frequency. Moreover, when a node switches to a different channel (i.e., changes

its frequency variable), its radio_active variable is reset to 0. Note that the switching

channel action can be taken only when the radio transmission of the node on the

current channel is completed.

We calculate the energy consumption by counting the operations performed dur-

ing reprogramming. (Alternatively, we can also use PowerTossim [58] to evaluate

power consumption. However, since each simulation lasts for tens of hours, the trace

file generated during simulation, which is required by PowerTossim in order to com-

pute the energy usage, becomes too large (of the order of several gigabytes) to process.

) We use Equation 2.1 from Section 2.2.2 in Chapter 2 to compute the energy con-

sumption.

In this section, we evaluate fixed-channel Gappa (fc-Gappa), and compare it with

MNP (cf. Chapter 2) and Deluge [23]. In the current implementation, each segment

has 128 data packets. t, and t" are set to 16 seconds and 512 seconds respectively.

The simulations are performed in a grid topology. Due to the fact that the execution

time of each simulation is of order of tens of hours, we do not provide confidence

intervals. In Sections 3.3.1 and 3.3.2, we show how the algorithm performs under

various network settings, specifically program sizes, network densities, network sizes.

In these sections, we assume that initially all the sensors have received one segment

(which is randomly decided) from an UAV. In Section 3.3.3, we consider the situation

where only a subset of the sensors initially have a. segment.

3.3.1 Varying Program Sizes and Network Densities

Simulation setup 1. (Dense network) In the first set of simulations, we

85

set the distance between every two neighbor nodes to 10 feet (a dense network). The

simulations were performed in a 20x20 grid topology. We run fc-Gappa, MNP and

Deluge under the same network settings. For MNP and Deluge, we assume that ini-

tially only the base station, the node at the bottom-left corner, has the new program.

For fc-Gappa, every node has one segment (randomly chosen from 1 to n, suppose the

program has n segments) initially. In Figure 3.5, we compare the completion time,

average active radio time per node, and the average energy consumption per node of

these three protocols, under different program sizes. We find that with the increase

of program size, the completion time, average active radio time per node, and aver-

age energy consumption increase for all these protocols. Among the three protocols,

fc-Gappa has the lowest completion time and energy consumption. To disseminate a

program of the same size, fc-Gappa saves 60-65% completion time and 22-33% energy

compared to MNP, and saves 81-84% completion time and 86-88% energy compared

to Deluge. In Figure 3.6, we show the average number of transmissions and recep—

tions per node in there three protocols. We notice that the number of transmissions

of fc-Gappa is higher than the other two schemes. This is expected, as gossip based

communication allows every node in the network to talk to each other, rather than

require most nodes to listen to a few elected senders. Moreover, in fC-Gappa, multiple

senders are transmitting code in different data channels at the same time, while a

receiver can only receive code in one data channel at a time. As a result, redundancy

increases. Although the overall traffic increases, the traffic is diverted to different

channels.

Simulation setup 2. (Sparse network) We repeated the same set of simula-

tions for fc-Gappa, MNP and Deluge on a sparse network, where the distance between

two neighbor nodes is 15 feet. We show the completion time, the average active ra-

dio time per node, and the energy consumption per node of these three protocols in

Figure 3.7. The results are similar. To reprogram the network with a program of the

86

2500 . - . 2500 . .
—A— Deluge -A- Deluge

ti}— MNP

2000. -B- fc-Gappa _ 2000.

e E

i: 1500» + r: 1500-

c .9

a a
31000- ‘1‘, 1000»
E ,>
o

o 3
500* 500.

1:0 15 20
Program Size (KB)

(a) (b)

x10‘

.90
.
) fl

-A—j Deluge

e— MNP

—B— fc-Gappa

(
A
)

E
n
e
r
g
y
C
o
n
s
u
m
p
t
i
o
n
P
e
r
N
o
d
e

(
J
)

a
N

-.
*

'
9

'9
b:

.
o
0
1

10 15 20

Program Size (KB)

(C)

Figure 3.5: Inter-node distance: 10 feet. (a) completion time (b) average active radio

time per node (c) average energy consumption per node.

same size, fc-Gappa saves 62-70% completion time and 17—26% energy compared to

MNP, and saves 69-75% completion time and 73-81% energy compared to Deluge. In

Figure 3.8, we show the average number of transmissions and receptions per node.

fc-Gappa has higher transmissions than the other two protocols.

Simulation setup 3. (Base station in the center) Intuitively, the perfor-

mance of MNP and Deluge will be better if the base station is placed in the center of

the network. Therefore, we also simulated the case where the node that has the new

program (base station) is in the center of the network. We set the program size to

87

 § §

A- Deluge 1e;- Deluge

. er MNP @- MNP

120° ~3- rc-Gappa 5000f -a- Name r

‘ fl

4

§
3

5

 N
u
m
b
e
r
o
f
M
e
s
s
a
g
e
s
R
e
c
e
i
v
e
d
P
e
r
N
o
d
e

N
u
m
b
e
r
o
f
M
e
s
s
a
g
e
s
T
r
a
n
s
m
i
t
t
e
d
P
e
r
N
o
d
e

m

10 2o 5 1b is 20
Program Size (KB) Program Size (KB)

(60 (b)

Figure 3.6: Inter-node distance: 10 feet. (a) number of messages transmitted per

node (b) number of messages received per node.

384 packets (8.45KB) for MNP and Deluge. For fc-Gappa, we set the program size to

512 packets (4 segments, 11.26KB). This way, in fc-Gappa, each node needs to receive

384 packets (3 segments). We present simulations results in Table 3.1 and 3.2. We

can see that fc-Gappa has lower completion time even if the base station is in the

center of the network (for MNP and Deluge).

Simulation setup 4. (Multiple base stations) We note that in a 20x20

network, the performance of MNP and Deluge does not improve significantly even if

multiple base stations are used, due to the fact that excessive contention occurs when

the propagation waves from different base stations meet. For example, for MNP, to

transmit a program of 256 packets, the completion time when 4 base stations are

placed at the corners (each placed at one corner) is 530 seconds, which is almost

the same as the completion time when one base station is placed in the center (536

seconds). Similar results hold for Deluge. For this reason and due to limitation of

space, we do not present the simulation data for the multiple base stations case.

Additional observations from simulation setups 1-2. In addition to

the average values, we also study the distributions of active radio time and radio

communication. We consider the case where the program size is 5 segments (14.08KB,

88

flznn nznn

15- Deluge fl

”($3. MNP

2000 2000 -B- fc-Gappa

a e

‘7 E
E 1500» /—9 p. 1500

: "AC—tr. .9

e / E
E1000L o 1000*

E 5

8 2
500 . 500L

:- "I n4 / .

“l 10 15 20 “ti "' 1o 15 20

Program Size (KB) Program Size (KB)

(60 (b)

l

q E r 10

A 19.— Deluge

: 3 «:3- MNP

-§ -8- erappa

E 2.5-
O

n.

s 2‘
D.

E 1.5»

“c’

8 1-

g 0.5-

ur ,, c

’46

"if "' 5 20 1‘0 15

Program Slze (KB)

(C)

Figure 3.7: Inter-node distance: 15 feet. (a) completion time (b) average active radio

time per node (c) average energy consumption per node.

Table 3.1: The base station node is in the center of the network or at the corner. The

dense case: inter-node distance is 10 feet. Program size: 384 packets (8.45KB) for

MNP and Deluge, 512 packets (11.26KB) for fc-Gappa.

M MNPNP Deluge

center corner center

fc-Gappa

Completion time (5)

Active radio time (s)

Transmissions per node

Receptions per node

Energy consumption per node (J)

830

390

152

1221

6101

89

§ we.- Deluge g A. Deluge r

z 1400 is MNP z 4000 ;' MNP

'5 -B- fc—Gappa .. -B- fc-Gappa

“ a. 3500
g 1200

E z 3000
g 1000

8 a: 2500

’— 800 g

g, 32000

600 :2 ,9

3 g 1500 /e/

*5 40° '1‘ 1000 , ,,./6’
.. o ,sa“
0 a /.

.n 200 E 500

5 E ,e/
Z a _; L n ./ u .

“l 10 20 “if 10 20

Program Size (KB) Program Size (KB)

(6!) (b)

Figure 3.8: Inter-node distance: 15 feet. (a) number of messages transmitted per

node (b) number of messages received per node.

Table 3.2: The base station node is in the center of the network or at the corner. The

sparse case: inter~node distance is 15 feet. Program size: 384 packets (8.45KB) for

MNP and Deluge, 512 packets (11.26KB) for fc-Gappa.

MNP MNP Deluge Deluge fc-Gappa

center corner center corner [I

Completion time (s) 744 949 905 1115 413

Active radio time (s) 269 270 905 1115 310

Transmissions per node 237 263 273 296 790

Receptions per node 803 822 1694 1891 1657

Energy consumption per node (J) 4445 4465 13122 15982 5202

640 packets). In Figure 3.9, we compare the active radio time distribution of fc-Gappa

and MNP (For Deluge, all the nodes’s active radio time is the same as completion

time). We note that the distribution of nodes’ active radio time in fc-Gappa is more

even (ranges from 300—500s) than the distribution of nodes’ active radio time in MNP

(ranges from 200—10003).

In Figure 3.10(a), we show the distribution of transmissions. Some nodes trans-

mit more than others. These nodes are distinct senders, i.e., they are selected as

senders many times. Note that these distinct senders are randomly distributed. In

Figure 3.10(b), we show the reception distribution. We find that the distribution is

even.

90

Figure 3.9: Active radio time distribution of (a) fc-Gappa and (b) MNP. Inter-node

distance: 10 feet. Program size: 14KB.

Figure 3.10: fc—Gappa: message transmissions and receptions. Inter-node distance:

10 feet. (a) transmissions (b) receptions.

In Figure 3.11, we compare the performance of fc-Gappa at different node densi-

ties. We note that fc-Gappa performs well in both dense networks and sparse networks,

although the performance in a sparse network is slightly better.

3.3.2 Varying Network Sizes

Simulation setup 5. In this section, we fix the inter-node distance to 10 feet

and the program size to 5 segments (14.08KB, 640 packets), and conduct simulation

91

800 t 4 600 . L

-A— lnter—node distance 10ft we:- Inter-node distance 10ft .

7004 -B- Inter-node distance 15ft ’ 500 -B- Inter-node distance 15ft

EEGOO E;

0 400*

£3500 jg

‘2 *5
g 400* ‘6 300

:6 d
O. .
g 300

g 200.

0 200 2

1 .

100: 00

h . i I .

“Or 5 10 15 20 5 10 15 20

Program Size (KB) Program Size (KB)

(20 (b)

10000 . . - 4

£2- lnter-node distance 10ft

-B- Inter-node distance 15ft

8000'

36000-

>.

2’

8
UJ4000’

.

2000 *

s 10 15 20

Program Size (KB)

(C)

Figure 3.11: fc-Gappa: at inter-node distance 10 feet and 15 feet. (a) completion time

(b) average active radio time per node (0) average energy consumption per node.

on different network sizes (10x10, 15x15, 20x20 grid). In Figure 3.12, we show that the

completion time, average active radio time per node, average energy consumption per

node increase slightly when the network size increases. For example, the completion

time for reprogramming a 15x15 network with a 14KB program is 512 seconds, while

the completion time for reprogramming a 20x20 network with a program of the same

size is only 531 seconds; although the number of nodes almost doubles, the completion

time only increases 3.6%. This shows that fc-Gappa scales well to large networks.

92

 600
r

r

A- oompletion time
6700

-B- active radio time

6600 :

550 :

6500 .

E 36400-

0

.§ g

+- 56300»

400 :

3f x10 20x20 6098x10 20x2015x15 1515

Network Dimension (nodes) Network Dimension (nodes)

(80 (b)

Figure 3.12: fc-Gappa at different network sizes. Inter-node distance: 10 feet. Pro-

gram size: 14KB. (a) completion time and average active radio time per node (b)

average energy consumption per node.

3.3.3 Varying Number of Seeds

Simulation setup 6. In this section, we study the situation where only a

subset of nodes (seeds) have received a segment (randomly picked one) from an UAV

initially. Each segment is received by at least one node. We conduct the simulation

in a 20x20 network. The inter-node distance is set to 10 feet. The program size is 5

segments (14.08KB, 640 packets). We randomly select 5, 25, 50, 100, and 200 nodes

as the seeds. The results are shown in Figure 3.13. For comparison, we also draw

the corresponding results of MNP. We note that even if the nodes that have received

one segment from the UAV are only 1.25% (each segment with exactly one node),

fc-Gappa outperforms MNP in completion time. Additionally, from Figure 3.5 (a), it

also outperforms Deluge.

93

1500 . e r 1500

1; E

o 1000: g 1000*

E _

5 i;

:52 s
2 a:

‘1 MNP

g 500- 5 E; 500» +

0 2

0 1 A 1 0 A A 1

0 100 200 300 400 0 100 200 300 400

Number of seeds Number of seeds

(a) (b)

12000‘» .

10000 r i

5
o P

“J

o 100 200 300 400

Number of seeds

(C)

Figure 3.13: fc-Gappa: varying number of seeds. Inter-node distance: 10 feet. Pro-

gram size: 14KB. (a) completion time (b) average active radio time per node (0)

average energy consumption per node.

3.4 Comparing Fixed Channel Gappa with Variable

Channel Gappa

In Section 3.2, we presented vc-Gappa, which allows every sensor to randomly

select a data channel to transmit data on. In this section, we evaluate the performance

of vc-Gappa, and compare it with that of fc-Gappa. Corresponding to the simulations

we performed on fc-Gappa in Section 3.3, we vary program size, network density,

and network size, and show the comparison in Sections 3.4.1 and 3.4.2. In these

two sections, we assume that all the sensors have received an initial segment that is

94

randomly selected.

In Section 3.4.3, we consider the scenario where only one or two rows of sensors in

the network receive a segment initially. Among the sensors that have initially received

a segment, the first few columns receive the first segment, the next few columns receive

the second segment, and so on. The intuition behind these simulations is that an UAV

can be in contact with only a small number of segments at a time. During this time,

it can transmit one segment. In all the simulations in this section, we assume that

the total number of available channels is 54 (cf. Section 3.1).

3.4.1 Varying Program Sizes and Network Densities

Simulation setup 7. (vc-Gappa: dense network) We simulate vc-Gappa

in a 20x20 network, and set the inter-node distance to 10 feet (a dense network).

In Figure 3.14, we compare the completion time, the average active radio time per

node, and the average energy consumption per node of vc-Gappa and fC-Gappa. We

can see that with variable channel allocation, the performance of Gappa is effectively

improved. Specifically, vc-Gappa reduces the completion time (respectively, the energy

consumption) of fc-Gappa by 29—43% (respectively, 23—33%).

In Figure 3.15, we show the number of message transmissions and receptions

per node of fc-Gappa and vc-Gappa. We note that in vc-Gappa, the number of trans-

missions (respectively, the number of receptions) per node is 13-20% (respectively,

18-29%) lower than that of fc-Gappa.

To illustrate the situation, we categorize the messages into two types, the data

messages and the control messages. The data messages are those packets that con-

tain the actual code. The remainings are called control messages, including adver-

tisements, requests, “SwitchChannel” messages, “StartDownload” messages, etc. In

Figure 3.16, we show the average number of data messages and control messages trans-

mitted by a sensor under these two variations of Gappa. We can see that to reprogram

95

§ O
)

O O

-B- fc-Gappa

-e.- vc—Gappa

-a- fc-Gappa

_ 19.- vc-Gappa
 s

§

5
5

v

O 0
“8°

C
o
m
p
l
e
t
i
o
n
T
i
m
e

(
s
)

i
s

a
:

8

r
e 8

A
c
t
i
v
e
R
a
d
i
o
T
i
m
e

(
s
)

s

5

1‘0 15 20 5 1'0 1‘5 20

Program Size (KB) Program Size (KB)

(a) (b)

10000 . T

Q -a- tc-Gappa

‘; 4.5:— vc—Gappa

8 8000i -
Z P

‘5

a 6000
c .

8
O.

E

g 4000-

O

o

E 2000* 1

C

LU

5 To 15 20

Program Size (KB)

(C)

Figure 3.14: Comparison of fc-Gappa and vc-Gappa. Inter-node distance: 10 feet. (a)

completion time (b) average active radio time per node (c) average energy consump-

tion per node.

a network with a program of the same size, the number of data message transmis-

sions of vc-Gappa is 3-24% higher than that of fc—Gappa, while the number of control

mesage trnasmissions of vc—Gappa is about 40% lower than that of fc-Gappa. This is

due to the fact that vc-Gappa allows higher concurrency during reprogramming, i.e.,

more sensors can transmit on multiple channels at the same time. With more con-

current senders, the average receiver set for each sender is smaller, which means more

data packets needs to be sent. On the other hand, sensors are allowed to transmit

as long as there are available channels, hence, they spend less time advertising and

96

requesting. Thus, the control message transmission of vc-Gappa is significantly less

than that of fc-Gappa.

0

'3 1400 r ° 5000 .

z -B- fc-Gappa E -a- fc-Gappa

a 1200, -A- vc-Gappa 8 ~19:- vc-Gappa

'8 a 4000'

g 1000 § _

Cl)

E 800* £300“

a 5
g, 600’ $2000

s 400: a.
'5 200 21000:

t— r 0

1g E
3 . . g z .

2 g 5 15 20 5 15 2010 10

Program Size (KB) Program Size (KB)

(a) (b)

Figure 3.15: Comparison of fc-Gappa and vc-Gappa. Inter-node distance: 10 feet. (a)

number of messages transmitted per node (b) number of messages received per node.

O
) 8 §

-a- ic-Gappa

-A— vc—Gappa

-E- fc-GaLppa

-A- vc-Gappa

§
§

§
§
§

§

§

N 8

'3 §. C
o
n
t
r
o
l
M
e
s
s
a
g
e
s
T
r
a
n
s
m
i
t
t
e
d
P
e
r
N
o
d
e

o
e D

a
t
a
M
e
s
s
a
g
e
s
T
r
a
n
s
m
i
t
t
e
d
P
e
r
N
o
d
e

a
s

o O

L

5

5.!

ca
t"

1

5 10 15 10 20
Program Size (KB) Program Size (KB)

(6!) (b)

Figure 3.16: Analysis of message transmissions in fC-Gappa and vc-Gappa. Inter-node

distance: 10 feet. (a) number of data messages transmitted per node (b) number of

control messages transmitted per node.

Simulation setup 8. (vc-Gappa: sparse network) We repeat the same set

of simulations in a sparse network where the inter-node distance is 15 feet. We show

the completion time, the average active radio time per node and the average energy

consumption per node in Figure 3.17. Similar to the dense network case, vc-Gappa

97

reduces the completion time (respectively, energy consumption) of fc-Gappa by 19—34%

(respectively, 19—30%). In Figure 3.18, we can see that vc-Gappa has lower message

transmissions and receptions than fc-Gappa.

700 . a 600 -

-E- fc-Gappa -B- fc-Gappa

600» “‘9" VC'GaPPa , 500’ 5A- vc-Gappa

3500' 3

E 400 g 400i

F .

é § 300r

g 300» a:

E .° 200»

a 200i 5

100» 100'

 A

5

5 10 15 20
Program Size (KB)

(a) (b)

10000 . fl

-3- erappa

—A— erappa

‘
5

O
J

8

g
s

o
.

C
?

9
5’

E
n
e
r
g
y
C
o
n
s
u
m
p
t
i
o
n
P
e
r
N
o
d
e

(
J
)

<
3
8

5 1o 15 20
Program Size (KB)

(C)

10

Program Size (KB)

15 20

Figure 3.17: Comparison of fc-Gappa and vc-Gappa. Inter-node distance: 15 feet. (a)

completion time (b) average active radio time per node (0) average energy consump-

tion per node.

3.4.2 Varying Network Sizes

Simulation setup 9. In this section, we set the inter-node distance to 10

feet and the program size to 5 segments (14.08 KB) and vary the network size from

10x10 to 20x20. In Figure 3.19, we can see that the completion time (respectively, the

98

0

g 1600 . g 3500 g

2 -B- fc-Gappa :g -a- erappa

E 1400 -A- vchappa E 3000 -.e.- vc-Gappa

"D

g 1200» E 2500_

E ..

g 1000» §

9 a: 2000*

:7. 800 a
8. 91500»

a 600* a
U) 0

g 400 $1000-

0 s.

8 200-
g 500-

g S

5 5 20 Z “3‘ 5 20

10 15 10 15
Program Size (KB) Program Size (KB)

(3) (b)

Figure 3.18: Comparison of fc—Gappa and vc—Gappa. Inter-node distance: 15 feet. (a)

number of messages transmitted per node (b) number of messages received per node.

average energy consumption per node) of vc-Gappa is only around 68% (respectively,

73%) that of fc-Gappa.

3.4.3 Varying Initial Distribution of Segments

Simulation setup 10. In this section, we focus on the case where the two

rows of sensors in the center of a 20x20 network receive a code segment from an UAV

directly. Moreover, we assume that the speed of the UAV is almost constant, i.e., the

number of sensors that receive each segment is about the same. For example, if the

program has 5 segments, then the first 4 columns (in the center two rows) receive

segment 1, the next 4 columns (in the center two rows) receive segment 2, and so on.

In the case that the program has 3 segments, the first 7 columns (in the center two

rows) receive segment 1, the next 6 columns (in the center two rows) receive segment

2, the last 7 columns (in the center two rows) receive segment 3. In our simulation,

we set the program size to 2, 3, 5 segments, respectively. The inter-node distance is

10 feet.

We simulate fc-Gappa and vc-Gappa in this setting. In Figure 3.20, we show

the completion time, the average active radio time per node, and the average energy

99

 5 l i}

dB- fc-Gappa -B- erappe

-A- vc~Gappa 400 -A- vc-Gappa

550’
4

380

e 500 a

3 E
p i-

C 4 .9

s 5‘1 a
.2 a:

‘1 o

g 400» P

o E

S
350. 4

3 10 wins 20x20 2i8x1o 15x15 20x20
Network Dimension (nodes) Network Dimension (nodes)

(a) (b)

,

§
§
§
§
§

8 o ?

E
n
e
r
g
y
C
o
n
s
u
m
p
t
i
o
n
P
e
r
N
o
d
e

(
J
)

b

4098x10 15:}15 20x20
Network Dimension (nodes)

(C)

Figure 3.19: Comparison of fc-Gappa and vc-Gappa at different network sizes. Inter-

node distance: 10 feet. Program size: 14KB. (a) completion time (b) average active

radio time per node (b) average energy consumption per node.

consumption per node of these two protocols. We note that in this case, due to the fact

that the sensors that receive the same segments initially are physically close to each

other (as opposed to random distribution in the previous setting), the variable channel

allocation scheme used in vc-Gappa outperforms the fixed channel allocation scheme

significantly. We can see that vc-Gappa reduces the completion time (respectively, the

energy consumption) of fC-Gappa by more than 40% (respectively, more than 35%).

The communication overhead of vc-Gappa, as shown in Figure 3.21, is a little lower

than that of fC-Gappa.

100

1100

-a— fc-Dappa :2: fc—Gappa

10004 -A— vchappa 700 vc-Gappa

7; 900 E

V 0 600

E 800- J E
p.

g 700» J '19: 500 +
2: in

2 a:
Q. r

5 50° 5 400L
0 o

0 500» <

300
400’ 1

3004 0 a 10 {2 14 2004 é a 10 (2 14
Program Size (KB) Program Size (KB)

(61) (b)

14000 . .

q : fc-Gappa

V vc-Ga a

312000» pp
0

Z

$10000)

C

8
QE 8000+

a

g 6000 <

>~

D

'g 4000

LU

20004 e 8 10 1‘2 14
Program Size (KB)

(C)

Figure 3.20: Comparison of fc-Gappa and vc-Gappa in the case where the UAV broad-

casts code segments on a single channel and has a small receiver set. Inter-node

distance: 10 feet. The program size is 2, 3, 5 segments. The center two lines of sen-

sors receive a code segment from the UAV initially. (a) completion time (b) average

active radio time per node (c) average energy consumption per node.

101

0

'° 800 . o
o 5000 -
E : fc-(éappa E -a— fc-Gappa

cf 700» W appa 5 4500 -£r vchappa

'O Q

g g 4000»

E 600» 4 .2

2 § 350m

3 m

8 500’ «g 3000

a 3’ _§ 400- §2500

5 .5. 2000-

g 3 1500»

E g
3 A A L 1 L A A

Z 2064 6 8 10 12 14 210004 6 8 10 14

Program Size (KB) Program Size (KB)

(a) (b)

Figure 3.21: Comparison of fc—Gappa and vc-Gappa in the case where the UAV broad-

casts code segments on a single channel and has a small receiver set. Inter—node

distance: 10 feet. The program size is 2, 3, 5 segments. The center two lines of

sensors receive a code segment from the UAV initially. (a) number of messages trans-

mitted per node (b) number of messages received per node.

Simulation setup 11. In this simulation, we change the initial setting in

Simulation setup 10 in such way that only one row of sensors in the center of the

network receive a segment. We show the corresponding results in Figures 3.22 and

3.23. We can see that the results are similar to those we have shown in Figures 3.20

and 3.21 for Experiment setup 10, i.e., vc-Gappa outperforms fc-Gappa significantly in

terms of completion time and energy consumption. And, vc-Gappa has a little lower

communication cost than fC-Gappa.

3.5 Chapter Summary

In this chapter, we presented Gappa, a gossip based multi—channel reprogramming

protocol for sensor networks, that is designed for the scenario where some sensor nodes

receive one part of the new program initially, and communicate with each other so

that all the nodes in the network receive the entire program after reprogramming.

By exploiting multi-channel resources and pipelining technique, Gappa enables high

102

o
n

8

1100 . . r
-B— fc-Gappa -B- erappa

1000 A- vchappa 700 nA- vc-Gappa

1,; 900’ E

V 600»

E 300' 1 E
l—

8 700 4 1% 500
=3 m

2 cc

0. .

E 600 .3 400. .

O O
O 500. <

300-

400

3004 s 8 10 1‘2 14 2004 6 8 10 1‘2 14

Program Size (KB) Program Size (KB)

(a) (b)

14000 . . f

Q -B- erappa

v -A- vc-Gappa

”12000

8
z

E10000»

C

.2

g. 8000)

3

2
o 6000

o

B
2 4000*

Lu

20004 8 8 10 12 14
Program Size (KB)

(0)

Figure 3.22: Comparison of fc—Gappa and vc-Gappa in the case where the UAV broad-

casts code segments on a single channel and has a small receiver set. Inter-node

distance: 10 feet. The program size is 2, 3, 5 segments. The line of sensors at the

center of the network receive a code segment from the UAV initially. (a) completion

time (b) average active radio time per node (0) average energy consumption per node.

103

OJ

'0 800 L o
o 5000 .
Z :2: fc-Céappa E -B- erappa

“ vc- a ag 700_ PD (4:: 4500 we:— vc-Gappa

E g 4000-

E 600' .2

8 § 3500'

E a:

'3 500
8 3000,

8° 55(U .

.5. § 2000»

2 300- .5

0 .o 1500

‘E’ E
3 l A A AL A L 4L

2 2004 6 8 10 14 210004 6 8 10 14
Program Size (KB) Program Size (KB)

(a) (b)

Figure 3.23: Comparison of fc—Gappa and vc-Gappa in the case where the UAV broad-

casts code segments on a single channel and has a small receiver set. Inter-node

distance: 10 feet. The program size is 2, 3, 5 segments. The line of sensors at the

center of the network receive a code segment from the UAV initially. (a) number of

messages transmitted per node (b) number of messages received per node.

concurrency on different channels and different locations, hence, propagates data

rapidly. To reduce collisions on each channel, Gappa uses a multi-channel sender

selection algorithm (based on the sender selection algorithm in MNP), which tries to

guarantee that at any neighborhood, at most one sender transmits on one channel

at a time. Among the competing senders on each channel, the multi-channel sender

selection algorithm attempts to select the one whose transmission of the program on

that channel is likely to have the most impact. In the case that a node loses the sender

selection on one channel, it has the option to compete to transmit on another channel.

If all the channels a node can transmit code on are busy, the node stops advertising

for a certain amount of time. During that time, it can choose, based on its status,

to wait to receive code with its radio on, or to turn off radio to save energy. In this

way, Gappa reduces the active radio time of sensor nodes, hence, energy consumption,

during reprogramming.

We present two variations of Gappa, fc-Gappa and vc-Gappa, that use fixed chan-

nel allocation and variable channel allocation, respectively. In fc-Gappa, each segment

104

is assigned one channel, while in vc-Gappa, the sensors select a channel randomly from

all the available channels.

We evaluated fc-Gappa through simulation on TOSSIM, and compared it with

the other two state-of-art reprogramming protocols, MNP and Deluge, both of which

assume that initially only the base station(s) has the entire program. The simulation

results show that under the same network settings, to propagate a program of the same

size, fc- Gappa saves up to 70% of completion time and up to 42% energy consumption

compared to MNP, and saves up to 84% completion time and up to 88% energy

consumption compared to Deluge. We also show that fc-Gappa adapts well to different

network densities and network sizes. Moreover, we note that fc-Gappa distributes

energy load more evenly. This is expected to help in maintaining a longer network

lifetime.

We also considered the case where only a subset of nodes receive a segment of

code initially. In the simulation, we study the worst cases where only 1.25% to 50%

of nodes have received a part of the code. The simulations results show that even in

these situations, fc-Gappa still outperforms MNP and Deluge in completion time.

We note that vc-Gappa, which uses a little more complicated channel allocation

scheme, performs even better than fC-Gappa in all the network settings. The variable

channel allocation scheme used in vc-Gappa allows neighboring sensors to transmit

data simultaneously as long as there are available channels. For this reason, it is

especially beneficial in the cases where the network is dense or the initial distribution

of code segments is not random.

105

Chapter 4

Proactive Reliable Data

Dissemination

Network reprogramming requires 100 percent delivery of the entire binary image

(on the order of kilobytes), and hence consumes significant communication band-

width. However, the transmissions are performed over radio, which is known as a

low-bandwidth and lossy medium. Therefore the reliability issues need to be ad-

dressed.

There are two basic methods to recover lost packets. One way is to use automatic

repeat request (ARQ). In ARQ schemes, a receiver detects its own losses, and informs

the sender of the missing packets, either by sending requests (NACK) or acknowledg-

ments (pure ACK, implicit ACK, selective ACK, etc.). The sender retransmits the

repair packet if it knows that a packet is lost. Another way to recover errors is to use

forward error correction (FEC). FEC provides reliability by transmitting redundant

packets in a proactive manner. The most commonly used FEC scheme is (n, k) FEC.

The fundamental of (n, k) FEC is to add n — ls: additional packets to a group of k

source packets (called a transmission group) so that the receipt of any It packets at

the receiver permits recovery of the original k ones. There are different levels of FEC

106

schemes: packet-level, byte-level, bit-level. In the context of reprogramming, we only

examine the packet-level FEC.

The existing protocols on network reprogramming include the single-hop repro-

gramming protocol XNP [12], and multihop reprogramming protocols MOAP [60],

Deluge [23], MNP (cf. Chapter 2), Infuse [30], and Sprinkler [47]. All these protocols

use automatic repeat request (ARQ) scheme to recover from packet losses. ARQ is

an effective reliability scheme, as an error can always be recovered as long as the

network is connected. However, if the error rate is high, the requests and retransmis-

sions for the missing packets consume significant energy. In this chapter, we examine

the issue of adding FEC to the ARQ-based reliability scheme of a reprogramming

protocol. We perform a case study on MNP. The proposed reliability scheme is a

hybrid approach of FEC and ARQ. By adding FEC, we expect to reduce the error

probability experienced at the receivers, and ARQ scheme performs the remaining

error corrections.

In Section 4.1, we study the packet loss pattern in MNP. In Section 4.2, we

propose a hybrid reliability scheme using FEC and ARQ, and describe the implemen-

tation details of adding simple XOR code and Reed-Solomon (RS) codes [55] to MNP.

In Section 4.3, we present the simulation results on the performance of (MNP+XOR)

and (MNP+RS codes). We summarize this chapter in Section 4.4.

4.1 Packet Loss Pattern in MNP

Before adding FEC, we ran a simulation to see the packet loss pattern, which

is shown in Figure 4.1. The simulation was conducted in a 10x10 network with 10

feet inter-node distance. The program size is 8.4KB (3 segments, 384 packets). The

x-axis is the number of missing packets indicated by the Missing Vector contained in

a request message. The y—axis is the number of request messages. Since the segment

107

size is 128 packets, the number of missing packets ranges from 1 to 128 packets.

The peak at the right is the number of requests that ask for the whole segment (128

packets). These are pmtocol requests, used in the sender selection algorithm. We only

consider repair requests, the requests that ask for less than 128 packets. We note that

most of the repair requests only ask for a few number of packets. For example, about

50% of the requests are asking for less than 8 missing packets, 70% of the requests

are asking for less than 16 missing packets, 83% of the requests are asking for less

than 32 missing packets. The fact that the majority of the losses are small losses

(involving a few number of missing packets) suggests that a better link is desirable to

reduce the number of requests and retransmissions. FEC can be used to provide an

abstraction of an enhanced link at the cost of transmitting additional parity packets.

1% I Y Y ' T j

N
u
m
b
e
r

o
f
R
e
q
u
e
s
t
s

N
0
)

#
0
|

0
)

8
8

O
O

O

o
o

o

.
5

O O “‘ . .__._L l.‘ Lu-” 4..-

0 20 40 60 80 100 120 140

Number of Missing Packets in a Request Message

C

Figure 4.1: Packet loss pattern in MNP. 10x10 network, inter-node distance: 10 feet,

program size: 8.4KB (384 packets).

4.2 A Hybrid Reliability Scheme for MNP

In Section 4.2.1, we briefly introduce the two (n, k) FEC coding schemes: simple

XOR code and Reed-Solomon (RS) codes. In Section 4.2.2, we present the new

reliability scheme for MNP, that is, adding XOR/RS FEC codes to MNP.

108

4.2.1 (n,k) FEC Coding Schemes

We consider (n, k) FEC-based approaches. There are two commonly used (n, k)

FEC codes: XOR code, and Reed-Solomon (RS) codes [55]. For simple XOR code,

each transmission group has only one parity packet, which is the XOR of all the

source packets in the group. Therefore, simple XOR code is a (k -i— 1, 11:) code. XOR

code is very simple to implement. However, it can only repair a single packet loss in

a transmission group.

RS codes are more flexible. RS codes are based on algebraic methods using

finite fields. A transmission group can have multiple parity packets (i.e., n can be

any number that is larger than 1:). Thus RS codes provide better protection against

losses. However, the flexibility of RS codes is achieved at high processing costs, in

terms of computation complexity and memory space.

4.2.2 Adding FEC to MNP

There are two approaches regarding the calculation of the parity packets. The

first approach is to calculate the parity packets based on the actual packets that

are sent in the current transmission. In this case, for every transmission, the parity

packets are computed and sent. This incurs a lot of encoding and decoding overhead.

Moreover, the receivers have to be aware of the Forward Vector of the current sender

(cf. Section 4.1), that is, the packets that are sent in the current transmission, in

order to decode the parity packets. The sender might need to send the ForwardVector

several times in order to make sure that it is received by all the receivers. The second

approach is to compute the parity packets based on the full segment. Compared to

the first approach, this approach is more efficient because the encoding process is

needed only once for each segment, rather than performed for each transmission; and

the senders do not need to send Forward Vector to the receivers. Therefore, we use

the second approach.

109

For each segment, there are a set of parity packets. The parity packets are

assigned unique IDs that start from SegSize+1. A receiver keeps a bitmap of the

parity packets, ParityMissing Vector, in memory. The ParityMissing Vectoris operated

just as the Missing Vector in the original ARQ—based approach (cf. Section 4.1). All

the bits in ParityMissing Vector are set to 1 initially. When a node receives a parity

packet for the first time, it set the corresponding bit to 0. We limit the size of the

ParityMissing Vector to be no larger than 4 bytes, thus the number of parity packets

ranges from 1 to 32.

When a receiver sends a request, it puts Missing Vector, as well as ParityMiss-

ing Vector, in the request message. Correspondingly, a source node maintains a Pari-

tyForward Vector (in addition to the Forward Vector in the original algorithm), as an

indicator of the parity packets that need to be sent if the node becomes a sender. The

Parity/Forward Vector of a source node is the union of the ParityMissing Vector in the

request messages the node has received. Whenever a receiver receives a packet (either

data or parity), it checks to see if the number of packets it has received is enough to

recover all the missing data packets. If so, the receiver has received the entire seg-

ment, otherwise, it asks for the missing data and parity packets, and a sender sends

the requested packets.

The difference between adding XOR code and Reed-Solomon codes is the capa-

bility of loss recovery and the complexity of encoding and decoding, as we mentioned

in Section 4.2.1. Because XOR code can only have one parity packet and repair a

single loss in a transmission group, in order to repair more than one loss in a seg-

ment, we divide a segment into t transmission groups. Each group has a fixed number

(SegSize/t) of data packets and one parity packet. The parity packet that has ID

SegSize+i (1 S i g t) corresponds to the it” transmission group. In each trans

mission, the sender sends all the requested data packets, followed by the requested

parity packets. Whenever a node has received enough number of packets to recover

110

the whole group, it sets all the bits of this group in Missing Vector and ParityMiss-

ing Vector to 0, so that the node will not request for packets within this group any

more.

For Reed-Solomon codes, we consider a full segment as a transmission group,

which can have multiple parity packets. As long as the receiver has received SegSize

(or more) number of packets (either data packets or parity packets), the whole segment

is received. Further optimization is possible. For example, consider one scenario

where a receiver has 11 missing data packets, and has received 8 parity packets. In

this case, the parity packets received are not enough to recover the losses. In order

to recover the whole segment, the receiver only needs 3 more packets, rather than 11.

Taking message losses into account, we allow the receivers to request for twice the

required number of missing packets (k packets in (n, k) FEC schemes). In the previous

example, the receiver will request for 2 x 3 = 6 packets. This feature is expected to

reduce the number of retransmissions, especially when the number of parity packets

is large. However, because in MNP, the packets a sender transmits is the combination

(union) of the packets that are requested, it is likely that different receivers request

for different sets of packets, thus the combination of them virtually covers the whole

segment. In this case, this optimization is not effective. We add one restriction that

if a node requests for a subset of the packets it is missing, it always requests for those

packets that have the lowest IDs, so that it is more possible that the sets of packets

requested by different receivers are overlapping.

4.3 Evaluation Results

We added simple XOR code and RS codes to MNP source code, as described in

Section 4.2.2, and used TOSSIM, to evaluate the effectiveness of the new reliability

scheme.

111

The following simulations were conducted in a 10x10 network. The distance

between two neighboring nodes is kept constant at 10 feet. In the current implemen-

tation, each segment has 128 data packets. The program size is 8.4KB(3 segments,

384 packets). We assume that initially only the base station, the node at a corner,

has the new program.

In Figure 4.2, we compare the performance of the original MNP protocol (marked

as “No FEC” in Figure 4.2) with MNP protocol plus XOR/RS FEC codes. To prevent

the randomness of a single simulation, we repeated each simulation three times, and

presented the mean value. We found that adding either simple XOR code or RS

codes to MNP helps improving performance. The completion time and the active

radio time were reduced after we applied FEC schemes to MNP. For XOR code,

when the number of parity packets is from 4 to 8, the reduction on completion time

is about 10%, and the reduction on active radio time is about 14—17%. Increasing

or reducing the number of parity packets minuses the performance gain. RS codes

generally perform better than simple XOR code. As shown in Figure 4.2, using RS

codes, the completion time is reduced by 9-33%, and the active radio time is reduced

by 10—38%. For RS codes, the performance improves when more parity packets are

used.

In Figure 4.3, we show the number of transmissions and receptions of the original

MNP protocol and MNP plus XOR/RS FEC schemes. We note that, with XOR/RS

FEC schemes, the number of transmissions and receptions are reduced by up to

19% and 41% respectively. In general, (MNP + XOR) scheme has lower number of

transmissions and receptions than the original MNP protocol, and (MNP + RS codes)

has the lowest number of transmissions and receptions among the three schemes. The

number of receptions is largely decided by the average active radio time, as can be

seen from Figure 4.2(b) and Figure 4.3(b).

We categorize the transmitted packets into two types: control packets and en-

112

420

360 *

C
o
m
p
l
e
t
i
o
n
T
i
m
e

(
s
)

S
k

9
O

0
.
)

O O

280

“8»- XOR

260

-A- RS codes

1 2

Number of parity packets for a segment

.L

4 8 16

No FEC

32

210

N 8

.
5

(
O

O

—
L

m Q
»
.

.

.
a
.

O
)

0

A
c
t
i
v
e
R
a
d
i
o
T
i
m
e

(
s
)

a

-
L

(
A
)

o

_
I

‘
1

O

r

a A O

~6- XOR
+ RS codes

J;

,NoFEC

.
L

N O
.
a

(b)

2 4 8

Number of parity packets for a seg

16

ment

Figure 4.2: Completion time and active radio time of (MNP + XOR) and (MNP +

RS codes), when the number of parity packets is from 1 to 32 packets per segment

(128 data packets/segment). (a) Completion time (b) Average active radio time per

node.

113

160

155 ~ g;

150 - //~

145 z/J/QK [,2/ No FEC

14qfi/f/ \ /

.
5

O
D

130

125~

120“ -e— XOR

A
v
e
r
a
g
e
n
u
m
b
e
r

o
f
t
r
a
n
s
m
i
s
s
i
o
n
s
p
e
r
n
o
d
e

-APF§3awes

1151 2 4 8 16 32

Number of panty packets for a segment

(a)

1100 .

NoFEC

 A
v
e
r
a
g
e
n
u
m
b
e
r

o
f
r
e
c
e
p
t
i
o
n
s
p
e
r
n
o
d
e

 650 ~9- XOR 1

-Ar RS<xues

6001 2 4 8 16 32

Number of panty packets for a segment

(b)

Figure 4.3: Average number of transmissions and receptions per node: (MNP + XOR)

and (MNP + RS codes), when the number of parity packets is from 1 to 32 packets

per segment (128 data packets/segment). (a) Average number of transmissions per

node (b) Average number of receptions per node.

114

coding packets. Control packets include the advertisements and requests. They are

used for the sender selection algorithm and ARQ scheme. Encoding packets carry

the information that is to be disseminated to the sensor nodes. They include data

packets and parity packets. In Figure 4.4 (a) and (b), we show the average number

of control packets that are transmitted per node, for (MNP + XOR) scheme, and

(MNP + RS codes) scheme, compared to the original MNP protocol. In Figure 4.4

(c) and (d), we show the corresponding results for encoding packets.

‘N

- advertise w :
- advertise

|:] request . (:l 0031
I

O o I

'8 40 E 40 :

c I

5 3 I
O. O. I

5 3° 5 30 :

w w 1

E 3 I

0 0 I

75 § .m 20 20 .

s 3 -
s E E
s 5 -o 10 0 10 :

I

I

I

0 12481632 0 12481632

Number of parity packets per segment Number of parity packets per segment

(a) (b)

[:1 Cl

0 o

'8 ‘0

c 2

S 3

3 100 3 100
r: C

3 8

s s

E i
g: 50 g! 50
a ._

8 5
C C

LU an

O 0

0 1 2 4 8 16 32 0 1 2 4 8 16 32

Number of parity packets per segment Number of parity packets per segment

(c) (d)

Figure 4.4: The average number of control/encoding packets transmitted per node. (a)

control packets transmitted in (MNP + XOR) scheme (b) control packets transmitted in

(MNP + RS codes) scheme (c) encoding packets transmitted in (MNP + XOR) scheme (d)

encoding packets transmitted in (MNP + RS codes) scheme. * 0 - means original MNP

(No FEC/parity)

115

We note that using XOR/RS codes effectively reduces the number of control

packets (up to 44%), especially the number of requests. For example, when we use

RS codes with 32 parity packets per segment, the average number of requests per

node is only 10 (Figure 4.4(b)), less than half of the requests transmitted per node

when the original MNP is used. As to encoding packets, we note that although

FEC schemes transmit additional parity packets, the number of data packets, plus

the parity packets, is still lower than the number of data packets transmitted by the

original MNP algorithm in general, with a few exceptions (when the number of parity

packets per segment is 2 or 32 in (MNP + XOR) scheme).

From Figure 4.4, we can see how RS codes performance better than simple XOR

code. For XOR code, when the number of parity packets per segment increases from

4 to 32, the additional parity packets do not contribute much to recovering packet

losses, but incur higher transmission overhead due to more redundant packets. As we

mentioned in Section 4.2, the limitation of XOR scheme is that, only one loss can be

recovered in each transmission group. Although we can use multiple parity packets

for a segment by dividing a segment into several transmission groups, only one loss

from each group can be recovered. In other words, XOR code with multiple parity

packets work best when the message losses are evenly distributed in the segment.

However, in network reprogramming, a large part of the message losses are bursty in

nature, caused by message collisions or channel errors. Therefore, dividing a segment

into many tiny groups, and transmitting one parity packet for each group using XOR

code, is not desirable. By contrast, RS codes can recover message losses at arbitrary

locations. For RS codes, increasing the number of parity packets in a group improves

its ability of recovering message losses. As shown in Figure 4.4 (c) and (d), for XOR

code, when more than 4 parity packets are used for each segment, the number of

encoding packets increases with the increase of the number of parity packets; for

RS codes, the number of encoding packets remains the same although more parity

116

packets are transmitted.

4.4 Chapter Summary

Automatic repeat request (ARQ) is a commonly used technique for reliable bulk

data dissemination applications in sensor networks. A typical example of this type

of applications is network reprogramming. All the existing network reprogramming

protocols use ARQ as the error recovery scheme. In this chapter, we proposed a

hybrid reliability scheme, which combines forward error correction (FEC) with ARQ

schemes. The FEC provides an abstraction of a better transmission medium, and

ARQ scheme takes care of the remaining error corrections. We use MNP, a multihop

network reprogramming protocol, as a study case, and presented the implementation

details of adding FEC schemes to MNP. Specifically, we considered two (n, k) FEC-

schemes: the simple XOR code, and Reed-Solomon (RS) codes. We added the two

FEC schemes to MNP, and simulated them in TOSSIM.

The simulation results show that both simple XOR code and Reed-Solomon codes

effectively reduce the number of request messages that ask for missing packets, thus

enable faster reprogramming and less energy consumption. Adding XOR code to

MNP can reduce the reprogramming time by 1-10%, and reduce the active radio time

(which contributes to the major part of energy consumption) by 3.18%; while adding

Reed-Solomon codes to MNP can reduce the reprogramming time by 9-33‘70, and

reduce the active radio time by 10-38%. The message transmissions and receptions

are reduced as well when the FEC schemes are used. We found that simple XOR

code has limited capability of correcting errors (reducing completion time by up to

10% and reducing active radio time by up to 18%), that is, it cannot deal with

bursty packet losses, which is not rare when disseminating a large amount of data in

large networks. Therefore, increasing the number of parity packets does not help to

117

improve the performance, only incurs more redundant transmissions. On the other

hand, Reed-Solomon codes are more flexible. It can deal with any loss patterns.

It becomes more powerful at correcting errors when more parity packets are used.

XOR code is very simple to implement, while Reed-Solomon codes require higher

computing resources due to the complexity of their calculation. It suggests a tradeoff

between computation and performance: if more computation resources are available,

a more powerful coding scheme, e.g., Reed-Solomon codes, should be used to achieve

better performance; otherwise, a simple XOR FEC scheme can be used for limited

improvement.

118

Chapter 5

Securing the Reprogramming

Process

Reprogramming is performed via wireless radio, which is a broadcast medium,

and is vulnerable to packet injection or corruption attacks. Moreover, the current

reprogramming protocols [23, 30,33,47, 60] are epidemic in nature. Once a false or

viral code image is installed on one sensor, it could rapidly infect the entire network,

and thus, lead to catastrophic damage. For these reasons, it is important that sensor

nodes be able to verify that the code image is from a trusted source.

In this chapter, we focus on the security of protocols such as MNP discussed in

Chapter 2. Specifically, we focus on authentication. Our goal is to provide a way

that sensor nodes can verify program authenticity and integrity. The major challenge

of this problem in the context of sensor networks is that the amount of available

RAM is significantly small (e.g., Mica2 sensors [7] have only 4KB RAM). Therefore,

if large amount of data needs to be sent to the sensor nodes then this data must be

stored on EEPROM, which is much larger in size. One of the important problems

with this however is that EEPROM writes are expensive in terms of energy (e.g.,

writing a 16-byte block to an EEPROM is approximately four times more expensive

119

than transmitting a message (cf. Section 1.2)). Moreover, each EEPROM location

can be successfully written only a finite number of times (typically about 10,000

operations [13]). In other words, after a certain number of writes, the EEPROM

location cannot be changed subsequently. Thus, an adversary can launch a denial of

service (DOS) attack by sending garbage data to a sensor. Even if the sensor later

finds out that the data is invalid, it would have had spent significant energy in saving

the data to EEPROM. This suggests that in the presence of denial of service attacks,

data must be authenticated before it is written to EEPROM. We define this problem

as the problem of bulk data dissemination, with reprogramming as one special case.

Although our protocol is designed for reprogramming, it can be applied in other

bulk data dissemination scenarios as well. Specifically, we consider the problem of

bulk data dissemination in three scenarios. In the first scenario, bulk data dissemi-

nation needs to be solved for reprogramming a sensor network where the base station

sends the new program to the sensors. This program size is typically tens of kilobytes

in typical applications. In the second scenario, the data is moderate in size. Such a

scenario may occur if the base station is collecting statistics about the network per-

formance. The base station may then send a summary of such data along with new

commands, reconfigured values of different parameters, code for revised functionality,

etc., to all the sensors in the network. Another example is difference-based repro—

gramming, in which the base station only sends the differences of the new reprogram,

rather than the entire binary image, to the sensors. It is expected that the size of

such data would typically be smaller (1-4 KB) compared to the case of reprogram-

ming where the old program is completely replaced by the new program. However,

it can still be large enough that storing it entirely in memory may not be feasible,

especially due to the fact that typical applications use static memory allocation for

main memory. The third scenario occurs in cases where the network is divided into

a collection of (possibly overlapping) clusters. In such a scenario, the cluster leader

120

would need to communicate data to all sensors in its cluster. This scenario differs

from the second scenario in that the communication within the cluster is expected

to be single hop in the third scenario whereas the communication is expected to be

multihop in the second scenario. A variation of the third scenario also occurs when

reprogramming needs to be done in a laboratory environment where all sensors are

close to the base station (i.e., within distance 1). Even in such a scenario, security is

needed to ensure that two users trying to reprogram their respective sensors do not

(accidentally or otherwise) interfere with each other.

The organization of this chapter is as follows. In Section 5.1, we describe the

threat model and security requirements of the secure bulk data dissemination problem.

In Section 5.2, we present the basic hash chain scheme for authenticating a data

stream. In Section 5.3, we discuss the cost of signing data in sensor networks. In

Section 5.4, we introduce the secret instantiation algorithm from [18,31] that we use

in our protocol to provide authentication.

According to their capacities, the adversaries can be categorized into two groups:

mote-class adversaries and laptop-class adversaries. Mote-class adversaries have lim-

ited energy, and cannot launch extensive denial of service attacks. A laptop-class

adversary can launch denial of service attacks by injecting a large number of garbage

packets to the network. In Section 5.5, we present our authentication protocol for

the case where only mote-class adversaries exist. We use MNP as an example, and

show the performance. Then, in Section 5.6, we improve this protocol so that it also

deals with denial of service attacks from laptop-class adversaries. We illustrate the

applicability of our approach in the three scenarios considered above and evaluate the

performance. In Section 5.7, we propose additional techniques to improve the perfor-

mance for the first scenario (i.e., reprogramming a sensor network), and evaluate the

performance enhancement by applying these techniques. In Section 5.8, we discuss _

issues on key distribution and updates. We summarize this chapter in Section 5.9.

121

5.1 Threat Model and Security Requirements

We consider an adversary as one who tries to inject its own code into sensor

nodes or launch denial of service attacks that aim to exhaust sensors’ battery power.

It can eavesdrop on any communication in the network. It is able to compromise a

sensor node, and acquire all information inside it. It can also inject, change, delete

packets. However, an adversary cannot compromise the base station, which is securely

protected.

We focus on authentication only, i.e., we assume that confidentiality is not re-

quired, i.e., the data being transmitted are public and can be acquired by the adver-

sary. Hence, the data are sent in plain text along with appropriate authentication.

The goals of the proposed protocol are as follows:

1. Authenticity. Each sensor must be able to verify that data are from a trusted

source and have not been changed during transit. We consider the base station

as a trusted source, and is protected against compromise.

2. Node-compromise resilience. It must not be possible that compromising a single

sensor node will cause the other parts of the network insecure.

3. Low cost. The security scheme should be efficient in terms of computation,

communication, memory usage, and energy consumption. Moreover, it should

not add long delay to the data dissemination process.

Moreover, in the case where laptop-class adversaries exist, a sensor should verify

the authenticity and integrity of a received packet before writing it to flash. This is

to reduce the energy cost of receiving fake packets from an adversary in a denial of

service attack.

122

5.2 Scheme for authenticating a data stream

One way to authenticate a data stream is to use the approach from [17] for signing

digital streams (as done in [15]). Assume that the entire program has N (N Z 1)

segments. Each segment contains K packets (possibly with the exception of the last

segment). We represent the jth data packet of the 2"" segment as P(i, j), 2' = 1..N,

j = 1..K (we also refer to it as packet j for simplicity, as long as it does not cause

confusion). Hash of P(i, K) is computed and attached to P(z', K — 1). Then, hash is

computed on this modified packet (i.e., packet P(i, K — 1) and hash of P(i, K)) and

attached to P(i, K — 2). This process is then repeated until we obtain P(i, 1) and the

hash of the modified P(i, 2) (that contains P(i, 2) and hash of modified P(i,3)). In

this way, we construct one hash chain per segment. Finally, the hash of the modified

first packet is then signed. We call this approach the basic hash chain scheme.

In Figure 5.1, we show the basic hash chain scheme for segment 2'. The hash of

packet P(i, j) is denoted as H(2', j). A data packet P(i, j) has two parts, the data

part and a hash of the next packet (not shown in Figure 5.1 for clarity). In Figure

5.1, an arrow pointing from packet j to packet 2’ indicates that packet 2' contains the

hash of packet j. If P(i, j) is the last packet of segment i (1 S i < N), then the hash

is 0. Hence, a data packet in a basic hash chain can be represented as in Figure 5.2.

Note that the hash is computed over the entire packet, not just the data part.

The base station signs the hash of the first packet in the segment, which is the head

of the hash chain, using all the secrets. We denote the signatures of segment 2' as

sign(H(i,1)) in Figure 5.1.

[] slgn(H(i,l))]

f

[“M i,2]4-[L3 H 1,4 H 1,5] [E

Figure 5.1: The basic hash chain (segment i).

123

if P(2', j) is the last packet of segment 2'

P(i,j) = data(2’,j)||0,2‘=1..N,j = K

else

P(i,j) = data(2',j)]|H(2',j + l),2'=1..N,j =1..(K — 1)

endif

Figure 5.2: Representation of a data packet P(2', j) in the basic hash chain.

With the basic hash chain approach, when a node receives the first packet, it can

use the signature to authenticate it. Additionally, it obtains the hash value for the

(modified) second packet. Thus, when it receives the second packet, it can use the

hash value to verify it, and so on. Note that a sensor can verify a data packet P(2', j)

if and only if it has received and verified all the packets in the hash chain proceeding

P(2', j) It implies that the data packets have to be verified in order. This is inefficient

in the events of packet loss/delay. For example, if all the packets in segment 2' have

been received except packet 2, none of the packets after packet 2 in the chain can

be verified. In the case where denial of service attacks exist, such packets cannot be

stored in EEPROM. They have to be thrown away if there is not enough memory to

cache them.

As we can see, in the basic hash chain scheme, a single packet loss/delay can

lead to erasure of many valid data packets. This leads to significant energy waste.

Our simulation results (as well as the results from [14,15]) show that if we require

that the data packets be received and stored in order, data dissemination process will

be delayed significantly (e.g., the completion time increases by 6 or 7 times if we use

the default segment size 128 packets/segment in MNP). Correspondingly, the energy

consumption also increases by a large amount.

124

5.3 Cost of Signatures In Sensor Networks

In the basic hash chain scheme, the important issue is the approach used for

signing the hash of the first packet. If the cost of this signature is reduced then

it would assist in reducing the overall cost. The cost of the signature is especially

important in the second and third scenarios described at the beginning of this chapter,

where the size of the data is comparatively smaller.

Existing approaches [14, 15, 34] use public keys for authenticating the data used

in reprogramming. The base station signs the hash of the first packet using its

private key and each sensor decrypts it using the corresponding public key. However,

creating and verifying the asymmetric digital signatures have very high computation

overhead. Moreover, since the cryptographic operations are overlapped with the

radio operations; if the encryption/decryption Operations are not fast enough, we

may encounter problems if the radio packets needed by the sensors are no longer

available. Although recent work has shown that RSA and elliptic curve cryptography

(ECC) are feasible on Mica/TelosB motes [20, 45, 64], they should still be avoided or

used sparingly.

With this motivation, we focus on use of symmetric keys, which need much less

energy/memory/computation resources, and hence, are expected to be more appro-

priate for resource constrained sensor nodes. For example, if we use Skipjack (or RC5)

on Mica2 motes, the execution time for encrypting/decrypting an 8-byte block is only

0.38ms (or 0.26ms in the case of RC5), which is less than the time for sending one

byte data over radio [25]. This approach also has the potential to allow intermediate

packets to be signed so that even if a sensor misses some packet, it can authenticate

and store packets received after the subsequent signature. Inserting such intermediate

signatures is feasible since the cost of computing these signatures is small. A simple

approach is to use a single network-wide key shared by the base station and all the

sensors [25]. The problem with this approach is that a sensor cannot verify if the

125

data received is from the base station or another sensor in the network. Therefore,

we must use symmetric keys in such a way that the nodes can verify that the data

was indeed sent by the base station.

We propose a symmetric key based protocol that authenticates the bulk data

dissemination process in sensor networks. We use a secret instantiation algorithm

from [18, 31] that we will describe in Section 5.4 to provide authentication. The

algorithm requires only O(log 72) keys to be maintained at each sensor. Thus, in our

protocol, only a very small number of keys are maintained at every sensor.

5.4 Protocol For Signing The Hash of The First

Packet

In this section, we introduce the secret instantiation algorithm [18,31] that we

use in our symmetric key based authentication protocol. This algorithm requires only

0(log 22) keys to be maintained at each sensor.

The base station has a collection of secrets. Initially, each sensor receives some

subset of this collection. Whenever the base station sends a message, it separately

signs it using all the secrets in its collection. Thus, message transmission is associated

with a collection of signatures, one for each secret that the base station has. To

sign message m, with secret s, the base station can use algorithms such as MD5.

(Additionally, if the length of the signature needs to be small, then only a small part

of this signature (e.g., last few bytes) may be used.) Whenever a sensor receives this

communication, it verifies the signatures based on the collection of secrets it has. Of

course, a sensor will only be able to verify a subset of the signatures, as it does not

have all the secrets. It is required that if all these signature verifications are successful,

the sensor can assume that the communication is truly from the base station (and

not from an outsider or anther sensor pretending to be the base station).

126

To implement this algorithm, a 2-dimensional array of secrets with 2' rows (num-

bered 0..7‘ — 1) and log, a (numbered 1.. log, n) columns (where 2 S r S n and n is

the number of sensors) is maintained. The base station knows all these secrets. Each

sensor is assigned a unique ID that is a number with radix r. Observe that the ID

is of length logrn. (Leading Os are added if necessary.) This ID identifies the secrets

that a sensor should get. Specifically, if the first digit (most significant) of the ID is

a: then the sensor gets 23‘" secret in the first column. If the second digit of the ID is

y then the sensor gets yt" secret in the second column, and so on.

To illustrate the algorithm, we show an example in Figure 5.3. Let the number

of nodes be 16 and let 1' be 2. Then the base station contains 8 (i.e., 2 log2 16) secrets

with 2 rows and 4 columns. Each sensor has 4 (i.e., log2 16) secrets. The set of secrets

a sensor has are decided by its unique ID. For example, if a sensor’s ID is 0011, then

it has the secrets on the first row in the first two columns and the secrets on the

second row in the next two columns.

Theorem 1. If sensor j receives a message and it verifies all the signatures

based on the secrets it knows then that message must be sent by the base station.

. . 1M

0 [inn-fl .~ J1 ' . I T : I j

I T311 1 [01911112191111 L9_9,__‘119_l

@ 1 e

' ' _ ”T l _' l " 'T' ‘T ' T T

1 a .wa T101 [01?
‘ “ C)<' i (1

l1," .,J ._,

[1:615le WET—01!] Ed

O i-) '

f)\ .

I [191161

“if l)
/ ~/’

We. hill [TI—[610331113] [11110]
2:) o\ /

Figure 5.3: Secret instantiation: an example.

127

Proof: Each sensor has a unique ID that is of length logrn, thus it is associated

with a unique combination of logrn secrets. Only the base station contains all the

secrets. Therefore, no other sensor, except the base station, has all the secrets that

sensor j has. Hence, if j verifies logrn signatures, it is assured that the message

originated at the base station. [18] D

Collusion. In the secret instantiation algorithm, compromising a single sensor

node will not compromise the entire network. This is due to the facts that each sensor

has only a subset of the secrets, and if an adversary attempts to pretend to be the

base station, it needs to get all the secrets. However, colluding sensors may be able

to obtain all the keys and, thereby, pretend to be the base station. By choosing

an apprOpriate value for 2", this key distribution provides a tradeoff between level of

collusion resistance and number of keys at the base station.

In our simulations, for simplicity, we used the base 2‘ = 2 thereby choosing the

least number of secrets at the base station. Hence, in a 10x10 network (100 sensors),

the base station maintains 14 (2l092100) secrets and each sensor maintains 7 (log 100)

secrets. In this case, collusion of 2 users with complementary IDs (e.g., a sensor with

ID 1010 and a sensor with ID 0101) can allow them to pretend to be the base station.

If higher collusion resistance is desired, the designer can choose a higher base. For

example, if r = 10 is used for a 10x10 network, then the number of secrets maintained

at the base station increases to 20 (as compared to 14 when r = 2). Since these secrets

are used only a few times during data dissemination, it will not affect the performance

(time/energy) significantly.

On the other hand, with increased value for 1‘, not only the collusion resistance

increases, but also the number of secrets maintained by each sensor (logrn) decreases.

Thus, providing higher level of collusion resistance does not adversely affect the sen-

sors. For 2" 2 J72, the algorithm corresponds [31] to the grid algorithm in [32]. For

T = n, the algorithm corresponds to the case where each sensor maintains a unique

128

secret that is known only to that sensor and the base station. In this case, collusion

between sensors does not allow them to pretend to be the base station.

Computation cost of signing/verifying the signatures and computing

the hashes. The hash chain and signatures are computed only once at the base

station. The sensors simply use/forward the signatures received from the base station.

Moreover, since we use symmetric keys for signatures, the overhead is much lower than

(about 0.0005 times) the cost of using the asymmetric keys. While hash computation

is performed for every packet, it is very efficient (less than 10ms per packet). Hence,

hash computation does not significantly increase the computation cost either.

5.5 Authentication Protocol For Mote-Class Ad-

versaries

In this section, we focus on the case where only mote-class adversaries exist.

Examples of such adversaries are likely to occur in sensor network testbeds. Such

testbeds are expected to be typically physically secure so that attacks from a laptop

class adversary are prevented/mitigated. However, since the testbed relinquishes

control of sensors to users for their experiments, one experiment can be affected

by another concurrent experiment. In this case, a potential adversary is in mote-

class, i.e., its computation and communication capability as well as battery power is

similar to the sensors in the network. Our algorithm provides protection from such

interference/attacks with a low overhead. We describe the protocol in Section 5.5.1,

and present the evaluation results in Section 5.5.2.

5.5.1 Protocol Description

We use the basic hash chain approach described in Section 5.2 to construct one

hash chain per segment. The hash of the first packet of each segment is signed using

129

the secret instantiation algorithm [18,31] that we described in Section 5.4. We present

our authentication protocol in the context of MNP (cf. Chapter 2). In MNP, a sender

broadcasts a “StartDownload” message several times, then starts transmitting the

requested data packets in the segment. We add the signature and the hash H(1, 1)

in the “StartDownload” message. If the signature plus hash is too long, and does not

fit in one message, we can use multiple messages for “StartDownload”. In this case,

the receiver needs to receive all of them in order to get the entire signature.

As we discussed in Section 5.2, in the basic hash chain approach, packets are

verified in order. However, packets do not arrive in the same order as they are sent

due to packet losses and/or delay. If we require that the data packets have to be

received/stored in sequential order, we have to throw away a large portion of the data

packets that have been received, which incurs significant energy waste. On the other

hand, if out of order delivery is allowed then an adversary can mount a denial of

service attack by sending a large number of garbage packets, as storing the packets

(to EEPROM) requires significant energy. However, since a mote class adversary has

limited power and message transmission requires significant energy, the adversary

cannot launch such attack for a large duration. Therefore, in our design, we allow

the packets that arrive out of order (within one segment) to be received and stored

immediately.

In our protocol, each sensor maintains a received vector (corresponds to Miss-

ing Vector in MNP), which is a bitmap of the current segment, indicating which pack-

ets have been received. All the bits in the received vector are initialized to 0. Once

a sensor receives a packet for the first time, it stores the packet (the data part) in

EEPROM, and sets the corresponding bit in received to 1. The hash value part of the

packet needs be buffered in memory so that it can be retrieved fast for verification.

Moreover, each sensor contains a variable, verifiedPackets, which is the number of

packets the sensor has received and verified.

130

When a sensor node receives a packet P(i, j), if the previous packet has been

verified, i.e., j = verifiedPackets+l, then the node can verify packet P(i, 3') using the

saved (and verified) H(i, j) from the previous packet. If the verification is successful,

the node will increase verifiedPackets by 1, and continue verifying the next received

(but not verified) packet. (When we talk about previous or next packet, we refer to

the previous or next node on the hash chain.) This verification process continues

until we reach a missing packet. On the other hand, if the packet verification fails,

the packet is thrown away (i.e., received(j) is set to 0), and the verification process

steps.

The operation a sensor performs when it receives a data packet P(i, j) (the jth

packet in the ith segment) is shown in Figure 5.4.

when a data packet P(i,j) arrives

if P(i,j) is received the first time, i.e., received(j) ==

store P(i,j): store data part in EEPROM and the hash value for the next

packet in memory, set received(j) to 1

while ((receivedU) == 1) and (j 2: verifiedPackets + 1))

Compute H(i,j)

if computed H(i,j) == saved H(i,j) from the previous packet

verifiedPackets++. j++

else // the packet cannot be verified. hence is thrown away

set received(j) to 0, break while loop

endif

endwhile

endif

Figure 5.4: Operation a node performs when it receives a data packet P(i,j)

5.5.2 Evaluation

In this section, we evaluate the performance of our secure reprogramming proto-

col. We integrate our protocol with MNP as described in Section 5.5.1, and refer to

the integrated protocol as SecureMMNP (i.e., SecureMNP for Mote-class adversaries).

131

We simulate SecureMMNP using TOSSIM [37]. We evaluate the performance in terms

of memory requirement, delay, energy consumption, and communication cost. When

we compute the energy consumption, we use Equation 2.1 from Section 2.2.2 in Chap-

ter 2. Note that in this equation, we only consider the energy cost of communication,

idle listening and EEPROM read/write. The energy cost of computing hashes and

signatures is not included in Equation 2.1, but is discussed at the end of Section 5.4.

In our simulation, each segment has 128 data packets. The simulations are

performed in a grid topology. The inter-node distance is 10 feet. Due to the fact that

the execution time of each simulation is of order of tens of hours, we do not provide

confidence intervals.

The default payload size of each packet in MNP is 23 bytes. Each packet carries

a 4—byte hash, which is the hash value of the next packet. Hence, excluding the hash

value, the effective data payload is 19 bytes. Therefore, in every data packet, 4 out of

23 bytes of the payload is consumed in authentication. Therefore, in order to transmit

a program of certain size, more data packets need to be received at every sensor.

We consider a 20x20 network, i.e., the number of sensors in the network is 400.

We set r to be 2. In this case, the base station contains 18 (i. e., 2log2 400) secrets,

and each sensor has 9 secrets. As we described in Section 5.5.1, the base station

signs H(1, 1) using all the secrets, and attaches all the signatures and H(1, 1) in

“StartDownload” messages. If sensors only verify the last bytes of the signatures, we

only need 18 bytes for the signatures, and the signatures fit in a single packet. If two

bytes of each signature are used, then the length of the 18 signatures is 36 bytes. In

this case, two packets for “StartDownload” messages need to be sent.

Memory requirement. Our authentication protocol has memory cost in the

following ways. First, log, n secrets are maintained at each sensor. When r increases,

the number of secrets maintained at the sensor decreases. In a 20x20 network, the

number of secrets at each sensor is no more than 9. In a 10x10 network, the number

132

of secrets maintained at each sensor is at most 7. Second, the signatures from the

base station for each segment need to be stored either in memory or in flash. Third,

the signing/verification process consumes some amount of memory. This amount of

memory is much lower compared to the asymmetric key based approaches. Fourth,

the algorithm uses a variable verifiedPackets to keep track of how many packets have

been verified/authenticated. Fifth, since we allow packets to be received and stored

out of order, we need to store all the hash values for the packets in the current

segment. As we assume a 4-byte hash value is used and each segment contains 128

packets, the space that is used to store hash values is 512 bytes. The hash values can

be stored in memory if reprogramming speed is important.

Delay and energy consumption. We assume that the last two bytes of each

signature are used, then the collection of the signatures from the base station are con-

tained in two “StartDownload” messages: “StartDownloadl” and “StartDownloadZ”.

In order to get the entire set of signatures, each node needs to receive both messages.

As we allow packets to be saved before verified, and hash values can be computed

very fast, authentication process does not affect reprogramming time significantly.

Given a certain number of data packets to be sent, the reprogramming time remains

almost the same no matter whether the security protocol is used. The major overhead

is the hash values that are carried in data payload. As we have pointed out earlier,

4 out of 23 bytes data payload in a data packet are used for authentication. The

size of code image that is sent by a segment in MNP is 2.94KB (128 x 23 bytes).

By contrast, the size of the code image that is sent by a segment in SecureMMNP is

2.43KB (128 x 19 bytes). In Figure 5.5, we Show that given a certain amount of code

image to be sent, the reprogramming time required by SecureMMNP is only a little

(1-16%) higher than that required by MNP. The energy consumption of SecureMMNP

is 7—54% higher than that of MNP.

Communication cost. Similarly, the communication cost required by

133

1800 900

1500» 800L

3? 1400 3 7co[

g 1200 1 £600

; .9
5 1000 g 500 1
z

2 a:

g 800 l c 400- 1

s 3
600 1 300

400- 19.- SecureMMNP l 200» -A- SecureuMNP 1

-a- MNP 1 -a- MNP

2000 5 1o 15 20 06o 5 10 15 20
Program Size (K8) Program Size (KB)

(3) (b)

14000 1

S

§12000'

2

310000»

C

o

'3
E 8000

3

g 6000*

5 .0001
A— SecureMMNP

-B- MNP

20060 " 5 1o 15 20

Program Size (KB)

(C)

Figure 5.5: Comparing MNP and SecureM MNP: delay and energy consumption of

authentication under different program sizes. (a) completion time vs. program size

(b) active radio time vs. program size (c) energy consumption per node (not including

the authentication cost) vs. program size.

SecureMMNP is a little higher than that is required by MNP due to fact that the

hash values that are attached with every packet. In Figure 5.6, we show that for

a given program size to be distributed, the message transmission and reception of

SecureMMNP is about 20% higher than that of MNP.

134

350 ' a
3000

300* 1

0 § 2500* 4

E 250 g

(D >2000‘

>~ .D

f, 200- 1 g
1: >

g - 1500

,1... i
s a
«n 1000r

g 100 g

50; .. g 500‘

15— SecureMMNP 19.- SecureMMNP

'8' MNP '3' MNP

0
°

5 15 20D
O

5 15 2010 10
Program Size (KB) Program Slze (KB)

(80 (b)

Figure 5.6: Comparing MNP and SecureMMNP: communication cost of authentica-

tion under different program sizes. (a) message transmission per node vs. program

size (b) message reception per node vs. program size.

5.6 Authentication Protocol For Laptop-Class Ad-

versaries

In this section, we consider the case where laptop-class adversaries exist. To

mitigate the denial of service attacks from a laptop—class adversary, we require that

the received data packets must be authenticated before stored to EEPROM. We show

the effectiveness of our approach in the three scenarios discussed at the beginning of

this chapter. First, in Section 5.6.1, we discuss the third scenario where the sensors

are within a single hop of the source. Subsequently, in Section 5.6.2, we discuss

the second scenario where a moderate amount of data (1-4KB) is sent using a fine-

gmined pipelining (i.e., packet-level pipelining) protocol (e.g., Infuse [30]). In both

scenarios, we show that the time to transmit moderate amount of data is less than

the time for transmitting even a single packet with public keys. In Section 5.6.3,

we discuss the first scenario where large amount of data is sent using a coarse-grained

pipelining (i.e., segment-level pipelining) protocol. We focus on the reprogramming

135

protocol MNP (cf. Chapter 2) and show that security can be added to it using our

approach. Furthermore, we illustrate how adding redundancy to the transmitted data

can further reduce the cost of adding security.

5.6.1 Secure Single-hop Dissemination

In this section, we focus on the scenario where the source node is disseminating a

moderate amount of data to all the receivers within single hop. This typically happens

in a small/indoor network, or within a cluster in a large network. The source node

can be the base station or a cluster head depending on how the protocol is used. Any

single—hop/multi—hOp reprogramming protocol (e.g., [12,23, 30, 33, 47]) can be used

for dissemination in this scenario. We use a simple CSMA-based protocol (similar to

that in [12]), which is described as follows.

The base station computes hash for each data packet. The hashes are put into

one or a few packets (called hash packets). The base station then computes hashes

for these hash packets, and accommodates them into one or a few higher-level hash

packets. In this way, the hashes of packets are organized into a hash tree (this uses

the approach in [14]). The base station signs the root of the hash tree using all the

secrets it has (based on our symmetric key algorithm). The base station sends the

signatures at first, followed by the hash tree, from higher level or lower level. After

the hash tree has been sent, it sends the data packets. Because the hashes are sent

before the data packets, when a sensor receives a data packet, it can authenticate this

packet immediately using the hash value. After the base station has transmitted all

the data packets, it will send query several times. If the base station receives requests

from the receivers, it will retransmit the requested packets. This continues until all

the receivers have received all the hashes and data packets. We call this approach

secure single-hop dissemination with hash tree.

Alternatively, we can also use the basic hash chain approach, as described in

136

Section 5.2. The base station sends the signatures of the hash of the first packet,

the first packet contains the hash of the second packet, and so on. We call it secure

single-hop dissemination with hash chain.

We run this simple protocol (with hash tree and hash chain variations) on a

special purpose simulator. The base station sends the signatures and the hash packets

twice for robustness. The payload size of a data packet is 70 bytes, including 6 bytes

header and 64 bytes data. A hash is 4 bytes long. Hence, each packet can carry 16

hashes. The signatures fit in one packet.

The transmission interval of a data packet is 45ms. When a receiver receives a

query packet, it will wait for a short random duration before sending a request. We

vary the data size from 0.5KB to 4KB, and simulated the two approaches at different

receiver set sizes. Specifically, the number of receivers is set to 5, 15, 50. Packet loss

rate is 5%. We repeat the simulations three times, and use the average.

In Figure 5.7, we show the completion time of this secure single hop protocol

at different data sizes and different receiver set sizes. For comparison, we also show

the time required to send a single packet through the network using public key

scheme. According to [64], the time required for the base station to sign a packet

with its private key is 21.53. And, the time required to verify the packet at each sensor

is 0.795. Thus, the time to propagate one packet to a single hop network is at least

22.295 (21.58+0.795). From Figure 5.7, we can see that using our symmetric key based

authentication with hash tree approach (respectively, with hash chain approach), the

time to send 4KB data through the network (including request and retransmission

time) is only 53-63% (respectively, is close to) the time to transmit a single packet to

the network using public key based authentication. This shows that using symmetric

key based authentication can significantly reduce the time (and energy) cost compared

to the public key based authentication.

Memory requirement. The memory requirement of the protocol is listed as

137

A C
)

- Data size = 0.5KB

_ - Data size = 1KB

- Data size = 2K8

E3 Data size = 3K8

: [:3 Data size = 4KB

C] 1 packet with public key assuming perfect channel

. - Time to sign with private key at base station .

0
)

0
1

(
a
)

O

N 0
'
!

C
o
m
p
l
e
t
i
o
n
T
i
m
e

(
s
)

63
8

.
5

O 1

i

5 15 . 50

Number of Receivers

(a)

- Data size = 0.5KB

- - Data size = 1KB 4

- Data size = 2K8

~ EL] Data size = 3KB 1

I: Data size = 4KB

[C] 1 packet with public key assuming perfect channel 1

- Time to sign with private key at base station

>- -1

C
o
m
p
l
e
t
i
o
n
T
i
m
e

(
s
)

-
b

—
b

N
N

w
(
A

A
A

0
1

0
1

O
0
1

O
(
n

O
0
1

0
0
1

O

C

15

Number of Receivers

(b)

Figure 5.7: Completion time in a single hop network. (a) hash tree approach (b) hash

chain approach. (For approaches with public key schemes, only signing/verification

cost is considered. Communication cost, although possibly significant when the size

of signature is large, is not considered. But for our protocol, both signing/verication

cost and communication cost are considered.)

follows. The amount of memory required for caching the secrets and the signatures,

and that required during signing/verification process are the same as what we have

discussed for secure reprogramming for mote-class adversaries (cf. Section 5.5.2). In

138

addition, in the hash tree approach, each sensor caches all the received hashes in RAM

(and use them to verify the data packets later). If the length of the data stream is

4KB (64 packets), the amount of memory for storing the hashes is 256 bytes. If the

hash chain approach is used, only the hash contained in the last packet that has been

authenticated needs to be cached in RAM. In this case, the RAM requirement for

hash cache is only 4 bytes.

5.6.2 Secure Multihop Dissemination with Fine-Grained

Pipelining

In this section, we focus on the scenario where the base station disseminates

a moderate size data stream (of size 0.5-3KB) across the network in a fine-grained

pipelining fashion. Such fine-grained pipelining service can be achieved using any

TDMA based data dissemination protocol (e.g., Infuse [30], Sprinkler [47]). To illus-

trate secure dissemination in a multihop network with fine-grained pipelining, we use

Infuse [30] to disseminate the data across the network. We note that the evaluation

results presented in this section are applicable to other data dissemination protocols

that use fine-grained pipelining.

Overview of Infuse. Infuse is a reliable TDMA based data dissemination

protocol. Since we consider grid based networks in this dissertation, we present an

overview of Infuse for such a network. The basic idea of Infuse is to assign time slots

in such a way that no two nodes within distance two (in the grid) of each other should

get the same slot. This ensures that whenever any node transmits data, nodes within

distance 1 can always receive that message without collision. For the case where the

communication range of a node exceeds the distance with the closest neighbor, nodes

can be assigned different frequencies to prevent collision. Note that Mica motes can

provide multiple channels (e.g., 54 channels in the 902-928 MHz frequency band)

on which they can transmit [9]. However, they can listen to only one frequency at

139

a time. To illustrate this, consider a line network a—b—c—d-e. Suppose that sensors

can communicate/interfere with nodes upto distance 2 then, a and d should transmit

on different frequencies. Depending on the communication/interference range of the

sensors, the number of frequency channels required varies. The issue of number of

frequency channels required is outside the scope of this dissertation. Although TDMA

ensures collision freedom, messages can still be lost due to random channel errors.

To deal with this, Infuse uses sliding window based recovery mechanism and implicit

acknowledgments (by listening to the transmissions of the neighbors).

Evaluation with Infuse. We authenticate the data stream disseminated

with Infuse using the basic hash chain approach discussed in Section 5.2. We call

this protocol SecureInfuse. We simulate the protocol in Prowler [59], a probabilistic

wireless network simulator for Mica motes. The goal of the simulations is to illustrate

that the completion time with Securelnfuse is significantly less than that with public

key scheme. We disseminate data of sizes 0.5-3KB across 10x1, 5x5, and 10x10

networks. The payload size of the messages transmitted by Infuse is 16 bytes. In

our simulations, we use 4 packets as the sliding window size (for dealing with random

channel errors). Since random channel errors can cause the link reliability to go down,

we choose a conservative estimate of 95% link reliability in our simulations.

Figure 5.8 shows the completion time of Securelnfuse. As observed from the

figure, the time to disseminate data with SecureInfuse is significantly less than the

time to propagate one packet across the network using public key mechanism. Based

on [64], with public key scheme, the analytical result on time required to sign and

verify a packet across a 10x1 network (respectively, 5x5 and 10x10 networks) is 28.618

(respectively, 27.825 and 35.728). On the other hand, with Securelnfuse, the time

to disseminate the data stream of size 3KB is approximately the same as the time

required with the public key scheme for a single packet. Thus, the time to securely

disseminate a moderate size data across a multihop network is significantly less with

140

the use of symmetric keys. (Note that due to multiple paths in a 10x10 network,

a sensor may recover a lost packet from a different neighbor. For this reason, the

transmission time is lower in a 10x10 network than in a 10x1 network. For details of

such behavior, we refer the reader to [30], as this issue is not central to the topic of

this dissertation.)

70 e

- Data size = 0.5KB

- Data size = 1KB

’ Data size = 2KB

[:3 Data size = 3KB

C3 1 packet with public key assuming perfect channel

' - Time to sign with private key at base station

C
o
m
p
l
e
t
i
o
n
T
i
m
e

(
s
)

a
s

as
8

8
_
L

O

5x5 ‘

Topology

Figure 5.8: Completion time with window size = 4. (For approaches with public key

schemes, only signing/verification cost is considered. Communication cost, although

possibly significant when the size of signature is large, is not considered. But for our

protocol, both signing/verication cost and communication cost are considered.)

Memory requirement. Similar to the discussion in Section 5.5.2, Secure-

Infuse also maintains log, n secrets at each sensor. Additionally, since SecureInfuse

uses the basic hash chain approach, only the hash contained in the last authenticated

packet needs to be kept in RAM. Finally, Infuse maintains a sliding window of 4

packets (=64 bytes, as the packet size in Infuse is 16 bytes) to deal with the problem

of random message losses. However, this requirement is inherent to Infuse irrespective

of whether authentication is enabled or not.

141

5.6.3 Secure Multihop Dissemination with Coarse-Grained

Pipelining

Coarse—grained pipelining are implemented in protocols such as MNP (cf. Chap-

ter 2) and Deluge [23]. In these protocols, the data stream is divided into segments

and pipelining is provided at the segment level. Security of Deluge is considered

in [15] and uses the scheme in [17] that is described in Section 5.2. Using our ap-

proach would be identical except that our approach reduces the cost of signing and

verifying the hash of the first packet. Thus, using our approach would reduce the

cost of data propagation by approximately 22 seconds than that in [15]. Likewise,

if hash tree approach is used with symmetric keys then the data propagation time

would improve by approximately 22 seconds over that in [14]. For this reason as

well as the fact that the data propagation time in [14,15] is in hundreds of seconds,

we do not provide detailed simulation results for this scenario. Instead, in the next

section, we present additional mechanisms that would reduce the cost of secure data

dissemination in coarse-grained pipelining.

5.7 Performance Enhancement of Authentication

Protocol For Laptop-Class Adversaries

In this section, we propose three techniques to improve the performance of our

authentication protocol when it is used to disseminate a large amount of data in a

multihop network with coarse—grained pipelining. We do a case study on MNP (cf.

Chapter 2). We note that the design and simulation results we present in this section

are applicable to other data dissemination protocols as well.

In Section 5.7.1, we describe how we use the keys and hashes to sign the data

stream. Specifically, we propose the double connected hash chains, combined with

142

symmetric key signatures, to authenticate the data stream. We also propose two

other schemes to further improve the efficiency: creating a cache on the receiver side

(Section 5.7.2) and using forward error correction (FEC) (Section 5.7.3). We evaluate

the performance of our authentication protocol and show the effect of applying these

schemes in Section 5.7.4.

5.7.1 Double Connected Hash Chain

In the basic hash chain scheme (cf. Section 5.2), the data packets have to be

verified in order. Losing a single data packet can lead to all the succeeding packets

to be thrown away. This leads to significant time/energy waste. To address this

problem, we propose a double connected hash chain to enhance the inter-connection

among the packets, as illustrated in Figure 5.9. Assume that the entire data stream

has N (N 2 1) segments and each segment contains K packets. We represent the 3""

data packet of the it" segment as P(i,j), i = 1..N, j = 1..K. (We also refer to it as

packet j for simplicity, as long as it does not cause confusion.) The hash of packet

P(i, j) is denoted as H(i, j) As shown in Figure 5.9, a segment is further divided into

hash groups. Each hash group contains 172 packets. m is an integer factor of K. A

packet P(i, j) contains a data part and two hashes: the hash of the next packet (with

successive packet ID, e.g., P(i, j + 1)), and the hash of the corresponding packet

in the next hash group (e.g., P(i, j + m)). In Figure 5.9, an arrow pointing from

packet j to packet i indicates that packet i contains the hash of packet j. In Figure

5.10, we represent a packet P(i, j) in a double connected hash chain. In this way, we

construct multiple authentication paths for verifying a data packet. To illustrate how

the double connected hash chain works, consider the scenario where a single packet

(packet 2) is lost, while all other packets in the segment have been received. If we

use the double connected hash chain, all the packets starting from packet m+1 can

be authenticated because packet 1 contains the hash for packet m+1.

143

] [sign (H(i,1)) l

[i,ij<—[1,2]<—[1,3 [.—m

l—[1,m+1]<—] 1, m+fl<—[1Im+3]4—

L]1,2m+1 i, 2Im+2 HIII2Im+3]<—-««:

Figure 5.9: The double connected hash chain (segment i).

if P(i, j) is the last packet of segment i

P(i,j) = data(i,j)ll0l|0,

i = 1..N,j = K

else if P(i, j) is in the last hash group of segment i

P(i,j) = data(i,j)llH(i,j + 1)l|0,

i=1..N,j = (K — m+ 1)..(K — 1)

else

P(i,j) = data(i,j)||H(i.j +1)||H(i,j + m),

i = 1..N,j=1..(K — m)

endif
Figure 5.10: Representation of a data packet P(i, j) in the double connected hash

chain.

5.7.2 Caching

Data cache and hash cache. We use two caches: a data cache, for storing the

data packets, and a hash cache, for storing the hashes. Assuming a hash is 4 bytes

long and the size of a segment is 64 packets, we only need 256 bytes to store all the

hashes for the entire segment. On the other hand, storing data packets requires much

more space. For example, if we set the packet size to 70 bytes, excluding 6 bytes for

144

the header, storing one packet needs 64 bytes. In this case, caching the a 64-packet

segment requires 4KB memory, which exceeds the memory capacity of some sensor

platforms, such as Mica2 motes. To reduce the memory consumption, we divide a

segment into cache groups. At any given time, each sensor caches data packets only

from one cache group. The cache group that is currently kept in the data cache is

called the active cache group. Note that when a sensor writes a data packet to its

data cache, it writes the data part as well as the two hashes. By doing this, when it

authenticates a packet, the hashes contained in the packet are authenticated at the

same time. Only those hashes that have been authenticated are written to the hash

cache.

When a receiver receives a data packet, if it needs the packet, it computes the

cache group this packet belongs to. If the packet is in the active cache group, the

sensor stores the packet to its assigned slot in the data cache. Otherwise, it changes

the active cache group to the one that this data packet belongs to, and stores the

received packet to the data cache. When a sensor changes its active cache group,

if there are data packets in the data cache that are not yet authenticated, these

packets are discarded. Moreover, when a sensor writes a packet to the data cache, it

also checks if the hash cache contains the hash for this packet. If so, the packet is

authenticated: the data part of the packet is written to EEPROM, and the hashes

are written to the hash cache (if they are not already in the hash cache).

When a hash is written to the hash cache, the sensor checks the data cache to

see if the newly added hash can be used to authenticate any data packet. If so, the

packet is authenticated, and the two hashes contained in this packet can be added to

the hash cache, which could in turn be used to authenticate more packets in the data

cache. Hence, one reception of a data packet can possibly lead to several continuous

writes to EEPROM. These writes to EEPROM must be queued and data are buffered

when necessary so that the erasure of the data cache will not cause loss of data.

145

5.7.3 Forward Error Correction

MNP, as well as all other existing data dissemination protocols [23,30,47,60], uses

automatic repeat request (ARQ) scheme to recover the lost packets. In ARQ schemes,

a receiver detects its own losses, and informs the sender of the missing packets, either

by sending requests or acknowledgments. The sender retransmits the packets that

are requested by the receivers. In the current problem, a single lost packet may cause

a sensor to discard other (valid but not yet authenticated) packets. Hence, in order

to reduce packet loss, in our protocol, we use forward error correction (FEC).

FEC provides reliability by transmitting redundant packets in a proactive man-

ner. Due to computational limits on sensors, we use the simple XOR FEC scheme.

For simple XOR code, each transmission group has only one parity packet, which

is the XOR or all the source packets in the group. XOR code is very simple to

implement, and it can repair a single packet loss in a transmission group.

The data cache provides required memory space for encoding and decoding XOR

parity packets, hence, there is no additional overhead on memory consumption for

employing FEC. In our approach, a sender transmits a parity packet after transmitting

t data packets (t is the size of the transmission group). The parity packet is XOR of

the t data packets that proceeding it. We require that t be not larger than the size

of the data cache.

When a receiver receives a parity packet, it checks if exactly one packet is missing

in the transmission group that this parity packet belongs to. If so, it uses the parity

packet to recover the packet that is missing. When a receiver tries to fix a missing

packet by decoding a parity packet, if all the received packets in this transmission

group are cached in the data cache (i.e., they are in the active cache group), decoding

the parity packet can be conducted directly. In the case that some data packets were

received in earlier transmissions and are not in the data cache, they must be read from

EEPROM to the data cache. As reading a packet from EEPROM is an optimized

146

Operation with low cost, employing simple XOR code in our protocol does not incur

much time/energy overhead.

5.7.4 Evaluation of Enhancement

We integrate our protocol with MNP (of, Chapter 2), and refer to the integrated

protocol as Secure],MNP (i.e., SecureMNP for Laptop-class adversaries). We simulate

SecureLMNP using TOSSIM. In our simulation, each segment has 64 data packets.

The size of a hash group m is 8. The simulations are performed in a grid topology.

The base station is at the corner of the network. The inter-node distance is 10 feet.

We consider a 10x10 network, i.e., the number of sensors in the network is 100. We

set r to be 2. In this case, the base station contains 14 (i.e., 2log2 100) secrets, and

each sensor has 7 secrets. Due to the fact that the execution time of each simulation

is of order of tens of hours, we do not provide confidence intervals.

We set the packet size to 70 bytes, among which, 6 bytes are used for the packet

header (including source node ID, destination node ID, program ID, segment ID,

packet type), the remaining 64 bytes are for the data and hashes. In SecureLMNP,

each data packet carries 2 hashes. Each hash is 4 bytes long. Hence, excluding the

hashes, the effective data payload is 56 bytes. Therefore, in every data packet, 8 out

of 64 bytes of the payload is consumed in authentication.

We first analyze the memory requirement of Secure],MNP in Section 5.7.4. Then,

we show the performance of SecureLMNP in terms of completion time, active radio

time, energy consumption, and communication overhead. The energy consumption

is computed using Equation 2.1 from Section 2.2.2 in Chapter 2. As we mentioned

in Section 5.5.2, Equation 2.1 does not include the energy cost on authentication

(computing hashes and signatures), which has been discussed in Section 5.4. Finally,

in Section 5.7.4, we investigate how our design decisions (i.e., double connected hash

chain, caching and FEC techniques) affect the performance.

147

Memory Requirement

The memory requirement of our authentication protocol with the enhancements

in Section 5.7 includes the amount of memory required for caching the secrets and the

signatures, and that required during signing/verification process (same as what we

have listed for secure reprogramming for mote-class adversaries in Section 5.5.2). In

addition, the data cache and the hash cache contribute to the major part of memory

consumption. If the data cache contains 8 packets, each packet is 64 bytes long

(including the data part and the hashes), plus l-byte packet ID (local ID, used inside

a segment) and a valid bit (to indicate if the packet is in the data cache), the data

cache requires 521 bytes. As we discussed in Section 5.7.2, the hash cache needs

256 bytes memory. Moreover, a variable is needed to record the current active cache

group. This only needs to be 1 byte long. And, as discussed in Section 5.7.3, since

the data cache provides the memory required for FEC encoding/decoding, there is

no extra memory overhead by applying FEC scheme.

Performance of SecureLMNP

We set the size of the data cache c to 8 packets. The size of FEC transmission

group t is set to the same as the data cache size, which is also 8 packets. As we have

pointed out earlier, 8 out of 64 bytes data payload in a data packet are used for hashes.

Therefore, transmitting one segment (64 packets per segment) in MNP disseminates

4KB data, while transmitting one segment in SecureLMNP only disseminates 3.5KB

data. In Figure 5.11, we show the completion time, active radio time and energy

consumption of MNP and SecureLMNP at different data stream lengths. We can see

that given a certain amount of data to transmit, the completion time required by

SecureLMNP is 37%-74% higher than that required by MNP. In both protocols, the

active radio time of sensors is around 50—60% the completion time. In Figure 5.11,

we show that the active radio time (and similarly, energy consumption per node) of

148

Secure),MNP is 30%-100% higher than that of MNP. This cost is much lower than the

case where we simply use the basic hash chain approach without optimization. In the

latter case, the completion time of the secured version of MNP is 6 or 7 times that

of the original MNP. The same conclusion holds for Deluge [23], as shown in [14, 15].

Hence, the performance improvement by applying the techniques we proposed in

Sections 5.7.1-5.7.3 is significant.

In Figure 5.12, we show the communication overhead of our authentication pro-

 1800 . 1200

-B- MNP

16001 -A- SecureLMNP

1000* 1

1400

G $3

C
o
m
p
l
e
t
i
o
n
T
i
m
e

(
s
)

§
§

A
c
t
i
v
e
R
a
d
i
o
T
i
m
e

(
s
)

5

400 ~

600 >

200 -
400 ~

2000 5 I I 20 25 G0 5 I 2510 15 10 15 20
Length of Data Stream (KB) Length of Data Stream (KB)

(a) (b)

x 10‘

£- MNP

a. SecureLMNP

1.8

 .
3

a
)

d e h

‘
r

L

i N
f

4
L

.
0
o
n

E
n
e
r
g
y
C
o
n
s
u
m
p
t
i
o
n
P
e
r
N
o
d
e

(
J
)

o a
,

.
1

.
o
A

J.

.
0

o
r
e

5 10 15 20 25

Length of Data Stream (KB)

(C)

Figure 5.11: Completion time, active radio time and energy consumption of MNP

and SecureLMNP. (a) completion time vs. length of data stream (b) active radio

time vs. length of data stream (c) energy consumption per node (not including the

authentication cost) vs. length of data stream.

149

tocol. In Figure 5.12(a), we can see that for a given amount of data to be distributed,

the message transmission SecureLMNP is 52%-92% higher than that of MNP. The

message reception pattern is similar to the active radio time (Figure 5.11(b)).

Analysis of Design Options

In this section, we analyze how the techniques we proposed in Sections 5.7.1-

5.7.3 contribute to the overall performance. We evaluate each of them by dis-

abling/replacing/varying it while fixing other parts of the protocol.

Comparing basic hash chain with double connected hash chain. To

evaluate the effectiveness of the double connected hash chain, we compare it with the

case where the basic hash chain is used (cf. Figure 5.13).

We can see that using the double connected hash chain, the performance is sig-

nificantly improved compared to the basic hash chain. Replacing the basic hash chain

with the double connected hash chain can reduce the completion time and the energy

consumption by 73—81%. Specifically, the time (respectively, energy consumption)

 5
+ MN; + MNP

. @- SecureLMNP
.9. SecureLMNP

w 8

(
A
) 8

N §

5 S

g

s

—
b

1 m

0
|

0 N
u
m
b
e
r

o
f
M
e
s
s
a
g
e
s
T
r
a
n
s
m
i
t
t
e
d
P
e
r
N
o
d
e

N 8

N
u
m
b
e
r
o
f
M
e
s
s
a
g
e
s
R
e
c
e
i
v
e
d
P
e
r
N
o
d
e

 11 A

0

c
0

5 10 15 20 25 5 1o 15 20

Length of Data Stream (KB) Length of Data Stream (KB)

0 25

(a) (b)

Figure 5.12: Communication cost of MNP and SecureLMNP. (a) Number of message

transmitted per node vs. length of data stream (b) Number of message received per

node vs. length of data stream.

150

to disseminate 10.7KB data using the basic hash chain scheme is 4570 seconds (re-

spectively, 38522J), which is 4.2 times (respectively, 3.9 times) the time (respectively,

energy consumption) for disseminating the same amount of data using the double

connected hash chain. The message transmission and reception using the double

connected hash chain are also much lower.

Varying the size of the data cache. To evaluate the effectiveness of data

cache, we vary the size of the data cache from 8 packets to 64 packets. In the case

6000 . 4000 1

-8- Basic hash chain -8- Basic hash chain

1&- Double connected hash chain 3500 -A— Double connected hash chain

5000 .

,1 A 3000

3' 4000 » l 3

3 E 2500
i: i:

5 3000 332000
a

2 o:

3 1500 J

o 2000 - g

o

1000

1 000 r

500

Go 5 10 15 20 c0 5 1o 15 20

Length of Data Stream (KB) Length of Data Stream (KB)

(8) (b)

x 104 T

-B- Basic hash chain

1&- Double connected hash chain

0
1

N
(
a
)

A

E
n
e
r
g
y
C
o
n
s
u
m
p
t
i
o
n
P
e
r
N
o
d
e

(
J
)

C
O

5 10 15 20
Length of Data Stream (KB)

(0)

Figure 5.13: SecureLMNP: comparison of the basic hash chain with the double con-

nected hash chain. (a) completion time vs. length of data stream (b) active radio

time vs. length of data stream (c) energy consumption per node (not including the

authentication cost) vs. length of data stream.

151

that the data cache size is 64 packets, the entire segment can be stored in memory.

In this case, even if the data packets arrive out of order, they can be temporarily

saved in the data cache, waiting to be authenticated later. Hence, the basic hash

chain works well in this scenario. In Figure 5.14, we show the completion time, the

active radio time and energy consumption of SecureLMNP for disseminating different

amounts of data, when the data cache size varies. For comparison, we also show the

corresponding performance of MNP. In the case that the data cache size is 64 packets,

we use the basic hash chain, instead of the double connected hash chain, to reduce

the cost of distributing hashes. As shown in Figure 5.14, when the data cache size is

8 packets, 16 packets, and 32 packets, the lines that represent the completion time in

Figure 5.14(a) (and respectively, the active radio time and energy consumption per

node in Figure 5.14(b) and (c)) intersect with each other. In other words, there is no

significant performance improvement when we increase the size of the data cache.

By increasing the cache size, we are able to cache more hash groups in memory.

This helps to improve the performance only if some delayed packets in the earlier

group(s) arrive later. However, this long delay of packets is uncommon (although

short delays of packets within a cache group are common) for two reasons: the sen-

sors send packets in order (with increasing packet IDs), and sensors communicate

with their direct neighbors (i.e., there is no path delay). Moreover, the FEC encod—

ing/decoding is done in the active cache group. Therefore, setting the data cache

size to 8 packets (which is the same as the hash group size and FEC transmission

group size) is optimal (for reducing memory consumption and achieving reasonable

performance), unless memory is big enough to accommodate the entire segment.

If we increase the data cache size to 64 packets, the completion time and en-

ergy consumption are reduced significantly. In this case, all the received packets are

buffered in memory, the only cost is on distributing the hashes. Hence, when the

data cache size is 64 packets, the completion time and energy consumption are only

152

a little higher than that of MNP.

Effect of using FEC. Forward error correction (FEC) reduces the number

of requests and retransmits by sending extra parity packets. In this section, we

investigate if the use of FEC is beneficial. The size of the FEC transmission group

and the size of the data cache are both 8 packets. In Figure 5.15, we compare the

performance of SecureLMNP in the cases that FEC is enabled and disabled. We

can see that by employing FEC, we can reduce the completion time and energ

u
.

.
5

8 12200

— .— MNP ' ' ' MNP

2000r + SecureLMNP caches 1 + SecureLMNPcecheB

1800l + SecureLMNP cache16 1 120° SecureLMNP cache16

A ‘8' SBCUIBLMNP wch632 A '8‘ SecureLMNP “c.1032

31600[-A- SecureLMNP cache64 1 31000~ -A- SecureLMNP cache“

E1400: 4 g 000‘

= 1200- 9

5 E 600- »
TE: 1000 :

8 800- g 400.

600*

200‘

400*

2000 5 25 00 5 2510 15 20 10 15 20

Length of Data Stream (KB) Length of Data Stream (KB)

(a) (b)

A o
n

.1

.
3

0
3

-
B

A

.
5

N

.
0

o
n
.
,
m

,

E
n
e
r
g
y
C
o
n
s
u
m
p
t
i
o
n
P
e
r
N
o
d
e

(
J
)

o a
,

.
1
.

.
0
A

.
0

o
”

20 255 10 15

Length of Data Stream (KB)

(C)

Figure 5.14: SecureL MNP: varying the data cache size from 8 packets to 64 packets.

(a) completion time vs. length of data stream (b) active radio time vs. length of data

stream (c) energy consumption per node (not including the authentication cost) vs.

length of data stream.

153

consumption by 5-29%.

In Figure 5.16, we show the message transmission and reception in the two cases,

SecureLMNP with FEC enabled (the default case) and with FEC disabled. We can

see that using FEC also reduces message transmission and reception.

We change the size of the data cache to 16 packets and 32 packets, and repeat

the same simulation. From Figures 5.17 and 5.18, we can see that using FEC can

reduce the completion time and energy consumption in both cases.

2000 . 1400 L

.9- SecureLMNP -a— SecureLMNP

1800L e.- SecureLMNP without rec 1200, 19,. SecureLMNP without FEC

1600* 1

1;; @1000»

E 1400i 3

- 1 1: .

521200 1 2 80°

.2 B
E 1000* m 600'

Q o

S 800-
.123

0 < 400* 1

600*

400» 200' '

200 5 1 1 G 1

0 20 0 205 10 15 5 10 15

Length of Data Stream (KB) Length of Data Stream (KB)

(8) (b)

4

x 10 r . . A

.9- SecureLMNP

~ .A. SecureLMNP without FEC

.
5

a
:

 _
5

0
'
)

.
5

#
1

A N
v

.
0
o
n

P a
)

E
n
e
r
g
y
C
o
n
s
u
m
p
t
i
o
n
P
e
r
N
o
d
e

(
J
)

_
o
a

.
0
N

O 5 10 15 20

Length of Data Stream (KB)

(C)

Figure 5.15: SecureLMNP: effect of using FEC. The data cache size is 8 packets. (a)

completion time vs. length of data stream (b) active radio time vs. length of data

stream (c) energy consumption per node (not including the authentication cost) vs.

length of data stream.

154

A 8

C ‘ 3000 .
‘8 .9. SecureLMNP

.9. Secure MNP

2 Secure MNP without FEC 3 L
1;, 3501 + 1] + SecureLMNPwithout FEC

a 3 2500~

B l ‘L
£3 300i 2

g 2000»

g 250» 1 3
p. K

a, W 15W’

$200+ 1 §

8

1000-

§ 150. 1 g

‘5 2

3 100,, . .8 500'

s S
3 z

50o 20 00 205 1o 15 5 10 15

Length of Data Stream (KB) Length 0! Data Stream (KB)

(a) (b)

Figure 5.16: Secure],MNP: effect of using FEC (communication overhead). The data

cache size is 8 packets. (a) number of messages transmitted per node vs. length of

data stream (b) number of messages received per node vs. length of data stream.

5.8 Discussion: Key Distribution and Updates

In this section, we discuss the issues of initial key distribution and key updates.

As discussed in Section 5.4, the initial keys are assigned to sensors at deployment.

Alternate approaches are also possible for distribution. For example, at deployment,

the sensors may include all the secrets and then depending upon their logical ID

(either known at deployment or communicated thereafter), they can delete the secrets

they are not supposed to have. This approach is based on the assumption (true in

many sensor network deployments) that the initial communication among sensors

is secure and that the sensors cannot be compromised for a certain duration after

deployment.

As discussed in Section 5.4, the approach in [18,31] allows us to provide a tradeoff

between the level of security and the number of secrets maintained by the base station.

The designer can choose an appropriate value of r to ensure that the effect of collusion

is moderate. Increasing the value of r increases the overhead only marginally, as the

cost of signing with a symmetric key is very small.

155

2500 . . 1400 . .

1A- SecureLMNP 19.- SecureLMNP

+ SecureLMNP without FEC + SecureLMNP without FEC

2000? 1200

a s
E E 1000'

1 .._ 500 l;

C

310001 0

E
8 g 600

500' 400-

G0 I I I 20 2000

5 1o 15 5 1o 15

Length of Data Stream (KB) Length of Data Stream (KB)

(80 (b)

x 10‘ 1

19.- SecureLMNP

" + SecureLMNP without FEC

N

d o
n

n
e
r
g
y
C
o
n
s
u
m
p
t
i
o
n
P
e
r
N
o
d
e

(
J
)

o
C

—
I

.
5

.
5

'9
’

5°
-:

*9
"r

i?

E

.
0

.1
5 4

.
0

o
”

5 10 15 20

Length of Data Stream (KB)

(C)

Figure 5.17: SecureLMNP: effect of using FEC. The data cache size is 16 packets. (a)

completion time vs. length of data stream (b) active radio time vs. length of data

stream (c) energy consumption per node (not including the authentication cost) vs.

length of data stream.

156

2000

1800N

1600*

C
o
m
p
l
e
t
i
o
n
T
i
m
e

(
s
)

600 *

400 ‘

‘K

fie.- SecureLMNP

+ SecureLMNP wuthout FEC

1400 r

1200 r

1000 *

800 *

 200

0 5 10 15

Length of Data Stream (KB)

(80

1.8x

20

10‘

1200

600 '

A
c
t
i
v
e
R
a
d
i
o
T
i
m
e

(
s
)

400 r

1

1&- SecurelMNP

+ SecureLMNP without FEC

 200

0 5 10 15

Length of Data Stream (KB)

 I

a 0
"

A- SecureLMNP

~ + SecureLMNP without FEC

.
s

A

.
A

N

.
0

o
n

.
0

a
n

E
n
e
r
g
y
C
o
n
s
u
m
p
t
i
o
n
P
e
r
N
o
d
e

(
J
)

5 10 1 5

Length of Data Stream (KB)

(C)

Figure 5.18: Secu'reLMNP: effect of using FEC. The data cache size is 32 packets. (a)

completion time vs. length of data stream (b) active radio time vs. length of data

stream (c) energy consumption per node (not including the authentication cost) vs.

length of data stream.

157

20

20

(b)

Also, our approach can be combined with the approach in [40,41,51]. In partic-

ular, instead of maintaining a single value for each secret, we could have a hash chain

of values for each secret. (Optimizations from [6] allow only a little more than log2 12.

entries from a hash chain to be maintained at the base station.) The last value in

the hash chain is made available to the sensors at the time of deployment. However,

periodically, the base station will reveal the previous value in the hash chain and this

value would be encrypted with the current secret to ensure that only those sensors

that have the old secret can obtain the new one.

5.9 Chapter Summary

In this chapter, we showed how authentication could be achieved for reprogram-

ming, and more generally, bulk data dissemination, in sensor networks. We used

symmetric key distribution algorithms from [18,31] to ensure that the base station

can communicate securely with each sensor in the network. Based on the security of

the key distribution, our protocol allows sensors to conclude that the data is truly

transmitted by the base station.

We first focused on the case where only mote-class adversaries exist. Since such

adversary has limited energy, it cannot use extensive denial of service attack. our

algorithm is expected to be especially valuable for security in sensor network testbed.

Such testbed is typically physically secure, thereby preventing/mitigating laptop-class

attackers. However, the testbed typically relinquishes control of individual sensor

nodes that are used in an experiment. Thus, an experiment could be interfered by

other sensors in the testbed. Our algorithm provides protection from such interfer-

ence/attacks with a low overhead.

We then provided solution for the case where laptop—class adversaries exist. A

laptop—class adversary can mount a denial of service attack by sending garbage data

158

to the motes. To mitigate denial of service attacks, we require that the sensors will not

save any packets to EEPROM (an energy consuming operation) unless the packet is

authenticated. We considered the secure data dissemination problem in three scenar-

ios: multihop dissemination with coarse-grained (segment-level) pipelining, multihop

dissemination with fine-grained (packet-level) pipelining, and single-hop dissemina-

tion. We showed that the use of symmetric keys can significantly reduce the cost

of secure dissemination of a moderate amount of data, especially in the second and

third scenarios. In particular, the time to sign and verify a single packet using pub-

lic key scheme is more than 22 seconds. Within the same amount of time, we can

disseminate 3-4KB of data across the network using symmetric key scheme. For

the first scenario, we proposed additional mechanisms to reduce the cost of secure

data dissemination. We showed that the basic hash chain that is commonly used

for authenticating data streams is not efficient in the presence of packet loss, as it

requires that packets arrive in order. We proposed the double connected hash chain

to strengthen the inter-connection among the packets so that loss of a few packets

does not fail the authentication for the entire segment. To further improve the perfor-

mance, we proposed a caching scheme and employed forward error correction (FEC)

technique to try to minimize the effect of packet loss.

We showed that our algorithm can be easily applied to different types of data dis-

semination protocols: simple non-pipelined, fine-grained pipelined (e.g., Infuse [30],

Sprinkler [47]), and coarse-grained pipelined (e.g., MNP (cf. Chapter 2), Del-

uge [23]). Hence, our protocol is applicable to various application scenarios. We

analyzed/simulated the overhead of our protocol, and showed the effectiveness of our

design in enhancing the performance.

As discussed in Section 5.4, the key distribution algorithm allows the designer

to choose the appropriate parameter, r, to determine the desired level of collusion

resistance. With the use of this parameter, the base station maintains #0ng (n

159

is the number of sensors) secrets and each sensor maintains logrn secrets. With

increased value of r, the collusion resistance increases, and each sensor maintains

fewer secrets. As a tradeoff, the base station maintains more secrets, and the cost of

creating/verifying the signatures increases. For example, in a 10x10 network, if we

increase 7' from 2 to 10, the number of secrets maintained at the base station increases

from 14 to 20. However, due to the facts that the symmetric key operation is very

fast (e.g., as discussed in Section 5.3, the execution time of encrypting/decrypting a

8-byte block using RC5 is only 0.26ms) and these secrets are used only a few times

during data dissemination, this increase in the cost of signing/verification is negligible.

Hence, the performance of data dissemination changes minimally when we increase

the level of collusion resistance.

160

Chapter 6

Related Work

In this chapter, we discuss work in the areas of network reprogramming (Section

6.1), FEC coding schemes (Section 6.2), and secure reprogramming (Section 6.3).

6.1 Network Reprogramming

Reprogramming Protocols. The existing work on delivering the entire pro-

gram to all the sensors in the network includes TinyOS single-hop network repro-

gramming (XNP) [12] and multihop network reprogramming approaches, such as

MOAP (Multihop Over-the-Air Programming) [60], Deluge [23], MNP (cf. Chapter

2), Infuse [30], and Sprinkler [47]. All these approaches assume that one (or a few)

sensor has the entire new program initially, and communicates the new program to

the remaining sensors in the network. By contrast, Gappa (cf. Chapter 3) is designed

for the scenario where some sensor nodes have received one segment initially, and

communicate with each other to receive the remaining segments.

In contrast to MNP and Gappa, XNP, MOAP, and Deluge do not turn off sensors’

radio during reprogramming. We have compared the performance of Deluge with that

of MNP and Gappa in Sections 2.2.2 and 3.3.

MOAP is a multihop network reprogramming approach. MOAP disseminates

161

code in a hOp-by-hop fashion, that is, a node has to receive the entire program image

before starting advertising. MOAP uses a simple publish-subscribe interface for re-

ducing the number of senders. No sender selection mechanism is considered. If a loss

is detected, a NAK is unicast to the sender requesting for retransmission. To keep

track of loss information, a sliding window approach is proposed.

MNP and Gappa, and many other reprogramming protocols we have mentioned

(XNP, MOAP, and Deluge), use CSMA-based MAC protocol. Infuse [30] and Sprin-

kler [47] are two TDMA-based reprogramming protocols. A TDMA-based protocol

provides the advantages that a node transmits messages only in its assigned time

slots, so that message collision is avoided and the node can turn off its radio when it

is not transmitting or receiving. However, TDMA requires the time synchronization

service, and it is designed for algorithms where topology is known upfront.

To address the very resource constrained nature of sensor nodes, Maté [35] is

included in TinyOS. Maté is a stack-based virtual machine. Programs are represented

as one or a few capsules (current implementation allows at most eight capsules), of

up to 24 instructions. Each capsule fits in a packet and can be propagated to other

nodes. In this way, Maté allows new programs to be forwarded and installed quickly

through a network. This virtual machine approach is complementary to the entire

code image delivery approaches. For example, we might need to delivery the binary

code of the virtual machine itself to sensor nodes.

The Firecracker protocol [36] proposed by Levis and Culler is designed to deliver

small pieces of data from one or a few sources to every node in a network. It uses

a combination of routing and broadcasts to speed up dissemination. Data is first

routed to several distinct points (seed points) in the network; once data arrives,

broadcast-based dissemination starts from the destinations. The authors conclude

that increasing the number of seed points and selecting the seed points that are

distant improve performance. Our simulations also show that using more than one

162

base stations and placing them far away from each other (at corners) can speed up

reprogramming by 13—24% compared to the case where one base station is placed at

a corner.

Suppression schemes. Message implosion or broadcast storm problem [48]

exists in both wired and wireless networks. Suppression schemes normally fall into

two categories: aggregation based, deferred feedback based. Aggregation based sup—

pression is usually used in large sensor networks. Data is aggregated at intermediate

nodes on the way to the destination node. This approach, called iii-network aggre-

gation, was proposed in Directed Diffusion [24], and broadly used in almost all flat

structured or cluster-based protocols, such as LEACH [21], SINA [57].

In deferred feedback based suppression, each node defers its sending of response

for a certain period of time, during which it may cancel its response if it hears an

identical one from its neighbors, or it may send response probabilistically based on

the number of identical replies it has heard. Two examples of deferred feedback

based suppression are Scalable Reliable Multicast (SRM) [16] and Trickle [39]. Trickle

dynamically adjusts the advertise interval so that it propagates code rapidly during

the active updating phase, and has low overhead during maintenance phase. We use

a similar idea in MNP to dynamically scales the noreq wait period.

The sender selection algorithm in MNP and Gappa is also delay based. We use

“number of requesters” as the criteria to choose sender. The goal is to find the “good”

senders who have many “followers”.

Multi-Channel Reprogramming The only work on multi-channel reprogram-

ming we are aware of is [70], where the authors present preliminary experiment results

(based on 25 nodes). In [70], the authors propose an algorithm, Multi-Channel Del-

uge, which divides nodes into groups based on node ID or geographically, and assigns

a channel to each group. Similar to other existing reprogramming approaches, it also

assumes that one or a few source nodes have the complete new program, and dissem-

163

inate the new program to the entire network. In the algorithm proposed in [70], there

are specially marked nodes in group 1 (the default group), which form a connected

dominating set, so that all the nodes in the network can directly communicate to at

least one node belonging to group 1. By contrast, in Gappa, all the nodes are equal.

Hence, there is no dependency on special nodes.

6.2 Forward Error Correction (FEC)

Automatic repeat request (ARQ) and forward error correction (FEC) are the two

basic ways to provide reliability for transmission protocols. All the existing work on

network reprogramming [12,23,30,33,47,60,66] uses ARQ-based approaches for error

recovery. We propose adding FEC to the ARQ-based reliability scheme, and perform

a case study on MNP.

There are different types of FEC codes. We have introduced simple XOR code

and Reed-Solomon (RS) codes in Section 4.2.1. Both XOR code and RS codes belong

to block (72, k) FEC codes. A block code has the property that any I: out of the n

encoding packets can reconstruct the original It source packets.

Tornado codes [43] provide an alternative to RS codes. Tornado codes have lower

computation complexity than RS codes, at the small cost of reception overhead, that

is, a (n, k) Tornado code requires slightly more than [C out of n encoding packets to

recover k source packets.

Unlike the block (72., k) codes, Luby Transform (LT) codes [42] can generate

as many unique encoding packets as required, using the k source packets as input.

Each encoding packet is generated randomly and independently of all other encoding

packets. LT codes have the property that the receiver is able to reassemble the

original k source packets as long as it receives enough number (slightly more than k)

of encoding packets. LT codes are designed for delivering a large amount of data over

164

high bandwidth internet links. They have lower computation complexity on encoding

and decoding than RS codes. However, they introduce higher recovery overhead

because more redundant packets are transmitted. Normally, the number of repair

packets are more than 10 times the number of source packets.

6.3 Secure Data Dissemination

Security of data dissemination in sensor networks is studied in [5,14, 15,26, 27,

34,40, 41,49, 51,56]. The two protocols, Sluice [34], proposed by P. Lanigan et.

al., and SecureDeluge [15], proposed by P. Dutta et. al., use the basic hash chain for

authentication. Sluice verifies hashes at the segment level, while SecureDeluge verifies

hashes at the packet level. Although segment-level hash chain has low computation,

communication and memory cost, Sluice is vulnerable to some form of attacks, e. g.,

a single corrupted/lost packet will cause the entire segment to be discarded. The

problem with the basic hash chain approach, as we discussed, is that it requires that

packets be received/stored in order. All the packets that arrive out of order are

thrown away. This requirement increases the delay and message cost significantly,

especially when the network is lossy. There is another protocol proposed by J. Deng

et. al. [14], which tries to address the problem by sending a hash tree over the data

packets before sending the actual data packets. After sensors have received the entire

hash tree, they can receive/verify data packets that arrive out of order.

All these three protocols mentioned above [14,15,34] use asymmetric keys; the

base station signs the (hash of) data using the private key and the sensors use the

corresponding public key to authenticate the data. As discussed in Section 5.6, the

cost of asymmetric keys is exorbitant when the data size is moderate (1-4KB). In

particular, in Section 5.6, we showed that for several scenarios of moderate data

dissemination, the cost of signing and sending one packet using asymmetric keys

165

is close to the cost of sending 3-4 KB of data using symmetric keys. Finally, our

approach is orthogonal to that in [14], i.e., as discussed in Section 5.6.3, our approach

of using symmetric keys could be used in [14] to reduce the cost of those algorithms.

A. Perrig et. al. proposed TESLA [50] and ,uTESLA [51] to provide broadcast

authentication through a hash chain. aTESLA is designed to work on the resource-

constrained sensor nodes. It applies symmetric keys, and achieves asymmetry for

authentication by delaying the disclosure of the symmetric keys. Liu and Ning pro-

posed a multi-level pTESLA [40] to extend the capability of pTESLA. By constructing

multi-level ”TESLA structure and using higher-level pTESLA instances to authenti-

cate the parameters of lower-level ones, this extension enables the original ”TESLA

to cover a long time period and support a large number of receivers. In their follow-up

work [41], Liu et. al. improved the pTESLA to support a large number of broadcast

senders and mitigate denial of service attacks by distributing the pTESLA parameters

using a Merkle hash tree [46].

Our approach differs from aTESLA [51] and its extensions [40,41] in that in [40,

41,51], after-the-fact authentication is provided. In particular, in these approaches,

the sensors first receive a packet (set of packets) and subsequently receive the key

to authenticate it. To ensure security of such a protocol, the time to reveal the

key must be large enough so that all nodes receive the packet (respectively, set of

packets) before the key is revealed (loose time synchronization is required in these

protocols). In the context of bulk data transmission, this would require the sensors

to buffer a large amount of data before it can be authenticated. With limited storage

on sensors, this would require the data to be stored on EEPROM, thereby, opening

up the possibility of denial of service attack. By contrast, in our approach, only

authenticated packets are stored on EEPROM. Thus, the approaches in [40, 41,51]

are applicable in broadcasts of small data whereas our approach is also applicable

in broadcasts of bulk data as well. Moreover, as discussed later in this section, it is

166

possible to combine the features of our algorithm and that in [51].

One-time signatures commit a secret key via one-way functions, hence, have much

lower signing and verification time compared to asymmetric primitives. One-time

signatures have been used in many broadcast authentication protocols [5,26,27,49,56].

BiBa [49] performs authenticated broadcast via pre—computed hash collisions and

chains. HORS [56] improves BiBa by reducing the signature generation time. BiBa

and HORS are inappropriate for sensor networks due to its large public key size

(e.g., a typical public key size is 20KB). Since the public key must be stored on all

sensors, it is desirable to keep its size small. The approach in [5,26,27] decreases the

public key size of HORS by constructing Merkle trees [46] on the secret keys, and

use the roots of the Merkle trees as the public key. By varying the number of trees,

this approach is able to tradeoff public key size for signature size. Even with this

reduction, the public key size is still hundreds to thousands of bytes, which is much

larger compared to the size of secrets (e.g., at most 7 secrets in a 10x10 network) in our

protocol. Moreover, the signature size in [5,26,27] is also large. For example, in [27],

the typical signature size is 690-2560 bytes. Hence, when the authors apply their

one-time signature protocol to Deluge [23], the first few pages are used for sending

the signature. By contrast, in our protocol, all the signatures are sent in one (or a

few) message(s). Therefore, our protocol has much lower memory requirement and

communication overhead.

167

Chapter 7

Conclusion and Future Research

Reprogramming sensor networks in place via radio is an essential service due to

the facts that sensor networks consist of hundreds or thousands of sensor nodes and

they are often deployed in remote or hostile environments. Reprogramming for sensor

networks requires 100% reliability. And, due to the extreme resource constraints

of sensor nodes, it is necessary to reprogram sensors in a fast and energy efficient

way. Moreover, reprogramming is vulnerable to packet injection and corruption, it is

important that sensors be able to verify that the code image is from a trusted source.

Hence, providing authentication for sensor networks is necessary.

In this dissertation, we proposed two reprogramming protocols, which are de-

signed for different scenarios. In the first case, one (or a few) sensor has the entire

new program. It, then, propagates the program to all the sensors in the network.

In this model, all the sensors communicate on a single shared radio channel. In

the second case, each sensor (or a subset of sensors) has one part of the program

initially. The sensors then communicate with each other to receive the remaining

parts of the program using multiple radio channels. We proposed MNP for the first

reprogramming model, and Gappa for the second model.

To reduce message collision, MNP uses a sender selection algorithm to try to

168

guarantee that only one sensor is transmitting in a neighborhood at a time. In MNP,

sensors receive the program segments in order. The sensors advertise the highest

segment ID it has, as well as the number of (distinct) requests it has received. The

sender selection algorithm selects the sensors that have received the most number

of requests, and it gives priority to the segments with lower ID. If a sensor loses in

the sender selection algorithm and it is not interested in receiving the code from its

neighbors, it goes to sleep. In this way, MNP effectively reduces the active radio time

of sensors and saves energy. MNP allows the sensors at different neighborhoods (their

transmissions do not collide) to transmit simultaneously. This reduces reprogramming

time.

Gappa extends the sender selection algorithm to multiple channels so that on each

channel, at most one sensor in a neighborhood transmits the code at a time. Gappa

allows sensors to receive program segments out of order. The sensors communicate

the segments they have on the control channel. If a sensor is selected as a sender,

it transmits the data on a data channel. If a sensor loses in the sender selection

algorithm on one channel, it will try to transmit on a different channel. If all the

channels are busy and the sensor does not intend to receive code from any of its

neighbors, it goes to sleep. Similar to MNP, Gappa also saves sensors’ energy by

trying to eliminate idle listening, which is the major energy waste on sensors.

We proposed two ways to select a data channel in Gappa. Fixed channel allocation

assigns a fixed data channel to each segment, while variable channel allocation allows

a sensor to select a data channel randomly among all the available channels. We

show that variable channel allocation performs better than the simple fixed channel

allocation as it maximizes channel utilization and enables higher concurrency.

We showed that due to the use of multiple radio channels and gossip based

communication (allowing sensors to receive segments out of order), Gappa is able

to reprogram a sensor network faster and with lower energy cost, compared to the

169

protocols proposed for the first reprogramming model, such as MNP and Deluge [23].

However, Gappa and MNP are not replacements of each other as they are designed

for different reprogramming scenarios. It is important to choose the appropriate

reprogramming protocol according to the real world condition (e. g., initial distribution

of data, availability of multiple channels, etc.).

MNP and Gappa, as well as existing reprogramming protocols (e.g., [23, 30,47,

60]), provide reliability through ARQ based mechanism. We showed that using FEC

codes can effectively reduce packet loss, and hence, reduce reprogramming time and

energy consumption. We applied two block FEC codes, simple XOR code and Reed-

Solomon (RS) codes, to MNP, and studied the tradeoff between the computation cost

and performance improvement. Depending on the amount of computation resources

(e.g., processor, memory) available on sensors, we can either use a simple scheme

(such as XOR code) for limited improvement, or choose a more powerful coding

scheme (such as RS codes) for better performance.

We also proposed a symmetric key based protocol for authenticating reprogram-

ming process. Our protocol is based on the secret instantiation algorithm from [18,31],

which ensures that the base station can communicate securely with each sensor in

the network. We first focused on the case where only mote-class adversaries exist

(i.e., there is no denial of service attack). We showed that our protocol is able to

provide authentication at very low communication cost, and has very short delay

and small memory footprint. We then provided solution for the case where laptop—

class adversaries exist. To mitigate the denial of service attacks from a laptop-class

adversary, we require that the sensors will not save any packets to EEPROM (an

energy consuming operation) unless the packet is authenticated. We showed that by

using symmetric keys, our protocol significantly reduces the cost of securely dissem-

inating a moderate amount of data, compared to public key based authentication

protocols. In particular, the time to disseminate 3-4 KB data using symmetric keys

170

is the same as the time to sign and verify a single packet using a public key scheme.

We also propose additional techniques to further reduce the authentication cost when

the program/data size is large. We illustrated our protocol in the context of vari-

ous types of reprogramming protocols, including MNP (CSMA-based protocol using

coarse-grained pipelining) and Infuse [30] (TDMA-based protocol using fine-grained

pipelining). Moreover, we showed that our authentication protocol is applicable not

only to reprogramming, but also to other bulk data dissemination scenarios such as

network monitoring, difference-based reprogramming.

The research presented in this dissertation can be extended in the following

directions:

0 Comprehensive power management that maintains sensing coverage and con-

nectivity during reprogramming. In our recent work [67] (not included in this

dissertation), we proposed a simple, local protocol, pCover, that maintains par-

tial (but high) coverage while turning off the redundant sensors to save energy.

Through pC'over, we demonstrated the tradeoff between sensing coverage and

network lifetime. We showed that it is feasible to maintain a high partial cov-

erage (~ 90%) while significantly increasing network lifetime when compared

with protocols that provide full coverage. We note that the power manage-

ment protocols such as pC’over are used when a network is working (i.e., not

in maintenance/reprogramming state). One of the assumptions in all the ex-

isting reprogramming models is that when reprogramming starts, the network

stops functioning. However, in some situations, it is desirable that the ser-

vice interrupt duration is minimized. In this case, the network should continue

working (e.g., monitoring the environment) even during reprogramming. MNP

and Gappa conduct power management through the sender selection algorithm,

which turns off all the sensors that are not actively transmitting or receiving

the new program. Such issues like sensing coverage, network connectivity, are

171

not considered. In order to allow the network to continue functioning during

reprogramming, we need to provide a new power management technique that

satisfies the requirements of reprogramming and at the same time maintains

the desired degree of sensing coverage and network connectivity.

Gossip based data collection. Gappa is designed for gossip based data dissemina-

tion. A related problem is gossip based data collection. The major differences

between gossip based data dissemination and data collection are as follows.

First, in data collection, each sensor (or a subset of sensors) is associated with

some data. The total number of data elements in data collection tends to be

larger than the number of data segments in data dissemination. Second, during

data collection, in most cases, sensors do not simply store and forward the data

they have received. Rather, they could perform aggregation on the collected

data and advertise a smaller number of (aggregated) segments. Consider an

example that one sensor is advertising the aggregation of segments 1-5, and the

other sensor is advertising the aggregation of segments 3-7. In other words, the

segments that the sensors are advertising are overlapping. The receivers need

to decide which parts contain new information and how to perform additional

aggregation based on the received aggregated segments.

Hybrid protocol that combines MNP and Infuse [30]. We note that one reason

that Gappa performs better than MNP is that the code segments are distributed

in different parts of the network in the initial state, which allows sensors in dif-

ferent locations to start communicating code immediately when reprogramming

starts. We have already shown that using more than one base stations and plac-

ing them far away from each other (at corners) can reduce the reprogramming

time by 13-24% compared to the case where one base station is placed at a cor-

ner (cf. Section 2.2.2). The Firecracker protocol [36] also suggests that sensors

172

first route data to several distinct points (seed points) in the network, then start

broadcast-based dissemination, can improve the performance of data dissemi—

nation. However, the Firecracker protocol is designed for disseminating small

pieces of data. In the context of reprogramming, if we use a coarse-grained

pipelining protocol such as MNP, Gappa, or Deluge [23], the cost of dissemi-

nating a segment to a point that is many hops away from the base station is

high. We can instead use a TDMA based protocol such as Infuse [30] to dis-

tribute different code segments to the sensors that are far away from the base

station in a fine-grained pipelining fashion. The fine-grained pipelining proto-

cols (e.g., Infuse) have lower cost in disseminating a moderate amount of data

over a long distance compared to the coarse-grained pipelining protocols (e.g.,

MNP, Gappa, Deluge). After these initial segments have arrived to those remote

sensors (or seed points), we can start reprogramming using the protocols such

as MNP (or Gappa, Deluge). We expect that this will improve reprogramming

performance if the network is large. The selection of the seed points will also

affect the performance.

173

[1]

[2]

[3]

[4]

[5]

l6]

[7]

[8]

[9]

Bibliography

A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik, V. Mittal,

H. Cao, M. Demirbas, M. Gouda, Y. Choi, T. Herman, S. Kulkarni, U. Aru-

mugam, M. Nesterenko, A. Vera, and M. Miyashita. A line in the sand: A

wireless sensor network for target detection, classification, and tracking. Com-

puter Networks (Elsevier), 46(5):605—634, December 2004.

A. Arora, R. Ramnath, E. Ertin, P. Sinha, S. Bapat, V. Naik, V. Kulathumani,

H. Zhang, H. Cao, M. Sridharan, S. Kumar, N. Seddon, C. Anderson, T. Her-

man, N. Trivedi, C. Zhang, M. Nesterenko, R. Shah, S. Kulkarni, M. Aramugam,

L. Wang, M. Gouda, Y. Choi, D. Culler, P. Dutta, C. Sharp, C. Tolle, M. Grim-

mer, B. Ferriera, and K. Parker. Exscal: Elements of an extreme scale wireless

sensor network. The International Conference on Real- Time and Embedded Com-

puting Systesm and Applications (RTCSA), August 2005.

M. Arumugam, L. Wang, and S. S. Kulkarni. A case study on prototyping power

management protocols for sensor networks. In The 8th International Symposium

on Stabilization, Safety, and Security of Distributed Systems (SSS), November

2006.

S. Bapat, V. Kulathumani, and A. Arora. Analyzing the yield of exscal, a large-

scale wireless sensor network experiment. the 13th IEEE Symposium on Reliable

Distributed Systems (SRDS), November 2005.

S. M. Chang, S. Shieh, W. W. Lin, and C. M. Hsieh. An efficient broadcast

authentication scheme in wireless sensor networks. The 2006 ACM Symposium

on Information, Computer and Communications Security (ASIACCS), March

2006.

D. Coppersmith and M. Jakobsson. Almost optimal hash sequence traversal.

The Fifth Conference on Financial Cryptography (FC), February 2002.

Crossbow Technology, Inc. MIC/12 Datasheet. Available at: http://www.xbow.

com/Products/Product_pdf_files/Wireless_pdf/MICA2_Datas%heet.pdf.

Crossbow Technology, Inc. MICAz Datasheet. Available at: http://www.xbow.

com/Products/Product_pdf_files/Wireless_pdf/MICAZ_Datas%heet.pdf.

Crossbow Technology, Inc. MPR-MIB Users Manual, Revision B, June 2006,

PN: 7430-0021-07. Available at:http://www.xbow. com/Support/Support_pdf_

files/MPR-MIB_Series_Users_M%anual.pdf.

174

[10]

[11]

Ml

[13]

[14]

[15]

[15]

[17]

[18]

[19]

[20]

[21]

[22]

Crossbow Technology, Inc. MSP410 Datasheet. Available at: http : //www . xbow .

com/Products/Product_pdf_files/Wireless_pdf/MSP410_Data%sheet.pdf.

Crossbow Technology, Inc. TELOS-B Datasheet. Available at:

http://www.xbow.com/Products/Product_pdf_files/Wireless-pdf/

TelosB_Data%sheet.pdf.

Crossbow Technology, Inc. Mote In-Network Programming User Reference Ver-

sion 20030315, 2003. http://webs.cs.berkeley.edu/tos/tinyos-1.x/doc/an.pdf.

H. Dai, M. Neufeld, and R. Han. ELF: An efficient log-structured flash file sys-

tem for micro sensor nodes. The 2nd ACM Conference on Embedded Networked

Sensor Systems (Sensys), November 2004.

J. Deng, R. Han, and S. Mishra. Secure code distribution in dynamically pro-

grammable wireless sensor networks. the Fifth International Conference on In-

formation Processing in Sensor Networks (IPSN), April 2006.

P. K. Dutta, J. W. Hui, D. C. Chu, and D. E. Culler. Securing the deluge

network programming system. the Fifth International Conference on Information

Processing in Sensor Networks (IPSN), April 2006.

S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang. A reliable multicast

framework for light-weight sessions and application level framing. IEEE/ACM

Transactions on Networking, 5(6):784—803, 12 1997.

R. Gennaro and P. Rohatgi. How to sign digital streams. Lecture Notes in

Computer Science, 1294:180+, 1997.

M. Gouda, S. S. Kulkarni, and E. Elmallah. Logarithmic keying of commu-

nication networks. In Proceedings of The Eighth International Symposium on

Stabilization, Safety, and Security of Distributed Systems, November 2006.

C. Gui and P. Mohapatra. Power conservation and quality of surveillance in

target tracking sensor networks. In Proceedings of the Tenth Annual International

Conference on Mobile Computing and Networking (ACM MobiCom), October

2004.

N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz. Comparing elliptic

curve cryptography and RSA on 8-bit CPUs. the 6th International Workshop on

Cryptographic Hardware and Embedded Systems (CHESOI), August 2004.

W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient

communication protocol for wireless microsensor networks. In Proceedings of the

33rd Hawaii International Conference on System Sciences, Janauary 2000.

J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System ar-

chitecture directions for networked sensors. In The Ninth International Confer-

ence on Architectural Support for Programming Language and Operating Systems

(ASPLOS-IX), pages 93—104, November 2000.

175

[23] J. W. Hui and D. Culler. The dynamic behavior of a data dissemination protocol

for network programming at scale. In Proceedings of the second International

Conference on Embedded Networked Sensor Systems (SenSys 2004), Baltimore,

Maryland, 2004.

[24] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A scalable

and robust communication paradigm for sensor networks. In Mobile Computing

and Networking, pages 56—67, 2000.

[25] C. Karlof, N. Sastry, and D. Wagner. Tinysec: A link layer security architecture

for wireless sensor networks. the 2nd ACM Conference on Embedded Networked

Sensor Systems (Sensys), November 2004.

[26] I. Krontiris and T. Dimitriou. Authenticated in-network programming for wire-

less sensor networks. The 5th International Conference on AD—HOC Networks

and Wireless (Adhoc-Now), 2006.

[27] I. Krontiris and T. Dimitriou. A practical authentication scheme for in—network

programming in wireless sensor networks. ACM Workshop on Real- World Wire-

less Sensor Networks (REALWSN), 2006.

[28] J. Kulik, W. Heinzelman, and H. Balakrishnan. Negotiation-based protocols

for disseminating information in wireless sensor networks. Wireless Networks,

8:169—185, 2002.

[29] S. S. Kulkarni and M. Arumugam. SS—TDMA: A self-stabilizing MAC for sensor

networks. In Sensor Network Operations. IEEE Press, 2005.

[30] S. S. Kulkarni and M. Arumugam. Infuse: A tdma based data dissemination pro-

tocol for sensor networks. International Journal on Distributed Sensor Networks

(IJDSN), 2(1):55—78, 2006.

[31] S. S. Kulkarni and M. G. Gouda. A note on instantiating secu-

rity in sensor networks. Available at http://ww.cse.msu.edu/“sandeep/

securitydistribution/.

[32] S. S. Kulkarni, M. G. Gouda, and A. Arora. Secret instantiation in ad hoc

networks. Special Issue of Elsevier Journal of Computer Communications on

Dependable Wireless Sensor Networks, 2005.

[33] S. S. Kulkarni and L. Wang. MNP: Multihop network reprogramming service

for sensor networks. In Proceedings of the 25th International Conference on

Distributed Computing Systems (ICDCS), pages 7—16, June 2005.

[34] P. E. Lanigan, R. Gandhi, and P. Narasimhan. Sluice: Secure dissemination of

code updates in sensor networks. the 26th International conference on distributed

computing systems (ICDCS 06), July 2006.

176

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[4‘2]

[43]

[441

[45]

[46]

P. Levis and D. Culler. Maté: A tiny virtual machine for sensor networks. In the

10th international conference on architectural support for programming languages

and operating systems (ASPLOS-X), 2002.

P. Levis and D. Culler. The firecracker protocol. In Proceedings of the 11th ACM

SICOPS European Workshop, September 2004.

P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim: Accurate and scalable simula-

tion of entire tinyos applications. In Proceedings of the First ACM Conference on

Embedded Networked Sensor Systems (SenSys 2003), Los Angeles, CA, Novem-

ber 2003.

P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Wee, E. Brewer,

and D. Culler. The emergence of networking abstractions and techniques in

tinyos. In the First USENIX/ACM Symposium on Networked Systems Design

and Implementation (NSDI), 2004.

P. Levis, N. Patel, S. Shenker, and D. Culler. Trickle: A self-regulating algorithm

for code propagation and maintenance in wireless sensor networks. Technical

report, University of California at Berkeley, 2003.

D. Liu and P. Ning. Multi—level ptesla: Broadcast authentication for distributed

sensor networks. ACM Transaction in Embedded Computing Systems (TECS),

3(4):800—836, November 2004.

D. Liu, P. Ning, S. Zhu, and S. Jajodia. Practical broadcast authentication

in sensor networks. The 2nd Annual International Conference on MObile and

Ubiquitous Systems: Networking and Services (MobiQuitous), pages 118—129,

July 2005.

M. Luby. LT codes. In Proceedings of the 43rd Annual IEEE Symposium on

Foundations of Computer Science, pages 271—282, 2002.

M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman. Efficient era-

sure correcting codes. IEEE Transactions on Information Theory, Special Issue:

Codes on Graphs and Iterative Algorithms, 47(2):569—584, February 2001.

A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson. Wireless

sensor networks for habitat monitoring. In Proceedings of ACM International

Workshop on Wireless Sensor Networks and Applications (WSNA ’02), Atlanta,

GA, September 2002.

D. Malan, M. Welsh, and M. Smith. A public-key infrastructure for key distribu-

tion in tinyos based on elliptic curve cryptography. the Ist IEEE International

Conference on Sensor and Ad Hoc Communications and Networks, 2004.

R. C. Merkle. Protocols for public key cryptosystems. IEEE Symposium on

Research in Security and Privacy, pages 122—134, April 1980.

177

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

V. Naik, A. Arora, P. Sinha, and H. Zhang. Sprinkler: A reliable and energy

efficient data dissemination service for wireless embedded devices. To appear in

Proceedings of the 26th IEEE Real— Time Systems Symposium, December 2005.

S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J .-P. Sheu. The broadcast storm problem

in a mobile ad hoc network. In the Fifth Annual ACM/IEEE International

Conference on Mobile Computing and Networking, Seattle, Washington, August

1999.

A. Perrig. The biba one—time signature and broadcast authentication protocol.

Proceedings of the Eighth ACM Conference on Computer and Communication

Security (CCS—8), November 2001.

A. Perrig, R. Canetti, J. Tygar, and D. X. Song. Efficient authentication and

signing of multicast streams over lossy channels. IEEE Symposium on Security

and Privacy, pages 56-73, May 2000.

A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar. SPINS: Secu-

rity protocols for sensor networks. Seventh Annual International Conference on

Mobile Computing and Networks (MobiCOM 2001), July 2001.

J. Polastre, J. Hill, and D. Culler. Versatile low power media access for wireless

sensor networks. In Proceedings of the Second ACM Conference on Embedded

Networked Sensor Systems (SenSys), November 2004.

J. Polastre, R. Szewcyzk, C. Sharp, and D. Culler. The mote revolution: Low

power wireless sensor network devices. In Proceedings of the 16th Symposium on

High Performance Chips (HotChips), August 2004.

G. J. Pottie and W. J. Kaiser. Wireless integrated network sensors. Communi-

cations of the ACM, 43(5):51—58, May 2000.

I. S. Reed and G. Solomon. Ploynomial codes over certain finite fields. Journal

of the Society for Industrial and Applied Mathematics, 8(10):300—304, 1960.

L. Reyzin and N. Reyzin. Better than biba: Short one-time signatures with fast

signing and verifying. The 7th Australian Conference on Information Security

and Privacy (ACISP), pages 144—153, July 2002.

C.-C. Shen, C. Srisathapornphat, and C. Jaikaeo. Sensor information network-

ing architecture and applications. IEEE Personel Communication Magazine,

8(4):52—59, August 2001.

V. Shnayder, M. Hempstead, B. Chen, G. Allen, and M. Welsh. Simulating

the power consumption of large-scale sensor network applications. In Proceed-

ings of ACM International Conference on Embedded Networked Sensor Systems

(SenSys), November 2004.

178

[59l

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

C. Simon, P. Volgyesi, M. Maroti, and A. Ledeczi. Simulation-based optimization

of communication protocols for large-scale wireless sensor networks. In Proceed-

ings of The IEEE Aerospace Conference, pages 1339—1346, March 2003.

T. Stathopoulos, J. Heidemann, and D. Estrin. A remote code update mechanism

for wireless sensor networks. Technical report, UCLA, 2003.

The Ohio State University NEST Team. ExScal: Extreme scaling in sensor

networks for target detection, classification, tracking, 2004. DARPA, http:

//www.cse.ohio-state.edu/exscal.

D. Tian and N. D. Georganas. A node scheduling schedule for energy conser-

vation in large wireless sensor networks. Wireless Communications and Mobile

Computing Journal, May 2003.

L. F. W. van Hoesel, T. Nieberg, H. J. Kip, and P. J. M. Havinga. Advantages

of a tdma-based, energy-eflicient, self-organizing mac protocol for wsns. IEEE

VTC 2004 spring, May 2004.

H. Wang and Q. Li. Efficient implementation of public key cryptosystems on

mote sensors (short paper). International Conference on Information and Com-

munication Security (ICICS), LNCS 4307, pages 519—528, December 2006.

L. Wang and S. S. Kulkarni. Proactive reliable bulk data dissemination in sensor

networks. The International Workshop on Distributed Algorithms and Applica-

tions for Wireless and Mobiel Systems (DAAWMS), November 2005.

L. Wang and S. S. Kulkarni. Gappa: Gossip based multi-channel reprogramming

for sensor networks. In The International Conference on Distributed Computing

in Sensor Systems (DCOSS), June 2006.

L. Wang and S. S. Kulkarni. Sacrificing a little coverage can substantially increase

network lifetime. In Proceedings of the Third Annual IEEE Communications

Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks

(SECON), September 2006.

L. Wang and S. S. Kulkarni. Authentication in reprogramming of sensor networks

for mote class adversaries. The 15th International Workshop on Parallet and

Distributed Real- Time Systems (WPDRTS), March 2007.

X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill. Integrated coverage

and connectivity configuration in wireless sensor networks. In Proceedings of

ACM International Conference on Embedded Networked Sensor Systems (Sen-

Sys), November 2003.

W. Xiao and D. Starobinski. Poster abstract: Exploiting multi-channel diversity

to speed up over-the—air programming of wireless sensor networks. In Proceedings

of the Third ACM Conference on Embedded Networked Sensor Systems (SenSys)

(Poster Session), November 2005.

179

[71]

[72]

[73]

[74]

T. Yan, T. He, and J A. Stankovic. Differentiated surveillance for sensor net-

works. In Proceedings of the First International Conference on Embedded Net-

worked Sensor Systems (SenSys), pages 51—62, November 2003.

F. Ye, G. Zhong, J. Cheng, S. W. Lu, and L. X. Zhang. PEAS: A robust

energy conserving protocol for long-lived sensor networks. In Proceedings of the

23rd International Conference on Distributed Computing Systems (ICDCS), May

2003.

W. Ye, J. Heidemann, and D. Estrin. An energy-efficient mac protocol for wireless

sensor networks. In Proceedings of the 213i International Annual Joint Confer-

ence of the IEEE Computer and Communications Societies (INFOCOM), pages

1567—1576, June 2002.

Y. Yu, R. Govindan, and D. Estrin. Geographical and energy aware routing:

A recursive data dissemination protocol for wireless sensor networks. Technical

Report UCLA/CSD-TR—01-0023, UCLA, May 2001. http://citeseer.ist.

psu.edu/yu01geographical.html.

180

 lll]]l]l]lfl[]lll]]]l]l]llll]]l]l]llI

