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ABSTRACT

PANEL DATA MODELS WITH UNOBSERVED EFFECTS
AND ENDOGENOUS EXPLANATORY VARIABLES

By
Irina Murtazashvili

This dissertation consists of three essays that address issues of estimation in panel
data models with unobserved effects and endogenous explanatory variables. The first
cssay considers estimation of correlated random coefficient (CRC) panel data models
with endogenous regressors. This chapter provides a set of conditions sufficient for
consistency of a general class of fixed effects instrumental variables (FE-IV) estimators
in the context of a CRC panel data model. The usual FE-IV estimator turns out to
be fairly robust to the presence of neglected individual-specific slopes. Monte Carlo
simulations suggest the proposed FE-IV estimator of Population Averaged Effect
(PAE) provided a full set of period dummy variables is included performs better than
other estimators in finite samples for the case of (roughly) continuous endogenous
explanatory variables.

The second essay continues studying a CRC panel data model from the first chap-
ter but, in addition to allowing some explanatory variables to be correlated with
the idiosyncratic error, the joint distribution of the endogenous regressors and the
individual heterogeneity conditional on the instruments is allowed to depend on the
instruments. The second essay uses a two-step control function approach to account
for endogeneity and to consistently estimate average partial effects (APEs) in CRC
panel data models with endogenous roughly continuous regressors.The simulation
findings indicate that in the finite samples the control function approach to estimat-
ing the CRC balanced panel data model with time-constant individual heterogeneity

performs better than other estimators under the considered conditions. The pro-



posed method is applied to the problem of estimating the APEs of annual hours of
on-job-training on output scrap rates for manufacturing firms in Michigan.

In the third essay, a dynamic binary response panel data model that allows for an
endogenous regressor is developed. This estimation approach is of particular value
for settings in which one wants to estimate the effects of a treatment which is also
endogenous. This model is applied to examine the impact of rural-urban migration
on the likelihood that households in rural China fall below the poverty line. The
empirical results that migration is important for reducing the likelihood that poor
households remain in poverty and that non-poor households fall into poverty. Further,
failure to control for unobserved heterogeneity leads to an overestimate of the impact
of migrant labor markets on probability of staying poor of those who lived below the

poverty lines.
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CHAPTER 1

FIXED EFFECTS
INSTRUMENTAL VARIABLES
ESTIMATION IN CORRELATED
RANDOM COEFFICIENT
PANEL DATA MODELS

1.1 Introduction

In both cross section and panel data settings, there is substantial interest in estimat-
ing population averaged effects (PAEs), including average treatment effects (ATEs),
in the correlated random coefficient (CRC) model. Models with both exogenous ex-
planatory variables and endogenous regressors have been investigated in recent years.
Angrist (1991) discusses the conditions for consistency of ATE estimates in mod-
els with binary endogenous variables and no exogenous covariates. A set of sufficient
assumptions required for consistent ATE estimates with (roughly) continuous endoge-
nous regressors in a CRC model can be found in Wooldridge (2003). Both papers
study estimation with random sampling from a cross section.

The possibility that treatment effects might depend on individual-specific hetero-
geneity motivated Imbens and Angrist (1994) to introduce the “local average treat-

ment effect” (LATE) as an cvaluation paramecter, which provides a uscful interpre-



tation of the instrumental variables estimator when the effect of a binary treatment
varies across units. That emphasis on LATE led to a reinterpretation of IV estimates
in many empirical applications, and spurred a great deal of research on interpreting
IV estimators in a variety of contexts. Heckman and Vytlacil (2005) provide a recent
unification, including a discussion of whether we should be interested in parameters
such as LATE.

The understanding that IV generally consistently estimates LATE in simple set-
tings is useful, but often we are interested in estimating the expected effect for a
randomly drawn unit from the underlying population. Plus, strict interpretation of
LATE as the average treatment effect among units induced into treatment by the
switching of an instrumental variable - such as program eligibility — is limited to
special cases. Here we study estimation of population average effects, or average
treatment effects. in a general panel data model with heterogeneous slopes. By es-
timating population average effects we can easily estimate the aggregate effects of
various policies, such as increasing the amount of job training among the population
of manufacturing workers.

Wooldridge (2005a) studied general fixed effects estimators with strictly exoge-
nous regressors in the CRC model with panel data, and derived conditions under
which generalized fixed effects estimators — generalized in the sense that they sweep
away unit-specific trends — are consistent for the population averaged effect. In this
paper, we study the model in Wooldridge (2005a) but, in addition to allowing cor-
relation between the instruments and the unobserved heterogeneity, we allow some
explanatory variables to be correlated with the idiosyncratic error. The main re-
sult is a set of sufficient conditions under which fixed effects instrumental variables
(FE-IV) estimators consistently estimate the population averaged effect, even when
the individual-specific slopes are ignored. The results include the commonly used

fixed effects two stage least squares estimator (FE-2SLS) as a special case, but also



more general FE-IV estimators that sweep away individual-specific time trends. The
conditions are most likely to apply when the endogenous explanatory variables are at
least roughly continuous, as in Wooldridge (2003) for the cross-sectional case.

The remainder of the paper is organized as follows. In Section 1.2 we introduce the
model and briefly review existing results. Section 1.3 contains the main consistency
result, and Section 1.4 covers examples where the conditions will - and will not -
hold. Section 1.5 contains a Monte Carlo study that shows how the FE-IV estimator,
with a fully set of time period dummies, outperforms its obvious competitors. The
simulation results support the results in Sections 1.3 and 1.4. Section 1.6 contains a

brief conclusion.

1.2 Model Specification and Previous Results

The model of interest is a CRC model studied in Wooldridge (2005a). For a random

draw ¢ from the population, the model is

Yit = wia; + Xib; +uy, t =1,...,T, (1.1)

where y;; is a dependent variable, wy is a 1 x J vector of aggregate time variables,
which we treat as nonrandom, a; is a J x 1 vector of individual-specific slopes on the
aggregate variables, x;; is a 1 X K vector of endogenous covariates that change across
time, b; is a K x 1 vector of individual-specific slopes, and wu; is an idiosyncratic
error. As discussed in Wooldridge (2005a), we require J < T'. So, if we have two time
periods, we can only allow a scalar individual-specific intercept, a;. If T = 3, we can
allow individual-specific linear trends, too. Higher order trend terms are allowed as
T increases.

Equation (1.1) is a correlated random coefficients model when the individual spe-

cific slopes, b; (as well as the elements in a;), are allowed to be correlated with x;;.



For example, a simple CRC wage equation might look like

log(wagejt) = aj1 + ajot + bjjtraining;y + bpuniony + bizmarried; + uy, (1.2)

where, in addition to the standard level effect a;1, each individual is allowed to have
his or her own unobserved growth in wages, a;5. In addition, the time-varying ex-
planatory variables have individual-specific returns. The variable {raining might be
hours spent in job training, and the CRC model allows the return to training to be
individual-specific and correlated with the amount of training — as a standard model
of human capital accumulation would suggest.

Wooldridge (2005a) studied the consistency of fixed cffects estimators of (1.1) that
sweep out the a; but act as if b; = 3 for all i. To describe Wooldridge’s main result,

and the extension here, write b; = 3 + d;, and substitute into (1.1):

Yit = Wea; + Xt + (Xped; + i) = weag + X0 + vit, (1.3)
where vy = x;:d; +u;. We eliminate a; by regressing, for each i, y;; onwy, t =1,...,T
and x;; on wy, t = 1,..., T, and keeping the residuals, §;; and X;;, respectively. This

gives the equations

it = Xitby + il = %43 + (Rypd; + itye) = X0 + g, t = 1,.., T. (1.4)

The fixed effects estimator studied by Wooldridge (2005a) is just the pooled OLS

estimator from (1.4). We control the amount of individual-specific detrending by
choosing w; appropriately.

An assumption used by Wooldridge (2005a) is the standard strict exogeneity as-

sumption conditional on (a;.b;):

E(uit|x7¢1, ...,xiT,a,-,bi) =0,t=1,..,T. (1.5)



Using a simple iterated expectations argument, Wooldridge shows that, under the

additional assumption

E(b;|%;t) = E(b;),t =1,....T, (1.6)

the fixed effects estimator is consistent for the population averaged effect, 3.

Consistency of the usual FE estimator relies heavily on assumption (1.5), which
rules out traditional simultaneity, time-varying measurement error, correlation be-
tween time-varying omitted factors (in u;;) and the elements of x;¢, and models with
lagged dependent variables or other kinds of regressors where changes in u;; may feed
back into changes in x; 44 for A > 1. In the case where b; = 3, methods that first
eliminate a; and then apply instrumental variables - usually, 2SLS - have become a
standard tool for the applied economist. Here, we study such estimators but allow
for individual-specific slopes, b;.

Let z;; be a 1 x L vector of instrumental variables, with L > K. Let Z; be
the “detrended” instruments from the individual-specific regressions of z;; on wy,
t =1,..,T. Then we can estimate (1.4) using instruments Z;; for unit ¢ in time
period . Whether we just use pooled 2SLS - the estimator we focus on here - or a
more sophisticated generalized method of moments (GMM) estimator, the moment

conditions we use are

E(Z,i4)=0,t=1,.., T (1.7)

In the next section, we study consistency of the FE-2SLS estimator under conditions

that relax those in Wooldridge (2005a).



1.3 Conditions for Consistent FE-IV Estimation

In order to ensure that (1.7) holds, we place conditions separately on the relation-
ship between the instruments and idiosyncratic errors and the instruments and the
unobserved effects. Plus, of course, there is always a standard rank condition.

ASSUMPTION 1: With the definitions in Section 1.2,

E(uit|zi1,zi2, ...,ZiT) =0,t=1, ...,T. (18)

Assumption 1 is stronger than we need - as will be clear, E(2},ii;) =0,t =1,...,T
would suffice — but (1.8) is a natural strict exogeneity assumption on the instruments.
Assumption 1 is common in simultaneous equations models with panel data, as well
as models with other kinds of endogeneity that induces correlation between x;; and
u;¢, such as omitted variables and measurement error. Assumption 1 rules out lagged
dependent variables among the instruments — as well as other non-strictly exogenous
instruments — and so its application to dynamic models is limited unless sufficient
strictly exogenous instruments are available. When z;; = x;;, so that the covariates
are strictly exogenous, Wooldridge (2005a) included a; and b; in the conditioning set,
as in (1.5). When the unit-specific trend function is correctly specified, this stronger
form of the assumption is essentially harmless.

The second component of the error term in (1.4) is X;;d;, and we need assumptions
such that Z;; is uncorrelated with X;;d;. This requires some care because X;; contains
endogenous elements. (That is, we allow components of x;; to be endogenous even
after removing unit-specific intercepts and trends.) The first assumption mimics the
key assumption from Wooldridge (2005a), except that we replace the covariates with

the instruments:

ASSUMPTION 2: b; is mean independent of all the unit-specific “detrended” z;,



that is,

E(b;|Z;;) = E(b;) =6,t=1,...,T. (1.9)

Because the Z;; are net either of a time average or, more generally, level and trend
effects, Assumption 2 maintains mean independence of the heterogeneous slopes and
deviations of the instruments from long-run levels or trends. Of course, in the case
where the instruments are assumed, in each time period, to be independent of all
heterogeneity, Assumption 2 automatically holds. Assumption 2 is practically much
weaker than full independence because it allows b; to be arbitrarily correlated with
systematic components of z;;; we cover some examples in Section 1.4. [Wooldridge
(2005a) contains a discussion for the case of strictly exogenous x;;.]

Generally, the richer is wy, the more likely (1.9) is to hold. For example, the usual
FE-IV estimator takes out time averages from the instruments, and this might not
be enough to ensure (1.9) if the instruments are trending differently across units :.
On the other hand, adding more aggregate factors to w; reduces the variation in Z;,
generally leading to less efficient IV estimators. Not surprisingly, in deciding what to
include in wy we confront the usual tradeoff between efficiency and consistency.

Unfortunately, Assumptions 1 and 2 are not enough to conclude that the IV
estimator is consistent. Instead, we employ a constant conditional covariance as-

sumption.

ASSUMPTION 3: For j =1,..., K,

Cov(iitj’bi,jliit) = COV(.‘i‘itj,bij),t = 1, ...,T. (1.10)

Importantly, (1.10) allows the detrended covariates and the random coefficient
to be correlated, and the covariance may change over time; in fact, there is no re-

striction on the temporal pattern of Cov(i;;,b;;). But the covariance conditional on



the detrended IVs is assumed not to depend on Z;. [In any case, the covariances
Cov(Z;t5,b;) do not depend on 7 because of random sampling in the cross-sectional
dimension. As we are conditioning only on Z;, the restriction is that the covariance
condition on Z; does not depend on Z;;; we have no need to place restrictions on
other conditional covariances.]

Assumption 3 extends to the panel data case a condition used by Wooldridge
(2003) for the pure cross-sectional case. An important difference is that Assumption
3 applies to the detrended covariates and instruments. Importantly, we allow the
unconditional covariances to change arbitrarily over time. Of course, if b;; = 3; for
all 7, then (refeq:eq20) is trivially true because both sides are zero.

Assumptions 1 through 3 imply that the key orthogonality conditions (1.7) hold,
and these conditions can be used in a generalized method of moments framework.
For simplicity, we focus here on the fixed effects two stage least squares estimator,
FE-2SLS [interpreted in the general sense of eliminating a; from (1.1)]. To ensure

consistency of FE-2SLS estimator we add a standard rank condition.

ASSUMPTION 4 (i) rank (Y7 E(#%«) ) = K

(ii) rank (z{zl E(igtﬁit)) L

Practically speaking, the first part of Assumption 4 is most important; it means
that, after netting out individual-specific trends, there is still sufficient correlation
between the instruments and regressors. Part (ii) requires sufficient variation in the
“detrended’; instruments. It would be violated if, say, we specify wy = (1,t) and z;
contains an element that is constant across ¢ for all ¢ (such as gender) or changes by
the same value in each time period (such as a person’s age when the length of the

sampling period is constant).

PROPOSITION 1: Under Assumptions 1 to 4, the FE-IV estimator is consistent

for 3, provided a full set of time period dummies is included in (1.4).



PROOF: Under Assumption (refeq:eql9), E(d;;|Z;:) =0,j = 1,..., K for all ¢, and

SO

E(i;45di512;¢) = Cov(¥t5, dijlZs) = Cov(¥st5, bijlZst)-

But by Assumption 3, the conditional covariances equal the corresponding uncon-
ditional covariances, say 7;;, and so E(&3;d;j|%;¢) = %5, j = 1,....J, t = 1,...,T.
Since %X;;d; = Z;41d;1 + Eijpodio + ... + T3k d;k, we have shown that E(¥X;d;|Z;;) =
Y1 + .- + 1tk = 6;. Therefore, we can write X;;d; = 6; + r;; where E(ry|Z;;) = 0,

t=1,...,T. Now we plug this expression for ¥X;;d; into equation (1.4):

.i/.it =9t+iitﬁ+(rit+ﬁit), t = 1,...,T. (111)

As we have just shown, Assumptions 2 and 3 imply that E(r;|Z;;) = 0. Assumption
1 implies that E(i;|Z;;) = 0. Thus, the composite error in (1.11) satisfies E(r;; +
U;|Z;) = 0, t = 1,...,T, and so any IV method that uses instruments Z;; at time
t consistently estimates 8. In particular, under the rank condition in Assumption
4, and standard finite moment conditions, the FE-2SLS estimator is consistent and

v/N-asymptotically normal. This completes the proof.

Proposition 1 contains an important empirical lesson: unless there are very good
reasons to the contrary, one should include a full set of time effects in a fixed effects IV
analysis. Even if the model does not originally contain separate time period intercepts

itself a questionable premise - the estimating equation generally should if one wants
to allow correlated random slope coefficients.

Because the error term in (1.11), r;; + i;4, is generally heteroskedastic and serially
correlated - at a minimum due to the presence of X;;d; - inference should be carried
out using a fully robust variance matrix for B. Typically this is straightforward for

pooled 2SLS where all instruments have been detrended prior to estimation.



1.4 Examples

To see how Proposition 1 applies, suppose x;; is linearly related to z;; with heteroge-

neous linear trends for each element of x;;:

xip=gl+t-hV+z,lI+qu, t=1,..T. (1.12)
Initially, take wy = (1,t), so the regressors and instruments are linearly detrended
before applying pooled 2SLS. Assume the instruments also have heterogeneous linear
trends, which are removed by individual-specific detrending. Then Assumption 2
simply requires that the idiosyncratic movements in z;; are uncorrelated with b;, a
weak requirement on instrumental variables. For Assumption 3, write ¥X;; = Z;II +
Git, t = 1,..., T, so that Cov(R;s, by|Z;¢) = Cov[(Z;¢IT + &st), bi|Zi¢] = Cov (s, bilZ:t),

t =1,...,T under Assumption 2. Thus, provided

Cov(dy, bslZ;t) = Cov(qy, b;), t=1,...,T, (1.13)
we can use Z;; as Vs for X;; to obtain a consistent estimate of the PAE, 3, in equation
(3.4). One might even assume that (q;1,...,q;7, b;) is independent of (z;1, ..., Z;1),
which is sufficient for (1.13) [as well as for Assumption 2].

It is possible that the FE-IV estimator is consistent even if we only demean the
regressors and instruments, provided the instruments satisfy a stronger exogeneity as-
sumption. In other words, even though x;; contains individual-specific linear trends,
we ignore that in our estimation procedure. To see why we can still get consistency,

demean x;; to get

Xpp— X =t—(T+1)/2] - h;¥ +(z;;, —Z;)IT+ (q;: —q;), t =1,....,T. (1.14)

Now, if [(q;s — @;),b;] is independent of (z;; — Z;) for each ¢, and (1.9) holds for

Zit = (z;; — ;) and (1.13) also holds. Therefore,

10



Cov(x;t — X;,b;|zit — 2;) = [t — (T +1)/2]%'Cov(h;, b;) = Cov(x; — X;, b;)

for each t, which means that Assumption 3 holds: while the conditional covariances
are not generally zero, or even constant over time, they do not depend on z;; —Z;. So,
the FE-IV estimator will be consistent provided we include a full set of year dummies
in estimation.

What happens if we have a binary endogenous variable, z;;? Assumption 3 is
unlikely to hold. To see why, take the case wy = 1, t = 1,..., T, which corresponds
to the usual unobserved effects model with correlated random coefficients. Then,
I = x4 — T3t = 1,..., T, and we need E(Z;d;|Z;;) not to depend on Z;;. Now, by

iterated expectations,

E(2;4d;|Z:t) = E[E(Z34d;]d;, 2;)|Z2:¢] = E[d;E(&4|d;, 2;)|Z5]. (1.15)

Standard models for binary responses, with z;; strictly exogenous conditional on d;,
would have P(z;; = 1|d;,z;) depending on d; and zj, in a nonlinear way. For

concreteness, suppose P(z;; = 1|d;, z;) follows a probit model,

Pz = 1|d;, 2;) = P(zir = 1|d;, 2;¢) = (a0 + 01d; + 2itr2). (1.16)
Then
T
E(L|d;, zi) = (I)(()'()+(¥1(li+z.it(!2)—T_l Z@(a0+a1di+zirag) = g1(d;, 2z;) (1.17)
r=1

and so, by (1.15),

E(2;:d;|Z;t) = E[d;9¢(d;, 2;)|Z4) (1.18)

11



Even if d; is independent of Z;; - a sensible strengthening of Assumption 2 - (1.18)
generally depends on Z;;. Thus, assuming E(Z;4d;|Z;;) does not depend on Z; is
rather strong for a binary endogenous explanatory variable z;;. [Heckman (1997)
contains a detailed discussion of the behavioral implications of this assumption in
different empirical studies.] In a cross-sectional context, Wooldridge (1997) proposes
a modified set of assumptions that are sufficient for consistent estimation of the ATE,
B, with a binary endogenous variable, but, applied to the current setup, P(z;; =
1|d;.Z;;) would have to follow a linear probability model.

In a cross-sectional setting, Card (2001) shows that the analogue of Assump-
tion 3 can also be violated in the case of roughly continuous explanatory variables
due to heteroskedasticity in the variance matrix of (x;,b;) given z;. (With a pure
cross section, there are no time subscripts and, of course, no unit-specific demeaning
or detrending.) In an earnings equation where x; includes schooling, Card rejects
Cov(x;,b;|z;) = Cov(x;,b;) using IQ score as a proxy for unobserved ability (an
element of b;) and a binary indicator for college proximity as an instrument for ed-
ucation. In our panel data setup, Assumption 1 allows Cov(x;¢, b;|z;;) to depend on
Zj, as it generally would if x;; and z;; contain persistent heterogeneity correlated with
b;. Using a generalized fixed effects approach, we need only assume Cov(X;;, b;|Z;;)
does not depend on Zj;, and this is much more plausible when we think the unit-
specific detrending successfully eliminates the time-constant heterogeneity in X;; and
Zi-

More recently, in a cross-sectional setting, Wooldridge (2005b) proposes conditions
that allow Cov(x;, b;|z;) to depend on z;, but these do not apply directly to the panel
data case with time-constant heterogeneity that can be correlated with the covariates

and instruments.
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1.5 Finite Sample Behavior of the FE-IV Estima-

tor

In this section we provide evidence on the finite sample properties of FE-IV estimator
of the population averaged effect in a CRC panel data model. Because one of the
most commonly used applications of CRC panel data models is the usual unobserved
effects model with a random coefficient, we first assume wy = 1,¢ =1,..T in (1.1), as
in the second part of the first example from Section 1.4. Also, for scalar processes x;;
and z;;, we assume a linear relationship between xz;; and z;, with a linear trend for
z;¢+. We use Monte Carlo simulations to draw the data and check the properties of the
estimator. The number of replications is 500, and the results of the experiment are
presented for cross-sectional sample sizes of 100, 400, and 800 for two time horizons,
T =5 and T = 10. The population average values are § = 2 and a = 3.

For t =1,...,T, the endogenous explanatory variable is generated as

Tit = Azzzit + Arultit + Ara@; + b + Etd; + \/1 - A:%z - ’\;2ru - ’\g'a -&2(1+ t)zeit,

(1.19)
where wu;¢, e;; ~ Normal (0,1), a; ~ Normal (a,1), b; = 8 + d;, d; ~ Normal
(O,ag), and Arz. Azy, Aza, and § are constants. Further, the instrument is generated
as zjt = Aza@j + /1 — A2,m;; — where q; is defined above —~ m;; ~ Normal (¢, 1), and
Aza is the population correlation coefficient between z;; and a;, t = 1,...T.

In our reported simulations we use ag = 1. When \,, = 0, the coefficients Az,
Azu, and Azq from (1.19) are the population correlation coefficients between z;; and
zit, ;¢ and uj, and x4 and a;, t = 1, ..., T, respectively. The population correlation
between z;; and b; when A;q = 01is {(1+¢), t = 1,...,T. We use the coefficient on the

error term in (1.19) to ensure that z;; has unit variance when A, = 0. When \,, # 0,
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Var(z;4) = 1 + 2Az2AzaAza, Which is only slightly greater than one for our choices of
the A parameters. The relevant covariances are Cov(z;,u;t) = Azu, Cov(zy, at) =
AzzAza + Aza, and Cov(zj, 2it) = Azrz + AzaAza- For the endogenous explanatory
variable defined in (1.19), Assumption 3 is met: Cov(&y,b;|Z;;) = Cov(Zj. b)) =
E1+t),t=1,...T

The dependent variable y;; is generated as:

Vit = a; + Tighi +uyy, t=1,...,T, (1.20)

where a;, b;, uj, and x;; are defined above. Among other estimators, we obtain the
FE-IV estimator in (1.20) acting as if b; = 5. Based on the first example from Section
4, we know this FE-IV estimator is consistent for z;; generated as in (1.19) provided
we include a full set of time dummies, even though we only demean the regressor and
the instrument while ignoring the individual-specific linear trend in the regressor.

Tables A.1 and A.2 present simulation results for the correlated random coefficient
model for Az = .40, Azq = .20, Azz; = .20, and A,, = .25. The implied correlation
between r;; and z;; is about .245, which seems to be a reasonable value for panel data.
For comparison, we used a data set provided with Wooldridge (2002) on domestic
route air fares for 1,149 routes in the United States for 1997 through 2000. (The data
set is called AIRFARE.) The correlation between the log of air fare (an endogenous
explanatory variable in a passenger demand equation) and the instrumental variable
candidate, the concentration ratio on the route, is about —.22, which has a magnitude
in the range of .245.

Table A.1 reports the simulation outcomes for T = 5, where £ = .12, while
Table A.2 covers the case T = 10, where £ = .06. When £ = .12, the correlation
between z;1 and b; is slightly less than .24; when £ = .06, the correlation is just below
.12. Columns 1 through 6 contain the mean, standard deviation (SD), root mean

squared error (RMSE), lower quartile (LQ), median, and upper quartile (UQ) of the
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PAE estimates from 500 replications. Rows of the table report statistics for usual
pooled ordinary least squares (POLS) estimates on the original data, the usual fixed
effects estimates (FE-OLS), which is just pooled OLS on the time-demeaned data,
pooled instrumental variables (IV) estimates using the original data, the fixed effects-
instrumental variables estimates without period dummy variables (FE-IV without
dummies), and fixed effects instrumental variables estimates when a full set of period
dummy variables is included (FE-IV with dummies).

From the table we see that the POLS estimates are roughly 1.5 times larger than
the true value of G in the 100, 400 and 800 observation samples. One source of bias of
the POLS estimates is the correlation between the unobserved heterogeneity a; and
the regressor z;. A second source of bias in the POLS estimates is the endogeneity
of the regressor z;;, with correlation coefficient pz, very close to .4. A third source of
bias (and inconsistency) is the correlation between z;; and b;.

The within transformation eliminates a;, and so the correlation between z;; and
a; is not a source of bias for the usual FE-OLS estimator. But FE-OLS still produces
a biased estimator of 3 for the last two reasons mentioned above. The bias in the
FE-OLS estimator is much lower than for POLS, but the bias is still on the order of
30 percent.

The pooled IV estimator - that is, without removing time averages and without
time period dummies — actually has a larger bias than the FE-OLS estimator, a finding
that is not too surprising because the instruments are correlated with a;. Using the
FE transformation combined with IV eliminates the dependence between z;; and a;
because z;; = Azqa; + /1 — A5om;. Therefore, the FE-IV estimator (without time
dummies) has a smaller bias and considerably smaller RMSE than the pooled IV
estimator. More importantly, the FE-IV estimator with period dummies has the
lowest RMSE among all estimators for all the sample sizes and both time horizons.

Plus, the RMSE of the FE-IV estimator with time dummies falls quickly as the sample
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size, N, grows. Without period dummies, the FE-IV estimates of 3 are biased by
at least 20 percent, and the bias does not disappear as N — oo. As T increases,
the RMSE of the FE-IV estimator without dummies estimates decreases but it is still
higher than the one for the FE-IV estimates when the period dummy variables are
included. Thus, even though the structural model (1.20) does not contain a time
trend, inclusion of a full set of period dummies ensures the consistency of the FE-IV
estimation.

Not surprisingly, the FE-OLS estimator has a smaller standard deviation than
the FE-IV estimator (both without time dummies). Typically, methods that treat
regressors as exogenous have substantially less sampling variation than their IV coun-
terparts because the correlation between the instrument and regressor is typically well
below one, as in the current simulation.

The difference between the FE-IV estimates with and without time dummies
illustrates the trade-off between bias and variance. The FE-IV estimates without time
period dummy variables are always less variable than the FE-IV with time dummies.
This is hardly surprising, as including more explanatory variables - the time dummies
in this case — that are correlated with the instrument induces multicollinearity into
the IV estimates. The instrument, z;, is constructed to be correlated with time
dummies, and so the FE-IV estimator with time dummies is less precise than that
without. But, of course, the estimator without time dummies suffers from substantial
bias even though the structural model does not contain separate period intercepts.
The RMSE for the FE-IV estimator that includes a full set of dummies is much lower
than the estimator that does not.

We also conducted simulations with more variability in the random coefficient,
namely, og = 4, so that the standard deviation of b; is double that in Tables A.1
and A.2. The results of these simulations are not included here but are available

on request. With more variability in b;, the bias induced by failing to include time
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dummies in the FE-IV estimation is more pronounced (even though, remember, the
structural model does not include time effects). For example, with T = 5, and
N = 800, the RMSE of the FE-IV estimator without dummies is about 1.36, compared
with about .22 for the estimator that does include the dummies.

For the next set of simulations, we take w; = (1,t), t = 1,..., T, in (1.1), so that

each cross-sectional unit has its own linear trend. In particular, we generate y;; as

Yit = a0 + a;1t + Tipb; +uy, t=1,..,T, (1.21)

where a;y and a;; are independent Normal(a, 1) random variables and b;, and u;; are

defined above. The endogenous explanatory variable z;; is generated as

Ti = /\xzzit+/\ru“iz+/\m(0io+ai1)+§bi+€tdi+\/1 =A%, =22, = 222, — €2(1 + t)2%ey,

(1.22)
and the instrument is generated as z;; = Azqai0+ Mmit. Again, the coefficient
on e; is chosen so that Var(z;) = 1 if A, = 0. We use the same values for the A
parameters as in Tables A.1 and A.2, and we take oy, = 1. (Simulation findings for the
case oy, = 2 are available on request.) Because the structural model (1.21) contains a
time trend, the default is to include a full set of time period dummies in the various
estimation methods. For comparison, we include the FE-IV estimator without time
period dummies.

The rows of Tables A.3 and A.4 report statistics for POLS with time dummies,
fixed effects with time dummies, pooled instrumental variables with time dummies,
fixed effects instrumental variables estimates with time dummies, and fixed effects
instrumental variables estimates without time dummies. As in Tables A.1 and A.2,
the simulation findings are unambiguous: fixed effects IV with a full set of time
dummies is superior, by far, to the other estimation methods, for all combinations of

N and T. Perhaps not surprisingly, when y;; is itself trending, the consequences of
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omitting aggregate time effects is much more detrimental than in the previous case.

The simulation findings are perhaps not too surprising: the only estimator that
is essentially unbiased for the PAE removes the unobserved effect (or, more gener-
ally, the individual-specific trends), includes a full set of aggregate time effects, and
instruments for the endogenous explanatory variable. Nevertheless, it is useful to see
that the theoretical findings in Section 1.3 have practically important implications:
the FE-IV estimator with time dummies is robust to correlation between the random
coefficients and the explanatory variable, at least for assumptions that can be met by

continuous endogenous explanatory variables.

1.6 Conclusion

This paper suggests a set of conditions sufficient for applying the standard IV ap-
proach to the estimation of population averaged effects in a correlated random coeffi-
cient panel data model with (roughly) continuous endogenous explanatory variables.
Assumptions 1 through 4 ensure consistent FE-IV estimation of the population av-
eraged slopes, (3, even ignoring individual-specific slopes. Monte Carlo simulations
suggest the proposed FE-IV estimator of PAE provided a full set of period dummy
variables is included performs better than other estimators in finite samples for the
case of (roughly) continuous endogenous explanatory variables.

A natural direction for future work is to relax homoskedasticity of E(X;;d;|Z;;);
Card (2001) showed how the analogous assumption can fail in a cross-sectional envi-
ronment. Recently, Murtazashvili (2006) shows how this assumption can be relaxed
using a control function approach by putting restrictions on the reduced forms of the
endogeneous elements of x;; - restrictions that can be met for roughly continuous

variables - and by modeling the conditional covariances.

18



CHAPTER 2

A CONTROL FUNCTION
APPROACH TO ESTIMATION
OF CORRELATED RANDOM
COEFFICIENT PANEL DATA
MODELS

2.1 Introduction

Recently, a lot of attention has been devoted to estimation of average partial effects
(APEs) in correlated random coefficient (CRC) models, in both cross section and
panel data settings. Studies are primarily conducted in a cross-sectional setup with
few exceptions for panel data. CRC panel data models are investigated for both ex-
ogenous and endogenous explanatory variables. Wooldridge (2005a) discusses fixed
effects estimation of a CRC model for the case of exogenous independent variables
in a panel data setting. Murtazashvili and Wooldridge (2005) address fixed effects
instrumental variables (FE-IV) estimation of APEs with (at least roughly) continuous
endogenous regressors in CRC panel data models.! One of the main conditions for

consistent estimates of APEs in their study is an assumption of independence of co-

1We refer to the continuous variables with some discrete characteristics as roughly con-
tinuous, and provide a discussion about this kind of variables in the next section.
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variance between detrended endogenous regressors and individual heterogeneity, con-
ditional on the transformed IVs, from the detrended instruments. Card (2001) shows
for cross-sectional data that this assumption can be violated in the case of roughly
continuous endogenous explanatory variables due to heteroskedasticity in variance-
covariance matrix of explanatory variables and individual heterogeneity conditional
on the instruments. He rejects this assumption using IQ as a proxy for unobserved
ability and a binary indicator for college proximity as an instrument for education in
the human capital earnings model. Wooldridge (2005b) proposes conditions weaker
than those in Murtazashvili and Wooldridge (2005) for obtaining consistent APEs
estimates for (roughly) continuous regressors with the Card’s problem in a cross-
sectional setup.

In this paper, we study the model in Murtazashvili and Wooldridge (2005) but,
in addition to allowing some explanatory variables to be correlated with the idiosyn-
cratic error, we correct for the drawback described in Card (2001) while still allowing
the endogenous regressors to be (roughly) continuous. We use a control function ap-
proach, which introduces residuals from the reduced form for the endogenous regres-
sors as covariates in the structural model. We propose a two-step method to account
for endogeneity and to consistently estimate APEs in CRC panel data models with
endogenous (roughly) continuous regressors. The motivation for our two-step panel
data procedure comes from a cross section study by Wooldridge (2005b). Further,
we relax the assumptions in Wooldridge (2005a) and Murtazashvili and Wooldridge
(2005) by allowing the individual slopes in a CRC model to vary over time. Both
cases of time-constant and time-varying individual slopes are covered in this paper.

Monte Carlo simulations indicate that in the finite samples the control function
(CF) approach we propose for estimating the CRC balanced panel data model with
time-invariant individual heterogeneity performs better than other estimators when

the joint distribution of the individual heterogeneity and the endogenous regressors
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conditional on the detrended instruments depends on the instrumental variables.
We apply the proposed method to the problem of estimating the average partial
effects of annual hours of on-job-training on output scrap rates for manufacturing
firms in Michigan using the firm level data for 1987 through 1989. The control function
approach we propose delivers the APEs of the annual hours of job training on the
output scrap rates that are larger in magnitudes and statistically more significant

than the APEs’ estimates from the FE-IV approach.

2.2 Model of Interest for Balanced Panels

For a random draw ¢ from the population, the structural model is
Yiit = Wea; + Xib; +uy, t=1,.,T, (2.1)

where wy is a 1 x J vector of aggregate time variables which we treat as nonrandom -
a; is a J x 1 vector of individual-specific slopes on the aggregate variables, x;; isa 1x K
vector of exogenous covariates, zy;, and an endogenous covariate, y9;:, that change
across time, in general, x;; = f(21;, y2i¢), b; is a K x 1 vector of individual-specific
slopes, and u;; is an idiosyncratic error. For simplicity, assume x;; = (21, y2i¢). Let
z;s = (214, 292;¢) be a 1 x L vector of instrumental variables, with L > K, i.e., we
assume the vector z9;; contains at least one element. We assume a sample of size N
randomly drawn from the population, and T being fixed in the asymptotic analysis.
For the purpose of this paper, we assume a balanced panel.

Our object of interest is 3 = E(b;), the K x 1 vector of average partial effects, i.e.,
vector of partial effects averaged over the population distribution of any unobserved
heterogeneity. The APEs are usually of primary interest to empirical analysts. An-
other empirical question of possible interest is estimating b;s themselves. However,
the estimation of b;s, when we treat them as parameters, is not precise unless T is

large. As an alternative, we turn to estimation of average partial effects in our model.
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Following Murtazashvili and Wooldridge (2005) we study estimators of § that are
based on the assumption that the slopes b; are constant, but we study the properties
of these estimators in the context of model (2.1). We write b; = 8+d;, and E(d;) = 0,
by definition. In other words, we assume that that individual heterogeneities have

constant means, (3, and random error terms, d;. Substitution into (2.1) gives

Yiie = Wwia; + X0 + (Xed; + uge)

wia; + X3 + vi;t, (2.2)

where v} = x;;d; + u;. We estimate 3 in (2.1) allowing the entire vector a; to vary
by %, and to be arbitrarily correlated with x;;. Following a cross-sectional definition
from Heckman and Vytlacil (1998), we call (2.1) a correlated random coefficient model
because of the possible correlation between b; and x;;.

In this paper we develop a two-step estimation method motivated by Wooldridge
(2005b) for obtaining consistent estimates of the average partial effects. The method
we employ for obtaining consistent estimates of APEs is called a control function
approach, which was pioneered by Smith and Blundell (1986) and Rivers and Vuong
(1988). The main idea of the control function method is to add control variables
into the structural model to control for the endogeneity problem (regardless of its
exact nature). To use the control function approach in our case, we need to make
assumptions about the nature of the endogeneity in the random coefficient model.
Since we have two sources of endogeneity in our model - the correlation between the
unobserved heterogeneities and the regressor ys;;, and the correlation between that
regressor and the structural error, we are interested in modeling the relationships
among the random coefficients, exogenous covariates, and the error from the reduced
form equation for the endogenous explanatory variable.

First, we assume there is some strictly monotonic function h(-) defined on the
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support set of yo;¢, such that

h(yit) = 820 + Zi¢da1 + Z;029 + vo, t =1,..., T, (2.3)
E(L‘Qitlz,'l, ...,ZiT) =0,t=1,..,T, (2.4)
T
where Z; = T~1 >z, v9;¢’s are error terms, and
t=1
E(uitlzi1, - 2i7, v2i1. -, v2i7) = E(ugt|vein. . vyr) =
= p1V9it + povUo;, t=1,...,T, (2.5)

where p; and py are scalars, and To; = T71! §U2it- Assumption (2.5) is stronger
than just assuming that u; is uncorrelated witt=h1 z;. There are two parts to this as-
sumption. The first equality says that u;; is conditional mean independent of z; given
V9;1, -, Vo;p- This will always be true if (uj,v9;1,...,v9;7) and 2z; are independent.
The second equality states that E(uj|voi1, ..., vgi) is linear. Assumption (2.5) holds
if voj = ag; +e9;t, where {(u;s, €25¢)} is independently and identically distributed and
all conditional expectations are linear. Thus, we maintain (2.5) is a valid extension
to the CRC panel data models. We follow Rivers and Vuong (1988) and call equation
(2.3) a reduced form equation.

Strict monotonicity of h(-) implies that y9;; is a well-defined function of
{zi1,....2;7} and vg;. Further, assumptions (2.3) and (2.4) mean that when some
function h(-) is applied to the endogenous explanatory variable, ys;;, the latter has
a linear conditional mean given all the instruments. In other words, linearity of
E(y2it|2;1, ---, 2;7) might not be an appropriate assumption, while we want yo;; to be
included linearly in the regression equation. Assumption (2.4) always holds if vg;;
is independent of z;. In the standard case of continuous y9; with a large support
set assumptions (2.3) and (2.4) are very reasonable in many possible situations. But
if the endogenous covariate has characteristics that are not quite suitable for a con-

tinuous variable these assumptions do not generally hold. For example, assume a
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continuous variable yo;; with a large support set is defined according to (2.3) when
h(-) is identity so that vg;;|z; " Normal(0, aizt), where Ui2t = Var(vg;¢|2;) is a conditional
variance that depends on z;. In this case we can standardize vy;; to be a variable %21,1;1,
which is independent of z;, guaranteeing that assumption (2.4) is satisfied. However,
assumption (2.4) is unlikely to hold if yg;; has some ”discrete”-type characteristics.
For instance, let yo;; be a binary variable so that yo;;|z; follows a probit model. Even
having standardized the error term for this variable, v9;;, we cannot hope to obtain
a new one, which is independent of z;.

For the purpose of our study, we will refer to the continuous variables with some
discrete characteristics as roughly continuous to distinguish them from the traditional
continuous variables and emphasize that these roughly continuous variables do not
always have fine behaviors of continuous variables. Possible examples of these vari-
ables would be income, education, experience, etc. Garen (1984) discusses estimation
of models in the presence of selection bias when the choice variable is continuous
and the choice set is ordered. He suggests treating level of education in the human
capital eafnings model as such a continuous variable: on the one hand, schooling is
traditionally thought of as a continuous variable, on the other hand, only integers of
that variable are observed.

Which functions can we use as a strictly monotonic function h(-) in transfor-
mation (2.3)7 For a trivial case of a continuous y9;; with a large support set,
we can use Nh(y9;¢) = yo;t- When the nature of yo;; is more ”exotic,” the choice
of h(-) is not so straightforward. For instance, Wooldridge (2005b) suggests us-
ing h(yoi) = ln(r?{?jé;), when yy;; is a fraction in the open unit interval, and
h(y2it) = In(y24¢), when yo;; > 0. Assumptions (2.3) and (2.4) rule out probit, logit,
and Tobit models because y9;; has discrete characteristics.

For example, if we are interested in estimating whether there is an effect of per-

pupil spending on math test pass rates for fourth graders in Michigan, and the en-
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dogenous variable of our interest is per-pupil spending, then per-pupil spending is a
roughly continuous variable and choosing a log-transformation of per-pupil spending
is appropriate. If we employ the logged per-pupil spending as the endogenous covari-
ate in the model, then logged per-pupil spending can be thought of as a continuous
variable and function h(y9;t) = y9;¢+ with y9;; = In(per-pupil spending) is clearly
adequate.

Second, we need to make assumptions about the distribution of (a;, v9;;) condi-

tional on the instruments. We assume

E(a;|2i1, ..., i1, v241, --» v2iT) = E(a4)Z;, T9;), (2.6)

and

E(a;|Z;,72i) = a + A1Z;/ + (Ag + A3Z;/)Ty;, (2.7)

where o and Ag are J x 1, A and A3 are J x L matrices of constants, respectively,
Z; and Ug; are defined above. Assumption (2.6) means that z; and Uy; can be thought
of as sufficient statistics for describing the relationship between a; and the history of
{zit,vo;¢ : t = 1,...,T}. Assumption (2.7) specifies a particular functional form for
the relationship among a;, z;, and Ty;. Interactions among the exogenous variables
z; and vy;; might be important. In a cross-sectional context, Card (2001) shows that
the joint distribution of (a;, vo;;) given z;; can depend on z;; due to heteroskedasticity
in Var(a;, v9;¢|2;:). He shows that using 1Q as a proxy for unobserved ability and a
binary indicator for college proximity as an instrument for education in the human
capital earnings model. Assumptions (2.4) and (2.7) can still be true even when the
conditional variance-covariance matrix, Var(a;, vo;;|2;), is heteroskedastic.

Third, we need to make assumptions about the expected value of d;, conditional

on {z;} and {vy;;}. We assume

E(d;i|z;1, .- ZiT, v2i1, -, voi1) = E(d;|Z4, D2;), (2.8)
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and, in particular,
E(d;|z1, .., ZiT, V2415 -0 V2iT) = B1(Z; — ¥)1 + (Bo + B3Z;/)vo;, (2.9)

where ¢ = E(Z;), B; and B3 are K x L, and Bg is K x 1 matrices of constants,
Z; and To; are defined above. In Murtazashvili and Wooldridge (2005), one of the
conditions for consistency of J estimates states that the covariance between d; and
the detrended x;; conditional on the detrended z; equals its unconditional version,
that is, it does not depend on the detrended z;;. For the reasons mentioned earlier,
this assumption might be too restrictive for the case of roughly continuous endogenous
explanatory variables. In this study, we relax this assumption not only by dealing with
the original data, but also by allowing the covariance between d; and x;; conditional
on the instruments to be a function of z;;. The conditions we employ in this paper
assure the consistency of 3 estimates in the case of roughly continuous endogenous
explanatory variables.

Then, we take the expectation of equation (2.2) with respect to
(Zi1, s ZiT» V2415 ---, U2;T), employ that y9;; is a deterministic function of
(Zi1y -y Z;T5 V2415 - Vo), and use assumptions (2.3) through (2.9). The resulting

estimating equation is:

E(y1itlZi1, -, 2i7, V2015 -0y VouT) = Wia + (Z; B We)ap + Ty Wrag + Tgi(Z; ® We)ag +

+xit3 + ((Zi — ) ® X4¢) 01 + VX2 + Ui (Z; ® X4t) 33 + p102;t, (2.10)

where t = 1,...,T. Here, H = 2(1 + L)(J + K) + 1 is the total number of all the
independent second-stage variables. Equation (2.10) is an estimating equation for
obtaining consistent estimates of APE, 3. Importantly, the components of zy;; - the
instrumental variables excluded from the structural equation (2.2) - do not enter the
estimating equation (2.10) in levels or interacted only with z;;;. Generally, if we
had any of these introduced in (2.10) we would lose identification. [See Wooldridge
(2005b) for more details.]
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In some cases we might think that assumption (2.8) is too restrictive. In some
potential applications we might want to allow the random coefficient to vary not only
across ¢ but also across t. In other words, for a random draw 7 from the population,

the structural model becomes
Ylit = Wea; + Xitbi +u, L=1,...,T, (2.11)

where b;; is a K x 1 vector of time varying individual-specific slopes. We write
bj; = 0 + q;¢, and E(q;;) = 0, by definition. In other words, we assume that that
individual heterogeneities have constant means, 3, and random error terms, q;;. Fur-
ther, we assume that q;ss consist of both time-constant and time-varying zero mean

components, i.e., q;; = d; + rj;. Substitution into (2.1) gives

Yiie = wa; + X3 + (X3¢ Qi + uit)

= wia; + X0 + vy, (2.12)

where vi;; = X;4Q;¢ + u;¢- Then, the estimation equation for the model (2.12) will
need to expand in comparison with the estimation equation (2.10) to reflect the time
varying nature of the individual multiplicative heterogeneity. Assumptions (2.8) and
(2.9) can be replaced with the following assumptions about the error term and the

distribution of (q;¢, v9;) conditional on the instruments:

E(qit|zi1, . 2i7, v2i1. -0 v2iT) = E(Q4t|Zi, Doy v2it, Zit). (2.13)

which says that E(qj|z;1, ..., ZiT: ©2i1, .-, V2;7) depends only on the time t values
and time averages. Since we maintain q;s consist of time-constant and time-varying
components d; and r;, respectively, assumption (2.13) reflects the nature of q;.

And, finally, we assume

E(q;tlzi1, ..., i1, v2i1, -, voir) = E(d; + r3t|Z;, Toi, v2it, 2it) =

= {B1(z; — ¥)/ + (Ba + B3Z;/)Uy; } + (B4 + Bsz;4/)vo;, (2.14)
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where ¥ = E(z;), By and B4 are K x 1, B;, 7 = 1,3,5, are K x L matrices of
constants, respectively, Z; and Ty; are defined above. Clearly, the right hand side of
equation (2.14) is identical to equation (2.9) when B4 = Bg = 0.

Then, similar to the case of the time-invariant individual heterogeneity, we take
the expectation of equation (2.12) with respect to (z;1, ..., z;T, v2;1, ---, V2;T), employ
that y9;; is a deterministic function of (z;1, ..., Z;T, v2;1, ---, U2iT), and use assumptions

(2.3) through (2.7), (2.13), and (2.14). The resulting estimating equation is:
E(yiitlzi1, - zir - v2il, -, voiT) = Wia 4 (2; @ We)ay + Ug;Wiag+
+02i(Z; @ Wi)ag + Xie0 + ((Z; — ) ¥ X4) 01 + VoiXiF2 + V2i(Z; ® x¢) B3+

+vieX;t 84 + v2it(Zit ® Xit) 05 + p1v2it, (2.15)

where t=1,...,T, o] = vec[A]], ag = vec[As] + (p2 0 ... 0)/, where (p2 0 ... 0)/ is a
J x 1 vector, a3 = vec[As], §; = vec[B;], j = 1,5. Once again, equation (2.15) is
an estimating equation for obtaining consistent estimates of APE, 3. When w; = 1,

t=1,..., T, equation (2.15) simplifies to:

E(y1it|2i1, - ZiT, 2415 - UoT) = @ + Zi01 + T + ToZ;03+
+x;13 + ((Z; — ¥) 0 X4) 1 + ToiXit P2 + Toi(Z; ® Xip) B3+

+r9i Xt g + voit(Zit @ X31) 35 + prvgi, t=1,...,T. (2.16)

2.3 Estimating Procedure and Calculation of

Standard Errors

We employ the control function approach that uses the reduced form error terms,
v94¢, as "control variables” for heterogeneity and endogeneity in the structural model.
A two-step method that consistently estimates the parameters from equation (2.11)

is the following:
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1. Run the POLS regression of

h(y2it) on 1, zj, Z;, i=1,..,.N, t=1,...,T, (2.17)

~

and save the residuals, To;, ¢ = 1,..,N, t = 1,...,T. Obtain 09; = T~13 7oy,

It~

i=1,.. N.
2. Run the POLS regression of

y1it on Wy, vec[(Z; ® wy)]', Do;wy, vec[(Z; ® wy)) D,

Xit. vec[(Z; —Z) ® xy]', Taixit, vec((Z; ® x;)] Vo,
ToiXit, vee(zi 2 Xit)] ity Tait, (2.18)
N T ~
wherei =1,..,.N, t=1,..,.T,Z = (NT)_lz > z;, and obtain 3 and the other
parameter estimates. Terms containing the vecz z;l)tezr;.tor are used to denote all possible
interactions among the variables. For example, term vec[(z;; & X;;)]'T2; in (2.18)
consists of K x L interaction terms.

If we want to test whether the data exhibit the properties of time-varying or time-
constant individual heterogeneity, we can employ a test of joint significance of /3,
j = 4,5 in (2.15). The null hypothesis of time-constant individual heterogeneity is
Ho : B3y = 85 = 0. A fully robust adjusted Wald statistic is appropriate. If the
Wald test rejects the null hypothesis then the model with time-varying individual
heterogeneity - (2.15) - should be estimated.

To test for endogeneity of yo;; and individual heterogeneity we can simply test
for joint significance of all the second-stage terms other than w; and x;;. By con-
struction, the errors from the second stage of the estimating procedure are zero mean
independent of all the explanatory variables on that stage. As a result, the POLS
estimates of the second-stage parameters will be consistent, and a standard F test

of joint significance of all the second-stage terms containing the first-stage residuals

and time-demeaned exogenous variables, Z;, will be a valid test. If the coefficients of
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all the terms from the second stage that contain the generated regressors and time-
averaged instruments are statistically jointly different from zero, there is endogeneity
and heterogeneity problem, and neglecting it will lead to misspecification.

If the null hypothesis of no endogeneity and no individual heterogeneity is rejected,
the standard errors in (2.18) should be adjusted for the first-stage estimation of
do= (620, 6217,6227), a (2L + 1) x 1 vector of the first stage parameters in (2.17).
Define g;; tobe a1 x H, H = (2J + 3K)(1 + L) + 1, vector of all the independent
second-stage variables, i.e., gjy = (W¢. vec[(Z; & wy)], Da;wy, vec[(Z; ® wy)] Do, X1,
vec[(Z; — Z) ® x;¢)', Toixye, vec[(Z; ® X;t)]' U2, vaieXat, vec|(zit ® Xip)|'vait, vair). Let
gt to be a 1 x H vector g;; that contains the estimated first-stage residuals, Tg;:
Bit = (wi, vec[(Z; @ wy)]', Dgwy, vec|(Z; & We))"Das, Xyt vec((Z; — Z) ® xy]', Doixir,
vec[(Z; ® X3¢ )] Tai, DoitXit, vec|(Zi ® Xit)) Dost, Vost). Then, the estimating equation -
(2.18) can be rewritten as y;;; = gi:0+e;;, where E(e;t|2;1, ---, ZiT, V251, -, V2517) = 0,
and 6 is a column of all the parameters from the estimating equation. Define yy; to

be the T x 1 vector of y};, let G; be the matrix with (t" row g;. and G; be the

matrix with ¢t" row git- Then, 6 can be estimated as:
N N T
6= _GiG)'O)D &) (2.19)
i=1 i=1t=1

Write y15s = &0 + (83 — Bit)0 + eir = Bitd +0'(g;; — &it) + eyr. Plugging this in
(2.19) and multiplying through by v/N gives

N T
VNG —0) = A INT12S N5 [0 (g, — Bir) + et
i=1t=1

R N . R
where A = N1 > G!G; . Using the Law of Large Numbers, we know that A 2,
1=1

A =E(G/G;). Further, a mean value expansion gives

N T N T N T
N-l/zzzggteit = N_1/2zzggteit+[N_IZZ(Vdggit)@it]\/N(52_‘52)+Op(1)a

i=1t=1 i=1t=1 i=1t=1
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where Vggir is the H x (2L + 1) Jacobian of ggt with respect
to the parameters 49 from first stage of the estimating pro-
cedure. For each (i,t), Vg,gi¢r is a block matrix of the form:
/ 0 0 0 0 0 \
0 0 0 0 0
( —:_1 \ Wi Wi Wi wi Wi
it (Zi v wt)  (Z; X Wy) (Z;owy) (Z; ® W) (Z; @ wt)
: 0 0 0 0 0
-z 0 0 0 0 0
—Z1; Xt Xit Xt Xt Xit
: (Zi & xit)  (2Z; ® X;t) (Z: ® xit)  (Z; ® X4t) (Z: ® x;t)
\ ~ZLi ) Xit Xt Xit Xit Xit
(Zit ® Xit) (Zit ® X;1) (Zit ®Xit) (2it ®Xit) - (2Zit ® Xy)
1 1 1 1 1

Each row of the jacobian matrix corresponds to each addendum in estimating
equation (2.15). Because E(e;¢|2;1, ..., Z;7, ¥2i1, .-, V2;17) = 0, E((V52g,-t)’e,-t) =0.1It
follows that

N T
N_IZZ(Vdgit)eit = o0p(1),

i=1t=1
. N T N T
and, since VN (02 — d2) = Op(1), we get N-12% S glheir = N-Y2Z% > gleir +
i=1t=1 i=1t=1
op(1).

Next, using similar reasoning,

N T
NTV2S "N g0 (g — i) =
i=1t=1

N T
—[INTIDTN g0 (V)] VN (82 — 62) + 0p(1)

i=1t=1
= —BVN(dy — d9) + 0p(1),

T
where B =E(3_ g;,0'(V,8;t)). Further, based on the first stage of the estimation
t=1

procedure - (2.17) - we know that

N T
VNS = 83) = CTINTYEY S " (@F) vip + 0p(1),

i=1t=1
T
where C EZE[(zg)’zg], zg = (1,24,Z;) is a 1 x (2L + 1) vector of the first
t=1

stage explanatory variables, i.e., it is a vector containing a constant, exogenous ex-
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planatory variables, z;, and, time averages of the exogenous explanatory variables,
T

z; =T 1Y 2z, and E((zf’;)'vg,'t) =0,t=1,..,T. Thus, collecting all the terms we
t=1

obtain

VN@-6)=A"IN" 1/2ZZ[gnen — BC1(zF) vai] + 0p(1).

i=1t=1
By the Central Limit Theorem,

VN - 8) -4 Normal(0, A"1MA 1),

where M = Varz (git i+ — BC~ ( ) v9;¢). Therefore, the asymptotic variance of 8,
Avar (), is estlmated as

V=A"1MA"YN, (2.20)

where A is defined above,

— ~~—1 . P .
=N ‘2 Z(g,mf C™ (25 oo Z(ate,t—Bc (25) 001) |

i=1 \t=1

B=nN- lz:lzgn (Véggzt) C=N- IZIZ(th zt,and Pzt—yltt_gzte
1=11 i=1t=1

2.4 Finite Sample Behavior of the Control Func-

tion Estimator

In this section we provide evidence on the finite sample properties of the control
function estimator of the APE in CRC balanced panel data models. We assume that
the unobserved heterogeneity is time constant. This assumption allows us to compare
the proposed estimation method with other available estimators in the same context,
and time constant slopes are commonly assumed in many empirical applications. So,

we consider two CRC panel data models with time-constant unobserved heterogeneity
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described by equation (2.10). First, we study the usual unobserved effect CRC model
with a random coeficient, i.e., we assume wy = 1,¢ =1, ...,T. Second, we employ the
random trend CRC model with wy = (1,¢t), t = 1,...,T, so that each cross-sectional
unit has its own linear trend. We use Monte Carlo simulations to draw the data and
check the properties of the estimator. The number of replications is 500, and the
results of the experiments are presented for samples of 500 and 1000 observations for
a time horizon T' = 5. The population values of the model parameters are set at § = 2
and @ = 1. We consider two options for a scalar endogenous explanatory variable
y2i¢: (1) a continuous y9;; with a large support set, i.e., it is a traditional continuous
variable, and (2) y9;; being a fraction in the open unit interval, y9;; € (0,1), i.e., it is
a roughly continuous variable.

For the usual unobserved effect CRC model the dependent variable y;;; is gener-

ated as:
Y1it = a; +y2itbi +uge, L=1,..,T, (2.21)
where
a; = a+ A% + A2aT2i + A3qT2i%i + Ma€f, (2.22)
bi = J + /\lb(Ei — E) + /\21)521' + )\3()‘1_'213,' + /\4b€?, (2.23)
and
it = Aluvoit + A2y Toi + /\3u€1‘tta (2-24)

where 2;; ~ Normal((,1), vg;y ~ Normal(0,1), ef, ei’ ~ Normal(0,1), e}y ~
T N T T

Normal(0.1), % = T™1 Yz, 2 = (NT)™VY 3 zip, Doi = T71 3 v2it, Mas A2as
t=1 i=1t=1 {=1

A3a: Mas AMby A2hy A3by Adphy Aluy A2y, and A3, are constants.

For a continuous y9;; on a large support set we define the endogenous explanatory
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variable y9;+ to be yo;; = h(y9;¢) = go;¢, where we generate go;; according to:

92it = Aggz2it + €ziedi + Agyuyvait, (2.25)
where vg;y ~ Normal(0,1), d; = b; — B, Agyz, &, and Ag,y, are constants. For
y9it € (0,1), we use the following equality to define the endogenous regressor:

exp(g2it)
ikt C 2 VA 2.26
1 + exp(g2;t) (2.26)

Y2it =

If we set £ to be 0 in (2.25) then the condition for consistency of the FE-IV
estimator of CRC panel data models in Murtazashvili and Wooldridge (2005) will be
satisfied. When £ # 0, the covariance between the detrended endogenous explanatory
variable, {o;;, and the unobserved heterogeneity, b; = 3 + d;, conditional on the
detrended instrument, Z;, is not equal its unconditional version: Cov(§o;is, b;|%;t) #
Cov(ijoit, b;). Thus, for £ # 0, the FE-IV estimation in Murtazashvili and Wooldridge
(2005) does not deliver consistent estimators of the model parameters. While (2.25)
does not meet the requirements for consistent FE-IV estimation of (2.21) when & # 0,
it does satisfy (2.3) through (2.14) and does allow using the CF approach to obtain

consistent parameters’ estimates in (2.21).

For the random trend CRC model the dependent variable yy;; is generated as:

Ylit = a1 + agit + youb; +uy, t=1,..,T, (2.27)

where both aj; and ag; are generated according to (2.22), b;, yo;, and ;4 are also
defined above.

Why would we think that the data generating process we propose in (2.22) through
(2.25) is representative of something that we might actually see in practice? One of
possible empirical examples can be a study by Hall and Jones (1999). The authors
attempt to explain the differences in output per worker by differences in institutions

and government policies, which they call social infrastructure. Even though Hall and
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Jones (1999) do a cross-sectional investigation, their idea can be easily extended to
a panel data setup. Social infrastructure is thought to be endogenous. First of all,
it can depend itself on the level of GDP per worker in a country. Secondly, we do
not observe social infrastructure directly, and need to deal with a measurement error
problem. Hall and Jones (1999) suggest using Western European influence around
the world as an instrumental variable for social infrastructure. Specifically, a distance
of a country from the equator and a fraction of population speaking a European lan-
guage are used as measures of Western European influence. Clearly, the distance of a
country from the equator is time-invariant. Instead,we can use a time-varying fraction
of population speaking a European language as an IV in a panel data setting. While
both models (2.21) and (2.27) can be thought appropriate, perhaps, structural equa-
tion (2.27) should seem more suitable for modeling a behaviour of output per worker,
since we want to allow each country to have its own time trend. Further, endogeneity
of social infrastructure explains equations (2.24) and (2.25). Country-specific unob-
served cultural characteristics, both additive and multiplicative, might be related to
the fraction of population speaking a European language. It is Western Europe who
distributed to the rest of the world the ideas of Adam Smith and the importance of
property rights (among others). As a result, countries that were influenced by West-
ern Europe the most are more likely to have favorable social infrastructure. This
would explain the linear terms in equations (2.22) and (2.23). Importantly, it is pos-
sible that the joint distributions of (a;, v9;) given z; and (b;, v9;;) given z; can depend
on z; due to heteroskedasticity in Var(a;, vo;|2;) or Var(b;, vo;¢|2;), where j =1 or 2,
as discussed by Card (2001) for the human capital earnings model. That is why we
might think that the interaction terms in (2.22), (2.23), and (2.25) are required.
Table B.1 and Table B.2 present experimental results for the CRC model with
a continuous scalar endogenous explanatory variable with a large support set and

a scalar instrument z;;. Table B.1 reports the simulation outcomes for the usual
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unobserved effect CRC model, while Table B.2 covers the case of the random trend
CRC model. For the usual unobserved effect model, column 2 contains the sample
correlation coeflicients among the endogenous regressor, y9;¢, and the instrument, z;4,
the error, u;;, the unobserved additive effect, a;, and the unobserved multiplicative
heterogeneity, b;, denoted py,z, Pygu, Pysa, f’yzb’ respectively, because analytical ex-
pressions are not readily available. For the random trend model, we report the sample
correlations between yo;; and aj;, and between yo;; and ag; separately. We denote
these sample correlations py,a,, Ayqay, respectively. Pyqb is reported fort =1.2

Columns 3 through 10 contain the mean, regular standard error (Reg. SE), ro-
bust standard error (Rob. SE)3, standard deviation (SD), root mean squared error
(RMSE), lower quartile (LQ), median, and upper quartile (UQ) of the APE estimates
from 500 replications. Rows of the table report statistics for the usual pooled ordinary
least squares (POLS) estimates on the original data, the usual fixed effects estimates
(FE-OLS), which is just pooled OLS on the time-demeaned data, the instrumental
variables (IV) estimates using the original data, the fixed effects-instrumental vari-
ables estimates (FE-IV), and the estimates from the control function approach (CF).
Adjusted standard error (Adj. SE) is reported for the CF approach.

It is easy to see that when £ = 0 and the endogenous explanatory variable yo;; is
continuous on a large support set, i.e., yo;; is defined by (2.25) for £ = 0, the (con-
ditional and unconditional) covariance between the detrended endogenous regressor
and the unobserved heterogeneity is constant over time. Even though Murtazashvili
and Wooldridge (2005) emphasize that the FE-IV estimator should contain a full set

of time dummies to deliver consistent estimates, they do so allowing the covariances

When £ # 0, Table B.1 and Table B.2 are obtained for A\jq = A2q = A3q = 0.29, Ay =
0.84, A1y = Agp = Agp = 0.2, Agp = 0.99, A1y = Aoy = 0.37, A3y, = 0.88, Ag,; = 0.44, £ = 0.55,
and Mg, = 0.71. When £ =0, Ao = Aaq = A3q = 0.31, Agq = 0.82, Ay = Agp = A3p = 0.61,
Agp = 091, Ay = Aoy = 0.2, A3y = 0.96, Ag,, = 0.26, and Ay,,, = 0.97 are used for Table
B.1 and Table B.2.

3Robust standard errors are calculated using the scaling factor from Stata 9.0, i.e., they

are clustered on individuals.
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to vary with time while still being independent of the detrended instruments. Thus,
for the usual unobserved effect model, when we define yo;; according to (2.25), there
is no need to include time dummies to obtain consistent FE-IV estimates of 3 when
& = 0. As a result, all the estimates we consider for the usual unobserved effect model
including the FE-IV estimates are based on the regressions without the time dum-
mies. For the random trend CRC model, all the reported estimates (but the CF) are
based on the regressions with the time dummies.

There are three sources of bias in the estimates under consideration. First, the
correlation between the unobserved heterogeneity a; and the regressor yp;; results
in the biased estimates of the model parameters. Second, the endogeneity of the
regressor yo;; also explains why the estimates we consider are biased. Finally, the
correlation between the regressor y9;; and the random coefficient b; leads to the bias
(and inconsistency) in the estimates, as well. As long as £ = 0in (2.25), the correlation
between the endogenous explanatory variable and the random coefficient does not
result in the inconsistency of the FE-IV estimator. When £ = 0, both the FE-IV and
the CF methods deliver consistent estimates of 3. When € # 0, the FE-IV estimates
of 3 are both biased and inconsistent. The CF estimates, while being biased, are the
only consistent estimates considered for € # 0.

Columns 4 and 5 contain regular and robust standard errors of the estimates. To
be exact, we report the averages of the regular and robust standard errors of the
estimates obtained from 500 replications. The regular SE are the standard errors cal-
culated under assumption that there are no heteroskedasticity and serial correlation
in the error terms. The robust SE are adjusted for both serial correlation and het-
eroskedasticity that are possibly present in the errors. Standard errors reported for
the CF approach are the standard errors, which are computed according to formula
(2.20), and which are the standard error adjusted for the first stage estimation and

which are robust to arbitrary serial correlation and heteroskedasticity. As expected,
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the simulations show that the robust standard errors for the first four estimators are
surely better estimates of the standard deviations than the regular standard errors
are.

Studying Table B.1 and Table B.2 for both sample sizes in case of <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>