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ABSTRACT

PANEL DATA MODELS WITH UNOBSERVED EFFECTS

AND ENDOGENOUS EXPLANATORY VARIABLES

By

Irina Murtazashvili

This dissertation consists of three essays that address issues of estimation in panel

data models with unobserved effects and endogenous explanatory variables. The first

essay considers estimation of correlated random coefficient (CRC) panel data models

with endogenous regressors. This chapter provides a set of conditions sufficient for

consistency of a general class of fixed effects instrumental variables (FE-IV) estimators

in the context of a CRC panel data model. The usual FE—IV estimator turns out to

be fairly robust to the presence of neglected individual-specific slopes. Monte Carlo

simulations suggest the proposed FE—IV estimator of Population Averaged Effect

(PAE) provided a full set of period dummy variables is included performs better than

other estimators in finite samples for the case of (roughly) continuous endogenous

explanatory variables.

The second essay continues studying a CRC panel data model from the first chap-

ter but, in addition to allowing some explanatory variables to be correlated with

the idiosyncratic error, the joint distribution of the endogenous regressors and the

individual heterogeneity conditional on the instruments is allowed to depend on the

instruments. The second essay uses a two-step control function approach to account

for endogeneity and to consistently estimate average partial effects (APEs) in CRC

panel data models with endogenous roughly continuous regressors.The simulation

findings indicate that in the finite samples the control function approach to estimat-

ing the CRC balanced panel data model with time-constant individual heterogeneity

performs better than other estimators under the considered conditions. The pro-



posed method is applied to the problem of estimating the APES of annual hours of

on-job-training on output scrap rates for manufacturing firms in Michigan.

In the third essay, a dynamic binary response panel data model that allows for an

endogenous regressor is developed. This estimation approach is of particular value

for settings in which one wants to estimate the effects of a treatment which is also

endogenous. This model is applied to examine the impact of rural-urban migration

on the likelihood that households in rural China fall below the poverty line. The

empirical results that migration is important for reducing the likelihood that poor

households remain in poverty and that non-poor households fall into poverty. Further,

failure to control for unobserved heterogeneity leads to an overestimate of the impact

of migrant labor markets on probability of staying poor of those who lived below the

poverty lines.



Copyright by

Irina Murtazashvili

2007



ACKNOWLEDGMENTS

I would like to express the deepest appreciation to my adviser, Professor Jeffrey

Wooldridge for his generous advice and support. Without his guidance and help this

dissertation would not have been possible. I am very grateful for the assistance and

advice I received from Professor John Giles who also kindly provided me the data

for one of the applications. I wish to thank my committee members, Professor Peter

Schmidt, Professor Ana Maria Herrera, and Professor David Tschirley, for valuable

comments and fruitful discussions. I also thank other faculty members and doctoral

students of the Department of Economics at Michigan State University for support

during my graduate studies.

‘7



TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

1 FIXED EFFECTS INSTRUMENTAL VARIABLES ESTIMATION

IN CORRELATED RANDOM COEFFICIENT PANEL DATA

MODELS

1.1 Introduction ................................

1.2 Model Specification and Previous Results ................

1.3 Conditions for Consistent FE—IV Estimation ..............

1.4 Examples .................................

1.5 Finite Sample Behavior of the FE—IV Estimator ............

1.6 Conclusion .................................

2 A CONTROL FUNCTION APPROACH TO ESTIMATION OF

CORRELATED RANDOM COEFFICIENT PANEL DATA MOD-

ELS

2.1 Introduction ................................

2.2 Model of Interest for Balanced Panels ..................

2.3 Estimating Procedure and Calculation of Standard Errors ......

2.4 Finite Sample Behavior of the Control Function Estimator ......

2.5 Empirical Application to Effects of Job Training on Worker Productivity

2.6 Conclusion .................................

3 ESTIMATION OF A DYNAMIC BINARY RESPONSE PANEL

DATA MODEL WITH AN ENDOGENOUS REGRESSOR, WITH

AN APPLICATION TO THE ANALYSIS OF POVERTY PERSIS-

TENCE IN RURAL CHINA

3.1 Introduction ................................

3.2 Estimation of a Dynamic Binary Response Panel Data Model with an

Endogenous Regressor ..........................

3.2.] Dynamic Binary Response Panel Data Models .........

3.2.2 A General Approach to Estimation ...............

3.2.3 Allowing for Serial Correlation of Errors in the First Stage . .

3.2.4 Calculation of Average Partial Effects ..............

3.3 Migrant Labor Markets and Poverty Persistence in Rural China . . .

3.3.1 Rural-Urban Migration in China ................

3.3.2 The RCRE Household Survey ..................

vi

viii

ix

m
o
a
t
—
i
l
-
A

19

19

21

28

32

4O

48

50

50

53

56

61

62

64

64

66



3.3.3 Migration, Consumption Growth and Poverty ......... 68

3.3.4 Estimating the Impact of Migrant Labor Markets on Poverty

Persistence ............................ 70

3.3.5 Identifiying the Migrant Network ................ 73

3.4 Results ................................... 76

3.5 Conclusions ................................ 78

APPENDICES 80

A Tables for Chapter 1 80

B Tables for Chapter 2 85

C Tables and Figures for Chapter 3 95

BIBLIOGRAPHY 105

vii



Al

A2

A3

A4

B1

B2

B3

B4

B5

B6

B7

B8

B9

C.1

C2

C3

C4

C5

LIST OF TABLES

Usual Unobserved Effects CRC Model for 6 = 2 and T = 5 . . 81

Usual Unobserved Effects CRC Model for 6 = 2 and T = 10 . 82

Random Trend CRC Model for 6 = 2 and T = 5 ........ 83

Random Trend CRC Model for 6 = 2 and T = 10 ........ 84

Usual Unobserved Effect CRC Model for Continuous ygit . . 86

Random Trend CRC Model for Continuous ygit ........ 87

Usual Unobserved Effect CRC Model for gm 6 (0,1) ...... 88

Random Trend CRC Model for ygz-t 6 (0,1) ............ 89

Standard Errors for the Control Function Approach ...... 90

Summary Statistics from Unbalanced and Balanced Datasets 91

POLS Estimates of the First Stage Regressions ......... 92

FE-IV and CF Estimates of the Second Stage Regressions . . 93

Summary Statistics for the Control Variables .......... 94

Household and Village Characteristics .............. 100

Factors Determining the Size of the Village Migrant Network 101

CF Approach to Estimating Determinants of Poverty Status 102

Linear Probability Model for Determinants of Poverty Status 103

Average Partial Effects of Determinants of Poverty Status . . 104

viii



LIST OF FIGURES

C.1 Share of Village Labor Force Employed as Migrants by Year 96

G2 Village Consumption Growth .................... 97

C3 Change in Poverty Headcount ................... 98

G4 Change in Out-Migrants in Village Labor Force ........ 99

ix



CHAPTER 1

FIXED EFFECTS

INSTRUMENTAL VARIABLES

ESTIMATION IN CORRELATED

RANDOM COEFFICIENT

PANEL DATA MODELS

1. 1 Introduction

In both cross section and panel data settings, there is substantial interest in estimat-

ing population averaged effects (PAES), including average treatment effects (ATEs),

in the correlated random coefficient (CRC) model. Models with both exogenous ex-

planatory variables and endogenous regressors have been investigated in recent years.

Angrist (1991) discusses the conditions for consistency of ATE estimates in mod-

els with binary endogenous variables and no exogenous covariates. A set of sufficient

assumptions required for consistent ATE estimates with (roughly) continuous endoge-

nous regressors in a CRC model can be found in Wooldridge (2003). Both papers

study estimation with random sampling from a cross section.

The possibility that treatment effects might depend on individual-specific hetero-

geneity motivated Imbens and Angrist (1994) to introduce the “local average treat-

ment effect” (LATE) as an evaluation parameter, which provides a useful interpre-



tation of the instrumental variables estimator when the effect of a binary treatment

varies across units. That emphasis on LATE led to a reinterpretation of IV estimates

in many empirical applications, and spurred a great deal of research on interpreting

IV estimators in a variety of contexts. Heckman and Vytlacil (2005) provide a recent

unification, including a discussion of whether we should be interested in parameters

such as LATE.

The understanding that IV generally consistently estimates LATE in simple set-

tings is useful, but often we are interested in estimating the expected effect for a

randomly drawn unit from the underlying population. Plus, strict interpretation of

LATE as the average treatment effect among units induced into treatment by the

switching of an instrumental variable ~ such as program eligibility — is limited to

special cases. Here we study estimation of population average effects, or average

treatment effects. in a general panel data model with heterogeneous slopes. By es-

timating population average effects we can easily estimate the aggregate effects of

various policies, such as increasing the amount of job training among the population

of manufacturing workers.

Wooldridge (2005a) studied general fixed effects estimators with strictly exoge-

nous regressors in the CRC model with panel data, and derived conditions under

which generalized fixed effects estimators — generalized in the sense that they sweep

away unit-specific trends — are consistent for the population averaged effect. In this

paper, we study the model in Wooldridge (2005a) but, in addition to allowing cor-

relation between the instruments and the unobserved heterogeneity, we allow some

explanatory variables to be correlated with the idiosyncratic error. The main re-

sult is a set of sufficient conditions under which fixed effects instrumental variables

(FE—IV) estimators consistently estimate the population averaged effect, even when

the individual-specific slopes are ignored. The results include the commonly used

fixed effects two stage least squares estimator (FE-2SLS) as a special case, but also



more general FE-IV estimators that sweep away individual-specific time trends. The

conditions are most likely to apply when the endogenous explanatory variables are at

least roughly continuous, as in Wooldridge (2003) for the cross—sectional case.

The remainder of the paper is organized as follows. In Section 1.2 we introduce the

model and briefly review existing results. Section 1.3 contains the main consistency

result, and Section 1.4 covers examples where the conditions will — and will not —

hold. Section 1.5 contains a Monte Carlo study that shows how the FE—IV estimator,

with a fully set of time period dummies, outperforms its obvious competitors. The

simulation results support the results in Sections 1.3 and 1.4. Section 1.6 contains a

brief conclusion.

1.2 Model Specification and Previous Results

The model of interest is a CRC model studied in Wooldridge (2005a). For a random

draw 2’ from the population, the model is

yit =Wt3i+xitbi+uitat= 1.---,T. (11)

where yit is a dependent variable, wt is a 1 x J vector of aggregate time variables,

which we treat as nonrandom, a,- is a J X 1 vector of individual-specific slopes on the

aggregate variables, x“ is a 1 x K vector of endogenous covariates that change across

time, b,- is a K x 1 vector of individual-specific slopes, and “it is an idiosyncratic

error. As discussed in Wooldridge (2005a), we require J < T. So, if we have two time

periods, we can only allow a scalar individual-specific intercept, a,. If T = 3, we can

allow individual-specific linear trends, too. Higher order trend terms are allowed as

T increases.

Equation (1.1) is a correlated random coefficients model when the individual spe-

cific slopes, b,- (as well as the elements in a..,-), are allowed to be correlated with Xit-



For example, a simple CRC wage equation might look like

log(wage,jt) 2 an + aigt + biltrainingit + bigunionit + bi3marriedit + Hit» (1.2)

where, in addition to the standard level effect an, each individual is allowed to have

his or her own unobserved growth in wages, (11-2. In addition, the time-varying ex-

planatory variables have individual-specific returns. The variable training might be

hours spent in job training, and the CRC model allows the return to training to be

individual-specific and correlated with the amount of training — as a standard model

of human capital accumulation would suggest.

Wooldridge (2005a) studied the consistency of fixed effects estimators of (1.1) that

sweep out the a,- but act as if b,- = [3 for all i. To describe Wooldridge’s main result,

and the extension here, write b,- = ,6 + d,, and substitute into (1.1):

ya = Wtaz' + Xafi + (xitdi + an) E wtai + Xz‘tfi +1121, (13)

where “it E xitdi+'u.,-t. We eliminate a,- by regressing, for each i, yit on wt, t = 1, ..., T

and Kit on wt, t = 1, ...,T, and keeping the residuals, ijit and in, respectively. This

gives the equations

3),, = itfib, + 77,, = 5am? +(5t,,d,-+i1,t) = xii/3 + i3,,,t = 1, T. (1.4)

The fixed effects estimator studied by Wooldridge (2005a) is just the pooled OLS

estimator from (1.4). We control the amount of individual-specific detrending by

choosing wt appropriately.

An assumption used by W’ooldridge (2005a) is the standard strict exogeneity as-

sumption conditional on (a,-. bi):

E(uit|x,:1,...,x,-T,a,j,b,j) =0,t=1,...,T. (1.5)



Using a simple iterated expectations argument, Wooldridge shows that, under the

additional assumption

E(biliit) = E(bi),t=1,...,T, (1.6)

the fixed effects estimator is consistent for the population averaged effect, [3.

Consistency of the usual FE estimator relies heavily on assumption (1.5), which

rules out traditional simultaneity, time-varying measurement error, correlation be-

tween time-varying omitted factors (in Hit) and the elements of Kit, and models with

lagged dependent variables or other kinds of regressors where changes in “it may feed

back into changes in Xi,t+h for h 2 1. In the case where b,- = 6, methods that first

eliminate a,- and then apply instrumental variables usually, 2SLS — have become a

standard tool for the applied economist. Here, we study such estimators but allow

for individual-specific slopes, bi.

Let zit be a 1 x L vector of instrumental variables, with L 2 K. Let flit be

the “detrended” instruments from the individual-specific regressions of zit on wt,

t = 1, T. Then we can estimate (1.4) using instruments 2,, for unit 2' in time

period t. Whether we just use pooled 2SLS _ the estimator we focus on here - or a

more sophisticated generalized method of moments (GMM) estimator, the moment

conditions we use are

E(2§,i},,) = 0,t=1,...,T. (1.7)

In the next section, we study consistency of the FE-2SLS estimator under conditions

that relax those in Wooldridge (2005a).



1.3 Conditions for Consistent FE-IV Estimation

In order to ensure that (1.7) holds, we place conditions separately on the relation-

ship between the instruments and idiosyncratic errors and the instruments and the

unobserved effects. Plus, of course, there is always a standard rank condition.

ASSUMPTION 1: With the definitions in Section 1.2,

E(u,-t|z,-1,z,-2, ...,ZiT) = 0, t=1,....,T (1.8)

Assumption 1 is stronger than we need — as will be clear, E(z;tu,-t) = 0,t = 1, ..., T

would suffice - but (1.8) is a natural strict exogeneity assumption on the instruments.

Assumption 1 is common in simultaneous equations models with panel data, as well

as models with other kinds of endogeneity that induces correlation between xz-t and

“it, such as omitted variables and measurement error. Assumption 1 rules out lagged

dependent variables among the instruments — as well as other non-strictly exogenous

instruments — and so its application to dynamic models is limited unless sufficient

strictly exogenous instruments are available. When zit = xit, so that the covariates

are strictly exogenous, Wooldridge (2005a) included a,- and b,- in the conditioning set,

as in (1.5). When the unit-specific trend function is correctly specified, this stronger

form of the assumption is essentially harmless.

The second component of the error term in (1.4) is 5e,,d,-, and we need assumptions

such that 2,, is uncorrelated with iitdi- This requires some care because it“ contains

endogenous elements. (That is, we allow components of xit to be endogenous even

after removing unit-specific intercepts and trends.) The first assumption mimics the

key assumption from Wooldridge (2005a), except that we replace the covariates with

the instruments:

ASSUMPTION 2: b,- is mean independent of all the unit-specific “detrended” Zita



that is,

E(bil.z.it) = E(b1) = ,B,t=1,...,T. (1.9)

Because the fig are net either of a time average or, more generally, level and trend

effects, Assumption 2 maintains mean independence of the heterogeneous slopes and

deviations of the instruments from long—run levels or trends. Of course, in the case

where the instruments are assumed, in each time period, to be independent of all

heterogeneity, Assumption 2 automatically holds. Assumption 2 is practically much

weaker than full independence because it allows b,- to be arbitrarily correlated with

systematic components of zit; we cover some examples in Section 1.4. [Wooldridge

(2005a) contains a discussion for the case of strictly exogenous Xit-l

Generally, the richer is wt, the more likely (1.9) is to hold. For example, the usual

FE—IV estimator takes out time averages from the instruments, and this might not

be enough to ensure (1.9) if the instruments are trending differently across units 2'.

On the other hand, adding more aggregate factors to wt reduces the variation in fiit,

generally leading to less efficient IV estimators. Not surprisingly, in deciding what to

include in Wt we confront the usual tradeoff between efficiency and consistency.

Unfortunately, Assumptions 1 and 2 are not enough to conclude that the IV

estimator is consistent. Instead, we employ a constant conditional covariance as-

sumption.

ASSUMPTION 3: For j = 1, ..., K,

COVCIEZ'tj, bijlfiit) =3 COV(iitj,bij),t=1,...,T. (1.10)

Importantly, (1.10) allows the (letrended covariates and the random coefficient

to be correlated, and the covariance may change over time; in fact, there is no re-

striction on the temporal pattern of Cov(:i},-tj, bij). But the covariance conditional on



the detrended IVs is assumed not to depend on 2,, [In any case, the covariances

Cov(:ié,-tj, bij) do not depend on 2' because of random sampling in the cross-sectional

dimension. As we are conditioning only on at, the restriction is that the covariance

condition on zit does not depend on at; we have no need to place restrictions on

other conditional covariances]

Assumption 3 extends to the panel data case a condition used by Wooldridge

(2003) for the pure cross-sectional case. An important difference is that Assumption

3 applies to the detrended covariates and instruments. Importantly, we allow the

unconditional covariances to change arbitrarily over time. Of course, if bij = flj for

all 2', then (refeqzeq20) is trivially true because both sides are zero.

Assumptions 1 through 3 imply that the key orthogonality conditions (1.7) hold,

and these conditions can be used in a generalized method of moments framework.

For simplicity, we focus here on the fixed effects two stage least squares estimator,

FE—2SLS [interpreted in the general sense of eliminating a,- from (1.1)]. To ensure

consistency of FE—2SLS estimator we add a standard rank condition.

ASSUMPTION 4 (i) rank (2;, Ragga-0) = K;

(ii) rank (2?le E(z;t'z,-t)) = L.

Practically speaking, the first part of Assumption 4 is most important; it means

that, after netting out individual-specific trends, there is still sufficient correlation

between the instruments and regressors. Part (ii) requires sufficient variation in the

“detrended’; instruments. It would be violated if, say, we specify Wt = (1, t) and zit

contains an element that is constant across t for all 2' (such as gender) or changes by

the same value in each time period (such as a person’s age when the length of the

sampling period is constant).

PROPOSITION 1: Under Assumptions 1 to 4, the FE—IV estimator is consistent

for 6, provided a full set of time period dummies is included in (1.4).



PROOF: Under Assumption (refeqzeq19), E(dijl2it) = O,j = 1, ..., K for all t, and

SO

Effltjdijlia) = COW-77m. dijlia) = COW-fig. bijliitl

But by Assumption 3, the conditional covariances equal the corresponding uncon-

ditional covariances, say “/tj» and so E(;i':,-tjd,-j|°z',tt) = 715]" j = 1,...,J, t = 1,...,T.

Since iiitd, = .ifmdil —l— iiitgdig + + :iiithz-K, we have shown that E(iitdi|'z',-t) =

”m + + “ftK E 6,. Therefore, we can write xitd, = 9t + Tit where E(r,-,|2,-,) = 0,

t = 1, ..., T. Now we plug this expression for add,- into equation (1.4):

git =6t+X.it,(3+(Tit+fI-it), t=1,...,T. (1.11)

As we have just shown, Assumptions 2 and 3 imply that E(r,-,|2,-,) = 0. Assumption

1 implies that E(a,,|s,~,) = 0. Thus, the composite error in (1.11) satisfies E(r,-t +

Ifitliit) = 0, t = 1, ...,T, and so any IV method that uses instruments 'z'z-t at time

t consistently estimates ,8. In particular, under the rank condition in Assumption

4, and standard finite moment conditions, the FE—2SLS estimator is consistent and

\/ N-asymptotically normal. This completes the proof.

Proposition 1 contains an important empirical lesson: unless there are very good

reasons to the contrary, one should include a full set of time effects in a fixed effects IV

analysis. Even if the model does not originally contain separate time period intercepts

itself a questionable premise -- the estimating equation generally should if one wants

to allow correlated random slope coefficients.

Because the error term in (1.11), Tit + ill-t, is generally heteroskedastic and serially

correlated - at a minimum due to the presence of stud,- 1 inference should be carried

out using a fully robust variance matrix for [3. Typically this is straightforward for

pooled 2SLS where all instruments have been detrended prior to estimation.



1 .4 Examples

To see how Proposition 1 applies, suppose Kit is linearly related to zit with heteroge-

neous linear trends for each element of Kit:

X-it =g,-I‘+t-hi\Il+z,-tH+q,-t, t=1,...,T. (1.12)

Initially, take wt 2 ( 1, t), so the regressors and instruments are linearly detrended

before applying pooled 2SLS. Assume the instruments also have heterogeneous linear

trends, which are removed by individual-specific detrending. Then Assumption 2

simply requires that the idiosyncratic movements in zit are uncorrelated with b,, a

weak requirement on instrumental variables. For Assumption 3, write Skit = 2,,11 +

51a. t = 1.7150 that C0V(iitabiliit) = C0Vl(§itH +621), bilfiz‘tl = COVfRitabiliitla

t = 1, T under Assumption 2. Thus, provided

C0"(iiit.bz°liz't) = C0V(iiz't.bz'), t= 1, ~--.T. (1-13)

we can use flit as IVs for it“ to obtain a consistent estimate of the PAE, )6, in equation

(3.4). One might even assume that (q,1,...,q,-T,b,-) is independent of (2,1,...,z,-T),

which is sufficient for (1.13) [as well as for Assumption 2].

It is possible that the FE—IV estimator is consistent even if we only demean the

regressors and instruments, provided the instruments satisfy a stronger exogeneity as-

sumption. In other words, even though x.,-t contains individual-specific linear trends,

we ignore that in our estimation procedure. To see why we can still get consistency,

demean Kit to get

xit — ii = [t - (T +1)/2] ° hi‘I’ + (zit - if)” +(‘1it‘ (Ii), t=1,...,T. (1.14)

Now, if [(Qit — 61,1),bi] is independent of (zit — 2,) for each t, and (1.9) holds for

flit = (zit — ii) and (1.13) also holds. Therefore,

10



COV(Xit - ii. bilzit - ii) = [t — (T +1)/2l‘I”COV(hiabi) = C0V(Xit — i,, bi)

for each t, which means that Assumption 3 holds: while the conditional covariances

are not generally zero, or even constant over time, they do not depend on zit — 5,. So,

the FE—IV estimator will be consistent provided we include a full set of year dummies

in estimation.

What happens if we have a binary endogenous variable, grit? Assumption 3 is

unlikely to hold. To see why, take the case wt 5 1, t = 1, ...,T, which corresponds

to the usual unobserved effects model with correlated random coefficients. Then,

it“ = firit — EM = 1, ..., T, and we need E(:'r',-td,-|z',-t) not to depend on iit- Now, by

iterated expectations,

E(iitdiliit) = ElEiiitdildiizifliitl = EldiE(iit|di, Zi)l2itl' (115)

Standard models for binary responses, with zit strictly exogenous conditional on di,

would have P(:1:,-t = lldi,z.,-) depending on d,- and zit, in a nonlinear way. For

concreteness, suppose P(:r.,jt = lldi, zi) follows a probit model,

Pfl‘it =1|dszil= P($it=1|di,zz't)= (1)010 + a1dz' + 22102)- (1-16)

Then

T

E(i‘it]d2f, Zi) : (19((1'0-l-(21di-l-Zitag)-T—1 Z @(CYO-l-(rldi-l-Zz‘rag) -__—' gt(di, 22') (1.17)

r=1

and so, by (1.15),

Efiitdzfl'z'it) = Eldigddi, Z-i)|iz'tl (1-18)

11



Even if d,- is independent of 2,, — a sensible strengthening of Assumption 2 — (1.18)

generally depends on 2,7,. Thus, assuming Mata-[2,9 does not depend on 2,, is

rather strong for a binary endogenous explanatory variable $2‘t- [Heckman (1997)

contains a detailed discussion of the behavioral implications of this assumption in

different empirical studies] In a cross-sectional context, Wooldridge (1997) proposes

a modified set of assumptions that are sufficient for consistent estimation of the ATE,

6, with a binary endogenous variable, but, applied to the current setup, P(1:,-t =

lldi, 2,,) would have to follow a linear probability model.

In a cross-sectional setting, Card (2001) shows that the analogue of Assump-

tion 3 can also be violated in the case of roughly continuous explanatory variables

due to heteroskedasticity in the variance matrix of (xi,b,-) given 2,. (With a pure

cross section, there are no time subscripts and, of course, no unit-specific demeaning

or detrending.) In an earnings equation where x,- includes schooling, Card rejects

Cov(x,~,b,~|z,:) = Cov(xi,b,-) using IQ score as a proxy for unobserved ability (an

element of b,) and a binary indicator for college proximity as an instrument for ed-

ucation. In our panel data setup, Assumption 1 allows Cov(x,-t, bilzz't) to depend on

zit, as it generally would if xz-t and zit contain persistent heterogeneity correlated with

b,. Using a generalized fixed effects approach, we need only assume Cov(5°c,-t, bi|°z',-t)

does not depend on 2,,, and this is much more plausible when we think the unit-

specific detrending successfully eliminates the time-constant heterogeneity in if” and

'2'“.

More recently, in a cross-sectional setting, Wooldridge (2005b) proposes conditions

that allow Cov(x,-, bilzi) to depend on zi, but these do not apply directly to the panel

data case with time-constant heterogeneity that can be correlated with the covariates

and instruments.
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1.5 Finite Sample Behavior of the FE—IV Estima-

tor

In this section we provide evidence on the finite sample properties of FE—IV estimator

of the population averaged effect in a CRC panel data model. Because one of the

most commonly used applications of CRC panel data models is the usual unobserved

effects model with a random coefficient, we first assume wt E 1, t = 1, ...T in (1.1), as

in the second part of the first example from Section 1.4. Also, for scalar processes sit

and zit, we assume a linear relationship between LL'z‘t and zit, with a linear trend for

suit. We use Monte Carlo simulations to draw the data and check the properties of the

estimator. The number of replications is 500, and the results of the experiment are

presented for cross—sectional sample sizes of 100, 400, and 800 for two time horizons,

T = 5 and T = 10. The population average values are 6 = 2 and a = 3.

For t = 1, ..., T, the endogenous explanatory variable is generated as

 

1,, E Ana, + Await + Ama, + (b,- + as,- + \/1 — A3,, — Ag, — A3,, — {2(1 + 0%,,

(1.19)

where “it: Pit ~ Normal (0, 1), a, ~ Normal (0,1), b,- = 6 + di, d,- ~ Normal

(0, 03) and A”. A331,, Am, and g are constants. Further, the instrument is generated

as zit = Amaz- + 1 - agamit — where a, is defined above — mit ~ Normal (t, 1), and

Am is the population correlation coefficient between zit and a,, t = 1, ...T.

In our reported simulations we use 02 = 1. When Am 2 0, the coefficients A”,

Am, and Am from (1.19) are the population correlation coefficients between 33it and

zit, IL‘z't and ”it: and $2} and ai, t = 1, ..., T, respectively. The population correlation

between $z‘t and 1),; when Am 2 0 is {(1 + t), t = 1, ..., T. We use the coefficient on the

error term in ( 1.19) to ensure that 23,-, has unit variance when Am = 0. When Am 79 0,
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Var(:1:,-t) = 1 + 2A$2Azanm which is only slightly greater than one for our choices of

the A parameters. The relevant covariances are Cov(xit, Uit) = An, Cov(:c,-t, at) 2

AMA“ + Am, and Cov(.r,:t, zit) = A“ + AxaAza. For the endogenous explanatory

variable defined in (1.19), Assumption 3 is met: Cov(fz§,-t,b,~|2,-t) = Cov(:i§it,bi) =

5(1 + t), t = 1, ...T.

The dependent variable yit is generated as:

ya = “'2' + witbi + Hit, t= 1, MT, (120)

where (1,, 1),, uit, and fit are defined above. Among other estimators, we obtain the

FE—IV estimator in (1.20) acting as if b,- = 6. Based on the first example from Section

4, we know this FE—IV estimator is consistent for 33a generated as in ( 1.19) provided

we include a full set of time dummies, even though we only demean the regressor and

the instrument while ignoring the individual-specific linear trend in the regressor.

Tables A.1 and A2 present simulation results for the correlated random coefficient

model for Am = .40, Am = .20, A“ = .20, and Am = .25. The implied correlation

between grit and Zit is about .245, which seems to be a reasonable value for panel data.

For comparison, we used a data set provided with Wooldridge (2002) on domestic

route air fares for 1,149 routes in the United States for 1997 through 2000. (The data

set is called AIRFARE.) The correlation between the log of air fare (an endogenous

explanatory variable in a passenger demand equation) and the instrumental variable

candidate, the concentration ratio on the route, is about —.22, which has a magnitude

in the range of .245.

Table A.1 reports the simulation outcomes for T = 5, where 5 = .12, while

Table A2 covers the case T = 10, where f = .06. When 6 = .12, the correlation

between 322-1 and b, is slightly less than .24; when 6 = .06, the correlation is just below

.12. Columns 1 through 6 contain the mean, standard deviation (SD), root mean

squared error (RMSE), lower quartile (LQ), median, and upper quartile (UQ) of the
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PAE estimates from 500 replications. Rows of the table report statistics for usual

pooled ordinary least squares (POLS) estimates on the original data, the usual fixed

effects estimates (FE-OLS), which is just pooled OLS on the time-demeaned data,

pooled instrumental variables (IV) estimates using the original data, the fixed effects-

instrumental variables estimates without period dummy variables (FE-IV without

dummies), and fixed effects instrumental variables estimates when a full set of period

dummy variables is included (FE—IV with dummies).

From the table we see that the POLS estimates are roughly 1.5 times larger than

the true value of 6 in the 100, 400 and 800 observation samples. One source of bias of

the POLS estimates is the correlation between the unobserved heterogeneity a,- and

the regressor grit. A second source of bias in the POLS estimates is the endogeneity

of the regressor 15a. with correlation coefficient pm very close to .4. A third source of

bias (and inconsistency) is the correlation between $it and bi.

The within transformation eliminates a,, and so the correlation between xit and

a, is not a source of bias for the usual FE—OLS estimator. But FE-OLS still produces

a biased estimator of 6 for the last two reasons mentioned above. The bias in the

FE—OLS estimator is much lower than for POLS, but the bias is still on the order of

30 percent.

The pooled IV estimator — that is, without removing time averages and without

time period dummies — actually has a larger bias than the FE—OLS estimator, a finding

that is not too surprising because the instruments are correlated with (Li. Using the

FE transformation combined with IV eliminates the dependence between zit and a,-

because lit 2 Amaz- + 1 — Agamit. Therefore, the FE-IV estimator (without time

dummies) has a smaller bias and considerably smaller RMSE than the pooled IV

estimator. More importantly, the FE—IV estimator with period dummies has the

lowest RMSE among all estimators for all the sample sizes and both time horizons.

Plus, the RMSE of the FE—IV estimator with time dummies falls quickly as the sample
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size, N, grows. Without period dummies, the FE—IV estimates of 6 are biased by

at least 20 percent, and the bias does not disappear as N —> 00. As T increases,

the RMSE of the FE—IV estimator without dummies estimates decreases but it is still

higher than the one for the FE—IV estimates when the period dummy variables are

included. Thus, even though the structural model (1.20) does not contain a time

trend, inclusion of a full set of period dummies ensures the consistency of the FE—IV

estimation.

Not surprisingly, the FE—OLS estimator has a smaller standard deviation than

the FE—IV estimator (both without time dummies). Typically, methods that treat

regressors as exogenous have substantially less sampling variation than their IV coun-

terparts because the correlation between the instrument and regressor is typically well

below one, as in the current simulation.

The difference between the FE—IV estimates with and without time dummies

illustrates the trade-off between bias and variance. The FE—IV estimates without time

period dummy variables are always less variable than the FE—IV with time dummies.

This is hardly surprising, as including more explanatory variables — the time dummies

in this case that are correlated with the instrument induces multicollinearity into

the IV estimates. The instrument, Zita is constructed to be correlated with time

dummies, and so the FE-IV estimator with time dummies is less precise than that

without. But, of course, the estimator without time dummies suffers from substantial

bias even though the structural model does not contain separate period intercepts.

The RMSE for the FE—IV estimator that includes a full set of dummies is much lower

than the estimator that does not.

We also conducted simulations with more variability in the random coefficient,

namely, 03 = 4, so that the standard deviation of b,- is double that in Tables A1

and A2. The results of these simulations are not included here but are available

on request. With more variability in 1),, the bias induced by failing to include time
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dummies in the FE—IV estimation is more pronounced (even though, remember, the

structural model does not include time effects). For example, with T = 5, and

N = 800, the RMSE of the FE—IV estimator without dummies is about 1.36, compared

with about .22 for the estimator that does include the dummies.

For the next set of simulations, we take wt E (1, t), t = 1, ...,T, in (1.1), so that

each cross-sectional unit has its own linear trend. In particular, we generate yit as

yit = (1,0 + ant + Iitbi + nit, t: 1, ...,T, (1.21)

where (1,30 and an are independent Normal(o, 1) random variables and b.,-, and 21,-, are

defined above. The endogenous explanatory variable xit is generated as

 

xit E szzit‘l‘druuit+A;ra(ai0+ai1)+§bi+€tdi+\/1 " /\;2rz - A3,, _ 2Afra — {2(1 + t)2e,-t,

(1.22)

and the instrument is generated as zit = Maul-0+ Wmit. Again, the coefficient

on eit is chosen so that Var(:r,-t) = 1 if Am = 0. We use the same values for the /\

parameters as in Tables A.1 and A2, and we take 0b = 1. (Simulation findings for the

case 0b = 2 are available on request.) Because the structural model (1.21) contains a

time trend, the default is to include a full set of time period dummies in the various

estimation methods. For comparison, we include the FE—IV estimator without time

period dummies.

The rows of Tables A3 and A4 report statistics for POLS with time dummies,

fixed effects with time dummies, pooled instrumental variables with time dummies,

fixed effects instrumental variables estimates with time dummies, and fixed effects

instrumental variables estimates without time dummies. As in Tables A.1 and A2,

the simulation findings are unambiguous: fixed effects IV with a full set of time

dummies is superior, by far, to the other estimation methods, for all combinations of

N and T. Perhaps not surprisingly, when yit is itself trending, the consequences of
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omitting aggregate time effects is much more detrimental than in the previous case.

The simulation findings are perhaps not too surprising: the only estimator that

is essentially unbiased for the PAE removes the unobserved effect (or, more gener-

ally, the individual-specific trends), includes a full set of aggregate time effects, and

instruments for the endogenous explanatory variable. Nevertheless, it is useful to see

that the theoretical findings in Section 1.3 have practically important implications:

the FE—IV estimator with time dummies is robust to correlation between the random

coefficients and the explanatory variable, at least for assumptions that can be met by

continuous endogenous explanatory variables.

1.6 Conclusion

This paper suggests a set of conditions sufficient for applying the standard IV ap-

proach to the estimation of population averaged effects in a correlated random coeffi-

cient panel data model with (roughly) continuous endogenous explanatory variables.

Assumptions 1 through 4 ensure consistent FE—IV estimation of the population av-

eraged slopes, 6, even ignoring individual-specific slopes. Monte Carlo simulations

suggest the proposed FE—IV estimator of PAE provided a full set of period dummy

variables is included performs better than other estimators in finite samples for the

case of (roughly) continuous endogenous explanatory variables.

A natural direction for future work is to relax homoskedasticity of E(5e,-,d,-|2,-,);

Card (2001) showed how the analogous assumption can fail in a cross-sectional envi-

ronment. Recently, Murtazashvili (2006) shows how this assumption can be relaxed

using a control function approach by putting restrictions on the reduced forms of the

endogeneous elements of x.” — restrictions that can be met for roughly continuous

variables — and by modeling the conditional covariances.
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CHAPTER 2

A CONTROL FUNCTION

APPROACH TO ESTIMATION

OF CORRELATED RANDOM

COEFFICIENT PANEL DATA

MODELS

2. 1 Introduction

Recently, a lot of attention has been devoted to estimation of average partial effects

(APES) in correlated random coefficient (CRC) models, in both cross section and

panel data settings. Studies are primarily conducted in a cross—sectional setup with

few exceptions for panel data. CRC panel data models are investigated for both ex-

ogenous and endogenous explanatory variables. Wooldridge (2005a) discusses fixed

effects estimation of a CRC model for the case of exogenous independent variables

in a panel data setting. Murtazashvili and Wooldridge (2005) address fixed effects

instrumental variables (FE-IV) estimation of APEs with (at least roughly) continuous

endogenous regressors in CRC panel data models.1 One of the main conditions for

consistent estimates of APEs in their study is an assumption of independence of co-

 

1We refer to the continuous variables with some discrete characteristics as roughly con-

tinuous, and provide a discussion about this kind of variables in the next section.
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variance between detrended endogenous regressors and individual heterogeneity, con-

ditional on the transformed IVs, from the detrended instruments. Card (2001) shows

for cross-sectional data that this assumption can be violated in the case of roughly

continuous endogenous explanatory variables due to heteroskedasticity in variance-

covariance matrix of explanatory variables and individual heterogeneity conditional

on the instruments. He rejects this assumption using IQ as a proxy for unobserved

ability and a binary indicator for college proximity as an instrument for education in

the human capital earnings model. Wooldridge (2005b) proposes conditions weaker

than those in Murtazashvili and Wooldridge (2005) for obtaining consistent APEs

estimates for (roughly) continuous regressors with the Card’s problem in a cross-

sectional setup.

In this paper, we study the model in Murtazashvili and Wooldridge (2005) but,

in addition to allowing some explanatory variables to be correlated with the idiosyn—

cratic error, we correct for the drawback described in Card (2001) while still allowing

the endogenous regressors to be (roughly) continuous. We use a control function ap—

proach, which introduces residuals from the reduced form for the endogenous regres-

sors as covariates in the structural model. We propose a two-step method to account

for endogeneity and to consistently estimate APES in CRC panel data models with

endogenous (roughly) continuous regressors. The motivation for our two-step panel

data procedure comes from a cross section study by Wooldridge (2005b). Further,

we relax the assumptions in Wooldridge (2005a) and Murtazashvili and Wooldridge

(2005) by allowing the individual slopes in a CRC model to vary over time. Both

cases of time-constant and time-varying individual slopes are covered in this paper.

Monte Carlo simulations indicate that in the finite samples the control function

(CF) approach we propose for estimating the CRC balanced panel data model with

time-invariant individual heterogeneity performs better than other estimators when

the joint distribution of the individual heterogeneity and the endogenous regressors
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conditional on the detrended instruments depends on the instrumental variables.

We apply the proposed method to the problem of estimating the average partial

effects of annual hours of on-job-training on output scrap rates for manufacturing

firms in Michigan using the firm level data for 1987 through 1989. The control function

approach we propose delivers the APEs of the annual hours of job training on the

output scrap rates that are larger in magnitudes and statistically more significant

than the APEs’ estimates from the FE—IV approach.

2.2 Model of Interest for Balanced Panels

For a random draw 2' from the population, the structural model is

ylit =wta, +xitbi+uita f: 1,...,T, (2.1)

where wt is a 1 x J vector of aggregate time variables which we treat as nonrandom —

a,- is a .1 x1 vector of individual-specific slopes on the aggregate variables, Kit is a 1x K

vector of exogenous covariates, zm, and an endogenous covariate, 92in that change

across time, in general, Xit = f(zm, ygit), b,- is a K x 1 vector of individual-specific

slopes, and 'uz-t is an idiosyncratic error. For simplicity, assume x“ :2 (le’te ygit). Let

zit = (2121,2221) be a 1 x L vector of instrumental variables, with L 2 K, i.e., we

assume the vector 22,, contains at least one element. We assume a sample of size N

randomly drawn from the population, and T being fixed in the asymptotic analysis.

For the purpose of this paper, we assume a balanced panel.

Our object of interest is 6 = E(b,:), the K x 1 vector of average partial effects, i.e.,

vector of partial effects averaged over the population distribution of any unobserved

heterogeneity. The APEs are usually of primary interest to empirical analysts. An-

other empirical question of possible interest is estimating bis themselves. However,

the estimation of bis, when we treat them as parameters, is not precise unless T is

large. As an alternative, we turn to estimation of average partial effects in our model.
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Following Murtazashvili and Wooldridge (2005) we study estimators of 6 that are

based on the assumption that the slopes bi are constant, but we study the properties

of these estimators in the context of model (2.1). We write b,- = 6+di, and E(d,-) = 0,

by definition. In other words, we assume that that individual heterogeneities have

constant means, 6, and random error terms, di. Substitution into (2.1) gives

ylit = Wtae' + Xitfi + (xitdi + Hit)

5 Wtai + X216 + ’Ulz't. (2-2)

where ”Unit E xitd, + “it- We estimate 6 in (2.1) allowing the entire vector 3.,- to vary

by 'i, and to be arbitrarily correlated with Xit- Following a cross-sectional definition

from Heckman and Vytlacil (1998), we call (2.1) a correlated random coeflicz’ent model

because of the possible correlation between b,- and Kit-

In this paper we develop a two—step estimation method motivated by Wooldridge

(2005b) for obtaining consistent estimates of the average partial effects. The method

we employ for obtaining consistent estimates of APEs is called a control function

approach, which was pioneered by Smith and Blundell (1986) and Rivers and Vuong

(1988). The main idea of the control function method is to add control variables

into the structural model to control for the endogeneity problem (regardless of its

exact nature). To use the control function approach in our case, we need to make

assumptions about the nature of the endogeneity in the random coefficient model.

Since we have two sources of endogeneity in our model — the correlation between the

unobserved heterogeneities and the regressor ygit, and the correlation between that

regressor and the structural error, we are interested in modeling the relationships

among the random coefficients, exogenous covariates, and the error from the reduced

form equation for the endogenous explanatory variable.

First, we assume there is some strictly monotonic function h() defined on the
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support set of ygit, such that

(7012a) = 520 + 221521 + 21522 +0221, t = 1, T, (2-3)

E(‘U2,jt]Z.,'1,...,ZiT) = 0, f: 1, ...,T, (2.4)

T

where Z,- = T—1 Z zit, ragit’s are error terms, and

t=1

E(“itlzilv ZiTa “22:1. “227“) = E("itl?’2i1e?’2iT) =

= P1U2it + pQUQi, t = 1, ...,T, (2.5)

where p1 and p2 are scalars, and 172,- = T—1 {210%- Assumption (2.5) is stronger

than just assuming that “it is uncorrelated wittzh1 zi. There are two parts to this as-

sumption. The first equality says that ”it is conditional mean independent of z,- given

122.“, ”022:1“. This will always be true if (uz-t,v2,;1,...,v2,-T) and z,- are independent.

The second equality states that E(u,~t]vg,-1, ..., 122,7) is linear. Assumption (2.5) holds

if U2“ 2 (12,- +62“, where {(Uit, 6%)} is independently and identically distributed and

all conditional expectations are linear. Thus, we maintain (2.5) is a valid extension

to the CRC panel data models. We follow Rivers and Vuong (1988) and call equation

(2.3) a reduced form equation.

Strict monotonicity of h() implies that ygit is a well-defined function of

{Zi1,...,ZiT} and um. Further, assumptions (2.3) and (2.4) mean that when some

function h(-) is applied to the endogenous explanatory variable, ygit, the latter has

a linear conditional mean given all the instruments. In other words, linearity of

E(y2it|z,-1, ZiT) might not be an appropriate assumption, while we want ygit to be

included linearly in the regression equation. Assumption (2.4) always holds if cm

is independent of 22-. In the standard case of continuous 312,-, with a large support

set assumptions (2.3) and (2.4) are very reasonable in many possible situations. But

if the endogenous covariate has characteristics that are not quite suitable for a con-

tinuous variable these assumptions do not generally hold. For example, assume a
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continuous variable ygit with a large support set is defined according to (2.3) when

h(-) is identity so that vgitlzi”Normal(0, 02-2,), where 022, = Var(v2,tt|z,-) is a conditional

variance that depends on z,-. In this case we can standardize Uzit to be a variable 9,3235,

which is independent of 22-, guaranteeing that assumption (2.4) is satisfied. However,

assumption (2.4) is unlikely to hold if 312,-, has some ”discrete”-type characteristics.

For instance, let 312,-, be a binary variable so that ygitIZ, follows a probit model. Even

having standardized the error term for this variable, v2“, we cannot hope to obtain

a new one, which is independent of zi.

For the purpose of our study, we will refer to the continuous variables with some

discrete characteristics as roughly continuous to distinguish them from the traditional

continuous variables and emphasize that these roughly continuous variables do not

always have fine behaviors of continuous variables. Possible examples of these vari-

ables would be income, education, experience, etc. Garen (1984) discusses estimation

of models in the presence of selection bias when the choice variable is continuous

and the choice set is ordered. He suggests treating level of education in the human

capital earnings model as such a continuous variable: on the one hand, schooling is

traditionally thought of as a continuous variable, on the other hand, only integers of

that variable are observed.

Which functions can we use as a strictly monotonic function h(') in transfor-

mation (2.3)? For a trivial case of a continuous ygit with a large support set,

i?

we can use /i(y2,-t) = ygzgt. When the nature of ygit is more ”exotic, the choice

of h() is not so straightforward. For instance, Wooldridge (2005b) suggests us-

ing h(y2.,jt) = “IQ—3253;), when 312,-, is a fraction in the open unit interval, and

h(y2,t) = ln(y2,:t), when ygit > 0. Assumptions (2.3) and (2.4) rule out probit, legit,

and Tobit models because ygit has discrete characteristics.

For example, if we are interested in estimating whether there is an effect of per-

pupil spending on math test pass rates for fourth graders in Michigan, and the en-
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dogenous variable of our interest is per—pupil spending, then per-pupil spending is a

roughly continuous variable and choosing a log-transformation of per-pupil spending

is appropriate. If we employ the logged per—pupil spending as the endogenous covari-

ate in the model, then logged per-pupil spending can be thought of as a continuous

variable and function h(y2.it) = ygit with ygit = ln(per-pupil spending) is clearly

adequate.

Second, we need to make assumptions about the distribution of (ai, cm) condi-

tional on the instruments. We assume

E(ailzila Zn“, znu. ”0221“) = E(ai|§i»52i), (2-6)

and

Efailia 522'.) = a + A132" + (A2 + 1432265223 (2-7)

where a and A2 are J x 1, A1 and A3 are J x L matrices of constants, respectively,

‘z‘, and “172,- are defined above. Assumption (2.6) means that '73,- and '62.,- can be thought

of as sufficient statistics for describing the relationship between a,- and the history of

{zitmgit : l = 1, ...,T}. Assumption (2.7) specifies a particular functional form for

the relationship among a,, 2,, and 62,-. Interactions among the exogenous variables

zit and 222,, might be important. In a cross-sectional context, Card (2001) shows that

the joint distribution of (a,, um) given zit can depend on zit due to heteroskedasticity

in Var(a,-, ’Ugitlzit). He shows that using IQ as a proxy for unobserved ability and a

binary indicator for college proximity as an instrument for education in the human

capital earnings model. Assumptions (2.4) and (2.7) can still be true even when the

conditional variance-covariance matrix, Var(a.,-, U2itlzz'), is heteroskedastic.

Third, we need to make assumptions about the expected value of d,, conditional

on {lit} and {Ugit}. We assume

Efdzilzrli ZrT. “022:1. 112:7“) = add-7323521), (2-8)
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and, in particular,

E(dilzi1aziTa1’2i1a-ui02iTl = 131(32' — 1W + (32 + B331’W22', (29)

where 2,0 E E(z,~), B1 and B3 are K x L, and B2 is K x 1 matrices of constants,

’2‘,- and 62,- are defined above. In Murtazashvili and Wooldridge (2005), one of the

conditions for consistency of 6 estimates states that the covariance between (I,- and

the detrended xz-t conditional on the detrended zit equals its unconditional version,

that is, it does not depend on the detrended Zit- For the reasons mentioned earlier,

this assumption might be too restrictive for the case of roughly continuous endogenous

explanatory variables. In this study, we relax this assumption not only by dealing with

the original data, but also by allowing the covariance between d,- and Kit conditional

on the instruments to be a function of Zit- The conditions we employ in this paper

assure the consistency of 6 estimates in the case of roughly continuous endogenous

explanatory variables.

Then, we take the expectation of equation (2.2) with respect to

(2,1, ziT, 122,1, ..., v2”), employ that ygit is a deterministic function of

(z,1,...,z,-T,c2,-1, ...,2.22,:T), and use assumptions (2.3) through (2.9). The resulting

estimating equation is:

Efylitlzila ZiTa U211, U223") = Wta +(Ei8'wtlal'1‘ 9-2th012 + 521(21'83 W003 +

+tht/3 + ((Z‘ — 11)) (>9 xi061 + 172ixz't/32 + 1722' (it <59 X1063 + P1022}, (2.10)

where t = 1,...,T. Here, H = 2(1+ L)(J + K) +1 is the total number of all the

independent second-stage variables. Equation (2.10) is an estimating equation for

obtaining consistent estimates of APE, 6. Importantly, the components of 22,-, 1 the

instrumental variables excluded from the structural equation (2.2) e- do not enter the

estimating equation (2.10) in levels or interacted only with Zlit- Generally, if we

had any of these introduced in (2.10) we would lose identification. [See Wooldridge

(2005b) for more details]
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In some cases we might think that assumption (2.8) is too restrictive. In some

potential applications we might want to allow the random coefficient to vary not only

across 2' but also across t. In other words, for a random draw 2' from the population,

the structural model becomes

mi, = wta, + xitbit + "it: t: 1, ..., T, (2.11)

where bit is a K x 1 vector of time varying individual-specific slopes. We write

bit = 6 + qz't, and E(q,-t) = 0, by definition. In other words, we assume that that

individual heterogeneities have constant means, 6, and random error terms, (lit- Fur-

ther, we assume that qits consist of both time-constant and time-varying zero mean

components, i.e., q,t = d,- -l- Tit. Substitution into (2.1) gives

l/lit = wtai + X213 + (Xitqi‘t + Us)

5 wtavi. + Xitfi +’U1it, (212)

where um E Xz‘th't + uit. Then, the estimation equation for the model (2.12) will

need to expand in comparison with the estimation equation (2.10) to reflect the time

varying nature of the individual multiplicative heterogeneity. Assumptions (2.8) and

(2.9) can be replaced with the following assumptions about the error term and the

distribution of (qit, um) conditional on the instruments:

E(Qitlzila ziTa U211» 1’2iTl = E(Qitlzia "521» U221, zit): (2-13)

which says that E(q,~t|z,71, ...,ziT,t:2,:1, ...,u2.,;T) depends only on the time t values

and time averages. Since we maintain qits consist of time-constant and time-varying

components (1,; and Fit, respectively, assumption (2.13) reflects the nature of (lit-

And, finally, we assume

Efqitlzu. ---. ZrT. v2i1, 112:?) = E(di + militia, U221. Zitl =

= {31% — 5’)’ + (B2 + B3-z—i’lff2i} + (B4 + B5zit’lv2its (2-14)
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where if E E(z,~), B2 and B4 are K x 1, Bj, j = 1,3,5, are K x L matrices of

constants, respectively, 2,- and 172,: are defined above. Clearly, the right hand side of

equation (2.14) is identical to equation (2.9) when B4 = B5 = 0.

Then, similar to the case of the time-invariant individual heterogeneity, we take

the expectation of equation (2.12) with respect to (z,1,...,z,T,v2,1, ...,vgiT), employ

that ygit is a deterministic function of (2,1, ..., ZiT, 112,71, ..., 122,7), and use assumptions

(2.3) through (2.7), (2.13), and (2.14). The resulting estimating equation is:

Efyialzih Zth-, @221, l121T) = WtOI + (52' ® W001 + 52th012+

4%:de 0‘0 thu3 + Kit/5 + ((Z‘ - 't/x') 07¢ Xitlfii + 52299162 + 521(72' <83 Xitlfi3+

+192itxz't/34 + ’Uzrdza ® X2665 + plv2itv (2-15)

where t=1,...,T, (11 = vec[A1], (12 = vec[A2] + ([22 0 0)/, where (02 0 0)! is a

J x 1 vector, (13 = vec[A3], 63- = vec[B]-], j = 1,—5. Once again, equation (2.15) is

an estimating equation for obtaining consistent estimates of APE, 6. When wt E 1,

t = 1, ...,T, equation (2.15) simplifies to:

EWmIZii, ZiT» “U221. lair) = a + Z201+ 722102 + T2i§i03+

+3915 + (fir - 11') 0'0 Xitlfii + 172212162 + 5'2er ® Xitlfi3+

+1’22'tx-itl‘34 + v2it(zit ® Karl/35 + 9111221, 15 = 1, T- (2-16)

2.3 Estimating Procedure and Calculation of

Standard Errors

We employ the control function approach that uses the reduced form error terms,

“U221, as ”control variables” for heterogeneity and endogeneity in the structural model.

A two-step method that consistently estimates the parameters from equation (2.11)

is the following:
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1. Run the POLS regression of

[LG/22)) 011 1, Zita 22‘, 2: 1, ..., D], t: 1, ...,T, (2.17)

_ T

and save the residuals, 172“, 2' = 1,...,N, t = 1,...,T. Obtain 172,- : T4262“,

t=l

i=1,...,N.

2. Run the POLS regression of

ylit 011 Wt. vec[(2,- <8) thl’e 52cm, veclfii ®thlIFZia

Xit: VGCKZ‘ - 2l '59 Xitl', faxit, vec[(2,- ® Kali/521'»

fi2itxita V€lezit 53‘ Xitll,fi2ita 82a. (2-18)

N T ..

where 2' = 1,...,N, t = 1,...,T, 2 = (ND—12: Zzit, and obtain 6 and the other

parameter estimates. Terms containing the vecszJteffitor are used to denote all possible

interactions among the variables. For example, term vec[(z,~t ‘8 x.,-t)]'i72,-t in (2.18)

consists of K * L interaction terms.

If we want to test whether the data exhibit the properties of time-varying or time-

constant individual heterogeneity, we can employ a test of joint significance of 6-,

j = 4,5 in (2.15). The null hypothesis of time—constant individual heterogeneity is

H0 : 64 = 65 = 0. A fully robust adjusted Wald statistic is appropriate. If the

Wald test rejects the null hypothesis then the model with time-varying individual

heterogeneity - (2.15) - should be estimated.

To test for endogeneity of ygit and individual heterogeneity we can simply test

for joint significance of all the second-stage terms other than wt and Mt By con-

struction, the errors from the second stage of the estimating procedure are zero mean

independent of all the explanatory variables on that stage. As a result, the POLS

estimates of the second-stage parameters will be consistent, and a standard F test

of joint significance of all the second-stage terms containing the first-stage residuals

and time—demeaned exogenous variables, 2,, will be a valid test. If the coefficients of
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all the terms from the second stage that contain the generated regressors and time-

averaged instruments are statistically jointly different from zero, there is endogeneity

and heterogeneity problem, and neglecting it will lead to misspecification.

If the null hypothesis of no endogeneity and no individual heterogeneity is rejected,

the standard errors in (2.18) should be adjusted for the first-stage estimation of

62: (520,621I, 622/)1, a (2L + 1) x 1 vector of the first stage parameters in (2.17).

Define git to be a 1 x H, H 2 (2J -l— 3K)(1 + L) + 1, vector of all the independent

second-stage variables, i.e., git 2 (wt, vec[(2,- ‘8 wt)]’, Ugiwt, vec[(2,- ® Wt)]’22,-, Xita

V€Cl(ii — Z) <29 Kill]: 52209:. veclfii ‘8’ Xitll'vizi, v2itx2’ta vecl(zit ® xitlllv2z’ta ”Uzitl- Let

git to be a 1 X H vector git that contains the estimated first-stage residuals, 272,1:

Sit = (Wt, V€Cl(72i <8 thl', 522%, V€Cl(ii 8 thl'fizz‘» Kit. V€Cl(7i - 2‘) ‘59 Xrtl’, 5221a,

vec[(2,- <8) xit)]’figi, figitxit, vec[(z,-t <8) x,t)]’62,-t, 62%). Then, the estimating equation —

(2.18) can be rewritten as 9m 2 git6+e,t, where E(e,-t|z,-1, ..., ziT, 212,1, ..., 11211“) = 0,

and 6 is a column of all the parameters from the estimating equation. Define y1,- to

be the T X 1 vector of gift: let G,- be the matrix with it" row git: and G,- be the

till
matrix with row g, Then, 6 can be estimated as:

N N T

6 = (ZGQG. )‘kZZeltyua. (2.19)

i=1 i=1t=1

Write 311a = @119 + (g,, — Sitlg + 6n = git9 + mg“ — Sit), + eit- Plugging this in

(2.19) and multiplying through by \/N gives

N T

We — 6) = A—lN‘l/ZZZgaetai — at)’ + ea.

i=1t=1

.. N - A ..

where A = N‘1 ZGgG, . Using the Law of Large Numbers, we know that A L

7.21

A EE(G;G,‘). Further, a mean value expansion gives

N T N T N T

N-1/222g2,e.t = N-1/2ZZgQ.e.-.+[N—Sgt/seam«Varanasi

i=1t=1 i=1t=1 i=1t=1
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where V52git is the H x (2L + 1) Jacobian of g], with respect

to the parameters 62 from the first stage of the estimating pro-

  
  

cedure. For each (2', t), V52 git is a block matrix of the form:

{ 0 0 . . . 0 0 . . . 0 \

0 0 . . . 0 0 . . . 0

K :1 \ Wt Wt . . . Wt Wt . . . Wt

—Z” (7190“?) (ii X Wt) (72' th) (z, XWt) (72‘ @9th

i 0 0 . . . 0 0 . . . 0

—2L, 0 0 . . . 0 0 . . . 0

"Eli xit xit . . . x‘it xit . . . xit

, (it ‘8’ Kit) (22' ® xit) ~ - - (it <59 Kit) (32' ® xitl - . - (52‘ 8’ xa)

\ ..EL, } 3% xit . . - xit Xit . . . xit

(zit X xit) (zit 59 Kill - - - (zit 59 xit) (zit 8’ xit) - - . (zit ‘83 xit)

1 1 . . . 1 1 . . . 1

Each row of the jacobian matrix corresponds to each addendum in estimating

- ~ . . _ I _
equation (215). Because E((’.it]Z2'1,...,ZiT,1l2i1,...,02,7‘) — 0, E((V52g,-t) eit) — 0. It

follows that

N T

N—1:Z(vdgitleit = 012(1):

i=1t=1

A N T N T

and, since x/N(62 — 62) = Op(1), we get N—1/2: Zggteu = N_1/2Z Egg-ted +

i=1t=1 i=1t=1

op(1).

Next, using similar reasoning,

N T N T

N-1/2ZZgg.6’(g.-. — ea’ = —[xv—IZthG’wae-alW052 — 62) + ope) =

i=1t=1 i=1t=1

= —B\/N(52 — 52) + 012(1)»

T

where B =E(Zg;,6’(v(52g,t)). Further, based on the first stage of the estimation

i=1

procedure - (2.17) - we know that

N T

W02 - 52) = C_1N"1/2ZZ(25)"U2it + 022(1),

i=1t=1

T

where C EZEKzgYZS], Z]: = (1,z.,-t,2,) is a 1 x (2L + 1) vector of the first

t=1

stage explanatory variables, i.e., it is a vector containing a constant, exogenous ex-
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planatory variables, Zita and, time averages of the exogenous explanatory variables,

T

2, = T"1 Zzit, and E((zg)’v2,§t) = 0, t = 1, ...,T. Thus, collecting all the terms we

t=1

obtain

\/N(6 — 6): A__1N1/222[g,~,cit — BC1F(zzit))va] + 0p((1).

i=1t=1

By the Central Limit Theorem,

\/N(6 — 6) L Normal(0,A—1MA-1),

where M EVart231(gztcit - BC1z(,F)’1'2”). Therefore, the asymptotic variance of 6,

Avar(6),1S estimated as

\7 E A'IMA‘l/N, (2.20)

where A is defined above,

7— “6‘1 A —1 A

=1» 1: Zlgz.e.-.-13<:z<5>'vz.a 2(gitéa-13C(zg)'v2a) ,

i=1t=1

. N T .

B =N—12112git9'W62gzt) C :N12 gsz)it )Zg, and éit : ylit _ Site-

2 t: z t

2.4 Finite Sample Behavior of the Control Func-

tion Estimator

In this section we provide evidence on the finite sample properties of the control

function estimator of the APE in CRC balanced panel data models. We assume that

the unobserved heterogeneity is time constant. This assumption allows us to compare

the proposed estimation method with other available estimators in the same context,

and time constant slopes are commonly assumed in many empirical applications. So,

we consider two CRC panel data models with time—constant unobserved heterogeneity
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described by equation (2.10). First, we study the usual unobserved effect CRC model

with a random coefficient, i.e., we assume wt E 1, t = 1, ..., T. Second, we employ the

random trend CRC model with W, E (1,t), t = 1, ...,T, so that each cross-sectional

unit has its own linear trend. We use Monte Carlo simulations to draw the data and

check the properties of the estimator. The number of replications is 500, and the

results of the experiments are presented for samples of 500 and 1000 observations for

a time horizon T = 5. The population values of the model parameters are set at 6 = 2

and a = 1. We consider two options for a scalar endogenous explanatory variable

ygitz (1) a continuous ym with a large support set, i.e., it is a traditional continuous

variable, and (2) gm being a fraction in the open unit interval, 312,-); E (0,1), i.e., it is

a roughly continuous variable.

For the usual unobserved effect CRC model the dependent variable ylit is gener-

ated as:

yhjt = a, + y2itb'i + nit, f: 1, ...,T, (2.21)

where

a,- E a + AME, + Aga'L—‘gi + A3af2i—5i + A406? (2.22)

b, E 3 + Albffi — E) + AgbUQi + A3btjgi§i + A4b8?, (2.23)

and

“it E lumen + /\2u’t_‘2i + /\3ue;1ta (2-24)

where 2,, ~ Normal(l,1), 02,-, ~ Normal(0,1), cf, 6]? ~ Normal(0,1), 62‘, N

T

Normal(O 1):: __—Tltzlzita 3 (MIT1: Zzitv 622' = T-1231v22'ta /\laa /\2aa

t:

A3a: )‘4aa A11), A2,” A35, A41), A1“, Agu, and A3,,are constants.

For a continuous ygit on a large support set we define the endogenous explanatory
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variable ygit to be ygit E h(y2,t) E 92,4, where we generate 92,, according to:

92.1 E )‘ggzzit + {Zitdi + )‘ggvgv2iti (2-25)

where '02,, ~ Normal(0,1), d,- = b,- — 6, A922, g, and A924)2 are constants. For

ygit E (0, 1), we use the following equality to define the endogenous regressor:

 

1 + exp(92rt)
112a E

If we set 6 to be 0 in (2.25) then the condition for consistency of the FE-IV

estimator of CRC panel data models in Murtazashvili and Wooldridge (2005) will be

satisfied. When 5 aé 0, the covariance between the detrended endogenous explanatory

variable, 372,4, and the unobserved heterogeneity, b,- = 6 + (1,, conditional on the

detrended instrument, 5,4, is not equal its unconditional version: Cov(372,-t, bilgit) 79

Cov(3jz,t, (1,) Thus, for § 74 0, the FE—IV estimation in Murtazashvili and Wooldridge

(2005) does not deliver consistent estimators of the model parameters. While (2.25)

does not meet the requirements for consistent FE—IV estimation of (2.21) when € 75 0,

it does satisfy (2.3) through (2.14) and does allow using the CF approach to obtain

consistent parameters’ estimates in (2.21).

For the random trend CRC model the dependent variable y”, is generated as:

f/lit = 011+ (122't + y22fitbz' + ”Lt-it, t: 1, MT, (2-27)

where both (2.1,: and (1.2,- are generated according to (2.22), b,-, ygit, and u,-t are also

defined above.

Why would we think that the data generating process we propose in (2.22) through

(2.25) is representative of something that we might actually see in practice? One of

possible empirical examples can be a study by Hall and Jones (1999). The authors

attempt to explain the differences in output per worker by differences in institutions

and government policies, which they call social infrastructure. Even though Hall and
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Jones (1999) do a cross-sectional investigation, their idea can be easily extended to

a panel data setup. Social infrastructure is thought to be endogenous. First of all,

it can depend itself on the level of GDP per worker in a country. Secondly, we do

not observe social infrastructure directly, and need to deal with a measurement error

problem. Hall and Jones (1999) suggest using Western European influence around

the world as an instrumental variable for social infrastructure. Specifically, a distance

of a country from the equator and a fraction of population speaking a European lan-

guage are used as measures of Western European influence. Clearly, the distance of a

country from the equator is time-invariant. Instead,we can use a time-varying fraction

of population speaking a European language as an IV in a panel data setting. While

both models (2.21) and (2.27) can be thought appropriate, perhaps, structural equa-

tion (2.27) should seem more suitable for modeling a behaviour of output per worker,

since we want to allow each country to have its own time trend. Further, endogeneity

of social infrastructure explains equations (2.24) and (2.25). Country-specific unob—

served cultural characteristics, both additive and multiplicative, might be related to

the fraction of population speaking a European language. It is Western Europe who

distributed to the rest of the world the ideas of Adam Smith and the importance of

property rights (among others). As a result, countries that were influenced by West-

ern Europe the most are more likely to have favorable social infrastructure. This

would explain the linear terms in equations (2.22) and (2.23). Importantly, it is pos-

sible that the joint distributions of (a,, um) given z,- and (bi, 222,4) given z,- can depend

on 2,- due to heteroskedasticity in Var(a,-, v2,t|z,) or Var(b,-, vgit|z,-), where j = 1 or 2,

as discussed by Card (2001) for the human capital earnings model. That is why we

might think that the interaction terms in (2.22), (2.23), and (2.25) are required.

Table 31 and Table B.2 present experimental results for the CRC model with

a continuous scalar endogenous explanatory variable with a large support set and

a scalar instrument Zit- Table B.1 reports the simulation outcomes for the usual
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unobserved effect CRC model, while Table B.2 covers the case of the random trend

CRC model. For the usual unobserved effect model, column 2 contains the sample

correlation coefficients among the endogenous regressor, ygit, and the instrument, Zita

the error, “it: the unobserved additive efl'ect, a4, and the unobserved multiplicative

heterogeneity, bi, denoted 633,22, 63,24, [33/24, 61/2)” respectively, because analytical ex-

pressions are not readily available. For the random trend model, we report the sample

correlations between 312,-, and a”, and between ygit and a2,- separately. We denote

these sample correlations 6,424,, 63,242, respectively. 63,21, is reported for t = 1.2

Columns 3 through 10 contain the mean, regular standard error (Reg. SE), ro-

bust standard error (Rob. SE)3, standard deviation (SD), root mean squared error

(RMSE), lower quartile (LQ), median, and upper quartile (UQ) of the APE estimates

from 500 replications. Rows of the table report statistics for the usual pooled ordinary

least squares (POLS) estimates on the original data, the usual fixed effects estimates

(FE-OLS), which is just pooled OLS on the time-demeaned data, the instrumental

variables (IV) estimates using the original data, the fixed effects-instrumental vari-

ables estimates (FE—IV), and the estimates from the control function approach (CF).

Adjusted standard error (Adj. SE) is reported for the CF approach.

It is easy to see that when 5 = 0 and the endogenous explanatory variable 312,, is

continuous on a large support set, i.e., ygit is defined by (2.25) for 6 = 0, the (con-

ditional and unconditional) covariance between the detrended endogenous regressor

and the unobserved heterogeneity is constant over time. Even though Murtazashvili

and Wooldridge (2005) emphasize that the FE—IV estimator should contain a full set

of time dummies to deliver consistent estimates, they do so allowing the covariances

 

2When { 75 0, Table B.1 and Table B2 are obtained for /\la = A2,, = A3,, = 0.29, A4,, =

0.84, Alb = A2(, = A3,, = 0.2, A4,, = 0.99, A1u = A2,, = 0.37, A3,, = 0.88, A923 = 0.44, E = 0.55,

and A921,? = 0.71. When 5 = 0, Ala = Aga = A30 = 0.31, A40 = 0.82, Alb = A25 = A35 = 0.61,

A41, = 0.91, A1,, = A2,, = 0.2, A3,, = 0.96, A9,; = 0.26, and A921,, 2 0.97 are used for Table

B1 and Table B.2.

3Robust standard errors are calculated using the scaling factor from Stata 9.0, i.e., they

are clustered on individuals.
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to vary with time while still being independent of the detrended instruments. Thus,

for the usual unobserved effect model, when we define ygit according to (2.25), there

is no need to include time dummies to obtain consistent FE—IV estimates of 6 when

E = 0. As a result, all the estimates we consider for the usual unobserved effect model

including the FE—IV estimates are based on the regressions without the time dum-

mies. For the random trend CRC model, all the reported estimates (but the CF) are

based on the regressions with the time dummies.

There are three sources of bias in the estimates under consideration. First, the

correlation between the unobserved heterogeneity a,- and the regressor 312,-, results

in the biased estimates of the model parameters. Second, the endogeneity of the

regressor 312,-, also explains why the estimates we consider are biased. Finally, the

correlation between the regressor 312,-, and the random coefficient b,- leads to the bias

(and inconsistency) in the estimates, as well. As long as 5 = 0 in (2.25), the correlation

between the endogenous explanatory variable and the random coefficient does not

result in the inconsistency of the FE—IV estimator. When 5 = 0, both the FE—IV and

the CF methods deliver consistent estimates of 6. When 5 75 0, the FE—IV estimates

of 6 are both biased and inconsistent. The CF estimates, while being biased, are the

only consistent estimates considered for g 75 0.

Columns 4 and 5 contain regular and robust standard errors of the estimates. To

be exact, we report the averages of the regular and robust standard errors of the

estimates obtained from 500 replications. The regular SE are the standard errors cal-

culated under assumption that there are no heteroskedasticity and serial correlation

in the error terms. The robust SE are adjusted for both serial correlation and het-

eroskedasticity that are possibly present in the errors. Standard errors reported for

the CF approach are the standard errors, which are computed according to formula

(2.20), and which are the standard error adjusted for the first stage estimation and

which are robust to arbitrary serial correlation and heteroskedasticity. As expected,
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the simulations show that the robust standard errors for the first four estimators are

surely better estimates of the standard deviations than the regular standard errors

are.

Studying Table BI and Table 8.2 for both sample sizes in case of f 75 0, we

conclude that the CF estimates have the smallest biases and the smallest RMSEs.

Murtazashvili and Wooldridge (2005) show that the FE—IV estimation results in con-

sistent estimates of 6, when 5 = 0. Table BI and Table B.2 indicate that the CF

estimator and the FE—IV estimator have very similar RMSES for 6 = 0. Closeness

in RMSES comes from similarity in both biases and standard deviations of these

estimators. The CF estimator has a smaller standard deviation than the FE—IV es-

timator in all the cases considered in Tables B.1 and B.2. For instance, when 6 = 0

and N = 1000, the standard deviation of the FE—IV estimator is about 21% higher

than the standard deviation of the CF estimator. Efficiency of the CF estimators

comes from the assumed specific functional forms for the endogenous variable and

the random coefficients of equation (2.21).

For the next set of simulations, we take 312,-, being a fraction in the open unit

interval. Because the structural model (2.27) contains a trend, the default is to

include a full set of time period dummies in every estimation technique but the CF

approach. Table B3 and Table BA Show the simulation results for gm 6 (0,1).4

Now, the bias in the CF estimate (and all other estimates) is more pronounced, even

though the CF estimating method results in the smallest bias of 6 among all the

estimators. For example, when we consider the random trend model, for 312,, 6 (0,1)

when .{ aé 0, with [3,121, = .581, and N = 500, the CF estimate of 6 is 2.229 with the

RMSE of .750, compared to 60F = 2.039 with the RMSE of .182 with 6be = .578,

 

4When 6 ¢ 0, Table B3 and Table B4 are obtained for Ala = A2,, = A3,, = 0.21,

A4,, = 0.92, /\1b = 0.2, Agb = A31, 2 0.7, A41, = 0.94, A1,, = A2,, = 0.43, A3,, = 0.84,

A9,; = 0.87, 5 = 0.48, and Agzv2 = 0.11. When 5 = 0, Am = A2,, = A3,, = 0.31, A4,, = 0.82,

Alb = 0.2, A21, = A3b = 0.7, A45 = 0.94, An, = A2,, = 0.22, A3,, = 0.96, A92: = 0.26, and

Amy, = 0.97 are used for Table B3 and Table B.4 .
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and N = 500, for y2-it with a large support set.

As expected, when 5 = 0, it is the CF approach that has the smallest bias among

all the estimators under consideration since we simulate our dataset to satisfy the

assumptions (2.5) through (2.7). However, when 5 = 0, the evidence on the RMSEs

of the CF and the FE—IV estimators is mixed. On the one hand, the RMSE of the

FE—IV method is either clearly smaller or only marginally bigger than the RMSE of

the CF method. For example, for the random trend model with a roughly continuous

regressor, the RMSE of the FE—IV estimator is 0.599 vs. the RMSE of 0.875 of the CF

estimator when N = 500. The random trend model with a continuous explanatory

variable results in the RMSE of 0.235 for the FE—IV estimator and the RMSE of

0.223 for the CF estimator when N = 500. On the other hand, the bias of the FE—IV

estimator is clearly much more severe. The differences between the FE—IV and the

CF approaches for the random trend model with ygit E (0, 1) and g = 0 illustrate the

trade—off between bias and efficiency. For 5 = 0, both the CF method and the FE-IV

approach are consistent. Further, the simulations in Tables B3 and BA show that

the FE—IV estimates are always less variable than the CF estimates for the random

trend model with gm 6 (0,1). However, when 5 = 0, the bias in the CF estimator

is significantly less than the bias in the FE—IV. Overall, the simulation findings in

Tables B3 and B4 support the idea that the CF estimating method produces more

desirable estimates of 6 when f # 0.

Applied economists are quite often reluctant to use control function methods since

control function approaches require the calculation of the adjusted standard errors,

which is not routinely done in standard econometric packages. Table B.5 contains

detailed information (which can be partially seen in Tables B.1 through B4) on the

standard errors of the control function estimates of the APEs for the two models and

the two cases of the endogenous explanatory variable considered. Columns 1 shows

whether { is different from zero. Column 2 reports the cross-sectional sample size.
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Columns 3 through 7 contain the mean, regular standard error (Reg. SE), robust

standard error (Rob. SE), adjusted standard error (Adj. SE), and standard devia-

tion (SD) of the APE estimates from the CF approach from 500 replications. The

regular SE are the standard errors from the second stage estimation for the CF ap-

proach without adjustment for heteroskedasticity and serial correlation and without

taking the first stage estimation into account. The robust SE are the second stage

standard errors from the CF method, which are robust to both serial correlation and

heteroskedasticity, and which are obtained ignoring the first stage estimation. The

adjusted SE are the only standard errors which are adjusted for the first stage esti-

mation (they are calculated according to formula (2.20)). Clearly, besides being the

only theoretically appropriate estimates of the standard errors, the adjusted standard

errors based on (2.20) approximate the standard deviations the best among the three

standard errors considered.

To summarize, the simulation findings verify that when the joint distribution of

(a4, (2,, 122,4) given 2,, depends on 2,, the most robust estimator of the average partial

effect in a correlated random coefficient balanced panel data model is the control

function estimator from the two-step estimating method (2.17) — (2.18).

2.5 Empirical Application to Effects of Job 'Ii'ain-

ing on Worker Productivity

The method we propose for estimating the average partial effects from a correlated

random coefficient panel data model is developed for large N small T framework.

However, real-life data limitations quite often do not allow researchers to use ”truly”

large N datasets. Here, we follow a common real-life situation with a not so large N

dimension of the available data. Suppose we want to estimate an average partial effect
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of job training on worker performance measured by output scrap rates. Holzer, Block,

Cheatham, and Knott (1993) explore the effects of a state-financed training grant

program for manufacturing firms in Michigan using constant coefficient models. They

use a three-year panel of data (1987—1989) from a unique survey of firms in Michigan

that applied for training grants under the state’s Michigan Job Opportunity Bank-

Upgrade (MJOB) program. This program was designed to provide one-time grants to

eligible firms. An eligible firm was defined as a manufacturing company with 500 or

fewer employees that was implementing new technology and had not received a grant

before. Let us estimate the effects of on-job-training on worker productivity allowing

for both additive and multiplicative unobserved firm-specific effects.

Why would we think that the random coefficient panel data model might be

appropriate in this context? A possible justification for using a RC model can be that

some unobserved firm characteristics might cause firms to respond heterogeneously

to the job training. For instance, an unobserved ”atmosphere” in each firm might

result in a heterogeneous effect of the annual hours of training per employee. Workers

might feel supported and encouraged more in firms where the management promotes

and advocates additional schooling and team efforts. Contrary, employees of firms

with no policy on education beyond workers’ current level might be discouraged to

improve their present skills and effort. As a results, the same annual hours of job

training in the two types of firms can lead to different outcomes of the output scrap

rates. Since the effect of the job training on the worker performance might be related

to the extent of the unobserved support from a firm, we should consider a correlated

version of the random coefficient model

To fit the method from Section 2.2, we balance data from Holzer, Block,

Cheatham, and Knott (1993), and obtain a sample on 45 firms that applied for

an MJOB grant during 1988 and 1989. (The dataset is provided with Wooldridge

(2002), and it is called JTRAIN.) Of these firms, 27 had received a grant and 18 had
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not. The balancing of the data is made based on the availability of the data for the

scrap rate (per 100 items) and the annual hours of job training per employee.

Balancing the data raises concerns that the final dataset might be a non-random

sample. Table B.6 contains summary statistics from the unbalanced and balanced

datasets for each of the following groups: the entire sample, firms that received a

grant in either 1988 or 1989, and firms that did not receive a grant. Comparison of

the two panels of Table B6 suggests that even though the proportion of the firms

that received the grant and the firms that did not receive the grant changed, there

are virtually no differences between the firms in the two datasets with regard to the

scrap rates and the annual hours of job training. The balanced data seem to be very

close to the unbalanced dataset in preserving the information on the scrap rates and

the annual hours of training per worker. Of course, we should also be concerned

that some unobserved firms’ characteristics played a role in formation of these two

samples. Since the MJOB program distributed grants to eligible firms on a first-

come, first-serve basis, we believe the grant distribution to be a fairly random process,

and assume firms are not selected into the two samples based on their unobserved

characteristics. Given these assumptions, we feel sufficiently confident in relying on

the balanced dataset to proceed with our analysis.

Our goal is to evaluate the average partial effect of another hour of job training

on worker productivity relaxing the traditional assumption of a constant effect of the

annual hours of training per worker on the output scrap rate. In the context of the

correlated random coefficient approach, a simple panel data model of our interest is

log(scrap,~t) 2 oz + buln‘sempit + (51d88t + 52dSQt + a1, + ”it, (2.28)

where scrap“ is firm’s i’s scrap rate in year t, hrsempit is annual hours of on-job-

training per employee, (2.1.,- is a firm-specific unobserved effect, and “it is an unobserved

disturbance for firm i at year t. We also allow different year intercepts in our structural

model. The unobserved firm fixed effect, 0.1,, can contain unmeasured worker ability,
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capital, and managerial skill, which we think of as being roughly constant over the

time period we consider. Since the unobserved firm effect includes the worker ability,

the annual hours of job training can be correlated with the unobserved effect. For

example, firm managers might want to train workers with lower skills more to improve

their productivity. Or, on the contrary, they might be interested in improving the

productivity of relatively high skilled workers even more in order to utilize new hi-

tech equipment that requires very well trained employees. Further, we should be

concerned if “it is correlated with hrsempit. For example, a firm might hire more

skilled workers and reduce the on-job-training requirements at the same time. A

possibility of measurement error in hrsempit should also be considered since there

might be some incentives for recipients of a grant to overstate or non-recipients to

understate their training changes. If any (or both) of these is the case, we need to

deal with the endogeneity of the annual hours of training in equation (2.28). Here,

we exploit the fact that some firms received MJOB grants. We assume that grant

designation in year t is uncorrelated with the error term “it in every time period. This

seems to be a reasonable assumption, since firms are eligible to receive a grant only

once, and grants were distributed on a first-come, first-serve basis, which we believe to

be a fairly random process. Thus, whether a grant is received or not in year t should

not be related to changes in the output scrap rates in any other year directly and

only through the changes in the annual hours of job training.5 Thus, we use a dummy

variable indicating whether or not a grant was received as an instrumental variable

for the annual hours of training per worker provided that hrsempit and grantit are

 

5Using a constant coefficient approach, we regress a change in the log of the scrap rates

as occurring between years t — 1 and t on a change in the annual hours of on—job—training,

a change in a dummy variable indicating whether a grant was received, and a lag of this

variable. The changes are taken to eliminate the firm fixed effect. The results of the regres-

sion suggest that none of the three variables are either individually or jointly statistically

significant at any conventional level of significance (R2 for the regression is 0.032 with

F-statistic=0.96).
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correlated.

Clearly, the variable hrsempit takes on only non-negative values, and we should

consider taking a logarithmic transformation of this variable to run the first stage

regression. At the same time, about 27% of all the observations have zero values for

the annual hours of job training. Normally, we would transform a variable :17 that

has zero observations using log(1 + 3:) transformation. However, for the purpose of

our method, there is no gain in using this transformation, since the new variable,

log(1 + 1:), will take on only positive values. Thus, we choose to use the variable

reporting the annual hours of on-job-training in levels.

The first stage regression results with and without different year intercepts are

reported in Table 37. Columns (1) and (2) report the results from the first stage

regression with and without different year intercepts when no other variables but

grant,t are used as explanatory variables. Table B.8 reports the estimation results

for equation (2.28) by FE—IV and CF methods.

Overall, the APE estimates of the annual hours of on-job-training by the CF

approach for equation (2.28) are bigger than the corresponding estimates from the

same equation by the FE—IV method [See columns (1) and (2) vs. columns (5) and

(6) of Table B8]. For example, the CF approach in regression (6) suggests that 10

more hours of job training per worker are estimated to reduce the scrap rate by about

37%. For the firms in the sample, the average amount of job training over the three-

year period is 15.6 hours per employee, with a minimum of zero and a maximum of

154. Comparing regressions (6) and (2) from Table 8.8, we can say that the FE-IV

estimate of the APE of the average annual hours of job training per worker is about

18 times smaller in magnitude and is statistically insignificant. Overall, the estimates

from the CF method (regressions (5) and (6)) are more statistically significant and

substantially larger in magnitudes for the two regression specifications considered

than the corresponding FE—IV estimates (regressions ( 1) and (2)).
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What do the differences in the two estimation methods suggest? They suggest that

even if the unobserved ” atmosphere” of a firm is independent of the grant designation,

the correlation between hours of on-site job training and the firm-specific unobserved

effect is different for firms that received a grant and firms that did not. Indeed, it

is natural to think that the effect of the unobserved worker ability, managerial skills,

and a firm’s ”atmosphere” on hours of job training might be stronger among those

firms that received grants. In other words, using the language from Section 2.2, the

joint distribution of ((1,, b3, 122,4) is different for those firms that received a grant and

those that did not.

To address the question of rationale of the model with both additive and multi-

plicative individual heterogeneities in the context of this application, we test whether

the coefficients of different sets of variables from the second stage are statistically dif-

ferent from zero. Several Wald statistics are calculated. First, the coefficients on all

the explanatory variables but wt and .12,-t (and year dummies if included) are restricted

to zero. For specificity, let us use regression (6) from Table B8. The Wald statistic for

this regression equals 13.00, which allows us to reject the null hypothesis that ignoring

endogeneity and heterogeneity is inappropriate for our data with p-value of 0.072 (a

critical chi-squared value is 12.02 with 7 degrees of freedom at 10% level). Second, to

keep in mind the endogeneity of the main explanatory variable, we restrict to zero the

coefficients on all the explanatory variables but wt, $2‘ta and 62,-, (and year dummies

if included). The Wald statistic for this test is 13.33, which exceeds a critical value

of 12.59 with 6 degrees of freedom at 5% level (p—value is 0.038). And, thirdly, to

reflect assumption (2.5), the coeflicients on all the explanatory variables but wt, 33,4,

62,3, and 62,21), (and year dummies if included) are restricted to zero. Now, the Wald

statistic is 13.23, which is above a critical value of 11.07 with 5 degrees of freedom at

5% level (p-value is 0.021).

Finally, we check whether the interaction terms between the averages of the first-
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stage residuals, 62,-, and the averages of the exogenous variables, 2,, are jointly dif-

ferent from zero. To do so, we consider three possibilities: first, when all such terms

are jointly significant; second, when only terms originated from our assumption on

the additive heterogeneity, (1.1,, are jointly different from zero; and, third, when only

terms introduced from the assumption on the multiplicative heterogeneity, bu, are

jointly important. The resulting Wald statistics for regression (6) are 11.74, 2.47, and

11.32, respectively. Thus, we can reject the first and the last null hypothesizes at 1%

level with chi-squared critical values of 9.21 and 6.63 for 2 and 1 degrees of freedom,

respectively. And we cannot reject the hypothesis that the interaction term between

the additive unobserved fixed effect and the explanatory variable is significant at any

conventional level of significance (a chi-squared critical value for 1 degrees of freedom

for 10% level is 2.71). Thus, there is evidence at 1% level of significance that the

conditional variance-covariance matrix, Var(b1,-,a:,t|z,), is heteroskedastic. Overall,

we can conclude that the CF approach should perform favorably in comparison with

the FE—IV method for the output scrap rates application.

We are unlikely to draw conclusions about the causal effect of on-job-training on

the output scrap rate having only one explanatory variable — hrsempit — unless other

control variables are also accounted for. We consider a logarithm of the dollar value

of the annual sales ~- lsalesit, a logarithm of the number of employees -— [employ/,4,

and a logarithm of the average annual employee salary — lavgsalit — as additional

explanatory variables. The summary statistics for these variables are reported in

Table B9. The first stage regression results with and without different year intercepts

are provided in Table B.7. Regressions (3) and (4) employ additional explanatory

variables available. In these regressions, control variables lsalesit and [employit and

their time averages are both individually and jointly statistically insignificant at any

conventional levels. The logarithm of the average annual employee salary, lavgsalu,

and its time average are individually and jointly significant at least at 10% level of
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significance. Based on these results we consider the average annual salary as the only

valid additional explanatory variable. Thus, the next model of our interest is

log(scrapit) = a + blilirsempfi + b2,lacgsal,-t -l- 61d88t + 62d89t + a1,- + u.,-t. (2.29)

The estimation results for this model are provided in column (8) of Table B.8.

Column (7) of the same table contains the results for the case without year dum-

mies. The CF estimates of the APE of the annual hours of job training slightly

decrease when we use two explanatory variables in comparison with the case with

only one regressor besides year dummies [See columns (7) and (8) vs. columns (5)

and (6) of Table B8]. Once again, the estimates from the CF method (regressions (7)

and (8)) are more statistically significant and substantially larger in magnitudes for

the two regression specifications considered than the corresponding FE—IV estimates

(regressions (3) and (4)).

Finally, we might think that the assumption of a heterogenous response to the

annual average salary per worker stretches our imagination too much. Indeed, the

same amount of the annual salary per employee is likely to have the same impact

on the output scrap rate across different firms. Since the firms are located in the

same area (Michigan), workers of these firms are expected to get comparable value

out of the same monetary compensation for their work. Consequently, we consider

the following model:

log(scrapit) = a + blihrsempit + 621avgsal,-t + 61d88t + 62d89t + a1,- + uz-t. (2.30)

The results for this model using the CF approach when the year dummies are both

excluded and included are provided in columns (9) and (10) of Table B.8, respectively.

The estimates from the CF method are bigger and more statistically significant than

the corresponding FE-IV estimates reported in columns (3) and (4) of Table 88.

Interestingly, Table B.8 shows that the estimates of the adjusted standard errors

for the CF method are very close to the estimates of the robust standard errors that
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are calculated ignoring the first stage estimation. Contrary, the simulation results

[See Table 8.5] indicate that the adjustment in the standard errors for the first stage

estimation is not trivial.

Based on results reported in columns (5) through (10) of Table B.8 we can conclude

that the CF approach estimates of the APE of the annual hours of job training

per worker are robust to different model specifications. Further, they are larger in

magnitudes and statistically more significant than the FE—IV estimates (regressions

(1) through (4) of Table B.8) for all models considered.

2.6 Conclusion

This paper studies CRC balanced panel data models with endogenous regressors

as in Murtazashvili and Wooldridge (2005). However, in addition to allowing some

explanatory variables to be correlated with the idiosyncratic error, we also let the joint

distribution of the endogenous regressors and the individual heterogeneity conditional

on the instruments depend on the instruments. In particular, we allow the endogenous

regressors to be roughly continuous. We use a control function approach, which

introduces residuals from the reduced form for the endogenous regressors as covariates

in the structural model. We propose a two-step method to account for heterogeneity

and endogeneity and to consistently estimate APEs in CRC panel data models with

endogenous (roughly) continuous regressors. Further, we relax the assumptions in

Murtazashvili and Wooldridge (2005) by allowing the individual slopes in a CRC

model to vary over time.

Monte Carlo simulations indicate that in the finite samples the control function

approach to estimating the CRC balanced panel data model with time-invariant in-

dividual heterogeneity performs better than other estimators when the joint distri-

bution of the individual heterogeneity and the endogenous regressors conditional on

48



the instruments depends on these instruments.

Finally, we apply the new method to the problem of estimating the APEs of the

annual hours of on—job-training on the output scrap rates for manufacturing firms

in Michigan extending the work of Holzer, Block, Cheatham, and Knott (1993) to

allow for a firm-specific effect. The control function approach we propose delivers the

APEs of the annual hours of job training on the output scrap rates that are larger

in magnitudes and statistically more significant than the APEs’ estimates from the

FE—IV approach.
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CHAPTER 3

ESTIMATION OF A DYNAMIC

BINARY RESPONSE PANEL

DATA MODEL WITH AN

ENDOGENOUS REGRESSOR,

WITH AN APPLICATION TO

THE ANALYSIS OF POVERTY

PERSISTENCE IN RURAL

CHINA

3. 1 Introduction

Dynamic binary response models have considerable appeal for a diverse range of

policy analyses in which identifying or controlling for state dependence is important

and one is interested in a binary outcome.1 When the outcome is also affected by an

endogenous treatment, then an additional complication arises in efforts to identify the

effects of the treatment on the outcome and on state dependence. In this paper, we

 

1The range of research areas for which dynamic binary response models have proven

important include: labor force participation (Heckman and Willis, 1977; Hyslop, 1999), the

probability of receiving welfare (Bane and Ellwood, 1986), the experience social exclusion

(Poggi, 2007), and the identification of adverse selection in insurance markets (Chiappori

and Salanie, 2000).
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propose a parametric approach to estimating binary response dynamic panel data

models with endogenous contemporaneous regressors. Our method combines the

approach to solving the unobserved heterogeneity and the initial conditions problems

in non-linear dynamic models (Wooldridge, 20050) with a control function approach

to controlling for endogeneity of contemporaneous explanatory variables in cross-

sectional non-linear models (e.g., Rivers and Vuong, 1988; Smith and Blundell, 1986).

Among other possible applications, the relevance and potential strength of our

approach can be demonstrated in analyses of how migration in developing countries

affects the poverty status of residents living in migrant source communities. In this

setting, we are faced with two important sources of endogeneity: first, the migration

decision of community residents may be driven by negative shocks that also raise

the probability that households are poor. Second, we expect there to be correlation

between migration decisions and the unobserved characteristics of individuals and

communities, which may also affect poverty status. Our approach allows us to con-

sistently estimate parameters of a dynamic binary response panel data model with

unobserved heterogeneity when some of the continuous contemporaneous explana-

tory variables are endogenous. To account for the endogeneity in migration from

home communities, we employ a control function approach in which residuals from

the reduced form for the endogenous regressor are introduced as covariates in the

structural model. To deal with the dynamic nature of the model, we consider two

possibilities. We first use a “pure” random effects approach that allows the unob-

served heterogeneity to be independent of the observed exogenous covariates and

initial conditions. Next, we relax this strong assumption by employing the dynamic

correlated random effects model introduced by Wooldridge (2005c). This approach is

not only more relevant for analyses of poverty persistence, but also more flexible and

computationally straightforward than alternative approaches currently in use.

We then implement our empirical approach using panel household and village
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data from rural China. Following the market-oriented reforms introduced in the early

19805, there was a pronounced decline in the proportion of China’s population living

below the poverty line (Ravallion and Chen, 2007). While much of the literature

examining growth in China’s rural areas has focused on incentive effects related to

reform and on the role of local non-farm employment, there has been relatively little

research demonstrating the relationship between reduction of barriers to migration

from villages and the probability that households within the village have consumption

levels below the poverty line. Our empirical analysis demonstrates an economically

significant causal relationship between reduction of barriers to migration and poverty

reduction in rural China.

The paper proceeds as follows. In the Section 3.2 below, we first review approaches

to estimation of dynamic binary response panel data models, and then propose an

approach to estimating these models when there is an endogenous regressor. In Sec-

tion 3.3, we introduce the rural China setting, and develop a specific implementation

of the empirical model and strategy for identifying the effect of migration on poverty

within China’s villages. In Section 3.4, we discuss our estimation results and the per-

formance of the model, and then in Section 3.5 we summarize our results and discuss

directions for future research.
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3.2 Estimation of a Dynamic Binary Response

Panel Data Model with an Endogenous Re-

gressor

3.2.1 Dynamic Binary Response Panel Data Models

Dynamic binary response panel data models with unobserved heterogeneity have been

' used extensively in theoretical and empirical studies. Both parametric and semipara-

metric methods have been proposed to solve the initial conditions problem and to

obtain consistent estimates of model parameters when all explanatory variables other

than the lagged dependent variable are strictly exogenous.2 Semiparametric methods

allow estimation of parameters without specifying a distribution of the unobserved

heterogeneity, but they are often overly restrictive with respect to the strictly exoge-

nous covariates. Honoré and Kyriazidou (2000), for example, propose an approach

that does not allow for discrete explanatory variables. More importantly, because

the semiparametric methods do not specify the distribution of the unobserved het-

erogeneity, the absolute importance of any of the explanatory variables in a dynamic

binary response panel data model cannot be determined. Models with no assump-

tion on either the unobserved effects or the initial conditions, or their relationship to

other covariates, are best described as fixed eficcts models, and the semiparametric

approach of Honoré and Kyriazidou (2000) falls into this class of models.3

 

2With a structural binary outcome model that allows for unobserved effects, one must

be concerned that bias could be introduced through a systematic relationship between an

unobserved effect and the initial value of the dependent variable. This is known as the

initial conditions problem.

3We follow Chay and Hyslop (2000) in classifying models requiring no assumption on

unobservable effects or initial conditions as fixed effect models, and refer to random ef-

fect models as those in which one specifies a distribution of unobserved effects and initial

conditions given exogenous explanatory variables.
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Due to their computational simplicity, parametric methods have received greater

attention than semiparametric methods. There are four main parametric approaches

that have been employed for estimation of the dynamic nonlinear panel data mod-

els with strictly exogenous covariates other than the lagged dependent variable. All

four approaches use conditional maximum likelihood estimation (CMLE) analysis.

The first approach treats the initial conditions for each cross-sectional unit - 31,0 -

as nonrandom variables. If, in addition, unobserved effects, c,, are also assumed to

be independent of z,, one obtains the density of (y,1,y,2, ...,y,T) given the initial

conditions, W), and the exogenous explanatory variables, z, = (z,1,z,2,...,z,T), by

integrating out the c,. We refer to the relationship between the observed exogenous

covariates and the unobserved heterogeneity in the first method a ”pure” random

effects relationship because we assume c, to be independent of z, and W). While

this method does provide a way to obtain consistent estimates of the model parame-

ters, nonrandomness of the initial conditions requires the very strong assumption of

independence between the initial conditions and the unobserved effects.

A second parametric approach would involve treating the initial conditions as

random and specify a density of y,0 given (2,, c,). With this density, one can then

obtain the joint distribution of all the outcomes, (y,0, y,1, y,2, ..., y,T), conditional on

unobserved heterogeneity, c,, and strictly exogenous observables, z,. One important

drawback of this approach lies with the difficulty of specifying the density of y,0 given

(Zr. Ci)-4

A third method, proposed by Heckman (1981), suggests approximating a den-

sity of the initial conditions, y,0, given (z,,c,) and specifying a density of the un-

observed effects given the strictly exogenous explanatory variables. The density of

(31,0, y,1, 31,2, 312T) given z, can then be obtained. While Heckman’s approach avoids

the drawback of the second method, it is computationally challenging. Since both

 

4More details on this approach and potential drawbacks can be found in Wooldridge

(2002), page 494.
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the second and the third methods explicitly specify a distribution of the unobserved

heterogeneity conditional on strictly exogenous observables and a distribution of the

initial conditions conditional on the unobserved effects and the exogenous covariates,

they can be classified as random effects models.

Finally, an approach proposed by Wooldridge (2005c) recommends obtaining a

joint distribution of (31,1, 31,2, ..., 3,1,7) conditional on (y,0, z,) rather than a distribution

of (31,0, y,1. y,2, ..., y,T) conditional on z, as in Hechman’s approach. For this method

to work, we need to specify a density of c, given (y,0,z,).5 This fourth approach is

more flexible and requires fewer computational resources than Heckman’s technique.

In this method, we call the relationship between the observed exogenous covariates

and the unobserved heterogeneity a ”correlated ” random eflects relationship because

we allow c, to be a linear function of z, and y,0.

In the next section we develop a theoretical method that consistently estimates

parameters of a dynamic binary response panel data model when the contemporane-

ous explanatory variables are not strictly exogenous. To do so, we employ a control

function approach, originally introduced by Smith and Blundell (1986) and Rivers

and Vuong (1988). The main idea of the control function approach is to add control

variables into the structural model to control for endogeneity. Since we will consider

a model with two possible sources of endogeneity — the correlation between the un-

observed heterogeneity and a regressor, and the correlation between a regressor and

the structural error, we model the relationships among the unobserved effect, exoge-

nous covariates, and the error from the reduced form equation for the endogenous

explanatory variable.

 

5The specification of this density in Wooldridge’s method is motivated by Chamberlain’s

(1980) device.
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3.2.2 A General Approach to Estimation

Our specification of the binary response model assumes that for a random draw 2'

from the population, there is an underlying latent variable model:

yf,, = Zia/31 + 523121 + Pym—1 + 612' + Um. (3-1)

y1it=1lyfit 2 0].t=1....,T. (3.2)

where z,,, is a 1 x (K — 1) vector of strictly exogenous covariates, which may contain a

constant term, y2,, is an endogenous covariate, c1, is an unobserved effect, and um is

an idiosyncratic serially uncorrelated error such that Var(u1,,) = 1. 1]] is an indicator

function. We assume a sample of size N randomly drawn from the population, and

that T, the number of time periods, is fixed in the asymptotic analysis. For simplicity,

we assume a balanced panel.

Let 6 denote (6], 62, 63, p)/, which is a 1 x (K + 1) vector of all the parameters.

Importantly, this model allows the probability of success at time t to depend not

only on unobserved heterogeneity, C1,, but also on the outcome in t — 1. A key

assumption is that. the dynamics are correctly specified and dynamic completeness

of the model implies that the error term is serially uncorrelated. Thus, assuming

that model (3.1) is correctly specified dynamically, we assume that the error term

u1,, is serially uncorrelated. Allowing, u1,, to have arbitrary serial correlation, would

suggest including more lags of the dependent variable (3.1). For example, in the

simplest case of a linear model, when an error term, u,,, follows AR(1) process, a

simple calculation shows that a dependent variable, say y,,, actually depends on not

only y,,,_1 but also y,,,_2. Similarly, in the context of our model, one should have

a good reason to expect a serially correlated error term 711,, and yet to include only

one lag of y,,,.
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Further, we make additional assumptions on strict exogeneity of the contempora-

neous explanatory variables. First, some of the contemporaneous covariates, z1,,, are

assumed to be strictly exogenous (conditional on c1,). Second, we allow some of the

explanatory variables, here represented by the scalar 312,4, to be endogenous.

312a = 211151 + 222152 + ('2i + "2a

2 z,,6 + 2,A + 02, 'f' 112,,

= 2215 + 3M + 11221: (3-3)

where t = 1, ...,T, c2, is an unobserved effect, and um is an idiosyncratic serially

uncorrelated error with Var(u2,,) = 0%. Let z,, = (zl,,,z2,,) be a 1 x L vector

of instrumental variables, with L 2 K, i.e., we assume the vector 22,, contains at

least one element. We employ the Mundlak-Chamberlain device for the unobserved

effect, c2,, and this is reflected in line two of equation (3.3). We replace eg, with

its projection onto the time averages of all the exogenous variables: c2, = 2,A + a2,

Then, the new composite error term is 212,, = a2, + u2,,. Further, 2, = Tizit’ and

5 = (6’ , 55);. We follow Rivers and Vuong (1988) and refer to (3.3) as a redficed form

equation.

Next, consider the relationship between um and u2,,. We assume that (u1,,,u2,,)

has a zero mean, bivariate normal distribution and is independent of z, = (z1,, 22,) =

(z,1,z,2. ...,z,T). Note that under joint normality of (71,1,,,u.2,,), with Var(u1,,) = 1,

we can write

Um = 911221 + Gift

= 9012a - (12;) + 61a, (3-4)

where 6 = 17/03 , n = Cov(u1,,, um), 03 = Var(u2,,), and 61,, is a serially uncorrelated

random term, which is independent of z, and u2,,. The absence of serial correlation

of the em follows from the fact that 111,, and 112,, are both assumed not to suffer from

57



serial correlation. If there were no lagged dependent variables on the right hand side

of equation (3.1), there would be little need to worry about possible serial correlation

in the error term ug,, of equation (3.3), as long as we assume that u1,, is also serially

uncorrelated. However, we are interested in a dynamic model, and the assumption

of no serial correlation in 2,2,, is crucial for equation (3.4). Since equation (3.3) is

essentially a reduced form equation for the endogenous variable y2,,, the assumption

of no serial correlation in u2,, (and in em, as a result) is appropriate in the context

of our model.

Equation (3.4) is essentially an assumption regarding the contemporaneous endo-

geneity of y2,,. It suggests that the contemporaneous cm is sufficient for explaining

the relation between u”, and v2,,. In other words, once we somehow account for

endogeneity of 312,, in period t, we might think that 312,, becomes ”completely” exoge-

nous, and we can estimate the parameters of interest using standard methods valid

for exogenous explanatory variables. However, there is the possibility of an addi-

tional feedback from the endogenous variable yg in different time periods to the main

dependent variable of interest, yl, at time t. This possibility arises because we let

the reduced form equation for the endogenous variable, y2,,, contain a time-constant

unobserved effect, a2,

From assumption (3.4), (21,, ~ Normal(O, 031), where 031 = 1 — {2, since

Var(u1,,) = 1, and § = Corr(u1,,,u2,,), we can write

311a = llxirtfl + 01i+ 9(“2it — "-2i) + 81a 2 0i

= llxiz’tl3 + 91’2it‘l' (Cir — 96122:) + 61a 2 0

= llxiit!3 + 90211 + COi + 61a 2 0]. (3-5)

/‘ I o ‘

where t = 1. MT, X127: = (ZlitayZitsyliJ—lla ,3 = 03162466 and 002'. = 012‘ - 9022'. lb

a composite unobserved effect. Since the unobserved effect CO, is present in equation

(3.5), we should consider the relation between the unobserved effect c0, and the
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explanatory variables in equation (3.5). Importantly, the composite unobserved effect

CO, is a function of v2,,, where t = 1, ..., T, by construction:

002'. = 012: — 90227 = 612; - 9(L’2it — u2,,),t=1,...T

Thus, in order to obtain consistent estimates of the parameters from equation (3.5),

we must take into account the relation between c0, and 122,, in different time periods.

First, we use a ”pure” random effects approach, i.e., we assume that

-|- - .~N 1( —. 2)t=1 T (36)
C02 zzi yl'l01v2’l orma (10112,,0'01 a i “'1 a '

which can be written as CO, = 01022, + a1,, t = 1,...,T, where a1,]z,,y1,0,v2, ~

Normal(O, 031) and is independent of (z,, 3,1,0, v2,), where 22, = alwtilvzit, and v2, =

(v,1,v,2, ...,v,T). While a limiting assumption in many potential applications, the

”pure” RE assumption (3.6) may be relevant for certain cases. In particular, when

every individual in the initial time period is in the same state (e. g., we are interested

in the population of people who smoke), assumption (3.6) might be appropriate.

Further, since we assume that the composite unobserved effect, c0,, is independent of

the initial condition, y1,0, it is natural to think that ’Ugit’s in different time periods

have equal impacts on c0,. Consequently, we employ 22, as a sufficient statistic for

describing the relation between co, and v2.,,’s in different time periods.

Then, under assumptions (3.1)-(3.4) and (3.6), we can rewrite equation (3.5) as

yut = llxiitfi + 902a + 0052' + an + 61a 2 0l- (3-7)

6 6 (1

Clearly, the estimates of 6 = —, 6 = ————, and a0 = —L— can

(log, +0211 031 +031 ,loel +03,

be obtained using standard random effects probit software by including 62, in each

time period into the list of the explanatory variables along with x1,, and 02”, where

T
7 1 A

"U2z' = T Z 'U2it-

t=1

However, as we discussed earlier, the assumption of independence between the

unobserved effect and the initial conditions and the exogenous covariates is often too
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restrictive. In particular, the ”pure” random effects assumption is unrealistic in the

context of the application to poverty persistence that we will examine below. For

instance, unobserved dimensions of ability are very likely to be related to poverty

status not only in the initial period, but also in future periods.

Rather than using a ”pure” random effects approach, we prefer building on the dy-

namic ”correlated” random effects model introduced by Wooldridge (2005c). Instead

of the conditional distribution of co, assumed in (3.6), we now assume that

r 2

C’Oilzia 31120: V2 ~ 1\OrInaKVa'ao + Zrai + 023/120: 0a,), (3-8)

which follows from writing c0, = V2,,a0 + 2,0, + agym) + a1,, where a1,|z,, 311,0, v2, ~

Normal(0, 031) and independent of (z,, y1.,0,v2,). Since we allow for a nonzero cor-

relation between the composite unobserved effect, c0,, and the initial condition, Ill-2'0,

'Ug,,’s in different time periods might have different effects on em. Thus, we let v2,,’s

from different time periods have unequal ”weights” for explaining c0, Assumption

(3.8) is an extension of Chamberlain’s assumption for a static probit model to the

dynamic setting. To allow for correlation between c0, and z, and 311,0, we assume a

conditional normal distribution with linear expectation and constant variance. As-

sumption (3.8) is a restrictive assumption since it specifies a distribution for CO, given

z,, y1,0,v2,. However, it is an improvement on the “pure” random effects approach

in that it allows for some dependence between the unobserved effect and the vector

of all explanatory variables across all time periods.

Then, under assumptions (3.1)-(3.4) and (3.8), we can rewrite equation (3.5) as

y1it = llxlzttfi + 9122: + Cor + 61a 2 0i

= llxnt/3 + 97%: + Vain-'0 + 22:01 + (123/120 + an + 61n 2 Ol- (39)

E to 3.9‘ .t.tht. .' t. =——fi—— a9=—Q——1qua1n( )suggess a wecan est1mae6 Wan Waong

with 00-— ————Q——02 ,ol——— ——Land (12—— ——2——using standard random

V01+Ur211 V0gc:+aal Vocl'i‘ar’il
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effects probit software by including 02,-, z,, and gym) in each time period into the list

of the explanatory variables along with x1,, and 732,,

3.2.3 Allowing for Serial Correlation of Errors in the First

Stage

If the first stage error, 11.2,,5, is serially correlated, we must modify our two—step es-

timating procedure. To be specific, assume 11.2,, follows an AR(1) process: u2,, =

nu2,,,_1 + e2,,, where e2,, is a white noise error with Var(e2,,) = 062- Then, under

assumption (3.4),

C0V(€11t, 6121—1) = C0V(U1zfit - 9112a, “Mt—1 - 0u2i,t—1)

= Covf'um — Winn — 96221.1111'4—1 - 6""2i,t—1) = W92Efu2i,t—1).

which is more than 0, unless either 7r 2 0 or 6 = 0. Clearly, assumption (3.4) is no

longer appropriate and needs to be corrected.

Define the variance-covariance matrix of v2, as Q E E(v'2,-v2,), a T x T matrix

that we assume to be positive definite. Then,

/ 1 7,. 7,2 . . . TIT—2 flT—l \

7,. 1 7,. T— T-2

n2 7r 1 -~ 7rT_4 arr—3
__ I 2 . or 2

fl = E(V‘22TV22') = (7a2JTJT + 02 : .. : ,

7TT—2 WT—3 7rT—4 1

  
(3.10)

. . 2 ”(2: , . . .

where JT IS a T x 1 vector of ones, and 02 = 17%,. We can obtain conSIStent estimates

of the parameters in (3.10), and use them to transform '02,, to US“, which is a first

stage error free of serial correlation. One useful method for estimating 7r, 0%,, 03,2,

and 0% is the minimum distance estimator, described in detail by Chamberlain (1984).

Cappellari ( 1999) has developed code that conveniently implements this method in

Stata.
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Once we have first stage errors free of serial correlation, we can use the transfor-

mation “fit = of, —— a2, to adjust assumption (3.4). We can then assume that under

joint normality of (u,,,, ugit),

um = U349 + 61a

= 905a — (122‘) + elita (3-11)

where cm is a serially uncorrelated random term, which is independent of z, and

“521- Inclusion of “fit instead of u2,, in equation (3.11) guarantees that 61,, will not

be serially correlated. Then, we can write

yin = llxiafl + 012' + 916,-, — 9022' + 61a 2 0]

= llxlafi + 6123,, + (612' - 0022:) + 61a 2 0

= llxlitfi + 976a + "01' + 6121 2 0]. (3-12)

where t z 1, T, and c0, = cl, — 6oz, is a composite unobserved effect.

Based on equation (3.12), it is straightforward to adjust the two-step estimating

procedure discussed in Section 3.2.2 to account for the presence of the serial cor-

relation in u2,,. For example, under ”correlated” random effects assumption (3.8),

equation (3.12) can be written as

gift = llxiz'tl3 + 91/5,, + Cor + 6m 2 0]

= llxlrtfi + 9712.: + V2200 + z,,-0:1 + Ont/120 + an + 61a 2 of (3-13)

Then, we can estimate the parameters 6, 6, Q1, and (12 using standard random effects

probit software by including 02,-, z,, and 311,0 in each time period into the list of the

explanatory variables along with x1,,.

3.2.4 Calculation of Average Partial Effects

To assess the magnitude of state dependence we must calculate the average partial

effect (APE) of the lagged poverty status on its current value. We follow an approach
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favored by Wooldridge (2002) to calculate the APES after our two-step estimation

procedure. The APEs can be calculated by taking either differences or derivatives of

El‘pbini3 + 91% + V2200 + 2:01 + Gel/1270)], (3-14)

where t = 1, ..., T and in the argument of the expectations operator, variables with a

subscript i are random and all others are fixed.

In order to obtain estimates of the parameter values in (3.14), we appeal to a

standard uniform weak law of large numbers argument.6 For any given value of

x1,(x(1’), a consistent estimator for expression (3.14) can be obtained by replacing

unknown parameters by consistent estimators:

N

N_IZ‘D(Xfr3* + 9*92214- 9260* + Zrén + 42*31110). (3-15)

i=1

where t = 1, ...,T, the 132,, are the first-stage pooled OLS residuals from regressing

y2,, on z,,, v2, = (6,1,6,2, ...,f',T), the * subscript denotes multiplication by 62 =

(03:33,)4/ , and 6, 6, do, 611, (312, and {72 are the conditional MLEs. Note that

62 is the usual error variance estimator from the second-stage random effects probit

regression of 3,11,, on x1,,, 13'2“, z,, and 3,1,0. One may then employ either a mean value

expansion or a bootstrapping approach to obtain asymptotic standard errors. We

can compute either changes or derivatives of equation (3.15) with respect to x1, to

obtain the APEs of interest.

In common with the adjustment to our estimating procedure, one must also correct

the estimated APEs when errors are serially correlated. We obtain the APEs by taking

either differences or derivatives of

El‘I’fxltfl + 91% + V2100 + 22:01 + 0123/1210], (3-16)

where t = 1, ..., T. For simplicity, consider the second approach used in Section 3.2.4

to obtain the APEs’ estimates. For any given value of x1,(x(1’), a consistent estima-

 

6See Wooldridge (2002) for details.
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tor of expression (3.16) is obtained by replacing unknown parameters by consistent

estimators:

N

N_IZ‘I’(X’1’6* + 0*02it + 922150»: + Ziéi, + 92*912'0): (3-17)

i=1

where f. = 1, T, '13,, is a first stage residual cleaned of serial correlation, where the

A —1/2 ,. A

* subscript denotes multiplication by 62 = (031 + 05,21) , and 6, 6, 511, 62, and

2
6' are the conditional MLEs. We can then compute either changes or derivatives of

equation (3.17) with respect to x1, to obtain the APEs of interest.

3.3 Migrant Labor Markets and Poverty Persis-

tence in Rural China

Before applying the dynamic binary response model discussed above to an analysis

of how migrant labor market affect poverty status in rural China, we first briefly

review the history of rural-urban migration in China and review other evidence on

the impact of migration in the home villages of migrants. Next, we propose a specific

implementation of the dynamic binary response model to an analysis of the impact of

migration on the probability that a rural household is poor. We then introduce the

unique panel household and village data sources used in our analysis and describe our

approach to identifying the migrant networks that affect the cost of finding migrant

employment for village residents.

3.3.1 Rural-Urban Migration in China

China’s labor market experienced a dramatic change during the 19905, as the volume

of rural migrants moving to urban areas for employment grew rapidly. Estimates us-

ing the one percent sample from the 1990 and 2000 rounds of the Population Census

64

  



and the 1995 one percent population survey suggest that the inter-county migrant

population grew from just over 20 million in 1990 to 45 million in 1995 and 79 mil-

lion by 2000 (Liang and Ma, 2004). Surveys conducted by the National Bureau of

Statistics (NBS) and the Ministry of Agriculture include more detailed retrospective

information on past short-term migration, and suggest even higher levels of labor

migration than those reported in the census (Cai, Park and Zhao, 2007).

Before labor mobility restrictions were relaxed, households in remote regions of ru—

ral China faced low returns to local economic activity, reinforcing geographic poverty

traps (Jalan and Ravallion, 2002). A considerable body of descriptive evidence related

to the growth of migration in China raises the possibility that migrant opportunity

may be an important mechanism for poverty reduction. Studies of the impact of

migration on migrant households suggest that migration is associated with higher

incomes (Taylor, Rozelle and de Brauw, 2003; Du, Park, and Wang, 2006), facilitates

risk-coping and risk-management (Giles, 2006; Giles and Y00, 2006), and is associated

with higher levels of local investment in productive activities (Zhao, 2003).

Institutional changes, policy signals and the high return to labor in urban areas

each played a role in the expansion of migration during the 19903. An early reform of

the household registration (hukou) system in 1988 first established a mechanism for

rural migrants to obtain legal temporary residence in China’s urban areas (Mallee,

1995). In order to take advantage of this policy change, rural residents required a

national identity card to obtain a legal temporary worker card (zanzu zheng), but

not all rural counties had distributed IDs as of 1988.7 As China recovered from its

post-Tiananmen retrenchment, some credit a series of policy speeches made by Deng

Xiaoping in 1992 as signals of renewed openness toward the marketization of the

economy, including employment of migrant rural labor in urban areas (Chan and

 

7Legal temporary residence status does not confer access to the same set of benefits

(e.g., subsidized education, health care, and housing) typically associated with permanent

registration as a city resident.
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Zhang, 1999). Combined with economic expansion, these institutional and policy

changes led to increased demand for construction and service sector workers, and

catalyzed the growth in rural-urban migration that continued throughout the 19905.

The use of migrant networks and employment referral in urban areas are im-

portant dimensions of China’s rural-urban migration experience. Rozelle et al (1999)

emphasize that villages with more migrants in 1988 experienced more rapid migration

growth by 1995. Zhao (2003) shows that number of early migrants from a village is

correlated with the probability that an individual with no prior migration experience

will choose to participate in the migrant labor market. Meng (2000) further suggests

that variation in the size of migrant flows to different destinations can be partially

explained by the size of the existing migrant population in potential destinations.8

3.3.2 The RCRE Household Survey

The primary data sources used for our analyses are the village and household surveys

conducted by the Research Center for Rural Economy at China’s Ministry of Agricul-

ture from 1986 through the 2003 survey year. We use data from 90 villages in eight

provinces (Anhui, Jilin, Jiangsu, Henan, Hunan, Shanxi, Sichuan and Zhejiang) that

were surveyed over the 17-year period, with an average of 6305 households surveyed

per year. Depending on village size, between 40 and 120 households were randomly

surveyed in each village.

The RCRE household survey collected detailed household-level information on

 

3Referral through one’s social network is a common method of job search in both the

developing and developed world. Carrington, Detragiache, and Vishnawath (1996) explicitly

show that in a model of migration, moving costs can decline with the number of migrants

over time, even if wage differentials narrow between source communities and destinations.

Survey-based evidence suggests that roughly 50 percent of new jobs in the US are found

through referrals facilitated by social networks (Montgomery, 1991). In a study of Mexican

migrants in the US, Munshi (2003) shows that having more migrants from one’s own village

living in the same city increases the likelihood of employment.
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incomes and expenditures, education, labor supply, asset ownership, land holdings,

savings, formal and informal access to credit, and remittances.9 In common with the

National Bureau of Statistics (NBS) Rural Household Survey, respondent households

keep daily diaries of income and expenditure, and a resident administrator living in

the county seat visits with households once a month to collect information from the

diaries.

Our measure of consumption includes nondurable goods expenditure plus an im-

puted flow of services from household durable goods and housing. In order to convert

the stock of durables into a flow of consumption services, we assume that current and

past investments in housing are “consumed” over a 20—year period and that invest-

ments in durable goods are consumed over a period of 7 years.10 We also annually

“inflate” the value of the stock of durables to reflect the increase in durable goods’

prices over the period. Finally, we deflate all income and expenditure data to 1986

prices using the NBS rural consumer price index for each province.

There has been some debate over the representativeness of both the RCRE and

NBS surveys, and concern over differences between trends in poverty and inequality

in the NBS and RCRE surveys. These issues are reviewed extensively in Appendix

B of Benjamin et al (2005), but it is worth summarizing some of their findings here.

First, when comparing cross sections of the NBS and RCRE surveys with overlapping

years from cross sectional surveys not using a diary method, it is apparent that some

high and low income households are under-represented.“Poorer illiterate households

 

9One shortcoming of the survey is the lack of individual-level information. However, we

know the numbers of working-age adults and dependents, as well as the gender composition

of household members.

10 Our approach to valuing consumption follows the suggestions of Chen and Ravallion

( 1996) for the NBS Rural Household Survey, and is explained in more detail in Appendix

A of Benjamin et al. (2005).

11 The cross-sections used were the rural samples of the 1993, 1997 and 2000 China Health

and Nutrition Survey (CHNS) and a survey conducted in 2000 by the Center for Chinese

Agricultural Policy (CCAP) with Scott Rozelle (UC Davis) and Loren Brandt (University

of Toronto).
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are likely to be under-represented because enumerators find it difficult to implement

and monitor the diary-based survey, and refusal rates are likely to be high among

affluent households who find the diary reporting method a costly use of their time.

Second, much of the difference between levels and trends from the NBS and RCRE

surveys can be explained by differences in the valuation of home-produced grain and

treatment of taxes and fees.

3.3.3 Migration, Consumption Growth and Poverty

Tl‘ends

One of the benefits of the accompanying village survey is a question asked each year

of village leaders about the number of registered village residents working and living

outside the village. In our analysis, we consider all registered residents working outside

their home county to be migrantsnBoth the tremendous increase in migration from

1987 onward and heterogeneity across villages are evident in Figure C.1. In 1987 an

average of 3 percent of working age laborers in RCRE villages were working outside of

their home villages, which rose steadily to 23 percent by 2003. Moreover, we observe

considerable variability in the share of working age laborers working as migrants.

Whereas some villages still had a small share of legal village residents employed

as migrants, more than 50 percent of working age adults from other villages were

employed outside the village by 2003.

The relationship between migration and consumption is of central concern for our

analysis. The linear fit of the relationship between annual changes in migration and

average village consumption growth in the RCRE data suggest a positive relation-

ship (Figure C.2). The lowess fit, however, suggests the presence of nonlinearities,

 

12 From follow up interviews with village leaders, it is apparent that registered residents

living outside the county are unlikely to be commuters and generally live and work outside

the village for more than six months of the year.
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particularly around zero. Indeed the prospect that out-migration may be driven by

negative shocks which also depress consumption should raise concern that size of the

migrant network and consumption may be endogeneous and driven in part by shocks

affecting both variables.

Even if consumption grows with an increase in the number of residents earning

incomes from migrant employment, it is of important policy interest to understand

which residents within villages are experiencing increases in consumption. Changes in

the village poverty headcount are negatively associated with the change in the num-

ber of out-migrants, suggesting that poverty declines with increased out-migration

(Figure C.3). Nonlinearities in the bivariate relationship are evident again in the

non-parametric lowess plot of the relationship. Whether obvious non—linearities are

related to the simultaneity of shocks and increases in out-migration and poverty for

some villages or the simple fact that we have not controlled for other characteristics of

villages, establishing a relationship between migration and increased consumption of

poorer households within villages requires an analytical framework where we eliminate

bias due to simultaneity and potential sources of unobserved heterogeneity.

A Causal Relationship Between Migration and Consumption Growth

In other research using this data source, de Brauw and Giles (2007) use linear dynamic

panel data methods with continuous regressors to demonstrate a robust relationship

between the reduction of obstacles to rural—urban migration and household consump-

tion growth. While one might often suspect that the non-poor, who have sufficiently

high human capital and other dimensions of ability, may benefit most from reduc-

tions in barriers to migration, general equilibrium effects of out-migration may lead

to greater specialization of households in villages that has benefits for the poor. In

particular, de Brauw and Giles demonstrate that households at the lower end of the

consumption distribution tend to expand both their investments in agriculture related
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assets and the area of land that they cultivate increase more with out migration than

they do for richer households. This raises the prospect that ability to migrate may

be causally related to poverty reduction within rural communities as well.

In the empirical application of our discrete binary response model below, we are

simply seeking to understand whether out-migration from villages is associated with

reductions in the probability that household consumption falls below the poverty line

in rural China. We are agnostic as to whether poverty is reduced through direct

participation in the migrant labor market, or through indirect general equilibrium

effects that raise the return to labor in agricultural and other local activities.

3.3.4 Estimating the Impact of Migrant Labor Markets on

Poverty Persistence

The econometric approach derived in Section 3.2.2 allows us to control for household

specific unobserved effects, which will include fixed effects associated with the village

in which households are located. We are interested in estimating the dynamic binary

choice model for the probability that a household 75 falls below the poverty line at

time t:

p00,, 2 1[61pov,,_1 + 62mg, * pov,,_1) + 631W}, + XQ-tal + uglpcu + D, + u, + e,,],

(3.18)

where 1901),, is a binary indicator for whether the household is in poverty in year

t, which will be affected by poverty status in the prior period, pov,,_1, the size of

the migrant network from village j through which the household 2' may be able to

obtain a job referral, M53,, a vector of household demographic and human capital

characteristics, X,,, household land per capita, lpc,,, and year dummies to control

for macroeconomic shocks, D,. We will be concerned about the possibility that an

unobserved household effect, 71,, may be systematically related to the size of the
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household’s migrant network, to other covariates, and to household poverty status,

thus introduce endogeneity concerns. The error term, 5,,, may be serially correlated,

and we may be concerned that shocks in the error term may also be systematically

related to the size of the migrant network, Mi and to the possibility of falling into
J't’

poverty, and thus contribute an additional endogeneity concern.

From the model specified in (3.18), we are particularly interested in identifying

the coefficients on pov,,_1, M}, and M}, * pov,,_1. The coefficients on pov,,_1 and

M}, =l< pov,,_1 allow us to gauge the importance of persistence in the probability that

a household is poor, and the impact of access to migrant employment opportunities

through the migrant network on poverty persistence. 63, the coefficient on M2’2, allows

us to determine the impact of the migrant network on the probability that a household

will fall into poverty.

The specification shown in (3.18) may have additional sources of endogeneity if we

believe that household demographic and human capital, X,,, or land per capita, lpc,,,

may vary with unobserved shocks in period t or t— 1. We address the possible concern

over endogenous household composition by using household demographic and human

capital variables for the legal long-term registered residents of households. While

household size may vary somewhat with shocks as individuals move in and out of

the household for the purpose of finding temporary work elsewhere, such variations

do not show up in registered household membership. Long-term membership only

changes when households split subject to such events as marraige or legal change of

residence to another location. Land managed by the household may also vary with

shocks. Land markets in rural China do not function well: land cannot be bought

and sold, and only in the last few years have farmers gained the right to explicitly

transfer land. Instead land is allocated by village leaders, and reallocated or adjusted

among households within village small groups if a household is judged to have too

little land to support itself. Nonetheless, there is some possibility that reallocation
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may be related to shocks that occur in period t or t—1 that may also be systematically

related to poverty status and the migrant network size. Wooldridge (2002) shows that

when the assumption of strict exogeneity of the regressors fails in the context of the

standard FE estimation the inconsistency of the instrument is of order T”. We thus

use the period t — 2 value of land per capita and estimate:

POUz‘t = llfiiPOl’rt—i + 62(th * Pm’itwll + 63M}, + Xitai + 021P6it—2 + Dt + “i + Eitl.

(3.19)

One remaining issue remains in that we do not perfectly observe the network M},

through which household 2' may use for job referrals. Instead, we observe the number

of registered longterm village residents who are employed as migrants outside the

village in a particular year, or M3,. The true migrant network may include former

legal registered residents who have now changed their long-term residence status,

implying that the actual potential network is larger. Alternatively, the household

may not be familiar with all of the village out-migrants, and thus the actual network

through which a household may seek referrals may be smaller. Thus, we will estimate:

Povit = ll/31P0Uz't—1 + 232th * Povrt—l) + 63th + Xital + azlpcz't—z + Dt + W + Eu].

(3.20)

In our identification strategy below, we will instrument the endogenous number

of village out-migrants, Mjta with village level instruments, identifying the size of

the village migrant labor force, interacted with period t — 2 lagged land per capita,

lpc,,_2, in order to allow for differences in the effective value of the village migrant

network for households with different amounts of land.

Why might we expect that interacting with lpc,,-2 might achieve this? We believe

that the land per capita managed by households will likely pick up a dimension of

proximity of different households within the village. Within villages in rural China,

households are separated into smaller units of roughly 20 households known as vil-

lage small groups (cun riaozu), which were referred to as production teams during
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the Maoist period. These households are located in clusters and will have closer re-

lationships with one another than with households of other small groups. Moreover,

property rights to land in rural China typically reside with the small group, not with

the village. Thus, when land reallocations take place they typically take place within

but not across small groups. Small groups make more frequent small adjustments

to household land as the land per capita available starts to become unequal with

differential changes in household structure across households within the small group,

but there is much less flexibility in making adjustments across small groups. As a

result, much of the variability of land per capita within villages occurs across small

groups.13 Interacting a village level instrument for the migrant network with land

per capita will allow the importance of M], to vary across households, and much of

the difference across households occurs because of unobserved differences in the small

groups in which they reside and from which migrants refer to as home.

3.3.5 Identifiying the Migrant Network

To instrument the village migrant network, we make use of two policy changes that,

working together, affect the strength of migrant networks outside home counties but

are plausibly unrelated to the demand for and supply of schooling. First, a new

national ID card (shenfen zheng) was introduced in 1984. While urban residents re-

ceived IDs in 1984, residents of most rural counties did not receive them immediately.

In 1988, a reform of the residential registration system made it easier for migrants

to gain legal temporary residence in cities, but a national ID card was necessary to

 

13 We do not know village small group membership in the RCRE survey prior to 2003

when a new survey instrument was introduced. If we regress land per capita on village

dummy variables in 2003, we obtain an R-Squared of 0.503, while if we run a regression

of land per capita on small group dummy variables, we obtain an R-Squared of 0.616. A

Lagrange Multiplier test for whether the small group effects add anything significant over

the village effects, which is effectively a test of whether small group coefficients are constant

within villages, yields an LM statistic of 310.67, which has a p—value of 0.0000.
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obtain a temporary residence permit (Mallee, 1995). While some rural counties made

national IDs available to rural residents as early as 1984, others distributed them in

1988, and still others did not issue IDs until several years later. The RCRE follow-up

survey asked local officials when IDs had actually been issued to rural residents of

the county. In our sample, 41 of the 90 counties issued cards in 1988, but cards were

issued as early as 1984 in three counties and as late as 1997 in one county. It is

important to note that IDs were not necessary for migration, and large numbers of

migrants live in cities without legal temporary residence cards. However, migrants

with temporary residence cards have a more secure position in the destination com-

munity, hold better jobs, and would thus plausibly make up part of a longer-term

migrant network in migrant destinations. Thus, ID distribution had two effects after

the 1988 residential registration (hukou) reform. First, the costs of migrating to a city

should fall after IDs became available. Second, if the quality of the migrant network

improves with the years since IDs are available, then the costs of finding migrant

employment should continue to fall over time.

As a result, the size of the migrant network should be a function of both whether or

not cards have been issued and the time since cards have been issued in the village.

Given that the size of the potential network has an upper bound, we expect the

years-since—IDs-issued to have a non-linear relationship with the size of the migrant

labor force and we expect growth in the migrant network to decline after initially

increasing with distribution of IDs. In Figure C.4, we show a lowess plot of the

relationship between years since IDs were distributed and the change in number of

migrants from the village from year t—l to t. Note the sharp increase in migrants from

the time that IDs are distributed and then a slowing of the increase over time (which

would imply an even slower growth rate). This pattern suggests non-linearity in the

relationship between ID distribution and new participants in the village migrant labor

force. We thus specify our instrument as a dummy variable indicating that IDs had
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been issued interacted with the years since they had been issued, and then experiment

with quadratic, cubic and quartic functions of years-since-IDs-issued. We settle on

the quartic function for our instruments because, as we show below, it fits the pattern

of expanding migrant networks better than the quadratic or the cubic functions.

Since ID distribution was the responsibility of county level offices of the Ministry

of Civil Affairs, which are distinctly separate from agencies involved in setting policies

affecting land, credit, taxation and poverty alleviation (the Ministry of Agriculture

and Ministry of Finance handle most decisions that affect these policies at the local

level), it is plausible that ID distribution is not be systematically related to unob-

servable policy decisions with more direct relationship to household consumption.

Still, using a function of the years since IDs were issued is not an ideal identification

strategy. Ideally, a policy would exist that was randomly implemented, affecting the

ability to migrate from some counties but not others. As the differential timing of the

distribution of ID cards was not necessarily random, we must be concerned that coun-

ties with specific characteristics or that followed specific policies were singled out to

receive ID cards earlier than other counties, or that features of counties receiving IDs

earlier are systematically correlated with other policies affecting consumption growth.

These counties, one might argue, were “allowed” to build up migrant networks faster

than others.

In an earlier paper, de Brauw and Giles (2007) address several possible concerns

with use of the years-since—IDs quartic as instruments for the size of the village migrant

labor force. They first show that timing of ID distribution appears to be related to

remoteness of the village, but not systematically related to village policies affecting

that may affect consumption growth, with village administrative capacity, or with

the demand for IDs within the village. They thus argue in favor of including a village

fixed effect to control for features of the local county which may have affected timing

of ID distribution, and then identify the size of the village migrant labor force off of
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non—linearities in the time that it requires for migrant networks to build up. In this

paper, we interact the quartic in years-since IDs with pre—determined land per capita

of households in period t — 2 to identify the size of the village migrant network.

3.4 Results

Before estimating equation (3.20), we establish that our instruments are significantly

related to size of the migrant labor force. We estimate the relationship as a quadratic,

cubic, and quartic function of the years since IDs were issued each interacted with pe-

riod t— 2 land per capita. These results are reported in columns (1) (3) and columns

(4) -(6) of Table C.2 for each year from 1995-2001 and odd years from 1989-2001, re-

spectively.14We find a strong relationship between our instruments and the size of the

migrant. network for each specification. For the remainder of our estimation we favor

the quartic function interacted with t — 2 land per capita for two reasons: First, the

effects of ID card distribution on the migration network can be determined more flex-

ibly when we use the quartic specification. Secondly, the partial R2 increases slightly

from the quadratic to the quartic for the both samples we consider. After controlling

for the household characteristics, the instruments have jointly significant effects on

the number of migrants from the village for both samples, with F-statistics of 39.82

and 54.65 for the 1995 to 2001 and odd year 1989 to 2001 samples, respectively.

We apply the method introduced in Section 3.2.2 to estimating equation (3.20).

In Table C.3, we report estimation results based on the pure random effects and

correlated random effects approaches. We obtain the pure RE estimation results using

the Stata ”xtprobit” command, where year dummies (not shown), residuals from the

first stage estimation and their time averages (not shown), number of household

 

14 Since the RCRE survey was not conducted in 1992 and 1994, we estimate the dynamic

model with one year spacing from 1995 to 2001, and with two-year spacing from 1989 to

2001.
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members, number of prime age household laborers, second lag of land per capita,

average years of education, share of females, lagged poverty status, migration network,

interaction between the lagged poverty status and the migration network are included

as explanatory variables. The correlated RE estimation results are obtained using the

Stata ”xtprobit” command, where year dummies (not shown), residuals from the first.

stage estimation (not shown), first-stage residuals and all the exogenous explanatory

variables in each time period (not shown), number of household members, number

of prime age household laborers, second lag of land per capita, average years of

education, share of females, lagged poverty status, migration network, interaction

between the lagged poverty status and the migration network, and the poverty status

in the initial time period are included as explanatory variables. For purposes of

comparison, we also estimate model (3.20) using a naive linear probability model and

provide the results in Table C.4. Even after controlling for the unobserved effect using

our correlated RE approach, the coefficients on the lagged poverty status are highly

statistically significant for explaining the current poverty status in both datasets

considered. The positive sign of the lagged poverty status suggests that being poor

in a previous period significantly increases the probability of being poor in a current

period. The initial value of the poverty status is also very important. It implies that

there is substantial correlation between the unobserved effect and the initial condition.

The coefficient on the lagged poverty status in the initial time period (1.028 for 1989-

2001 dataset and 1.161 for 1995—2001 dataset) is larger than the coefficient on the

lagged poverty status (0.820 for 1989-2001 dataset and 1.523 for 1995-2001 dataset).

The migrant network is statistically significant for explaining the poverty status in

all models but the correlated RE using the 1995-2001 dataset. Interaction between

the migration network and the poverty status is also statistically significant at 0.01

level for every case we consider. The negative sign of the interaction term suggests

that those households that were poor in the previous period are less likely to benefit
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from the increases in the size of the migration network in the current period. In

other words, in our application, we find that migration is important for reducing

the likelihood that poor households remain in poverty and that non-poor households

fall into poverty. Further, failure to control for unobserved heterogeneity leads to

an overestimate of the impact of migrant labor markets on probability of staying

poor of those who lived below the poverty lines. The coefficient on the interaction

term between the migration network and the lagged poverty status for the pure RE

approach (-0.188 for 1989-2001 dataset and -0.180 for 1995-2001 dataset) is larger

in absolute value than the coefficient on the interaction term for the correlated RE

method (-0.108 for 1989-2001 dataset and -O.137 for 1995-2001 dataset).

In Table C.5 we show the APEs for both models considered for both data samples.

For example, for the sample from 1989 to 2001, the correlated random effects CF

estimate of the APE of 100 more members in the migration network for those who were

living above the poverty level is to reduce the probability of being poor by about 3.6

percentage points. For those who lived below the poverty line, the correlated random

effects CF estimate of the APE of 100 more members in the migration network is to

reduce the probability of being poor by 5.7 percentage points. Interestingly the APEs

calculated using the correlated random effects dynamic probit approach are generally

smaller than those calculated using the linear probability model. This suggests that

using a naive LPM approach might lead us to conclude that migraton has a stronger

impact on poverty reduction than found using the correlated random effects probit

model.

3.5 Conclusions

In this paper, we have developed a dynamic binary response panel data model that

allows for an endogenous regressor. This estimation approach is of particular value
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for settings in which one wants to estimate the effects of a treatment which is also

endogenous. We next apply the model to examine the impact of rural—urban migration

on the likelihood that households in rural China fall below the poverty line. In our

application, we find that migration is important both for reducing the likelihood that

households remain in poverty or fall into poverty if they were not poor in the previous

period.
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Table A.1. Usual Unobserved Effects CRC Model for 6 = 2 and T = 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(ll (2) (3) (4) (5) (6)

Estimator Time Dummies? Mean SD RMSE LQ Median UQ

N = 100

POLS no 3.363 .189 1.377 3.238 3.356 3.486

FE—OLS no 2.616 .138 0.642 2.527 2.621 2.711

IV no 2.752 .225 0.781 2.612 2.761 2.901

FE—IV no 2.423 .214 0.484 2.288 2.429 2.558

FE—IV yes 1.945 .407 0.407 1.711 1.980 2.208

N = 400

POLS no 3.369 .091 1.372 3.299 3.366 3.434

FE-OLS no 2.623 .067 0.635 2.575 2.626 2.667

IV no 2.745 .110 0.760 2.666 2.740 2.818

FE-IV no 2.428 .096 0.455 2.362 2.423 2.498

FE—IV yes , 1.988 .177 0.213 1.887 1.997 2.101

N = 800

POLS no 3.373 .063 1.375 3.330 3.366 3.412

FE—OLS no 2.625 .046 0.637 2.596 2.624 2.655

IV no 2.753 .076 0.764 2.700 2.750 2.801

FE—IV no 2.436 .068 0.458 2.389 2.437 2.480

FE—IV yes 2.004 .131 0.182 1.919 2.009 2.091
 

81

 



Table A2. Usual Unobserved Effects CRC Model for 3 = 2 and T = 10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1) (2) (3) (4) (5) GD

Estimator Time Dummies? Mean SD RMSE LQ Median UQ

N = 100

POLS no 3.204 .157 1.223 3.097 3.195 3.314

FE—OLS no 2.534 .106 0.562 2.469 2.531 2.603

IV no 2.397 .123 0.440 2.324 2.395 2.475

FE-IV no 2.277 .115 0.331 2.208 2.276 2.351

FE—IV yes 2.013 .283 0.313 1.841 2.020 2.210

N = 400

POLS no 3.196 .077 1.202 3.146 3.193 3.247

FE—OLS no 2.528 .056 0.545 2.490 2.527 2.565

IV no 2.392 .061 0.417 2.450 2.393 2.431

FE—IV no 2.270 .060 0.305 2.231 2.274 2.308

FE—IV yes 1.995 . .138 0.186 1.901 2.002 2.092

N = 800

POLS no 3.194 .054 1.200 3.155 3.194 3.224

FE—OLS no 2.525 .040 0.541 2.498 2.523 2.551

IV no 2.388 .042 0.410 2.357 2.387 2.416

FE—IV no 2.268 .041 0.299 2.241 2.267 2.294

FE-IV yes 1.992 .100 0.160 1.926 1.993 2.062
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Table A3. Random 'Irend CRC Model for 6 = 2 and T = 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1) (2) (3) (4) (5) (6)

Estimator Time Dummies? Mean SD RMSE LQ Median UQ

N = 100

POLS yes 4.293 .300 2.303 4.096 4.284 4.475

FE—OLS yes 2.673 .182 0.697 2.555 2.671 2.782

IV yes 2.929 .850 1.247 2.444 2.941 3.496

FE—IV yes 2.000 .626 0.642 1.635 2.057 2.383

FE—IV no 13.414 1.411 11.422 12.464 13.221 14.225

N = 400

POLS yes 4.308 .144 2.312 4.201 4.307 4.411

FE—OLS yes 2.663 .085 0.679 2.607 2.666 2.721

IV yes 3.004 .411 1.073 2.704 3.023 3.292

FE—IV yes 2.013 .269 0.301 1.835 2.019 2.204

FE—IV no 13.406 .665 11.406 12.915 13.340 13.878

N = 800

POLS yes 4.296 .097 2.294 4.225 4.295 4.363

FE—OLS yes 2.660 .060 0.671 2.617 2.658 2.700

IV yes 2.996 .278 1.038 2.809 2.993 3.171

FE-IV yes 1.996 .187 0.223 1.874 2.005 2.130

FE—IV no 13.351 .478 11.328 13.049 13.318 13.654
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Table A4 Random Trend CRC Model for B = 2 and T = 10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1) (2) (3) (4) (5) (6)

Estimator Time Dummies? Mean SD RMSE LQ Median UQ

N = 100

POLS yes 4.789 .407 2.820 4.522 4.814 5.051

FE-OLS yes 2.651 .178 0.687 2.539 2.656 2.761

IV yes 2.916 1.042 1.401 2.357 2.976 2.615

FE—IV yes 1.968 .619 0.641 1.603 2.001 2.384

FE—IV no 15.933 .771 , 13.919 15.367 15.902 16.479

N = 400

POLS yes 4.808 .190 2.815 4.678 4.808 4.943

FE—OLS yes 2.662 .089 0.678 2.600 2.662 2.718

IV yes 3.000 .504 1.137 2.659 2.993 3.361

FE—IV yes 1.981 .311 0.338 1.767 1.978 2.203

FE—IV no 15.900 .406 13.875 15.633 15.890 16.177

N = 800

POLS yes 4.788 .144 2.784 4.682 4.779 4.885

FE—OLS yes 2.663 .062 0.674 2.618 2.660 2.703

IV yes 3.000 .360 1.061 2.759 3.026 3.243

FE—IV yes 1.997 .201 0.234 1.855 1.998 2.132

FE-IV no 7 15.904 .289 13.888 15.693 15.895 16.098
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Table 8.5. Standard Errors for the Control Einction Approach

 

(1) (2) l (3) l (4) (5) (6) (71

 

 

 

 

 

 

 

   
 

 

 

 

 

 

g N | Mean l Reg. SE Rob. SE Adj. SE SD ‘1

gm on a large support set

Usual Unobserved Effect CRC Model

74$ 0 500 2.059 0.040 0.035 0.056 0.057

1000 2.057 0.029 0.025 0.040 0.039

= 0 500 2.002 0.080 0.075 0.090 0.089

1000 2.000 0.057 0.053 0.064 0.062

Random TYend CRC Model

0 500 2.039 0.194 0.113 0.122 0.126

1000 2.037 0.137 0.081 0.087 0.084

= 0 500 1.993 0.278 0.169 0.176 0.178

1000 2.001 0.196 0.120 0.124 0.120

3120: E (0.1)

Usual Unobserved Effect CRC Model

# 0 500 2.150 0.204 0.211 0.221 0.233

1000 2.137 0.143 0.150 0.157 0.157

= 0 500 2.012 0.319 0.246 0.256 0.241

1000 2.005 0.225 0.174 0.181 0.186

Random Trend CRC Model

75 0 500 2.229 0.615 0.690 0.693 0.723

1000 2.182 0.433 0.497 0.499 0.494

= 0 500 1.949 1.077 0.875 0.877 0.864

1000 1.965 0.760 0.617 0.619 0.668
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Table B.7. POLS Estimates of the First Stage Regressions

 

 

 

Variable ] (1) (2) (3) (4) (5) (6)

grant“ 35.410* 36198” 28697“ 32.504* 29185" 32736“

[5.934] [5.515] [5.364] [5.024] [5.294] [5.081]

grant, -7.693 -8.482 6.788 2.981 -2.352 -5.903

[11.885] [12.530] [16.474] [17.456] [12.982] [14.064]

dtt No Yes No Yes No es

Control Variable(s) No No Yes Yes Yes Yes

R2 .258 .291 .314 .332 .284 .304

Number of Observations 135 135 117 117 120 120 

 

 

Notes: (i) Dependent variable is hrsempit; grantit is a dummy indicator for whether

a grant was received, W,- is a time average of grantit. (ii) Quantities in square

brackets are fully robust standard errors. (iii) Row called ”dtt” indicates whether

a regression includes separate year intercepts for 1988 and 1989 on the first and

on the second stages of estimation. (iv) Control variables in (3) and (4) include

log(employz-t) ~ the log of number of employees, log(salesz-t) — the log of annual sales,

and log(avg.sal,jt) ~ the log of average employee salary. Controls in (5) and (6) include

log(aifgsalit) only.

*Statistically significant at the .01 level.
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Figure C.1. Share of Village Labor Force Employed as Migrants by Year
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Figure C.2. Village Consumption Growth
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Figure C.3. Change in Poverty Headcount
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Table C.2. Factors Determining the Size of the Village Migrant Network

First-Stage Regressions

Dependent Variable: Number of Migrants

Odd Years from 1989 to 2001Years from 1995 to 2001

 

Model (I) Q) (3) (4) I5) (6)

Household Population 4.709” 4.763“ -1 .785” 2335"" 2338"" -2.341""

(0.867) (0.862) (0.862) (0.656) (0.655) (0.655)

Number ofWorking Age 2.516" 2.300" 2.370” 4348"" 4269*” 4.284‘"

Laborers in the (1.046) (1.037) (1.037) (0.773) (0.771) (0.770)

Household

Land Per Capita ,-2 9363”" ~3.719*** 4752”" 10.53?” 14.43?" 15.540”“

(2.666) (1.337) (1.414) (1.503) (1.825) (2.067)

Average Years of -0.293 -0.267 -0.272 -0.190 -O.I93 -O.206

Education

(0.345) (0.343) (0.343) (0.270) (0.270) (0.270)

Female Share of the -0.410 —0.564 -0.707 1.805 2.023 1.999

Household

(3.139) (3.123) (3.126) (2.925) (2.923) (2.924)

(Years-Since-ID-Issued) 2020*“ -3.899"‘” -7.396*“ -0.169 2513"" 3925""

" (Land Per Capita ..2) (0.421) (0.462) (0.823) (0.273) (0.535) (0.802)

(Years-Since-ID-Issued)2 -0.100“'" 0772"" 1779*" -0.093*" 0.246‘” 0633*"

"‘ (Land Per Capita (.2) (0.020) (0.081) (0.241) (0.015) (0.071) (0.167)

(Years-Since-ID-Issued)3 0034*" 0123"“ -0.014‘" -0.050"*

" (Land Per Capita t.2) (0.003) (0.022) (0.003) (0.015)

(Years-Since-ID-Issued)4 0.003 "' "' " 0.001 "' *

" (Land Per Capita (.2) (0.001) (0.000)

Observations 25692 25692 25692 22812 22812 22812

R-squared 0.09 0.10 0.10 0.22 0.22 0.22

F-Statistic on IVs with 11.80 23.10 34.21 55.84 37.59 29.68

Averages

F-Statistic on IVs w/o 12.63 40.28 39.82 109.40 71.81 54.65

Averages

Partial R2, IVs with 0.003 0.009 0.015 0.007 0.007 0.008

Averages

Partial R2, IVs w/o 0.000 0.001 0.002 0.006 0.006 0.006

Averages
 

Notes: In parenthesis we show fully robust standard errors [*** p<0.01, *"' p<0.05, * p<0.1].

All regressions include time averages of the explanatory variables and year dummies.
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