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ABSTRACT

SEMIPARAMETRIC MODELS FOR MOUTH-LEVEL INDICES IN CARIES
RESEARCH

By

Yifan Yang

For nonnegative count responses in health services research, a large proportion of zero

counts are frequently encountered. For such data, the frequency of zero counts is typically

larger than its expected counterpart under the classical parametric models, such as Poisson

or negative binomial model. In this thesis, a semiparametric zero-inflated regression model

is proposed for count data that directly relates covariates to the marginal mean response

representing the desired target of inference. The model specifically assumes two semipara-

metric forms: the log-linear form for the marginal mean and the logistic-linear form for the

susceptible probability, in which the fully linear models are replaced with partially linear

link functions. A spline-based estimation is proposed for the nonparametric components

of the model. Asymptotic properties are discussed for the estimators of the parametric

and nonparametric components of the models. Specifically, the estimators are shown to be

strong consistent and asymptotically efficient under mild regularity conditions. A bootstrap

hypothesis test is performed to evaluate difference involving the nonparametric component.

Simulation studies are conducted to evaluate the finite sample performance of the model.

Finally, the model is applied to dental caries indices in low income African-American chil-

dren to evaluate the nonlinear effects of sugar intake on caries development. The conclusion

shows that the effect of sugar intake on caries indices is nonlinear, especially among young

children under the age of 2. And children whose caregivers are unemployed and have poor

oral healthy exhibit higher dental caries rates.
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KEY TO SYMBOLS

All English and Greek letter-based symbols used for mathematical expressions in this
thesis are listed here in alphabetical order. In general, a capital letter refers to a random
variable/vector, and the small letter refers to the value/sample corresponding to the random
variable/vector.

General Rule 1: English letter-based symbols refer to known data or covariates like X,
Y and Z unless otherwise stated;

General Rule 2: Greek letter-based symbols refer to unknown parameters like κ, λ and
π unless otherwise stated;

General Rule 3: Ralph Smith’s symbols refer to specific classes of functions like C and
F ;

General Rule 4: Blackboard bold symbols refer to special operations like the density
function P,expectation E and variance V, or special number sets like the set of real numbers
R and the set of nonnegative natural numbers N;

General Rule 5: a star symbol refers to another point corresponding to the original one
which belongs to the same set like both θ and θ∗ belong to Θ.

E : the expectation of random variables/vectors or functions of random variables/vectors
with respect to specific P;

k0 and k1 : the growth rates of number of knots (without containing two ends);

l : the degree of spline basis functions;

l() : the log-likelihood function;

L : the likelihood function;

L2 and L∞ : the L2 norm and the L∞ norm respectively;

m0 and m1 : the numbers of knots (without containing two ends);

n, n0 and n1 : the sample size of data, the sample size of data when ∆ = 0 and the
sample size of data when ∆ = 1;

N0 and N1 : the number of parameters for spline basis functions;

PX : the probability measures with respect to random vector X;

r0 and r1 : the smoothing parameters corresponding to B1, B2, B3 and B4;

si and ti : the knots on the interval [0, 1];

Φn : a mapping that relates a point on parameter space Θ to product space Θn;

Γ : the gamma function.
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Chapter 1

Introduction

1.1 Oral Health Research

Tooth decay, more academically known as dental caries or cavities, is considered as one of the

most prevalent oral diseases, in particular among young children as young as five (Todem,

2012a). It also remains the most common chronic disease among children aged five to

eleven and adolescents aged twelve to seventeen years (Dye et al., 2007). Although tooth

decay does not significantly decrease school or work performance and social relationships

among older adults while it does among children, it dramatically impacts on their chewing

abilities, forces them to limit diet selection, and eventually contributes to other overall health

problems (Sullivan et al., 1993; Blaum et al., 1995; Ritchie et al., 2000).

To evaluate the severity of dental caries at tooth surface level, many dental epidemiol-

ogists conduct the studies using the decayed, missing and filled (DMF) indices (Klein and

Palmer, 1938), also called as DMFT indices when applied to all the teeth, or as DMFS index

when applied only to tooth surfaces (five per posterior tooth and four per anterior tooth).

The integer scores per subject range from 0 to 28/32 in DMFT system while do from 0 to

128/148 in DMFS system (Cappelli and Mobley, 2007).
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1.2 Zero-Inflated Models

Investigators frequently encountered integer counts data with a high frequency of zero val-

ues in studies like a dental caries study related to DMFS indices. Zero-inflated models,

which view data as being generated from a mixture of a point mass at zero and a non-

degenerate distribution, have become a popular and interesting tool within the parametric

framework (Mullahy, 1986; Farewell and Sprott, 1988; Lambert, 1992; Ridout et al., 2001;

Gilthorpe et al., 2009; Wang et al., 2015) to analyze count data with excessive zeros. The

non-degenerate distribution can be the Poisson model (Lambert, 1992; Lam et al., 2006;

He et al., 2010), the negative binomial model (Yau et al., 2003; Minami et al., 2007; Wang

et al., 2015), or other discrete probability distributions like the Conway-Maxwell-Poisson

distribution (Shmueli et al., 2005) and so on (Loeys et al., 2012). These zero-inflated models

have been applied in many fields, such as the study of length of hospital stay (Atienza et al.,

2008; Singh and Ladusingh, 2010), the health care outcomes research (Hur et al., 2002), and

the study of pediatric length of stay (Lee et al., 2005).

We believe the zero-inflated negative binomial (ZINB) model is more appropriate to the

dental caries data because the variance is assumed to be the same as the mean for the

Poisson distribution, which may be violated for real data analysis. The procedure for testing

the zero-inflated Poisson (ZIP) model against the ZINB model is discussed in details as

well (Ridout et al., 2001).

1.3 Method of Sieves

We consider the zero-inflated model with the semiparametric framework (Xue et al., 2004;

Lam et al., 2006; He et al., 2010; Zhang et al., 2010), or called a partial linear model, which is
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particularly appropriate to the data when the covariate is nonlinearly related to the response.

For example, I am interested in evaluating the nonlinear effect of the daily amount of sugar

intake (DASI) on caries indices in primary dentition adjusting for important confounders.

It is extremely tricky to handle the nonparametric component in the semiparametric sta-

tistical studies. To approximate the nonparametric component, many statistical tools are

available, such as piecewise polynomials (Chen, 1988), kernel estimator (Speckman, 1988),

M estimator (Härdle and Liang, 2007), profile estimator (Ghosh, 2001), and sieve estima-

tor (Geman and Hwang, 1982; Shen and Wong, 1994; Shen, 1997; Huang and Rossini, 1997).

For real data analysis with sieve estimator, the unknown nonparametric component can be

approximated by the piecewise linear functions (Xue et al., 2004; Lam et al., 2006; He et al.,

2010), the triangle series (Song and Xue, 2000), the small waves functions (Shen and Shi,

2004), and the B-spline basis functions (Zhang et al., 2010). The primary thought is I per-

form the minimization or maximization within a subset of an infinite parameter space, then

let the dimension of this subset grow with the sample size. More details about method of

sieve will be given in the Section 2.3.

1.4 Organization of This Thesis

In the rest of this thesis, I propose a semiparametric ZINB model for three goals: (1)

evaluating the effect of covariates on the marginal mean response, (2) investigating the

nonlinear effect of the DASI on caries indices in primary dentition adjusting for important

confounders, and (3) comparing whether the above nonlinear effect may vary in different

ages groups. We propose the specific semiparametric ZINB model and sieve maximum

likelihood (ML) estimator for both parametric and nonparametric components in Chapter
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2. Given necessary assumptions, I derive the asymptotic properties of sieve estimator like

strong consistency, rate of convergence, and asymptotic normality in Chapter 3. All proofs

of theorems and additional lemmas are present in the appendix. Furthermore, I conduct the

bootstrap hypothesis testing for nonparametric components of interest at the end of Chapter

3. In the Chapter 4, I apply the semiparametric ZINB model to real dental caries data after

evaluating its advantage in simulation study. We summarize the work in this thesis and

discuss its extension to other settings like penalized sieve methods.
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Chapter 2

Models and Sieve Estimator

2.1 ZINB Distribution

Let Y denote the count variable that has a zero-inflated negative binomial (ZINB) distribu-

tion. Specifically, assume Y have a probability density function

P (Y = y) =


π + (1− π) (1 + κλ)−

1
κ , y = 0

(1− π)
Γ
(
y+ 1

κ

)
(κλ)y

Γ
(

1
κ

)
Γ(y+1)(1+κλ)y+ 1

κ
, y > 0

(2.1)

where κ ≥ 0 is the dispersion parameter that is assumed not to depend on covariates (Ridout

et al., 2001; Wang et al., 2015), λ ≥ 0 is the mean of the underlying negative binomial

distribution (Wang et al., 2015), and 0 ≤ π ≤ 1 is the probability of zero counts. This

distribution reduces to the zero-inflated Poisson (ZIP) distribution in the limit κ→ 0 (Ridout

et al., 2001; Minami et al., 2007). The mean and variance of ZINB distribution in (2.1) are

given by

E (Y ) = (1− π)λ (2.2)

V (Y ) = (1− π)λ (1 + κλ+ πλ)
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where E and V are the expectation operator and variance operator, respectively. Some

scholars present an alternative parameterization of ZINB model as well (Yau et al., 2003).

The dispersion parameter κ can be replaced by its reciprocal called overdispersion pa-

rameter 1
κ in the model (Yau et al., 2003; Minami et al., 2007; Wang et al., 2015). Compared

to a nonnegative κ, the representation of overdispersion parameter 1
κ requires κ 6= 0, which

causes κ belonging an open set (0,∞). Similarly, the logarithmic function log(λ) with re-

spect and the logistic function logit(π) = log
(

π
1−π

)
in the next section require λ 6= 0 and

π 6= 1, π 6= 0. Without loss of generality, the domain of κ in overdispersion case is restricted

on a subset of the open set like κ ∈ [ε,∞) and so do λ and π like λ ∈ [ε,∞) and π ∈ [ε, 1− ε]

for any given ε > 0, respectively.

The mean of negative binomial distribution λ in (2.1), can be written in terms of mean

of ZINB distribution (2.2) representation, that is, λ = E
(
Y |I(Y >0) = 1

)
where the identity

variable I(Y >0) takes value 1 if Y > 0 and takes value 0 otherwise. Thus, I call E(Y )

in (2.2) as the marginal mean of ZINB distribution corresponding to the conditional mean

λ = E
(
Y |I(Y >0) = 1

)
.

2.2 Semiparametric ZINB Marginal Mean Regression

In the regression setting, λ and π are called as latent variables, and both logit(π) and log(λ)

are assumed to depend on a linear function of covariates for almost all cases (Lambert, 1992;

Ridout et al., 2001; Yau et al., 2003; Minami et al., 2007; Wang et al., 2015). Although this

latent variables formulation in some settings provides a versatile and useful representation

of the data, the implied regression parameterization may fail to provide a clear answer to

the question of evaluating the covariate effects on the marginal mean response. Therefore,

6



in this thesis, the latent variable π and the marginal mean E (Y ) are assumed to depend on

a linear function of covariates, given by

log (E (Y )) = α>X (2.3)

logit(π) = β>Z (2.4)

where X =
(

1, X1, . . . , Xd1

)>
and Z =

(
1, Z1, . . . , Zd2

)>
are (d1 + 1) × 1 and (d2 + 1) ×

1 covariates vectors, α and β are vectors of unknown regression coefficients, respectively,

logit(π) = log
(

π
1−π

)
and the symbol > is the transpose of a vector or matrix. The covariates

that affect the marginal mean of outcome may or may not be the same as the covariates that

affect the probability of zero counts.

Lam and Xue (2006) considered a semiparametric link function for their ZIP model (Lam

et al., 2006), then He and Xue (2010) extended the ZIP model to the doubly semiparametric

ZIP model (He et al., 2010). Motivated by these, I extend the parametric ZINB model to

a semiparametric one with partially linear link functions for both the marginal mean E(Y )

and the logit of the probability of zeros logit(π) , expressed as the following joint model

log (E (Y )) = log[(1− π)λ] = α>X + (1−∆)g0 (S) + ∆g1 (S) (2.5)

logit(π) = β>Z + (1−∆)h0 (S) + ∆h1 (S) (2.6)

where Y ∈ AY ⊆ N, X =
(
X1, . . . , Xd1

)>
∈ AX ⊆ Rd1 and Z =

(
Z1, . . . , Zd2

)>
∈

AZ ⊆ Rd2 are d1 × 1 and d2 × 1 covariates vectors without intercepts, α and β are vectors

of unknown regression coefficients as well, g0 (S) , g1 (S) , h0 (S) and h1 (S) are unknown

smoothing functions with respect to continuous covariate S ∈ [0, 1] that occurs between 0
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and 1 for fixed binary variable ∆ ∈ {0, 1} that takes value 0 or 1, latent variables satisfy

that λ ∈ Aλ ⊆ [0,∞) and π ∈ Aπ ⊆ [0, 1]. We call the model (2.1), (2.5) and (2.6) as

semiparametric ZINB marginal mean model. For real data analysis, ∆ stands for different

groups that subjects belong to.

REMARK 2.2.1. Notice the covariates vectors X in (2.3) and (2.5) have different dimen-

sions, so do Z in (2.4) and (2.6). We put the intercept terms X0 = 1 and Z0 = 1 into the

nonparametric components like other do (Xue et al., 2004; Lam et al., 2006; He et al., 2010)

2.3 Maximum Likelihood Estimation by Method of Sieves

Let W =
(
Y,X>,Z>,∆, S

)>
∈ Ω be the data vector, where the sample space Ω is given by

Ω ,

{
W : W ∈ AY × AX × AZ × {0, 1} × [0, 1]

}
= AY × AX × AZ × {0, 1} × [0, 1]

⊆ N× Rd1 × Rd2 × {0, 1} × [0, 1]

Let θ =
(
α>, β>, κ, g0, g1, h0, h1

)>
be the vector of all the unknown quantities of interest

with θT =
(
α>T , β

>
T , κT, gT,0, gT,1, hT,0, hT,1

)>
as the unique true value of θ. Assume the

parameter space be given by

Θ ,

{
θ : α ∈ A1, β ∈ A2, κ ∈ A3, g0 ∈ B1, g1 ∈ B2, h0 ∈ B3, h1 ∈ B4

}
= A1 × A2 × A3 ×B1 ×B2 ×B3 ×B4

8



where A1 and A2 are compact sets in Rd1 and Rd2 , A3 is a compact set in nonnegative

real set R+
0 , and B1, B2, B3 and B4 are sets of functions that have bounded continuous

derivatives on [0, 1], and the ri-th derivative is γi-Hölder continuous on [0, 1] for 0 < γi ≤ 1.

Specifically, they are given by

Bi =

{
f ∈ C ri [0, 1] :

∥∥∥f (j)
∥∥∥
∞
<∞, j = 0, 1, . . . , ri,

∣∣∣f (ri)(s)− f (ri)(s∗)
∣∣∣ ≤ Cri,i |s− s

∗|γi ,

∀s, s∗ ∈ [0, 1]

}
(2.7)

where C ri [0, 1] is the collection of functions with ri-th continuous derivative on [0, 1], f (j)

is the j-th derivative of f , constant Cri,i, γi and positive integer ri are given by investigator

for i = 1, 2, 3, 4. Let r denote min{r1, r2, r3, r4} in the next section. For any observation w

of W , the density function of W is given by

PW (W = w; θ)

= PY |X,Z,∆,S (Y = y|X = x,Z = z,∆ = δ, S = s)

× PX,Z,∆,S (X = x,Z = z,∆ = δ, S = s)

=

[
π + (1− π)(1 + κλ)−κ

−1
]I(y=0)(y)

×

[
(1− π)

Γ
(
y + κ−1

)
(κλ)y

Γ
(
κ−1

)
Γ (y + 1) (1 + κλ)y+κ−1

]I(y>0)(y)

× PX,Z,∆,S (x, z, δ, s)

9



where

log [(1− π)λ] = α>x + (1− δ)g0(s) + δg1(s) (2.8)

logit(π) = β>z + (1− δ)h0(s) + δh1(s) (2.9)

and the identify function IX(x) takes value 1 if x ∈ X, takes value 0 otherwise, and

PX,Z,∆,S (x, z, δ, s) is the joint density function of (X,Z,∆, S).

The log-likelihood function can be represented as follows after setting PX,Z,∆,S (x, z, δ, s)

aside in the estimation of θ,

l(θ, w)

= logPW (W = w, θ)

= log

{[
π + (1− π)(1 + κλ)−κ

−1
]I(y=0)(y)

×

[
(1− π)

Γ
(
y + κ−1

)
(κλ)y

Γ
(
κ−1

)
Γ (y + 1) (1 + κλ)y+κ−1

]I(y>0)(y)}
= I(y=0)(y) log

[
π + (1− π)(1 + κλ)−κ

−1
]

+ I(y>0)(y) log

[
(1− π)

Γ
(
y + κ−1

)
(κλ)y

Γ
(
κ−1

)
Γ (y + 1) (1 + κλ)y+κ−1

]
(2.10)

REMARK 2.3.1. According to the definition of Bi in (2.7), any f ∈ Bi is continuous

on [0,1], so f is bounded. Plus, bounded π, λ always belongs to closed sets Aπ and Aλ.

According to (2.10), given W = w, the mapping l : Aπ × A3 × Aλ → R is an elementary

function with respect to (π, κ, λ), so l is continuous with respect to (π, κ, λ) on Aπ×A3×Aλ.

On the other hand, according to (2.8) and (2.9), functions π and λ are continuous with

respect to (α, β, g0, g1, h0, h1) on A1 × A2 × B1 × B2 × B3 × B4. Because the composition
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of continuous functions is continuous, l is continuous with respect to θ on Θ.

Suppose W̃ = (w1, w2, . . . , wn) ∈ Ωn are n independent random samples, and the sample

size of W̃ |∆=0 and the sample size of W̃ |∆=1 are n0, n1, respectively. It is true that

n = n0 + n1. Let 0 = s0 < s1 < · · · < sm0+1 = 1 and 0 = t0 < t1 < · · · < tm1+1 = 1 be

two partitions of [0, 1], where m0, m1 are the number of knots without containing 0 and 1,

and both m0 and m1 are integers that grow at rate n
k0
0 , n

k1
1 for 0 < k0 < 1 and 0 < k1 < 1

when ∆ = 0,∆ = 1, respectively. In other words, m0 = n
k0
0 and m1 = n

k1
1 .

REMARK 2.3.2. There are different definitions of the number of knots on an interval.

Some define the number of knots containing two ends of the interval (Huang and Rossini,

1997; Xue et al., 2004; Lam et al., 2006; He et al., 2010), but some define it without two

ends of interval (Zhang et al., 2010). In this thesis, I agree with the number of knots without

containing two ends of the interval, and always claim it when using the notation.

Given two partitions of [0, 1], it implies there are N0 = m0 + 1 + l and N1 = m1 + 1 + l

normalized uniform B splines basis of l-th degree ((l+ 1)-th order) (Zhang et al., 2010), and

let φ1, φ2, . . . , φN0
and ϕ1, ϕ2, . . . , ϕN1

denote the spline basis functions on [0,1], when ∆ = 0

and ∆ = 1, respectively. Then, the linear spaces spanned by B spline basis
{
φ1, φ2, . . . , φN0

}
and

{
ϕ1, ϕ2, . . . , ϕN1

}
with bounded parameters τn,1 = (τ1,n,1, τ2,n,1, . . . , τN0,n,1

)>, τn,2 =

(τ1,n,2, τ2,n,2, . . . , τN1,n,2
)>, τn,3 = (τ1,n,3, τ2,n,3, . . . , τN0,n,3

)>,

11



τn,4 = (τ1,n,4, τ2,n,4, . . . , τN1,n,4
)> are given by

Bn,1 =

gn,0 : gn,0 =

N0∑
i=1

τi,n,1φi, max
1≤i≤N0

{∣∣τi,n,1∣∣} ≤M1,2


Bn,2 =

gn,1 : gn,1 =

N1∑
i=1

τi,n,2ϕi, max
1≤i≤N1

{∣∣τi,n,2∣∣} ≤M2,2


Bn,3 =

hn,0 : hn,0 =

N0∑
i=1

τi,n,3φi, max
1≤i≤N0

{∣∣τi,n,3∣∣} ≤M3,2


Bn,4 =

hn,1 : hn,1 =

N1∑
i=1

τi,n,4ϕi, max
1≤i≤N1

{∣∣τi,n,4∣∣} ≤M4,2


where M1,2,M2,2,M3,2,M4,2 are known constants. We denote the product space Θn ,

A1 × A2 × A3 ×Bn,1 ×Bn,2 ×Bn,3 ×Bn,4 depending on n.

REMARK 2.3.3. A specific partition of [0, 1] determines the number of knots with-

out containing 0 and 1. Given the partition of [0, 1] and l, the spline basis functions

φ1, φ2, . . . , φN0
and ϕ1, ϕ2, . . . , ϕN1

on [0, 1] are determined by the recursion formula, like

De Boor’s algorithm (De Boor, 1972). Specifically, De Boor’s algorithm states, φi,1(u) takes

value 1 if u ∈ [ui, ui+1) and takes value 0 otherwise; then, for any 1 < j ≤ l, φi,j(u) =(
u−ui

ui+j−1−ui

)
φi,j−1(u) +

(
ui+j−u

ui+j−ui+1

)
φi+1,j−1(u), where u1 = · · · = ul = s0 = 0,

ul+1 = s1, . . . , uN0−1 = sm0 and uN0
= · · · = uN0+l = sm0+1 = 1; finally, denote φi

instead of φi,l for 1 ≤ i ≤ N0. ϕi is generated in the same way for 1 ≤ i ≤ N1. There-

fore, given the partition of [0, 1], l, the sample size n, M1,2,M2,2,M3,2,M4,2, the specific

Bn,1, Bn,2, Bn,3 and Bn,4 are determined, which means gn,0, gn,1, hn,0 and hn,1 can be given

by N0 and N1 unknowing control parameters. In general, four different partitions of [0, 1]

can be used for generating gn,0, gn,1, hn,0 and hn,1.
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Given the data vector W , let ET denote the expectation with respect to PθT where Pθ

denotes the density of W under the parameter θ. For any two points θ and θ∗ in Θ, a

(pseudo) distance ρ is defined by

ρ2(θ, θ∗) = ET

{
(α− α∗)>X + (1−∆)(g0 − g∗0) + ∆(g1 − g∗1)

}2

+ ET

{
(β − β∗)>Z + (1−∆)(h0 − h∗0) + ∆(h1 − h∗1)

}2

+ |κ− κ∗|2 (2.11)

Corollary 1. Given the definition of Bi, I can choose the specific Bn,i such that Θn ⊆ Θ

by modifying the specific Mi,2.

Corollary 2. For any θ = (α>, β>, κ, g0, g1, h0, h1)> ∈ Θ, there exists a mapping Φn : Θ→

Θn such that

Φnθ = (α>, β>, κ, gn,0, gn,1, hn,0, hn,1)> ∈ Θn (2.12)

and ρ(θ,Φnθ)→ 0 as n→∞.

REMARK 2.3.4. We can use the notation θn , Φnθ = (αn, βn, κn, gn,0, gn,1, hn,0, hn,1)>

where αn = α, βn = β and κn = κ because the mapping Φn only functions on nonparametric

components while maintaining the parametric components. For simplicity, I remain the

notation in (2.12).

Θn is a finite dimensional space belonging to Rd1+d2+1+2N0+2N1 , then the sieve method

is to approximate the infinite space Θ by using a series of finite spaces {Θn}∞n=1, called as

the sieve spaces of Θ. In general, it does not require Θn is a subset of Θ, but in most cases,

Θn ⊆ Θ (Song and Xue, 2000). In this thesis, I can prove that it is the subset of Θ by using
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the properties of B spline basis functions in Corollary 1. Corollary 2 motivates us to select

Θn as a sieve space of Θ. Furthermore, let Pn denote the empirical measure on sample space

Ω. Let Ln(θ; W̃ ) , Pn(l(θ; W̃ )) = 1
n

∑n
i=1 l(θ;wi) be the empirical objective function, then

θ̂n , (α̂, β̂, κ̂, ĝn,0, ĝn,1, ĥn,0, ĥn,1)> = argsup
θ∈Θn

Ln(θ, W̃ )

is called as the sieve estimator for θT. After similar operating in REMARK 2.3.1, Ln is

continuous with respect to θ on Θn. On the other hand, Θn is a boundary closed set,

therefore, θ̂n must exist.
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Chapter 3

Asymptotic Properties and Bootstrap

Hypothesis Test

This section provides the general assumptions used through this thesis, asymptotic proper-

ties of sieve estimators, and the test for the nonparametric components. In addition to five

common Assumptions C1 - C5 used in the last section, five more additional mild Assump-

tions A1 - A5 established for the study of asymptotic properties of sieve MLE. Specifically,

the sieve estimate θ̂n is strong consistent, it converges to the true parameter at an optimal

rate Op

(
n
− r

1+2r
)

, the asymptotical variance of nonparametric components can be obtained

by the estimates of Hessian matrix in a numerical way, the asymptotical variance of paramet-

ric components can be determined by the estimated Fisher information matrix in a closed

form, or the estimated Hessian matrix. At the end of this section, I build two statistics and

conduct a bootstrap hypothesis test for nonparametric components I am interested in.

3.1 Asymptotic Properties of Sieve Estimator

Before deriving the asymptotic results in this thesis, I summarize some necessary assumptions

here. The similar assumptions are held for the proportional odds regression model with

interval censoring (Huang and Rossini, 1997), the semiparametric regression model with

censored data (Xue et al., 2004), the semiparametric ZIP model (Lam et al., 2006), the Cox
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model with interval censored data (Zhang et al., 2010), and the doubly semiparametric ZIP

model (He et al., 2010).

ASSUMPTION C1: The unique true value θT ∈ Θ, that is, αT ∈ A1, βT ∈ A2, κT ∈

A3, gT,0 ∈ B1, gT,1 ∈ B2, hT,0 ∈ B3 and hT,1 ∈ B4.

ASSUMPTION C2: A1 and A2 are compact sets in Rd1 and Rd2 , respectively, and

A3 is a compact subset of the non-negative real number set R+
0 .

ASSUMPTION C3: AX and AZ are bounded, that is, there exist constants M1,1 and

M2,1 such that P(‖X‖2 ≤M1,1) = 1, P(‖Z‖2 ≤M2,1) = 1 , while their diameters Md
1,1 and

Md
2,1 such that ‖X−X∗‖2 ≤Md

1,1, ‖Z− Z∗‖2 ≤Md
2,1 for any X,X∗ ∈ AX , Z,Z∗ ∈ AZ .

ASSUMPTION C4: The joint density function PX,Z,∆,S (x, z, δ, s) does not depend

on the unknown parameter θ.

ASSUMPTION C5: Given the partitions
{
sj
}m0+1
j=0 and

{
tj
}m1+1
j=0 of [0,1],

max1≤j≤m0+1{sj − sj−1} ≤ Cn−k0 and max1≤j≤m1+1{tj − tj−1} ≤ Cn−k1 for some

constant C and 0 < k0 < 1 and 0 < k1 < 1.

ASSUMPTION A1: θT is an interior point of Θ.

ASSUMPTION A2: The true nonparametric components gT,0, gT,1, hT,0 and hT,1 are

at least second order continuously differentiable.

ASSUMPTION A3 ET

[
(X− ET(X|S)) (X− ET(X|S))>

]
> 0, and

ET

[
(Z− ET(Z|S)) (Z− ET(Z|S))>

]
> 0

ASSUMPTION A4: The joint density function PX,Z,∆,S (x, z, δ, s) is second order

continuously differentiable with respect to S with a bounded derivative.

ASSUMPTION A5: Restrict the partitions such that min1≤j≤m0+1{sj − sj−1} =

O(n−k
∗
) and min1≤j≤m1+1{tj − tj−1} = O(n−k

∗
), where k ≤ k∗ ≤ 1−k

2 when 1
5 < k < 1

3 ,

k ≤ k∗ ≤ 2k when 1
8 < k ≤ 1

5 , and k = min{k0, k1}.
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REMARK 3.1.1. Assumptions C1 and A1 determine the searching space for the true

value. Assumption C2 guarantees that the MLE method is conducted on a finite closed

product space and the maximum must exist on it. Assumption C3 is used for computing

the upper boundary of the L2 norms of nonparametric components in Lemma 2, and is

used for counting the covering number in Lemma 5 as well. Assumption C4 allows us to

set aside the nuisance parts when deriving the log-likelihood function. Assumption C5 and

A5 imply that the number of knots without two ends depend on the sample sizes n0, n1

and tunning parameters k0, k1. Assumption A2 and A4 are required for computing Fisher

information matrix in Theorem 3. Assumption A3 guarantees the parametric components

and nonparametric components are separable from the distance given in (2.11).

Theorem 1 (Strong Consistency). Suppose the Assumptions C1 - C5 are held, then ρ
(
θ̂n, θT

)
→ 0 almost surely under PθT. Moreover, if the Assumption A3 is satisfied, then

‖α̂n − αT‖ → 0, ‖β̂n − βT‖ → 0, |κ̂n − κT| → 0,

‖ĝn,0 − gT,0‖2 → 0, ‖ĝn,1 − gT,1‖2 → 0,

‖ĥn,0 − hT,0‖2 → 0, ‖ĥn,1 − hT,1‖2 → 0

almost surely under PθT.

REMARK 3.1.2. The proof of this theorem is similar to arguments used for the doubly

semiparametric ZIP model (He et al., 2010), but it is more tricky to build an appropriate

distance due to two more nonparametric components and noncovariate parameter κ. The

most important part of the proof is to give the upper boundary of the covering number (Pol-

lard, 1990). When using this upper boundary and other lemmas, I can follow the arguments

used for the other semiparametric model (Xue et al., 2004; Lam et al., 2006; He et al., 2010).
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Theorem 2 (Rate of Convergence). Suppose the Assumptions C1 - C5 and A3 are held,

then

ρ
(
θ̂n, θT

)
= Op

(
max

{
n−

1−k
2 , n−rk

})

If select k = 1
1+2r for r = 1, 2, then ρ

(
θ̂n, θT

)
achieves the optimal nonparametric conver-

gence rate Op

(
n
− r

1+2r
)

.

REMARK 3.1.3. Because the empirical objective function Ln(θ, W̃ ) is bounded, it suffices

to verify the three conditions in Shen’s theorem 1 (Shen and Wong, 1994). Kullback Leibler

distance is greater than the square of the Hellinger distance (Shen and Wong, 1994), which

implies the model P =
{
Ln(θ, W̃ ) : θ ∈ Θn

}
is identifiable.

Theorem 3 (Asymptotic Normality and Efficiency). Under the Assumption C1 - C5 and

A1 - A5, I have

√
n
(
α̂n − αT, β̂n − βT, κ̂− κT

)>
= I−1(θT)

√
nPnl̃α,β,κ(θT,W ) + op(1)

d→ N (0, I−1(θT))

where I−1(θT) = ET

(
l̃α,β,κl̃

>
α,β,κ

)
> 0 is the Fisher information matrix, and l̃α,β,κ is the

efficient score function of (α, β, κ).

REMARK 3.1.4. I−1(θT) > 0 guarantees that the likelihood function achieves maximum

at θT.

It is extremely tricky to derive both the efficient score function and the Fisher information

matrix in a closed form due to non-covariate parameter κ and more than two nonparametric
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components, so I ignore the proofs. For the specific formulas of the efficient score function

and the Fisher information matrix, please refer to their articles (Xue et al., 2004; He et al.,

2010; Huang, 1999; Ma, 2009; Sasieni, 1992). For real data analysis, an alternative way to

compute asymptotic variance by Hessian matrix in a numerical way.

In summary, I review the sieve estimator as the following facts:

(1) Given the data W̃ ∈ Ωn, first of all, I choose appropriate compact sets A1, A2,

A3, and classes of functions B1, B2, B3 and B4 with specific ri corresponding to Bi (like

ri = 1, 2, 3, . . . for i = 1, 2, 3, 4) such that their product space Ω covers the unique (interior

point) true value θT (by Assumptions C1 and A1), denoting r = min{r1, r2, r3, r4};

(2) Given r, to archive the optimal convergence rate, let k = k0 = k1 be 1
1+2r (by

Corollary 1, Theorem 2, Assumption C5), and k∗ is determined (by Assumption A5). In

particular, if r = 2, then k = 1
5 , and any k∗ such that 1

5 ≤ k∗ ≤ 2
5 , and if r = 3, then k = 1

7 ,

and any k∗ such that 1
7 ≤ k∗ ≤ 2

7 . In this thesis, I choose k∗ = k for r = 2, 3;

(3) Given k and sample sizes n0 and n1, the partitions are given by the number of knots

without containing 0 and 1 m0 =
⌊
nk0

⌋
and m1 =

⌊
nk1

⌋
, respectively, where b.c is the round

function (Zhang et al., 2010). Let
{
sj
}m0+1
j=0 and

{
tj
}m0+1
j=0 denote the partitions on [0,

1] with containing 0 and 1, respectively. Given B spline basis functions of l-th degree, for

example, cubic spline basis functions have 3 degrees, N0 = m0 + 1 + l and N1 = m1 + 1 + l

and B spline basis functions
{
φ1, φ2, . . . , φN0

}
and

{
ϕ1, ϕ2, . . . , ϕN1

}
are determined (by

REMARK 2.3.3);

(4) Given the B spline basis functions
{
φ1, φ2, . . . , φN0

}
and

{
ϕ1, ϕ2, . . . , ϕN1

}
, I choose

Mi,2 ≤ min0≤j≤ri

{∥∥∥f (j)
∥∥∥
∞

}
corresponding to Bi in (2.7), then Bn,i are determined. Fur-

thermore, Θn ⊆ Θ is determined (by Corollary 1);

(5) Given a distance ρ on Θ (by (2.11)), for any point θ ∈ Θ, I can find a point θn ∈ Θn
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corresponding to θ such that ρ(θ, θn) → 0 as n → ∞ (by Corollary 1). In other words, for

the true value θT ∈ Θ, there are a series of {θn}∞n=1 such that ρ(θT, θn)→ 0 as n→∞;

(6) In order to estimate θn, I search the maximum of Ln(θ, W̃ ) on Θn. The estimator

θ̂n = argsup
θ∈Θn

Ln(θ, W̃ ) must exist. On the one hand, θT is the maximizer of Ln(θ, W̃ ) almost

surely under PθT (by REMARK 3.1.4), on the other hand,ρ(θ̂n, θT)→ 0 almost surely under

PθT (by Theorem 1);

(7) At the end, parametric components and nonparametric components are separable

from the distance (by Assumption A3 and Theorem 1).

3.2 Bootstrap Hypothesis Test

For real data analysis, I may be interesting in testing if two certain nonparametric compo-

nents are significantly different, a general null hypothesis can be formulated as

H0 : u(s) ≡ v(s), s ∈ [S∗, S∗]

where u(s) and v(s) are any two of g0(s), g1(s), h0(s), h1(s) that are specified by the investi-

gators, and [S∗, S∗] are common boundaries for both u(s) and v(s). Let û(s) and v̂(s) denote

the estimate of u(s) and v(s) obtained by using the sieve estimator, respectively.

A test statistic T2 based on L2 norm is proposed by (Hu et al., 2012),

T 2
2 =

∫
s∈[S∗,S∗]

‖u(s)− v(s)‖22 ds

This integral can be obtained by using Monte Carlo integration. Because it is computing

intensive, in order to speed up, I can use L∞ norm instead of L2 norm, the T∞ statistic is
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given by T∞ = sups∈[S∗,S∗] |u(s)− v(s)|.

Generally, it requires the specific sampling distribution of T2 or T∞ to calculate the p-

value, but I hardly derive the closed form due to the complication in estimating the joint

sampling distribution. Thus, an alternative method to compute p-value is by conducting

bootstrap approach to approximate the null distribution of T2 or T∞ (Hu et al., 2012).

To investigate the convergence and asymptotic normality for bootstrap statistic, it re-

quires the existence of an Edgeworth expansion for its distribution (Hall, 2013), which is

beyond the focus of this thesis. So I skip the theoretical development, and more details will

be forthcoming in the next section.
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Chapter 4

Numerical Results

We illustrate the use of the sieve estimator to evaluate performance of nonparametric com-

ponents in semiparametric ZINB marginal mean model. Before applying to real data, simu-

lation studies are conducted to demonstrate the importance of the nonparametric modeling.

Then, the result from parametric ZIP and ZINB models motivates us to focus on semipara-

metric ZINB marginal mean model. Finally, I apply the sieve estimator to dental caries data

in a semiparametric ZINB model and conduct Bootstrap hypothesis test for comparing the

nonparametric components g0 and g1 that I am interested in.

4.1 Simulation Studies

In order to show the advantage of using a nonparametric component in a semiparametric

ZINB model, I conduct Monte Carlo simulations.

We generate data from the following semiparametric model

log [(1− π)λ] = α1X1 + α2X2 + α3X3 + (1−∆)g0(S) + ∆g1(S)

log

(
π

1− π

)
= β1Z1 + β2Z2 + (1−∆)h0(S) + ∆h1(S)

where X1, X2, X3, Z1, Z2, ∆ and S are independently drawn from the binomial distribution

B(1, 0.5), the uniform distribution on [0, 2] , the normal distribution N (1, 2), the uniform
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distribution on [0, 1], the normal distribution N (0, 1), the binomial distribution B(1, 0.5),

and the uniform distribution on [0, 1], respectively, with the regression parameters α1 = 0.5,

α2 = 1, α3 = −0.5, β1 = −1.5, β2 = 0.5, and the nonparametric components g0(S) =

sin(πS), g1(S) = 2S2, h0(S) =
√
S, and h1(S) = exp(−2S + 1). In the main model (2.1),

κ = 1 and Y is generated from ZINB(λ, π, κ).

The sample sizes n = 500, 1000, 2000 are chosen. To investigate whether nonparametric

approach is appropriate in above semiparametric model, the following four working models

are used to fit the data.

Model 1: all g0(S), g1(S), h0(S) and h1(S) are modeled nonparametrically and esti-

mated by sieve estimator.

Model 2: all g0(S), g1(S), h0(S) and h1(S) are modeled linearly and estimated by

classical approach.

Model 3: both g0(S) and g1(S) are modeled linearly and estimated by classical approach,

and both h0(S) and h1(S) are modeled nonparametrically and estimated by sieve estimator.

Model 4: both g0(S) and g1(S) are modeled nonparametrically and estimated by sieve

estimator, and both h0(S) and h1(S) are modeled linearly and estimated by classical ap-

proach.

When 3-degree (cubic) splines basis functions are used to approximate a nonparametric

component in above models, I select the uniform knots on [0, 1]. Assume the smoothing

parameter r be 2, and both n and r determine the optimal convergence rate. The number

of knots, m0 and m1, can be chosen by the optimal convergence rate (Zhang et al., 2010) or

AIC (Lam et al., 2006; He et al., 2010). Monte Carlo sample size is set as 1000.

Table 4.1 presents the relative bias (RB), mean square error (MSE) and standard de-

viation (SE) of all parametric components in Model 1. Table 4.2 presents the integrated
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Table 4.1: Estimates of finite dimensional parameters in working Model 1

sample size n = 500 sample size n = 1000 sample size n = 2000

Parameter RB MSE SE RB MSE SE RB MSE SE

α1 0.003 0.024 0.005 -0.004 0.012 0.004 0.003 0.006 0.002
α2 0.001 0.019 0.004 -0.001 0.009 0.003 0.005 0.005 0.002
α3 0.002 0.002 0.001 -0.005 0.001 0.001 -0.001 0.001 0.001
β1 0.016 0.147 0.012 0.014 0.065 0.008 0.013 0.032 0.006
β2 0.034 0.015 0.004 0.011 0.006 0.002 0.012 0.003 0.002
κ -0.117 0.032 0.004 -0.059 0.014 0.003 -0.027 0.006 0.002

Table 4.2: Estimates of infinite dimensional parameters in working Model 1

Sample sizes g0(s) g1(s) h0(s) h1(s)
500 0.048 0.087 0.046 0.046
1000 0.024 0.033 0.019 0.024
2000 0.019 0.019 0.013 0.014

MSE of all nonparametric components in Model 1. Figure 4.1 show that the estimations of

nonparametric components in all models when sample size is 2000. The sieve estimators in

Model 1 can capture the shapes of true functions reasonably while other models cannot. Both

results demonstrates that the model using sieve approach for all nonparametric components

is better than less restrictive ones.

4.2 Real Data: Mouth-Level Indices in Caries Research

In order to evaluate dental caries severity in low-income African American families, a mul-

tilevel approach was designed and conducted in Detroit, Michigan (Tellez et al., 2006).

Focusing on dental caries data, this data set contains 874 children’s oral health infor-

mation. The covariates of interest include the standardized caregiver’s oral hygiene index,

denoted as X1, Z1 and ranged from -2.47 to 4.45; the child’s age group, let ∆ denote this



(a) The nonparametric effect of DASI under g0(S)
in simulation study

(b) The nonparametric effect of DASI under g1(S)
in simulation study

(c) The nonparametric effect of DASI under h0(S)
in simulation study

(d) The nonparametric effect of DASI under h1(S)
in simulation study

Figure 4.1: The estimates of nonparametric components in simulation study

binary indicator taking value 1 (392, 45%) if the child’s age is less than 2 and taking value 0

(482, 55%) otherwise; the caregiver’s employment status, let X2 denote this binary indicator

taking value 0 (344, 39%) if the caregiver has no job and taking value 1 (530, 61%) otherwise;

the child’s standardized sugar intake, denoted as S and ranged from -1.19 to 5.42.

Let Y denote the response variable, DMFS (number of decayed, missing and filled tooth

surfaces) indices, representing the cumulative severity of tooth decay for each surveyed child.

The histogram of Y , the negative binomial distribution and Poisson distribution fitted on

the data are plotted in Figure 4.2. We encountered a large proportion of zero counts, and

this situation motives us to consider zero-inflated model, like zero-inflated negative binomial

model in which I define the zero counts are generated from two sources (Todem et al., 2012b;

Cao et al., 2014). Therefore, I postulate that the distribution of Y is a zero-inflated negative
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Figure 4.2: The histogram of DMFS indices and fitted NB model and Poisson model

binomial model with the probability of non-zero counts π and the mean of underlying negative

binomial distribution λ related to covariates as follows,

log(πλ) = α1X1 + α2X2 + (1−∆)g0(S) + ∆g1(S) (4.1)

logit(π) = β1Z1 + (1−∆)h0(S) + ∆h1(S)

where E(Y ) = πλ stands for the marginal mean of ZINB model after adjusting by age of

each child and the sugar intake effect S enters the ZINB model nonparametrically.

We use the uniform partition of [−1.19, 5.42], assume the unknown functions be 1-th

or 2-th (r = 1, 2) derivative in [−1.19, 5.42], choose normalized uniform B splines basis

functions of 2-degree (l = 2), and let the convergence rate be the optimal rate. The number

of knots is chosen by AIC (2 or more knots are better). The estimates and standard errors

are summarized in Table 4.3 and the estimates of g0 and g1 in the model with 3 knots are
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Table 4.3: The estimates and standard deviations of finite dimensional parameters

Parameter 2 knots 3 knots 4 knots 6 knots 9 knots
α1 0.145(0.050) 0.147(0.050) 0.147(0.050) 0.151(0.050) 0.155(0.050)
α2 0.307(0.109) 0.310(0.110) 0.311(0.109) 0.310(0.109) 0.311(0.111)
β1 0.578(0.215) 0.580(0.213) 0.509(0.213) 0.516(0.213) 0.559(0.217)

log(κ) -0.051(0.112) -0.061(0.111) -0.072(0.111) -0.086(0.110) -0.088(0.111)
AIC 13726.8 13737.1 13749 13770.4 13803.4

Figure 4.3: The nonparametric effects of DASI under g0(S) and g1(S) in real data study

plotted in Fig 4.3.

We are interested in the nonparametric effects of sugar intake on the marginal mean

of responses, therefore, I focus on the nonparametric components g0(S) and g1(S) for S ∈

[S∗, S∗], where S∗ and S∗ are common boundaries. According to the definition, g0(S) refers

to the nonparametric effect of group in which child’s age is larger than 2 (corresponding to

∆ = 0), and g1(S) refers to the nonparametric effect of group in which child’s age is less

than 2 (corresponding to ∆ = 1). Figure 4.3 shows the daily amount of sugar intake hardly

influences on the marginal mean of responses with respect to g0(S), while intensively does
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impact on the marginal mean of responses with respect to g1(S). In other words, for children

who are older than 2 years old, the daily amount of sugar intake almost does not impact on

their marginal mean of DMFS indices, while for children who are younger than 2 years old,

the daily amount of sugar intake does impact on their marginal mean of DMFS indices. It

seems that only the marginal mean of DMFS indices of children aged less than 2 do depend

on their daily amount of sugar intake, and there might be some factors rather than DASI

will influence the marginal mean of DMFS indices of children aged larger than 2.

We are also interested in whether there is significant difference between nonparametric

components g0(S) and g1(S), so I conduct a statistical test for the null hypothesis

H0 : g0(s) ≡ g1(s), s ∈ [S∗, S∗].

Following the discussion in Section 3.2, I used two test statistics T2 and T∞ based on L2

norm and L∞ norm, respectively, given by

T 2
2 =

∫
s∈[S∗,S∗]

‖g0(s)− g1(s)‖22ds

T∞ = sup
s∈[S∗,S∗]

|g0(s)− g1(s)|

In order to compute the p-value of both statistics, it requires us to conduct bootstrap

approach to approximated the null distribution of these statistics. In other words, I need to

re-sample the data with replacement under null hypothesis. Specifically, if the null hypothesis
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is true, the formula in (4.1) is equivalent to

log(πλ) = α1X1 + α2X2 + (1−∆)g0(S) + ∆g1(S)

= α1X1 + α2X2 + (1−∆)g0(S) + ∆g0(S)

= α1X1 + α2X2 + g0(S)

which implies log(πλ) is independent from variable ∆. Therefore, I set the bootstrap sample

size as the same as the original sample size n, re-sample randomly n observations from data

W̃ with replacement, re-arrange each ∆boot value for g0 and g1 (not for h0 and h1) in

bootstrap samples by original proportions (∆boot = 1(45%), ∆boot = 0(55%)) rather than

its original ∆ value, for example, the ∆boot of first bn × 45%c observations in bootstrap

samples are re-arranged as 1, then the rest of ∆boot of observations in bootstrap samples are

re-arranged as 0, where b.c is the round function. The other variables in bootstrap samples

remain the same as original ones.

We can conduct 1000 times bootstrap re-samplings. In each bootstrap re-sampling, I

sample n observations from original data, re-arrange ∆boot values as above, estimate ĝ0(S)

and ĝ1(S) using sieve estimator, and eventually, compute T̂2,boot and T̂∞,boot using Monte

Carlo integration. Finally, although I do not know the sampling distributions of T2 and T∞

statistics, the bootstrap sample lets us estimate the p-values of both T2 and T∞ statistics by

p-value2 =
#
{
T̂2,boot > T̂2,original

}
1000

p-value∞ =
#
{
T̂∞,boot > T̂∞,original

}
1000

where #{.} is the count function, T̂2,original and T̂∞,original are the estimated statistics by
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Table 4.4: The result of bootstrap sampling

Statistics Observed value #{ bootstrap > observed } p-value
T2 10.73183 24 0.024
T∞ 11.48298 72 0.072

original samples. Table 4.4 summaries above result, Figure 4.4 shows the estimated sampling

distributions by bootstrap method.
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(a) The histogram of estimated T2

(b) The histogram of estimated T∞

Figure 4.4: The histogram of both estimated statistics by bootstrap method
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Chapter 5

Discussion

In this thesis, a semiparametric zero-inflated marginal mean model is proposed in section

2.1, and B splines based sieve estimator are used to estimate both the parametric compo-

nents and nonparametric components. I also showed that sieve estimator for the vector of

finite dimensional parametric components is strong consistent and asymptotically normally

distributed and efficient, given by the specific efficient score function and the Fisher infor-

mation matrix. Furthermore, a bootstrap hypothesis testing is introduced to any two of

nonparametric components. The simulation studies demonstrated that the proposed model

has highly satisfactory performance. Given appropriate tunning parameters like smoothing

parameter r, growth rate k and the number of knots (without containing two ends) m0 and

m1, estimation of the nonparametric component has shown to be highly satisfactory in that

the overall shape of g0(S), g1(S), h0(S) and h1(S) can be captured reasonably well. The

model can be extended by allowing a penalized likelihood for the smoothing parameters.

For caries research, the semiparametric zero-inflated marginal mean model is applied to

the Detroit Dental Caries Study. This model does provide a reasonable representation of

data from a homogeneous population, but it is unknown why some children from low-income

families would be considered immune to dental caries based on the fact that they distribute

as Dirac (pure zero) rather than negative binomial (Todem et al., 2016). Young children

may have different oral health outcomes like DMFS due to socio-economic levels of fami-

lies (Nanayakkara et al., 2013). Some factors are positively associated with child’s oral health,
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like having a dental home, having caregivers with high education and living in a fluoridated

community (Chi et al., 2013). In this caries research, child raised by unemployed parents

experiences more caries according to estimates of parametric components, which confirms

the conclusion of a systematic review (Kumar et al., 2015). According to nonparametric in-

fluence of the daily amount sugar intake, children belonging to differential membership of age

group are suffered from dental caries differently. Model shows younger children have more

pronounced influence than their older counterparts, and there exists a cutoff value (52.32

grams) of sugar intake, above which sugar intake is detrimental for younger children. It is

also unclear why the cutoff value of sugar intake exists and why it exists only for younger

children. Perhaps children will develop gradually to be ”immune” to dental caries as they

grow up. Based on these new findings, intervention strategies should inflect consideration of

age group, and interventions targeting children aged below 2 are required to associate with

the cutoff value of sugar intake.
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APPENDIX
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Definition

Definition 1 (Envelope). Suppose F is a class of functions in Lp(P), that is

F =
{
f :
∫
|f |pdP <∞

}
. Call each constant C such that ‖f‖p ≤ C for every f in F , an

envelope for F .

Definition 2 (Covering Number). Suppose F is a class of functions in Lp(P). For each

ε > 0 define the covering number N
(
ε,F , Lp(P)

)
as the smallest number m for which there

exist functions g1, g2, . . . , gm such that min1≤j≤m ‖f − gj‖p ≤ ε for each f in F .

Proof of Theorems

Lemma 1. For any f ∈ Bi, there exists a function fn ∈ Bn,i and a constant C such that

sup
0≤s≤1

|fn(s)− f(s)| ≤ Cn−rk

where the constant r and the constant k are known, and k depending on the partition.

Proof. Please refer to Theorem 12.7 (P491) in (Schumaker, 1981). �

Corollary 1. Given the definition of Bi, I can choose the specific Bn,i such that Θn ⊆ Θ

by modifying the specific Mi,2.

Proof. Please refer to summary in Section 3.1. �

Corollary 2. Under the Assumption C4, for any θ = (α, β, κ, g0, g1, h0, h1) ∈ Θ, there

exists

Φnθ = (α, β, κ, gn,0, gn,1, hn,0, hn,1) ∈ A1 × A2 × A3 ×Bn,1 ×Bn,2 ×Bn,3 ×Bn,4
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such that ρ(θ,Φnθ)→ 0 as n→∞.

Proof. For any θ ∈ Θ, the nonparametric components g0, g1, h0 and h1 belong to B1,

B2, B3 and B4, respectively. Using Lemma 1, there exist gn,0 ∈ Bn,1, gn,1 ∈ Bn,2, hn,0 ∈

Bn,3, hn,1 ∈ Bn,4 and constants C1, C2, C3, C4 such that

sup
0≤s≤1

∣∣gn,0(s)− g0(s)
∣∣ ≤ C1n

−r1k0 , sup
0≤s≤1

∣∣gn,1(s)− g1(s)
∣∣ ≤ C2n

−r2k1

sup
0≤s≤1

∣∣hn,0(s)− h0(s)
∣∣ ≤ C3n

−r3k0 , sup
0≤s≤1

∣∣hn,1(s)− h1(s)
∣∣ ≤ C4n

−r4k1

where k0 and k1 are under the Assumption C4. Let C
2 = max {C1, C2, C3, C4} ,r =
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min {r1, r2, r3, r4} ≥ 1, and k = min {k0, k1}, and given W , then

ρ2(θ,Φnθ) = ET

{
(α− α)>X + (1−∆)(gn,0 − g0) + ∆(gn,1 − g1)

}2

+ ET

{
(β − β)>Z + (1−∆)(hn,0 − h0) + ∆(hn,1 − h1)

}2

+ |κ− κ|2

= ET
[
(1−∆)(gn,0 − g0) + ∆(gn,1 − g1)

]2
+ ET

[
(1−∆)(hn,0 − h0) + ∆(hn,1 − h1)

]2
= ET

{
[(1−∆)(gn,0 − g0)]2 + [∆(gn,1 − g1)]2

}
+ ET

{
[(1−∆)(hn,0 − h0)]2 + [∆(hn,1 − h1)]2

}
=

∫ {
[(1−∆)(gn,0 − g0)]2 + [∆(gn,1 − g1)]2

}
P∆,S(δ, s)d(δ, s)

+

∫ {
[(1−∆)(hn,0 − h0)]2 + [∆(hn,1 − h1)]2

}
P∆,S(δ, s)d(δ, s)

=

∫ ∣∣gn,0 − g0

∣∣2 dPS +

∫ ∣∣gn,1 − g1

∣∣2 dPS +

∫ ∣∣hn,0 − h0

∣∣2 dPS
+

∫ ∣∣hn,1 − h1

∣∣2 dPS
≤
∫ ∥∥gn,0 − g0

∥∥2
∞ dPS +

∫ ∥∥gn,1 − g1

∥∥2
∞ dPS

+

∫ ∥∥hn,0 − h0

∥∥2
∞ dPS +

∫ ∥∥hn,1 − h1

∥∥2
∞ dPS

≤
∥∥gn,0 − g0

∥∥2
∞ +

∥∥gn,1 − g1

∥∥2
∞ +

∥∥hn,0 − h0

∥∥2
∞ +

∥∥hn,1 − h1

∥∥2
∞

≤
(
C1n

−r1k0
)2

+
(
C2n

−r2k1
)2

+
(
C3n

−r3k0
)2

+
(
C4n

−r4k1
)2

≤ 4

(
C

2
n−rk

)2

Therefore, ρ(θ,Φnθ) ≤ Cn−rk → 0 as n→∞. �

Lemma 2. Assume A1 be held, ET

[
(X− ET(X|S)) (X− ET(X|S))>

]
has a minimum
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eigenvalue λx,min, and ET

[
(Z− ET(Z|S)) (Z− ET(Z|S))>

]
has a minimum eigenvalue

λz,min. Then, for any θ, θ∗ ∈ Θ, I have

‖α− α∗‖ ≤ 1√
λx,min

ρ(θ, θ∗), ‖β − β∗‖ ≤ 1√
λz,min

ρ(θ, θ∗), |κ− κ∗| ≤ ρ(θ, θ∗)

‖g0 − g∗0‖2 ≤

√√√√2 +
2M2

1,1

λx,min
ρ(θ, θ∗), ‖g1 − g∗1‖2 ≤

√√√√2 +
2M2

1,1

λx,min
ρ(θ, θ∗)

‖h0 − h∗0‖2 ≤

√√√√2 +
2M2

1,1

λz,min
ρ(θ, θ∗), ‖h1 − h∗1‖2 ≤

√√√√2 +
2M2

1,1

λz,min
ρ(θ, θ∗)

Proof. For any θ, θ∗ ∈ Θ,

ρ2(θ, θ∗) = ET

{
(α− α∗)>X + (1−∆)(g0 − g∗0) + ∆(g1 − g∗1)

}2

+ ET

{
(β − β∗)>Z + (1−∆)(h0 − h∗0) + ∆(h1 − h∗1)

}2

+ |κ− κ∗|2

≥ ET

{
(α− α∗)>X + (1−∆)(g0 − g∗0) + ∆(g1 − g∗1)

}2

= ET

{
(α− α∗)> (X− ET (X|S)) + (α− α∗)>ET (X|S)

+ (1−∆)(g0 − g∗0) + ∆(g1 − g∗1)

}2

Let J(S) denote (α− α∗)>ET (X|S) + (1−∆)(g0 − g∗0) + ∆(g1 − g∗1), I have

ET (X− ET (X|S))× J(S) = ETXJ(S)− ETET(X|S)J(S)

= ETXJ(S)− ETET(XJ(S)|S)

= ETXJ(S)− ETXJ(S)

= 0
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So the interaction term is 0, I have

ρ2(θ, θ∗) ≥ ET

{
(α− α∗)> (X− ET (X|S)) + J(S)

}2

= ET

{
(α− α∗)> (X− ET (X|S))

}2
+ J2(S)

= ET

{
(α− α∗)> (X− ET (X|S))

}2

+ ET

{
(α− α∗)>ET (X|S) + (1−∆)(g0 − g∗0) + ∆(g1 − g∗1)

}2

≥ ET

{
(α− α∗)> (X− ET (X|S))

}2

= (α− α∗)>ET

[
(X− ET(X|S)) (X− ET(X|S))>

]
(α− α∗)

≥ λx,min‖α− α∗‖2

Therefore, I have, ‖α − α∗‖ ≤ 1√
λx,min

ρ(θ, θ∗), ‖β − β∗‖ ≤ 1√
λz,min

ρ(θ, θ∗), and based on

the definition of ρ, |κ− κ∗| ≤ ρ(θ, θ∗). Then focus on the nonparametric component,

ET [(1−∆)(g0 − g∗0) + ∆(g1 − g∗1)]2

= ET

[
(α− α∗)>X + (1−∆)(g0 − g∗0) + ∆(g1 − g∗1)− (α− α∗)>X

]2
≤ 2ET

[
(α− α∗)>x + (1−∆)(g0 − g∗0) + ∆(g1 − g∗1)

]2
+ 2ET

[
(α− α∗)>X

]2
≤ 2ρ2(θ, θ∗) + 2M2

1,1‖α− α
∗‖2

≤

(
2 +

2M2
1,1

λx,min

)
ρ2(θ, θ∗)
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On the other hand,

ET[(1−∆)(g0 − g∗0) + ∆(g1 − g∗1)]2

=

∫
[(1−∆)(g0 − g∗0) + ∆(g1 − g∗1)]2P∆,S(δ, s)d(δ, s)

=

∫
(g0 − g∗0)2PS(s)d(s) +

∫
(g1 − g∗1)2PS(s)d(s)

= ‖g0 − g∗0‖
2
2 + ‖g1 − g∗1‖

2
2

Following the previous discussion, ‖g0−g∗0‖2 ≤

√
2 +

2M2
1,1

λx,min
ρ(θ, θ∗). Similarly, ‖g1−g∗1‖2 ≤√

2 +
2M2

1,1
λx,min

ρ(θ, θ∗), ‖h0−h∗0‖2 ≤

√
2 +

2M2
2,1

λz,min
ρ(θ, θ∗), and ‖h1−h∗1‖2 ≤

√
2 +

2M2
2,1

λz,min
ρ(θ, θ∗).

�

Lemma 3. Assume given θ, θ∗ ∈ Θn, hold the Assumptions XXX, then there exist a constant

M3 such that

|l(θ, w)− l(θ∗, w)| ≤M3(‖α− α∗‖2 + ‖β − β∗‖2

+ ‖gn,0 − g∗n,0‖∞ + ‖gn,1 − g∗n,1‖∞ + ‖hn,0 − h∗n,0‖∞ + ‖hn,1 − h∗n,1‖∞)

Proof. Let ξ and ζ denote the joint functions with respect to (θ, w), given by

ξ(θ, w) = α>X + (1−∆)g0(S) + ∆g1(S)

ζ(θ, w) = β>Z + (1−∆)h0(S) + ∆h1(S)
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and let Q1 and Q2 denote the joint functions with respect to (ξ, ζ, κ), given by

Q1(ξ, ζ, κ) = I(y=0) log

[
π + (1− π)(1 + κπ)−

1
κ

]

Q2(ξ, ζ, κ) = I(y>0) log

(1− π)
Γ
(
y + 1

κ

)
(κλ)y

Γ
(

1
κ

)
Γ(y + 1) (1 + κλ)y+ 1

κ


Compute the difference,

l(θ, w)− l(θ∗, w) = Q1(ξ, ζ, κ)−Q1(ξ∗, ζ∗, κ∗) +Q2(ξ, ζ, κ)−Q2(ξ∗, ζ∗, κ∗)

Using Taylor’s series expansion, there exists (ξ∗∗, ζ∗∗, κ∗∗) satisfying that

Q1(ξ, ζ, κ)−Q1(ξ∗, ζ∗, κ∗) =
∂

∂ξ
Q1(ξ∗∗, ζ∗∗, κ∗∗)(ξ − ξ∗)

+
∂

∂ζ
Q1(ξ∗∗, ζ∗∗, κ∗∗)(ζ − ζ∗) +

∂

∂k
Q1(ξ∗∗, ζ∗∗, κ∗∗)(κ− κ∗)

where ∂
∂ξQ1(ξ∗∗, ζ∗∗, κ∗∗), ∂

∂ζQ1(ξ∗∗, ζ∗∗, κ∗∗) and ∂
∂κQ1(ξ∗∗, ζ∗∗, κ∗∗) are bounded under

the Assumption C2, and without loss generality, let M1,3 denote their common supremum.

Therefore,

|Q1(ξ, ζ, κ)−Q1(ξ∗, ζ∗, κ∗)| = | ∂
∂ξ
Q1(ξ∗∗, ζ∗∗, κ∗∗)(ξ − ξ∗) +

∂

∂ζ
Q1(ξ∗∗, ζ∗∗, κ∗∗)(ζ − ζ∗)

+
∂

∂k
Q1(ξ∗∗, ζ∗∗, κ∗∗)(κ− κ∗)|

≤ ‖ξ − ξ∗‖
∣∣∣∣ ∂∂ξQ1(ξ∗∗, ζ∗∗, κ∗∗)

∣∣∣∣+ ‖ζ − ζ∗‖
∣∣∣∣ ∂∂ζQ1(ξ∗∗, ζ∗∗, κ∗∗)

∣∣∣∣
+ |κ− κ∗|

∣∣∣∣ ∂∂κQ1(ξ∗∗, ζ∗∗, κ∗∗)

∣∣∣∣
≤M1,3 (‖ξ − ξ∗‖+ ‖ζ − ζ∗‖+ |κ− κ∗|)
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Therefore, there exists M∗1,3 such that

|Q1(ξ, ζ, κ)−Q1(ξ∗, ζ∗, κ∗)|

≤M∗1,3

(
‖α− α∗‖2 + ‖β − β∗‖2 + |κ− κ∗|+ ‖gn,0 − g∗n,0‖∞ + ‖gn,1 − g∗n,1‖∞

+ ‖hn,0 − h∗n,0‖∞ + ‖hn,1 − h∗n,1‖∞
)

The similar operation is applied to Q2(ξ, ζ, κ) − Q2(ξ∗, ζ∗, κ∗) and I have M∗2,3, let M3 =

max
{
M∗1,3,M

∗
2,3

}
, then,

|l(θ, w)− l(θ∗, w)| = |Q1(ξ, ζ, κ)−Q1(ξ∗, ζ∗, κ∗) +Q2(ξ, ζ, κ)−Q2(ξ∗, ζ∗, κ∗)|

≤ |Q1(ξ, ζ, κ)−Q1(ξ∗, ζ∗, κ∗)|+ |Q2(ξ, ζ, κ)−Q2(ξ∗, ζ∗, κ∗)|

≤M∗1,3(‖α− α∗‖2 + ‖β − β∗‖2 + |κ− κ∗|

+ ‖gn,0 − g∗n,0‖∞ + ‖gn,1 − g∗n,1‖∞ + ‖hn,0 − h∗n,0‖∞ + ‖hn,1 − h∗n,1‖∞)

+M∗2,3(‖α− α∗‖2 + ‖β − β∗‖2 + |κ− κ∗|

+ ‖gn,0 − g∗n,0‖∞ + ‖gn,1 − g∗n,1‖∞ + ‖hn,0 − h∗n,0‖∞ + ‖hn,1 − h∗n,1‖∞)

≤M3(‖α− α∗‖2 + ‖β − β∗‖2 + |κ− κ∗|

+ ‖gn,0 − g∗n,0‖∞ + ‖gn,1 − g∗n,1‖∞ + ‖hn,0 − h∗n,0‖∞ + ‖hn,1 − h∗n,1‖∞)

�

Lemma 4. Denote two functional classes, G = {g(.)} and F = {f(.)}, where function

f satisfies the Lipschitz condtion that for any f ∈ F , there exists a constant C such that

|f(g)− f(g∗)| ≤ C|g − g∗| for any g and g∗ ∈ G . Then, for any probability measure P, the
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covering numbers N (ε,F , L2(P)) and N (ε,G , L2(P)) of F and G have the property

N (ε,F , L2(P)) ≤ N
( ε
C
,G , L2(P)

)

Proof. According to the definition, there exists a constant C such that |f(s)− f(s∗)| ≤

C|s − s∗| for any f(s), f(s∗) ∈ F . For each ε > 0, define m = N
( ε
C ,G , L2(P)

)
and

then there exist g1, g2, . . . , gm such that minj
∥∥g − gj∥∥L2(P) ≤

ε
C for each g in G . Given

g∗ ∈ {g1, g2, . . . , gm}, there exist f ◦ g∗ satisfying

‖f ◦ g∗ − f ◦ g‖L2(P) =

(∫
(f ◦ g∗ − f ◦ g)2 dP

)1
2

≤
(∫

C2(g∗ − g)2dP
)1

2

= C ‖g∗ − g‖L2(P)

≤ C
ε

C
= ε

for any given f ◦ g ∈ F , which implies f ◦ g1, f ◦ g2, . . . , f ◦ gm can cover F . Then,

N (ε,F , L2(P)) ≤ m = N
( ε
C ,G , L2(P)

)
�

Lemma 5. The covering number of the class Λn =

{
l(Φnθ, .)

∣∣∣∣Φnθ ∈ Θn

}
satisfies

N (ε,Λn, L∞) ≤ K

(
1

ε

)d1+d2+2N0+2N1+1

where K is a constant.
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Proof. Let gn,0 =
∑N0
i=1 τi,n,1φi, g

∗
n,0 =

∑N0
i=1 τ

∗
i,n,1φi ∈ Bn,1, then compute

sup
s

∣∣∣gn,0(s)− g∗n,0(s)
∣∣∣ = sup

s

∣∣∣∣∣∣
N0∑
i=1

τi,n,1φi(s)−
N0∑
i=1

τ∗i,n,1φi(s)

∣∣∣∣∣∣
= max

1≤j≤N0−1
sup
s

∣∣∣∣∣∣
N0∑
i=1

τi,n,1φi(s)−
N0∑
i=1

τ∗i,n,1φi(s)

∣∣∣∣∣∣
[sj,sj+1]

= max
1≤j≤N0−1

sup
s

∣∣∣∣∣∣
j+l+1∑
i=j

τi,n,1φi(s)−
j+l+1∑
i=j

τ∗i,n,1φi(s)

∣∣∣∣∣∣
[sj,sj+1]

≤ (l + 1) max
1≤i≤N0

{∣∣∣τi,n,1 − τ∗i,n,1∣∣∣} ≤ (l + 1)
∥∥∥τn,1 − τ∗n,1∥∥∥2

therefore, using Lemma 4, I have

N
(
ε, Bn,1, L∞

)
≤ N

(
ε

l + 1
,

{
τn,1 : max

1≤i≤N0

{∣∣τi,n,1∣∣ ≤M1,2
}}

, ‖.‖2

)

According to Lemma 4.1 of (Pollard, 1990),

N
(
ε, Bn,1, L∞

)
≤ N

(
ε

l + 1
,

{
τn,1 : max

1≤i≤N0

{∣∣τi,n,1∣∣}
}
≤M1,2, ‖.‖2

)

≤ D

(
ε

l + 1
,

{
τn,1 : max

1≤i≤N0

{∣∣τi,n,1∣∣}
}
≤M1,2, ‖.‖2

)

≤

(
3× 2M1,2

ε
l+1

)N0

=

[
6(l + 1)M1,2

ε

]N0
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where the packing number D (Pollard, 1990) such that N(ε, F ) ≤ D(ε, F ). Similarly, I have

N
(
ε, Bn,1, L∞

)
≤
[

6(l + 1)M1,2

ε

]N0
, N
(
ε, Bn,2, L∞

)
≤
[

6(l + 1)M2,2

ε

]N1

N
(
ε, Bn,3, L∞

)
≤
[

6(l + 1)M3,2

ε

]N0
, N
(
ε, Bn,4, L∞

)
≤
[

6(l + 1)M4,2

ε

]N1

Given a distance d̃ on Θn by

d̃(θ, θ∗) = ‖α− α∗‖2 + ‖β − β∗‖2 + |κ− κ∗|

+ ‖gn,0 − g∗n,0‖∞ + ‖gn,1 − g∗n,1‖∞ + ‖hn,0 − h∗n,0‖∞ + ‖hn,1 − h∗n,1‖∞

Then, applying Lemma 3 to Polland’s section 5,

N (ε,Λn, L∞) ≤ N

(
ε

M3
,Θn, d̃

)
≤ N

(
ε

7M3
, A1, L2

)
N

(
ε

7M3
, A2, L2

)
N

(
ε

7M3
, A3, L1

)
×N

(
ε

7M3
, Bn,1, L∞

)
N

(
ε

7M3
, Bn,2, L∞

)
×N

(
ε

7M3
, Bn,3, L∞

)
N

(
ε

7M3
, Bn,4, L∞

)

≤

(
21M3M

d
1,1

ε

)d1
(

21M3M
d
2,1

ε

)d2
(

21M3M
d
3,1

ε

)

×
(

42M3(l + 1)M1,2

ε

)N0
(

42M3(l + 1)M2,2

ε

)N1

×
(

42M3(l + 1)M3,2

ε

)N0
(

42M3(l + 1)M4,2

ε

)N1

= K

(
1

ε

)d1+d2+2N0+2N1+1

where K is a constant. �
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Theorem 1 (Strong Consistency). Suppose the Assumptions C1 - C5 hold, then ρ
(
θ̂n, θT

)
→ 0 almost surely under PθT. Moreover, if the condition A3 are satisfied, then

‖α̂n − αT‖ → 0, ‖β̂n − βT‖ → 0, |κ̂n − κT| → 0,

‖ĝn,0 − gT,0‖2 → 0, ‖ĝn,1 − gT,1‖2 → 0,

‖ĥn,0 − hT,0‖2 → 0, ‖ĥn,1 − hT,1‖2 → 0

almost surely under PθT.

Proof. Using Lemma 5 and following the arguments in (Xue et al., 2004). �

Theorem 2 (Rate of Convergence). Suppose the Assumptions C1 - C5 hold, then

ρ
(
θ̂n, θT

)
= Op

(
max

{
n−

1−k
2 , n−rk

})

If select k = 1
1+2r for r = 1, 2, then ρ

(
θ̂n, θT

)
achieves the optimal nonparametric conver-

gence rate Op

(
n
− r

1+2r
)

.

Proof. Because Ln(θ, W̃ ) is bounded, it suffices to verify the three conditions in theorem 1

in (Shen and Wong, 1994) hold true. Following the authors’ notation, I check the conditions

one by one:

(1) Similar to the arguments in (Xue et al., 2004), the Kullback-Leibler information is

greater than the square of the Hellinger distance (Shen and Wong, 1994), then there exists
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a constant C satisfying

inf
ρ(θ,θT)≥ε,θ∈Θn

ET [l(θT,W )− l(θ,W )]

≥ inf
ρ(θ,θT)≥ε,θ∈Θn

Cρ2(θ, θT) ≥ Cε2

where holding the first condition with α = 1 of Shen’s.

(2) Combining Lemma 2 and Lemma 3, there exists a constant C satisfying

sup
ρ(θ,θT)≤ε,θ∈Θn

V [l(θT,W )− l(θ,W )]

≤ sup
ρ(θ,θT)≤ε,θ∈Θn

ET [l(θT,W )− l(θ,W )]2

≤ C sup
ρ(θ,θT)≤ε,θ∈Θn

ρ2(θ, θT) ≤ Cε2

where holding the second condition with β = 1 of Shen’s.

(3) Consider the entropy H(ε,Λn, ‖.‖∞) = logN(ε,Λn, ‖.‖∞), using Lemma 5, there

exists constants C and µ satisfying

H(ε,Λn, ‖.‖∞)

≤ logK + (d1 + d2 + 2N0 + 2N1 + 1) log
1

ε

≤Cnk log
1

ε

where holding the third condition with 2r0 = k, r = 0+ of Shen’s. �
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