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ABSTRACT

DESIGN OF MATERIALS WITH SPECIAL DYNAMIC PROPERTIES USING
NEGATIVE STIFFNESS COMPONENTS

By

Jitendra Prasad

This work presents design concepts to synthesize composite materials with special
dynamic properties, namely, materials that soften at high frequencies. A typical rubber-
like material hardens with frequency and a material which reverses this behavior will find
application in product design for vibration absorption such as automobile engine mounts.
Such dynamic properties are achieved through the use of a two-phase matenal that has
inclusions of a viscoelastic material of negative elastic modulus in a typical matrix phase
that has a positive elastic modulus. Possible realizations of the negative stiffness
inclusion phase are presented. One way to realize the negative stiffness phase is by using
a lattice containing bistable structures. A numerical homogenization technique is used to
compute the average viscoelastic properties of such composites. A methodology is
presented for the automatic design of such special materials using topology optimization
techniques. The method and the vibration-isolation properties of a composite material

designed with it are demonstrated through examples.



Neither the thief can steal it, nor can the king take it
Neither divided amongst brothers, nor too heavy to carry
The more you expend it, the more it increases
Knowledge is the prime wealth

- Subhashitani ( The wise sayings in Sanskrit )
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Background

Special dynamic properties such as a softening of the dynamic modulus of a viscoelastic
material at high frequencies are desirable for some applications. For example, a material
that softens at high frequencies may be used to make an ideal automobile engine mount,
as an ideal engine mount should maintain high stiffness at a low frequency and low
stiffness at higher frequencies (Yu et al (2000)). Such material may be called a smart
material, as smart materials typically respond to environmental stimuli (e.g., forcing
frequency) with particular changes in some varnables (e.g., dynamic modulus). This work
explores concepts for the design of materials with these unusual dynamic properties, with

applications in design of engine mounts and similar vibration-isolation components.

The function of an engine mount is to support the weight of the engine while 1solating
unbalanced engine disturbance forces from the vehicle structure. The force transmitted to
the vehicle structure increases with the dynamic stiffness of the mount and therefore, the
mount should have low dynamic stiffness in order to isolate the vibration caused by the
engine. However, large static and quasi-static engine displacements resulting from low
dynamic stiffness and shock excitation (e.g., low-frequency excitation forces caused by
an uneven road or by sudden acceleration, deceleration or braking) may cause damage to

the engine and vehicle structure. The dynamic stiffness of an ideal engine mount,



therefore, should be a function of frequency of excitation. In other words, the dynamic
modulus of a material ideal for an engine mount should decrease with the forcing
frequency. However, a typical single-phase material does not soften at high frequencies.
In fact, a composite mixture of such typical materials does not soften either. For example,
a Voigt composite (i.e. a two-phase layered composite material in which laminae are
aligned in the direction of the force) will soften if and only if the elastic modulus of at
least one of the constituent phases decreases with frequency. This is because the effective
elastic modulus of this composite is a convex combination of the elastic moduli of the
individual phases. Similarly, a Reuss composite (i.e. a two-phase layered composite
material in which laminae are aligned perpendicular to the direction of the force) cannot
display frequency-induced softening unless at least one of the constituent phases too
displays such softening. However, it is possible to achieve frequency-induced softening
in a two-phase composite if one of the constituent phases has a negative elastic modulus.
For example, in Wang and Lakes (2004a and 2004b) an inclusion of a ‘negative-stiffness’
phase in a matrix of a typical material is shown to lead to a softening of the dynamic
stiffness at high forcing frequencies. This behavior is the basis for the concepts explored
here. The objective of this work is to generate design concepts that will lead to the
synthesis of two-phase composite matenials that soften monotonically with forcing
frequency. The goal is to expose novel concepts and algorithms that could be used as
guidelines by material scientists in future work, rather than to provide a specific recipe to
synthesize the material. The work of Wang and Lakes (2004a and 2004b) serves as an

inspiration to use negative stiffness inclusions.



A negative stiffness material has a negative elastic modulus. Such matenals are not stable
and therefore, do not permanently exist in the negative stiffness state. A block of negative
stiffness material, however, can be made stable by constraining it from all sides by
surrounding the block with a typical (i.e. stable) material, as shown in Lakes and Drugan
(2002). Negative stiffness materials are realizable. For example, Lakes and Drugan
(2002) and Wang and Lakes (2004b, 2005b) proposed lumped lattices to implement
negative stiffness inclusions. In such lumped lattices, negative stiffness 1s basically
achieved by a bistable structure. A bistable structure has two stable configurations under
no external loads and is known to have ‘negative stiffness’ in the neighborhood of third,

unstable configuration.

The effect of a negative stiffness inclusion in a composite material may be studied
analytically or numerically by approximating the composite as a lumped system. For
example, Wang and Lakes (2004a, 2004b) studied a one-dimensional spring-damper
system as an approximation of a two-phase composite material. In that work, numerical
analysis of the lumped system revealed atypical properties of a composite material having
a negative stiffness inclusion (the negative stiffness inclusion was demonstrated also to
lead to extremely high stiffness and damping). Analysis of the equivalent 1D lumped
model helps in choosing properties of matrix and inclusion phases that can lead to the

desired softening. This approach will be used here too.

With a negative stiffness material at hand and the knowledge that the inclusions of a

negative stiffness phase in a matrix of a typical material phase can lead to frequency-



induced softening, it is possible to tailor a composite material to desirable properties. The
so-called ‘inverse homogenization problem’ in which the effective properties of a
composite material is prescribed and the goal is to find topology that gives the prescribed
material properties, is well-known, for example in Sigmund (1995) and Diaz and Benard
(2003). The material design methodology has also been extended to design a viscoelastic
matenial, for example in Yi et al. (2000). In this work, the existing knowledge in the
material design problem has been extended to design the composite materials that exhibit

frequency-induced softening.

The application of the present work is not limited to the frequency-induced softening or
the vibration isolation only; this work may be easily extended to design extremal
materials, where an extremal material refers to one having an elastic / viscoelasic
property equal to the maximum or minimum value allowed by the rigorous theoretical
bounds such as Hashin-Shtrikman bound (originated from Hashin and Shtrikman (1963)),
Cherkaev-Gibiansky bound (detailed in Cherkaev and Gibiansky (1993)) and the
corresponding viscoelastic bounds (given in Gibiansky and Milton (1993), Milton and
Berryman (1997) and Gibiansky et al. (1999)). The inverse homogenization problem has
already been used to design elastic materials with unusual or etxremal properties such as
the materials with zero or negative Poisson’s ratio as in Sigmund (1995) and the matenals
having extremal bulk modulus as in Sigmund (2000). Unususal or extremal materials in
the context of viscoelasticty have also been made. For example, using matenials with
negative bulk modulus, Jaglinski et al (2007) have built composite materials that have

viscoelastic stiffness greater than diamond. The negative stiffness phase and the topology



optimization method used in this work may be extended to design materials that can

exhibit such extreme viscoelastic behaviors.

1.2 Organization of the Dissertation

The rest of the dissertation is organized as follows. A methodology to conceptually
design the desired material is described in chapter 2. It introduces a model of a two-phase
composite material and discusses a negative stiffness material, which is used to build the
inclusion phase. The stability and realization of the inclusion phase are discussed in this
chapter. Chapter 3 describes the homogenization method used here to compute the
effective properties of the composite material. The application of the design methodology
and the performance of the designed matenal are demonstrated through a few examples
in that chapter. The automatic design of the softening materials using topology
optimization is described in chapter 4 and examples are presented to evaluate the
performance of the design method. Chapter 5 gives details on designing tileable bistable
structures which may be used to realize the negative stiffness material. Conclusions are

drawn at the end and references are given.



CHAPTER 2

TWO PHASE COMPOSITE MATERIAL

With the ultimate goal of achieving a composite material that exhibits frequency-induced
softening, this chapter simplifies a two-dimensional composite material into a one
dimensional mechanical model that is made of springs and dampers. The mechanical
model is analyzed for a stable frequency-induced softening. It is found that one of the
springs is required to have a negative stiffness in order to get frequency-induced
softening. It is therefore important to allow the spring stiffness to assume a negative
value. A structure having a negative stiffness component, however, may be unstable and
therefore conditions for the stability of the mechanical model are derived to make sure
the model has a stable frequency-induced softening. Once the parameters (i.e. spring
stiffness and damper coefficients) of the 1D model leading to a stable frequency-induced
softening are determined, these parameters are extended back to construct the
corresponding two-dimensional composite model. The 1D system studies imply that a
composite material softens with frequency if the composite has inclusion of a negative
stiffness material B in a matrix of a typical elastic material A. The stability of the
negative stiffness inclusion is reviewed as the stability criterion of the 1D model may not
be sufficient in two-dimensions. Material A, being a typical elastic material with positive
Young’s modulus, is easily available. In contrast, material B has negative Young’s
modulus and is not available. A negative stiffness matenal that can be used as material B

is, therefore, built. Material B is proposed as a lumped lattice that has negative-stiffness



springs. The negative stiffness springs realizes the negative Young’s Modulus. The

negative stiffness is in turn realized by bistable structures.

2.1 Mechanical Models of Viscoelastic Composites

The strategy to design a material exhibiting frequency induced softening relies on the
study of non-homogenous materials with a periodic micro-structure designed to reverse
the behavior of typical materials, which stiffen with frequency. In particular, this work
studies a two-phase composite material composed of periodic inclusions of a viscoelastic
phase B in matrix of an elastic/viscoelastic phase A. A schematic arrangement of such
composites 1s shown in Fig. 2.1. The dashed square in Fig. 2.1 shows a fundamental cell
of the periodic arrangement. The properties of the constituent phases and their shape and

topology are the variables to be determined in order to obtain the desired results.

®00 00
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Figure 2.1. Two-phase composite material (dashed box shows the fundamental cell)

Following Fujino et al. (1964) and Marinov (1978), the two phase composite material can
be approximated as two types of mechanical models combining the two phases as shown

in Figures 2.2(b,c) and 2.2(d,e). The former mechanical model represents a simple



additivity of contribution of partial stress of each element sliced vertically to the total
stress, and the latter that of partial strain of each element sliced horizontally to the total
strain. In these models, rigid adhesion between the two phases and no interference
between the sliced elements are assumed, 1.e., actual stress or strain distribution along the

spherical surface of each phase is much simplified.
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Figure 2.2. Two types of mechanical models corresponding to a simple mechanical
mixture, B sphere in A unit cubic lattice — (a) Unit or fundamental cell, (b) & (c)

equivalent parallel model, (d) & (e) equivalent series model

In the model in Fig. 2.2(c), A; and ¢, are the length fractions of phase B in horizontal and
vertical directions, respectively. If both the two phases A and B are perfectly elastic

materials, the average Young’s modulus is obtained (as a function of the Young’s moduli



of the individual phases) by solving equations of equilibrium. This expression for the
average Young’s modulus can be extended to obtain the average complex modulus of the
viscoelatic material by using the correspondence principle. In the present context, the
correspondence principle states that the expression for the average complex modulus of a
viscoelastic composite may be obtained by replacing the phase Young’s moduli by phase

complex moduli in that expression of the average Young’s modulus.

Haddad (1995) presents a general definition of the correspondence principle as follows:
For a large number of technical viscoelastic problems, it is possible to relate
mathematically the solution of a linear, viscoelastic boundary value problem to an
analogous problem of an elastic body of the same geometry and under the same initial
and boundary conditions. This is carried out by transforming the governing equations of
the viscoelastic problem to be mathematically equivalent to those goveming a
corresponding elastic problem. In this, both Laplace and Fourier transforms are often
used. Accordingly, one would be able to employ the tools of the theory of elasticity to
solve different boundary value problems in linear viscoelasticity. This analogy is referred
to as the ‘correspondence principle’ and implies the elastic procedures may be utilized to

derive transformed viscoelastic solutions.

Applying the correspondence principle, if E:i and E;; are complex moduli of phases A

and B, respectively, then the average complex modulus of the two-phase material may be

given by



-1
Ep =(1-11)EZ+/11[(1_?')+&,} (2.1.1)
Ey Ep

Similarly for the model in Fig. 2.2(e), A, and ¢, are the length fractions of phase B in
horizontal and vertical directions, respectively. The average complex modulus based on

the series model is given by

o= 422) B (2.12)
Ey (-AQ)E 4+A4Eg

Viscoelastic materials are often represented by mechanical models consisting of elastic
springs and viscous dashpots, where the elastic springs describe for the elastic behavior
and the dashpots describe viscous behavior. The mechanical model shown in Fig. 2.2(e)
will be studied. In this example, Phase A is assumed perfectly elastic and, therefore, will
be represented by an elastic spring. The inclusion phase B is modeled as a standard linear
solid. A standard linear solid model of viscoelasticity is sketched in Fig. 2.3, where E}, E,

and 7 are the three parameters of the standard linear solid.

Ey
UW_.U

n

Figure 2.3. Standard linear solid model of viscoelasticity
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The complex modulus corresponding to the viscoelastic model shown in Fig. 2.3 is given
by

E;;((U) - EI(EZ + 17]60)

i (2.13)
(El + E2 +n]a))

The mechanical model corresponding to Fig. 2.2(e) 1s shown in Fig. 2.4. This mechanical

model is same as that studied in Wang and Lakes (2004a, 2004b, 2005a).

Figure 2.4. Spring-dashpot system corresponding to the series system in Fig. 2.2(e)

The parameters in Figs. 2.2(e) and 2.3 are related as follows:

__ ke k(-9)
EA'(]-AQ)d_ y (2.1.4)

and

Et _ EI(EZ +inw) _ k3(k2 +iCz&)) ¢2
(El + Ez +inw) (k‘; +k2 +iCz(l)) /hd

(2.1.5)

since the viscoelastic material parameters are

11



B=kiy (2.1.6)
Ey=k % 2.1.7)
= szz% 2.1.8)
where

d =? 2.1.9)

W is the width of the fundamental cell ( Fig. 2.2(a) ).
H is the height of the fundamental cell ( Fig. 2.2(a) ).

D is the thickness of the fundamental cell.

F, x3
kg
txg
koS HH2
kj _t_xz
k3

Figure 2.5. Spring-dashpot system with boundary conditions

The lower end of the system will be fixed as shown in Fig. 2.5 and a force will be applied

at the upper end. The equation of motion of the system in Fig. 2.5 is given by

12



¢ -0 0 X"l kl + k2 + k4 —k2 —k4 X 0
=) (&) 0 i‘z + —kz kz + k3 0 Xy |= 0
0 0 0 X‘; —k4 0 k4 X3 F

The applied force F is peniodic. F is given by

F=F¢

o

The steady-state solution to the equations of motion is given by

o X0 |
X2 = X20 e’
X3 X30

Substituting (2.1.12) in the equation of motion (2.1.10), we get

kl +k2 + k4 + ia)c2 —k2 —ia)c2 —k4 X10 0
—-kz —i((X'2 kz +k3 +i(£X‘2 0 X0 |= 0
—k4 0 k4 X30 Fo

Solving the new equation of motion (2.1.13), we get

i_ k4[k3(k2 +iC2a))+k1(k2 +k3 +ic2a))]

x30  k3(ky +icow) + (k) +kq)(ky + k3 +icrw)

Eliminating k), k2 , k3, k4 and c; in (2.1.14) by using (2.1.3)-(2.1.6), we get

-1
F, | (1-¢) .
Lo | £, | d=Ejpd
X30 Ey (-AQ)E +A4Ep

13

(2.1.10)

(2.1.11)

(2.1.12)

(2.1.13)

(2.1.14)

(2.1.15)



where E;n is the average complex modulus for the two-phase material (equation 2.1.2).

The quantity E;nd 1s actually the average complex stiffness (k;;) of the fundamental

cell in Fig. 2.2(a). So, we define

F,
kpy =—2=E}p,d (2.1.16)
X30
or,
F,
k|| = e = E;n’d 2.1.17)
[0l

||k;.1|| and “E;n“ will be referred to as the dynamic stiffness and dynamic modulus,

respectively.

It should be noted that the parameters £, k2 , ks and c; in the example system (Fig. 2.5)
will be treated as positive numbers, while k3 could assume a negative value, when desired.
Bistable structures are known to have negative stiffness (e.g. in Wang and Lakes (2004a,
2004b, 2005b)). A negative k3 can be implemented via a bistable structure. The reason to
allow k3 to be negative is to achieve a dynamic stiffness/modulus that softens with

frequency.

14



2.2. Conditions for Stable Softening of Dynamic Modulus

2.2.1 Conditions for softening
From (2.1.17), it can be seen that dynamic stiffness and dynamic modulus are
proportional to each other. For convenience, softening of dynamic stiffness of the

example system in Section 2.1.1 will be investigated. We have (from equations 2.1.14

and 2.1.16),

_| Kalkshy +icy0) + Ky (ky + k3 +icy0)] |
||k3(k2 + iCz(l)) + (kl + k4 )(k2 + k3 + iCzw) "

(2.2.1)

ky
By analyzing (2.2.1), we find that -—a——— <0 if and only if
()]

k4[2k12(k2 +k3)+k3 {k3k4 +2k2(k3 +k4)}+2k1 {k’;(k:; +k4)+k2(2k3 +k4)}]<0.

*

alk};

Since &, >0,

1s negative provided that

K4[2K12(1+K3)+K3 {K3K4 +2(K3 +K4)}+2K1 {K3(K3 +K4)+(2K3 +K4)}]<0,

where we define

K=t (2.22)
2

Ks =i‘—3 (2.23)
2

Ky=Fa (2.2.4)
ky

15



o]
Since K4 >0, we get that a necessary condition for o <0 1s
[0

2K]2(1+K3)+K3[K3K4 +2(K3 +K4)]+2Kl [K3(K3 +K4)+2K3 +K4]<0

We now define the function i as

W(K).K3,Kg) = 2K{ (14 K3)+ K3 [K3 Ky +2(K3 +K4)]+ 2K, [K3 (K3 +Kg) +2K3 +Ky]

(2.2.5)

ok
It follows that 5w is negative if and only if ¥ (K|, K3,K4)<0.

Since k; and k4 are made from same material, K4 >0 also implies K} > 0. Since both

did
K, and K4 are positive, the requirement 3 <0 1s satisfied whenever
(7))

K3min < K3 < K3max s where

2Ky - K - Ky~ KKy~ Kf +2K3Ky + K2 + KEK2
242K +K,

K3min = (2.2.6)

2Ky - K - Ky~ KiKy + K +2K7Ky + K2 + KPK2
K3y = (2.2.7)
2+ 2Kl + K4

K3max may be written as

16



X —2K1—K12—K4—K1K4+\/(K12+K] Ky +K3
3 g
max 242K, +K,

(2.2.8)

Since both K; and K, are positive, K3, 1s negative and since

\/(K12 +K; K4)2 +K§ <(K12 + K K4)+ K4 for any positive Kj and K4, K3pax 1S also

dlky
negative. Thus, the condition for the frequency-induced softening (i.e., ——<0) 1is
()]

K3min < K3 < K3max <0.

Thus a negative stiffness spring is needed to achieve frequency softening.

2.2.2 Conditions for stability

In this section, the stability of the system in Fig.2.5 will be examined for a static force F.

Equation (2.1.10) can be rewritten as the following three equations

Xy —CpXp +(ky +hy +kg)x) —kpxy —kgx3 =0 (2.2.9)
—Cyx| + 03X —kle + (k2 +k3)X2 =0 (2.2.10)
—k4xl +k4X3 =F (2.2.11)

Adding (2.2.9) and (2.2.10), we get

(k] + k4)x] + k3X2 —k4X3 =0 (2.2.12)

17



From (2.2.11) and (2.2.12) for k3 #0 and k4 20,

kax;—F
x =480 (2.2.13)
ks
-kk
o = Fl + k)~ kykyxs (2.2.14)
kaky
Differentiating (2.2.13) and (2.2.14),
i =iy 2.2.15)
=K, (2.2.16)
ky -~

Substituting (2.2.15) and (2.2.16) in (2.2.10), we get

¢ (kg +ka)kaxs +[koks + ki (ky + k3)Jkaxs = Flky(ky + k3) + kaka + Ky (k3 +k4)] _
' k3k4

0

(2.2.17)

or,

o (ky + k3 )kgxy +[koky + ky (kg + k3)lkgx3 — Fky(ky +k3) +k3ky + ko (k3 +k4)]=0

(2.2.18)
Solving the differential equation (2.2.18) we get
%y = (l—eA’) Flky(kp +k3) +kakg + ko (k3 + k4)] (2.2.19)
[kaks + ki (ky +k3)]kg
where
A=tk k(e +ks) (2.2.20)

(kg +k3)

18



We define

k= Lkoks +ky(ky +k3)lky
D Ty ey + k3 ) + akg + ko (3 + Kg)]

(2.2.21)

ke is actually the static stiffness of the system. From (2.2.19) and (2.2.20), we find that
x3 1s bounded if A < 0. Furthermore the effective stiffness of the system (i.e. kejf) must

be positive so that the external force will do positive work. A negative work done by the

external work is an indication of instability. In other words, the system is stable if

A <0 and kefj >0 (2.2.22)

Since c¢p is positive (and real), the conditions for the stability of the system is

K3+ K (1+K3)
K|+K3

>0 and k. >0. The first condition (i.e. A<0) is satisfied if any one

of the following two conditions is satisfied:

(i) K3 +K (1+K3)>0 and K| +K3 >0, (2.2.23)

(ll) K3 +K1(1+K3)<0 and K] +K3 <0 (2224)

Since K; >0 and K3 <0, the system is stable (i.e. x3 is bounded) if and only if keﬁ' >0

and any of the following two conditions is satisfied:

(i) K3 +K;(1+K3)>0, (2.2.25)

(ii) K| +K3 <0 (2.2.26)
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2.2.3 Combined conditions for softening and stability
From section 2.2.1 we know that the dynamic stiffness of the example system decreases

with increase in the forcing frequency if and only if ¥ <0, whereas in section 2.2.2 we

learned that the example system is stable if and only if A <0 and k;z >0. The goal of

this section is to investigate whether both the softening and stability conditions can be
satisfied simultaneously.  Although there are two stability conditions to be satisfied

simultaneously (viz. A<0 and k. >0), only the first stability condition (i.e. A<0)

will be applied to test whether the example system in Fig. 2.5 is stable in the frequency-

induced softening regime. The second stability condition (ie. ko >0) can be

numerically checked later, once the two conditions i <0 and A <0 are simultaneously

satisfied.

As given in section 2.2.2, A< 0 if and only if any of the following two conditions is

satisfied:
(1) K3+K,(1+K3)>0,

(ii) K} +K5 <0

We will check whether one of these two conditions ( (1) and (i1) ) and ¥ <0 can be

satisfied simultaneously.

(i) Satisfying K3+ K (1+ K3)>0 and y <0

We define Y as

20



Y =K3+ S| (2.2.27)

(1+K1)
or
K3=-7 f;{ ) (2.2.28)
1

Inequality (2.2.25),1.e., K3+ K|(1+K3)>0 istrue ifand onlyif Y >0.

Substituting (2.2.28) in (2.2.5), we get
v =[2K14Y+2K13Y(2+K4 +Y)+Y(2Y+K4(2+Y))+2K1 Y(3Y +K4(2+Y))+

Klz(2Y(1+3Y)+K4(l+4Y+Y2))]/(1+K1 %

(2.2.29)

We find from (2.2.29) that Y >0 implies i >0 and (from Section 2.2.1) we know that

dlkyy
¥ >0 implies —a—>0. It follows that the condition K3+ K (1+K3) >0 results in
P k 3

hardening of the dynamic stiffness with the increase in the forcing frequency. Thus

stability condition K3 +K)(1+K3)>0 and the softening condition ¥ <0 cannot be

satisfied simultaneously.

(ii) Satisfying K|+ K3 <0 and y <0

We will now check whether K} + K3 <0 and i <0 can be simultaneously satisfied.
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We define Z as

Z=-K|-K; (2.2.30)
or
Ky=-K|-Z (2.2.31)

The inequality K} + K3 <0 1s equivalent to Z>0. Substituting (2.2.31) in (2.2.5), we

get

w=-KE(Ky—2Z)+2K) Z® + Z[K4(-2+ Z) +2Z] (2.2.32)

¥ <0 implies

KR+ Ky—\(KE +K Kg)? + K} 7 K2+ Ky + (K2 +K Kg)2 +K3
242K +K, 2+2K) +K,

The conditions i <0 and Z >0 are satisfied if and only if

k¢ + Ky +J(KE+K) K92 +K2
2+2K) + Ky

0<Z

or

K12—K4-J(K[2+K1 K +K3?
2+2K1 +K4

0>K; +K3 >

or

K2 Ky —\(KE +K) Kg)2 + K2
2+2Kl +K4

—Kl <K3 <—K1
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In summary, we have found that the example system in Fig. 2.5 exhibit a stable
frequency-induced softening if and only if the following two conditions are
simultaneously satisfied:

(@) kg >0 and

KP Ky —(K} + K Ko)* +K}
2+2K1 +K4

(b) -Kl <K3 <—K1 .

2.2.4 Numerical example
Here, the example system (shown in Fig. 2.5 and again in Fig. 2.6) will be studied with

k ) )
K| = % =03 and Ky= A_4 =0.1 . With these values, A<O0 requires
2 ‘2

k
-0.3616< K3 <-0.3. We choose K3 =k—3=—0.304 and also %=0.0002. The system
2 2

is loaded with a periodic force, F = F sin(ax).

F, x3
kg

tx1

ko c2
kj __T_Xz

k3

Figure 2.6. Spring-dashpot system with boundary conditions
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Figure 2.7. xj (), x,(¢) and x3(¢) at the reference parameters and forcing frequency 1 Hz
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Figure 2.8. x) (#),xp(¢) and x3(7) at the reference parameters and forcing frequency

2000Hz

25



Figure 2.7 shows plots of (non-dimensionalized) xj (), x,(¢#) and x3(¢), when the
forcing frequency is 1 Hz. Figure 2.8 shows the plot of x; (r), x,(¢) and x3(r), when the

forcing frequency is 2000 Hz. As can be seen in the figures, the x; ’s are bounded,

showing stability of the system.

When the condition —0.3616 < K3 <-0.3 is violated, the system is not simultaneously

stable and in the dynamic-stiffness softening regime. For example, when K3 in the
reference parameters is changed to -0.24, the system is not stable about the initial

conditions (i.e. x; (0)=0). Figure 2.9 shows the plot of x3(f) with K3 =-0.24 and
S =w/(2r)= 2000 Hz. As can be seen in Fig. 2.9, x3(¢) is departs from the initial

condition x3(0) =0, signifying local instability of the system.

time (t) -3

Figure 2.9. x3(t) with K3 =-0.24 and frequency = 2000 Hz
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When K3 in the reference parameters is changed to -0.39, the dynamic stiffness increases

with the increase in the forcing frequency. Figures 2.10 and 2.11 show the plot of x3(r)

when the forcing frequency is 1 Hz and 2000 Hz, respectively. As can be seen, the

amplitude of x3(¢) is smaller when the forcing frequency is higher, indicating hardening.

N
o
T

1

't 1 1

0 2 4 6 8 10
time (t)

Figure 2.10. x3(#) with K3 =-0.39 and forcing frequency 1Hz

|
)
S

T
s

1 1 1 1

0 1 2 3 4 5
time (t) -3

Figure 2.11. x3(¢) with K3 =-0.39 and forcing frequency 2000Hz
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At the reference parameters (viz., K =:—]=O.3 , Kj =7Iz"—=—‘=—0.304 ,
2 2 2

Ky =%—=0.1 and%—=0.0002 ), the corresponding plots of the absolute value of the
2 2

effective stiffness (i.e. “k;} “ ), the real part of the effective stiffness (i.e. Re(k;{)) and the

imaginary part of the effective stiffness as functions of the forcing frequency are shown
in Figs. 2.12 (a), (b) and (c) respectively. In the stiffness plots, the stiffness will be scaled

(and made non-dimensional) by dividing it by k5. As can be seen in Fig. 2.12(a), the

static scaled dynamic stiffness is approximately 0.38. With increase in the forcing
frequency, the stiffness monotonically decreases. The stiffness value is approximately
0.05 at the frequency 2000 Hz. It can also be seen in Fig. 2.12 (b) that the real part of the
effective stiffness is positive for the whole frequency range shown, i.e. in the range 0-

2000 Hz.

Now, the effect of changing % will be studied. When -E—z— is changed to 0.02, we
2 2

observe increase in the curvature of the dynamic stiffness vs. frequency curve, as in Fig.
c ) i . )
2.13. = thus seems to be an important parameter for tuning or achieving a desired

2

dynamic stiffness vs. frequency curve.
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Figure 2.12. Absolute value (a), real part (b) and imaginary part (c) of the effective

stiffness (k).

29



0.1 L

0 500 1000 1500 2000
Frequency (Hz)

Figure 2.13. Dynamic stiffness vs. the forcing frequency with ¢, / k3 =0.02

2.3. Estimation of Composite Material Parameters

The two-dimensional composite material in Fig. 2.1 was simplified into the one
dimensional model in Fig. 2.5 to analyze the material for frequency-induced softening
and stability. The parameters of the one-dimensional model (i.e. &, k,, k3, k4 and ¢;) will

now be used to construct a two-dimensional composite model. The parameters for the
. . . . * *
two-dimensional composite model are the complex moduli (E4=E,; and Eg) of the

two phases A and B, the length fractions of phase B in horizontal and vertical directions

(ie. A, and ¢ in Fig. 2.2 ) and a'=-WTD— (equation (2.1.9)). There are 5 unknown

parameters (E 4, E}}, A2 , ¢ and d) for the two-dimensional composite model and 3

equations, namely (2.1.4) (2 equations) and (2.1.5). Thus there are two free choices to be
made to satisfy the three equations relating the parameters of the 1-D model to the

parameters of the composite material.
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From (2.1.4),

Eqd= (1"_‘?2) = ky(1-¢) @3.1)

or

(-¢)1-4) _k (232)
) k4

where

0< A<l (2.33)

and

0<gp <l (2.3.4)

In equation (2.3.2), k; and k4 are given data. Ay and @, are chosen such that they satisfy

(2.3.2)-(2.3.4).

From (2.1.4) and (2.1.5),

§i= k3 (ky +icow) (1-4)
E, (k3 +k2 +icyw) /lzkl

(2.3.5)

If d is prescribed, £, is computed using (2.3.1) and E; i1s computed using (2.3.5).

Alternatively, E 4 may be prescribed and the corresponding d 1s computed using
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d= ka(=9) (2.3.6)
E,

2.3.1 Example phase properties

A one-dimensional example which shows frequency-induced softening as well as

stability has the following parameters: K| = ll:—l =0.3, K4 = :—4 =0.1, K3 = %— =-0.304
2 2 2

and <2 =0.0002 . Using equations in this section, the corresponding parameters for the
2

two-dimensional composite model (viz., E 4, E;} , A2, ¢ and d) are found.

A square fundamental cell is assumed and thus A, = ¢. From (2.3.2)-(2.3.4),

(1-)1-0p) _k _03 _,

* ks 0.1
or

A=¢=0.2087 =02

Ep _ ky(ky+icyw) (1=4y) _ 4.053+i0.0008

- - p (2.3.7)
EA (k3 +k2 +1c2a)) /’{le 0.696+i0.0002w
At w=0,
*
-@- =-5.824
E4
w=0

and thus the Young’s modulus for material B is negative.
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The elastic tensor for material A is given by

1 V4 0
Cy= 4 vy 1 0
Val o 0 (-vy/2

where v 4 1s the prescribed Poisson’s ratio for phase A.

The elastic tensor for material B is given by

* 1 VB 0
CB= B Vp 1 0
VBlo 0 (-vp)/2

where v is the prescribed Poisson’s ratio for phase B.

The complex shear modulus of Material B is given by

+  Ep
Ggp =—"——
2(1 +VB)

(2.3.8)

(2.3.9)

(2.3.10)

Note that the shear modulus of material B is negative as the matenial is isotropic and the

Young’s modulus 1s negative. A negative shear modulus indicates the elastic moduli are

not strongly elliptic (Lakes and Drugan (2002)). If strong ellipticity is violated, the

material may exhibit an instability associated with the formation of bands of

heterogeneous deformation. However, the violation of strong ellipticity does not

guarantee the loss of stability of the inclusions: experiments show that the energy penalty

of band formation suppresses banding when particles of the material are sufficiently

small. Thus an instability criterion based purely on elasticity theory may not contain
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enough of the physics of the actual material behavior, and hence may predict instabilities

in regimes where such do not occur in reality (Lakes and Drugan (2002)).

In essence, small-size inclusions of Material B may have potential to achieve the
frequency-induced softening; however, elasticity theories predict instability of the
composite material. While the physics suitable for the small-size inclusions of material B
in the matrix of material A needs to be studied further, inclusions of lumped lattices of
material B (made of springs and dampers) are used in the matrix of material A to achieve
frequency-induced softening in this work. Note that negative shear modulus can also
occur in the lumped elements; however the lumped elements cannot form bands and the
continuum conditions of ellipticity do not apply to the lumped elements (Lakes and

Drugan (2002)).

2.4 Stability of Negative Stiffness Phase B

The inclusions of phase B with negative shear modulus will be unstable and therefore
cannot be used directly. Instead, an anisotropic phase B is needed that has a negative
Young’s modulus, but also a positive shear modulus enough to maintain stability under

prescribed displacement at the phase boundary.

In order to avoid loss of stability, a model for an anisotropic phase B is proposed,

whereby B is itself a mixture of two isotropic constituents, B; and B,. In this model, a

constituent with negative stiffness (B;) is always surrounded by a second phase of stable
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material (B;). One such arrangement is shown in Fig. 2.14. The resulting effective
properties of phase B correspond to a “rank 1” layering of B, and B, along the horizontal
direction (direction 1). The effective elastic tensor for phase B is computed using the

following standard layering formulas (given e.g. in Hassani and Hinton (1999)):

=— i 24.1
= g g @40
blz(w)=(g'l—2+(l~g)ﬂ1)bn(w) (2.4.2)

N 911
2 2 2

= 1- N2 gydiz |, (Br2(@)” 2.43
by (@) = (grn +(1-8)922) (gr“ﬂ g)‘lll + (@) (2.4.3)
by () = —B333 (2.4.4)

(1-g)r33 + 8933

where q; and r; are the ij-components of the elastic tensors (Cp; and Cp;) for phases B,

and B, respectively. g is the volume fraction of B, in B. The effective elastic tensor is

given by

b(@) bp(w) O
Cp=|bp(@) bp(w) O (2.4.5)
0 0 by(w)

With suitable values for the free parameters g, Cz; and Cp;, the rank-1 set up can result in
an elastic tensor for B where the 2-2 entry (Cz222) 1s negative while 3-3 entry (Ci212) 1s

positive, i.e., B has positive shear modulus. The choice of B; is somewhat arbitrary (as
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long as it is a standard material). Both A and B; are chosen to be made of the same

material. An idealization of B, using a lumped parameter model is discussed next.
Stable By Unstable By  Stable B  Unstable B4

T T T3 S —
©o0o0o f oooo
ot A 3t g e v . -

Figure 2.14. A potential arrangement of constituents B, and B, to form material B

2.5. Implementation of Negative Stiffness

As discussed in Section 2.2, negative stiffness is important for the frequency-induced
softening of the dynamic stiffness of the system in Fig. 2.5. Negative stiffness can be
implemented using a bistable structure. Figure 2.15 shows a simple example of a bistable
structure. The hollow circles in the figure denote the hinges in the structure. There are
two linear springs in the structure, each hinged at both ends. The Y-shaped support
structure is assumed to be rigid. The springs are connected such that they form an arch-
shape as shown in the figure. / is the vertical distance between the two ends of either

spring. Similarly, L is the horizontal distance between the two ends of either spring.

P,y

Figure 2.15. A simple bistable structure
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A vertical force P is applied at the common joint of the two springs, as shown in the
figure. y is the corresponding vertical displacement. The strain energy of the bistable

structure in Fig. 2.15 is given by,

¥(y)= 2(%1:&) (2.5.1)
where
A=J(h+y)? + 12 —Vh2 + 12 2.5.2)

The (equilibrium) force corresponding to displacement y is given by

Y _oia 92 2.5.3)
dy dy

P

The stiffness of the structure is given by

dP  d*¥
. =E=}}y7 (2.5.4)

Figure 2.16 shows the typical plot of the applied force (P) versus the resulting
displacement (y). Figure 2.17 shows the corresponding plot of the stiffness (&, ) versus
the displacement (y). As can be seen in Fig. 2.17, the bistable structure has negative
stiffness for some displacement values. The negative stiffness corresponds to the negative

slope of the force-displacement diagram (Fig. 2.16).
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Force
(e}

Displacement

Figure 2.16. A typical force-displacement diagram for a bistable structure

Stiffness

Displacement

Figure 2.17. A typical stiffness-displacement diagram for a bistable structure

In the present example, the stiffness is negative for

ye (. vn) (2.5.5)

where

(2.5.6)

2.5.7)
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The stiffness is most negative at y =—h and the corresponding value of the stiffness at

that point is

h2
k,=2k|1- 7+l (2.5.8)

Note that y =—h corresponds to the two springs aligned, as shown in Fig. 2.18. The

structure shown is the figure can be used to achieve negative stiffness. However, the

stiffness is not constant and also the displacement (y ) is to be strictly in the range
(¥1,y),) in order to attain negative stiffness. In contrast, in the examples in section 2.2, k3

is a negative constant and thus it does not depend on displacements. The desired negative

stiffness will be approximately achieved by appropriately constraining y.

Figure 2.18. Configuration with the maximum negative stiffness
Replacing the negative-stiffness spring (k3) in the original system (Fig. 2.5) with the

configuration in Fig. 2.18, we get a new system that can be represented schematically as

shown in Fig. 2.19.
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Figure 2.19. Negative stiffness implementation

In Fig. 2.19, xp =0 corresponds to y =—h. Thus, x, and y are related as

xy=y+h (2.5.9)

For very small oscillations around x, =0 (equivalently y=—h), i.e. for |x,|<<|y; -y

1/3
2
xle<< 2"[%+1] —1), the stiffness &, ( in (2.5.4) ) will be approximately

constant at k, (given in (2.5.8) ) and the system in Fig. 2.19 will behave approximately

(or

same as the linear system in Fig. 2.5.

2.6 A Lumped System Realization of Phase B,

One way to visualize the behavior and inner-workings of phase B, is to use a lumped

lattice of springs and dampers where some of the springs have negative stiffness.
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Negative stiffness may be realized using e.g., bistaﬁle structures as shown in the previous
section. Figure 2.20 shows a potential lumped lattice configuration. As shown in the
figure, the lattice is a four-noded square, with two degrees of freedom at each node. The
nonlinear springs in the figure (shown as springs with an arrow across) correspond to
bistable structures that can be used to provide the desired negative stiffness. Material

phase B, is obtained by tiling a plane with the two dimensional lattice shown in Fig. 2.20.

Figure 2.20. Two-dimensional lattice of phase B,

The 2D lumped lattice in Fig. 2.20 is basically made up of 6 standard linear solid (SLS)
elements interconnecting the 4 nodes. k; and ¢;; in the figure denote spring stiffness and

damper coefficient, respectively. The complex stiffness of each of the four identical SLS

elements forming the four sides of the lattice is given by

o = Ja1(ky) +iwey))
k31 +kp) +iawcy)

2.6.1)
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Similarly, the complex stiffness of either of the two identical SLS elements forming the

two diagonals of the lattice is given by

5 = 3o (kpy +icicyy)
k32 + k22 + i(lX'zZ

(2.6.2)

The complex stiffness matrix (Ké) for the 2D element in Fig. 2.20 is given by

[ 52 82
"y
.s_2 sl+s_2
2 2
—Sl 0
. 0 0
KQ=
0 0
0 )|
2 5
2 2
5 5
L 2 2

The complex modulus tensor (Cp) corresponding to the lumped lattice in Fig. 2.20 is of

the form:
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o 3
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2
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M fiz O
Co=|h2 /u O (2.6.4)
0 0 fy

Three numerical tests are conducted to find CQ :

(i) Tensile test 1: Degrees of freedom 1, 2, 3, 4, 5 and 7 are constrained (zero prescribed

displacement) and degrees of freedom 6 and 8 are given unit displacements. f}; is the

total reaction force along the degrees of freedom 6 and 8. f; is given by

f“ = 251 +57 (265)

(ii) Tensile test 2: Degree of freedoms 1, 2, 3, 4, 5 and 7 are constrained (zero prescribed

displacement) and degrees of freedom 6 and 8 are given unit displacements. f|, is the

total reaction force along the degrees of freedom 1 and 5. f}, is given by

Sia=92 (2.6.6)

(iii) Shear test: Degree of freedoms 1, 2, 3, 4, 6 and 8 are constrained (zero prescribed

displacement) and degrees of freedom 5 and 7 are given unit displacements. f33 is the

total reaction force along the degrees of freedom 5 and 7. f33 is given by
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f3=5

2.6.7)

The aim is to construct an isotropic material using the lumped lattice in Fig. 2.20. In other

words, we want to express C, 0 in the form of (2.3.9), i.e.

* 1 Vg1 0
Cp = Ep 1% 1 0
BI=1" 2 |VB

VBl 0 0 (-vg)/2
This 1s possible if
§1 =82
* 85y 8s
Epy =—L =222
Bl 3 3
and
VB1=7%

(2.6.8)

(2.6.9)

(2.6.10)

(2.6.11)

As an example (to be used in section 4), the following parameters of the lumped lattice in

Fig. 2.20 are chosen:

kz] = 845EA
k3l = —O.304k21

€21 /k21 =0.0002

kyy =k
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k3p = k3

€ =C7)

Note that k3;/ky; =—0.304 and c,|/ky; =0.0002 here are kept the same as k3/k, and
¢, 1k, , respectively, in the example in section 2.3.1. The corresponding elastic tensor is

Cp; 1n equation (2.6.8) with

g __6:8501(1+i0.00020)
Bl 0.696 +i0.0002

and VBI=1/3-

The lumped system of the negative stiffness material B, designed here may be mixed
with a typical positive stiffness elastic material B; to build rank-1 layered material B (as
described in section 2.4). For example, a purely elastic material may be used as phase B,.

The elastic tensor for phase B, that will be used here 1s

Cro=—=4=|vpr | 0 (2.6.12)
VB2l 0 0 (1-vpy)/2

where v, = 0.3 1s the prescribed Poisson’s ratio for phase B; and Eg; is the Young’s

Modulus of phase B..
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If the volume fraction of B; in B 1s 0.8, the elastic tensor for the rank-1 layered matenal

B may be given by

hi(w) bpw) O
Cp=|bp(w) byp(w) O
0 0 by(w)

The absolute value, real and imaginary parts of the resulting b |(®@), by (@), by (W),
and b33(w) are plotted in Fig. 2.21. b;(@) values in the plots are normalized by E .

From Fig. 2.21 we find that only one component (b;2) is negative and the shear modulus

of material B is positive, viz. 0.4954 E 4. Material B thus can be made stable when
constrained. we also notice that in Fig. 2.21, "bzz(a))" decreases with forcing frequency,

while nb“(a))" , l|b12(a))|| and ||b33(a))|| are approximately constant. Based on this

information, it may be possible to synthesize a lumped lattice for material B directly,
bypassing the construction of B; followed by layering. In the next section, we will use

this information and construct such a lumped lattice.

46



0.01

142f 142 - o
0.005
1.41 : 141 SRLRERE

1.4 1.4 0

0 1000 2000 0 1000 2000 0 1000 2000
Frequency (Hz) Frequency (Hz) Frequency (Hz)
(a) Ibn/E4| (b) Re(bi/E.) (c) Im(b11/E,)
x107
0.4 0.44 7 3
0.42 ' 0.42 ' -
0 1000 2000 0 1000 2000 0 1000 2000
Frequency (Hz) Frequency (Hz) Frequency (Hz)
(d) [|br2/E| (e) Re(bi2/E) (f) Im(b12/E )

) 1000 2000 0 1000 2000 0 1000 2000
Frequency (Hz) Frequency (Hz) Frequency (Hz)
(8) [1b22/Ell (h) Re(b22/E ) (1) Im(b22/E )
x10”
0.5 0.5 3
2
0.495 . 0.495 S .
: 1
0.49 0.49 - 0
0 1000 2000 0 1000 2000 0 1000 2000
Frequency (Hz) Frequency (Hz) Frequency (Hz)
0) 11bss/EAll (k) Re(b33/E.) (1) Im(b33/E.4)

Figure 2.21. Components of the effective elastic tensor of material B
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2.7 Phase B as a Lumped System

This section illustrates that it is possible to synthesize a lumped lattice model for phase B
directly (bypassing the construction of B, followed by layering). The aim is to find a
phase B material which is approximately the same as that in section 2.6. Phase B in that
section is a rank-1 layered material, whereas phase B here is a lumped system and is
stable enough to be used as an inclusion. Figure 2.22 shows a potential lumped lattice
configuration for phase B. As shown in the figure, the lattice is a four-noded square, with
two degrees of freedom at each node. ks and cs in the figure represent spring stiffnesses
and damper coefficients, respectively. The concentric circles at the four comers represent
rotational springs at the four corners. The nonlinear springs in the figure (shown as
springs with an arrow across) correspond to bistable structures that can be used to provide
the desired negative stiffness. Material phase B is obtained by tiling a plane with this two

dimensional lattice.

Figure 2.22. Two-dimensional lattice of phase B
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The complex stiffness of each of the two 1dentical standard linear solid elements forming

the left and right sides of the lattice is given by

k30 (koo +iccyg)
k30 + kzo + ia)c20

s (@)=

@2.7.1)

The complex stiffness matrix (K ;3) for the 2D element in Fig. 2.22 is given by

-
k10+£‘;—0+R A—;g -k10 0
Mo g Mog o R
2 2
-ko 0 ki 0+ﬁ&+ R _ka0
2 2
. 0 -R __";_0 q+F40,
Kp=
-R 0 _ka0 ka0
2 2
ka0 ka0
0 - 240 240
71 2 2
_kao _kao R 0
2 2
k,;o k;o 0 5
where
2r
R= —?f’
L

-R

0
ka0

2
ka0

2

k10+k470+R

k40

2
-k10

0

-1
ka0
2

_kao
2

_kao
2

sﬁmﬂ?

2
0

-R

_kao _kao
2 2
_kao _kao
2 2
-R 0
0 =91
-k 0
0 -R
ka0 kag
ko+—+R —_
10+~ >
ko ka0 g
2 2
2.7.2)

L is length of the side of the square lattice and 7o is the angular stiffness of the rotational

springs at the four corners (as shown in Fig. 2.22).

The complex modulus tensor (Cpg) corresponding to the lumped lattice in Fig. 4.2 is of

the form:
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S Sz O
Cg=|fiz /o O (2.7.3)
0 0 f33

Four numerical tests are conducted to find Cg:

(i) Tensile test 1: Degrees of freedom 1, 2, 4, S, 6 and 8 are constrained (zero prescribed

displacement) and degrees of freedom 3 and 7 are given unit displacements. f}, is the

total reaction force along the degrees of freedom 3 and 7. f]; is given by

Ji1=2kjo + kg0 (2.7.4)

(ii) Tensile test 2: Degrees of freedom 1, 2, 3, 4, 5 and 7 are constrained (zero prescribed

displacement) and degrees of freedom 6 and 8 are given unit displacements. f5, is the

total reaction force along the degrees of freedom 6 and 8. f5, 1s given by

S22 =251 +kg0 (2.75)

(iii) Tensile test 3: Degree of freedoms 1, 2, 3, 4, 5 and 7 are constrained (zero prescribed

displacement) and degrees of freedom 6 and 8 are given unit displacements. f], is the

total reaction force along the degrees of freedom 1 and 4. f}, is given by
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N2 =kao 2.7.6)

(iv) Shear test: Degree of freedoms 1, 2, 3, 4, 6 and 8 are constrained (zero prescribed

displacement) and degrees of freedom 5 and 7 are given unit displacements. f33 is the
total reaction force along the degrees of freedom 5 and 7. f33 is given by

fi3=kgo+2R @1.7)

2.7.1 Stability of the lumped system

The stability of the inclusions of material B is tested here. Let us consider a 5x5 tiled
arrangement of the lumped lattice of Fig. 4.2 as an inclusion in the matrix of material A,
as shown in Fig. 2.23. The nodes are shown in the figure as small circles and a few of
them are numbered. The nodes of the lumped system at the phase interface (e.g. nodes 1,
2,3,4,5,6,7,12, etc.) are fixed to material A. We will test whether the lumped system
is stable as an inclusion. In particular we will determine whether displacements of the
interior nodes of the lumped system are bounded if motion of the nodes at the phase

interface is bounded.

13 |14 J15 [16 117 |18 | Material B

Figure 2.23 Inclusion of material B in matrix of material A
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Let us consider the top left lattice in the lumped system separately. The four nodes
corresponding to this lattice are numbered 7, 8, 1 and 2. As indicated in Fig. 2.24, the
corresponding degrees of freedom are 1 and 2; 3 and 4; 5 and 6; and 7 and 8, respectively.

Nodes 1, 2 and 7 are fixed, 1.e., degrees of freedom 1, 2, 5, 6, 7 and 8 (Fig. 2.24) are fixed.

Figure 2.24. A lattice of material B with three nodes fixed

While the other three nodes fixed, node 8 is free to move along degrees of freedom 3 and
4. Assume that a small disturbance force acts on node 8. If x3 and x4 are the resulting
static displacements along degrees of freedom 3 and 4, respectiv<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>