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ABSTRACT

THE MAXIMUM-LIKELIHOOD DECODING

ALGORITHMS OF LOW-DENSITY CODES OVER

BINARY ERASURE CHANNELS

By

KI-MOON LEE

We develop an advanced form of the Maximum Likelihood Decoding Algorithm

(MLDA) for Low-Density Parity—Check (LDPC) codes and Luby Transform (LT)

codes called the Separated MLDA (S—MLDA). We then present our design of LT

degree distributions by supplementing the Robust Soliton Distribution with small

fractions of dense rows that is optimized for the S-MLDA based decoding of LT

codes. Simulation results which show the viability of the proposed MLDA of LDPC

and LT codes are also presented. We also substantiate by extensive experimental

results that, under the S—MLDA, LT codes from an arranged encoder matrix can

achieve performance in stable overhead 7 for the successful S-MLDA Close to 0, while

the S—MLDA maintains the computational complexity in number of symbol additions

less than few tens of block lengths n.
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CHAPTER 1

Introduction

In the advent of the Internet, data transmission over the (TCP/IP based) Internet

becomes a part of our daily lives. Over the Internet, data transmission between a

sender and a receiver is accomplished in a form of packet transmission in the following

manner. For a given packet, a sender transmits the packet repeatedly until a receiver

acknowledges the arrival of the packet. In this transmission scheme, there is no

“decoding success/failure”, because every lost packet is retransmitted by a sender

till a receiver acquires the packet. Therefore, this retransmission scheme is 100%

reliable. This acknowlgement (ACK) based retransmission scheme, however, feasibly

causes heavy network congestion, that could lead to explosively many retransmission

requests if a large number of dropped (or lost) packets occur. This is particularly

true for multicast services where ACK-based communication is virtually impossible

to support (see [5,6,10,11,14] and references therein).

Let us now consider the following data transmission scheme. For a given binary

information data set I, a sender subdividcs it into k packets first. It then transforms

the k packets into n packets with n > k, and transmits packets till a receiver provides

a feedback message that informs the sender to stop the transmission. A receiver then

recovers the original It packets with randomly received (1 + e)k packets (out of n

possible packets) for some 6 > 0. If there exists an efficient way for the recovery of

the original 7: packets from the (1 + c)k received packets, particularly with 6 close to



0, then this transmission scheme may reduce the number of retransmission requests

significantly.

Then the question is how to recover the n packets. Many advanced solutions have

been developed to optimally address this question. This includes the Forward Error

Correction (FEC) schemes that is based on Reed-Solomon codes as proposed by Rizzo

et al. in [10.11] and the FEC scheme based on LT and Raptor codes proposed by

Digital Fountain co. [2,5,6].

1.1 Overview of the Thesis

In this thesis. rather than using polynomial based coding techniques such as the Reed-

Solomon codes in [10,11], we approach the above issue using linear algebra on vector

spaces over F2. We will define several terminologies shortly. We then continue the

issue of transformations that take place at the sender and the receiver. Let a] be

a representation of a given data. set I that consists of [6 packets of equal size 3, i.e.,

o] = (all, . . . ,0]. . . . , 0%.), where (ti 6 F3 for ‘1? = 1,... ,Ir. Let us call a packet a; as a

symbol. Let (r 6 (F3)” be the transformed vector from a]. \Ve refer to the transformer

and a] as the encoder and the information symbol vector, respectively, and we call

the a as the codeword. Now let Z denote a received symbol vector that consists of

m. received symbols with m > lx‘. at the receiver side. Suppose a can be recovered

from Z by a certain (inverse) transformer of the encoder. we call a transformer of

the receiver as a decoder. In the remainder of the thesis, we assume that a received

vector Z is always a sul')-‘vector of a codeword a. If a symbol 0:,- is not arrived at the

receiver, we refer to the symbol as an erasure. Considering that a symbol is a binary

vector in F3, we call the overall routes (or paths) between a sender and a receiver a

Binary Erasure Channel (BEC). This data transmission scheme can be depicted as

the diagram in Figure 1.1.

Let us now consider two types of encoding methods that use linear transformations



  

A sender A Receiver

Packet Loss

Encoder(a1) = a —* BEC m I—* Decoder(Z) = a

  

 

      

Figure 1.1. Date Transmission over Binary Erasure Channels

over F2. By doing so, we turn the task of a decoder into a problem of solving a

consistent linear system over F3. The first type is as follows. At the encoder side,

we first. fix k, the number of symbols of a], so that any given information data set I

is represented as a symbol vector 0I in (F3),” . We then transform a] into a longer

symbol vector 0 : (01, . . . ,an) in the kernel space

Ker(H) : {v e(1F§)"|H-VT = 0}, (1.1.1)

where H is an m X 72 matrix over F2 with Rank(H) = m, m : n — k, and VT

is the symbol-wise transpose of V. Let G = [Smxkilmxm] be row—equivalnet to

H which is obtainable by Gaussian Elimination (GE) on H. Let us now consider

En(G) = [ I’M,“ ], the n X k induced matrix from G. Then for any a] E (F3)k, a]

mxk

is transformed to a kernel vector a such that.

OT 2 En(G)a?=(a1,ap)T, (13;: Sumkcr? (1.1.2)

where GT is the symbol—wise transpose of a. It is not hard to see that En(G) is a

(vector space) isomorphism between (F3)k and Ker(H). Therefore, in this case, an

encoder is simply the isomorphism En(G) and a codeword is a symbol vector a in

Ker(H). Notice that, for any a] E (F3)k, H - OT 2 0. For a given codeword a, let us

now suppose that a receiver acquires 71g symbols of or at random with Hg 2 (1 + e)lc,

and denote the received symbol vector as 05. By rearranging symbols of a, we may

express a into a form (Q§,X), where X represents the lost symbol vector. Then

by rearranging columns of H associated with the expression (dg,X), we may also

express H into a form [N; M], where N and M consists of columns of H associated



with symbols of (1,: and X, respectively. With the expressions, the kernel space

constraint HaT = O in (1.1.1) is expressed as Na? + MXT = 0, and thus,

ilIXT : ST, where {3T = Nag. (1.1.3)

Therefore, in this encoding scheme, the task of a. decoder is in solving a consistent

linear system (1.1.3) for its unique solution, say the unique solution by X = 015. Once

at. is obtained, then an information symbol vector at] can be retrieved from (ag, 08).

It should be emphasized that, for the unique solution of the system, the number of

columns of M should be less than or equal to the number of rows m. In other words,

the number of received symbols né must be greater than or equal to n — k. We refer

to Ker(H) as the Parity-Check code over F3. If H has relatively few 1’s, or say H

is sparse, then we refer to Ker(H) as the Low-Density Parity-Check (LDPC) code

generated by H.

The second type of encoding is as following. We first consider the following trans-

mission scheme over BEC. For a given information symbol vector 01 in (F3)k, an

encoder directly sets a codeword a as a z: a] so that n = It. It then constantly

generates row vectors H,3 E F3 in random by following a certain rule, and at the

same time, it generates a symbol ,3,- by t3, :: HialT and transmits it over BEG. The

transmission continues in this fashion, till a receiver acquires enough number of such

fii’s. Suppose that a receiver acquires more than (1 + 7)n symbols in random, say

the acquired symbol vector as ,3 : (131,. . . ,fim). Then at a receiver end, with each

acquired [3,, a decoder generates the associated check row H1', 1 g 2' g m, and sets

up the linear system

HXT = [3'12 ,3 e mgr”. (1.1.4)

where H is now an m X 72. matrix over F2 that consists of rows Hfs such that H,XT =

13,-. In this transmission scheme, the task of the decoder is also in solving the consistent

linear system (1.1.4) for its unique solution X = 0:. For a given (0, 1)-vector V E F",



let |V| denote the number of 1‘s of V and refer to as the degree of V. If an encoder

uses a certain probability distribution function, say 11(17) :2 Z adard, for the degree

of H,- by Pr(]H,'| = d) = lid,» then we refer to this transmission scheme as Luby

'I‘ransform (LT) transmission, and refer to the set of pairs {(H,£3)} as the LT code

generated by 11(1). Note that each pair (H, #3) corresponds to a consistent linear

system HXT 2 HT.

We now impose two fundamental questions on the systems (1.1.3) and (1.1.4):

Ql) With how many received symbols of Z can the decoders solve the systems

tmiquely?

Q2) At. the same time, how efficiently can they solve the systems?

Let M in system (1.1.3) be an m. x 71.8 random matrix that consists of columns of

H. Likewise, let H in system (1.1.4) be an m X 11. random matrix generated by

a prol:)abilit_\,' distribution [1(1'). What we want to do in Q1) is to maximize 718

the column dimension of M and is to minimize m the row dimension of H, while

maintaining Rank(M) 2 716- and Rank(H) = it. 'With Q2), at the same time, we also

want to solve the systems in the fastest way as possible. Straightforwardly, both Q1)

and Q2) are the. problem of designing the check matrix H in (1.1.1) for LDPC codes

and the distribution ,11(.1..') for LT codes from which

1. a randmnly chosen ill and H (in (1.1.4)) has its full column rank with the largest

number of columns and with the least number of rows as possible, respectively;

2. at the same time, a. check matrix H in (1.1.1) and a random H (1.1.4) are as

sparse as possible.

In the thesis, we exploit LDPC codes for system (1.1.3) and LT codes for sys—

tem (1.1.4). With the codes, we develop an efficient decoding algorithm that can

solve the systems as long as they have their unique solution. Let us call LDPC and



LT codes together as Low-Density codes. Known so far, LDPC and LT codes are

generally considered as the best answer to the questions Q1) and Q2). The reason

behind this is in the fact that, for a large n the column dimension of H in (1.1.1) and

(1.1.4), if a check matrix H and 11hr) is designed well then a random M and H in

(1.1.3) and (1.1.4), respectively, can be lower triangulated by a simple row and col-

umn perrmitatitm, called the Message Passing Algorithm (MPA) [3—6], and thus, the

solution of the systems can be solved by a simple Forward Substitution (FS) [23,24]

over a triangulated matrix very efficiently. It is also possible to design an LDPC check

matrix H and an LT degree—distribution 11(17) with the log-density condition such that

an H in both (1.1.1) and (1.1.4) meets the log-density constraint IH| S cnln(n) for

some constant c > 0, where [H] indicates the number of 1’s of H.

LDPC codes were pioneered by Gallager [1] at 1969, and they were originally

designed to protect data transmission against Binary Gaussian Noisy Channels and

Binary Syn'in‘ietric Channels. The codes were widely forgotten for the decades and

rediscovered by Mackay and Neal in [8] at 1995. LDPC codes were used for BBC

based transmission scheme for the first time in tornado codes by Luby et al in [5, 6]

with the MPA. Soon later, Shockrollahi et a1 developed LDPC codes over BBC as

capacity approaching codes optimized with the MPA for large block lengths n [7,12].

Briefly speaking, a capacity approaching code is a code such that, when a check

matrix H in (1.1.1) is generated by a certain row and column degree distribution, say

a capacity approaching sequence, then system (1.1.3) can be solved by the MPA with

rate 1) = %, referred to as loss rate or erasure rate, close to 1;? (or the block-rate 7.71,?

of M close to 1). Further analysis for capacity approaching sequences can be found

at [4,9,13].

LT codes were invented by Luby [2] and were designed for multi—cast of mass

data. At a sender side, an LT encoder constantly generates symbols by 13,- = Hid?

where each check row H2: is randomly generated by a degree distribution a(:1:), such



as the Robust Soliton Distribution (RSD) in [2]. At a receiver end, assuming that H

in system (1.1.4) follows the RSD in its row-degree distribution and the number of

received symbols m is greater than (1 + 7)n for some 7 > 0, the system can be solved

uniquely by the MPA with an overhead 7 close to 0. With this feature, LT codes were

classified as optimal codes for multi-cast and broadcast. Shokrollahi generalizes the

codes into Raptor codes by employing pre-coding strategy on a with LDPC codes or

other known codes in prior to LT encoding. The decoding algorithm of Raptor code

is a combination of the MPA and GE [14,15].

In practice. however, those capacity approaching and optimal features are not

guaranteed when n is not large enough, say it within several thousands. Through

our extensive simulations with the MPA, we (the author KiMoon Lee and Hayder

Radha) observed that a stable erasure rate 7—3— of LPDC codes and a stable overhead

o," of LT codes for the successful MPA are far away from their ideal limits 1 —— 11,3 and

0, respectively. Instead, we observed that, by the Approximate Lower Triangulation

Algorithm (ALTA) in [3,4], a random M of an LDPC code system (1.1.3) or a random

H in LT code system (1.1.4) can be approximate lower triangulated into a form

PMQT( or PHQT) = [g g] , where B is an l X 1 lower triangular matrix with l close

to a column dimension rte (or n) and (P, Q) is a pair of row and column permutation

of 111’ (or H) (see Figure 2.4 and Figure 3.3). Once such a triangulation is obtained,

the systems (1.1.3) and (1.1.4) can be permuted to

AB

CD

(PQ) AIXT 2 3T (113)

QXTzer arm

  

HXT=eT nae

Assuming that the permuted system (the left-hand side in 1.1.5) has its unique

solution, it can be solved efficiently by the h-‘Iaximum-Likelihood Decoding Algorithm

(MLDA), developed by Burshtein and Miller in [3] for decoding of LDPC codes.

We tested the MLDA with 3-rate PEG-LDPC codes [13], and the result was quite



surprising. A random m x 716-. matrix M in system (1.1.3) feasibly has its full column

rank with the loss-rate p = Zéf- very close to 1 — 7+5, For an example, with n a

few thousands and Tie close to m — 20, a random M has its full rank 718 with high

probability (see Figure 3.4).

Although the MLDA is much more efficient than a conventional GE in computa-

tional complexities. it still has a lot of redundant computations. First, the MLDA

in [3] requires an explicit construction of the permuted Fri/{QT = [3183] after the

ALTA that is not necessary for solving systems (1.1.3) and (1.1.4). To remove the

explicit construction, we interpreted systems of the MLDA into a equivalent set of

systems that do not require the construction of PMQT. Second, it also results in a

large number of redundant symbol-additions on 1'3. To remove all possible redundant

additions, we further developed the MLDA into the Separated MLDA (S-MLDA) by

exploiting the MLDA in two steps: the pre-decoding on M in a bit-level and then the

post-decoding in a symbol-level with 23. Shortly speaking, in the pre-decoding step, the

S-MLDA computes all the row operations with M (or H) alone that needs for recovery

of the solution X = no, it then discards all redundant equations in A!XT = HT. In

the post-decoding step, the algorithm computes the solution by applying the obtained

operations on 1’3 with an alternative recovery step. To see the improvement in compu—

tational efficiency in number of symbol additions, compare the curves in Figure 3.2

for LDPC codes and Figure 2.3 for LT codes. The S-MLDA with simulation results

tested with 3-rate PEG-LDPC codes [13] was presented in [18, CISS 2007].

We also applied the S—MLDA to the system (1.1.4) for decoding of LT codes. At

the very first simulation, the obtained decoding failure rate of the S-MLDA with a

random H, generated by the RSD, was significantly less than that of the MFA. As

7 decreases, however, the S-MLDA feasibly fails to recover the unique solution a of

system (1.1.4) due to the rank deficiency of H, i.e., 7) = dim(Ker(H)) > 0. On the

other hand, with it several thousands, r} was less than 15 for any ’7 > 0. To remove



those small deficiencies, we re-designed the RSD a(;r:) and altered into a p(:r) by

supplementing a small fraction of dense rows, so that a random H by a p(:r) may

include a few tens of dense rows. By doing so, we gracefully removed the deficiencies

with overheads 7 less than 0.008. (To see the simulation results, compare the curves

in Figure 2.6). Besides, we develop several combinatorial analysis for the design of

RSD 1r(.r.) and the p(:r) in section 2.4. In section 2.5, we also develop a finite version

of Kovalenko’s Rank-Distribution Theorem in [21,22, 29] for the rank distribution of

a random H, generated by the p(:r). The S-MLDA tested LT codes generated by our

designed p(;r) was presented at [19, ISIT 2007].

Compare to LDPC codes, although LT codes naturally inherit rate-less feature

from its random transmission scheme, the time-efficiency for both encoding and de-

coding of LT codes is far inferior to that of LDPC codes. The reason to this is in

the facts that, in LDPC codes, a fixed check matrix H is used for every instance of

a = (aI~ o p), furthermore, H has no dense rows in general. In contrast, an LT de-

coder has to generate a random H by using the same random generator of an encoder

for every instance of 0. Otherwise, each check row Hi should be directly delivered

to a decoder attached on 13,. To resolve this problem, we developed LT codes with

an arranged encoder matrix M. Specifically speaking, the check matrix H in sys-

tem (1.1.4) is a random sub-matrix that consists of rows of M. With this arranged

encoding scheme, we tested the S-MLDA with LT codes for short block-lengths n.

from 102 to 103. Our experimental results exhibited that, although a stable overhead

c): for the successful MPA is degraded seriously, a stable overhead '7 for the successful

S-MLDA with codes from A! is slightly better than the one with codes, generated by

the original LT encoding scheme. The time—efficiency of both encoding and decoding

of LT codes in this arranged encoding scheme is about to be same with that of LDPC

codes. The experimental result. together with our combinatorial analysis for the a(:r)

and p(;r) has been submitted to Allerton Conference 2007 [20].



The rest of the thesis is as follows. Chapter 1 is dedicated to the introductory

backgrmmds for the later chapters 1 and 2. In section 1.2, we describe GE as an

LU—factorization algorithm [23]. In section 1.3, we introduce LDPC codes and the

MPA, as a decoding algorithm of both LDPC and LT codes. The MPA is described

as a lower triangulation algorithm by using row and column permutations on a check

matrix. Then in section 1.4, we introduce row-degree distributions of LT codes.

Chapter 2 is as follows. In section 2.2, based on the factorization, we explain both

the MLDA and S—h’ILDA as an advanced form of GE by exploiting partial pivoting

process over the triangular block [113], as shown in (1.1.5). We first describe the

MLDA as an natural extension of the MPA. we then develop the MLDA into the

S—lVILDA. In section 2.3, we present the computational complexity of the S-MLDA

with LT codes in terms of the number of (sign, bit}-flips and the number of symbol

additions made by the pre- and post-decoding stage of the S-MLDA, respectively.

In section 2.4, we derive the RSD [1(rr) by using the lV’Iackay’s recursive formula

[27, ch. 50]. We then alter 11(1) into a p(.r) by supplementing a small fraction of

dense rows, so that a randomly generated H by our designed p(:r:) may fit for the

S—MLDA. In section 2.5, we derive a finite version of Kovalenko’s Rank-Distribution

formula. [21,22,29]. \Vith the rank-distribution, we demonstrate the rank-distribution

of a random H generated by our designed p(;1:). Simulation results under the S-MLDA

with LT codes, generated by a p(;r:), are presented in section 2.6. In section 2.7, we

further develop LT codes of short block lengths it, generated by an arranged encoder

matrix, and present the simulation results tested with the LT codes under the S—

MLDA. Finally, we conclude the chapter in section 2.8.

In chapter 3, we apply the S-MLDA demonstrated in section 2.2 for the decoding

of LDPC codes. In section 3.2, we modify the S-MLDA in section 2.2 for decoding

of LDPC codes. In section 3.3, we present the computational complexity of the S-

MLDA with LDPC codes in terms of the number of {sign,bit}—flips and the number of
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symbol additions made through the pre- and the post—decoding stage of the S-MLDA,

respectively. In section 3.4, we use PEG software [13] to construct H of block lengths

n from n = 2, 000 to 20, 000. Simulation results tested with 3-r‘ate PEG-LDPC codes

under the S—MLDA are presented in this section. Finally, we conclude the chapter in

section 3.5.

1.2 Gaussian Elimination on a Linear System over F2

In this section, we describe GE on H as an LU-factorization algorithm that returns

LU = PHQT, where P and Q is a row and column permutation matrix of H and L

and U is a lower and upper triangular matrix, respectively. GE is generally considered

to be the most efficient. computational method for solving a consistent linear system

HXT 2 JT, since it involves the least amount of arithmetic operations. In particular,

when GE is aimed to compute the unique solution of the system only, obtaining an

LU factorization of H in the fastest way is the primary aim of GE algorithms. Further

analysis and issues for GE can be found in linear algebra textbooks [23—26].

Let us first define a linear system over F23.

Definition 1.2.1 (A Linear System over F3). Let H = (hij) be an m x n matrix

over F2, and let i3 = (31,. . . ,,1ii’m) 6 (F3)"". A linear system HXT 2 BT over F3 is a

system that consists of m linear equations over F3 such that

zy’ZIthIj : 1611

' : ' E HXT=,3T, (1.2.1)

TI. _ ‘ . _ 1'

ijl hntjl] — #3711.

where the sums are taken on F3 and BT is the symbol-wise transpose of 13. Let us refer

to 13,- and 3 as a syndrome symbol and a syndrome symbol vector of system (1.2.1),

respectively.

Throughout the thesis, unless specified, we assume that a given linear system

11



HXI = 3r has at least one solutions, and we refer to the system as a consistent

‘In

7
linear system over F3. Let us denote Img(H) as the image space of H in (F3) i.e.,

Img(H) : {HI/T E (1%)le E (FS)") (1.2.2)

Thus, a given system (1.2.1) is consistent iff (3 E Img(H). Considering that XT and

,i can be expressed as an n x .3 matrix ($0) and an m x 5 matrix (fly) over F2,

where .r.) 2 (15:1,. . . ,;r.,-5) and :31: = (Bl-1,. . . ,;3z-5), respectively, system (1.2.1) can be

arranged in a parallel form of 5 number of systems over F2 such that

HXT = fl ©[Hr1r— .31.. .. ,ij = .31. . . .st = .33], (1.2.3)

where I] and .3]. now represents the jth' column of XT and ,BT, respectively. Obvi-

ously, solving system (1.2.1) is equivalent to solving one single system H17] 2 ,3] over

F2, and H.rj : ,3]. has its unique solution iff there exists a independent rows of H

that form an n X n nonsingular sub-matrix, say H’ . Once such H’ and its inverse

(H’)_1 are obtained. the unique solution of HX] 2 HT can be obtained by applying

I—l .. - T_ I-1,.-/T - ~ - . I
the same (H ) to the system, i.e., X —— (H ) 3 . So, identifymg such H and

then (H’ )’1 (independently from 3) is the primary task for solving system (1.2.1).

Let. us clarify several terminologies for the description of GE.

Definition 1.2.2 (An Approximate Lower Triangular Matrix). Let H = (llij) be an

m X n matrix over F2 with m. 2 n.

1. A Lower Triangular Matrix: H is said to be in a lower triangular form, if

1, for i =j

hi} 2 . (1.24)

0, fori<j

2. An Approximate Lower Triangular Matrix: Let H be in a block matrix form

(A; B] such that B is an l X in lower triangular matrix with l close to n. We

call H an approzrimate lower triangular matrix.

12



Definition 1.2.3 (Elementary Row Operation). We call a row operation on H over

F2 by adding one row to other rows of H as an elementary row operation.

Let a and 7' be a permutation on the row index set [in] = {1,2, . . . ,m} and a

column index set [12] = {1. 2, . . . , n} of H, respectively.

Definition 1.2.4 (A Row and Column Permutation of H by a and r). A row per-

mutation of H by 0 is the rearrangement of rows of H in the order of (i1, . . . ,im)

, i.e., H0 = [Hi1,...,H.,-m]T (a row-wise transpose) where 0(ik) = k. Similarly, a

column permutation of H by r is the rearrangement of columns of H in the order of

(.jli"'3j71)ri‘e'iHT = [Hj1,...,Hj”] where r(jk) = k.

An elementary row operation and a permutation on H can be explained as

matrix multiplication to H that has the same effect on H as does the operation

and permutation. Let us first consider row and column permutations of H. Let

PH _—. [H,1....,H JT and HQT = [H11,...,Hin]. Let P and Q be the matrix
'1 m

representation of a and T. respectively. Foremost, P and P1 is formed by permuting

rows and columns of Luxm in the order of a, respectively, i.e., P = [ei1,. .. ,eimlT

and P31 : [e111 . . ..c?3:7l]. By direct. calculation, P'1 2 PF. Equivalently, they can

be expressed as P : (135;) and PT : (p’st), such that

1, iftzis I 1, 1fs=3,

p5! = and 7) st 2 . (1.2.5)

0 otherwise 0 otherwise

‘t’. " x 7- r —— - « T ’ T — T «T ‘ ‘In the same way, Q —— [811’ . . . , em] and Q -— [ej1, . . . ’Cjnl Thus by a row and

column permutation pair (P, Q) of H, system (1.2.1) can be permuted as

HXT :13T 4:) (PHQT)(QXT) = 133’“. (1.2.6)

An elementary row operation on H can be also explained as matrix multiplication

to H on the right. For a given row index k of H, let Sk be a subset of [m] that.
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includes It, and let XS}: 6 F3” be the support vector of Sk such that

1, if i E 5);

XS): 2 (€1,-~ 35k—1e135k+1*"' ,em) where 61:: . (1-2-7)

0 otherwise

When the km equation HkXT = (31.- is added to other equations HiXT = 332-, whose

row index i is in Sk \ k, system (1.2.1) is transformed to

II

I (H1+€1Hk)XT 331 +615}.-

(Hk—1+€k—1H/.-)XT = flk—1+€k—1l3k

HXI =sT => ( HkXT 13,, . (1.2.8)

(Hk+1+ €k+1HleT = filH—l + €k+15k

 L (Hm + €mHk)‘XT I fim + 5mg];

Let Ell“) be the m x m matrix formed by replacing the kth column of the identity

matrix Imx,” with XEA’ i.e.,

f

_ Ir T T , T T T
E( ):l(";1""’ek—1a,v\'3k ,ek+1, . . . ,E’m]. (1.2.9)

Then system (1.2.8) is exactly same with the system

(13“) ~H)XT 2 Elk) .eT. (1.2.10)

Noting that ElklEU")H is simply the addition of Hk to the rows H,- twice for i E Sk\k,

ElklElle = H. This is true for any H, therefore, (E(l"))—1 = E“). Let us refer

to E(k) as an elementary matrix. E(kl can be explained the representation of the

identity map I : F3” —+ F3" with respect to, say, the standard basis [3 == {81, . . . ,em}

on the domain F3” and the basis 3;, on the range ’2” of the identity map, where

Bk : {U'l : (Cl + (16%),. ' ~ :u'lk : 6k: ' ' ”10,” : (6771 + €lllek)}' (1'211)

Thus, the transformed system (1.2.10) is actually a re-expression of HXT : 5T by
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changing the coordinate axis 5’ with Bk of the range F3". In this interpretation, what

GE does on H is a. sort of changing bases on the range, till H is transformed into

a lower or upper triangular matrix. Notice that, no operations were made on the

domain of H, except column permutations. This implies that solutions of the system,

up to rearrangements by column permutations, are not changed by any elementary

row operations on H.

Let us now describe the LU—factorization algorithm on HXT 2 HT. We describe

the algoritlnn based on the exemplary pseudo-codes in Algorithm 1.1. At each

pivoting round I: of the algorithm (see while loop in the algorithm), starting from

H (U) = H, let H (k) = (hfjl) denote the transformed matrix by adding the kth pivot

row (H(l.‘ — 1)),k to the rows (H(k —- 1)).,-, such that i E 7—" and fill-5:) = 1. Let

Slk : {i E 7' | b.3521) : 1} (see the line 10 in the algorithm), and let E“) denote the

elementary matrix obtained by replacing the i2," column of Imxm with the support

vector XE (see (12.7)), i.e.,

11-

 

"1k _T T .T _T -T
E( l = [e1,e2,...,e,-k_1, yak ,eik+1,...,em]. (1.2.12)

   

Thus, the lines 10-12 (see foreach loop) in the algorithm correspond to H (k) =

ElleM‘. — 1). At the last. round I, the returned H(l) can be expressed as

1

H(l) = E(1)---E(2l-E(1)H = (H 173(k)) H. (1.2.13)

k=l

With the returned a) = (i1, . . . ,i1) and T1 = (jl, . . . ,j[) at the end (see line 14 of the

algorithm), let

{il+13---17:'Irzl = lml \01.» {31+13 - 3 - 3.731} = lnl \ Tl- (1-2-14)



 

Algorithm 1.1: The LU-factorization on H

1 Input: H, [m] Output: H(l) and (01,71).

 

/%<-- Initialization: -->%/

set 7' z: [771];

foreach i E [172.] do

if H,- = 0 then

i L discard 7' :2 T\i;U
‘
b
W
N

/%<-- Pivoting Round k: —->%/

while 7' 7é (ll do

/°/.<-- Pivot Selection: see Remark 1.2.2 -->°/./

(fl—.1) =1 in one’s own way;
21.331.

0
5

 

choose Eik E 7' such that h

  
 

8 set 01(‘ik) = k and TlUk) = k;

9 [discard T:=T\ik;]

 

 

/°/.<—— Pivoting:H(k) 2: new. — 1) -->7./

10 foreach i6 7' with which fig-3:) = 1 do

11 update H(kh I: H(k — 1)1‘ + H(lfi — I.)

12 if H(k),- = 0 then

13 L discard 17' :2 T\i; //<-— To discard null rows

2'13

 
/7,<—— Say the ’while’ loop stops at k =l -->7./

14 return H(l) and (01,77);   
 

Then rearranging [m] and [n] into

a = (171,. . . ,i[;i)+1,.. . ,im) and r = (j1,. .. ,jl;j)+1,. .. ,jn), (1.2.15)

01 [m] \al 7'l [77.] \T1

respectively, where 0(ik) = k and r(jk) = ls, let (P, Q) be the pair of permutation

matrix of (a, 7). Then by P“1 : PT, PH(l)QT can be expressed as

1

T_ -(1.~) T T _ szz An—lxn—l
PH(Z)Q _ (gPE P )(PHQ )_[ 0 0 J (1.2.16)

Now let LU“) : PEU°lPT, which is the elementary matrix formed by replacing the
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km column of Imxm with the PXSLI.’ i.e.,

 

k T T T TL( l : [61,...,ek_1, ngik ,ek+1,...,em]. (1.2.17)

   

-I

Noting that (Ll/9)) 2 Lil“), the factorization (1.2.16) becomes the factorization of

PHQ as below

-T l k Uz z A 1 - z
PHQ = Ht” 0" "“Oxn— . (1.2.18)

k=1

In the algorithm, for each index pair ('lksjk) E (01:71): the (27k,jk)th 1 is selected

as the Arm diagonal entry of both L and U. Once the pair is chosen, then ik is

discarded from T for the ren'iainder of pivoting rounds (see the second box at line 9

in Algorithm 1.1). Therefore, each L“) is an m x m lower triangular matrix, and

thus, L is an m x m lower triangular matrix, and lel is an upper triangular matrix.

In fact,

I

k T T T T .T

11:1

1

where S,- = i E T lilkf ) 2: 1 for k = 1,2,. . . ,1 see line 10 in Algorithm 1.1).
k H},-

In particular, if Rank(H) = n. then An_1xn_) = (D. and therefore,

PHQT = (H Lm) [if] . (1.2.20)

k=1

It can be also seen that by pivoting columns of L from the first to the last column of

it, any m x m lower triangular matrix L over F2 can be factorized into L = HZ; LU“),

where L ( k) is formed by replacing the km column of Imxm with the kth column Lk.

Similarly, an n x n upper triangular matrix U can be factorized as U = I‘LL.” U(k) by

pivoting its columns from the last to the first column, where U (k) is now formed by

replacing the km column of In M with the km column Uk . Without loss of generality,
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Algorithm 1.2: Recovery of a by the colun’in-wise FS and BS
 

1 Input: 3 Output: (1

/°/.<-- FS: (HLHLW) -P13T -->x/

2 for k=1 tonbyk1=k+1 do

3 //<-- P3Tz—— Li”P371, where le) E Lk by 5;, 2 {lift}; :1}.-—>//

add 3% to all other 33,- where i6 Sk;

/°/.<—— BS: (mduikl) -P,.3T —->°/,/

5 for k=n tolbykzzk—l do

6 //<"' PJT I: U(klpi’3T, where Uikl E Uk by 5k = {ilusz =1}-">//

L add 3% to all other ,3,- where i6 Sk;

/7.<-— oTXT :: e133". -—>7./

8 for [€21 ton bykz= kr+1 do

9 L copy all: z: 3%.

  10 return a 2 (al....,an);

 

we may assume that each Ulk) is an m x m upper triangular matrix by extending

(k)

U“) as [U 0 ] (1.2.21)

0 Im—nxm—n

Hence by the GE. HXT 2 ,3T is transformed to (LU) [ mm] (QXT)= P3T, then

is transformed into

1

[1715"](OQX1): (H U(kl) (I1 [400) P/fi’T, (1.2.22)

k=n

Once an LU-factorized system (1.2.22) is obtained, the unique solution a of

HXT 2 3T can be identified by computing the right-hand side of system (1.2.22)

ittiatnel first by F07‘U’d7d Substitution (FS) over the columns of L (from the first

to the last. column) then by Backward Substitution (BS) over columns of U (from

the last to the first column of it). An exemplary pseudo-codes for the FS and BS is

described in Algorithm 1.2.

Remark 1.2.1 (Row-wise PS and BS). L and U can be also row-wise factorized as a
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Algorithm 1.3: Recovery of a by the row-wise FS and BS

1 Input: 3T Output: (1

/'7.<-- FS: (11,13,313) -P,3T -->%/

for k21 ton byA::2lc+1 do

//<-- esT :2 LIMP/3T. Note LW 2 Lk. -->//

update 'dik :2 3% + 2:11 lkifijt;

 

N
C
A

a
b

/%<-- BS: (mg-:1 Um) esT —->°/./

5 for k2n to 1 bykfz2lc—1 do

//<-- P3T :2 U<klP3T. Note Ulkl E Uk- -—>//

,« — k ,3

update 3% :2 ‘dik + 2):: “lull-33$

O
5

/°/.<-— QTXT :2 PsT . -->°/./

8 for 1:21 ton. byk22lc+1 do

L copy 0ka :2 3%.C
D

  10 return a 2 ((11, . . . ,an);

 

product of elementary matrices. Since the transpose LT is now an upper triangular

matrix, LT 2 112;] LU“), where each Lik) is formed by replacing the km column of

Imxm with the km column of LT. Then

m T 1

L = (H H“) = H (NUT, (1.2.23)

k2l

kth
where (Liklfl is formed by replacing the row of Imxm with the k'th' row of L.

Similarly, U can be. obtained as a row-wise factorized form
‘4

U = H(UW)? (1.2.24)

i=1

where (Ulkl)T is now formed by replacing the km row of 1.an with the kw row Uk.

The F8 and BS in row-wise factorization is described in Algorithm 1.3. It should

be emphasized that Algorithm 1.3 uses precisely 71. rows of L and U. In contrast,

Algorithm 1.2 uses 71 columns of L and U for the recovery of a.
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Remark 1.2.2 (Pivot Selections). Let us go back to the pivot selection in Algo—

rithm 1.1 of GE (see the line 7 of the algorithm). Through the pivoting rounds, let

[H(k — 1),] denote the number of 1’s of the row H(k — 1).,- after the round k — 1 and

refer to as the degree of H (l: — 1),. If we set the pivot selection as to choose a row of

degree 1, then the GE is equivalent to the, MPA (see [2,5,14]). In general, when rows

of degree 1 are exhausted prematurely at round It, a row of degree 1 can be made by

discarding columns in H(k — 1) in an appropriate manner. In this case, the GE is

equivalent to the ALTA in [3.4].
J

1.3 Low-Density Parity-Check Codes

In subsection 1.3.1, we introduce LDPC codes, the MPA in [5,6] as a simple GE,

and an systematic encoding of LDPC codes. In subsection 1.3.2, we introduce the

performance analysis of LDPC codes under the MPA in [7]. By using the analysis,

we show that the tornado sequence in [5] is a capacity approaching sequence. Further

details of the performance analysis can be found in [7] and [28, ch. 2].

1.3.1 Encoding and Decoding Algorithm of LDPC Codes

For a. given m, x 72 matrix H over F2, let [H] denote the number of nonzero entries of

H. \\’e call [H] as the density of H.

Definition 1.3.1 (LDPC Codes). For a. given m x n matrix H over F2 with m S n,

a binary parity-check code C(H) is defined as the kernel space

C(H) = {a e (F3)”|H - J = 0}. (1.3.1)

We call a in C(H) a. codeword. If H is sparse, for an example, [H | S cnln(n) for

some ccmstant c > 0, then we call C(H) and H the LDPC code generated by H and

an LDPC matrix, respectively.
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Let H be an in X n LDPC matrix. Let us assume that rows of H are linearly

independent. so that. dim(Ker(H)) 2 n. — m. By GE, H can be transformed into

a systmrmtic form G 2 [S.,,,X),.;I.,,,x.,.,,], where k 2 n — m. Then since G is row-

equivalent to H up to a column permutation, C(G) 2 C(H). For a given a] E (F3)k,

let up 2 Smxk ' all. Then a 2 ((11,0p) satisfies the kernel constraint HOT 2 O, and

thus,

(rpkscm) via 5(0): It“ . (1.3.2)

Hence by a 2 E(G)QIT, an a] in (F3)k can be transformed to a codeword a E C(H)

in a form of a 2 ((11,0p). To obtain a row equivalent form C 2 [Smxki [Hum],

however, the filling-in with 1 by GE makes the [Smxkl proportional to 712. Thus, the

computation for up by Smxkalfl in symbol additions is 0(712).

In general, the quardractic density of Smxk can be significantly reduced when a

row-equivalent G is replaced with a form C 2 [57,, x k3 mem], where mem is a lower

triangular matrix. \V’e recall that, from section 1.2, L.,_,,1xm 2 1111:2771 le), where Lfkl

is the elementary matrix formed by replacing the 13’” column of Imxm with the lath

column (memlk. Therefore, once Smxkcgw is computed, ap can be computed very

efficiently by applying the FS in Algorithm 1.3 to the product

I

(133:2 HLUC) SrnxkaT' (1.3.3)

k2m

Definition 1.3.2 (A Systen’iatic Encoder). For a given m X n LDPC matrix H over

F2 whose rows are linearly independent, let G 2 [511sz mem] be an m x n. matrix

which is row-eqirivalent to H , and where the left. block me-m is in a lower triangular

form. Then for a given a] E (133),“, the codeword a- 2 ((11,013) can be generated by

1k k T (1T
T _1 T

[4—1 x3 l. .01 Z (13: ’ where OP : mem(Smxk '01) (1.3.4)

mxm‘ mx ‘

v Ika
y

g . 3

Let E11(G) 2 [fl S . We call 1311(0), 01, and up a Systematic encoder Of

rnxm mxk
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C(H ), a systematic part, and a redundant part, respectively. We refer to It 2 é”,- as

the code rate, and 1 — R as the redundancy rate of C(H).

If H is randomly generated with a certain row and column degree sequences, called

capacity approaching sequences that will be introduced in the following section 1.3.2,

— A . B

then by the ALTA [3,4], H can be permuted to a form H 2 C ”("4 D M ,

m—lxn—l m-lxl

where the right-top block B is a lower triangular matrix with I close to m. l\qultiplying

' v _ I 0 — .. . fl.

by S 2 [—DB_1 1] H can be transformed to

A

SH 2 6 where C 2 -DB_1A + C. (1.3.5)

  

Then by Gauss-Jordan reduction [23,24], the bottom-left block 6' can be transformed

into the form [C‘k;1rx7‘], and hence, H is row-equivalent to

    

A A B C. I. 0
—k T or 1‘ ”(r , (1.3.6)

Ck Irxr 0 .4k Ar B

where A 2 [AM Ar] and k: + 7‘ 2 n —— 1. Notice that [1:]? g] is now an m x m

- . _ ,- . I 0 A.

lower triangular matrix. Hence, by setting mem :2 [ :4): B] and Smxk :2 [6:],

L’1 S
m. x m m x k

E'n..(E) 2 [ Ika [ becomes a systematic encoder of C(H). Also notice that the

number of symbol additions to compute ap by 1311(0) is precisely [Sm xki + [mem[ —

771. An exemplary algorithm for the approximate lower triangulation of H is presented

in Algorithm 3.1 in section 3.2. Further details and a variety of greedy algorithms

for the ALTA can be found at [3,4].

Let ac- be a received sub-vector of a, when a codeword a E C(H) was transmitted.

Let X 2 (1'1. . . . ,rne) denote the erasure symbol vector, so that a can be expressed

as (of, (16). Similarly, let [N; .M] be the rearrangement of columns of H associated

with (ag, Y). Thus, the kernel constraint system HOT 2 0 is now expressed as

MXT 2 3T, where ,[3T 2 Na; (1.3.7)
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The task of an LDPC decoder is in solving the consistent linear system (1.3.7) in the

fastest way, and at the same time, with largest number of erasures 7L8 (but n6 3 m)

as possible. Obviously, the system has its unique solution X 2 are iff M has its full

column rank.

In general, no matter what Rank(M) is, all of the solutions of (1.3.7) (including

free variables) can be identified by the LU factorization on IV. Once a factorization

of M is obtained by GE, say PMQT 2 LU [17‘636‘718], solutions can be identified by

first. FS over L then BS over U with ,8 as shown in Algorithm 1.2. In general, the

computational complexity of the LU-factorization in bit operations (or bit-flips) is

in 0012), and the FS and BS together constitutes the complexity 0(723) in symbol

additions of )3. For a moment, let us now assume that .M can be permuted to a lower

triangular matrix L by a pair of row and column permutation (P, Q), say L 2 PIMQT.

In that case, the erasure (symbol) vector X can be recovered by the simple FS over

columns (or rows) of L with [3 as in Algorithm 1.2 or 1.3. Therefore, the number

of symbol additions by the FS is less than [M] + [N] 2 [H] Furthermore, if H is

sparse. then M is sparse also, and therefore, the FS is very efficient.

Let us now describe the h-‘IPA, the fastest decoding algorithm of LDPC codes

known so far. The MPA was designed for decoding of tornado codes in [5] for the

first. time, and is equivalent to a lower triangulation algorithm. We explain the MPA

based on the exemplary pseudo—codes in Algorithm 1.4. The algorithm is based

on the Degree Reduction Rounds that corresponds to the Pivoting Rounds of the

LU-factorization in Algorithm 1.1. At each round k of the reduction (see foreach

loop in Algorithm 1.4), starting from 111(0) 2 M, let 111(k) 2 (771%)) denote the

transformed matrix by adding the km pivot row MU; — 1),}; to the rows MU: —— 1),,

,(k—I)
'7:ka

the algorithm), and let deg(r\-I(k),~) 2 [il~[(k),-|, the number of 1’s of 111(k)2-. Then

where i E ’7' and trim—fl) 2 1. Let Sik 2 {1' E T [ 772.“ 2 1} (see the line 16 in

the row addition by 111(k),- :2 H(lc — 1), + III“: — 1),}; of the 13”" pivoting round of
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Al orithm 1.4: The Messa e Passin Al orithm 011 A!

%<— Initialization: To identify A! ->%

1 set ’T :2 [m]

2 foreach (received symbol) aj E are do

3 [_ discard the column Hj from H;

 

4 Input: All Output: (01,71).

5 foreach i6 7' do

6 identify deg(.l!,:); //<—— i.e.deg(M,-) 2 [II/[i]. —->//

7 if deg(M,') 2 0 then

a [_ discard T:2T\i;

%<— Degree Reduction Rounds ¢$ Pivoting Rounds of GE —>%

9 while ’17 2 U) do

10 //<-- Selection of the km Diagonal Entry of L -—>//

11 if 31f); E T such that deg(r’\-1’(k' — 1),-k) 2 1 then

(k—l)
12 identify j), with which mil.- jk 21;

13 set 01“?) : 'ik and T[(k') : jk;

14 discard T :2 ’7'\z'k;

15 else goto FinalRound;

'/.<- Degree Reduction 42 E(k).-M(k — 1) —>‘/,

16 foreach i E ’7' with which 77133—1) 2 1 do

7.<— <=> 111(k),- :2 .MUC ‘1)t+ [H(k —1),-k; ->'/.

17 reduce deg(ilf(k),-) :2 deg(1\[(k— 1),) — 1;

18 if deg(M(k),-) 2 0 then

19 L discard T :2 T\-i; //<—- To discard null rows 
20 FinalRound: //<——Say the ’while’ loop stops at k: 21

21 if [2 n,e then

22 L return (01,17); //<-— declare ’Decoding Success’

23 else

24 Lreturn (01,77),- //<—- declare ’Decoding Failure’   
 

Algorithm 1.1 (LU-factorization algorithm) is simplified as the row-degree reduction

by deg(M(lc),-) :2 deg(M(li: — 1),) — 1 (see the lines 16 — 17 in the algorithm). The

reason to this is in the fact that the MPA selects a pivot row from rows of degree
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Algorithm 1.5: The recovery of QXR by the F8 in Algorithm 1.3

1 Input: [N; ill] and (01,71) Output: X

 

/%<-- Initialization for £3 = Nag” —->7./

2 for ’i21t0m byi:22'+1 do

3 if 1'. E 0 then

4 [_ set ,1)", :2 Nidg;

5 else

6 L set ,3,- :2 0;

 

/°/°<-- Q‘X’T : (Hiczne Li“) P'iBT -—>%/

7 recover QXT by using the F8 in Algorithm 1.3 with PHT;

  8 return (2X1;

 

1 only, and thus, the resulting upper triangular matrix is simply the identity matrix

Imxm. Then by EU“) formed by replacing the a? column of Imxm with the Xgik

as defined in (1.2.7), the Degree Reduction (the lines 16 -— 19 in Algorithm 1.4)

corresponds to Elihu (k— 1) of GE. Similarly, at the last round I, if the MPA succeeds

(i.e. l 2 726) then 111(1) can be expressed as

1

11101.6): 1'] EU“) M. (1.3.8)

k=ne

Then by using the permutation pair (P, Q) of (a, T), which is extended from the re-

turned (01,7!) (see line 22 in Algorithm 1.4 with the equations (1.2.14) and (12.15)),

the initial system MXT 2 HT is permuted to (PA'IQTXQXT) 2 PfiT, then is trans-

formed to a product. form

1

[:Inegnc] QXT ___ H Lik) PfiT,
(1.3.9)

£33718

where L“) is now the elen'ientary matrix formed by replacing the kth row of Imxm

with the km row of the lower triangular matrix L 2 PAIQT.

Once a lower triangulation of M is obtained by the MPA, the erasure vector QXT
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can be computed by the FS as described in Algorithm 1.5 in section 1.2. In the

algorithm, notice that for the recovery of the lost X, the number of symbol additions

is less than [H], since the row-wise FS uses precisely 716 rows of H.

Remark 1.3.1 (Further Development to S-MLDA). The MPA by Algorithm 1.4 is

designed to stop when rows of degree one are exhausted (see line 9 of the algorithm).

If the lastly returned 1 is less than ne, then a part of X can be recovered by replacing

71,. with l in system (1.3.8). As a matter of fact, the stopping condition becomes

the major defect of the codes when block lengths n are not large enough, say it is

within several thousands. The reason to this is that, quite feasibly, the MPA stops

prematurely (i.e. l < 71.6) but AI has its full column rank me. In chapter 2 and 3, this

defect. will be naturally removed by exploiting the ALTA in [3,4] of the MLDA. The

MLDA also has a couple of inefficiencies at the initialization step and with symbol

additions, but. it. can solve the system 1’leXT 2 ,BT as long as Rank(i’W) 2 72.6. In

the later chapters 2 and 3, the MLDA will be further developed into the S-MLDA by

removing all possible inefficiencies of the MLDA.

1.3.2 Probability Density Evolutions on Degree Ensembles

The design of H that. meet the following conditions in both density and rank property

is the primary issue of LDPC codes:

1. For the time-efficiency of decoding codes, H should be designed as sparse as

possible, at the same time, a randomly chosen m x 72.6 sub-matrix M of H

(n.6 g m) can be lower triangulated by the MPA with high probability;

2. A! has its full column rank me. with 12.; close to the row-dimension m as possible.

In this section, we introduce Probability Density Evolution that provides us a

convenient tool for designing H that meet the two conditions above. Let us Clarify

several terms for the description of the density evolution.
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Definition 1.3.3. Let 15;, denote the hat. if (131, 2 1.

Degree of 13;: For a given 15), let. [HS] 2 i and [Ht] 2 j. We say that a 13; has its

‘7"()w-(.Zeg7'ce 1' and cola.Inn-degree j.

Entry degree ensemble: Let define

  

|{1s-r|dog(H‘)=J'}l [{LszldegUI)=i}| .
Ax— . d — . 1.3.10)- [HI an Pi lHl ( )

Then let /\(.r) 2 2:121 Ajrj'l and p(.r 22,-)? pix 1 the column-degree and

row-degree distribution of entries of H, respectively. We call (Mr), p(.r)) the

entry-degree ensemble of H.

Notice that, rather than the term If and a3] , each /\j and p,- is associated with the

term 1:1 “1 and al.—1, respectively. The reason to this will become clear soon. We also

note that ZAJ- 2 /\(1) 21 and 2p,- 2 p(1)21.

Let m,- and nj be the number of rows and columns of degree 2' and j, respectively.

7 _ ’. _ I. . . _ . __ p'[H[‘ _ P"lH[ 3 . .

Then [H] — Z t - m,- — Z] - nj. Since 772,- — J7- and nj — —-Lj——, the average row

and column-degree a,-, ac, res1'1ectively, is expressed as

__ - _ —l.

or : [7171' ___ (2 g) 1 and ac = l—Irjl 2 (:3 ii) . (1.3.11)

.1

Thus, m 2 74%), and hence, the code rate R 2 % can be expressed in terms of or

and ac as following

 
_k_n—m_ a_ Zmfl _ume>

12-;— n —1—E_1_2TJ/J =1 (f1)(1)' (1.3.12)

We also note that. from (1.3.11), once the average degrees or and ac are chosen, then

m is constrained as m 2 74%).

Let H be an m x n random matrix that follows the entry-degree distribution

(A(.1f).,o(.r)), and let C(H) be the LDPC code by H. Let pg 2 1;? be a fraction of

random erasures when a codeword a E C'(H) was transmitted over BEG. One key
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component for analyzing the performance of the MPA in erasure recovery is to study

the initial erasure rate ])0 with which an m x n6 random sub-matrix ll»! of H can be

lower triangulated by the MPA. We first approach a probability density evolution in

erasure rate p as a probability generating function associated with (/\(.:r), p(.r)).

Let us now interpret the MPA as the following iterative rounds on H: Each round

of the BPA consists of the following procedures:

Round k: If there exists known columns, then for every known column Ht, which

was unknown and declared to be known at the previous round, and for every

15) E H’, the degree of H5 is reduced by 1: if deg(H3) 2 1, the algorithm

identifies the 13); whose Ht, is unknown by that moment. and Hi, is declared

to be known at this round.

At round 0, a column HJ is declared to be known, if the associating symbol aj was

received, otherwise unknown. At each round 1;, we say that a 13¢ is unknown, if the

column H1 is unknown.

Theorem 1.3.1 (Density Evolution). Let pk be the probability that a 1 in H is

unknown at the round It. Then

Ill-+1 = 1103(1— [1(1—11kll- (1.3-13)

Proof. At the iteration round k, an unknown 13,; has its initial row-degree 2' with

probability fit» and the degree is reduced to 1 with probability (1 — Infill—1, because

all other 1‘s in the row H5 must be known by the round 1:. Similarly, 131 is still unkown

with probalinlity 1 — (1 —- 1),.)1—1. Hence, at this round, the average probability that

an unknown 1 is still unknown at the end of the round is given as

q..- = Zn.<1—<1—m.>“‘1)=l—pu—pt). (1.3.14)

Now, an unknown 15; of the round k: has the column degree j with probability A],

and it is still unknown if the column Ht is initially lost (with probability 1)“) and all
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other 1’s of Ht are still unknown. Thus, the probability that an unknown lst has

a column-degree j and is still unknown at the round k + 1 is given as pg/\j(qk)j—1.

'I‘l'rerefore, at the begining of the round I: + 1, a 1 is unknown with probability

“—1 -'-r

111...: Emmi. ) =11.th =21) 11(1 — pu ‘1)kll- (1.3.15)

j 1

Cl

It should be notice that from (1.3.13), n(pk — pk“) 2 1 for the successful lower

triangulation of ill by the MPA. Then replacing by pk 2 :13, the MPA should satisfy

the inequality

pg - /\(1 — [)(1— .r)) < .13, VI 6 (0,pg]. (1.3.16)

For a given block length n, let. p*(n) be the suprernum of such pg satisfying (1.3.16).

Then designing (Mr), p(.r)) such that its p*(n) is closed to the ideal limit 1—R 2 g:— is

the key part of designing LPDC codes, and not every (M17), p(:r)) fulfills this property.

Example 1.3.1. Let /\(.r) 2 1:2, p(.r) 2 1‘5. Then p* can be obtained by considering

the supremum of {pg} in which each pg satisfies

pg(1 — (1 — 25))2 < 1‘, VI 6 (0,pg]. (1.3.17)

771

It is shown that in [4,9], p* is approxinrately 0.429 which is far from 7 = 0.5 .

The inequality (1.3.16) is useful whether a known (/\,p) holds it or not. Let us

call a entry degree ensemble (A, p) as a capacity approaching sequence, if it holds the

following condition: for a given 6 > 0, there exists Dg such that for all D 2 Dg

(1 — R)(1— e)/\D(1— p1)(1—- 13)) < :17, Vr E (0, (1 — R)(1— 6)), (1.3.18)

where /\/)(.r) and pD(.r) consists of first D terms of /\(.r) and p(.r), respectively.
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The first capacity approaching degree sequence for BBC is the tornado sequence

discovered in [5] and [6]. Let D :2 [1/e], and let

  

 

1 D 1 D 1
A ." = —— .2” HD = sin, 1. .1De) W, 21—11” , () Z,_, n( >. (3 9)

222 122

- HD
[)D(.I?) 2 cuff—1), a2 ( ). (1.3.20)

P0

Plugging in (ADle into (1.3.16) asserts

 pgAD(1— pl)(1— 17))S])0)\D(1— 6‘”) < };(Zg)1n(e—am) 2 3:. (1.3.21)

Hence, successful triangulation of 1'1"] by the MPA is possible, if the fraction of erasures

is no more than flg—l. “e note that by ()fA)( 2(fp)(1) in (1.3.12),

, 1 _c,
— — 2 — -- . 1. .22(1 R>H[D——,<1 1/<D+1)> a(1 e ) (3 )

Thus ——32 __u(1 — 1/(D +1)) and is larger than (1 — R)(1 — l/D). Conse—

quently,

(I — R)(1— I/D))\D(I— pD(I — .T)) < 1‘, VI E (0, (1 -- R)(1-1/D)). (1.3.23)

Many other ca.1.)acity approaching sequences can be found in [12]. In practice,

however, once a good degree sequence is found by linear search as in [5], many other

sequences can be made by changing its fractions slightly. In chapter 3, we simu-

late LDPC codes under the S-MLDA generated by a slightly modified right-degree

ensembles appeared in [4,13].

1.4 Luby Transform Codes over BEC

In this section, we introduce LT codes invented by M. Luby [2], which was designed

for rnulti- and broad-cast of multimedia over BEC without retransrrrission request of

symbols over the Internet. For the design of LT codes, we introduce the Ideal Soliton
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Distribution (ISD) and the Robust Soliton distribution (RSD). We then describe

the ISD in two ways: first by Mackay’s interpretation in [27, ch. 50], then second by

Shokrollahi’s interpretation in [14]. For the original design of the ISD, we refer readers

to the LT paper [2]. In section 2.4, the RSD will be explained well by generalizing

the Mackays recursive fornrula (see Lemma 2.4.1 at p. 52).

1.4.1 Encoding and Decoding Algorithms of LT codes

Let. us first describe the LT transmission scheme over BEC. Suppose we would like to

communicate an information data set I to receivers over BEG. We first. subdivide the

I into n symbols (or packets) of equal length 5, say a 2 (01, . . . ,an) E (11%)”. Let

us call a, and a an input symbol and an input symbol vector, respectively. Now let

p(.r) 2 23:1 pdrd be a given probability distribution. The LT transmission scheme

is as follows. For a given input symbol vector (1 E ( 3)" (at an LT server), an LT

encoder constantly generates syndrome symbols (31’s by using the p(:r) and a in the

following manner:

1) a degree d is randomly chosen with probability pd, then a row H, 6 F3 of degree

d is chosen at random from the (2) possible choices;

2) the encoder computes ,3, :2 HiaT, it then transnrits 13,- over BBC.

The transmission stops when a receiver acquires a sufficient number of syndrome

symbols. At the receiver end, if more than m syndrome symbols are received, where

m 2 (1 + 2,")n for some e,“ > 0, then an LT decoder recovers a by solving the consistent

linear system

HXT = 57‘, where is = ((31, . . . , ,3...) 6 (rpm (1.4.1)

and H consists of rows H,- such that Hich 2 82-.
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Let us compare the systems (1.4.1) for LT codes and (1.3.7) for LDPC codes. In

both LT and LDPC codes transmission scheme, the task of decoders is in solving

the consistent linear systems (1.3.7) and (1.4.1) for their unique solution. Although

the systems are alrrrost same except the notations, there are significant differences

between LT and LDPC code based transmission schemes.

In LDPC code based transmission scheme, for every instance of I, first, I is put

into a, in (F3)l‘, where k is fixed by k 2 dim(Ker(H)); second. a] is transformed

into a longer symbol vector (1 2 ((11,013) in Ker(H); then lastly, symbols of a are

transmitted over BEG till a receiver gets enough number of them, or every symbols

of or is transmitted if a feedback is not available on the channel. The syndrome vector

1:3 of system (1.3.7) is computed by an LDPC decoder. Since H is already known to a

decoder, an LDPC decoder can quickly identify system (1.3.7) by reading columns of

H. However. since the M in system (1.3.7) is a sub—matrix that consists of columns of

H, the row dimension of M is always fixed by the row-dimension of H, and therefore,

k. is fixed for every instance of I.

In LT transmission scheme, contrastirrgly, first, n can be chosen conveniently for

each instance of an information data I; second, I is simply put into an 01 E (1133)";

then lastly. a syndrome vector (3 in system (1.4.1) is generated by an LT encoder and

is transmitted over BEG. For every instance of (1, however, the system (1.4.1) should

be identified at the initialization step of decoding algorithms. To communicate the

system (1.4.1) to a decoder, each H,- can be directly attached to ,di, or a decoder can

generate H by using the same random generator of the LT encoder. Note that in

both cases. the cost for communicating H in system (1.4.1) is not trivial. A variety

of pseudo—random generators are available for the selection of a degree d and a row

H,j of degree (1. For an example, in the sections 2.6, 2.7, and 3.4, we use Mersenne

Twister Algorithm [16] for the random selection of d and Hi.

Definition 1.4.1. (An LT code by (1(1)) With a received symbol vector 6’ from an
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LT encoder, let H be the m x 77. matrix over F2 with m 2 n such that 13,: = HiaT for

i = 1, . . . , m. We define the LT code generated by p(:r) as the set of all pairs {(8, H)}

in which each (:3, H) forms a consistent linear system (1.4.1).

Assuming that rows of H follow the distribution p(:1:) such as the RSD in [2], it

is known that. if m 2 (1 + 7')”, El 2 0, then a random m X n matrix H by p(:1:) can

be lower triangulated by the MPA, and hence, a can be recovered by the FS over the

triangulated matrix (see [2, Theorem 17]). In reality, however, particularly for short

block lengths n, say It is within several thousands, the triangulation by the MPA is

not guaranteed, if 7— is not large enough. We note that system (1.4.1) has the unique

solution a iff Rank(H) = 71. When Rank(H) = n, regardless of the failure of the

MPA, system (1.4.1) can be solved for its unique solution a at least by a conventional

GE on H. In section 2.2, we will generalize the MPA on H into the S-MLDA.

1.4.2 The Robust Soliton Degree Distribution

Similar to LDPC codes, the design of LT codes is focused on the design of a row—degree

distribution p(.r) that meets two conditions:

1. A random m x 71. matrix H, generated by p(;r) with the row—dimension m as close

to n. as possible, can be lower triangulated by the MPA with high probability.

2. H is sparse as possible.

Through the degree-reduction rounds of the IVIPA on H, let us call the set of rows

of reduced-degree 1 at each round It as a Ripple. The basic property required of a

good degree distribution p(:r) is that, the number of rows of reduced degree 1 at each

round k is greater than 1 but is as small as possible. If a size of the ripple is too large,

then some of the rows of reduced degree 1 in the ripple, say H (13),, may be same with

the ones already in the ripple, so the check equation Hz-XT = [3, of system (1.4.1)
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is redundant. If the ripple is too small, then it may become empty, before the MPA

finishes the lower triangulation of H.

The ISD p(:r) described next exhibits the ideal behavior in terms of the expected

number of rows of a random H generated by {)(12), needed to recover 0. Specifically

speaking, one row of degree 1 in the ripple gives one row of reduced degree 1 for the

next round of the degree-reduction process. In this sense, exactly n rows are needed

to recover n. input symbols by the MPA. The ISD, however, is quite fragile so that it is

useless in practice. Even a small variance of the ripple through the degree-reduction

rounds causes it to be empty. However, it gives many of the crucial ideas for the RSD

described later.

Definition 1.4.2 (Ideal Solitan Distribution). The ISD p(;r) 2 2?:1 pix" is defined

as following:

- for z' = 1,

pi = ‘ . (1.42)

p'iZz'i—l—l) fori=2,...,n

Let. H be an m x 72. matrix generated by the ISD p(.z‘). Then

Tl n

1

H = in - =1+n —. 1.4.3

221 122

Thus. the average row-degree a7. 2 @ can be a[_)proximated as ln(n) for large 71.

Let us first give an easier interpretation for the ISD by using lV‘Iackay’s recursive

formula. in [27, pf392]. Let H be a random matrix generated by the ISD p(:c). Through

the degree-reduction round t of the MPA, starting from H(0) := H, let H (2‘) denote

the residual matrix of H (t — 1) by discarding the row Hit and the column Hjt, when

tm diagonal of a triangular matrix L by that round. Now,the 11M is selected as the

let. [Lt (1') denote the expected number of rows of H (t) having its reduced degree 2' after

the reduction round t. we want to design a degree distribution by which a randomly

generated H gives the ripple size ht(1) = 1 for all t 6 (0,1,. . . ,n -— 1} through the

reduction rounds of the MPA. At the reduction round t, for each degree '27 > 1, since
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every row of H is generated in random, the probability that a 1 of a row in H(t)

having degree i is in the discarded column Hit is ”—14. Thus, the expected number of

rows of H (t), whose degree 2' is reduced to 2' — 1 in H (t + 1) by the discarded column

Hit, is given as Lit—11:92. Similarly with h¢(2' + 1), a total of i+121h_’(i+1) rows of degree

2' + 1 in H(t) become rows of degree 2' in H(t + 1). Therefore, at the beginning of the

round 1‘. + 1, the expected number of rows of reduced-degree 'i is given as

  (1.4.4)fit+1(‘i):flt(t) (l— i ) + (2+1)ht(i+ 1).

n—z‘. n—t

Setting by ht+1(1) = h¢(1) = 1 for all t, we get ht,(2) = Ef—t from (1.4.4). Then by

the induction on (1.4.4),

 met) : . _ ' . (1.4.5)

Particularly with t = 0. we obtain

t—(zr:_l)- fOI‘ 7 > 1

110(7) 2 (1.4.6)

1 for '2', = 1.

Then normalizing by p, z: 3075;), we obtain the ISD as

 

1 1 1 1

: —,—,—....,__ ,.'..,————— . 1.4-7

/) (71' 2 2 - 3' 2(2. — 1) ’ 71(n — 1)) ( )

In the following remark, we derive a differential equation and the ISD is approxi-

mated frorn the solution of the equation.

Remark 1.4.1 (Sl‘iokrollahi’s Interpretation for the ISD). Let H be an m x n random

matrix H generated by a row-degree distribution p(;z:) = Z, pixi. At the degree—

reduction round t of the MPA, the probability that a row of initial degree i has

exactly one 1 in the residual matrix H (t + 1) is as following. Since every row of H is

generated in random, the probability that exactly one 1 of the row is in the residual

matrix H(t + 1) is '27 (1 — t—jZ—l). Now, the probability that all other i — 1 number of



, . . . . - "—1 . .

1 s of the row is in the t. number of discarded columns at round t 1s (:7)! . L1kew1se,

at the round 11 + 1, the probability that all other i — 1 number of 1’s of the row is in

i—l

the t + 1 number of discarded columns is given as (E) . Thus, the probability
71

that the row of degree 27 in H becomes a row of degree 1 in H (t + 1) after the round

its)(tn‘iei‘)
Hence in average, the probability that a row of H becomes of a row degree 1 in

H(t + 1) is given as

t+1 " . t+1 “H n . t H

t— NEW .> we
'2: 2:

= (1— 33—1) (p'((t+1)/n.) — p’(t/n)). (1.4.9)

7L

t + 1 is given as

  

  

Then by using p’((t + 1)/72.) — p’(t/n) r: %p”(t/n) for large n, the probability (1.4.10)

can be approximated as

 

TI

(1— H1) ip"(t/n). (1.4.10)

We now assume that the row dimension m of H is very close to the column dimension

n, so that the expected number of rows of degree 1 in H (t + 1) is approximated as

t+1

771-(1.4.10)z (1— —) p”(t/n). (1.4.11)

71

Then setting by (I — gig—1) p” (t/n) = 1 and (r. 2 %, we derive the differential equation

(1—.r)p"(.l:) = 1, for O < .L‘ <1. (1.4.12)

Then using the initial condition p(1) = 1, the solution of the differential equation

(1.4.12) is given as

 p(.2:) = Z 1 Ii. (1.4.13)

222 2(2. — 1)

The distribution above is similar to the ISD, except that the first. term p1 = O and it



has infinitely many terms.

As mentioned earlier, the ISD ,0(.r) in Definition 1.4.2 is so weak because, a

random H by the {)(1?) has the expected ripple size as 1 through the degree-reduction

round of the MPA; even a small variance of the ripple causes it to be empty. Fur-

thermore, some of the columns of H could be null. A small modification on the ISD

fixes this problem. The RSD in [2] ensures that the expected size of the ripple is large

enough at. each degree-reduction round of the MPA, so that it never becomes the

empty set with high probability. The idea of the RSD is in the design of a row-degree

distribution ,u.(.r) by which an m x n random H gives the expected ripple size about

c- \/Ti 111(11/6) for every reduction round of the MPA, where 6 is the upper bound of

the probalnlity that the MPA on H fails to the complete lower triangulation of H and

c is a. constant of order 1. The intuition for the ripple size c- fl ln(n/6) is come from

the observation that, according to Luby’s in [2], the probability of a random walk of

length n. deviates from its mean by more than fl ln(n/(5) is at most 6. So, the RSD

is designed with 110(1) 2 c\/fiIn(n/6).

Definition 1.4.3 (Luby’s Robust Solitan Distribution). The RSD n(;r) = Emmi is

defined as follows. Let R = c- fl 111(71/6) for some constant c > 0. We first define

7'(.r = 2 73.11) as following:

R/(in) fori=1,...,n/R—l

Ti 2 Rln(R/6)/n for 2' = n/R (1-4'14)

0 fori=n/R+1,...,n.

\K’e then add the ISD p(.T) to T(;17) and normalize it as the RSD n(.'r.) = Emmi

such that

ii,- = (p,- + T,)/tu where a) 2 :(pi + Ti). (1.4.15)

2

for all i = 1, 2, . . . , n.
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Setting the number of syndrome symbols by m 2 mo gives the expected number

of syndrome symbols of degree i by

n. R - n

2 .

n-m =n~ (01+ a) = £3;— + Rln(R/6) ifz' = 51? - (1-4-16)

n ' ' n

i i—l If 2 2 R

Especially, notice that mm = 1 + R and m ~ #2 2 n/2 + R/2.

We introduce the main theorem of the LT paper [2]. For the proof of the theorem,

we refer readers to Theorem 17 in the original paper [2].

Theorem 1.4.1 (Theorem 17 in [2]). The MPA on a random m x n. matriz~ H,

generated by the RSD ,u(;r). fails to recover the input symbol a with. probability at

most (5 from a set of m : n 'u.) syndrome symbols.

Remark 1.4.2 (Further Works on the RSD). In section 2.4, replacing the initial

condition h.((1) = 1 with hg(1) = S + l for some integer S _>_ 1, we generalize

h‘Iackay’s recursive formula (1.4.4) into (2.4.1). we will explain the Luby’s RSD [1(1‘)

as a. particular case of the solution (2.4.4). To ensure the success of the MPA with

high probability, it should be emphasized that the number of syndrome symbols (or

the number of rows of H) should be large enough.

Remark 1.4.3 (Raptor Codes). In [14], Shokrollahi generalizes LT codes into Raptor

codes by using pie-decoding stage on a. The main idea of Raptor codes is that, an

input symbol vector (i is protected by systematic LDPC codes or other codes in prior

to LT encoding called “Pie-Coding”. Then LT encoding is applied to the precoded

input symbol vector. For further detail, see the raptor paper [14].
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CHAPTER 2

The Maximum-Likelihood Decoding

Algorithms of LT Codes

In this chapter, we first present the S—MLDA as an advanced form of the MLDA in

[3]. We then present the design of LT degree distribution p(r.) by supplementing the

RSD n(.r) with a small fraction of dense rows. Thus, a random H, generated by our

designed p(.r), may fit for the S-MLDA. By using the Kovalenko’s Rank Distribution

in [21, 22, 29], we also present the rank distribution of random H generated by the

p(.r). Simulation results, which show the viability of the proposed MLDA of LT codes,

are also presented in section 2.6. In section 2.7, particularly, we substantiate that, by

experimental results, LT codes from an arranged encoder matrix can achieve a stable

overhead e," (for the successful S-MLDA) close to O.

2.1 Introduction and Backgrounds

Let a : (o1. . . . .an) 6 (FS)” be a given input symbol vector that we would like

to cormnunicate over BEC. In the LT based data transmission scheme, an LT en-

coder constantly generates syndrome syn'ibols ,3,- E IF3 using a. row-degree distribution

p(.r) 2 22:1 pdrd and a in the following manner:

1. a degree d. is randomly chosen with probability pd, then a row H2'. E If”; of degree

d is chosen at random from the (:3) possible choices;

39



2. the encoder generates J, = HiaT, it then transmits 13,- over BBC.

The transmission stops when a receiver acquires a sufficient number of syndrome

symbols. At a receiver end, if more than 771 = (1 + ’7)n syndrome symbols are

received for some 7' > 0. then an LT decoder recovers the a by solving the consistent

linear system

HXY‘ : 5T, )3 Z ()31. . . . “3771) (2H11)

where H consists of rows H,- such that HiaT = 63. Assuming that. rows of H follow

the distribution p(.r) such as the RSD in [2], H can be lower triangulated by means of

permuting rows and columns of H. as in the MPA [5] (or see Algorithm 1.4). Thus

a can be recovered by the FS algorithms Algorithm 1.2 and 1.3 over a triangulated

matrix of H by the MPA. For short block lengths 71, however, the success of the MPA

(a triangulation of H by the MPA) is not guaranteed as y —* 0.

Nonetheless, regardless of the MPA failure, system (2.1.1) has its unique solution

iff Rank(H) : 72.. If Rank(H) = n, then system (2.1.1) can be solved efficiently by the

MLDA suggested by Burshtein and Miller in [3]. Their MLDA exploits four major

routines as following:

1 ALTA: By the ALTA on H (see [3,4] or Algorithm 3.1), a pair of row and column

permutations (P, Q) of H is obtained with which H = PHQT = [g E], where B

is in a lower triangular form. Thus, system (2.1.1) is permuted into

 

 

.4 B [X72 sf _ _T T

c D Kg .3?" HX 10' ’ ( l

_ XT] 3T

where XT : QXT 2 X712 and PJT : dill]

2 851?: Multiplying by S = [iii—314(1)], called Back-Substitution of References
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(a) H by ALTA (b) SH by BSR (c) LU by GE

Figure 2.1. The MLDA on H

(BSR), system (2.1.2) is transformed to

 

_ XT —.T
_ _

,

3 Xi] = is] ‘1’ WW ”'1‘”
R ,

  

where A = B‘lA and C = C —— DA. (See Figure. 2.1-(b)).

3 GE'XR is recovered by using on 0X7; 2 BIT (See Figure. 2.1-(c)).

4 Final FS (FFS): X72 is recovered by X773 2 AXR + :35.

The core of the MLDA is in the novel combination of the ALTA and the BSR by S

that reduces system (2.1.1) into a small system C'XR = BIT by means of a partial GE

on H over the columns of the triangular block [113] from the first to the last column

of it. When H = [113], the MLDA becomes the MPA. Of particular interest of the

MLDA is in the ALTA on H, generated by the RSD. The prominence of Luby’s RSD

is not just in the perfect triangulation of H by the MPA for large block lengths n and

overheads '7', but is also in the robustness of the RSD. A small perturbation on the

RSD does not affect much the triangulation of H by the MPA. Furthermore, even for

short 71 and ’7' close to 0, H can be permuted into an approximate triangular form

H in system (2.1.2) whose left-block [g] is very small. Thus, the GE on C is very
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efficient compared to the conventional GE on H. This advanced form of GE also can

be found in [27, EX-50.12] and the US patent [15]. Another MLDA using guessing

strategies on XR at a bit—level was developed in [17]. In the algorithm, whenever the

triangulation of H (by the MPA) stops prematurely, a codeword bit, whose value has

not been determined yet, is chosen and declared to be known (by assigning l or 0).

The triangulation proceeds in this fashion, and the algorithm succeeds decoding as

long as Rank(H) = 71.

Let (1 x r be the matrix dimension of Q, where q = ’yn—l—r. Note that Rank(H) = n

iff. Rank(C—T) = r. If Rank(C) = r, then the GE on C’ can be performed by the LU-

factorization algorithm Algorithm 1.1 (see also [23, ch.7]) that returns Q in an

LL-’—factorized form C = LU [17'6“] such that L and U is a q x q lower and upper

triangular matrix, respectively (see Figure 2.1-(c)). In fact, by the GE, L—1 and

U ‘1 can be obtained in a product form of elementary matrices, so that

r 1

T 7 —l *T —1 k -1 k ,.
XR = (LL) .3, . U = H U< >, L = H L( ), (2.1.4)

A21 [1:1‘

where Lik) and U0“) are the elementary matrices formed by replacing the km row of

Iqxq with the Arm row of L and U, respectively, and B) is the one in system (2.1.3)

whose symbols are associated with rows of Q. Even if Rank(Q) < 7", free variables

in XR can be identified by the GE. Thus, system (2.1.1) can be solved for a by

retransmitting the input symbols of free variables only. Otherwise, the deficiency

may be further reduced by increasing a fraction of dense rows on H.

In this chapter, without explicit. construction of the permuted H in system (2.1.2),

we first identify systems of the MLDA as an equivalent set of linear systems in a prod-

uct form of elementary matrices via the pernuitations (P, Q). Let. HQT 2 (HR; H72],

the rearrangemeiit of columns of H associated with (XRaszl- We identify sys-

tem (2.1.2) from system (2.1.1) via (P,Q). Then using S = PTSP, we interpret
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system (2.1.3) (in the BSR) as

3pm; HRJXT = 3.3T. (2.1.5)

Let HR = SH'R. For each 1:, 1 S k s q, the km row Qk of Q is identical to the

ikfh row (HR),k of HR for some ik. Hence, we perform the LU-factorization over

the row set {(HR),k}Z:1 and obtain m x m matrices L and U that. are identical

to an L and U via a permutation pair (argrr), respectively, and whose inverses are

also in a product form of elementary matrices similar to the ones in system (2.1.4).

Consequently, systems (2.1.3) and (2.1.4) together is equivalent to

[(m)-1.§.(HQT)] .XT ..—. [am-13] .1371 (2.1.6)

Based on routines of the MLDA, we compute system (2.1.6) by exploiting the S-

MLDA that consists of two major steps; pie—decoding and post-decoding as following.

1. [ire-decoding."

(a) compute the left-hand side of system (2.1.6);

(b) discard the equations in system (2.1.1) that become null after the GE on

HR. (See null rows in the bottom of Figure 2.1-(c)).

2. post—decoding:

(a) compute the right—hand side of system (2.1.6) by ,BT :2 (L )-1§,3T;

(b) recover XR from the ,5’ by looking at (of, Ty);

kth
(c) recover each I), of X72 using sparser of the equations of the systems

(2.1.2) and (2.1.3) as in below

Em}; = (3,, + Akxgg or as, = 8,, + fax}; (2.1.7)
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The major role of the pre-decod-z'ng step is to find out precisely 71 check equations, and

at the same time, to compute all row operations on H that transform the H in sys-

tem (2.1.1) into a form [[330 é] as shown in Figure 2.1-(c). Then the post-decoding

is designed to recover (XR, X73) by applying the same row operations without any

redundant. symbol additions on d.

For a higher probability Pr(Rank(H) = 71), small fractions of dense rows are

required in p(.r). Most of the dense rows, however, become null after the GE on C".

Thus, ahead of the post-decoding step, all of redundant rows should be discarded to

avoid symbol additions of ('3 over those rows. (See the curves in Figure 2.3 removed

by step 1b)).

A in system (2.1.3) is not sparse in general. Furthermore, its column dimension

7‘ becomes larger as ”y -—+ 0. However, the top part of A is more likely sparser than

the top of [A; B]. In fact, many rows in the top of A are null or with degree one.

On the other hand, the bottom of A is denser than the the bottom of [A; B]. Hence,

the alternative recovery by step 2c) by comparing the degrees Mid and (lAkl + lBkl)

improves the efficiency in symbol additions significantly. The improvement of the

efficiency in symbol additions is presented in Figure 2.3 (see green curves in the

figure removed by the alternative recovery step 2c)).

The remainder of this chapter is organized as follows. In section 2.2, we elaborate

on the systems (2.1.5) and (2.1.6) from the perspective of basic linear algebra over

lF-Z. For exemplary pseudo-codes of the routines of the S—MLDA, see section 3.2. In

section 2.3, we estimate the computational complexity of the S-MLDA in terms of the

number of {sign, bit}-flips and symbol additions of 6 made by the pie-decoding and

post-decoding, respectively. In section 2.4, we design a row-degree distribution p(:r) by

SUpplEII’lCI’ltlI’lg a small fraction of dense rows for higher Pr(Rank(H) = n). We then

analyze the rank-distribution of H by using Kovalenko’s rank—distribution of random

I’I’latl‘lCGS [21, 22, 29] in section 2.5. In section 2.6, we present our simulation results
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tested with LT codes, generated by a designed p(.r) in section 2.4 with block-lengths

n, 103 S n S 104, for the following scenarios:

1. the decoding error rates of the codes under the S—MLDA and the MPA to tell

a. stable overhead 7 for the successful S-MLDA and MPA;

2. number of symbol additions by the post—decoding to tell the efficiency of the

S-MLDA in symbol additions of ,3;

3. fractions of references % to tell the computational complexity of the pre-decodz’ng

in a Int-level;

4. the rank-deficiency 'r} = dim(Ker(H)).

We then substantiate, based on our experimental results, that a stable overhead '7

for the successful S-MLDA is far better than the stable 7 for the successful MPA,

while the computational complexity of the S-MLDA in symbol additions maintains

within few tens of n. In section 2.7, in the same scenarios 1) — 4) above, we present

the perforn'iances of LT codes of short block-lengths 72., 102 S n S 103 generated by

two encoding schemes:

E1) encoding by rows of a (Iv-n.) x 71 matrix A];

E2) encoding by a random generation of rows of H.

Based on our experin‘iental results, we also substantiate that, under the S—MLDA, LT

codes generated by an arranged encoder matrix M also achieves a stable overhead 7

for the successful S-h’ILDA close to 0. We then summarize the paper in section 2.8.

2.2 The Separated MLDA

We first outline several notations that are used in the remainder of the chapter. For a

given m x 71 matrix K over lF-z, we denote A1,]; Ki, Kj , and [Kl as the (i, j )t'h entry, the
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th row, the j‘"h column, and the number of 1’s of K, respectively. We use the notation2'

1,-j to indicate Isl-J- = 1. W'ith the matrix dimension m x n, let [m] = {1,2, . . . ,m}

and [n] = {1, 2 . . . ,n} the row and column index set of K, respectively. In the rest of

the section, we verify the systems (2.1.5) and (2.1.6) in a product form of elementary

matrices.

First, by flipping a known 1 into —1 through the diagonal extension of B, the

ALTA (see [4, p644} or Algorithm 3.1) can be designed to obtain a set of ordered

pairs (01,71) C [m] x [n] such that.

(0[,7'1) =(‘i1,jr+1) >- >- (il,jr+l), n=l+r. (2.2.1)

Thus, an index. pair (2T3,j,-+t) in a) X Tl indicates the (s, t)th entry of the triangular

B which is identical to hier+t in H. With the 01 and 71, let (R, 7?) and (7,71) be

the disjoint pair of [n] and [m]. respectively, such that.

R = {kw-air}: 7—3 '3 T1 = {jr+1’-"vj'r+l}v

With the pairs, we then set. the permutations

a : [m] r—> [m], 0(2).) 2 k, and 7' : [n] r—> [71], 7(3),) 2 k. (2.2.3)

The matrix representations of 0 and 7', say P and QT, is obtainable by permuting

rows of Imxm and columns of [mm in the order of a and 7', respectively (see also

(12.5)). Associated with (73,71), let X: (X73, X72) such that

X7; : (.rJ- ,...,;rJ-r) and X7? = (IL‘J‘ ,. . . ,1]; ). (2.2.4)
1 r+1 7+1

Then via (P, Q), system (2.1.1) is permuted to system (2.1.2).

Second. multiplying by 8—1, the top system of (2.1.2) is brought into X71; 2

.4X77é + 8—153, then substituting the X7; into the bottom system of (2.1.2) yields
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EX}; 2 B‘ldz + 21le as shown in system (2.1.3). This step is the BSR in [3], and

8—

“DB

system (2.1.3). Note that 5‘1 = [g (1)] and is a lower triangular matrix. Therefore,

. . . . l .

it can be accomplished by multiplying S = l _1 ?] to system (2.1.2) as shown in

S can be decomposed as

1

3 2 H 506) = 3(1)S(l-1) . . . 3(2):;(1), (2.2.5)

k=l

k)where each Si is the elementary matrix formed by replacing (Imx,—,,)k with Hk

and l is the number of columns of the left block [ g]. The computation of SH in

system (2.1.3) is accomplished by the. iteration

H :: Slklfl, k = 1,2,. . . ,1. (2.2.6)

Consequently, system (2.1.3) is expressed in a product form

1 l 1

[(11 SW) . [:3] , (II Sm) . 2T 2 (1] gm) -P;3T. (2.2.7)
k=l ” k=l k=l

Notice. that in the iterative BSR system above, since S [ g] is always known as [(1)],

B

D

   

the explicit computation of S'[ g] is redundant.

We now interpret the systems of the MLDA without explicit construction of the

permuted H = [g 1%]. First, since H = PHQT, system (2.1.3) is expressed as

(SP)(HQT)XT = spuT -=— (2.1.3). (2.2.8)

Then n'nlltiplying by P”1 : PT in both sides,

(PTSP)(HQT)XT = (PTSPmT E (2.2.8). (2.2.9)

Rearranging colun’ms of H associated with (X73, X72), we then interpret the HQT in

system (2.2.8) as (HR; HR] such that

HR = [HJ'I;...;HJ‘r), H72 2 [er+1;... ;er+!]. (2.2.10)
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Let S = PTSP, and let. S“) = PTS(k)P formed by replacing the column (Imxmyk

with the column er+k via the km index pair (2k,j,.+k) in (a), T1). Then by P"1 =

PT and (2.2.5).

1 1

s = PTSP = H PTS<‘~')P 2: H 5'“). (2.2.11)

k=l k=l

Substituting the product. (2.2.11) and [Hm H72] into system (2.2.9), the iterative BSR

system (2.2.7) is transformed to

1 1 1

[(11 SW) HR; (H 3“”) HR] XT = (H 3“”) 57‘. (2.2.12)

k=l k=l kzl

Note that, once S is known. 5'an is always known as PT [(1)], thus, the computation

of SHR alone is enough for the computation of SHQT and is obtainable by the

iteration

HR :: SWHR, k = 1,2, . . . ,1. (2.2.13)

Let HR : S'HR. Then since Ck = (HRMY via 0(1),.) : Ir. for all ik E T, we replace

the LU—factorization on C7 as the factorization over the row set {(HR).,-k}z:1 with

additional steps. At each pivoting round I: of GE:

1. \Vhen a pivot 1 is chosen for the kth' diagonal of LU, store the index pair8ka

(ska) E T x R into (0,373.).

—

2. For each pivoted 15% whose row index 3 is in T, flip it into __15‘tlc in (HR)S.

3. Then discard the row (H'Rlsk from the {(H’Rlik} updated up to that round.

After the GE, if Rank(C-U = r then

—.

(armrr) : (.91,t1) >- > (.97.,t7‘) C T x R. (2.2.14)

Thus, for each 8k E 0,. and tJ- E Tr, the —1 or 1 in HR can be identified as
$ij 8ij

the ij of an L or U in system (2.1.4), respectively. Notice that, if Rank(é’) < 7" then

free variables are )recisel ' the .r.-’s whose index ' is in R 7'7.
J
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Let ,3T = 33T. we note that, each 1;” in. L“) or UV“) in system (2.1.4) cor-

responds to the symbol addition (31);; 1: (31);,. + (3))j, where ,3) is the one in sys-

tem (2.1.3). Sin’iilarly, the _15k1‘j or lskatj in (HRlsk corresponds to the symbol

addition 39,; 1: 39k + st via the km row index 8k and the jth row index sj in or.

Therefore, each L“) (or (full) in system (2.1.4) corresponds to the m x m elementary

matrix EU“) (or £703), formed by placing those —15k?‘j (or 13kg, respectively) as the

15kg}. in the row (Imxm),,.k. In this way, via (own), the product form of L‘1 and

U—1 in system (2.1.4) corresponds to the products

1 1‘

L‘1 : H U“ 4: L’l, (7—1 = H Um 4: U4. (2.2.15)

kzr k=1

Consequently, via (P,Q) and (0r,7'7-), the systems (2.1.3) and (2.1.4) together, as

shown in system (2.1.6), is combined as

t‘f‘lIZ—13[HR;HR] RT = U—IL‘IS‘eT. (2.2.16)

where S, 0‘1, and 1.2—1 are in a product form of elementary matrices as shown in

(2.2.15) and (2.2.11). In other words, this means that, by representing the (07-, Tr) as

the permutation matrix pair (Pr, (2,) on HR,

A

U’IZ’IHR = P,.TPT 1m. Qr. (2.2.17)

0

In the pie-decoding step in section 2.1, the step 1a) can be sm‘nmarized as the

following diagram

 

1LTA BSR - GE -——

H i——» H , a; H ———>LU. 2.2.18

(01,71) 72 (i l l) (2 2.13) 7C (2.2.15) ( )

Then all redundant check equations HZ'XT = 32:, whose row index 2' is in T \ or, are

discarded at the step 1b). The right-hand side of system (2.2.16) is computed by

the post-decoding step as described in section 2.1. We note that, in (2.1.7) of the
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alternative recovery step, each Ak, Ak, and Bk is identical to (II-173),” (HR)ik’ and

(HI-2),]; via 0(1),.) 2 11', respectively.

2.3 Computational Complexities of the MLDA

In practice, several supplemental instructions are indispensable for the efficiency of

the S-MLDA, for examples, degree reductions through the rounds of the ALTA and

updating the (01, T1) in the ALTA, and so on. Since a symbol addition or a {sign,

bit}-flip accompanies those instructions within a constant time, we estimate the com-

putational complexity of the S—MLDA by counting the number of {sign, bit}-flips and

symbol additions encountered during the pres-decoding and post-decoding, respectively.

Through the section, let us assume that R 79 01.

We first estimate the complexity of the pres—decoding stage. By the ALTA, every 1

in H is flipped into —1 to obtain a permutation index pair (01,71) in equation (2.2.1).

Hence the number of sign-flips by the ALTA is |H|. While computing HR by the

BSR iteration (2.2.13), each 1 in H72, except in the diagonal of B, corresponds to one

addition of rows in HR. Thus, the number of bit-flips by the BSR is proportional to

'r(|HR[ — n + r), where r is the number of columns of HR. By the GE on HR, when a

pivot 13].-1‘ k is chosen at round 19, the row (HR)3k is added to the rows of T of which

the with column entry is 1. Since [(HRlskl g (7“ — k) and [Tl g (r — k) + 771 at the

round It, the number of {sign, bit}—flips together is less than

  

,. 7.

Z I<HR>Sknfl -—- c 2 MI: + W) (23.1)

k=1 k=1

for some constant c. In fact, our simulations exhibit that, at round [13,

— 'r—k — r—k + In

I<HR>.,| s .2 and m s i 2) 1 , (2.3.2)

and thus, c S :11. Hence in aggregate, the number of {sign, bit.}-flips from the pre-
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decoding step can be upper estimated as

1 1

|H| + 71117—2) + 57cm? + Ear? (2.3.3)

ALTA BSR G'E

\Vhen 7‘ z 671. for large n and small 6 > O, the estimate (2.3.3) may be dominated

by either (762)713 or (e3)n3. Hence, in this case, the computational complexity of the

3 and ’7E2pie-decoding step in a bit-level is 0(713) but with small constant factors 6

(see [3, p. 4]).

Let us now estimate the number of symbol additions made by the post-decoding

stage. We. recall the removal of all redundant rows (including most of the dense rows)

by the step la) of the pre—decodmg and the alternative recovery step by 2c) of the

post-derxxl'zlng in section 2.1. At the initialization step, since only the 321’s, whose row

index i is in at U or, are copied from ,3 and since IO”) U 07-] = n, precisely, 71 copies of

,3,"s are made for ,3. For the computation of ,3T :- U‘1L“133T in system (2.1.6), due

H

to the removal of redundant dense rows, significantly less than [7337' and less than

7‘2 in number of symbol additions of 3 are made by 3 and U‘11-4—1, respectively.

Now let (1,- : min{|(HR)i], [Hz-l}. By the alternative recovery in (2.1.7), a total

of d = 211:1 dik symbol additions are made for the recovery of Xfi, that is also

significantly less than [A;—1%. Hence in total, the number of symbol additions from the

post-decoding is significantly less than

H+H~
n.+———--[I [R[+T2. 2.3.4

1 + 7 ( )

We now assume that the original MLDA in [3] is used for the recovery of X. (Recall

2. BSR, 3. GE, and 4. FFS of the original MLDA section 2.1). In the pre-decodz'ng

step, only the {sign, bit}-fiips that correspond to one row-addition constitute symbol

additions of 3 or 3. First, a total of [H72] by the BSR and less than 22:1(7n+k) row

additions by the GE on HR, are made for the recovery of X73. Then for the recovery

of X72, a total of [A] symbol additions are made by the FF5. Hence in aggregate, the
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number of symbol additions by the original MLDA is upper estimated as

[H73] + [A] + 7'('yn + 7“). (2.3.5)

In Figure 2.3, we show that, due to the heavy density [4] and dense rows in H, the

estimate (2.3.5) is much larger than the one made by the post-decoding stage of the

S-MLDA. (Compare black and red curves in Figure 2.3).

2.4 Degree Distribution Design with Dense Rows

In this section, we first go over LT degree distribution design with Mackay’s simple

recursion formula in [27, ch. 9]. A fine analysis of the design in a continuous frame

can be consulted in Shokrollahi’s works in [14].

\Vith a designed distribution 11(27), we then alter ,u,(.z:) into a p(1r) by supplementing

a small fraction of dense rows of degree g. We then analyze rank properties of an

m. x 71 random H generated by p(.r). By doing so, we provide a simple way for the

armropriate value of [JR/2.

Let. 11s first consider the diagonal extension of the MPA on H in [4, p. 644].

Starting from H(O) :2 H, at the tth extension step, let 11bit be selected as the t”‘

diagonal entry of L 2 PHQT, and let H (1‘) denote the residual matrix by discarding

the jtm column and the 11m row from H(t -— 1).

Lemma 2.4.1. Let h.,g(d) denote the erzrpected number of rows of degree d in H(t).

Then after the (t + 1)’h diagonal extension step, H(t + 1) has

‘n —t —
(h,(1)— 1)( — —1—)+¥:—@, tfd= 1,

I‘I.)+1(d) 2 (2.4.1)

ht(d) (1 — Edi-t) + (d+lizh_[d+1), Othemuz'se

Proof. Once a 1 is chosen for the (t+1)’h diagonal entry of L, say 1it+1Jt+1 is chosen

th
for the diagonal entry, the ’it+1 row counted in 11,2(1) is automatically discarded,



L

thus, there remains ll[;(l) — 1 rows of degree 1 in H(t). \Nhen the jHIH column is

discarded from H(t), each of the ht(1) — 1 remained rows of degree 1 has 1 in the

discarded column with probability 71:, Hence, about (ht(1) - 1)_n—1_—t rows of degree

1 become rows of degree 0, and therefore, about (h.t(1) — 1)(1 — 71—14) rows of degree

1 in H(t) still remain as rows of degree 1 in H(t + 1). Now, a row of degree 2 in

H(t) has a 1 in the discarded column Hji+1 with probability 372:? This implies that

about ht(2)—(—2_—t rows of degree 2 in H(t) become rows of degree 1 in H(t + 1) after
ll

the diagonal extension. Therefore,

  

n—t n—t'
hvi_+1<1>=<m<1)—1>(1— 1 )+2h’(2) (2.4.2)

In case of d 2 2, when the jt+1th column is discarded from H(t), a row of degree d

in H(t) has a 1 in the column with probability #7. This implies that ht(d)(1 - —d—)
n—t

rows of degree d in H (1‘) still remain as rows of degree d in H (t + 1), at the same

(1+1

n —t

 time, about h)(d + 1) rows of degree d + 1 in H (1‘) become rows of degree d in

H(t + 1). Then the sum of the two cases asserts the ht+1(d) in (2.4.1). 1:]

Theorem 2.4.1. Expecting the ripple size by ht(1) = S + 1 for allt = 1,2, . . . ,n,

n — t S

l d = —— —, 1. 2.4.3Id) d(d—1)+d' 61> ( )

In particular, when t = 0,

S + 1, for d = 1,

hold) = . (2.4.4)

S
___

—n

.1

d(d—1) + 3) Otherwise

Proof. Setting by [11(1) 2 h.t+1(1) 2 S+ 1, the first recursion in (2.4.1) yields ht(2) =

11 ~ I.
T + 73. Let us assume that ht(d) = flit—15 +3 for all (1 2 3. Plugging in ht+1(d) =

n—(t+1)

d(d—1)

(d + 1)ht(d + 1) yields the estimate (2.4.3). (2.4.4) is obvious by t = 0. Cl

+ g into the. second recursion in (2.4.1) then simplifying it into ”—i—t + S =
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Let us now set m the number rows of H by

H

 

m = Z hO(d) % n + S(1 + ln(n)). (2.4.5)

(i=1

Thus, from the right-hand side of (2.4.5), 7 zW Then normalizing by m,

we derive the RSD as

n h ((1)
11(1‘) = Z [.ldlfd, where 11(d) = 0 . (2.4.6)

m.

(121

The RSD in [2] can be thought of as a special case of (2.4.4) with S = 0111(71/6)\/ii

and hQ(1) = S + l as below

_ S

(1(dn_1)+ga
l<d< 2.,

”0“” 2 win + 5111(5/6). d = g. (24.7)

(1((1n_'_1) , otherwise.

Theorem-17 in the original LT paper [2] guarzmtees that when an m x n matrix H

is randomly generated by the RSD in (2.4.7) with m z n + S(ln(S/(5) + ln(n/S)),

the LT system (2.1.1) has its unique solution and can be solved by the MPA with

1,)I'obability at least 1 — (5.

The triangulation of H by the MPA depends on the constraint ht(1) _>_ 1 for all

t. In particular, for short block lengths n, 7 should be increased for the successful

MPA with high probability. For a stable ripple design, see Shokrollahi’s Raptor paper

[14. pp. 21—22]. In contrast, the success of the S-MLDA depends on Rank(C) = r.

The efficiency of the S-MLDA in computational complexity may be degraded due to

the GE on C. However, the fraction of references £- is quite small for all ’y > 0, and

hence. the GE on C in a. bit-level may not be a major drawback to the efficiency.

(See Figure 2.4)

Let H be an m x n random matrix over ng generated by a row-degree distribution
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17(2)) 2 Zpdzcd. We first estimate the column—degree distribution of H, say /\(;7:) =

Z'dn‘ZO Ada‘d. Then with A0, the fraction of null columns of H, we estimate a lower

bound of the density [H] to keep A0 small.

Lemma 2.4.2. Let m 2 (1 + ’7-')77.. Then the column-degree distribution ofH can be

(2):}:1 ((1— —)+%2~)(1+7)npd. (2.4.8)

Proo . For a ‘iven row H - let d- = H: . Since H - is random] 2 chosen from n,8 12 i I. 7 dz

estimated as

possible choices, entries of H,- follow the distribution

fd.(1‘2) (1— i‘) + %1‘, £3: 1311}le =1). (2.4.9)

I 71

Let H (k) denote the sub-matrix that consists of the first k rows of H. Obviously, the

columndegree distribution of H() is f(11(.7:7:.) Assume that columns of H(k) follow

the degree distribution 11,-_1 fdz- (.7: )2 25L_0 afrj. Now let H(k +1) be an expansion

of H (Iv) supplemented with a random row of degree (Ilk+1. Then, a column of H(k+ 1)

was a column of degree j in H (A) with probability aj and it becomes a column of

degree j +1111 H(lc+ 1) with probability _k,_d+1 .This case happens with the probability

1

‘I'J(n/+1'Silllllmly1 a column of H(h + 1) was in degree j +1 in H(k) with probability 

aj+1 and it remains as a colunm of degree j + 1 in H(k‘ + 1 again with probability1

d +1
1

.‘AH kn ). Smce these two 
(1—
 ). This case happens with probability aj+1(1 —

cases are all cases for a column in H (k + 1) being degree j + 1, a column of H(l: + 1)

has degree j + 1 with probability

dk+1 dk+l
(lj‘ ( ’12. ) +aj+1 (1— 77. , (2.4.10)

which is exactly the coefficient of the term .rjH of the product

  

k k+1

fdk+1(;13)ZajfEJ—‘ H fdz(:1‘ (2.4.11)

j:—0



Hence, by the induction, H has the column-degree distribution

m

1(2) = [I fdia). (2.4.12)

i=1

Now, H follows the row-degree distribution p(;r) with m = (1 + 7)n, and the number

of rows of degree d is (1 + 7)npd. Therefore, rearranging the product (2.4.12) with

respect to d then substituting (2.4.9) into (2.4.12) asserts (2.4.8). Cl

Theorem 2.4.2. Let a7. be the average row-degree of H. Then the fraction of null

columns of H, A0, is estimated as

71

A0 2 11(1— 4/22.)"(1+1)Pd z 2‘01““). (2.4.13)

d=1

, . . . ,\(k)(0
Proof. By Lemma 2.4.2, the fraction of columns of degree 18 is given as M, = 71—2,

and hence, the product form in (2.4.13) is clear by A0 = A(O). For sufficiently large

77., since

(1 — d/n)”(1+7)pd z erdpdnllfll, (2.4.14)

the product can be approximated as e"(»-1+7")ded. Then since ar = ded, we

conclude (2.4.13). C]

For the unique solution of system (2.1.1) with a destined 6, 0 < 6 < 1, the number

of null columns in estimate is given as n/\0 = ”lie—(”710", and thus, a row-degree

distribution p(.17) should hold the inequality 7ie_(1+7)a7’ < 6 < 1. Therefore

111(71/6)

‘ (1+ 7)

 or [H] 2 n 111(71/(5). (2.4.15)ar

To meet this inequality, we note that dense fractions in p(;r) are indispensable.

Most of the fractions of the RSD 11(1) in (2.4.6) are too small to get [nad] Z 1.

For an example, with short block lengths 77. in a few thousands, [find] 2 0 for d > 60.

V\-"e recall that dense fractions are indispensable to meet the inequality (2.4.15). For
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this reason, we alter the 11(1) into p(:z:) having 3 parts:

. d 2
[)(1’) = Z pdflid-i- Z pdl‘ +pn/21En/ , (2.4.16)

(16191 dED2

in the following manner:

1. I’d z l‘d for (l E 121={1,...,20};

2. 0.001 g pg 3 0.01 for d E D2, where D2 consists of few tens of degrees (1 such

that 20 _<_ d S 400;

3. 0.001 g [27,/2 3 0.005.

The idea of the p(.r) is as following. First of all, the fraction pn/Q is for higher

Pr(Rank(H) = 71). Second, D1 is for smaller % with the constraint ZdeDl #d 2 0.9

based on equation (2.4.6). Lastly, based on the density constraint (2.4.15), D2 is

aimed to hold :DlU’DQ dpd Z [EH—(Q. Thus, hopefully, the [A,B] of H in sys—

tem (2.1.2) consists of rows of degree d in D1 U D2 only.

One would set. p(.1:) :2 pplU92(:r)/pplupz(0) that meets the inequality (2.4.15)

with a small 6. It seems to the authors that, even with a large 7, an m x 71 random

matrix H generated by the p(;r) does not achieve the probability Pr(Rank(H) = 71)

close to 1. For an example, in Figure 2.10, rank deficient cases happen just one

or two times (out of 1000 random constructions of H by the p(;7:)) with deficiency

dim(Ker(H)) = 1 or 2. In contrast, when the p(:7:) is supplemented with pn/2 :2 0.005,

the small deficiencies are gracefully removed up to 1 + 'y m 1.008.

Since [H] is increased by 1223(1 + ’7')p,,/2 with the fraction pn/2 alone, a slight

increment on pn/2 may cause [H [ much heavier than desired ones. Let us now present

a simple way for an appropriate value of 1072/2 with an estimated dim(Ker(H)) through

simulations. Let H be an m x 71 random matrix generated by the pDIU32(x) =

ED1UD2 pdrd. For a given V E IFS, let Vl = {X E lf‘lz’lV - X = 0} the complement
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space of V. \Vith the row space RS(H) 2: {ZiEI H,|VI C [712]}, let Rank(H) =

dim(RS(H)).

Theorem 2.4.3. Let H be an expansion ofH supplemented with Inn/2 random rows

of degree %. Then,

~ 1

Fr (Rank(H) < n) g 77, where 77 = dim(Ker(H)). (2.4.17)

2 71/2 7

Proof. \Ve first note that, from basic linear algebra, RS(H) C VL iff. V E Ker(H),

and Ker(H) C Ker(H). We also note that Rank(H) < n iff. RS(H) C Vi for some

nonzero V E Ker(H). For each nonzero V E Ker(H), since supplemented dense rows

are chosen in random,

Pr(RS(H) c vi) g 2"”’71/2. (2.4.18)

Then since
 
Ker(H)[ 2 2”, the inequality (2.4.17) is clear by the sum of the proba~

bilities (2.4.18) for all V E Ker(H). Cl

The author of the thesis is not aware of any closed form of mathematical estimates

for 7;. Nonetheless, for a given ”191“)sz = ZdevluDg pdxd, n can be estimated

by extensive simulations of the S-MLDA very efficiently. Then by increasing mn/g in

(2.4.17), one would achieve r} = 0 with high probability. Thus, 1071/2 may be assigned

by ) °- 122,—? with “111 '1))1'o)ri'1te N
.. Ill/2"“ “+20” 1 ‘ (ll 1 ‘W l'

2.5 The Rank Distributions of H

In this section, we introduce Kovalenko’s rank distribution theorem over finite fields

[21,22,29]. We then derive a finite version of the rank distribution of the supplemented

matrix H in Theorem 2.4.3.

“'13. first. introduce the limit version of the rank distribution theorem. Let H be
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an (n + k?) X n random matrix over a finite field qu with the density constraint

ln(n) + .r.

n

l .‘

S PTULI'J' 75 0)_<_1- m, (2.5.1)

71

where 1: ——> oo arbitrarily slowly. Kovalenko and Levitskaya [21] showed that, as

n —+ 00, for any fixed integers k and s with k + s 2 O,

. 1

1 Ilzis+1il —'_7)

 

. i ' . — —- :
q

.

121220 P1 (Rank(H) — n S) q-“(k+5) Hf:ls(1— _11') . (2.5.2)

For an example. with (q = 2, k = 30, s = 0),

lim Pr(Rank(H) = n) = H (1 — i) (25.3)
n~fix- 21

i=31

which is very close to 1. In [22], Cooper further improved that, under the assumption

that H has no zero columns, the distribution (2.5.2) is also true when the condition

in (2.5.1) is weakened as a: ——> —00. Note that the distribution (2.5.2) is not directly

applicable to a random H generated by a p(;r) in (2.4.16), because both the row and

column-degree distributions of H may not. meet the density constraint in (2.5.1).

Let H be an m x n random matrix over F2 generated by the pDIUv2($) with

rank-deficiency I] = dim(Ker(H)). Starting from H(O) = H, let H(k) be an

expansion of H(k — 1) supplemented with a random row of degree 3%. Now let

(kw/(to) : Pr (Rank(H(k)) = (n — 7}) + to) where O S to S 7].

Proposition 2.5.1. The mnk—distribution of H(k + 1) follows

1 1

Ck+1.r;(W') 1‘ Card's} — 1) 1—W + Ck,n(w)2—,,'_—w~ (2-5-4)

Proof. Only two cases are possible for Rank(HU: + 1)) = n — (n — w); either

Rank(H(k)) : n — (n — a) +1) or Rank(H(k +1)) 2 n — (7) — w). If R.ank(H(k)) =

n — (I) — to + 1), then Rank(H(k f 1)) = n — 7‘} + w iff. the supplemented row is not

in Ker(H(/c)). Since dim(Ker(H(k))) = 7) — LU + 1 in this case, Rank(H(k + 1)) :
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n — (n —to) with probability (p.001) — 1) (1 — EFF—L?) If Rank(H(k)) = n — (77 —w),

then Rank(H(k + 1)) = n — (7] — LU) iff. the supplemented row is in Ker(H(lc)). Since

di1n(Ker(H(/e))) : n — w in this case, Rank(H(k +1)) 2 n — (7) —w) with probability

<k»'l(W)27—_7/1-'Then the sum of the two probabilities asserts (2. 5. 4). Cl

We now derive the solution of (2.5.4), a finite version of rank-distribution of H(lc).

Lemma 2.5.1. Lot to g ls. to S 7), and let l = k — to. Then

 

u)

1 1

(Ayala!) = H (1‘ 5,1713)W ' 5(wal)» (2-5-5)

121

where _

to i1 l'l—l 1

Shel) = Z Z Z 211+12+m+ir (2.5.6)

'l1=0i2=0 il=0

Proof. Although the same arguments of Theorem 3.2.1 in [29, p. 126] can be used

for the probability (2.5.5), we derive the probability (2.5.5) by using (2.5.4) and the

mathematical induction. If to : 0 or 1 = 0, then clearly

k

1 1

Ch‘.'l](0) = W and Ck,7](k) : H (1— m) . (2.57)

i=1

Assume that (2.5.5) is true for k and (.1. we show that by using (2.5.4), the distribution

 

(2.5.5) also holds for A? + 1 and to. Let l = l; — to. First, (Av/(w — 1) (1— 273;?) in

(2.5.4) is expressed as

“’ 1
H<_ 211+1—___.) 2ll+1)(n-w+1) .sw — 1.1+ 1), (2.5.8)

and S(w‘ — 1.l + 1) in the above can be expressed as

[+1

Stu — 1,! + 1) = Z 2‘ 29:1“. (2.5.9)

w2i12-°-Z'll+121
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Similarly, the (Aqua) in (2.5.4) is expressed as_1_
2fj-w‘

 

[i (1_ 2"+1_i) 2(l+1)(n-w) 'Sw’ 0’ (2'5'10)

where S(to, l) can be expressed as

3(a), 1) : Z 2‘2131111'8. (2.5.11)

w2112---22')2(2'z+1=0)

It can then be seen that, from (2.5.9) and (2.5.11),

S(w‘—1,l+1)+S(.o,l)=S(to,l+1). (2.5.12)

Therefore, the sum of (2.5.8) and (2.5.10) gives Ck+1§,](w) as

 

 

11(1— 2]}+1—i) 2(l+1)(r}—w) SCI-’01 l + 1)) (2.513)

2,:

where.

1

s(...,1+ 1) = Z 211+12+~-+i)+1' (2.5.14)

W22713"'3il+130

1:]

Theorem 2.5.1. With the same notations in Lemma 2.5.1, let H = H(kt). Then

with. to = 7} and Is 2 7}, as a particular case of the distribution (2.5.5),

77

Pr (Rank(H) : n) = H (1— 5%:) .S(17, l). (2.5.15)

i=1

The author is not aware of any simpler form of S(n, l). Furthermore, it is difficult

to compute 8(7). l) because it requires an l-dimensional array for the computation

of the multiple sum. Hence in practice, once a rank-deficiency 77 is estimated from

simulations, the lower-bound (2.4.17) is more practical for the value of 971/2 Nonethe-

less, it is straightforward to see that, by Theorem 2.4.17, Theorem 2.5.1, and by
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lzh-n,

1 '7 1 "1

i=1

Remark 2.5.1. So far, we assumed that H is an expansion of H by supplementing

random rows of degree ’5’. In fact, Lemma 2.5.1 is also true when supplemented rows

are randomly chosen from 2" possible choices (see the proof of Theorem 3.2.1 in

[29]). We may anticipate that the distribution (2.5.5) also holds, if supplemented rows

meet the density constraint (2.5.1). Heuristically, the anticipation is reasonable in

the following sense. Let Ra11k(H(lc)) = n —— (n—w). By GE, H(k?) can be transformed

to a row-eqmvalent form [A; I] where I is the identity matrix of size n — (77 — w).

Then pivoting the supplemented row of H(k + 1) with diagonal entries of the I,

let the supplen‘iented row be transformed to (Ah-+1? 0), and thus, H(l: + 1) is now

[11:16]. Then Rank(H(k +1)) = 1+ Rank(H(lc)) as long as

AA.“ # 0. Now. if we assume that. Ak+1 is a random vector in 1113—”) where 77 — w =

row—equivalent to [

dim(Ker(H(k))), then Ah.“ 3i 0 with probability 1 — ill—75'

Remark 2.5.2. V'V’hen q = 2, the limit distribution (2.5.2) can be derived from

Lemma 2.5.1 by setting H(O) = (2) (so that 77 = n) and w = n — .9. To see this, we

first rearrange the sum 5(a), l) in (2.5.5) as

S(...»,1).—. :2—21 2 2"‘1—1 Z 2‘21. (2.5.17)

i120 il-lzil i1=i2

Since a} —-> 00 as n —+ 0c», the rearrangement can be simplified as a. product form

_1 oc-

- 1 —1 —22‘
7 u; ' — —— — l. c o I 2"Inn 5( ,l) — (1 2) E 2 1 E 2

11:0 i3£i2

1 ‘1 1 “10° —11
: (1_.2_) “(17:0 :2 1

11:0

1 1 _1

= H(l—fi) . (2.5.18)



Then plugging in the product (2.5.18) into the distribution (2.5.13) gives the limit

distribution (2.5.2). (See also [29, p130]).

We. now close this section by providing a formal approach to an estimate of

[Ker(H)[. Let H be an m x 71 random matrix over IFQ generated by a p(;r) in (2.4.6),

and let X be a nonzero random vector in F3 with [X] = k. Then the number of

solutions of system (2.1.1) is exactly |Ker(H)|. Now, for a given random row H,- of

degree (1,,

Pr(H,- - X = 0) 2 (2.5.19) 

Then since H has "ll/’11 rows of degree d and each of them is generated independently

from all other rows,

 

_ ,. .. d mpd

Pr(X E Ker(H)) = H (1+ (1 22k/n) ) . (2.5.20)

10,1750

Next, X can be chosen in total (2) different ways, therefore, the expectation of

[I‘x'er(H)[ is given as

1 n n d mp4

727; Z k H (1+ (1 — 215/71.) ) . (2.5.21)

k=0 pd#0

If a fine approximation of (2.5.21) is possible, then an appropriate value of [27,/2 can

be assigned for Pr(|Ker(H)| = 1) z 1 without much difficulty. It seems to the author

that, the equation (2.5.21) is more likely blown up to 00 by a small increment on pd.

2.6 Simulation Results

In this section, we provide our experimental results simulated with LT codes of block-

lengths n, 103 S n S 104, generated by a. row-degree distribution p(;r) in (2.4.6)

supplemented with the dense fraction [On/‘2 = 0.005. Particularly in Figure 2.2,

we substantiate that, under the S—MLDA, our designed LT codes can achieve the
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(p(1)€1F1=(0015, 0.47, 0.104, 0.074, 0047,0032)

D, (11(1),,37: (0. 023, 0017,0013, 0.011 0.009 0. 008)

[(120004 for 13<d<20

D2 101120-002 for21 <d<30

pd=0001 for 31 <d<70

pd = 0004 for d—— 71 72 141 260 350

’D3 pm =0005     
 

Table 2.1. The row-degree distribution p(:1:)

performance in overhead 7 (for the successful S-MLDA) close to 0. In Figure 2.4,

we also provide the fraction of references rf = g which shows the computational

efficiency of the pre—decodmg with respect to r 2 en. (Recall the small constant

factor 6 in (2.3.3) at p. 51).

The spectrum of our simulation is as follows. First, we generate a distribution

u(.r) in (24. 6) with S = 15 and n = 103. Based on (2.4.16) and the conditions

1) - 3)ttherein, 11e alter the u(.1) into the p(.r) as shown in Table 2.1. Second,

we tested LT codes under the S-MLDA for the 10 block lengths from n = 103 to

n = 10- 103. For each fixed 71, a row dimension m is increased by 1 from m := n up to

m :2 (1.2)71. Then for each matrix dimension or x 71, an m X 71 random matrix H by

the row-degree distribution p(;1.') is constructed 100 times by generating its rows using

h-Iersenne Twister algorithm [16] on [n]. Then for each instance of H, the S-MLDA

is tested with a nonzero input symbol vector (1 in (173)" for the following scenarios:

1. (_lecoding failure rate of codes under the S-MLDA and the MFA;

M . number of symbol additions by the S-MLDA and the original MLDA in [3];

3. fractions of references 7'7;

4. rank-deficiency 77 = dim(Ker(H)).

In Figure 2.2, for each fixed 71, a black and gray curve DFR = f(1 +7) shows the

decoding failure rate (DFR) of codes under the S-IVILDA and the MPA, respectively.
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Figure 2.2. Performances of LT Codes in Decoding Failure Rates (DFR) (under the S-

MLDA (black curves 1) and the MPA (gray curves 2). The codes are generated by the p(l‘)

in Table 2.1 over the block lengths from -n = 1,000 to 10,000

For examples, when n = 5, 000 and 1+7 = 1.01 with 100 trials of code constructions

(see the bottom figure in Figure 2.2), the gray point (1.01, 1) indicates that the MPA

never succeeds for the recovery of a, in contrast. the black point (1.01.0) indicates

that the S-MLDA never fails to recover a. We observe that, for any 1 + 7 > 1.007,

the DFR by the S-MLDA is 0. Even if 1 5 1+7 S 1.007, our simulations also exhibit

that Rank(H) 2 n — 12 (see the bottom figure in Figure 2.5). Therefore, a small

65



 

 

Number of Symbol Additlons by the Post-Decodlng and the MLDA

N
S

:
N
u
m
.

o
f
S
y
m
b
o
l
A
d
d
.

  

    
    

9

    
1N3§§§

§
o 7000

8000
9000

10000

600

1+y:0verhead 12 1000 2000 3000 4°00 5°00

 

_ — 1 by the S-MLDA

n ' BIOCk Length — 2 by the Original MLDA

3 by theiRedundant Rows

4 d' = [A —2 1111/71

 

 
  n=5.000 

 

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

1+7  
 

Figure 2.3. Number of Symbol Additions by the Post-Decoding and the MLDA in [3]

increment in p")? (or 7) based on the inequality (2.4.17) or the rank—distribution

(2.5.15) may increase Pr(Rank(H) = 71) very close to 1. Also notice that, by the

MPA, DFR > 0 for any 1 + 7 < 1.08 and 71. Therefore, the desirable 7 for the

successful decoding of codes by the MPA should be greater than 0.08.

In Figure 2.3, for each fixed 71, a. black and gray curve 1 and 2 represents the

number of symbol additions divided by n, denoted as NS, made from the post-decoding

and the original MLDA in [3]. respectively. Similarly, the black and gray curve 3 and
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4 indicates the NS made by the redundant equations HiXT = B,- whose index 2'

is in ’2' \ or and by the d* = ||*’1| — 22:1 dil/n, as shown in p. 52, reSpectively.

(Recall the alternative recovery and the removal of redundant rows in section 2.1).

When n. = 5, 000 and 1 + 7 z 1.01, for examples, the point (101,12) on the black

curve indicates that, approxin‘iately, 12 - 5, 000 symbol additions is made by the post-

decoding, and the point (1.01, 39) on the gray curve corresponds to 39 - 5, 000 symbol

additions made by the original MLDA in [3]. Similarly, the black point (1.01, 15) on

the curve 3 and the gray point (1.01, 11) on the curve 4 corresponds to 15 - 5, 000 and

(HI — d) = 11 - 5, 000 redundant symbol additions, respectively. It can be observed

that the black curve 1 is mainly contributed by sparse fractions of degree d in D1 U’Dg,

however, the gray curve 2 is mainly contributed by the dense fraction pn/2 = 0.005

and IAII. From the figure, observe that the gray curve 2 is much larger than the black

curve 1.

In Figure 2.4, for each fixed block length n, a black curve shows the fraction of

references (FR), FR 2 %, where r is the column dimension of H7; (or [ él). When

n = 5,000 and 1 + 7' = 1.01, for instance, the point (1.01,0.025) indicates that the

C‘ in systen’i (2.1.3) has its matrix dimension about 150 x 125 which is very small

compared to the matrix dimension of H, 5,050 x 5, 000. Notice that for any 7 and

72, FR 3 0.041 that. substantiates the very small constant factor in the complexity of

the GE on (_7 (see also [3, p. 4]). (To see the lower complexity, compute the upper

bounds (2.3.3) and (2.3.4) with r = 004171).

In Figure 2.5, each curve represents the rank—deficiency r) = dim(Ker(H)), or

the number of free variables under the S-MLDA. For an example, when n = 5,000

(see the bottom figure in Figure 2.5), the point (1 + '7 = 1,7] = 11) indicates that

the S-MLDA fails to recover a with DFR = 1 (see the bottom figure in Figure 2.2)

and the rank deficiency is approximately 11. Even when 1} > 0, the GE on ER (or

C) identifies the all the free variables, and thus, a is obtainable by retransmitting the
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Figure 2.4. Fraction of References

input symbols of free variables only.

Figure 2.6 shows how the dense fraction pn/Q = 0.005 gracefully improves the

DFR of the S—MLDA to 0 with Pr(Rank(H) = n) close to 1. In the bottom figure,

a black curve shows the DFR of the S-MLDA on H, generated by p(rc). Similarly,

the gray curve shows the DFR of the S-MLDA on H, generated by pplupzfic). In

both cases, pd‘s are taken from Table 2.1. For the simulation, starting from m := n

to m :: (1.2)72. a row dimension m is increased by 1, and for each matrix dimension
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Figure 2.5. The Rank-Deficiency 7} : dim(Ker(H)) (or the Number of Free Variables)

m x n, an m x n matrix H is generated 1000 times. Then the S—MLDA is tested

for each instance of H and 0 7E 0. When H is constructed by pplUD2 (see the gray

curves). although the DFR and r] is small, rank-deficient cases occur constantly up

to 1 + '7' : 1.1, then sporadically as 1 + 7 increases to 1.2. Contrastingly, when H

is supplemented with pn/2 = 0.005, the small deficiencies are gracefully removed (i.e.

7; : 0) up to 1 + 7 g 1008 (see the black curves). From the bottom figure, observe

that the DFR of of the S—MLDA around 1 + '7' = 1.0076 decreases to 0 dramatically
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Figure 2.6. Rank Deficiency (top figure) and DFR (bottom figure) of LT codes of n =

5,000, generated by p(:1:) and p‘pwp,

by a slight increment on 'y.

2.7 LT Codes of Short Block Lengths From an Arranged En-

coder Matrix

In this section, we present performances of LT codes of short block lengths n, 102 g

n S 103. For higher Pr(Rank(H) = n), we design LT codes with the larger dense
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fraction Pn/2 = 0.082. Particularly, we substantiate that, under the S-MLDA, LT

codes generated by an arranged encoder matrix [if can achieve a stable overhead '7

for the successful S-MLDA close to 0, while the S-MLDA maintains its complexity of

decoding in symbol additions within few tens of n.

W’hen H is designed by the RSD with short block lengths n within several hun-

dreds, we (the author Ki—Moon Lee and Hayder Radha) observed that the nonzero

rank deficiency r) = Ker(H) is feasibly happened but is less than a few. A small

deficiency r} can be removed by using the pre—eoding strategies as in Raptor codes

[14] but with a small degradation in overheads 'y. In contrast, supplementing dense

fractions in u(.r) can increase Pr(Rank(H) = n) rapidly without extra costs in ’y.

In the earlier work in section 2.6, we designed LT codes with dense rows that fit

for the block lengths n, 103 S n g 104, under the S-MDLA. Particularly, a very

small dense fraction p.,,/2 = 0.005 was supplemented to p.(a:), and a stable 7 for

the successful S-MLDA was less than 0.01 for n a few thousands. With shorter block

lengths n in several hundreds, however, it seems to us that much larger pn/Z is required

for a stable '7'. In this section, we design a distribution p(:r) with pn/2 = 0.082.

Dense rows may cause a nontrivial drawback in communicating H to a decoder.

Note that. for every instance of at, a decoder should identify H by using the same

ramloni generator of an encoder. Otherwise, each H, should be directly delivered to

a receiver attached on syndrome symbols of 1’3. In both cases, due to dense rows,

the cost in communicating H may not be trivial. Dense rows may also degrade the

computational efficiency of the MLDA in [3] seriously. Nonetheless, even with the

7 very close to O, H can be approximate lower triangulated by the ALTA in [3,4].

Furthermore, most of the dense rows become redundant. Therefore, those redundant

rows should be identified so that symbol additions over the redundant rows can be

removed by the S-MLDA.

In this section, we design LT codes for short block lengths n in two perspectives.
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First, we alter a designed RSD ,u(:r) into a p(:r) = Zpdxd by supplementing a dense

fraction pn/Q for the higher Pr(Rank(H) = n). Thus, even for short block lengths n

and 7 close to 0, a check matrix H of system (2.1.1) may have its full column rank n

with high probability. Second, to communicate H to a decoder efficiently, we use a

(kn) x n. encoder matrix M over F; whose row-degree distribution follows a designed

p(;r). Therefore (at a receiver end), an LT decoder can quickly identify H by reading

rows of M without extra cost in communicating H to a decoder.

In this encoding scheme, however, a row-degree distributions of H may be devi-

ated from the designed p(;r), the distribution of the encoder M, seriously. Therefore,

the random features of the original encoding scheme should be limited. In particu-

lar, a stable overhead 7 of codes for the successful MPA may be degraded seriously.

Nonetheless, our simulation exhibits that the degradation does not affect the perfor-

mance in 7 under the S-lV‘ILDA. (Compare the black and gray curves in Figure 2.7).

Due to the fixed ill, the fixed block—length 71. could be also a drawback to the flexibil-

ity of block lengths 77.. However, if changes in n are not so severe, then this constraint

can be negotiated by using shortening techniques with null symbols on a and resizing

the symbol—size s.

In this section, focusing on LT codes generated by an arranged encoder matrix

M , we simulate LT codes of 10 block lengths n from n = 100 to 1000 in the following

spectrum. First, we construct a row-degree distribution [)(35) in the following way:

1. A MI) in (2.4.6) is generated with S = 15 and n = 103.

2. Then fractions of p(.’L‘) in (2.4.16) are given as:

(a) fld = “d where (16 D1 = {1,2, . - - 320} (for pd, See Table 2.1 at P. 64);

(b) P60 = 0.02 with D2 : {60};

(c) pn/Q = 0.082.

3. Then p(.1:) is normalized as [)(17) = p(:r)/p(0).
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Second, we arrange a (571) X n. encoder matrix M’ by using PEG algorithm [13] with

the row-degree distribution [)(r). Then an m x 77. matrix H is generated in two ways:

E1) Rows of H are chosen in random from M.

E2) Rows of H are randomly generated by ,5(-.r) using Mersenne Twister Algorithm

[16] on [n].

Then a syndrome symbol 13,: is generated by 13,- = H,- -o-T and transmitted over BEC.

In both encoding schemes E1 and E2, for each fixed 77.:

I. the row dimension m is increased by 1 from m 2: 71 up to m := (1.3)n;

2. for each matrix dimension m X 71, an m x 71 matrix H is constructed 1, 000 times;

3. for each instance of H and a 74 0, the S-MLDA is tested.

Let us now present and compare their dew and computational complexities based on

our extensive simulation results.

In Figure 2.7, for each fixed n, a black curve 1 and a gray curve 2 represent the

DFR of codes by the S—MLDA and the MPA, respectively, on H constructed by El.

Similarly, a black curve 3 and a gray curve 4 are the DFR made by the S-MLDA and

the MPA, respectively, on H constructed by E2. When n = 500 and 1 + 7 = 1.02

in the bottom figure, for an example, the point (1.02, 1) on the gray curves 2 and 4

indicates that the MPA never succeeds for the recovery of a. In contrast, the point

(1.02, 0) on the black curves 1 and 3 indicates that the S-MLDA never fails for the

recovery of a with 1, 000 constructions of H. It can be observed that, for each n, the

DFR. of the S-MLDA on H, generated by E1, is slightly better than the DFR of the

S-MLDA on H, generated by E2. In contrast, as 1 + 7 grows to 1.3, the DFR of the

MPA on H, generated by E2, is better than the DFR on H, generated by El. This

substantiates that, under the S—MLDA, LT codes by an arranged encoder matrix 1W

can also achieve the performance in 7 for the successful S—MLDA close to 0, when A!
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Figure 2.7. Performances in Decoding Error Rates under the S—MLDA and the MPA

is supplemented with a small fraction of dense rows. However, the performance 7 for

the successful MPA may be degraded seriously.

In Figure 2.8, for each fixed 77., each curve represents the number of symbol

additions divided by n, denoted as NS in the figure, by the S—MLDA and the MLDA:

1. A black curve 1 represents the NS made by the post-decoding step of the S—

MLDA;

2. A gray curve 2 is the NS made by the original MLDA in [3];
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Figure 2.8. Number of Symbol Additions made by the post-decoding and the original

MLDA based on the encoding scheme E1

3. A black curve 3 is the NS made from redundant rows (recall the removal of all

redundant rows in the pre—decoding):

4. Lastly, a gray curve 4 shows the NS by the difference d* = “M (recall the
11

alternative recovery in section 2.3).

When n = 500 and 1 + 7 = 1.15 (see the bottom figure), for an example, the point

(1 + 7 = 115,713 2 7) on the black curve 1 and the gray point (115,35) on the
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Figure 2.9. Fraction of References based on the Encoding Scheme E1

gray curve 2 indicates that about 7 . 500 and 35 - 500 symbol additions is made by

the post-decoding and by the original MLDA, respectively. As 7 grows, the NS by

the post-decoding step is mainly contributed by the sparse fractions of fi($) and a few

dense rows of degree 772‘. Observe that, for any instance of II and 7, the NS by the post-

decoding is less than 17. In contrast, the NS by the original MLDA is mainly come

from the dense fraction fin/Q. Due to the dense fractions, notice that, as 71 increases,

the NS by the redundant rows (the black curves 3) far exceeds the NS made by the
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post—decoding.

In Figure 2.9, for each fixed 11, a black curve indicates the fraction of references,

denoted as FR in the fingure, FR 2 7:. When n = 500 and 1 + 7 = 1.1, for instance,

the point (1 +7 2 1.1, rf 2 0.04) says that (7 has its matrix dimension about 20 x 70

that is much smaller than 550 x 500, the dimension of H. It can be seen that, for

any instance of 1 + 7 and 72, FR g 0.12. Thus, the performance of the GE on C’ in

computational complexity is actually very efficient.
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In Figure 2.10, for each fixed 71, a black curve 77 represents the number of free

variables under the S-MLDA. For an example, when n = 500, the point (1 + 7 =

1, 'r} : 1.7) (see the bottom figure in Figure 2.10) says that the deficiency in rank is

approximately 1.7. From the figure, even the case when m < n, it should be noticed

that 77 S (n — m) + 3. We recall that, if 77 > 0, the GE on 6 identifies the 77 free

variables, and thus, a is obtainable by retransmitting symbols of free variables only.

2.8 Conclusions

In section 2.2, we introduce the S—MLDA as an advanced form of the MLDA in [3].

In section 2.3, we then estimate the complexity of the S-MLDA which is very efficient

compared to the original MLDA. In section 2.4, we present a simple design of LT

degree distributions with a small fraction of dense rows. We then demonstrate rank

properties of a random H (including Kovalenko’s rank-distribution), generated by

our designed row-degree distribution p(r). Simulation results in terms of code per-

formances in both stable overheads 7 and number of symbol additions are presented

in section 2.6. Through the simulation, we provide the evidences that LT codes of

block lengths n. from n = 1,000 to 10,000 can achieve stable overhead '7 for the

successful S-MLDA very close to 0, while the S-MLDA maintains its computational

complexity in symbol addition within few tens of n. Lastly, in section 2.7, we also

present experimental evidences which substantiate that, for short block lengths n,

100 g n S 1, 000, LT codes from an arranged encoder matrix .M can also achieve

performance in 7 close to 0, when M is supplemented with small fraction of dense

TOW-"S.
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CHAPTER 3

The Maximum-Likelihood Decoding

Algorithms of LDPC Codes

In this chapter, the same S—MLDA developed for LT codes in section 2.2 is applied

for the decoding of BBC based LDPC codes. Clear improvements based on the S-

MLDA over current LDPC decoding algorithms is demonstrated. We also present

experimental results which demonstrate that, under the S-MLDA, LDPC codes can

achieve performance in erasure rate p (for the successful] S-MLDA) very close to

0, while the algorithm maintains the computational complexity in symbol additions

within few tens of block lengths n.

3.1 Introduction and Backgrounds

T).'1)irrai.lly in BBC based LDPC codes, as defined in Definition 1.3.1, an LDPC code

C(H) is the kernel space

Ker(H) = {a e (1F§)”|H-ozT = 0}, (3.1.1)

where H is an m x 72. matrix over IFQ. In general, for any given a] E (1%)!“ , a codeword

a is generated in a systematic form a = (0;; 0}?) such that 0}) = Lglmemxkagl as

shown in (1.3.4). \Vhen a is transmitted over a BBC, the overall codeword vector

0 is expressed as a = (ti-g, a6) where Olé and (re represents the received and the lost
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part of a, respectixely. Let 716 and 71g denote the number of symbols of 0'6 and (15,

respectively, and let X 2 ac. Associating the columns of H with the expression

(aaX), let [N ; M] be the rearrangement of H. Then the kernel space constraint

HGT 2 0 is now expressed as the consistent linear system

MXT 2 HT where HT = Na? (3.1.2)

Obviously, the system has the unique solution 016 iff. Rank(A/I) = 77.8.

W'hen H is designed with a good degree sequence, for examples the sequences in

[4,13]. then the unique solution of the system (3.1.2) can be solved by the MPA [5]

For short block lengths n, however, the successful triangulation of M by the MPA is

not guaranteed as the erasure rate p = 7.3; approaches to the ideal limit 1 — R = 7%},

where R 2 £7 and m = n — 1:. (See the DFR of codes by the MPA in Figure 3.1).

Once the initial system (3.1.2) is identified, the problem of solving the system is

same as the one of solving the system (2.1.1) of decoding LT codes, except that the

M in (3.1.2) consists of columns of H in (3.1.1) and ,8 is formed by fiT = NozéT.

Therefore, replacing the LT check matrix H in system (2.1.1) with M, the ALTA

designed for the H is directly applicable to the M in system (3.1.2). After the ALTA

on M, replacing HQT = [HRiHRl in system (2.1.6) with MQT = [MRiMle and

applying the same BSR and GE developed in section 2.2, the S-MLDA system (2.1.6)

for LT codes can be modeled for the decoding of LDPC codes as following

(ZE’YlS-[MmMRWTz(ZU)_IS-,BT. is» (2.1.6) (3.1.3)

Based on the MLDA [3] and the system (3.1.3), the same pas-decoding and post-

decodmg step developed in section 2.1 and section 2.2 are directly applicable for

solving system (3.1.3).

Although the S—MLDA for both LT and LDPC codes are almost same, the contri-

butions to the efficiency in number of symbol additions by the pre- and post-decoding
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are quite different. In LT codes, the improvement in symbol additions with 13 con-

tributed by the step 1b) of the lire-decoding (or the removal of redundant equations)

is significant, because most of dense rows become null after the CE. On the other

hand, the improvement by the alternative recovery in step 2c) is relatively small,

because the fraction of reference % is quite small. In LDPC codes, contrastingly, the

removal of redundant equations by the step 1b) is less significant than the one for

LT codes, because, in general, the M in system (3.1.2) has no dense rows. On the

other hand, due to the large reference fractions % (or the number of columns of [ g]

in system (2.1.2)), lel is much larger than (Al + IBI. Therefore, in LDPC codes,

the alternative recovery by the step 2c) is indispensable for the efficiency of the post-

decoding. The serious degradation of the efficiency in symbol additions when 231 alone

is used for the FFS is presented in Figure 3.2.

Another significant difference between LT and LDPC codes is in the time-efficiency

of the initialization step of the S-MLDA. In LDPC codes, a fixed H is used for ev-

ery instance of a, and thus, the decoder can quickly setup the initial system (3.1.2)

by reading the columns of H. In contrast, based on the original LT transmission

scheme, for every instance of a received encoding symbol vector 5, rows of H should

be generated by using the same random generator of an encoder to setup the sys-

tem (2.1.1). This random generation of H, as a matter of fact, results in a nontrivial

drawback to the time-efficiency of the S-MLDA. Otherwise, rows of H should be

transmitted to receivers attached on syndrome symbols of ,3 that requires nontrivial

costs in symboLsize.

In LDPC codes, particularly when H in (3.1.1) is designed with capacity ap-

proaching degree sequences, for an example the tornado sequence in [5], the a stable

erasure rate p = "—7,? for the successful S-MLDA is very close to the ideal limit 3%. This

implies that, with high probability, the S-MLDA can recover the lost symbol vector

X = 06 as long as it acquires more than (1 — 1))71 symbols which is very close to k,
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the number of symbols of the information part (1]. Due to the fixed code rate R = ,

:
3

however, the number of symbols of a systematic part aI is constrained by a fixed k.

Thus. depending on the size of source data I, say III, the fixed code rate R could be a

serious drawback in LDPC codes based transmission scheme. Nonetheless, assuming

that a symbol size 5 is flexible to choose, this rate constraint can be negotiated by

selecting an appropriate syn‘ibol-size 5. For an example, 3 can be chosen by s z l-zi—l.

Then the rate constraint may be further improved, if necessary, by plugging in null

symbols into a systematic part a1, called shortening codes.

The remainder of the chapter is focused on the following subjects. In section 3.2,

using the same arguments of the S—MLDA for LT codes developed in section 2.2, we

derive the S—iVlLDA system (3.1.3) for the decoding of LDPC codes. In this section,

we also provide exemplary pseudo-codes for routines of the S-MLDA. In section 3.3,

with the same manners in section 2.3, we estimate the computational complexities

of the S-MLDA with respect to the number of {sign, bit}-fiips and symbol additions

made by the pre- and post-decoding step, respectively. We also compare the number

of symbol additions made by the post-decoding step and the original MLDA in [3].

In section 3.4, we present the simulation results tested with air-rate PEG codes [13]

under the S—MLDA for 10 block lengths n from n = 2,000 to 20,000 by 2, 000, for

the performances of codes for the following scenarios:

H . the perforn'iances of the S—MLDA and the MPA in decoding failure rate;

2. the complexity of the post—decoding in symbol additions;

3. the fraction of references % to tell the complexity of the GE on C;

4. the rank-deficiencies 77 = dim(Ker(Al)).

We then summarize the chapter in section 3.5.
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3.2 The S-MLDA Design with LDPC Codes

In this section, the S-MLDA system (3.1.3) is clarified in detail for the decoding of

LDPC codes. For each routine of the S-MLDA, an exemplary pseudo-code is also

provided. Corresponding to the expression (Org,X) in system (3.1.2), we denote E

and 5— as the index set of X and (15,, respectively. Thus, the M’ in system (3.1.2) has

the row index set [m] and the column index set 8. For other notations used in this

section, see the first paragraph in section 2.2.

By the ALTA on M , first of all, a set of successive pairs in [m] x 8 is obtained for

the triangular block B such that.

(01171) = (NJ-H1) s > (izajwz): 7‘ = 71 — 1- (3-2-1)

)th entry of B can be identifiedThen for each index pair (s,t) E a) x T), the (s,t

by reading the (13, jr+t)m entry of H. An exemplary pseudo-code for the ALTA is

described in Algorithm 3.1. In the algorithm, we design the ALTA as the iteration

between the sub-routines MPA() and Referencing() that accompany Sign-Flip().

In the algorithm, whenever the triangulation of B by the MPA() stops prematurely,

a column that is not joined into [1%] nor [9.] by that round, is chosen and declared

to be a column of [ g] by ReferencingO. The triangulation of B proceeds in this

fashion, untill all columns of M are joined into either [6] or [5]. Many other

strategies for ReferencingO can be found in [3,4].

With the returned (01,71) from the ALTA (see line 9 in the algorithm), let 5 =

(R, 7?) and [m] = (T, ’7') the disjoint pair of [m] and 8, respectively, such that

R:£\Tl:{j1’"'3j7‘}i RZTl:{j7-+1,...,jr+[}, (3'22)

’T = 01 = {11,...,i1}, T = [m] \‘71 = {'fl+1: . . . ,im}. (3.2.3)

By extending the (01,71) into a row and column permutation pair (0, T) of A"! such
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Algorithm 3.1: The ALTA on M
 

 

1

10

11

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

26

27

28

29

Input: H and (5,8) Output: (01,71)

/%<—- Initialization: -—>%/

foreach j E 5 do

L Sign-Flip() with Hi;

/%<-- Triangulation: —->%/

while 8 # 0) do

if 91 = Q) then

L Referencing();

else

|_ MPA();

 
return (Jpn); Exit the Algorithm;

/%<—- Sub Routines: -->%/

MPA():

while ‘11 aé (0 do

foreach (z',j) E 91; do

if j E 8 then

reduce 8 2: 8 \j;

Sign-Flip() with Hi;

update (01,71)I=(017T1)U(i,j);

reduce 93 z: 93\ (1,3); _- L»
Referencing();

choose an H, such that [H.il = min{|HS| > 0};

while |Hi| > 1 do

L choose a j such that 113:6 Hi;

Sign-Flip() with H];

Sign-Flipf):

foreach 1,;j E Hj do

flip sign(1,-j) :: —1;

reduce |H,-| :: [Hz-l — 1;

if |H,-| =1 then

find the (5,75) such that 15¢ E H, and sign(1st) : 1;

L update 91:: ZRU (3,15); —
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that.

a : [m] 1—> [771], 0(2).) 2 k, and T : E r—> E, T(jk) = 1:, (3.2.4)

the permutation matrix P and QT of (a, T) can be formed by permuting rows of Imxm

and columns of Inexne in the order of a and T, respectively. Let M 2 PMQT 2

[El B] as shown in Figure 2.1-(a). Then for each (s, t) E [m] x8, the (s, t)th element

X-

_ _ XT

of 111 is exactly the (3,9,jt)th element of H in (3.1.1). Let XT = QTXT = i: 7%]

R

where

X73 2 [my-1,” .,;rj,.] and X72 2 [ (3.2.5)IIIJ'7_+1,. . . ’xjr+l]°

Then by QT 2 (2‘1, similar to system (2.1.2), system Ply!XT = PBT is interpreted

asith=:PsT.

Let us now rearrange columns of MQT, as in the order of (R, R), into two parts

AhzmmmflWaMAhzwmkwflmfl QM)

Then by using 5’1 : [g 9] which is in a lower triangular form, 5' can be factorized

into a product form of elementary matrices such that

1

S = H 505) = 5(l)5(l—1) . . . 5133(1), (3.2.7)

k=l

where each S (k) is formed by replacing the column (Imxm)k with the km column Mk

and l is the number of columns of the triangular block B. (See equation (1.2.23) at

p. 19). With the product form (3.2.7), SM can be computed by the iteration

1L=SWML kzrauqt 62$

Because the S—IV‘ILDA does not construct the permuted N1 2 [El 1%] explicitly, the

product form (3.2.7) should be interpreted appropriately via (P, Q) into an equivalent

form. With the same way for (2.2.11), let S = PTSP and let Bu“) 2 PTS(k)P,

k 2: 1,2... ,1, formed by replacing the column (Imx.,,,)ik with the column HJTHC.
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Algorithm 3.2: The BSR on 11173 by 11,11,213“) - AIR

1 Input : AIR Output : i’l—IR

 

2 foreach ('ik,j,.+k) E (01,71) as in the order do

/7.<—- NR ;= 3(A‘JMR -—>7,/

3 foreach liefr+k E HJI‘HC, 2i 729 '27), do

4 Ladd (MR), ::(il[R)z-+(A1)ik;

5 return MR; // <—— .1773   
Then (3.2.7) is now transformed to

_ 1 l

s = PTSP = H PTs<k>P = II SW (3.2.9)

k=l k=l

Consequently, similar to the one in system (2.1.3), the BSR system SMXT = PfiT

is now transformed to

1 1 1

[(11 SW) M72; (H SW) MR] XT = (H 3‘“) 5T 4: (2.1.3). (3.2.10)

k=l k=l k=l

Let N17; 2 521173 and ill-IR 2 52117-2. Notice that, since 11772 = PT[6], the computation

of 112173 is enough to set up system (3.2.10) and is accomplished by the iteration

MR 2: SWUR, k =1,2,...,1. (3.2.11)

An eernI.)lary pseudo—code for the BSR iteration (3.2.11) is described in Algo-

rithm 3.2. For the GE on 212173 later, we assume that AIR is constructed explicitly

in a ternary format {—1,0, 1}.

Note that the S-MLDA does not construct the 5.1—! = [El—,6

Therefore, the. GE on (_7 should be designed to perform the pivoting processes on the

] of system (2.1.3).

set of rows {(;1_IR).,-|i E T}, which is equivalent to 5' via. P. At the end, the GE

returns an updated MR that consists of {—1, 1,0} with a set of successive pairs

(0,37%) =(51,t1) >- - ° ' > (Sr,t7~) C T X R. (3.2.12)
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Algorithm 3.3: The GE on [1773 with 2' and R
 

 

1 Inputzhle, T, and R. Outputth'IR and (0r,T7~).

/%<—- Initialization: ——>%/

2 foreach iE 7' do

3 if (1177;),- = 0 then

4 L discard 7'2: 7'\2T;

/%<-- General Rounds: -->%/

5 while 7’ ¢ (2) do

/%<-— Pivot Selection: -->%/

6 choose 35k E T such that KMRMSk = n1i118€7{|i’\73|};

8 insert (07-,77.) :2 (or, T,-) U (sk,tk);

/%<—- Pivoting: ——>%/

9 foreach 2' E 7' such that ('ITLRL'Jk = 1 do

10 flip li’tk into '—1zf‘tk;

11 add (MR), ;= (MR),+(ATIR),k;

12 if |(]l7[7z)il = 0 then

13 L discard ’17" :2 7—"\z'; //<-- To discard null rows

/%<-- Discarding: -->%/

14 _ discard T:=’]_'\sk;   15 return (0r,T,-) and N173;

 

)t‘h entryAfter the GE, an entry 1sz- of L or ul-j of U can be identified from the (3.2:, t]-

of the My; where .92- E or and tj E Tr. While computing X7; by the FS over rows of

L then the BS over rows of U in system (2.1.6), each 1k,j of L0“) or UU‘) corresponds

to the symbol addition (5331);: := ((31);; + (131)) Let 3T 2 SfiT. This addition should

be interpreted as the symbol addition on 3T 2 513T with A7173 by looking at (or, Tr)

as in the following way. Each 1’6} of LU‘) or UU“) is recoded as the —13kitj or 15“].

in (fink/,6, respectively. Therefore, the -13h‘tj or 1'9k‘tj corresponds to the symbol

addition 8% 2: (35k + 33]. via 8k, sj in or, and tj in Tr. In this way, lel and U(k)

can be ii’iterpreted as LU“) and U (k), which is the m x m elementary matrix formed

by replacing those —15k‘tj and 15st] as the lgk‘sj in the row (I.,-nxm)3k, respectively.

87



Therefore, the GE on 11773 is equivalent to the factorization

1 7‘

F1 = H W), 0‘1 = H 0“), (3.2.13)

k=r k=1

where r is the number of columns of M73. Consequently, multiplying the product

form (3.2.13) into the BSR system (3.2.10) verifies the S-MLDA system (3.1.3). An

exemplary pseudo-code for the GE on [HR is described in Algorithm 3.3. For the

recovery of X73, initializing by .rtk :2 133k for each (sk,tk) E (ann) in advance

replaces the symbol addition '33}.- := 85k + .st into xtk :2 :rtk + mt]. (see FS/BS in

Algorithm 3.4).

Let us now go back to the GE to remove redundant symbol additions in sys-

tem (3.1.3). It can be observed that, for each i E T \ or, the row (MR),- is nullified

by the GE on 1177;, and thus, any symbol additions made with the syndrome symbol

,3,- is completely redundant. These redundant symbol additions can be removed by

discarding the equations Ail-X7“ = 52‘ in system (3.1.2) for all 2' E T \ or by the

step 1b) of the pre-decodz'ng. In LDPC codes, since rows of H are sparse, these re-

dundant additions may not be a serious drawback to the efficiency of the S—MLDA.

In LT codes, however, a small fraction of dense rows in H is required to ensure that

IHJI 2 1 for all j E [n], and most of them become redundant after the GE on HR

(see [19, p.41] and [27, fix-50.5)). Therefore, ahead of the post-decoding, removal of the

redundant equations is essential for the efficiency of the S-MLDA for LT codes. The

computation of GAL—138T is described in Algorithm 3.4. Note that, if R = 0,

then the lost symbol vector X is simply recovered by the BSR iteration [3T 2: SST

as in Algorithm 3.4.

In the alternative recovery by (2.1.7), it can be seen that, for each 27;: E 01, Mik-

and (Mth corresponds to (Ak,Bk) and Ak, respectively. Hence, by looking at

(ibjk) E (01, 7'1), each 3311.- of X72, in the order of T1, is recovered by either MikX% 2

"Bi/.- + (A‘IRlikX7Tz or by 3er = 13,-); + (11717;),kX7g. The 117173 (or 21) returned from
4
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Algorithm 3.4: The computation of U‘lfflgw 'flT

1 Input: a5 Output: 5, B, XR.

/Z<-- Initialization: ——>%/

2 foreach i E a) U orT do

3 Lset )3,- :: N,-$01 ;—//<recall 8T: Nag

4 copy ,3,-.= 13,; /-/<for the alternative recovery

/'/.<—— ST :2 S . 3T: ——>'/./

5 foreach (1k.j,.+k) E 01 X r; as in the order do

/'/.<—— 3123(1) 337': —->'/./

6 foreach 1 eHj7‘+k '1‘ 7é i], do
ZJ+1.

7 Ladd~_,3,+3,k;

/%<-- Initialization: -—>%/

s foreach (Sic-tic) E (073,77) as in the order do

9 LCOPY Ifk :: 135k;

/°/.<—— FS by L1—ULTL ‘)——>°/./

10 foreach (3k tk)E (,(or Tr) as in the order do

/'/.<—- BT-—— LW" -—>'/./

11 foreach “1315]. E (1173)”; do

12 Ladd rtk 1=1€tk+$j;

//.<-— BS by (3'2—1 [1,; 113(k) ——>7./

13 foreach (.sk.tk)E (oV77) as m the reversed order do

/'/.<-- .3T-—_ W>3T -—>°/./

14 foreach 13!;1 E MIR)“, 3' 7é tk do

15 Ladd Itk :=rtk+1‘j; 16 return .3, i3. and XR;  
 

the BSR is not sparse in general. The top part of A is more likely sparser than the

top part of (A; B]. On the other hand, the bottom part of A is much denser than

the bottom part of [A; B]. Therefore, selecting a sparser equation by comparing the

degrees lMikl and le'kl may improve the efficiency of the S—MLDA in number of

symbol additions significantly. An exemplary algorithm for the FFS is described in

Algorithm 3.5. The overall S—MLDA is summarized in Algorithm 3.6.
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Algorithm 3.5: The recovery of X72 by FFS

1 Input: X72 Output: X72.

2 foreach (’ik,jk) E (01,71) as in the order do

 

/'/.<—— Use B,X72T : 6, + A,XRT —->°/./

3 if lilfikl < l<MR>ikl then

4 COPY Tj7+k'— dik; //<-- not 31k

5 foreach likJ E Mik’ j yé jr+k do

6 L add TJr+kT_‘rJr+k +2TJ’

/‘/.<—— Use XRT :13,» +A,XRT ——>°/./

7 else

8 COpy (L‘jT+k: f3iki //<__ 1101; Bi]:

9 foreach 1i]:J E (MRlik do

10 Ladd TJ,«+};:_ IjI-l-k +le 
11 return X72;

 

 

Al orithm 3.6: The overall S—MLDA

1 Input: [(ig,X] Output: lXR=X72l

2 d0 ALTA by Algorithm 3.1;

3 if R 2 (D then

4 recover X by Algorithm 3.4;

5 return X;

6 exit the S—MLDA;

construct MR with ’R;

do the BSR by Algorithm 3.2;

do the GE by Algorithm 3.3;

if R\r,~ 35 (D then

L return the free variables ’R,\r,~;p
—
I
v
—
a

w
o
o
m
q

exit the S—MLDA;H N

_
1

C
D

recover XR by Algorithm 3.4;

recover X72 by Algorithm 3.5;

D
-
‘
H

0
‘
;
-

return [.X'R,.XR];

exit the S-MLDA;  H O
) 
 

3.3 The Complexity of the MLDA

Similar to LT codes in section 2.3, we estimate the computational complexity of the

S-MLDA by counting the number of {sign, bit}-flips and symbol additions made by
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the pre-decodmg and the post-decoding, respectively. Throughout this section, we

assume that R 75 (0.

Let us first estimate the complexity of the gore-decoding. By the ALTA based on

Algorithm 3.1, total INI number of 1’s is flipped into —1 to set up 111, and then

every 1 in Al is eventually flipped into -—1. Hence, the complexity of the ALTA in

sign-flip is proportional to IHI. While computing M7; = 311173 by the BSR iteration

(3.2.11), based on Algorithm 3.2, each 1 in M72 (or [5]), except in the diagonal of

B , corresponds to one row addition in MR (or I g] ). Therefore, the BSR constitutes

the complexity proportional to r(I.M7-zI — n + r), where r is the number of columns

of MR- By the GE on 11.173, based on Algorithm 3.3, when a pivot 1%,”: is chosen

at each pivoting round 1:, the row 1173). is added to the rows of T whose tkt‘h column

entry is 1. Since Iii—[,kI S (r — k) and ITI S (m — l — k) at round k, the number of

{sign, bit} -flips together is less than

7' 7'

ZIAISkIITI =cZk((1—R—p)n+k), (3.3.1)

k=1 k=1

where R = fl and c is a constant less than 1. In practice, simulations exhibit that,
n

at each round k, ITI S 95211 and INISkI S 135, thus, c S 211. Hence in total, the

number {sign, bit}—flips by the pre—decoding step is less than

,.

IHI +rIMRI+cZk<(1— R—p)n+k). (3.3.2)

k=1

When r z (n, with a small fraction 5 > 0. we may assume that, in general, the

2 3 3
estimate (3.3.2) is dominated by either (1 — R — ]))€ 71 or e‘ n3 , so that as shown

in I3, p. 4], the overall complexity of the pie-decoding step is 001.3) but with a very

3
small constant factor 6 or (1 — R—p)e2. For an example, as presented in Figure 3.3,

the fraction of references % from simulations of the S-MLDA is less than 0.032.

Second, let us now estimate the number of symbol additions made by the post-

decoding step. We notice that in Algorithm 3.4, precisely, 71.8 number of It’s,
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whose 1' is in 01 U or, are constructed to set up 13 and 13 at the initialization step of

the algorithm. Let 1) = 1'3. Then approximately, T—£R(
72  

N] + 77.) number of symbol

additions of (1g is made for 13’ and ,3 at the initialization step. For the computation

of SJT, approximately, fiIMRI symbol additions of B are made. Then for the

— 2r) symbol additions of B is made by (I‘ll—71.recovery of XR, total of (ILI + U
  

Now for each 2' E a), let d,- = min{|(11—IR),I, IM,~I}. By the alternative recovery step

(based on Algorithm 3.5), total (1 2 21:1 dik symbol additions is made for the

recovery of XR, and d < r5711!” I Hence in total, the number of symbol additions

made by the post-decoding is less than

I)

117% (IHI + IMRI + n) + r2. (3.3.3)

Lastly, let us estimate the number of symbol additions by the original MLDA in

I3]. Let the system XR : 3T + AXR alone be used for the recovery of XR, as showed

in 4 FFS in section 2.1. At the pie—decoding step, note that only the {sign, bit}-flips

that. correspond to a row addition constitute one symbol addition of )3 or B. Foremost,

total of IN] + li’l‘lfil symbol additions by the BSR and less than IUI — r + 22:) IT]

row additions by the GE and U‘1 are made for the recovery of XR. Then for the

recovery of XR, total of Ii’lIIRI +1 (or I/II + l) symbol additions is made. Hence in

total, the number of symbol additions by the original MLDA in I3] is less than

IN] + ill—IR] + r2 + (1 — R — p)nr. (3.3.4)
  
AIR] +

In the following section, we substau'itiate that, by experimental results, the estimate

11.173] (or IAI) as 71,) —> m. (See green curves in Figure 3.2
 

(3.3.4) is ('loniinated by

that should be removed by the alternative recovery step).
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3.4 Simulations

In this section, we present the simulation results of the S-MLDA tested with é-rate

PEG LDPC codes I13]. We then demonstrate, based on the experimental results, that

some LDPC codes under the S-MLDA can achieve performance in stable erasure rates

m
n 7

p (for the successful S-MLDA) very close to the ideal limit while the decoding

complexity of the post-decoding in symbol additions maintains within few tens of n.

The simulation is based on the following spectrum. First of all, for each block

length 72., a check matrix H is arranged in advance by using PEG software [27] that

provides a larger local minimum cycle of columns in the best effort of the greedy

algorithm in I13]. The row and column-degree distribution (A, p) of H, whose average

row-degree is or : 8.33, is as follows

my) 2 0.457332 + 0.32331:3 + 0.021434 + 0.05933:6 + 0.0389127 (3.4.1)

+0.0248zr8 + 0.003339 + 0.0177319 + 0.0475320,

/)(:I') : 0.6708.r8+0.3292.r9.

Using the ALTA in [4], if necessary, we convert H into an approximate triangular

generator matrix C = [Smxki mem] to obtain a codeword a in a systematic form

a = ((11,011)), where 0}) 2 L51 Smxkd? Second, the tested block-lengths n are
mxm

from n. = 2,000 to 20,000 by 2,000. For each 71, starting from he 2 (0.5)n to

71,. = (0.4)71, the number of losses n6 is given by the decrement 72.6 :2 ne — 1. Then

for each pair (71,716), the S-MLDA is tested 100 times by assigning he random losses

on a codeword a by using the Mersenne Twister algorithm [16] on [71] to measure the

)erformances of codes under the S-MLDA in the followin scenarios:
1

1. decoding failure rate of codes under the S-MLDA and the MPA;

2. nun‘iber of symbol additions by the post-decoding and the original MLDA I3];

3. fractions of references I};
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Figure 3.1. Decoding Failure Rate of LDPC codes under the S-MLDA (black curves) and

the MPA (gray curves) for block lengths 2,000 S n S 20, 000

4. rank-deficiency r) = dim(Ker(H)).

In Figure 3.1, for each fixed 71, a curve represents the decoding failure rate of

LDPC codes (denoted as DFR in the figure) in 100 trials of decoding by the S-MLDA

(black curves) and by the MPA (gray curves). For an example, when n = 10,000

(see the bottom figure in Figure 3.1), the red point (p = 0.49, DFR = 1) indicates

that the MPA never succeeds to recover pn = 4900 random losses of a. In contrast,
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the blue point (0.49, 0) indicates that the S—MLDA always succeeds for the recovery

of pit ___ 4900 random losses. It can be seen that, when n = 10, 000, the DFR of the

S-MLDA is 0 up to p S 0.496. In contrast, the DFR of the MPA is always greater

than 0 for all p 2 0.435 and is 1 for all p > 0.458. It can be also observed that,

from the top figure, for any pair (12,19) where p S 0.492, the DFR by the S-MLDA

decreases to 0 dramatically by a slight decrement in p. Thus, the maximum loss rate

p 2 LI:- recoverable by the S-MLDA can be projected to the ones close to the ideal

limit 1— H = 0.5.

Figure 3.2 shows the number of symbol additions made by the post-decoding

(based on Algorithm 3.4 and 3.5) and the original MLDA in I3]. For each fixed

72.. curves represent the number of symbol additions divided by n, denoted as NS

in the figure. First, a black curve 1 and a gray curve 2 indicates the NS made by

the post decoding and the original MLDA in [3], respectively. For instance, when

n = 10,000 (see the bottom figure in Figure 3.2), the point (p = 0.49,n3 = 9) on

the black curve 1 indicates that, approximately, (NR)n = 90,000 symbol additions is

made by the post-decoding, and the red point (0.49, 36) corresponds to, approximately,

300. 000 symbol additions by the original MLDA. Sin‘iilarly, a gray curve 3 indicates

the difference

I
1 _

* — _ ,1 _ .(1 _ H mm 2 11,], , (3.4.2)

k=1

where (1J1; : n'iin{|.llI,-k|, (1177;),-If }, '1'), E 0). (Recall the alternative recovery step 2c)
  

in section 2.1). It can be observed that, as p ——+ 0.5, a gray curve 2 is more likely

parallel to a gray curve 3. This tells that, as p approaches to 1 — R = 0.5, the number

of symbol additions by the original MLDA is dominated by IMRI (or I/II). In the

top figure, notice that the NS by the post-decoding is less than 17 for any instance

of (71.1)). In contrast, as n grows and p -—> 0.5, the red NS by the original MLDA

far exceeds the one made by the S-iVILDA. This substantiates that, as p ——> 0.5,

the alternative recovery step of the post-decoding significantly improves the decoding
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Figure 3.2. Number of Symbol Additions made by the Post-Decoding and the original

MLDA

efficiency in symbol additions. Lastly. we recall the removal of redundant equations

by the step 1b) of the {ire-decoding step. In the figure, for any pair (11,71), the NR

made by the redundant rows is too small to tell. The reason to this is in the fact that

redundant rows are sparse with average degree or = 8.33 and the number of those

rows is (1 — R — 1))71. Nonetheless, the number of redundant symbol additions over

the those rows is about 8.33(1 — R — p)n and is not trivial.
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Figure 3.3. Number of References

In Figure 3.3, for each fixed 71, a black curve represents the fraction of references

FR : %, where r is the number of columns of MR. For an example, when n 2 10, 000

(the bottom figure in Figure 3.3), the point (p = 0.49,rf = 0.023) indicates that

r 3:: 71(FR) : 230. It can be observed that, from the top figure. FR S 0,032 for

any instance of (71.1)). This substantiates the very small constant fraction in the

complexity of the GE on G. (See the last paragraph in section 3.3 or [3, p. 4]).

Therefore, with such small fraction of references, the GE on MR (or G) may not be

97



 

Rank Deficiency of LDPC codes for 2,0005 n 5 20,000

(
a
)

O

n
:
R
a
n
k
D
e
fi
c
i
e
n
c
y

8
8

P o
r

   
0.495

 

 

-_ 1.5

p : Loss rate 1

0'49 0'5 n : Block Length x 10‘

n=10,000 n = dim (Ker(H))

I ' I r l ‘ I ' I ' I ' I ' I ' I '

15 _ _ . > . . . . j ..

10 - -

5 ._ ...................... _.

 

  o I I I I I I . I I I I I

0.5 0.499 0.498 0.497 0.496 0.495 0.494 0.493 0.492 0.491 0.49

p

   
 

Figure 3.4. Number of Free Variables by the S-MLDA

a drawback to the overall complexity of the S—MLDA.

In Figure 3.4, for each fixed n, a black curve 77 = f (p) represents the number of

free variables when the S-MLDA fails to recover the lost X = ae. For an example,

when II : 10. 000, the point (p = 0498,77 = 5) (see the bottom figure in Figure 3.4)

says that the S-MLDA fails to recover the lost at: with probability DFR = 0.81 (see

Figure 3.1) and the rank—deficiency in this case is approximately 5. Thus, even the

failure cases of the S—MLDA, a is obtainable by retransmitting less than 5 symbols
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of free \x'arial'fles only.

3.5 Conclusions

Through the sections (3.1) and (3.2), we provide mathematical models and exemplary

algorithms of the routines of the S-MLDA for the decoding of BBC based LDPC codes.

In section 3.3, we estimate the complexity of the proposed S-MLDA. In section 3.4,

we present the simulation results of the S-MLDA tested with 1.12-rate PEG-LPDC

codes for the performances in decoding failure rates and computational complexities.

Particularly in the section, we substantiate that the PEG-LDPC codes under the S—

MLDA can achieve performance in erasure recovery rate very close to the ideal limit

1 — R. while the S-MLDA maintains the complexity of the post-decoding in symbol

additions within few tens of n and the fraction of references :7 less than 0.032.
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