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ABSTRACT

THE MAXIMUM-LIKELTHOOD DECODING
ALGORITHMS OF LOW-DENSITY CODES OVER
BINARY ERASURE CHANNELS

By

KI-MOON LEE

We develop an advanced form of the Maximum Likelihood Decoding Algorithm
(MLDA) for Low-Density Parity-Check (LDPC) codes and Luby Transform (LT)
codes called the Separated MLDA (S-MLDA). We then present our design of LT
degree distributions by supplementing the Robust Soliton Distribution with small
fractions of dense rows that is optimized for the S-MLDA based decoding of LT
codes. Simulation results which show the viability of the proposed MLDA of LDPC
and LT codes are also presented. We also substantiate by extensive experimental
results that, under the S-MLDA, LT codes from an arranged encoder matrix can
achieve performance in stable overhead v for the successful S-MLDA close to 0, while
the S-MLDA maintains the computational complexity in number of symbol additions

less than few tens of block lengths n.
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CHAPTER 1

Introduction

In the advent of the Internet, data transmission over the (TCP/IP based) Internct
becomes a part of our daily lives. Over the Internet, data transmission betwcen a
scnder and a receiver is accomplished in a form of packet transmission in the following
manner. For a given packet, a sender transmits the packet repeatedly until a receiver
acknowledges the arrival of the packet. In this transmission scheme, there is no
“decoding success/failure”, because every lost packet is retransmitted by a sender
till a receiver acquires the packet. Therefore, this retransmission scheme is 100%
reliable. This acknowlgement (ACK) based retransmission scheme, however, feasibly
causes heavy network congestion, that could lead to explosively many retransmission
requests if a large number of dropped (or lost) packets occur. This is particularly
true for multicast services where ACK-based communication is virtually impossible
to support (sce [5,6,10,11,14] and references therein).

Let us now consider the following data transmission scheme. For a given binary
information data sct I, a sender subdivides it into k packets first. It then transforms
the k packets into n packets with n > k, and transmits packets till a receiver provides
a fecedback message that informs the sender to stop the transmission. A receiver then
recovers the original k£ packets with randomly received (1 + ¢)k packets (out of n
possible packets) for some ¢ > 0. If there exists an efficient way for the recovery of

the original k& packets from the (1 + €)k received packets, particularly with e close to



0, then this transmission scheme may reduce the number of retransmission requests
significantly.

Then the question is how to recover the n packets. Many advanced solutions have
been developed to optimally address this question. This includes the Forward Error
Correction (FEC) schemes that is based on Reed-Solomon codes as proposed by Rizzo
et al. in [10,11] and the FEC scheme based on LT and Raptor codes proposed by

Digital Fountain co. [2,5,6].

1.1 Overview of the Thesis

In this thesis. rather than using polvnomial based coding techniques such as the Reed-
Solomon codes in [10,11], we approach the above issue using linear algebra on vector
spaces over Fo. We will define several terminologies shortly. We then continue the
issue of transformations that take place at the sender and the receiver. Let aj be
a representation of a given data set I that consists of k packets of equal size s, i.e.,
ar=(ap.....a;, ..., ap), where o; € F§ fori = 1,..., k. Let us call a packet o; as a
symbol. Let a € (F3)™ be the transformed vector from ay. We refer to the transformer
and aj as the encoder and the nformation symbol vector, respectively, and we call
the @ as the codeword. Now let Z denote a received symbol vector that consists of
m received symbols with i > k at the receiver side. Suppose a can be recovered
from Z by a certain (inverse) transformer of the encoder. We call a transformer of
the receiver as a decoder. In the remainder of the thesis, we assume that a received
vector Z is always a sub-vector of a codeword a. If a symbol «; is not arrived at the
receiver, we refer to the symbol as an erasure. Considering that a symbol is a binary
vector in F}, we call the overall routes (or paths) between a sender and a receiver a
Binary Evasure Channel (BEC). This data transmission scheme can be depicted as
the diagramn in Figure 1.1.

Let us now consider two types of encoding methods that use linear transformations



A sender A Receiver

Packet Loss
Encoder(aj) = aff| — qCB(;C = [z Decoder(Z) = a

Figure 1.1. Date Transmission over Binary Erasure Channels

over 5. By doing so, we turn the task of a decoder into a problemn of solving a
consistent linear system over 3. The first type is as follows. At the encoder side,
we first fix &, the number of symbols of aj, so that any given information data set [
is represented as a symbol vector aj in (Fg)k. We then transform o into a longer

symbol vector a = («q,...,ay,) in the kernel space
Ker(H) = {V € (F§)"|H - VT = 0}, (1.1.1)

where H is an m x n matrix over Fy with Rank(H) = m, m = n — k, and vT
is the symibol-wise transpose of V. Let G = [S,,xk; Imxm] be row-equivalnet to
H which is obtainable by Gaussian Elimination (GE) on H. Let us now consider
En(G) = [;k"k ], the n x k induced matrix from G. Then for any ajy € (F%)k, aj

mxk

is transformed to a kernel vector o such that

ol =En(@)al = (a7, ap)l, ok =5, af, (1.1.2)

where ol is the symbol-wise transpose of a. It is not hard to see that En(G) is a
(vector space) isomorphism between (F:;)k and Ker(H). Therefore, in this case, an
encoder is simply the isomorphism En(G) and a codeword is a symbol vector a in
Ker(H). Notice that, for any aj € (Fg)k, H-oT = 0. For a given codeword a, let us
now suppose that a receiver acquires ng symbols of a at random with ng > (1 + €)k,
and denote the received symbol vector as ag. By rearranging symbols of a, we may
express a into a form (ag, X), where X represents the lost symbol vector. Then

by rearranging columns of H associated with the expression (ae, X), we may also

express H into a form [N; M|, where N and M consists of columns of H associated



with symbols of ag and X, respectively. With the expressions, the kernel space

constraint HaT = 0in (1.1.1) is expressed as Nag + MXT =0, and thus,
MXT =37 where 37 =1 ’ag. (1.1.3)

Therefore, in this encoding scheme, the task of a decoder is in solving a consistent
linear system (1.1.3) for its unique solution, say the unique solution by X = ae. Once
e is obtained, then an information symbol vector a; can be retrieved from (ae, ae).
It should be emphasized that, for the unique solution of the system, the number of
columns of M should be less than or equal to the number of rows m. In other words,
the number of received symbols ng must be greater than or equal to n — k. We refer
to Ker(H) as the Parity-Check code over F3. If H has relatively few 1's, or say H
is sparse, then we refer to Ker(H) as the Low-Density Parity-Check (LDPC) code
generated by H.

The second type of encoding is as following. We first consider the following trans-
mission scheme over BEC. For a given information symbol vector oy in (F‘;)k, an
encoder directly sets a codeword a as a := aj so that n = k. It then constantly
generates row vectors H; € Fj in random by following a certain rule, and at the
same time, it generates a symbol 3; by 3; .= H ,-a[T and transmits it over BEC. The
transmission continues in this fashion, till a receiver acquires enough number of such
3;’s. Suppose that a recciver acquires more than (1 + )n symbols in random, say
the acquired symbol vector as 3 = (31,...,3m). Then at a receiver end, with each
acquired 3;, a decoder generates the associated check row H;, 1 < i < m, and sets
up the linear system

AHxT =57 3eEpm™ (1.1.4)

where H is now an m x n matrix over Fy that consists of rows H;’s such that H; XT =
J;. In this transmission scheme, the task of the decoder is also in solving the consistent

linear system (1.1.4) for its unique solution X = «. For a given (0, 1)-vector V' € Fi,



let V] denote the number of 1's of V and refer to as the degree of V. If an encoder
uses a certain probability distribution function, say p(x) = Zudl‘d, for the degree
of H; by Pr(|H;| = d) = pg4, then we refer to this transmission scheme as Luby
Transform (LT) transmission, and refer to the set of pairs {(H,3)} as the LT code
generated by p(r). Note that ecach pair (H,J) corresponds to a consistent lincar
system HXT = 47

We now impose two fundamental questions on the systems (1.1.3) and (1.1.4):

Q1) With how many received symbols of Z can the decoders solve the systems

uniquely?
Q2) At the same time, how efficiently can they solve the systems?

Let M in system (1.1.3) be an m X ne random matrix that consists of columns of
H. Likewise, let H in system (1.1.4) be an m x n random matrix generated by
a probability distribution p(r). What we want to do in Q1) is to mazximize n,
the column dimension of A and is to minimize m the row dimension of H, while
maintaining Rank(\M/) = ne and Rank(H) = n. With Q2), at the same time, we also
want to solve the systems in the fastest way as possible. Straightforwardly, both Q1)
and Q2) are the problem of designing the check matrix H in (1.1.1) for LDPC codes

and the distribution u(x) for LT codes from which

1. arandomly chosen Al and H (in (1.1.4)) has its full column rank with the largest

number of columns and with the least number of rows as possible, respectively;

2. at the same time, a check matrix H in (1.1.1) and a random H (1.1.4) are as

sparse as possible.

In the thesis, we exploit LDPC codes for system (1.1.3) and LT codes for sys-
tem (1.1.4). With the codes, we develop an efficient decoding algorithm that can

solve the systems as long as they have their unique solution. Let us call LDPC and



LT codes together as Low-Density codes. Known so far, LDPC and LT codes are
generally considered as the best answer to the questions Q1) and Q2). The reason
behind this is in the fact that, for a large n the column dimension of H in (1.1.1) and
(1.1.4), if a check matrix H and u(x) is designed well then a random M and H in
(1.1.3) and (1.1.4), respectively, can be lower triangulated by a simple row and col-
umn permutation, called the Message Passing Algorithm (MPA) [3-6], and thus, the
solution of the systems can be solved by a simple Forward Substitution (FS) [23,24]
over a triangulated matrix very efficiently. It is also possible to design an LDPC check
matrix H and an LT degree-distribution pu(x) with the log-density condition such that
an H in both (1.1.1) and (1.1.4) meets the log-density constraint |H| < cnln(n) for
some constant ¢ > 0, where |H| indicates the number of 1's of H.

LDPC codes were pioneered by Gallager [1] at 1969, and they were originally
designed to protect data transmission against Binary Gaussian Noisy Channels and
Binary Symmetric Channels. The codes were widely forgotten for the decades and
rediscovered by Mackay and Neal in (8] at 1995. LDPC codes were used for BEC
based transmission scheme for the first time in tornado codes by Luby et al in [5, 6]
with the MPA. Soon later, Shockrollahi et al developed LDPC codes over BEC as
capacity approaching codes optimized with the MPA for large block lengths n [7,12].
Briefly speaking, a capacity approaching code is a code such that, when a check
matrix H in (1.1.1) is generated by a certain row and column degree distribution, say
a capacity approaching sequence, then system (1.1.3) can be solved by the MPA with
rate p = Z€ referred to as loss rate or erasure rate, close to 2 (or the block-rate T¢
of M close to 1). Further analysis for capacity approaching sequences can be found
at [4.9,13).

LT codes were invented by Luby [2] and were designed for multi-cast of mass
data. At a sender side, an LT encoder constantly generates symbols by g3; = Hia;‘,

where each check row H; is randomly generated by a degree distribution u(z), such



as the Robust Soliton Distribution (RSD) in [2]. At a receiver end, assuming that H
in system (1.1.4) follows the RSD in its row-degree distribution and the number of
received symbols m is greater than (1 +v)n for some y > 0, the system can be solved
uniquely by the MPA with an overhead v close to 0. With this feature, LT codes were
classified as optimal codes for multi-cast and broadcast. Shokrollahi generalizes the
codes into Raptor codes by employing pre-coding strategy on a with LDPC codes or
other known codes in prior to LT encoding. The decoding algorithm of Raptor code
is a combination of the MPA and GE [14, 15].

In practice. however, those capacity approaching and optimal features are not
guaranteed when n is not large enough, say n within several thousands. Through
our extensive simulations with the MPA, we (the author KiMoon Lee and Hayder
Radha) observed that a stable erasure rate %‘i of LPDC codes and a stable overhead
v of LT codes for the successful MPA are far away from their ideal limits 1 — &t and
0. respectively. Instead, we observed that, by the Approximate Lower Triangulation
Algorithm (ALTA) in (3,4}, a random M of an LDPC code system (1.1.3) or a random
H in LT code system (1.1.4) can be approximate lower triangulated into a form
PMQT(or PHQT) = [é. g] where B is an [ x [ lower triangular matrix with [ close
to a column dimension ne (or n) and (P, Q) is a pair of row and column permutation
of M (or H) (see Figure 2.4 and Figure 3.3). Once such a triangulation is obtained,

the systems (1.1.3) and (1.1.4) can be permuted to

A B

P.O) MXT =37 (1.1.3)
C D ‘

QxT = p3T (1.1.5)

HXT =37 (1.14)

Assuming that the permuted system (the left-hand side in 1.1.5) has its unique
solution, it can be solved efficiently by the Maximum-Likelihood Decoding Algorithm
(MLDA), developed by Burshtein and Miller in [3] for decoding of LDPC codes.
We tested the MLDA with %-rate PEG-LDPC codes [13], and the result was quite



surprising. A random m x ne matrix M in system (1.1.3) feasibly has its full column

m

—. For an example, with n a

rank with the loss-rate p = ’—;IL very close to 1 —
few thousands and ne close to m — 20, a random M has its full rank ne with high
probability (see Figure 3.4).

Although the MLDA is much more efficient than a conventional GE in computa-
tional complexities. it still has a lot of redundant computations. First, the MLDA
in [3] requires an explicit construction of the permuted PMQT = [é g] after the
ALTA that is not necessary for solving systems (1.1.3) and (1.1.4). To remove the
explicit construction, we interpreted systems of the MLDA into a equivalent set of
svstems that do not require the construction of PMQT. Second, it also results in a
large number of redundant symbol-additions on 3. To remove all possible redundant
additions, we further developed the MLDA into the Separated MLDA (S-MLDA) by
exploiting the MLDA in two steps: the pre-decoding on M in a bit-level and then the
post-decoding in a symbol-level with 3. Shortly speaking, in the pre-decoding step, the
S-MLDA computes all the row operations with M (or H) alone that needs for recovery
of the solution X = a., it then discards all redundant equations in M X T = ﬁT. In
the post-decoding step, the algorithm computes the solution by applying the obtained
operations on 3 with an alternative recovery step. To see the improvement in compu-
tational efficiency in number of symbol additions, compare the curves in Figure 3.2
for LDPC codes and Figure 2.3 for LT codes. The S-MLDA with simulation results
tested with %-rate PEG-LDPC codes [13] was presented in [18, CISS 2007].

We also applied the S-MLDA to the system (1.1.4) for decoding of LT codes. At
the very first simulation, the obtained decoding failure rate of the S-MLDA with a
random H, generated by the RSD, was significantly less than that of the MPA. As
~ decreases, however, the S-MLDA feasibly fails to recover the unique solution a of
system (1.1.4) due to the rank deficiency of H, i.e., n = dim(Ker(H)) > 0. On the

other hand, with n several thousands, 1 was less than 15 for any v > 0. To remove



those small deficiencies, we re-designed the RSD pu(z) and altered into a p(z) by
supplementing a small fraction of dense rows, so that a random H by a p(z) may
include a few tens of dense rows. By doing so, we gracefully removed the deficiencies
with overheads = less than 0.008. (To see the simulation results, compare the curves
in Figure 2.6). Besides, we develop several combinatorial analysis for the design of
RSD p(x) and the p(x) in section 2.4. In section 2.5, we also develop a finite version
of Kovalenko’s Rank-Distribution Theorem in [21,22,29] for the rank distribution of
a random H, generated by the p(z). The S-MLDA tested LT codes generated by our
designed p(r) was presented at [19, ISIT 2007].

Compare to LDPC codes, although LT codes naturally inherit rate-less feature
from its random transmission scheme, the time-efficiency for both encoding and de-
coding of LT codes is far inferior to that of LDPC codes. The reason to this is in
the facts that, in LDPC codes, a fixed check matrix H is used for every instance of
«a = (aj.ap), furthermore, H has no dense rows in general. In contrast, an LT de-
coder has to generate a random H by using the same random generator of an encoder
for every instance of a. Otherwise, each check row H; should be directly delivered
to a decoder attached on g;. To resolve this problem, we developed LT codes with
an arranged encoder matrix M. Specifically speaking, the check matrix H in sys-
tem (1.1.4) is a random sub-matrix that consists of rows of M. With this arranged
encoding scheme, we tested the S-MLDA with LT codes for short block-lengths n
from 102 to 103. Our experimental results exhibited that, although a stable overhead
7 for the successful MPA is degraded seriously, a stable overhead - for the successful
S-MLDA with codes from M is slightly better than the one with codes, generated by
the original LT encoding scheme. The time-efficiency of both encoding and decoding
of LT codes in this arranged encoding scheme is about to be same with that of LDPC
codes. The experimental result together with our combinatorial analysis for the u(x)

and p(x) has been submitted to Allerton Conference 2007 [20].



The rest of the thesis is as follows. Chapter 1 is dedicated to the introductory
backgrounds for the later chapters 1 and 2. In section 1.2, we describe GE as an
LU-factorization algorithm [23]. In section 1.3, we introduce LDPC codes and the
MPA, as a decoding algorithm of both LDPC and LT codes. The MPA is described
as a lower triangulation algorithm by using row and column permutations on a check
matrix. Then in section 1.4, we introduce row-degree distributions of LT codes.

Chapter 2 is as follows. In section 2.2, based on the factorization, we explain both
the MLDA and S-MLDA as an advanced form of GE by exploiting partial pivoting
process over the triangular block [ g], as shown in (1.1.5). We first describe the
MLDA as an natural extension of the MPA. We then develop the MLDA into the
S-MLDA. In section 2.3, we present the computational complexity of the S-MLDA
with LT codes in terms of the number of {sign, bit}-flips and the number of symbol
additions made by the pre- and post-decoding stage of the S-MLDA, respectively.
In section 2.4, we derive the RSD u(x) by using the Mackay’s recursive formula
(27, ch. 50]. We then alter p(x) into a p(r) by supplementing a small fraction of
dense rows, so that a randomly generated H by our designed p(z) may fit for the
S-MLDA. In section 2.5, we derive a finite version of Kovalenko’s Rank-Distribution
formula [21,22,29]. With the rank-distribution, we demonstrate the rank-distribution
of a randomn H generated by our designed p(x). Simulation results under the S-MLDA
with LT codes, generated by a p(x), are presented in section 2.6. In section 2.7, we
further develop LT codes of short block lengths n, generated by an arranged encoder
matrix, and present the simulation results tested with the LT codes under the S-
MLDA. Finally, we conclude the chapter in section 2.8.

In chapter 3, we apply the SSMLDA demonstrated in section 2.2 for the decoding
of LDPC codes. In section 3.2, we modify the S-MLDA in section 2.2 for decoding
of LDPC codes. In section 3.3, we present the computational complexity of the S-

MLDA with LDPC codes in terms of the number of {sign,bit }-flips and the number of
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symbol additions made through the pre- and the post-decoding stage of the S-MLDA,
respectively. In section 3.4, we use PEG software [13] to construct H of block lengths
n from n = 2,000 to 20, 000. Simulation results tested with %-rate PEG-LDPC codes
under the S-NLDA are presented in this section. Finally, we conclude the chapter in

section 3.5.

1.2 Gaussian Elimination on a Linear System over [,

In this section, we describe GE on H as an LU-factorization algorithm that returns
LU = PHQT where P and Q is a row and column permutation matrix of H and L
and U is a lower and upper triangular matrix, respectively. GE is generally considered
to be the most efficient computational method for solving a consistent linear system
HXT = 3T since it involves the least amount of arithmetic operations. In particular,
when GE is aimed to compute the unique solution of the system only, obtaining an
LU factorization of H in the fastest way is the primary aim of GE algorithms. Further

analysis and issues for GE can be found in linear algebra textbooks [23-26].

Let us first define a lincar system over F3.

Definition 1.2.1 (A Linear System over F3). Let H = (h;j) be an m x n matrix
over Fp, and let 3 = (3,....3n) € (F3)™. A linear system HXT = 3T over Fjis a
system that consists of m linear equations over F3 such that

Shihyry = 4,
: : = HxT =37, (1.2.1)

n . . /
Z_j:l hmjlj = B
where the sums are taken on F 3 and ﬁT is the symbol-wise transpose of 3. Let us refer
to 5; and 3 as a syndrome symbol and a syndrome symbol vector of system (1.2.1),

respectively.

Throughout the thesis, unless specified, we assume that a given linear system

11



HXT = 37 has at least one solutions, and we refer to the system as a consistent

mo;
y 1

linear system over ;. Let us denote Img(H) as the image space of H in (F3)™, i.e.,

Img(H) = {HVT € (F§)"™ |V € (F3)"}. (1.2.2)

Thus, a given system (1.2.1) is consistent iff 3 € Img(H). Considering that XT and
3T can be expressed as an n x s matrix (z;;) and an m x s matrix (3;;) over Fo,
where x; = (r;1....,2;s) and 3; = (3;1,- .., Bis), respectively, system (1.2.1) can be

arranged in a parallel form of s number of systems over Fy such that
HXT =gl o (Hel =3', .. Hed =3/, ... Hz® = 3%, (1.2.3)

where r/ and #/ now represents the jt* column of X7 and 87, respectively. Obvi-
ously, solving system (1.2.1) is equivalent to solving one single system Hz/ = 37 over
Fy. and Hi/ = 3/ has its unique solution iff there exists n independent rows of H
that form an n x n nonsingular sub-matrix, say H’. Once such H' and its inverse

37T can be obtained by applying

(H')~1 are obtained, the unique solution of HXT =
the same (H')™1 to the system, i.e., xT = (H’)“IJ/T. So, identifying such H' and
then (H')™! (independently from 3) is the primary task for solving system (1.2.1).

Let us clarify several terminologics for the description of GE.

Definition 1.2.2 (An Approximate Lower Triangular Matrix). Let H = (h;;) be an

m x n matrix over Fo with m > n.

1. A Lower Triangular Matriz: H is said to be in a lower triangular form, if

1, fori=3
hij = . (1.2.4)

0, fori<y

2. An Approrimate Lower Triangular Matric: Let H be in a block matrix form
[A; B] such that B is an [ x m lower triangular matrix with { close to n. We

call H an approrimate lower triangular matrix.

12



Definition 1.2.3 (Elementary Row Operation). We call a row operation on H over

Fs by adding one row to other rows of H as an elementary row operation.

Let 0 and 7 be a permutation on the row index set [m] = {1,2,...,m} and a

column index set [n] = {1.2,....n} of H, respectively.

Definition 1.2.4 (A Row and Column Permutation of H by o and 7). A row per-

mutation of H by o is the rearrangement of rows of H in the order of (i1,...,im)

o8l

, Le., Hy = [H; H; 1T (a row-wise transpose) where o(i;) = k. Similarly, a

LS I lm]

column permutation of H by 7 is the rearrangement of columns of H in the order of

(1. -vign),ie, HT = [Hfl ..... HJ"] where 7(j;.) = k.

An clementary row operation and a permutation on H can be explained as
matrix multiplication to H that has the same effect on H as does the operation
and permutation. Let us first consider row and column permutations of H. Let

PH = [H; H; )T and HQT = [H/1,...,H/n]. Let P and Q be the matrix

TERREE
representation of o and 7, respectively. Foremost, P and PT is formed by permuting
rows and columns of I,;,x,, in the order of o, respectively, i.e., P = [eil,...,eim]T
and P1 = [cr....,eT ]. By direct calculation, P~1 = PT. Equivalently, they can

be expressed as P = (py) and PT = = (p'4t). such that

1, ift=1 if s =1
Dst = and p'y = . (1.2.5)
0 otherwise otherwise
saIne wav = le: . T _ T T . ,
In the same way, Q = [ejl,...‘ejn] and @ Jl‘ ejn . Thus by a row and

column permutation pair (P, Q) of H, system (1.2.1) can be permuted as
HXT =57 o (PHQT)(QXxT) = PsT. (1.2.6)

An elementary row operation on H can be also explained as matrix multiplication

to H on the right. For a given row index k of H, let S; be a subset of [m] that

13



mn

includes A, and let ACS F5' be the support vector of S such that

1, ifie S,
XSy = (€1.--- v€ep_1.l.€py1. -+ v€m) where ¢ = : (1.2.7)

0 otherwise

When the k" equation HkXT = 3 is added to other equations H,xT = 3;, whose

row index 7 is in Sj \ k, system (1.2.1) is transformed to

I

( (i +eaH)XT B+ €13

- (Hio1 + ek 1 H)XT = By + 418,

aHxT =37 = H XT By . (1.2.8)
(Hpi1 + erst H)XT Brey1 + €415k

\ (Hm + €mHk)XT = Bm + €m,3k

Let EK) be the m x m matrix formed by replacing the kP column of the identity

matrix I, x,, with X‘Ek’ le.,
EW) = .. ,e{_l,xng,e’{H, el (1.2.9)
Then system (1.2.8) is exactly same with the system
E® . mxT = pk) . 3T, (1.2.10)

Noting that E®) E(*)  is simply the addition of Hj. to the rows H; twice for ¢ € Si\k,
EWEM®H — H. This is true for any H, therefore, (E(k))_l = E®). Let us refer
to E®) as an elementary matriz. E®) can be explained the representation of the
identity map [ : F)' — Fi' with respect to, say, the standard basis B = {e1,...,em}

on the domain F4' and the basis By, on the range F5* of the identity map, where

By = {w) = (c1+e€1ep),...,wp =e€p,...,wm = (e +emer)}. (1.2.11)

Thus, the transformed system (1.2.10) is actually a re-expression of HXT = g7 by
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changing the coordinate axis B with By, of the range F5'. In this interpretation, what
GE does on H is a sort of changing bases on the range, till H is transformed into
a lower or upper triangular matrix. Notice that, no operations were made on the
domain of A, except column permutations. This implies that solutions of the system,
up to rearrangements by column permutations, are not changed by any clementary
row operations on H.

Let us now describe the LU-factorization algorithm on HXT = ﬁT. We describe
the algorithm based on the exemplary pseudo-codes in Algorithm 1.1. At each
pivoting round & of the algorithm (see while loop in the algorithm), starting from
H(0)=H, let Hk) = (hgf)) denote the transformed matrix by adding the kth pivot
row (H(k — 1));, to the rows (H(k — 1));, such that i € 7 and h§§;”

Sip = {ieT| hgﬁ;l) = 1} (see the line 10 in the algorithm), and let £(*) denote the

= 1. Let

elementary matrix obtained by replacing the it? column of Ipxm with the support
Yy rep g k

vector \g (see (1.2.7)). i.e.,
Ik

~(k T T T T T
ER = ] €G] 1, \gik it Em)- (1.2.12)

Thus, the lines 10-12 (see foreach loop) in the algorithm correspond to H(k) =

E®H®k - 1). At the last round [, the returned H(l) can be expressed as
1
H)=EO...E@Q . gy = (H E(’*)> H. (1.2.13)
k=l

With the returned o; = (iy,...,4) and 77 = (jy,...,J;) at the end (see line 14 of the

algorithm), let

{upre-vim} =[m]\Nor {41, dn} =)\ 7. (1.2.14)



Algorithm 1.1: The LU-factorization on H
1 Input: H, [m] Output: H(l) and (0}, 7).

/%<-- Initialization: -->%/
2 set 7 := [mn];
3 foreach i € [m] do
4 if H; =0 then
5 |' Ldiscard T:=T\4;
/%<-- Pivoting Round k: -->%/
6 while 7 # 0 do
/%<-- Pivot Selection: see Remark 1.2.2 -->%/

, choose Jij € T such that hl(f;i) =1 in one’s own way;

8 set oy(ix) =k and 7)(ji) = k;

9 |discard '7_':=7_'\ik;|

/%<-- Pivoting:H (k) := EWH(k - 1) -->%/
10 | foreach i€ 7 with which hl(-z.;l) =1 do
11 update H(k); :=H(k-1);+ H(k—-1)
12 if H(k); =0 then

13 | discard 7 := T \i; //<-- To discard null rows

L
/%<-- Say the ’while’ loop stops at k =1[ -->%/
14 return H(l) and (o}, 7);

i

Then rearranging [m] and [n] into
0‘=(11,,ll"ll+1,,2,n) and T=(jl,...,jl;jl_’_l,...,jn), (1215)
gl [m]\oy Ui [\ 7y
respectively, where o(i;) = k and 7(j;) = k, let (P,Q) be the pair of permutation
matrix of (o, 7). Then by P~1 = PT PH(1)QT can be expressed as

1
PHWOQT = (]‘[ PE(k)PT> (PHQT) =
k=l

Uixi An—ixn-t
. 1.2.1
0 0 (1.2.16)

Now let L(K) = PEM PT which is the elementary matrix formed by replacing the
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k" column of Luxn with the PXSiA’ ie.,

AL P A prgik el 1o ell. (1.2.17)

-1
Noting that (L(k)) = L¥) | the factorization (1.2.16) becomes the factorization of

PHQ as below

N l B [Uixi An—ixn—t
PHQT = [ T] L™ R (1.2.18)
k=1

In the algorithm, for each index pair (i, j;) € (07, 77), the (ik,jk)th 1 is selected
as the A" diagonal entry of both L and U. Once the pair is chosen, then i is
discarded from 7 for the remainder of pivoting rounds (see the second box at line 9
in Algorithm 1.1). Therefore, each L) is an m x m lower triangular matrix, and
thus, L is an m x m lower triangular matrix, and Uj,; is an upper triangular matrix.

In fact,
! . :
L=]]L™= [ng-il,ngiQ,...,ngil,eﬁl,...,e?”], (1.2.19)
k=1

where S, = {i e T | 1;.55;” =1} for k= 1,2,...,1 (see line 10 in Algorithm 1.1).
In particular, if Rank(H) = n then A, _jx,,—; = 0. and therefore,

. L U
PHQ7 - (H L(k)) . (1.2.20)

0

k=1

It can be also scen that by pivoting columns of L from the first to the last column of
it, any m x m lower triangular matrix L over Fy can be factorized into L = []{; LK),
where LK) is formed by replacing the kth column of Ly xm with the kth column LF.
Similarly, an n x n upper triangular matrix U can be factorized as U = H,lc=n Uk by

pivoting its columns from the last to the first column, where U (k) is now formed by

replacing the &' column of I, x, with the k" column UK. Without loss of generality,
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Algorithm 1.2: Recovery of a by the column-wise FS and BS
1 Input: 3 Output: «
fi<==Fs: ([The, LW) - PAT -0/
2 for k=1tonbyk:=k+1 do
3 L /7<= P3T .= LK pIT | where LF) = Lk by Sp = {i|ly = 1}.-->//

-

add ,3% to all other ; where i € Si;

fu<== 880 ([T VW) - Pl -/
5 for k=ntolbyk:=k-1do
//<== P3T .= UK p3T | unere UK) = UK by Sy = {iluj = 1}.-->//
add Jik to all other [3; where i € S;

[}

7
fh<=- QTXT .= p3T . —->u/
s for k=1tonbyk:=k+1 do

9 l_ copy aj, = ‘dik'

10 return a = (ay....,ay);

we may assume that each UK) is an m x m upper triangular matrix by extending

r(k)
U as [L 0 } (1.2.21)

O Im—-nxm—n

Hence by the GE. HXT = 37 is transformed to (LU) [["6‘”] (QXT) = P37, then
is transformed into

ll} (Qx") = (ﬁ U“‘)> (f[ L("')> Pl (12.22)

0 k=1 k=n

Once an LU-factorized system (1.2.22) is obtained, the unique solution a of

HXT = 3T can be identified by computing the right-hand side of system (1.2.22)

iteratively, first by Forward Substitution (FS) over the columns of L (from the first

to the last column) then by Backward Substitution (BS) over columns of U (from

the last to the first column of it). An exemplary pseudo-codes for the FS and BS is

described in Algorithm 1.2.

Remark 1.2.1 (Row-wise FS and BS). L and U can be also row-wise factorized as a
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Algorithm 1.3: Recovery of a by the row-wise FS and BS
1 Input: g7 Output: a

/%<~ FS: (nA . ) p3T =>4/

2 for k=1tonbyk:=k+1 do
s | //<—= P3T .= L®P3T. Note LK) =L;. -->//
4 update ‘dik = ;’)’ik + Zf;ll [kJBJ't;

/%<-- BS: (n ) P3T -->4/

s for k=ntolbyk:=k—-1do
/7<= P3T .= UWMPpsT Note UM =0, -->//
update J; :=J; + Zt 0 Uk

=)

XY

VU= QT XT .= p3T . =>4/
for k=1tonbyk:=k+1 do
L copy aj, = J'l\

®

©

10 return o = (ay,...,qy);

product of elementary matrices. Since the transpose LT is now an upper triangular

matrix, LT = T, L®) | where each L(¥) is formed by replacing the k" column of

Imsm with the k" column of LY. Then

m 1
L= (H AL ) [T @™)7T, (1.2.23)

: k:m
where ([:(}"))]' is formed by replacing the k" row of I;x,n with the & row of L.
Similarly, U can be obtained as a row-wise factorized form
n
v=[Jw@"T, (1.2.24)
i=1

where (U)T is now formed by replacing the k" row of Ixn with the k* row Uy.
The FS and BS in row-wise factorization is described in Algorithm 1.3. It should
be emphasized that Algorithm 1.3 uses precisely n rows of L and U. In contrast,

Algorithm 1.2 uses n columns of L and U for the recovery of a.
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Remark 1.2.2 (Pivot Selections). Let us go back to the pivot selection in Algo-
rithm 1.1 of GE (see the line 7 of the algorithm). Through the pivoting rounds, let
|H(k — 1);] denote the number of 1's of the row H(k — 1); after the round k£ — 1 and
refer to as the degree of H(k — 1);. If we set the pivot selection as to choose a row of
degree 1, then the GE is equivalent to the MPA (see [2,5,14]). In general, when rows
of degree 1 are exhausted prematurely at round k, a row of degree 1 can be made by
discarding columns in H(k — 1) in an appropriate manner. In this case, the GE is
equivalent to the ALTA in [3,4].

J

1.3 Low-Density Parity-Check Codes

In subsection 1.3.1, we introduce LDPC codes, the MPA in [5,6] as a simple GE,
and an systematic encoding of LDPC codes. In subsection 1.3.2, we introduce the
performance analysis of LDPC codes under the MPA in [7]. By using the analysis,
we show that the tornado sequence in [5] is a capacity approaching sequence. Further

details of the performance analysis can be found in (7] and [28, ch. 2].

1.3.1 Encoding and Decoding Algorithm of LDPC Codes

For a given m x n matrix H over Fg, let |H| denote the number of nonzero entries of

H. We call |H| as the density of H.

Definition 1.3.1 (LDPC Codes). For a given m x n matrix H over Fy with m < n,

a binary parity-check code C(H) is defined as the kernel space
C(H) = {a e (F})"|H - o = 0}. (1.3.1)

We call a in C(H) a codeword. 1f H is sparse, for an example, |H| < cnln(n) for
some constant ¢ > 0, then we call C(H) and H the LDPC code generated by H and

an LDPC matrix, respectively.
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Let H be an m x n LDPC matrix. Let us assume that rows of H are linearly
independent, so that dim(Ker(H)) = n — m. By GE, H can be transformed into
a systematic form G = [S,,,xx; Imxm], where & = n — m. Then since G is row-
equivalent to H up to a column permutation, C(G) = C(H). For a given aj € (]Fg)k,
letap=35,,i" 01 Then a = (o, ap) satisfies the kernel constraint HaT =0, and
thus,

(F3)* >~ C(H) via E(G)= {S""Xﬂ (1.3.2)

Hence by a = E(G)QIT an aj in (FZ) can be transformed to a codeword o € C(H)
in a form of & = (aj.ap). To obtain a row equivalent form G = [S,,,xk; Imxm],
however, the filling-in with 1 by GE makes the |S,,, x| proportional to n?. Thus, the
computation for ap by S,,lxka'{ in symbol additions is O(n?).

In general, the quardractic density of S, 4 can be significantly reduced when a
row-equivalent G is replaced with a form G = [S,,, x &5 Linxm], where Ly, xm is a lower

triangular matrix. We recall that, from section 1.2, L 1 Hk—m where L(k)

mxim
is the elementary matrix formed by replacing the kth column of Im xm with the kth
column (L,,lx,,l)k. Therefore, once S,nxka? is computed, ap can be computed very

efficiently by applying the FS in Algorithm 1.3 to the product

ol = (H Lt ) Smxkar. (1.3.3)

k=m
Definition 1.3.2 (A Systematic Encoder). For a given m x n LDPC matrix H over
[y whose rows are linearly independent, let G = [S,), xx: Linxm| be an m x n matrix
which is row-equivalent to H, and where the left block Ly, xp, is in a lower triangular

form. Then for a given ay € (FE)", the codeword a = (ay,ap) can be generated by

Tk y af _ T
|:L_l XS A:I -O{ - l:af_: ! where Qg = Lmlxm(smxk cQg ) (1.3.4)
mxm=mxK o
Let En(G) = [L Axsk ] We call En(G), aj, and ap a systematic encoder of
mxm mxk
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k

C(H), a systematic part, and a redundant part, respectively. We refer to R =  as

the code rate, and 1 — R as the redundancy rate of C(H).

If H is randomly generated with a certain row and column degree sequences, called

capacity approaching sequences that will be introduced in the following section 1.3.2,
Alxn—l B

m—Ixn—l Pm—ixt |’

then by the ALTA [3,4], H can be permuted to a form H = c
where the right-top block B is a lower triangular matrix with [ close to m. Multiplying

- I 0y 7. ansf
by S = {—DB_l 1], H can be transformed to

SH = [?" where C = —DB7 14+ C. (1.3.5)

Then by Gauss-Jordan reduction [23,24], the bottom-left block C can be transformed

into the form [Cy; Irxy], and hence, H is row-equivalent to

Ak Ar B ék Irxr O

_ 1.3.6

O Lxr 0 [Ak Ar B’ (1.3.6)
where A = [A};A;] and k + 7 = n — [. Notice that [I;";" g] is now an m x m

. . . Ay
lower triangular matrix. Hence, by setting Liyyxn 1= [IX;’" 0] and S, xk = [C‘: ],

Ik xk
—1
LyxmSmxk
number of symbol additions to compute ap by En(G) is precisely |S,, x| + | Lmxm|—

En(E) = [ ] becomes a systematic encoder of C(H). Also notice that the
m. An exemplary algorithin for the approximate lower triangulation of H is presented
in Algorithm 3.1 in section 3.2. Further details and a variety of greedy algorithms
for the ALTA can be found at [3,4].

Let a¢ be a received sub-vector of @, when a codeword a € C(H) was transmitted.
Let X = (z1....,.n,.) denote the erasure symbol vector, so that a can be expressed
as (ae, e). Similarly, let [V; M] be the rearrangement of columns of H associated

with (ag, X). Thus, the kernel constraint system H aT =0 is now expressed as

MXT =37, where g7 = Nal (1.3.7)
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The task of an LDPC decoder is in solving the consistent linear system (1.3.7) in the
fastest way, and at the same time, with largest number of erasures ne (but ne < m)
as possible. Obviously, the system has its unique solution X = « iff M has its full
column rank.

In general, no matter what Rank(A/) is, all of the solutions of (1.3.7) (including
free variables) can be identified by the LU factorization on M. Once a factorization
of M is obtained by GE, say PMQT = LU []”6'6‘"6 ], solutions can be identified by
first FS over L then BS over U with 3 as shown in Algorithm 1.2. In general, the
computational complexity of the LU-factorization in bit operations (or bit-flips) is
in O(n3), and the FS and BS together constitutes the complexity O(ng) in symbol
additions of 3. For a moment, let us now assume that M can be permuted to a lower
triangular matrix L by a pair of row and column permutation (P, Q), say L = PMQT.
In that case, the erasure (symbol) vector X can be recovered by the simple FS over
columns (or rows) of L with J as in Algorithm 1.2 or 1.3. Therefore, the number
of sviubol additions by the FS is less than |M| + |N| = |H|. Furthermore, if H is
sparse, then M is sparse also, and therefore, the FS is very efficient.

Let us now describe the MPA, the fastest decoding algorithm of LDPC codes
known so far. The MPA was designed for decoding of tornado codes in [5] for the
first time, and is equivalent to a lower triangulation algorithm. We explain the MPA
based on the exemplary pseudo-codes in Algorithm 1.4. The algorithm is based
on the Degree Reduction Rounds that corresponds to the Pivoting Rounds of the
LU-factorization in Algorithm 1.1. At each round k of the reduction (see foreach
loop in Algorithm 1.4), starting from M(0) = M, let M(k) = (nl,gf)) denote the
transformed matrix by adding the k" pivot row M (k — l)ik to the rows M (k — 1);,

where i € 7 and mgg;l) =1 Let §;, ={i¢€ T | 7711(5;1) = 1} (see the line 16 in
the algorithm), and let deg(A(k);) = |M(k);|, the number of 1's of M(k);. Then

the row addition by M(kF); := M(k—1); + M(k — 1)% of the k" pivoting round of
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Algorithm 1.4: The Message Passing Algorithm on M
%<- Initialization: To identify M ->J

1 set 7 :=[m]

2 foreach (received symbol) a; € a; do

3 |_ discard the column H’ from H;

4 Input: M Output: (0,,7).

5 foreach i € 7 do

6 identify deg(M;); //<-- i.e.deg(M;) = |M;|. -->//
7 if deg(M;) =0 then

8 L discard 7 := T\ i;

%<- Degree Reduction Rounds ¢ Pivoting Rounds of GE ->%
9 while 7 # 0 do

10 //<-- Selection of the k" Diagonal Entry of L -->//
n | if 3ip € T such that deg(M(k — 1);;) =1 then

12 l identify j; with which mft_;z_) =1;
13 set o)(k) =i} and 7(k) = ji;
14 discard 7 =T \ iy;

15 else goto FinalRound;

%<- Degree Reduction < EMA/(k—1) ->%

16 foreach i€ 7 with which mfﬁ;l) =1 do

U<m e M(k); = M(k = 1); + Mk = 1);, 5 ->%

17 reduce deg(M(k);) := deg(M(k—1);) = 1;

18 if deg(M(k);) =0 then

19 L L discard 7 := T \ i; //<-- To discard null rows

20 FinalRound: //<--Say the ’while’ loop stops at k =1
21 if | = n. then
22 L return (0),7;); //<-- declare ’Decoding Success’

23 else
24 Lreturn (07,7); //<-- declare ’Decoding Failure’

Algorithm 1.1 (LU-factorization algorithm) is simplified as the row-degree reduction
by deg(M(k);) := deg(M(k — 1);) — 1 (see the lines 16 — 17 in the algorithm). The

reason to this is in the fact that the MPA selects a pivot row from rows of degree
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Algorithm 1.5: The recovery of QX5 by the FS in Algorithm 1.3
1 Input:[N;A/] and (0y,7;) Output: X

/%<-- Initialization for 4= Nal -->%/
2fori=1tombyi:=i+1 do

3 if i € 0 then

4 L set ;1= ]\"iag;
5 else

6 |_ set 3; :=0;

ft<== QXT = ([Thoy L®)) PIT >0/
7 recover QX7 by using the FS in Algorithm 1.3 with P3T;

8 return QX7

1 only, and thus, the resulting upper triangular matrix is simply the identity matrix
Imxm. Then by E®) formed by replacing the z'i.h column of I, xm; with the Xgik
as defined in (1.2.7), the Degree Reduction (the lines 16 — 19 in Algorithm 1.4)
corresponds to E(k)]ll(k—- 1) of GE. Similarly, at the last round [, if the MPA succeeds

(i.e. I =ne) then M(l) can be expressed as

1
Mne)=| J] EW | ar (1.3.8)

k=ne
Then by using the permutation pair (P, Q) of (o, 7), which is extended from the re-
turned (o7, 77) (see line 22 in Algorithm 1.4 with the equations (1.2.14) and (1.2.15)),
the initial system M X7 = 3T is permuted to (PMQT)(QXT) = P37, then is trans-

formed to a product forin

1
[Ineoxne] ox” = [ T ¥ po. (1.3.9)

k=ne

where L(¥) is now the elementary matrix formed by replacing the Kt row of Lmxm
with the A" row of the lower triangular matrix L = PJ\IQT.

Once a lower triangulation of M is obtained by the MPA, the erasure vector QX T
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can he computed by the FS as described in Algorithm 1.5 in section 1.2. In the
algorithm, notice that for the recovery of the lost X, the number of symbol additions

is less than |H|, since the row-wise FS uses precisely ne rows of H.

Remark 1.3.1 (Further Development to S-MLDA). The MPA by Algorithm 1.4 is
designed to stop when rows of degree one are exhausted (see line 9 of the algorithm).
If the lastly returned [ is less than ne, then a part of X can be recovered by replacing
ne with | in system (1.3.8). As a matter of fact, the stopping condition becomes
the major defect of the codes when block lengths n are not large enough, say n is
within several thousands. The reason to this is that, quite feasibly, the MPA stops
prematurely (i.e. [ < ng) but M has its full column rank ne. In chapter 2 and 3, this
defect will be naturally removed by exploiting the ALTA in (3,4] of the MLDA. The
MLDA also has a couple of inefliciencies at the initialization step and with symbol
additions, but it can solve the system MX7T = 37 as long as Rank(M) = ne. In
the later chapters 2 and 3, the MLDA will be further developed into the S-MLDA by

removing all possible inefficiencies of the MLDA.

1.3.2 Probability Density Evolutions on Degree Ensembles

The design of H that meet the following conditions in both density and rank property

is the primary issue of LDPC codes:

1. For the time-efficiency of decoding codes, H should be designed as sparse as
possible, at the same time, a randomly chosen m x n, sub-matrix M of H

(ne < m) can be lower triangulated by the MPA with high probability;
2. M has its full column rank ne, with ne close to the row-dimension m as possible.

In this section, we introduce Probability Density Evolution that provides us a
convenient tool for designing H that meet the two conditions above. Let us clarify

several terms for the description of the density evolution.
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Definition 1.3.3. Let 1,; denote the hgy, if hg = 1.

Degree of 14: For a given 1y, let |Hg| =4 and |Ht| = j. We say that a 14 has its

row-degree i and column-degree j.

Entry degree ensemble: Let define

N = [{14¢] deg(H) = 5}
J 2

_ {1st| deg(Hs) =i} | .
and p; = IH] . (1.3.10)

Then let A\(x) = ZBI /\jzj_l and p(z) = 350 piz'~1 the column-degree and
row-degree distribution of entries of H, respectively. We call (A(z), p(z)) the

entry-degree ensemble of H.

Notice that, rather than the term z! and =/, each A; and p; is associated with the

1 respectively. The reason to this will become clear soon. We also

term 2771 and «i~
note that 3 A; = A(1) = Land Y " p; = p(1) = L.
Let m; and n; be the number of rows and columns of degree i and j, respectively.

. ‘ : H pjlH|
Then |H| =} i-m; =) j-nj. Since m; = E-L'-{—l and n; = —LJ—, the average row

and column-degree a,, ac, respectively, is expressed as

N = A 1
. — % _ <Z %) 1 and ac = |THI = (Z %) . (1.3.11)

Thus, m = n(%‘ri), and hence, the code rate R = % can be expressed in terms of a,

and a. as following

_k_m-m e Yt L ([A)(1)
R—n_ n =1 a,._l Z’\j/j—l —_(f/\)(l) (1.3.12)

We also note that from (1.3.11), once the average degrees ar and a. are chosen, then
m is constrained as m = n(%f_i).

Let H be an m x n random matrix that follows the entry-degree distribution
(A(w).p()), and let C(H) be the LDPC code by H. Let pg = Z¢ be a fraction of

random erasures when a codeword a € C'(H) was transmitted over BEC. One key

27



component for analyzing the performance of the N[PA in erasure recovery is to study
the initial erasure rate pg with which an m x ne random sub-matrix M of H can be
lower triangulated by the MPA. We first approach a probability density evolution in
erasure rate p as a probability generating function associated with (A(x), p(x)).

Let us now interpret the MPA as the following iterative rounds on H: Each round

of the BPA consists of the following procedures:

Round A: If there exists known columns, then for every known column Ht, which
was unknown and declared to be known at the previous round, and for every
1y € H', the degree of Hy is reduced by 1: if deg(Hs) = 1, the algorithm
identifies the 1., whose HY is unknown by that moment and HY is declared

to be known at this round.

At round 0, a column HY is declared to be known, if the associating symbol o was
received, otherwise unknown. At each round £, we say that a 1 is unknown, if the

column H! is unknown.

Theorem 1.3.1 (Density Evolution). Let p, be the probability that a 1 in H is

unknown at the round k. Then

Pk+1 = DPoA(L — p(1 = pi)). (1.3.13)

Proof. At the iteration round A, an unknown 1y has its initial row-degree 7 with
probability p;, and the degree is reduced to 1 with probability (1 — pi)?~!, because
all other 1's in the row Hg must be known by the round k. Similarly, 1g; is still unkown
with probability 1 — (1 — pg)~ L. Hence, at this round, the average probability that

an unknown 1 is still unknown at the end of the round is given as

gk =y pill=(1=p) ) =1=p(1 = p). (13.14)

Now, an unknown ly of the round & has the column degree j with probability A;,

and it is still unknown if the column H? is initially lost (with probability py) and all
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other 1's of H! are still unknown. Thus, the probability that an unknown 1y has
a column-degree j and is still unknown at the round k + 1 is given as p()/\j(([k)j_l.

Therefore, at the begining of the round k + 1, a 1 is unknown with probability
i—1 i—1
et =D A0t ) =) Mgk =po- Ml=p(l=py)). (13.15)
J J
O

It should be notice that from (1.3.13), n(pr — pry1) = 1 for the successful lower
triangulation of A/ by the MPA. Then replacing by py = z, the MPA should satisfy
the inequality

po-AMl=p(l—-x)) <z, Vre (0, py (1.3.16)

For a given block length n, let p*(n) be the supremum of such pg satisfying (1.3.16).

Then designing (A(x), p()) such that its p*(n) is closed to the ideal limit 1-R = 22 is

the key part of designing LPDC codes, and not every (A(z), p(z)) fulfills this property.

Example 1.3.1. Let A(x) = &2, p(xr) = 2°. Then p* can be obtained by considering
the supremum of {py} in which each pg satisfies
po(l =1 =22 <z, Vre (0 po (1.3.17)
m

It is shown that in [4,9]. p* is approximately 0.429 which is far from & = 0.5 .

The inequality (1.3.16) is useful whether a known (A, p) holds it or not. Let us
call a entry degree ensemble (A, p) as a capacity approaching sequence, if it holds the

following condition: for a given € > 0, there exists Dy such that for all D > Dy
(1-RY(1=-e)Ap(l=—pp(l=2)) <z, VYre (0,(1-R)(1-¢)), (1.3.18)

where Ap(r) and pp(x) consists of first D terms of A(«) and p(z), respectively.
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The first capacity approaching degree sequence for BEC is the tornado sequence

discovered in [5] and [6]. Let D := [1/€], and let

by oo ! 1 i _ |
Ap(x) = H(D)Zi_l‘r , H(D)—Zi_l~111(D), (1.3.19)
1>2 1>2
pplr) = elr=1), azy. (1.3.20)
0

Plugging in (Ap.pp) into (1.3.16) asserts

poAD(1 = pp(l — 1)) < peAp(l —e®F) < H—(lg) In(e™™*) =r. (1.3.21)

Hence, successful triangulation of M by the MPA is possible, if the fraction of erasures

is no more than H( HD) e note that by (1= R)-(fA)(1) = ([ p)(1) in (1.3.12),
(1-R)—— ! 1—1/(D+1))=l(1—-e'0‘) (1.3.22)
H(D a ' e
Thus HOD) ,—0 (1 =1/(D+ 1)) and is larger than (1 — R)(1 — 1/D). Conse-
quently,

(1—R)(1—1/D)Ap(l — pp(l—z)) <z, Vre(0,(1-R)(1-1/D)). (1.3.23)

Many other capacity approaching sequences can be found in [12]. In practice,
however, once a good degree sequence is found by linear search as in [5], many other
scquences can be made by changing its fractions slightly. In chapter 3, we simu-
late LDPC codes under the S-MLDA generated by a slightly modified right-degree

ensembles appeared in [4,13].

1.4 Luby Transform Codes over BEC

In this section, we introduce LT codes invented by M. Luby [2], which was designed
for multi- and broad-cast of multimedia over BEC without retransmission request of

symbols over the Internet. For the design of LT codes, we introduce the Ideal Soliton
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Distribution (ISD) and the Robust Soliton distribution (RSD). We then describe
the ISD in two ways: first by Mackay’s interpretation in [27, ch. 50], then second by
Shokrollahi’s interpretation in [14]. For the original design of the ISD, we refer readers
to the LT paper [2]. In section 2.4, the RSD will be explained well by generalizing

the Mackay's recursive formula (see Lemma 2.4.1 at p. 52).

1.4.1 Encoding and Decoding Algorithms of LT codes

Let us first describe the LT transmission scheme over BEC. Suppose we would like to
communicate an information data set I to receivers over BEC. We first subdivide the
I into n symbols (or packets) of equal length s, say o = (ay,...,an) € (F3)". Let
us call ; and a an input symbol and an input symbol vector, respectively. Now let
plr) =3 4y pd.’rd be a given probability distribution. The LT transmission scheme
is as follows. For a given input symbol vector a € (F3)" (at an LT server), an LT
encoder constantly generates syndrome symbols 3;’s by using the p(z) and « in the

following manner:

1) adegree d is randomly chosen with probability pg, then a row H; € FY) of degree

d is chosen at random from the (Z) possible choices;
2) the encoder computes 3; := H;al| it then transmits 3; over BEC.

The transmission stops when a receiver acquires a sufficient number of syndrome
symbols. At the receiver end, if more than m syndrome symbols are received, where
m = (14+~)n for some v > 0, then an LT decoder recovers a by solving the consistent

linear system
HXT =37 where 3= (31,...,8m) € (F3)™ (1.4.1)

and H consists of rows H; such that H;aT = 3;.
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Let us compare the systems (1.4.1) for LT codes and (1.3.7) for LDPC codes. In
both LT and LDPC codes transmission scheme, the task of decoders is in solving
the consistent linear systems (1.3.7) and (1.4.1) for their unique solution. Although
the systems are almost same except the notations, there are significant differences
between LT and LDPC code based transmission schemes.

In LDPC code based transmission scheme, for every instance of I, first, I is put
into ay in (F;)k. where & is fixed by k = dim(Ker(H)); second. aj is transformed
into a longer symbol vector a = (aj,ap) in Ker(H); then lastly, symbols of a are
transmitted over BEC till a receiver gets enough number of them, or every symbols
of a is transmitted if a feedback is not available on the channel. The syndrome vector
3 of system (1.3.7) is computed by an LDPC decoder. Since H is already known to a
decoder, an LDPC decoder can quickly identify system (1.3.7) by reading columns of
H. However. since the M in system (1.3.7) is a sub-matrix that consists of columns of
H, the row dimension of M is always fixed by the row-dimension of H, and therefore,
k is fixed for every instance of I.

In LT transmission scheme, contrastingly, first, n can be chosen conveniently for
each instance of an information data I; second, I is simply put into an o € (F3)™;
then lastly. a syndrome vector 3 in system (1.4.1) is generated by an LT encoder and
is transmitted over BEC. For every instance of a, however, the system (1.4.1) should
be identified at the initialization step of decoding algorithms. To communicate the
system (1.4.1) to a decoder, each H; can be directly attached to J3;, or a decoder can
generate H by using the same random generator of the LT encoder. Note that in
both cases, the cost for communicating H in system (1.4.1) is not trivial. A variety
of pseudo-random generators are available for the selection of a degree d and a row

H; of degree d. For an example, in the sections 2.6, 2.7, and 3.4, we use Mersenne

Twister Algorithm [16] for the random selection of d and Hj.

Definition 1.4.1. (An LT code by p(z)) With a received symbol vector 3 from an
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LT encoder, let H be the m x n matrix over Fy with m > n such that 3; = H;a? for
i =1,...,m. We define the LT code generated by p(x) as the set of all pairs {(3, H)}

in which each (3, H) forms a consistent linear system (1.4.1).

Assuming that rows of H follow the distribution p(z) such as the RSD in [2], it
is known that, if m > (1 4+ 4)n, 3 = 0, then a random m x n matrix H by p(z) can
be lower triangulated by the MPA, and hence, a can be recovered by the FS over the
triangulated matrix (sce [2, Theorem 17]). In reality, however, particularly for short
block lengths n, say n is within several thousands, the triangulation by the MPA is
not guaranteed, if 4 is not large enough. We note that system (1.4.1) has the unique
solution « iff Rank(H) = n. When Rank(H) = n, regardless of the failure of the
MPA, system (1.4.1) can be solved for its unique solution « at least by a conventional

GE on H. In section 2.2, we will generalize the MPA on H into the S-MLDA.

1.4.2 The Robust Soliton Degree Distribution

Similar to LDPC codes, the design of LT codes is focused on the design of a row-degree

distribution p(.r) that meets two conditions:

1. A random m xn matrix H, generated by p(z) with the row-dimension m as close

to n as possible, can be lower triangulated by the MPA with high probability.
2. H is sparse as possible.

Through the degree-reduction rounds of the MPA on H, let us call the set of rows
of reduced-degree 1 at each round k as a Ripple. The basic property required of a
good degree distribution p(x) is that, the number of rows of reduced degree 1 at each
round k is greater than 1 but is as small as possible. If a size of the ripple is too large,
then some of the rows of reduced degree 1 in the ripple, say H(k);, may be same with

the ones already in the ripple, so the check equation H; XT = j3; of system (1.4.1)

33



is redundant. If the ripple is too small, then it may become empty, before the MPA
finishes the lower triangulation of H.

The ISD p(z) described next exhibits the ideal behavior in terms of the expected
number of rows of a random H generated by p(z), needed to recover a. Specifically
speaking, one row of degree 1 in the ripple gives one row of reduced degree 1 for the
next round of the degree-reduction process. In this sense, exactly n rows are needed
to recover n input symbols by the MPA. The ISD, however, is quite fragile so that it is
useless in practice. Even a small variance of the ripple through the degree-reduction
rounds causes it to be empty. However, it gives many of the crucial ideas for the RSD

described later.

Definition 1.4.2 (Ideal Solitan Distribution). The ISD p(z) = >, pixt is defined
as following:

1 -
5 fori=1,

pPi = . (L42)
pi:m—.l_—lx)- fort=2,...,n
Let H be an m x n matrix generated by the ISD p(z). Then

n n 1

H| = inp) =1+n) - (1.4.3)

1
1=1 1=2

H]

n

Thus. the average row-degree a, = can be approximated as In(n) for large n.
Let us first give an easier interpretation for the ISD by using Mackay’s recursive
formula in [27, p592]. Let H be a random matrix generated by the ISD p(z). Through
the degree-reduction round t of the MPA, starting from H(0) := H, let H(t) denote
the residual matrix of H (¢ — 1) by discarding the row H;, and the column HJt when

the 1;, ;, is selected as the tt" diagonal of a triangular matrix L by that round. Now,

toJt
let hy (i) denote the expected number of rows of H(t) having its reduced degree 7 after
the reduction round t. We want to design a degree distribution by which a randomly

generated H gives the ripple size hy(1) = 1 for all t € {0,1,...,n — 1} through the

reduction rounds of the MPA. At the reduction round t, for each degree i > 1, since
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every row of H is generated in random, the probability that a 1 of a row in H(t)
having degree i is in the discarded column HJt is n—l_{ Thus, the expected number of
rows of H(t), whose degree ¢ is reduced to i — 1 in H(t + 1) by the discarded column
HJt | is given as l—,lllt_—(;—) Similarly with h¢(i + 1), a total of ﬁ+_121_h__%(ﬁ1_) rows of degree
i+ 1in H(t) become rows of degree i in H(t + 1). Therefore, at the beginning of the

round ¢ + 1, the expected number of rows of reduced-degree i is given as

by (1) = (i) (1— : >+(i+1)h‘(i+l). (1.4.4)

n—t n—t

Setting by hy41(1) = hy(1) = 1 for all t, we get hy(2) = 22—_4 from (1.4.4). Then by

the induction on (1.4.4),

n-—t
he(i) = . 1.4.5
10 oD (1.4.5)
Particularly with ¢ = 0, we obtain
R:_—l) for i > 1,
ho(i) = (1.4.6)
1 fori = 1.

Then normalizing by p; := Eg(—i), we obtain the ISD as

3

11 1 1 1
(= = . 14,
p (71'2 2.3 i(i—1) n(n—l)) (14.7)

In the following remark, we derive a differential equation and the ISD is approxi-

mated from the solution of the equation.

Remark 1.4.1 (Shokrollahi’s Interpretation for the ISD). Let H be an m x n random
matrix H generated by a row-degree distribution p(x) = 3, pizt. At the degree-
reduction round t of the MPA, the probability that a row of initial degree ¢ has
exactly one 1 in the residual matrix H(t + 1) is as following. Since every row of H is
generated in random, the probability that exactly one 1 of the row is in the residual

T

matrix H(t+ 1) is ¢ (1 - H—l) Now, the probability that all other ¢ — 1 number of



R .. . . i—1 . .
1’s of the row is in the ¢t number of discarded columns at round ¢ is (%) . Likewise,

at the round t + 1, the probability that all other ¢ — 1 number of 1’s of the row is in

1—1
the ¢t + 1 number of discarded columns is given as (%) . Thus, the probability

that the row of degree i in H becomes a row of degree 1 in H(t + 1) after the round

CEY(EET) e

Hence in average, the probability that a row of H becomes of a row degree 1 in
H(t+ 1) is given as

(-5 B ()2 ()

= (1 — 7_1> (P((t+1)/n)=p(t/n)). (1.4.9)

t+1is given as

Then by using p/((t + 1)/n) — p/(t/n) = 1p"(t/n) for large n, the probability (1.4.10)

can be approximated as

<1 _t 1> %p”(t/n). (1.4.10)

n
We now assunie that the row dimension m of H is very close to the column dimension

n, so that the expected number of rows of degree 1 in H(t + 1) is approximated as

t+1
n-(1.4.10) = (1 - ——> o' (t/n). (1.4.11)
n
Then setting by ( Hl) p"(t/n) = 1and x = £, we derive the differential equation
(1-x)p(x)=1, for 0<z<l. (1.4.12)

Then using the initial condition p(1) = 1, the solution of the differential equation

(1.4.12) is given as

p(r) = Zi _’ L (1.4.13)

1>2

The distribution above is similar to the ISD, except that the first term p; = 0 and it



has infinitely many terms.

As mentioned earlier, the ISD p(r) in Definition 1.4.2 is so weak because, a
random H by the p(x) has the expected ripple size as 1 through the degree-reduction
round of the MPA; even a small variance of the ripple causes it to be empty. Fur-
thermore, some of the columns of H could be null. A small modification on the ISD
fixes this problem. The RSD in [2] ensures that the expected size of the ripple is large
enough at each degree-reduction round of the MPA, so that it never becomes the
empty set with high probability. The idea of the RSD is in the design of a row-degree
distribution g(r) by which an m x n random H gives the expected ripple size about
¢ /nln(n/é) for every reduction round of the MPA, where § is the upper bound of
the probability that the MPA on H fails to the complete lower triangulation of H and
¢ is a constant of order 1. The intuition for the ripple size ¢+ y/nln(n/§) is come from
the observation that, according to Luby's in [2], the probability of a random walk of
length n deviates from its mean by more than /nln(n/d) is at most 4. So, the RSD

is designed with hg(1) = cy/nln(n/d).

Definition 1.4.3 (Luby’s Robust Solitan Distribution). The RSD u(z) = Zmzi is

defined as follows. Let R = ¢ y/nln(n/é) for some constant ¢ > 0. We first define

7(x =Y 7a') as following:

R/(in) fori=1,...,n/R—-1
i =94 RIn(R/d)/n fori=n/R (1.4.14)
0 fori=n/R+1,...,n

We then add the ISD p(z) to 7(x) and normalize it as the RSD pu(r) = 3 pidt
such that

i = (pi +7;)/w where w= Z(p,' + 7). (1.4.15)
i

foralli=1,2,...,n.
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Setting the number of syndrome symbols by m = nw gives the expected number

of syndrome symbols of degree ¢ by

(
R e
2
n-opp=n-(p;+7) =4 %‘ +RIn(R/8) ifi=1% . (1.4.16)
() ifi> g

Especially, notice that mu; =14+ Rand m - pug =n/2 + R/2.
We introduce the main theorem of the LT paper [2]. For the proof of the theorem,

we refer readers to Theorem 17 in the original paper [2].

Theorem 1.4.1 (Theorem 17 in [2]). The MPA on a random m x n matriz H,
generated by the RSD p(x), fails to recover the input symbol o with probability at

most & from a set of m =n -w syndrome symbols.

Remark 1.4.2 (Further Works on the RSD). In section 2.4, replacing the initial
condition hy(1) = 1 with k(1) = S + 1 for some integer S > 1, we generalize
Mackay’s recursive formula (1.4.4) into (2.4.1). We will explain the Luby’s RSD p(z)
as a particular case of the solution (2.4.4). To ensure the success of the MPA with
high probability, it should be emphasized that the number of syndrome symbols (or

the number of rows of H) should be large enough.

Remark 1.4.3 (Raptor Codes). In [14], Shokrollahi generalizes LT codes into Raptor
codes by using pre-decoding stage on «. The main idea of Raptor codes is that, an
input symbol vector « is protected by systematic LDPC codes or other codes in prior
to LT encoding called “Pre-Coding”. Then LT encoding is applied to the precoded

input symbol vector. For further detail, see the raptor paper [14].
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CHAPTER 2

The Maximum-Likelihood Decoding
Algorithms of LT Codes

In this chapter, we first present the S-MLDA as an advanced form of the MLDA in
[3]. We then present the design of LT degree distribution p(x) by supplementing the
RSD () with a small fraction of dense rows. Thus, a random H, generated by our
designed p(x), may fit for the S-MLDA. By using the Kovalenko’s Rank Distribution
in [21.22,29], we also present the rank distribution of random H generated by the
p(x). Simulation results, which show the viability of the proposed MLDA of LT codes,
are also presented in section 2.6. In section 2.7, particularly, we substantiate that, by
experimental results, LT codes from an arranged encoder matrix can achieve a stable

overhead v (for the successful S-MLDA) close to 0.

2.1 Introduction and Backgrounds

Let o« = (a..... ap) € (F3)" be a given input symbol vector that we would like
to communicate over BEC. In the LT based data transmission scheme, an LT en-
coder constantly generates syndrome symbols 3; € F3 using a row-degree distribution

plr) =>"10_, /)d‘rd and « in the following manner:

1. a degree d is randomly chosen with probability p,, then a row H; € F} of degree

d is chosen at random from the (Z) possible choices;
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2. the encoder generates J; = Hyal | it then transmits 3; over BEC.

The transmission stops when a receiver acquires a sufficient number of syndrome
symbols. At a receiver end, if more than m = (1 + ¥)n syndrome symbols are
received for some v > 0, then an LT decoder recovers the « by solving the consistent
linear system

HXT=3T, 3=(3.....n) (2.1.1)

where H consists of rows H; such that H;aT = 3;. Assuming that rows of H follow
the distribution p(x) such as the RSD in [2], H can be lower triangulated by means of
permuting rows and columns of H. as in the MPA [5] (or see Algorithm 1.4). Thus
a can be recovered by the FS algorithms Algorithm 1.2 and 1.3 over a triangulated
matrix of H by the MPA. For short block lengths n, however, the success of the MPA
(a triangulation of H by the MPA) is not guaranteed as y — 0.

Nonetheless, regardless of the MPA failure, system (2.1.1) has its unique solution
iff Rank(H) = n. If Rank(H) = n, then system (2.1.1) can be solved efficiently by the
MLDA suggested by Burshtein and Miller in [3]. Their MLDA exploits four major

routines as following:

1 ALTA: By the ALTA on H (sce [3,4] or Algorithm 3.1), a pair of row and column
permutations (P, Q) of H is obtained with which H = PHQT = [é. g], where B

is in a lower triangular form. Thus, system (2.1.1) is permuted into

y xT 3T _
; g (Xz]? - liT] = gxT=p4T, (2.1.2)
, AR ]
) xI] 4T
“'h(.‘l‘o ‘YT = Q‘\'T = { \,?[zj Elnd P«jT = [j;jt'] .
Xi ‘

2 BSR: Multiplying by S = [_g;l_l (I)]’ called Back-Substitution of References
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N 0
0 0
(a) H by ALTA (b) SH by BSR (c) LU by GE
Figure 2.1. The MLDA on H
(BSR), system (2.1.2) is transformed to
A1 X§ %] o (SAHXT = spsT (2.1.3)
Coo| |X5|  |3F oo -

where A = B71A and C = C — DA. (See Figure. 2.1-(b)).
3 GE:Xp is recovered by using on CXp = B[T (See Figure. 2.1-(c)).
4 Final FS (FFS): Xy is recovered by X% =AXp + 5’17;.

The core of the MLDA is in the novel combination of the ALTA and the BSR by S
that reduces system (2.1.1) into a small system CXp = BIT by means of a partial GE
on H over the columns of the triangular block [B] from the first to the last column
of it. When H = [g], the MLDA becomes the MPA. Of particular interest of the
MLDA is in the ALTA on H, generated by the RSD. The prominence of Luby’s RSD
is not just in the perfect triangulation of H by the MPA for large block lengths n and
overheads 7, but is also in the robustness of the RSD. A small perturbation on the
RSD does not affect much the triangulation of H by the MPA. Furthermore, even for
short n and v close to 0, H can be permuted into an approximate triangular form

H in system (2.1.2) whose left-block [é] is very small. Thus, the GE on C is very
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efficient compared to the conventional GE on H. This advanced form of GE also can
be found in [27, Ex-50.12] and the US patent [15]. Another MLDA using guessing
strategies on X at a bit-level was developed in [17]. In the algorithm, whenever the
triangulation of H (by the MPA) stops prematurely, a codeword bit, whose value has
not been determined yet, is chosen and declared to be known (by assigning 1 or 0).
The triangulation proceeds in this fashion, and the algorithm succeeds decoding as
long as Rank(H) = n.

Let ¢ x r be the matrix dimension of C, where ¢ = yn+7. Note that Rank(H) = n
iff. Rank(C) = r. If Rank(C) =, then the GE on C can be performed by the LU-
factorization algorithm Algorithm 1.1 (see also [23, ch.7]) that returns C in an
LU-factorized form C = LU [17'6“‘] such that L and U is a ¢ x g lower and upper
triangular matrix, respectively (see Figure 2.1-(c)). In fact, by the GE, L™! and

U~! can be obtained in a product form of elementary matrices, so that
) r 1
X =)y 3 vt =T oW, L7t =[] LW, (2.1.4)
A=1 k:r

kth row of

where L) and U are the elementary matrices formed by replacing the
Iyxq with the Kt row of L and U, respectively, and ,31 is the one in system (2.1.3)
whose symbols are associated with rows of C. Even if Rank(C) < r, free variables
in X can be identified by the GE. Thus, system (2.1.1) can be solved for a by
retransmitting the input symbols of free variables only. Otherwise, the deficiency
may be further reduced by increasing a fraction of dense rows on H.

In this chapter, without explicit construction of the permuted H in system (2.1.2),
we first identify systems of the MLDA as an equivalent set of linear systems in a prod-
uct form of elementary matrices via the permutations (P, Q). Let HQT = [Hp; Hpl,
the rearrangement of columns of H associated with (Xg,Xp). We identify sys-

tem (2.1.2) from system (2.1.1) via (P,Q). Then using S = PTSP, we interpret
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system (2.1.3) (in the BSR) as
S[Hp: Hp)XT = 537, (2.1.5)

Let HR = S'H'R. For each k, 1 < k < gq, the kth row C_’k of C is identical to the
ikt" row (ﬁR)ik of Hp for some i;. Hence, we perform the LU-factorization over
the row set {(HR)ik}Z=l and obtain m x m matrices L and U that are identical
to an L and U via a permutation pair (o, 77), respectively, and whose inverses are

also in a product form of elementary matrices similar to the ones in system (2.1.4).

Consequently, systems (2.1.3) and (2.1.4) together is equivalent to
[(w)—l 3. (HQT)] xT = [(EU)—IS] 4T, (2.1.6)

Based on routines of the MLDA, we compute system (2.1.6) by exploiting the S-

MLDA that consists of two major steps; pre-decoding and post-decoding as following.
1. pre-decoding:

(a) compute the left-hand side of system (2.1.6);

(b) discard the equations in system (2.1.1) that become null after the GE on

Hp. (See null rows in the bottom of Figure 2.1-(c)).

2. post-decoding:

(a) compute the right-hand side of system (2.1.6) by 8T .= (L )~1537,
(b) recover Xg from the 3 by looking at (o7, 7r);
Lth

¢) recover each rp of X5 using sparser of the equations of the systems
k R g S|

(2.1.2) and (2.1.3) as in below

BiXE = 3+ ALXE or zp =B+ A XE (2.1.7)
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The major role of the pre-decoding step is to find out precisely n check equations, and
at the same time, to compute all row operations on H that transform the H in sys-
tem (2.1.1) into a form [ng é] as shown in Figure 2.1-(c). Then the post-decoding
is designed to recover (Xg. Xp) by applying the same row operations without any
redundant symbol additions on J.

For a higher probability Pr(Rank(H) = n), small fractions of dense rows are
required in p(x). Most of the dense rows, however, become null after the GE on C.
Thus, ahead of the post-decoding step, all of redundant rows should be discarded to
avoid symbol additions of 3 over those rows. (See the curves in Figure 2.3 removed
by step 1b)).

A in system (2.1.3) is not sparse in general. Furthermore, its column dimension
r becomes larger as v — 0. However, the top part of A is more likely sparser than
the top of [A: B]. In fact, many rows in the top of A are null or with degree one.
On the other hand, the bottom of A is denser than the the bottom of [4; B]. Hence,
the alternative recovery by step 2c) by comparing the degrees |Ax| and (|Ax| + |Bx|)
improves the efficiency in symbol additions significantly. The improvement of the
efficiency in symbol additions is presented in Figure 2.3 (see green curves in the
figure removed by the alternative recovery step 2c)).

The remainder of this chapter is organized as follows. In section 2.2, we elaborate
on the systems (2.1.5) and (2.1.6) from the perspective of basic linear algebra over
Fy. For exemplary pseudo-codes of the routines of the S-MLDA, see section 3.2. In
section 2.3, we estimate the computational complexity of the S-MLDA in terms of the
number of {sign, bit}-flips and symbol additions of 3 made by the pre-decoding and
post-decoding, respectively. In section 2.4, we design a row-degree distribution p(z) by
supplementing a small fraction of dense rows for higher Pr(Rank(H) = n). We then
analyze the rank-distribution of H by using Kovalenko's rank-distribution of random

matrices [21,22,29] in section 2.5. In section 2.6, we present our simulation results
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tested with LT codes, generated by a designed p(x) in section 2.4 with block-lengths

n, 103 < n < 104, for the following scenarios:

1. the decoding error rates of the codes under the S-MLDA and the MPA to tell

a stable overhead ~ for the successful S-MLDA and MPA;

2. number of symbol additions by the post-decoding to tell the efficiency of the

S-MLDA in symbol additions of 3;

3. fractions of references L to tell the computational complexity of the pre-decoding

in a bit-level;
4. the rank-deficiency n = dim(Ker(H)).

We then substantiate, based on our experimental results, that a stable overhead 7y
for the successful S-MLDA is far better than the stable v for the successful MPA,
while the computational complexity of the S-MLDA in symbol additions maintains
within few tens of n. In section 2.7, in the same scenarios 1) - 4) above, we present
the performances of LT codes of short block-lengths n, 102 < n < 103 generated by

two encoding schemes:
E1l) encoding by rows of a (kn) x n matrix A,
E2) encoding by a random generation of rows of H.

Based on our experimental results, we also substantiate that, under the S-MLDA, LT
codes generated by an arranged encoder matrix M also achieves a stable overhead v

for the successful S-MLDA close to 0. We then summarize the paper in section 2.8.

2.2 The Separated MLDA

We first outline several notations that are used in the remainder of the chapter. For a

given m xn matrix K over Fp, we denote k;;, K, K7, and |K]| as the (i, j)! entry, the
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it row, the j”’ column, and the number of 1's of K, respectively. We use the notation
1;j to indicate k;; = 1. With the matrix dimension m x n, let [m] = {1,2,...,m}
and [n] = {1,2...,n} the row and column index set of K, respectively. In the rest of
the section, we verify the systems (2.1.5) and (2.1.6) in a product form of elementary
matrices.

First, by flipping a known 1 into —1 through the diagonal extension of B, the

ALTA (sce [4, p644} or Algorithm 3.1) can be designed to obtain a set of ordered

pairs (o, 77) C [m] x [n] such that

(0’1,7’1) = (ilﬁjr_H) Fal (ilvjr+l)r n=1[01+4r. (2.2.1)

Thus, an index pair (is, jr4+¢) in 07 X 7; indicates the (s, t)!? entry of the triangular
B which is identical to hy j ., in H. With the o) and 7, let (R, R) and (7,7T) be

the disjoint pair of [n] and [m], respectively, such that

R = {jlv"'vjr}' 7?':_ = {jT+l>"‘va+[}7
T =o0;=1{i1,....it}, T = {ij41,--rim}- (2.2.2)

With the pairs, we then set the permutations
o:[m]—[m], o(iy) =k, and 7:[n|—[n), 7(jy) = k. (2.2.3)

The matrix representations of ¢ and 7, say P and QT is obtainable by permuting
rows of I, x,;n and columns of I, x, in the order of ¢ and 7, respectively (see also

(1.2.5)). Associated with (R, R), let X= (Xg, Xz ) such that

Xr=(tj,..x5) and Xp=(¢j 1, 05 ) (2.2.4)
1 +1 r+l

Then via (P, Q), system (2.1.1) is permuted to system (2.1.2).
Second. multiplying by B™!, the top system of (2.1.2) is brought into X77-£ =

AXT + B713T then substituting the X into the bottom system of (2.1.2) yields
R u R
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éX% =BT ¢ Agi’[T as shown in system (2.1.3). This step is the BSR in (3], and

Bl o
-DB7 1]
system (2.1.3). Note that S7! = [g (IJ] and is a lower triangular matrix. Therefore,

it can be accomplished by multiplying S = | ] to system (2.1.2) as shown in

S can be decomposed as

1
S = H stk) — s gl=1) .. g(2) (1) (2.2.5)
k=l

where each S(¥) is the elementary matrix formed by replacing (Imx,”)k with HF
and [ is the number of columns of the left block [g] The computation of SH in

system (2.1.3) is accomplished by the iteration
H:=8SM{ k=121 (2.2.6)
Consequently, system (2.1.3) is expressed in a product form

!<lf=]; s<k>> . [’(‘f} ; <If=ll s<k)) 8| 27 - (:f:lz S(k)> P (22

Notice that in the iterative BSR system above, since S| g] is always known as [(I)],

B
D

the explicit computation of S| g] is redundant.
We now interpret the systems of the MLDA without explicit construction of the

permuted H = [é g] First, since H = PHQT, system (2.1.3) is expressed as
(SPYHQT)XT =spP3T = (2.1.3). (2.2.8)
Then multiplying by P~1 = PT in both sides,
(PTsPyHQT)XT = (PTsP)sT = (228). (2.2.9)

Rearranging columns of H associated with (X, Xy ), we then interpret the H QT in

system (2.2.8) as [Hg; Hp] such that

Hp = [HY;.. s HIT), Hp = [HIr+1, . Hir+l), (2.2.10)

47



Let S = PTSP, and let S¢*) = PTS(K) P formed by replacing the column (Ime)”c

kfh

with the column H'7+k via the index pair (ig, jy44) in (o7, 77). Then by P71 =

PT and (2.2.5).

1 1
S = H Kp= H Sk, (2.2.11)
k= k=l
Substituting the product (2.2.11) and [HR, Hp] into system (2.2.9), the iterative BSR

system (2.2.7) is transtormed to

1 1 1
[(H S“)) Hy: (H S("‘)) Hy| XT = (H S<’~'>> 3T, (2.2.12)
k=l k=l k=l

Note that, once S is known. S'HR is always known as pT [6], thus, the computation

of SHp alone is enough for the computation of S'HQT and is obtainable by the
iteration

=SMHy, k=121 (2.2.13)

Let Hp = SHp. Then since Cj = (HR) via o(iy) = k for all if, € T, we replace
the LU-factorization on C as the factorization over the row set {(HR),ik }Z___l with

additional steps. At each pivoting round & of GE:

1. When a pivot 1 is chosen for the k" diagonal of LU, store the index pair

Sk
(sp.tr) € T x R into (oy, 7).

2. For each pivoted 13~’k whose row index s is in 7, flip it into "ls.tk in (HR)s.
3. Then discard the row (H'R)"’k from the {(H’R)ik} updated up to that round.

After the GE, if Rank(C) = r then

(r 1) = (51.81) = -+ = (50 ty) C T x R. (2.2.14)

Thus, for each s;. € o and t; € 7, the —lsk,t- or 1 in HR can be identified as

.s‘k,l ;
the 1;; of an L or U in system (2.1.4), respectively. Notice that, if Rank(C) < r then

free variables are precisely the z;’s whose index j is in R\ 7.
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Let 37 = $37. We note that, each lp; in L®) or UK) in system (2.1.4) cor-
responds to the symbol addition (3)); := (3))x + (;’31)]', where ; is the one in sys-
tem (2.1.3). Similarly, the —13k~tj or 13k=tj in (HR)SA' corresponds to the symbol
addition B""k = B“"k + st via the kt? row index s and the jth row index sj in or.
Therefore, each L) (or U¥)) in system (2.1.4) corresponds to the m x m elementary
matrix LK) (or U(I")), formed by placing those _lsk-'j (or lsk’tj’ respectively) as the
15!;»5] in the row (Imxm)sk. In this way, via (o, 1), the product form of L1 and

U~1in system (2.1.4) corresponds to the products

1 T
=][IWer? 0 '=J]0Wev (2.2.15)
k=r k=1

Consequently, via (P, Q) and (o, 7), the systems (2.1.3) and (2.1.4) together, as

shown in system (2.1.6), is combined as
U 'L7'S[Hp Hp) - XT = U1 L71545T. (2.2.16)

where S, U™, and L~! are in a product form of elementary matrices as shown in
(2.2.15) and (2.2.11). In other words, this means that, by representing the (o, 7,) as

the permutation matrix pair (-, @Q;) on P_IR,

A
U 'L YAy = PLPT | I, | Q- (2.2.17)
0

In the pre-decoding step in section 2.1, the step la) can be summarized as the

following diagram

ALT A BSR — GFE = =
H < Hp. (0}, 7) —s H = L LU. 2.2.18
(o7.77) R (71.7) (2.2.13) R (2.2.15) ( )

Then all redundant check equations H; XT = 3;, whose row index 7 is in 7 \ o, are
discarded at the step 1b). The right-hand side of system (2.2.16) is computed by

the post-decoding step as described in section 2.1. We note that, in (2.1.7) of the
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alternative recovery step, each Ay, Ay, and By, is identical to (FIR)ik, (HR)iks and

(HR)ik via o(i}.) = k, respectively.

2.3 Computational Complexities of the MLDA

In practice, several supplemental instructions are indispensable for the efficiency of
the S-MLDA, for examples, degree reductions through the rounds of the ALTA and
updating the (¢;,7;) in the ALTA, and so on. Since a symbol addition or a {sign,
bit}-flip accompanies those instructions within a constant time, we estimate the com-
putational complexity of the S-MLDA by counting the number of {sign, bit}-flips and
symbol additions encountered during the pre-decoding and post-decoding, respectively.
Through the section, let us assume that R # 0.

We first estimate the complexity of the pre-decoding stage. By the ALTA| every 1
in H is flipped into —1 to obtain a permutation index pair (g, 77) in equation (2.2.1).
Hence the number of sign-flips by the ALTA is |[H|. While computing Hp by the
BSR iteration (2.2.13), each 1 in Hp, except in the diagonal of B, corresponds to one
addition of rows in Hg. Thus, the number of bit-flips by the BSR is proportional to
r(|Hp| —n+r), where r is the number of columns of Hp. By the GE on Hp, when a
pivot 14 1ot is chosen at round k, the row (I-_IR) sk is added to the rows of T of which
the ;" column entry is 1. Since |(FIR)Sk| < (r—k)and |7| < (r — k) +9n at the

round k. the number of {sign, bit}-flips together is less than
T B B r
S IHR)s T =D k(k+1n) (2.3.1)
k=1 k=1

for some constant ¢. In fact, our simulations exhibit that, at round k,

(r—k)+n
2 i)

(ARl < —5= and |T|< (2.3.2)

and thus, ¢ < ;II Hence in aggregate, the number of {sign, bit}-flips from the pre-
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decoding step can be upper estimated as

1 1
|H| +7|Hp|+ §7cnr2 + §C’r3 . (2.3.3)
ALTA  BSR — om

When 7 = en for large n and small € > 0, the estimate (2.3.3) may be dominated

by either (ye?)n3 or (e3)n3. Hence, in this case, the computational complexity of the

3 and ’7‘62

pre-decoding step in a bit-level is O(n3) but with small constant factors e
(see [3, p. 4]).

Let us now estimate the number of symbol additions made by the post-decoding
stage. We recall the removal of all redundant rows (including most of the dense rows)
by the step la) of the pre-decoding and the alternative recovery step by 2c) of the
post-decoding in section 2.1. At the initialization step, since only the 3;’s, whose row
index 7 is in o; U o, are copied from 3 and since |o; U or| = n, precisely, n copies of
3;’s are made for 3. For the computation of BT = U_II_I_IS',[)’T in system (2.1.6), due

H
to the removal of redundant dense rows, significantly less than l—l——ﬁ?l and less than

)

in number of symbol additions of 3 are made by S and U —17-1 respectively.
Now let d; = min{|(Hp);|.|H;|}. By the alternative recovery in (2.1.7), a total
of d = Zi.:l dik symbol additions are made for the recovery of Xz, that is also
significantly less than {—{%— Hence in total, the number of symbol additions from the

post-decoding is significantly less than

H Hx
py HLEARL L o (2.3.4)
L+~

We now assume that the original MLDA in [3] is used for the recovery of X. (Recall
2. BSR, 3. GE, and 4. FFS of the original MLDA section 2.1). In the pre-decoding
step. only the {sign, bit}-flips that correspond to one row-addition constitute symbol
additions of 3 or 3. First, a total of |Hz | by the BSR and less than )" _; (yn+k) row
additions by the GE on Hpg, are made for the recovery of Xg. Then for the recovery

of Xp, a total of | A| symbol additions are made by the FFS. Hence in aggregate, the
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number of symbol additions by the original MLDA is upper estimated as
|Hi| + [A| +r(yn + 7). (2.3.5)

In Figure 2.3, we show that, due to the heavy density |A| and dense rows in H, the
estimate (2.3.5) is much larger than the one made by the post-decoding stage of the

S-MLDA. (Compare black and red curves in Figure 2.3).

2.4 Degree Distribution Design with Dense Rows

In this section, we first go over LT degree distribution design with Mackay’s simple
recursion formula in 27, ch. 9]. A fine analysis of the design in a continuous frame
can be consulted in Shokrollahi’s works in [14].

With a designed distribution u(r), we then alter () into a p(x) by supplementing
a small fraction of dense rows of degree . We then analyze rank properties of an
m x n random H generated by p(z). By doing so, we provide a simple way for the
appropriate value of p, /2

Let us first consider the diagonal extension of the MPA on H in [4, p. 644].
Starting from H(0) := H, at the tth extension step, let 1;, j, be selected as the ¢th

diagonal entry of L = PHQT, and let H(t) denote the residual matrix by discarding

the j;!* column and the i,/ row from H(t — 1).

Lemma 2.4.1. Let hy(d) denote the expected number of rows of degree d in H(t).

Then after the (t + 1)’h diagonal extension step, H(t + 1) has

() =1) (1= 7) + 22, =1,

hyp1(d) = (2.4.1)
he(d) (1 - n—d_—,> + (dle;h__LgiﬁL_l) otherwise
Proof. Once a 1 is chosen for the (t+ 1)”1 diagonal entry of L, say lit+1‘Jt+1 is chosen

h

for the diagonal entry, the ;1" row counted in h¢(1) is automatically discarded,



thus, there remains h¢(1) — 1 rows of degree 1 in H(t). When the jt+1“‘ column is

discarded from H(t), each of the ht(l) — 1 remained rows of degree 1 has 1 in the

discarded column with prob (he(1) — 1) rows of degree
1 become rows of degree 0, and therefore, about (h¢(1) — 1)(1 — n——i) rows of degree
1 in H(t) still remain as rows of degree 1 in H(t + 1). Now, a row of degree 2 in
H(t) has a 1 in the discarded column HIt+1 with probability - ——-— . This implies that
about ht(‘Z),—l—_—{ rows of degree 2 in H(t) become rows of degree 1 in H(t + 1) after

the diagonal extension. Therefore,

his1(1) = (he(1) = 1) (1— ! )+2h’(2). (2.4.2)

n—t n—t
In case of d > 2, when the j;41t* column is discarded from H(t), a row of degree d
in H(t) has a 1 in the column with probability ;l—fi_—{ This implies that hs(d)(1 - ﬁ
rows of degree d in H(t) still remain as rows of degree d in H(t + 1), at the same

time, about hs(d + 1);%—} rows of degree d + 1 in H(t) become rows of degree d in

H(t + 1). Then the sum of the two cases asserts the h;y1(d) in (2.4.1). a

Theorem 2.4.1. Erpecting the ripple size by hy(1) =S +1 forallt =1,2,...,n

n—t S
! =t = d . 243
1 (d) d(d—1)+d' >1 ( )
In particular, when t =0,
S+1, ford=1,
ho(d) = . (2.4.4)

n S ;
=10 + 5, otherwise

Proof. Setting by hy(1) = hy41(1) = S+1, the first recursion in (2.4.1) yields hy(2) =
ﬂg—' + 5 3. Let us assume that hy(d) = _d_ﬂ +§ for all d > 3. Plugging in hs41(d) =
nd(c(lt 1)) + 3 into the second recursion in (2.4.1) then simplifying it into 2 T + S =

(d + 1)h¢(d + 1) yields the estimate (2.4.3). (2.4.4) is obvious by ¢t = 0. d
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Let us now set m the number rows of H by

n

m= Z ho(d) = n+ S(1 + In(n)). (2.4.5)
d=1

Thus, from the right-hand side of (2.4.5), v =~ SU+nM) - ppep normalizing by m,

n
we derive the RSD as

L ho(d)
pu(x) = Z/Ld‘rd, where p(d) = 0. (2.4.6)

m
d=1

The RSD in [2] can be thought of as a special case of (2.4.4) with S = cln(n/d)/n
and hg(1) = S + 1 as below

(

- S
PiCEyREre l<d<z.
ho(d) = § s + SWn(S/6). d =&, (247)
{ d(dn_ N otherwise.

Theorem-17 in the original LT paper [2] guarantees that when an m x n matrix H
is randomly generated by the RSD in (2.4.7) with m = n + S(In(S/é) + In(n/S)),
the LT system (2.1.1) has its unique solution and can be solved by the MPA with
probability at least 1 — 4.

The triangulation of H by the MPA depends on the constraint k(1) > 1 for all
t. In particular, for short block lengths n, 7 should be increased for the successful
MPA with high probability. For a stable ripple design, see Shokrollahi’s Raptor paper
(14. pp. 21-22]. In contrast, the success of the S-MLDA depends on Rank(C) = r.
The efficiency of the S-MLDA in computational complexity may be degraded due to
the GE on C'. However, the fraction of references % is quite small for all v > 0, and
hence, the GE on C in a bit-level may not be a major drawback to the efficiency.

(See Figure 2.4)

Let H be an m x n random matrix over Fo generated by a row-degree distribution
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plx) = Zpd:cd. We first estimate the column-degree distribution of H, say A(z) =
Souto /\d.z‘d. Then with Ag, the fraction of null columns of H, we estimate a lower

bound of the density |H| to keep Ag small.

Lemma 2.4.2. Let m = (1 + v)n. Then the column-degree distribution of H can be

=T (-2 4" 248

Proof. For a given row H;, let d; = |H;|. Since H; is randomly chosen from (;)
1

estimated as

possible choices, entries of H; follow the distribution

fa,(x) = (1 - %) + %m, —(f—: = Pr(hi; = 1). (2.4.9)
Let H(k) denote the sub-matrix that consists of the first k rows of H. Obviously, the
column-degree distribution of H(1) is fdl(.r). Assume that columns of H(k) follow
the degree distribution Hl 1 fa,( ) = Zj‘ -0 GJ.L‘] Now let H(k+ 1) be an expansion
of H(k) supplemented with a random row of degree dj ;. Then, a column of H(k+1)

was a column of degree j in H(k) with probability a; and it becomes a column of

degree j+1in H(k+1) with probability = 1‘+1 . This case happens with the probability

d. .
a; "Jl . Similarly, a column of H(k + 1) was in degree j + 1 in H(k) with probability

aj4+1 and it remains as a column of degree j + 1 in H(k + 1) again with probability

1. dj.
— Zk+l)  This case happens with probability a;,1(1 — ££L). Since these two
Jj+ n

n

cases are all cases for a column in H(k + 1) being degree j + 1, a column of H(k + 1)

has degree j + 1 with probability

i1 di4)
aj; (T) +aj4 (1 — n , (2.4.10)

which is exactly the coefficient of the term zJ*! of the product

k+1

fdk-i—l ZGJTJ = Hfd (2.4.11)



Hence, by the induction, H has the column-degree distribution
m
Mz) =[] fa,@)- (2.4.12)
1=1

Now, H follows the row-degree distribution p(r) with m = (1 + v)n, and the number
of rows of degree d is (1 + v)npy. Therefore, rearranging the product (2.4.12) with

respect to d then substituting (2.4.9) into (2.4.12) asserts (2.4.8). d

Theorem 2.4.2. Let a, be the average row-degree of H. Then the fraction of null

columns of H, X, is estimated as
n
M = [ = d/n)r+1Pd x emar(1+7), (2.4.13)
d=1
, . o AK) (o
Proof. By Lemma 2.4.2, the fraction of columns of degree k is given as A\ = __ET.—)’
and hence, the product form in (2.4.13) is clear by Ag = A(0). For sufficiently large
n, since

(1 = d/n)"(1+1)Pd o g=dPgn(1+7) (2.4.14)

the product can be approximated as e~(1+7) 2 dpd Then since ar = > dpg, we

conclude (2.4.13). a

For the unique solution of system (2.1.1) with a destined §, 0 < § < 1, the number
of null columns in estimate is given as n\y = ne~(1+7)ar and thus, a row-degree
distribution p(.r) should hold the inequality ne~(1+7)ar < § < 1. Therefore

In(n/é)
—(1+7)

or |H| > nln(n/é). (2.4.15)

ar

To meet this inequality, we note that dense fractions in p(z) are indispensable.
Most of the fractions of the RSD u(z) in (2.4.6) are too small to get |nuy] > 1.
For an example, with short block lengths n in a few thousands, |nuy| = 0 for d > 60.

We recall that dense fractions are indispensable to meet the inequality (2.4.15). For
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this reason, we alter the u(x) into p(x) having 3 parts:
p(x) = Z ded + Z pd:rd + p7z/2$n/2’ (2.4.16)
deDy deDy

in the following manner:
1. pg=pgforde Dy ={1,..., 20},

2. 0.001 € pg <£0.01 for d € Dg, where Dy consists of few tens of degrees d such

that 20 < d < 400;
3. 0.001 < Pnso < 0.005.

The idea of the p(r) is as following. First of all, the fraction Pnj2 i for higher
Pr(Rank(H) = n). Second, Dy is for smaller = with the constraint ZdeDl tq > 0.9
based on equation (2.4.6). Lastly, based on the density constraint (2.4.15), D, is
aimed to hold ZDIUD? dpg > llllg%)l Thus, hopefully, the [A, B] of H in sys-
tem (2.1.2) consists of rows of degree d in D U Dy only.

One would set p(x) := leUp2(:r)/pplup2(0) that meets the inequality (2.4.15)
with a small J. It seems to the authors that, even with a large v, an m x n random
matrix A generated by the p(x) does not achieve the probability Pr(Rank(H) = n)
close to 1. For an example, in Figure 2.10, rank deficient cases happen just one
or two times (out of 1000 random constructions of H by the p(z)) with deficiency
dim(Ker(#)) = 1 or 2. In contrast, when the p(z) is supplemented with p, 5 := 0.005,
the small deficiencies are gracefully removed up to 1 + v =~ 1.008.

Since |H| is increased by 1’;(1 + 7)py /2 with the fraction p,, alone, a slight
increment on p,, /» may cause |H | much heavier than desired ones. Let us now present
a simple way for an appropriate value of Pn /2 with an estimated dim(Ker(H)) through
simulations. Let H be an m x n random matrix generated by the leUp2(x) =

Z'Dl'UDQ par. For a given V € F3, let V+ = {X € F}|V - X = 0} the complement
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space of V. With the row space RS(H) = {> ;c; H;|VI C [m]}, let Rank(H) =
dim(RS(H)).

Theorem 2.4.3. Let H be an ecpansion of H supplemented with My /2 random rows

of degree 3. Then,

Pr (Rank(f{) < n) < -2——”—172—2—_77, where n = dim(Ker(H)). (2.4.17)

Proof. We first note that, from basic linear algebra, RS(H) c V1L iff. V € Ker(H),
and Ker(H) c Ker(H). We also note that Rank(H) < n iff. RS(H) c VL for some
nonzero V' € Ker(H). For each nonzero V € Ker(H), since supplemented dense rows

are chosen in I"dIl(lOlll,

Pr(RS(H) c Vi) <27 /2, (2.4.18)

Then since |Ker(H)| = 27, the inequality (2.4.17) is clear by the sum of the proba-

bilities (2.4.18) for all V' € Ker(H). a

The author of the thesis is not aware of any closed form of mathematical estimates
for 7). Nonetheless, for a given pp,up,(r) = ZdEDIUDQ pd;rd, n can be estimated
by extensive simulations of the S-MLDA very efficiently. Then by increasing m,, /5 in
(2.4.17). one would achieve 7 = 0 with high probability. Thus, Pp /2 May be assigned

m. . .
by Puj2 = TTin with an appropriate 7.

2.5 The Rank Distributions of H

In this section, we introduce Kovalenko’s rank distribution theorem over finite fields
[21,22,29]. We then derive a finite version of the rank distribution of the supplemented
matrix A in Theorem 2.4.3.

We first introduce the limit version of the rank distribution theorem. Let H be
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an (n + k) x n random matrix over a finite field Fy with the density constraint

1 .
< Pr(hi; #0)<1- i’%f—’: (2.5.1)

In(n) +x
n

where ¥ — oc arbitrarily slowly. Kovalenko and Levitskaya [21] showed that, as
n — oc, for any fixed integers k and s with & +s > 0,

: 1
1 Hz?is-i—l (1- —’)

i . an ke — q' y
”ll_l'lgc Pr(Rank(H) =n—-s) = ) Hk“ ~1 (2.5.2)
ql
For an example, with (¢ = 2.~k = 30,5 = 0),
s 1
nll—l};c Pr(Rank(H) =n) = H <1 - 51—) (2.5.3)

i=31

which is very close to 1. In [22], Cooper further improved that, under the assumption
that H has no zcro columns, the distribution (2.5.2) is also true when the condition
in (2.5.1) is weakened as r — —oo. Note that the distribution (2.5.2) is not directly
applicable to a random H generated by a p(r) in (2.4.16), because both the row and
column-degree distributions of H may not meet the density constraint in (2.5.1).

Let H be an m x n random matrix over Fy generated by the PDUD, (z) with
rank-deficiency n = dim(Ker(H)). Starting from H(0) = H, let H(k) be an

n

expansion of H(k — 1) supplemented with a random row of degree 7. Now let

Ck.p(w) = Pr(Rank(H(k)) = (n — 7)) +w) where 0 <w <.

Proposition 2.5.1. The rank-distribution of H(k + 1) follows

1 1
CIH—I.I,(“") = C/\',I](“} - 1) (1 - m) + Ck,r)(w)z,]—_w" (2.5.4)

Proof. Ouly two cases are possible for Rank(H(k + 1)) = n — (n — w); either
Rank(H(Kk)) =n—(n—w+1) or Rank(H(k +1)) = n - (n—w). If Rank(H(k)) =
n—(n—w+1), then Rank(H(k + 1)) = n — n+w iff. the supplemented row is not
in Ker(H(k)). Since dim(Ker(H(k))) = n —w + 1 in this case, Rank(H(k + 1)) =
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n — (n—w) with probability (x ,(w—1) (1 '271'—_71'> If Rank(H(k)) = n—(n—w),
then Rank(H(k+ 1)) = n — (n —w) iff. the supplemented row is in Ker(H (k)). Since
dim(Ker(H(k))) = n —w in this case, Rank(H(k+ 1)) = n — (n — w) with probability

Ck.u("‘")ngl—Z;" Then the sum of the two probabilities asserts (2.5.4). a
\We now derive the solution of (2.5.4), a finite version of rank-distribution of H (k).

Lemma 2.5.1. Let w < k. w <17, and letl =k —w. Then

w
1
Gy H ( on+1- z) ol (1—w) - S(w. 1), (2.5.5)

=1

where
i -1

Z Z Z 211+12+ +i” (256)

i1=019=0 =0
Proof. Although the same arguments of Theorem 3.2.1 in [29, p. 126] can be used
for the probability (2.5.5), we derive the probability (2.5.5) by using (2.5.4) and the

mathematical induction. If w = 0 or [ = 0, then clearly

k
1 1
C/\'.I;(U) = ok1) and <k,7](1") = H (1 - W) . (257)

=1
Assume that (2.5.5) is true for k and w. We show that by using (2.5.4), the distribution
(2.5.5) also holds for k + 1 and w. Let | = k —w. First, (; ,,(w —1) (l - 27’;17;1—) in

(2.5.4) is expressed as

w 1 )
H ( 20+1- ‘) 2(I+1)(—w+1) Slw—1LI+1), (2.5.8)

1=1

and S(w — 1.1+ 1) in the above can be expressed as

[+1 .
Sw—-1,1+1) = > o~ Lilyis, (2.5.9)

Wiy >y 1
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Similarly, the ijl(u;),z,,%w. in (2.5.4) is expressed as

w 1 )
H (1 - 21)+1—i> 2(l+1)(n—-w) - S(w, 1), (2.5.10)

1=1

where S(w,!) can be expressed as

S(w, ) = 3 o~ Tithis, (2.5.11)

w>i) > >i) >(i) 4 1=0)

It can then be seen that, from (2.5.9) and (2.5.11),
Slw—-114+1)+ S(w,l) = S(w,l+1). (2.5.12)

Therefore, the sum of (2.5.8) and (2.5.10) gives (41 ,(w) as

1 1
(1 - 277+1—i> 2(l+l)(l7—w‘) S(’u), [+ 1)) (2513)

w
1=

1

where

S(w,l+1) = > ! (2.5.14)

1 tig+-+i )
w21y 2244120 2 o

O

Theorem 2.5.1. With the same notations in Lemma 2.5.1, let H = H(k). Then

with w =1 and k > 1, as a particular case of the distribution (2.5.5),

- ! 1
Pr (Rauk(H) - n) =11 (1 - ngl—‘z) LS, 1). (2.5.15)
=1

The author is not aware of any simpler form of S(n,[). Furthermore, it is difficult
to compute S(n.l), because it requires an [-dimensional array for the computation
of the multiple sum. Hence in practice, once a rank-deficiency 7 is estimated from
simulations, the lower-bound (2.4.17) is more practical for the value of p,, /2- Nonethe-

less, it is straightforward to see that, by Theorem 2.4.17, Theorem 2.5.1, and by
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=k -1,

1 n 1 -1

i=1
Remark 2.5.1. So far, we assumed that H is an expansion of H by supplementing
random rows of degree 5. In fact, Lemma 2.5.1 is also true when supplemented rows
are randomly chosen from 2" possible choices (see the proof of Theorem 3.2.1 in
[29]). We may anticipate that the distribution (2.5.5) also holds, if supplemented rows
meet the density constraint (2.5.1). Heuristically, the anticipation is reasonable in
the following sense. Let Rank(H (k)) = n—(n—w). By GE, H(k) can be transformed
to a row-equivalent form [A; I] where I is the identity matrix of size n — (n — w).
Then pivoting the supplemented row of H(k + 1) with diagonal entries of the I,
let the supplemented row be transformed to (Aj,41;0), and thus, H(k + 1) is now
row-equivalent to [A;,-AH é} Then Rank(H(k + 1)) = 1 + Rank(H(k)) as long as
Ap+1 # 0. Now, if we assume that Ay, is a random vector in Fg—w where n —w =

dim(Ker(H(k))), then Ay 1 # 0 with probability 1 — 2,, =.

Remark 2.5.2. When ¢ = 2, the limit distribution (2.5.2) can be derived from
Lemma 2.5.1 by setting H(0) = @ (so that n = n) and w = n — s. To see this, we
first rearrange the sum S(w,!) in (2.5.5) as
w .
(w. 1) = Z 274 Z 271 Y 97 (2.5.17)
=0 —-1=Y i1=19
Since w — oo as n — oo, the rearrangement can be simplified as a product form

im S(w.l) — 1 —i ~2iy
11121505(w.l) = (1—§> 22 ... Z 2

=0 13<ig

1\ ! 1 _100 li

- — — e — — _2

- (1-3) (mam) X
=0

(-4 251



Then plugging in the product (2.5.18) into the distribution (2.5.13) gives the limit

|

distribution (2.5.2). (See also [29, p130]).

We now close this section by providing a formal approach to an estimate of
|Ker(H)|. Let H be an m x n random matrix over Fo generated by a p(x) in (2.4.6),
and let X be a nonzero random vector in Fy with |X| = k. Then the number of
solutions of system (2.1.1) is exactly |[Ker(H)|. Now, for a given random row H; of

degree d;,

Pr(H; X =0) = (2.5.19)

Then since H has mpy rows of degree d and cach of them is generated independently

from all other rows,

o ond\ ™Pd
Pr(X € Ker(H)) = [] (H(l 22'”/”) ) . (2.5.20)
pq#0

Next, X can be chosen in total (2) different ways, therefore, the expectation of
|Ker(H)| is given as
n
2% kzzo (Z) pgo (1 (- 2k/-rz.)d)mpd . (2.5.21)
If a fine approximation of (2.5.21) is possible, then an appropriate value of Pp/2 can
be assigned for Pr(|]Ker(H)| = 1) = 1 without much difficulty. It seems to the author

that, the equation (2.5.21) is more likely blown up to oo by a small increment on py.

2.6 Simulation Results

In this section, we provide our experimental results simulated with LT codes of block-
lengths n, 103 < n < 10}, generated by a row-degree distribution p(z) in (2.4.6)
supplemented with the dense fraction Pry2 = 0.005. Particularly in Figure 2.2,

we substantiate that, under the S-MLDA, our designed LT codes can achieve the

63



(Pd)?zl (0.015,0.47, 0.164, 0.074, 0.047, 0.032)
D, (pd)d%_-l, (0.023,0.017,0.013,0.011,0.009, 0.008)
pd = 0000 for IS < d X 20
Dy || pg = 0.002 for 21 < d < 30
pg = 0.001 for 31 < d < 70
pg = 0.004 for d = 71,72, 141,260, 350
D3 || ny2 = 0.005

Table 2.1. The row-degree distribution p(x)

performance in overhead v (for the successful S-NILDA) close to 0. In Figure 2.4,
we also provide the fraction of references rp = + which shows the computational
efficiency of the pre-decoding with respect to 7 = en. (Recall the small constant
factor e in (2.3.3) at p. 51).

The spectrum of our simulation is as follows. First, we generate a distribution
p(x) in (2.4.6) with S = 15 and n = 103. Based on (2.4.16) and the conditions
1) - 3) therein, we alter the p(r) into the p(x) as shown in Table 2.1. Second,
we tested LT codes under the S-MLDA for the 10 block lengths from n = 103 to
n = 10-103. For each fixed n. a row dimension m is increased by 1 from m := n up to
m := (1.2)n. Then for each matrix dimension m x n, an m x n random matrix H by
the row-degree distribution p(x) is constructed 100 times by generating its rows using

Mersenne Twister algorithm [16] on [n]. Then for each instance of H, the S-MLDA

is tested with a nonzero input symbol vector a in (F3)™ for the following scenarios:
1. decoding failure rate of codes under the S-MLDA and the MPA;
2. number of symbol additions by the S-NILDA and the original MLDA in [3];
3. fractions of references

4. rank-deficiency n = dim(Ker(H)).

In Figure 2.2, for cach fixed n, a black and gray curve DFR = f(1++) shows the
decoding failure rate (DFR) of codes under the S-NILDA and the NPA, respectively.
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Decoding Failure Rate of LT codes by the S-MLDA and MPA

-

DFR : Decoding Failure Rate
°
o

1 2000
1+y: overhead it 6000 4000
1.2 10000 n : block length
by the S-MLDA|
n=5,000 by the MPA
1 - T T T T T T T
0.8 4
o 0.6 | ]
&
0.4 ]
0.2 'l
1. VO

d 1.02 1.04 106 1.08 1.1 112 114 116 118 1.2
T+

Figure 2.2. Performances of LT Codes in Decoding Failure Rates (DFR) (under the S-
MLDA (black curves 1) and the MPA (gray curves 2). The codes are generated by the p(z)
in Table 2.1 over the block lengths from n = 1,000 to 10,000

For examples, when n = 5,000 and 1+~ = 1.01 with 100 trials of code constructions
(see the bottom figure in Figure 2.2), the gray point (1.01, 1) indicates that the MPA
never succeeds for the recovery of a, in contrast, the black point (1.01,0) indicates
that the S-MLDA never fails to recover a. We observe that, for any 1+~ > 1.007,
the DFR by the S-MLDA is 0. Even if 1 < 1+~ < 1.007, our simulations also exhibit

that Rank(H) > n — 12 (see the bottom figure in Figure 2.5). Therefore, a small
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Number of Symbol Additions by the Post-Decoding and the MLDA
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Figure 2.3. Number of Symbol Additions by the Post-Decoding and the MLDA in (3]

increment in p, 5 (or v) based on the inequality (2.4.17) or the rank-distribution
(2.5.15) may increase Pr(Rank(H) = n) very close to 1. Also notice that, by the
MPA, DFR > 0 for any 1 + v < 1.08 and n. Therefore, the desirable v for the
successful decoding of codes by the MPA should be greater than 0.08.

In Figure 2.3, for each fixed n, a black and gray curve 1 and 2 represents the
number of symbol additions divided by n, denoted as NS, made from the post-decoding

and the original MLDA in (3], respectively. Similarly, the black and gray curve 3 and
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4 indicates the NS made by the redundant equations H; X7 = (; whose index i
is in 7 \ or and by the d* = ||4] — Zi‘:l d;|/n, as shown in p. 52, respectively.
(Recall the alternative recovery and the removal of redundant rows in section 2.1).
When n = 5,000 and 1 + v = 1.01, for examples, the point (1.01,12) on the black
curve indicates that, approximately, 12 - 5,000 symbol additions is made by the post-
decoding, and the point (1.01,39) on the gray curve corresponds to 39 - 5,000 symbol
additions made by the original MLDA in [3]. Similarly, the black point (1.01,15) on
the curve 3 and the gray point (1.01,11) on the curve 4 corresponds to 155,000 and
(|A] = d) = 11- 5,000 redundant symbol additions, respectively. It can be observed
that the black curve 1 is mainly contributed by sparse fractions of degree d in D, UDx,
however, the gray curve 2 is mainly contributed by the dense fraction p,, /2 = 0.005
and |A|. From the figure, observe that the gray curve 2 is much larger than the black
curve 1.

In Figure 2.4, for each fixed block length n, a black curve shows the fraction of
references (FR), FR = &, where r is the column dimension of Hg (or [é]) When
n = 5,000 and 1 4+ v = 1.01, for instance, the point (1.01,0.025) indicates that the
C in system (2.1.3) has its matrix dimension about 150 x 125 which is very small
compared to the matrix dimension of H, 5,050 x 5,000. Notice that for any  and
n, FR < 0.041 that substantiates the very small constant factor in the complexity of
the GE on C (see also [3, p. 4]). (To see the lower complexity, compute the upper
bounds (2.3.3) and (2.3.4) with r = 0.041n).

In Figure 2.5, each curve represents the rank-deficiency n = dim(Ker(H)), or
the number of free variables under the S-MLDA. For an example, when n = 5,000
(see the bottomn figure in Figure 2.5), the point (1 + v = 1,7 = 11) indicates that
the S-MLDA fails to recover a with DFR = 1 (see the bottom figure in Figure 2.2)
and the rank deficiency is approximately 11. Even when > 0, the GE on Hp (or

C) identifies the all the free variables, and thus, « is obtainable by retransmitting the
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Number of Reference Variables for 1,000 n < 10,000

FR : Fraction of References
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Figure 2.4. Fraction of References

input symbols of free variables only.

Figure 2.6 shows how the dense fraction Pnj2 = 0.005 gracefully improves the
DFR of the S-MLDA to 0 with Pr(Rank(H) = n) close to 1. In the bottom figure,
a black curve shows the DFR of the S-MLDA on H, generated by p(z). Similarly,
the gray curve shows the DFR of the S-MLDA on H, generated by /Pp]v‘[)z(.l'). In
both cases, p,'s are taken from Table 2.1. For the simulation, starting from m :=n

to m := (1.2)n, a row dimension m is increased by 1, and for each matrix dimension
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Rank Deficiency of LT codes for 1,000< n < 10,000
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Figure 2.5. The Rank-Deficiency 1 = dim(Ker(H)) (or the Number of Free Variables)

m x n, an m x n matrix H is generated 1000 times. Then the S-MLDA is tested
for each instance of H and a # 0. When H is constructed by pp,up, (see the gray
curves), although the DFR and 7 is small, rank-deficient cases occur constantly up
to 1+~ = 1.1, then sporadically as 1 + 7 increases to 1.2. Contrastingly, when H
is supplemented with p,, ;o = 0.005, the small deficiencies are gracefully removed (i.e.
7= 0) up to 14+ v < 1.008 (see the black curves). From the bottom figure, observe

that the DFR of of the S-MLDA around 1 + v = 1.0076 decreases to 0 dramatically
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7 : Number of Free Variables
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Decoding Failure Rate of LT codes for n=5,000
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Figure 2.6. Rank Deficiency (top figure) and DFR (bottom figure) of LT codes of n =
5,000, generated by p(x) and pp,up,

by a slight increment on ~y.

2.7 LT Codes of Short Block Lengths From an Arranged En-

coder Matrix

In this section, we present performances of LT codes of short block lengths n, 102 <

n < 103, For higher Pr(Rank(H) = n), we design LT codes with the larger dense
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fraction Prj2 = 0.082. Particularly, we substantiate that, under the S-MLDA, LT
codes generated by an arranged encoder matrix M can achieve a stable overhead «
for the successful S-MLDA close to 0, while the S-MLDA maintains its complexity of
decoding in symbol additions within few tens of n.

When H is designed by the RSD with short block lengths n within several hun-
dreds, we (the author Ki-Moon Lee and Hayder Radha) observed that the nonzero
rank deficiency n = Ker(H) is feasibly happened but is less than a few. A small
deficiency n can be removed by using the pre-coding strategies as in Raptor codes
(14] but with a small degradation in overheads . In contrast, supplementing dense
fractions in p(x) can increase Pr(Rank(H) = n) rapidly without extra costs in 7.

In the earlier work in section 2.6, we designed LT codes with dense rows that fit
for the block lengths n, 103 < n < 10%, under the S-MDLA. Particularly, a very
small dense fraction p,, /2 = 0.005 was supplemented to p(z), and a stable vy for
the successful S-MLDA was less than 0.01 for n a few thousands. With shorter block
lengths n in several hundreds, however, it seems to us that much larger p,, /2 is required
for a stable . In this section, we design a distribution p(z) with Pry2 = 0.082.

Dense rows may cause a nontrivial drawback in communicating H to a decoder.
Note that. for every instance of a, a decoder should identify H by using the same
random generator of an encoder. Otherwise, each H; should be directly delivered to
a receiver attached on syndrome symbols of 3. In both cases, due to dense rows,
the cost in communicating H may not be trivial. Dense rows may also degrade the
computational efficiency of the MLDA in [3] seriously. Nonetheless, even with the
v very close to 0, H can be approximate lower triangulated by the ALTA in [3,4].
Furthermore, most of the dense rows become redundant. Therefore, those redundant
rows should be identified so that symbol additions over the redundant rows can be
removed by the S-MLDA.

In this section, we design LT codes for short block lengths n in two perspectives.
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First, we alter a designed RSD u(z) into a p(z) = Zpd:cd by supplementing a dense
fraction p,, /5 for the higher Pr(Rank(H ) = n). Thus, even for short block lengths n
and v close to 0, a check matrix H of system (2.1.1) may have its full column rank n
with high probability. Second, to communicate H to a decoder efficiently, we use a
(kn) x n encoder matrix M over Fy whose row-degree distribution follows a designed
p(x). Therefore (at a receiver end), an LT decoder can quickly identify H by reading
rows of M without extra cost in communicating H to a decoder.

In this encoding scheme, however, a row-degree distributions of H may be devi-
ated from the designed p(x), the distribution of the encoder M, seriously. Therefore,
the random features of the original encoding scheme should be limited. In particu-
lar, a stable overhead v of codes for the successful MPA may be degraded seriously.
Nonetheless, our simulation exhibits that the degradation does not affect the perfor-
mance in v under the S-MLDA. (Compare the black and gray curves in Figure 2.7).
Due to the fixed M, the fixed block-length n could be also a drawback to the flexibil-
ity of block lengths n. However, if changes in n are not so severe, then this constraint
can be negotiated by using shortening techniques with null symbols on « and resizing
the symbol-size s.

In this section, focusing on LT codes generated by an arranged encoder matrix
M, we simulate LT codes of 10 block lengths n from n = 100 to 1000 in the following

spectrum. First, we construct a row-degree distribution p(x) in the following way:
1. A p(r) in (2.4.6) is generated with S = 15 and n = 103,
2. Then fractions of p(x) in (2.4.16) are given as:

(a) pg = pg where d € Dy = {1,2,...,20} (for py, see Table 2.1 at p. 64);
(b) pgo = 0.02 with Dy = {60};

(¢) ppjo =0.082.
3. Then p(x) is normalized as p(x) = p(z)/p(0).
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Second, we arrange a (5n) x n encoder matrix M by using PEG algorithm [13] with

the row-degree distribution g(x). Then an m X n matrix H is generated in two ways:
E1l) Rows of H are chosen in random from M.

E2) Rows of H are randomly generated by p(x) using Mersenne Twister Algorithm

[16] on [n].

Then a svndrome symbol J3; is generated by 3; = H; - al and transmitted over BEC.
A 1158 Y i i

In both encoding schemes E1 and E2, for each fixed n:
1. the row dimension m is increased by 1 from m := n up to m := (1.3)n;
2. for each matrix dimension m xn, an m x n matrix H is constructed 1,000 times;
3. for each instance of H and a # 0, the S-MLDA is tested.

Let us now present and compare their derr and computational complexities based on
our extensive simulation results.

In Figure 2.7, for each fixed n, a black curve 1 and a gray curve 2 represent the
DFR of codes by the S-MLDA and the MPA, respectively, on H constructed by E1.
Similarly, a black curve 3 and a gray curve 4 are the DFR made by the S-MLDA and
the MPA, respectively, on H constructed by E2. When n = 500 and 1 + v = 1.02
in the bottom figure, for an example, the point (1.02,1) on the gray curves 2 and 4
indicates that the MPA never succeeds for the recovery of a. In contrast, the point
(1.02,0) on the black curves 1 and 3 indicates that the S-MLDA never fails for the
recovery of a with 1,000 constructions of H. It can be observed that, for each n, the
DFR of the S-MLDA on H, generated by El, is slightly better than the DFR of the
S-MLDA on H, generated by E2. In contrast, as 1 + -y grows to 1.3, the DFR of the
MPA on H, generated by E2, is better than the DFR on H, generated by E1. This
substantiates that, under the S-MLDA, LT codes by an arranged encoder matrix M

can also achieve the performance in + for the successful S-MLDA close to 0, when M
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Decoding Failure Rate of LT codes for 100< n < 1,000
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Figure 2.7. Performances in Decoding Error Rates under the S-MLDA and the MPA

is supplemented with a small fraction of dense rows. However, the performance v for
the successful MPA may be degraded seriously.
In Figure 2.8, for each fixed n, each curve represents the number of symbol

additions divided by n, denoted as NS in the figure, by the S-MLDA and the MLDA:

1. A black curve 1 represents the NS made by the post-decoding step of the S-

MLDA;
2. A gray curve 2 is the NS made by the original MLDA in [3];
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Number of Symbol Addition of LT codes for 100< n < 1,000 based on E1

50

NS : Num. of Sym. Add.
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= 1 by the S-MIDA
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——— 3 by Redundant Rows
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Figure 2.8. Number of Symbol Additions made by the post-decoding and the original
MLDA based on the encoding scheme E1

3. A black curve 3 is the NS made from redundant rows (recall the removal of all

redundant rows in the pre-decoding);

4. Lastly, a gray curve 4 shows the NS by the difference d* = hﬁln:ﬂ (recall the

alternative recovery in section 2.3).

When n = 500 and 1+ v = 1.15 (see the bottom figure), for an example, the point

(1+9 = 1.15,n5 = 7) on the black curve 1 and the gray point (1.15,35) on the
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Fraction of References for 100 < n < 1,000
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Figure 2.9. Fraction of References based on the Encoding Scheme E1

gray curve 2 indicates that about 7500 and 35 - 500 symbol additions is made by
the post-decoding and by the original MLDA, respectively. As v grows, the NS by
the post-decoding step is mainly contributed by the sparse fractions of p(x) and a few
dense rows of degree 5. Observe that, for any instance of n and ~, the NS by the post-
decoding is less than 17. In contrast, the NS by the original MLDA is mainly come
from the dense fraction p,, /5. Due to the dense fractions, notice that, as n increases,

the NS by the redundant rows (the black curves 3) far exceeds the NS made by the
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Number of Free Variables for 100< n < 1,000
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Figure 2.10. Number of Free Variables based on the Encoding Scheme E1

post-decoding.

In Figure 2.9, for each fixed n, a black curve indicates the fraction of references,
denoted as FR in the fingure, FR = L. When n = 500 and 1+~ = 1.1, for instance,
the point (147 = 1.1,7 = 0.04) says that C has its matrix dimension about 20 x 70
that is much smaller than 550 x 500, the dimension of H. It can be seen that, for
any instance of 1+ v and n, FR < 0.12. Thus, the performance of the GE on ' in

computational complexity is actually very efficient.
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In Figure 2.10, for each fixed n, a black curve 7 represents the number of free
variables under the S-MLDA. For an example, when n = 500, the point (1 + v =
1,n = 1.7) (see the bottom figure in Figure 2.10) says that the deficiency in rank is
approximately 1.7. From the figure, even the case when m < n, it should be noticed
that n < (n —m) + 3. We recall that, if n > 0, the GE on C identifies the 7 free

variables, and thus, « is obtainable by retransmitting symbols of free variables only.

2.8 Conclusions

In section 2.2, we introduce the S-MLDA as an advanced form of the MLDA in [3].
In section 2.3, we then estimate the complexity of the S-SMLDA which is very efficient
compared to the original MLDA. In section 2.4, we present a simple design of LT
degree distributions with a small fraction of dense rows. We then demonstrate rank
properties of a random H (including Kovalenko’s rank-distribution), generated by
our designed row-degree distribution p(z). Simulation results in terms of code per-
formances in both stable overheads v and number of symbol additions are presented
in section 2.6. Through the simulation, we provide the evidences that LT codes of
block lengths n from n = 1,000 to 10,000 can achieve stable overhead < for the
successful S-MLDA very close to 0, while the S-MLDA maintains its computational
complexity in symbol addition within few tens of n. Lastly, in section 2.7, we also
present experimental evidences which substantiate that, for short block lengths n,
100 < n < 1,000, LT codes from an arranged encoder matrix M can also achieve
performance in v close to 0, when M is supplemented with small fraction of dense

TOWS.
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CHAPTER 3

The Maximum-Likelihood Decoding
Algorithms of LDPC Codes

In this chapter, the same S-MLDA developed for LT codes in section 2.2 is applied
for the decoding of BEC based LDPC codes. Clear improvements based on the S-
MLDA over current LDPC decoding algorithms is demonstrated. We also present
experimental results which demonstrate that, under the SSMLDA, LDPC codes can
achieve performance in erasure rate p (for the successfull S-MLDA) very close to
0, while the algorithm maintains the computational complexity in symbol additions

within few tens of block lengths n.

3.1 Introduction and Backgrounds

Typically in BEC based LDPC codes, as defined in Definition 1.3.1, an LDPC code

C(H) is the kernel space
Ker(H) = {a € (F3)"|H - o =0}, (3.1.1)

where H is an m x n matrix over Fo. In general, for any given o € (F%)k, a codeword

a is generated in a systematic form a = (aj; ap) such that ap = L;llmemxka? as
shown in (1.3.4). When a is transmitted over a BEC, the overall codeword vector

a is expressed as o = (ag, ae) where ag and a, represents the received and the lost
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part of a, respectively. Let ne and ng denote the number of symbols of ae and ae,
respectively, and let X = ae. Associating the columns of H with the expression
(ae, X), let [N; M| be the rearrangement of H. Then the kernel space constraint

HaT =0 is now expressed as the consistent linear system
axT = dT where ﬁT = Nag (3.1.2)

Obviously, the system has the unique solution ae iff. Rank(M) = ne.

When H is designed with a good degree sequence, for examples the sequences in
(4,13]. then the unique solution of the system (3.1.2) can be solved by the MPA [5].
For short block lengths n, however, the successful triangulation of M by the MPA is
not guaranteed as the erasure rate p = Z£ approaches to the ideal limit 1 - R = 2,
where R = % and m = n — k. (See the DFR of codes by the MPA in Figure 3.1).

Once the initial system (3.1.2) is identified, the problem of solving the system is
same as the one of solving the system (2.1.1) of decoding LT codes, except that the
M in (3.1.2) consists of columns of H in (3.1.1) and 3 is formed by g7 = Nag.
Therefore, replacing the LT check matrix H in system (2.1.1) with M, the ALTA
designed for the H is directly applicable to the M in system (3.1.2). After the ALTA
on M, replacing HQT = (HR; Hp)] in system (2.1.6) with MQT = [MRr; Mz] and
applying the same BSR and GE developed in section 2.2, the S-MLDA system (2.1.6)

for LT codes can be modeled for the decoding of LDPC codes as following

(LOY7IS - (Mp Mp)XT = (LU)715- 5T, & (2.1.6) (3.1.3)

Based on the MLDA [3] and the system (3.1.3), the same pre-decoding and post-
decoding step developed in section 2.1 and section 2.2 are directly applicable for
solving system (3.1.3).

Although the S-MLDA for both LT and LDPC codes are alimost same, the contri-

butions to the efficiency in number of symbol additions by the pre- and post-decoding
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are quite different. In LT codes, the improvement in symbol additions with 3 con-
tributed by the step 1b) of the pre-decoding (or the removal of redundant equations)
is significant, because most of dense rows become null after the GE. On the other
hand, the improvement by the alternative recovery in step 2c) is relatively small,
because the fraction of reference T is quite small. In LDPC codes, contrastingly, the
removal of redundant equations by the step 1b) is less significant than the one for
LT codes, because, in general, the M in system (3.1.2) has no dense rows. On the
other hand, due to the large reference fractions L (or the number of columns of | é]
in system (2.1.2)), |A] is much larger than |A| + |B|. Therefore, in LDPC codes,
the alternative recovery by the step 2c) is indispensable for the efficiency of the post-
decoding. The serious degradation of the efficiency in symbol additions when A alone
is used for the FFS is presented in Figure 3.2.

Another significant difference between LT and LDPC codes is in the time-efficiency
of the initialization step of the S-MLDA. In LDPC codes, a fixed H is used for ev-
ery instance of a, and thus, the decoder can quickly setup the initial system (3.1.2)
by reading the columns of H. In contrast, based on the original LT transmission
scheme, for every instance of a received encoding symbol vector 3, rows of H should
be generated by using the same random generator of an encoder to setup the sys-
tem (2.1.1). This random generation of H, as a matter of fact, results in a nontrivial
drawback to the time-efficiency of the S-MLDA. Otherwise, rows of H should be
transmitted to receivers attached on syndrome symbols of 3 that requires nontrivial
costs in symbol-size.

In LDPC codes, particularly when H in (3.1.1) is designed with capacity ap-
proaching degree sequences, for an example the tornado sequence in [5], the a stable
erasure rate p = ﬂn‘l for the successful S-MLDA is very close to the ideal limit % This
implies that, with high probability, the S-MLDA can recover the lost symbol vector

X = «e as long as it acquires more than (1 — p)n symbols which is very close to k,
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the nummber of symbols of the information part ay. Due to the fixed code rate R =

b

3|

however, the number of symbols of a systematic part oy is constrained by a fixed k.
Thus. depending on the size of source data I, say |/|, the fixed code rate R could be a
serious drawback in LDPC codes based transmission scheme. Nonetheless, assuming
that a symbol size s is flexible to choose, this rate constraint can be negotiated by
selecting an appropriate symbol-size s. For an example, s can be chosen by s =~ I—i—'
Then the rate constraint may be further improved, if necessary, by plugging in null
symbols into a systematic part aj, called shortening codes.

The remainder of the chapter is focused on the following subjects. In section 3.2,
using the same arguments of the S-MLDA for LT codes developed in section 2.2, we
derive the S-MLDA system (3.1.3) for the decoding of LDPC codes. In this section,
we also provide exemplary pseudo-codes for routines of the S-MLDA. In section 3.3,
with the same manners in section 2.3, we estimate the computational complexities
of the S-MLDA with respect to the number of {sign, bit}-flips and symbol additions
made by the pre- and post-decoding step, respectively. We also compare the number
of symbol additions made by the post-decoding step and the original MLDA in (3].
In section 3.4, we present the simulation results tested with %—rate PEG codes [13]

under the S-MLDA for 10 block lengths n from n = 2,000 to 20,000 by 2,000, for

the performances of codes for the following scenarios:
1. the performances of the S-MLDA and the MPA in decoding failure rate;
2. the complexity of the post-decoding in symbol additions;
3. the fraction of references L to tell the complexity of the GE on C;
4. the rank-deficiencies n = dim(Ker(A)).

We then summarize the chapter in section 3.5.
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3.2 The S-MLDA Design with LDPC Codes

In this section, the S-MLDA system (3.1.3) is clarified in detail for the decoding of
LDPC codes. For each routine of the S-MLDA, an exemplary pseudo-code is also
provided. Corresponding to the expression (ag, X) in system (3.1.2), we denote £
and £ as the index set of X and ag, respectively. Thus, the M in system (3.1.2) has
the row index set [m] and the column index set €. For other notations used in this
section, see the first paragraph in section 2.2.

By the ALTA on M, first of all, a set of successive pairs in [m] x £ is obtained for

the triangular block B such that

(op. 1) = (i1, Jrg1) = - = (i Jrgt), T=n—1L (3.2.1)

Then for each index pair (s,t) € o7 x 7, the (s,t)!" entry of B can be identified

)th entry of H. An exemplary pseudo-code for the ALTA is

by reading the (is, jr+¢
described in Algorithm 3.1. In the algorithm, we design the ALTA as the iteration
between the sub-routines MPA() and Referencing() that accompany Sign-Flip().
In the algorithm, whenever the triangulation of B by the MPA() stops prematurely,
a column that is not joined into [g] nor [é] by that round, is chosen and declared
to be a column of [é,] by Referencing(). The triangulation of B proceeds in this
fashion, untill all columns of M are joined into either [ é] or [B] Many other
strategies for Referencing() can be found in (3,4].

With the returned (o, 7;) from the ALTA (see line 9 in the algorithm), let £ =

(R.R) and [m] = (T, T) the disjoint pair of [m] and &, respectively, such that

R=€\Tl={j1,...,jr}, RZle{j,-_*_l,...,j,‘_,_l}, (3.2.2)

T=O’l={'i1,...,‘il}, 'j':[m.]\dl ={‘il+l,...,im}. (3.2.3)

By extending the (o;,7;) into a row and column permutation pair (o, 7) of M such
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Algorithm 3.1: The ALTA on M

1 Input: H and (£,€) Output: (o,7))

/%<-- Initialization: -->%/
2 foreach j €€ do
s | Sign-Flip() with H/;

/%<-- Triangulation: -->%/
4 while £ # 0 do
5 if ®=10 then
6 I_ Referencing();

7 else

8 | MPA();

9 return (0;,7); Exit the Algorithm;
/%<-- Sub Routines: -->Y/

10 MPA():

11 while R # 0 do

12 foreach (i,j) € R; do

13 if j € £ then

14 reduce £ :=¢&\ j;

15 Sign-Flip() with H/;

16 update (o}, 7)) := (07, 7) U (4, j);

17 | reduce R :=R\ (i,j);

18 Referencing():

19 choose an H; such that |H;| = min{|Hs| > 0};
20 while |H;| > 1 do

21 Lchoose a j such that 1;; € H;;

22 | Sign-Flip() with HJ;

23 Sign-Flip(Q):

24 foreach 1;; € HJ do

25 flip sign(l;;) := —1;

26 reduce |H;| = |H;| —1;

27 if |H;| =1 then

28 L find the (s,t) such that ly € H; and sign(lg) = 1;

29 update R :=RU(s,t);
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that

o:[m]l—[m],o(iy)=Fk and T:&—E, (k) =k, (3.2.4)

the permutation matrix P and QT of (o, 7) can be formed by permuting rows of Iy xm
and columns of I, xne in the order of o and 7, respectively. Let M = PMQT =

[g. g] as shown in Figure 2.1-(a). Then for each (s, t) € [m]x &, the (s, t)!? element

of M is exactly the ('is,j,)m clement of H in (3.1.1). Let XT = QTXT [X7%]
R

where

Xp =z, xj] and Xp = (3.2.5)

ETTRTERS ,:er_l].
Then by QT = Q~1, similar to system (2.1.2), system PMXT = pP3T is interpreted
as MXT = p3T.

Let us now rearrange columns of MQT, as in the order of (R, R), into two parts
Mg =[H\, .. H"] and Mp = [HIr+1,. . HIrH|, (3.2.6)

Then by using S~1 = [g 9] which is in a lower triangular form, S can be factorized

into a product form of elementary matrices such that

1
II JgU-1) ... s g1, (3.2.7)

where each S(K) is formed by replacing the column (Imxm)k with the k" column M*
and [ is the number of columns of the triangular block B. (See equation (1.2.23) at

p. 19). With the product form (3.2.7), SM can be computed by the iteration
M=SWMEr k=12, (3.2.8)

Because the S-MLDA does not construct the permuted M = [C D] explicitly, the
product form (3.2.7) should be interpreted appropriately via (P, @) into an equivalent
form. With the same way for (2.2.11), let $ = PTSP and let Sk = prgk)p,

k= 1,2...,1, formed by replacing the column (Imx,”)ik with the column HIr+k.
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Algorithm 3.2: The BSR on Mg by [[i_; S®) . Alg
1 Input:Mp Output:Mp

2 foreach (ig.j,, 1) € (0;.7) as in the order do
Jh<== Mp = 8K Afp —->%/

3 | foreach 1,; € HIr+k i #i. do

4 Ladd (MR)i = (Mg)i + (M);;

5 return Mp; // <-- Mp

Then (3.2.7) is now transformed to
B 1 1
S=rlsp=T[PTs®p=T]5% (3.2.9)

k=l k=l
Consequently, similar to the one in system (2.1.3), the BSR system SMXT = p3T
is now transformed to
1 _ 1 _ 1
[(H S””) My; (H 5(“) Mﬁ} xT = (H S'("‘)) 8T & (2.1.3). (3.2.10)
k=l k=l k=l
Let Mg = SMp and Mz = SMyp. Notice that, since My = PT[(I)], the computation

of Mp is enough to set up system (3.2.10) and is accomplished by the iteration
Mp:=8®Ae, k=121 (3.2.11)

An exemplary pscudo-code for the BSR iteration (3.2.11) is described in Algo-
rithm 3.2. For the GE on Al later, we assume that My is constructed explicitly

in a ternary format {—1.0,1}.

Note that the S-MLDA does not construct the SA = [é (I)] of system (2.1.3).
Therefore, the GE on C should be designed to perform the pivoting processes on the
set of rows {(Mg);li € T}, which is equivalent to C via P. At the end, the GE

returns an updated My that cousists of {—1,1,0} with a set of successive pairs

(U',‘,Tr) = (.Sltl) - - (Sr,tr) C T X R (3212)
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Algorithm 3.3: The GE on Mp with 7 and R
1 Input:Mp, 7, and R. Output: Mgy and (o, 7).

/%<-- Initialization: -->%/
foreach i € T do
L if (Mg); =0 then

oowN

|_ discard 7 := T \ i;

/%<-- General Rounds: -->%/

while T # 0 do

/%<-- Pivot Selection: -->%/

6 choose 3s; € 7 such that |(.«’\_[R)|5k = ming 4 {|Ms|};
7 | select 31, ¢, € (MR)s;;

w

8 insert (o,,7) := (o7, 7) U (Sk. t});

/h<-- Pivoting: -->%/

9 | foreach €7 such that (mg)iy, =1 do

10 flip li*’k into _li,tk;

11 add (MR); := (Mg); + (MR)s).;

12 if |(Mz)i| =0 then

13 I_ discard 7 := 7 \i; //<-- To discard null rows
/%<-- Discarding: -->%/

14 discard 7 := T \ s;;

15 return (o, 7)) and Mp;

After the GE, an entry [;; of L or u;;j of U can be identified from the (s;, tj)th entry
of the M where s; € o, and t j € 7. While computing X7 by the FS over rows of
L then the BS over rows of U in system (2.1.6), each 1 ; of L®) or UK) corresponds
to the symbol addition (J)) = (J))x + (). Let 3T = 33T, This addition should
be interpreted as the symbol addition on 37 = §3T with Mg by looking at (o, 7;)
as in the following way. Each 1j; of L% or UK) is recoded as the —1315*'5]' or 13k¢j
in (A_[R)Sk, respectively. Therefore, the —13k~tj or 1-9k-fj corresponds to the symbol
addition ,1_35k = Bsk + st via sy, s; in o, and tjin 7. In this way, L&) and Uk
can be interpreted as LX) and U*), which is the m x m elementary matrix formed

by replacing those _lsk-’j and 15k.~‘j as the lsk’sj in the row (I,,,Xm)_.,‘k, respectively.
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Therefore, the GE on Mg is equivalent to the factorization

1 r
L' =TTL®™, ot=T]o®, (3.2.13)
k=1

k=r
where 7 is the number of columns of Mp. Consequently, multiplying the product
form (3.2.13) into the BSR system (3.2.10) verifies the S-MLDA system (3.1.3). An
exemplary pseudo-code for the GE on Mg is described in Algorithm 3.3. For the
recovery of Xg, initializing by Ty = ﬂb’k for each (si,t;) € (or,7r) in advance
replaces the symbol addition ’331; = Bsk + 35] into 4, = ¢, + 2t (see FS/BS in
Algorithm 3.4).

Let us now go back to the GE to remove redundant symbol additions in sys-
tem (3.1.3). It can be observed that, for each i € T \ or, the row (Mg); is nullified
by the GE on My, and thus, any symbol additions made with the syndrome symbol
3; is completely redundant. These redundant symbol additions can be removed by
discarding the equations M;XT = 3; in system (3.1.2) for all i € T \ or by the
step 1b) of the pre-decoding. In LDPC codes, since rows of H are sparse, these re-
dundant additions may not be a serious drawback to the efficiency of the S-MLDA.
In LT codes, however, a small fraction of dense rows in H is required to ensure that
|[H/| > 1 for all j € [n]. and most of them become redundant after the GE on Hp
(see (19, p.4] and [27, Ex-50.5]). Therefore, ahead of the post-decoding, removal of the
redundant equations is essential for the efficiency of the S-MLDA for LT codes. The
computation of C’"li_ISdT is described in Algorithm 3.4. Note that, if R = 0,
then the lost symbol vector X is simply recovered by the BSR iteration 37 := 53T
as in Algorithm 3.4.

In the alternative recovery by (2.1.7), it can be seen that, for each i} € oy, A{ik
and (A_fR)ik corresponds to (Ag, By) and Ay, respectively. Hence, by looking at
(ig, ji) € (o7, m), each zj, of X5, in the order of 7, is recovered by either MikXRT =

3

i T (;\[R)ikX%: or by Tj, = Bik + (A‘-IR)ikX7Tz- The Mp (or A) returned from
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Algorithm 3.4: The computation of g-1L-15() . gT

1 Input: o Output: 3, 4, Xp.

/%<-- Initialization: -->%/
2 foreach i € 0y Uo, do
3 set 3; := N, -(J;//(—recall dT:J\'A(,
a L copy J; := [J;; //<-for the alternative recovery

S BT =857 -->u/
s foreach (iy. ), 1) € 0y x 7 as in the order do
SUc== BT =Sk . 3T >y
¢ | foreach 1,; € H/r+ki#i; do
7 Ladd Bii=Bi+Bi;

/%<-- Initialization: -->%/
(o7, 7r) as in the order do

8 foreach (s;.1)
9 L copy 1,

L

/%<== FS by L1 =T[h_ LK) >3/

ti) € (or,7r) as in the order do
/h<== BT .= LT -5y

11 foreach —1 ko € (A\YR)SK_ do

12 Ladd Ty =Ty + T

10 foreach (sj.

/U<== BS by U1 =Ti_, UK -->u/
3 foreach (sj.ty) € (0,,7:) as in the reversed order do
L= BT = 03T -5/
4 foreach 1‘};-JE(“7R)%'J?’[’€ do
5 L add Ty =Ty + 55

16 return 3, 7, and Xg;

the BSR is not sparse in general. The top part of A is more likely sparser than the
top part of [4; B]. On the other hand, the bottom part of A is much denser than
the bottom part of [A; B]. Therefore, selecting a sparser equation by comparing the
degrees [A’\I,k| and \.\7[,,\_\ may improve the efficiency of the S-MLDA in number of
symbol additions significantly. An exemplary algorithm for the FFS is described in

Algorithm 3.5. The overall S-MLDA is summarized in Algorithm 3.6.
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Algorithm 3.5: The recovery of Xp by FFS

1 Input: Xp Output: Xp.

2 foreach (iy, ji) € (07, 7;) as in the order do
Nis== Use BiXpT = 53 + AiXgT -->U/
3 if “\[’k‘ < ](A\—In)lk\ then

4 copy ;= 3, //<-- not ’ik

5 foreach Lij € '”u»- J # jr4k do

6 Ladd ’rh~+k‘:’r11+k+‘r1;
V<= Use XpT = 8; + A XRT -->U/

7 else

8 copy &j ., 1= .71%_‘ //<-= not ’ilk

9 foreach lfk-/ € (“[R)’k do

10 Ladd T =T T T

11 return Xp;

|_Algorithm 3.6: The overall S-MLDA
1 Input: [ag, X]  Output: [Xg, Xp)
2 do ALTA by Algorithm 3.1;
if R =0 then
recover X by Algorithm 3.4;
return X;
exit the S-MLDA;

o o & w

7 construct Mp with R;

8 do the BSR by Algorithm 3.2;

9 do the GE by Algorithm 3.3;

10 if R\ 7 #0 then

11 return the free variables R\ 7,;
L exit the S-MLDA;

13 recover Xy by Algorithm 3.4;

14 recover X, by Algorithm 3.5;

15 return [Xg, Xpl;

16 exit the S-MLDA;

3.3 The Complexity of the MLDA

Similar to LT codes in section 2.3, we estimate the computational complexity of the

S-MLDA by counting the number of {sign, bit}-flips and symbol additions made by
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the pre-decoding and the post-decoding, respectively. Throughout this section, we
assume that R # 0.

Let us first estimate the complexity of the pre-decoding. By the ALTA based on
Algorithm 3.1, total |N| number of 1's is flipped into —1 to set up M, and then
every 1 in M is eventually flipped into —1. Hence, the complexity of the ALTA in
sign-flip is proportional to |H|. While computing Mg = SMp by the BSR iteration
(3.2.11), based on Algorithm 3.2, each 1in Mp (or [g]), except in the diagonal of
B. corresponds to one row addition in My (or [é]) Therefore, the BSR constitutes
the complexity proportional to 7(|]Mp| —n + r), where r is the number of columns
of Mp. By the GE on Mg, based on Algorithm 3.3, when a pivot Lty is chosen
at each pivoting round k, the row A—[Sk is added to the rows of 7 whose tkt'h column
entry is 1. Since |1\_[5-k| < (r—k)and |T| < (m =1 — k) at round k, the number of

{sign. bit} -flips together is less than

T T
S I NT =) k(1= R—pn+k), (3.3.1)
k=1 k=1
where R = 2 and c is a constant less than 1. In practice, simulations exhibit that,

n

at each round k, |T] < ’”——21_—1‘ and lMSk' < I—EA thus, ¢ < ZII Hence in total, the

number {sign, bit}-flips by the pre-decoding step is less than

r
|H| +7r[Mp| +¢ > k((1— R—p)n+k). (3.3.2)

k=1
When r &~ en with a small fraction € > 0, we may assume that, in general, the
3

2.3

estimate (3.3.2) is dominated by either (1 — R — p)e?n3 or €3

313, so that as shown
in {3, p. 4], the overall complexity of the pre-decoding step is O(n3) but with a very
small constant factor €3 or (1 — R—p)e2. For an example, as presented in Figure 3.3,
the fraction of references & from simulations of the S-MLDA is less than 0.032.

Second, let us now estimate the number of symbol additions made by the post-

decoding step.  We notice that in Algorithm 3.4, precisely, ne number of 3;’s,
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whose ¢ is in 0, U 0, are constructed to set up 3 and 3 at the initialization step of
the algorithm. Let p = Z¢. Then approximately, I—f—R(INI + n) number of symbol
additions of ag is made for 3 and 3 at the initialization step. For the computation

of ST, approximately, I—E)—HIMRI symbol additions of 3 are made. Then for the

recovery of Xp, total of (|L| + |U| — 2r) symbol additions of 3 is made by U~1L~1.

Now for cach i € 0y, let d; = min{|[(AMg);|.|AL;|}. By the alternative recovery step
(based on Algorithm 3.5), total d = Zlkzl dik symbol additions is made for the
recovery of Xp, and d < —l—f—nlz’\ﬂ. Hence in total, the number of symbol additions

made by the post-decoding is less than

%2 (|H| + |Mp| +n) +72. (3.3.3)

Lastly, let us estimate the number of symbol additions by the original MLDA in
[3]. Let the system X = 37 + AXZ alone be used for the recovery of Xz, as showed
in 4 FFS in section 2.1. At the pre-decoding step, note that only the {sign, bit}-flips
that correspond to a row addition constitute one symbol addition of 3 or 3. Foremost,
total of [V| + |Mp| symbol additions by the BSR and less than |U| — 7 + ZZ;%) 7|
row additions by the GE and U~! are made for the recovery of Xg. Then for the
recovery of Xz, total of |Mg| + (or |A| + 1) symbol additions is made. Hence in

total, the number of symbol additions by the original MLDA in (3] is less than
IN| + |Mp| + |Mg| + 12+ (1 — R - p)nr. (3.3.4)

In the following section, we substantiate that, by experimental results, the estimate
(3.3.4) is dominated by |Mp| (or |A|) as ne — m. (See green curves in Figure 3.2

that should be removed by the alternative recovery step).
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3.4 Simulations

In this section, we present the simulation results of the S-MLDA tested with %—rate
PEG LDPC codes [13]. We then demonstrate, based on the experimental results, that

some LDPC codes under the S-MLDA can achieve performance in stable erasure rates

m
n b

p (for the successful S-MLDA) very close to the ideal limit while the decoding
complexity of the post-decoding in symbol additions maintains within few tens of n.

The simulation is based on the following spectrum. First of all, for each block
length n, a check matrix H is arranged in advance by using PEG software [27] that
provides a larger local minimum cycle of columns in the best effort of the greedy

algorithm in [13]. The row and column-degree distribution (A, p) of H, whose average

row-degree is a, = 8.33, is as follows

Az) = 0457822 +0.32382° + 0.0214z? + 0.0593z% + 0.0389z7  (3.4.1)

+0.024828 + 0.00882° + 0.0177z!° + 0.0475220,

p(x) 0.6708x% + 0.3292z°.

Using the ALTA in [4], if necessary, we convert H into an approximate triangular
generator matrix G = (S, xx; Lmxm] to obtain a codeword « in a systematic form
a = (a,ap), where ap = L;llmemxka}r. Second, the tested block-lengths n are
from n = 2,000 to 20,000 by 2,000. For each n, starting from n. = (0.5)n to
ne = (0.4)n, the number of losses n, is given by the decrement ne := ne — 1. Then
for each pair (n, ne), the S-NMLDA is tested 100 times by assigning ne random losses
on a codeword a by using the Mersenne Twister algorithm [16] on [n] to measure the

performances of codes under the S-MLDA in the following scenarios:

1. decoding failure rate of codes under the S-MLDA and the MPA;
2. number of symbol additions by the post-decoding and the original MLDA [3];

3. fractions of references T;
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n=10,000

1 T T T T T T T T

0 i
0.5 049 048 047 046 045 044 043 042 041 0.4
]

Figure 3.1. Decoding Failute Rate of LDPC codes under the S-MLDA (black curves) and
the MPA (gray curves) for block lengths 2,000 < n < 20,000

4. rank-deficiency n = dim(Ker(H)).

In Figure 3.1, for each fixed n, a curve represents the decoding failure rate of
LDPC codes (denoted as DFR in the figure) in 100 trials of decoding by the S-MLDA
(black curves) and by the MPA (gray curves). For an example, when n = 10,000
(see the bottom figure in Figure 3.1), the red point (p = 0.49, DFR = 1) indicates

that the MPA never succeeds to recover pn = 4900 random losses of a. In contrast,
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the blue point (0.49,0) indicates that the S-MLDA always succeeds for the recovery
of pn = 4900 random losses. It can be seen that, when n = 10, 000, the DFR of the
S-MLDA is 0 up to p < 0.496. In contrast, the DFR of the MPA is always greater
than 0 for all p > 0.435 and is 1 for all p > 0.458. It can be also observed that,
from the top figure, for any pair (n,p) where p < 0.492, the DFR by the S-MLDA
decreases to 0 dramatically by a slight decrement in p. Thus, the maximum loss rate
D= '—;Iﬁ recoverable by the S-MLDA can be projected to the ones close to the ideal
limit 1 = R =0.5.

Figure 3.2 shows the number of symbol additions made by the post-decoding
(based on Algorithm 3.4 and 3.5) and the original MLDA in [3]. For each fixed
n. curves represent the number of symbol additions divided by n, denoted as NS
in the figure. First, a black curve 1 and a gray curve 2 indicates the NS made by
the post decoding and the original MLDA in (3], respectively. For instance, when
n = 10,000 (see the bottom figure in Figure 3.2), the point (p = 0.49,ns = 9) on
the black curve 1 indicates that, approximately, (NR)n = 90, 000 symbol additions is
made by the post-decoding, and the red point (0.49, 36) corresponds to, approximately,
360. 000 symbol additions by the original MLDA. Similarly, a gray curve 3 indicates

the difference

l

* 1 ¥

d* =~ MRl =Y di] (3.4.2)
k=1

where d;, = 111111{|J\[,-k|, ]("‘YR)ik”v i). € 0;. (Recall the alternative recovery step 2c)
in section 2.1). It can be observed that, as p — 0.5, a gray curve 2 is more likely
parallel to a gray curve 3. This tells that, as p approaches to 1 — R = 0.5, the number
of symbol additions by the original MLDA is dominated by |Ag| (or |A|). In the
top figure, notice that the NS by the post-decoding is less than 17 for any instance
of (n.p). In contrast, as n grows and p — 0.5, the red NS by the original MLDA
far exceeds the one made by the S-MLDA. This substantiates that, as p — 0.5,

the alternative recovery step of the post-decoding significantly improves the decoding
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Number of Symbol Additions by the Post-Decoding and the MLDA
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Figure 3.2. Number of Symbol Additions made by the Post-Decoding and the original
MLDA

efficiency in symbol additions. Lastly, we recall the removal of redundant equations
by the step 1b) of the pre-decoding step. In the figure, for any pair (n,p), the NR
made by the redundant rows is too small to tell. The reason to this is in the fact that
redundant rows are sparse with average degree a; = 8.33 and the number of those
rows is (1 — R — p)n. Nonetheless, the number of redundant symbol additions over

the those rows is about 8.33(1 — R — p)n and is not trivial.
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Number of References for 2,000< n < 20,000
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Figure 3.3. Number of References

In Figure 3.3, for each fixed n, a black curve represents the fraction of references
FR = %, where r is the number of columns of Mg. For an example, when n = 10,000
(the bottom figure in Figure 3.3), the point (p = 0.49,r = 0.023) indicates that
r ~ n(FR) = 230. It can be observed that, from the top figure, FR < 0,032 for
any instance of (n,p). This substantiates the very small constant fraction in the
complexity of the GE on C. (See the last paragraph in section 3.3 or (3, p. 4]).

Therefore, with such small fraction of references, the GE on Mg (or C') may not be
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Rank Deficiency of LDPC codes for 2,000< n < 20,000
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Figure 3.4. Number of Free Variables by the S-MLDA

a drawback to the overall complexity of the S-MLDA.

In Figure 3.4, for each fixed n, a black curve n = f(p) represents the number of
free variables when the S-MLDA fails to recover the lost X = ae. For an example,
when n = 10,000, the point (p = 0.498,7 = 5) (see the bottom figure in Figure 3.4)
says that the S-MLDA fails to recover the lost a. with probability DFR = 0.81 (see
Figure 3.1) and the rank-deficiency in this case is approximately 5. Thus, even the

failure cases of the S-MLDA, « is obtainable by retransmitting less than 5 symbols
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of free variables only.

3.5 Conclusions

Through the sections (3.1) and (3.2), we provide mathematical models and exemplary
algorithms of the routines of the S-MLDA for the decoding of BEC based LDPC codes.
In section 3.3, we estimate the complexity of the proposed S-MLDA. In section 3.4,
we present the simulation results of the S-MLDA tested with %-rate PEG-LPDC
codes for the performances in decoding failure rates and computational complexities.
Particularly in the section, we substantiate that the PEG-LDPC codes under the S-
MLDA can achieve performance in erasure recovery rate very close to the ideal limit
1 — R, while the S-MLDA maintains the complexity of the post-decoding in symbol

additions within few tens of n and the fraction of references -’ﬁ less than 0.032.
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