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ABSTRACT

STUDIES OF NONLINEAR PROBLEMS FOR
MAXWELL’S EQUATIONS

By

Ying Li

Consider the electromagnetic field scattered by a nonlinear optical medium. Be-
cause of inhomogeneity of the medium, the governing equations are Maxwell’s equa-
tion with jump coefficients and a source term. By using the Sommerfeld radiation
condition, the model scattering problem may be truncated into a bounded domain.
In this paper, LP estimates for Maxwell’s equation are established. The solution of
Maxwell’s equation is represented by spherical harmonics. LP estimate is for the
Maxwell equations with jump coefficients. An application of our LP estimates gives
rise to the wellposedness of a linearized model.

In part two, an adaptive finite element method is developed for solving Maxwell’s
equations in a nonlinear periodic structure. The medium or computational domain
is truncated by a perfect matched layer (PML) technique. Error estimates are
established. Numerical examples are provided, which illustrate the efficiency of the
method.

In part three, an inverse scattering problem is formulated for breast cancer de-
tection. A recursive linearization algorithm is used to solve the inverse scattering
problem. We employed the idea of finite element boundary integral method and
added suitable boundary conditions on the surface of the breast and an artificial
boundary which encloses the tumor. Finite element method is used for the inte-
rior domain containing inhomogeneity. Nystrom method is used for the integral

equations and exterior domain. Numerical examples are presented.
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Introduction

This research focuses on mathematical and computational studies of second har-
monic generation in electromagnetism and optics. Second harmonic generation
arises from the nonlinearity of optical materials. When a plane wave with frequency
w is incident on a nonlinear structure, the nonlinearity of the structure gives rise
to the scattered waves at both frequency w and 2w. This important phenomenon
is known as Second Harmonic Generation (SHG) in nonlinear optics. A significant
application of SHG is to obtain coherent beams of light in parts of the spectrum
at which lasers cannot be made and to construct optoelectronic devices based on
nonlinear effects in waveguides and optical fibers.

In chapter one, we established the uniqueness and existence of the solution of
Maxwell’s equations in a bounded domain containing a nonlinear medium. Consider
the electromagnetic field scattered by the nonlinear medium. Because of inhomo-
geneity of the medium, the governing equations are Maxwell’s equation with jump
coeflicients and a source term. By using the Sommerfeld radiation condition, the
model scattering problem may be truncated into a bounded domain. The solution
of Maxwell’s equation is represented by spherical harmonics. LP estimate for the
equations are established, which gives rise to the wellposedness of a linearized model.

In practice, the SHG optical effects are often too weak to be observed. Therefore,
modeling and enhancement of SHG are of great interest to potential real applica-

tions. It is pointed out that the SHG can be greatly enhanced in periodic structures.



In chapter two, questions on the existence and uniqueness have been studied. We
have developed an adaptive finite element method for solving the model scattering
problem. The medium or computational domain is truncated by a perfect matched
layer (PML) technique. Error estimates are established. Numerical examples are
provided, which illustrate the efficiency of the method. Numerical solution of the
nonlinear model problem in three dimensions is completely open, which will be one
of my future projects.

In chapter three, we consider the inverse scattering problem arising from breast
cancer detection. The problem is to determine the dielectric property of the tissues
from the measurements of electromagnetic field on the surface, given the incident
field. In addition to the ill-posedness and nonlinearity of the inverse scattering
problem, one major difficulty lies in the multiple scales of the problem. The tumor
is comparably small in the computational domain, which makes the computation
challenging. Another difficulty is due to the dispersive nature of the human body.
Maxwell’s equations in dispersive media must be studied. A continuation method
is developed for this problem. The algorithm needs multi-frequency Dirichlet and
Neumann data on the surface. The initial guess comes from Born approximation.

The dielectric constant is updated by using higher and higher wavenumber k.



CHAPTER 1

LP estimate of Maxwell’s

equations in a bounded domain

1.1 Introduction

Second harmonic generation (SHG) is a well known nonlinear optical effect. It was
first demonstrated by P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich [33]
in 1961. The demonstration was made possible by the invention of laser in 1960,
which created the required high intensity monochromatic light. In the experiment,
they focused a ruby laser with a wavelength of 694 nm into a quartz sample. They
sent the output light through a spectrometer, recording the spectrum on photo-
graphic paper, which indicated the production of light at 347 nm. The physical
mechanism behind SHG can be understood as follows. Due to the nonlinearity, the
incident (pump) wave generates a nonlinear polarization which oscillates with twice
the fundamental frequency. According to Maxwell’s equations, this nonlinear po-
larization radiates an electromagnetic field with this doubled frequency. The latter
also interacts with the fundamental wave, so that the pump wave can be attenuated

(pump depletion) when the second harmonic intensity develops. Energy is trans-



ferred from the pump wave to the second harmonic wave. It is a very important
nonlinear optical effect because theoretically coherent beams of light can be obtained
in parts of the spectrum at which lasers cannot be made and optoelectronic devices
based on nonlinear effects in waveguides and optical fibres can be constructed. The
reader is referred to [52] for detailed descriptions of nonlinear optics.

A PDE model was introduced in [48], [49] and [50] to describe nonlinear SHG in
periodic structures. In Bao, Minut and Zhou [18], the regularity is studied for the
solutions of Maxwell’s equations with source term in a domain with jump dielectric
coefficients. These LP estimates are further employed to solve the linearized SHG
problem in a periodic structure. In this paper, we study the regularity of Maxwell’s
equations for the scattering by a bounded domain of a nonlinear medium. Although
the interior estimate is the same as in [18], the boundary estimate requires a new
technique. A striking difference is due to the decay rate of the fields away from the
medium. In the periodic case [18], the fields decay exponentially, which makes the
L®° norm estimate easier. For the scattering from a bounded medium, because of
the slow decay of the fields away from the medium, we must use fine properties of
the Hankel functions and spherical harmonics.

For simplicity we assume the medium is nonmagnetic (1 = p() and no external

current or charge is present in the field. The following Maxwell’s equations hold:

where E is the electric field, H is the magnetic field, B is the magnetic induction,

and D is the electric induction. The constitutive equations are:

B

uoH,

ol
Il

GOE + }-5,



where pi is the constant magnetic permeability, €() is the dielectric permittivity in
vacuum. P is the polarization.
The time harmonic solutions of Maxwell equations, also called plane waves,

are complex-valued fields:

E(z,1) = R(E(z)e(~1),

H(z,t) = R(H (z)el 1)),

that satisfy the system of time-harmonic Maxwell equations:

—

Vv xXE = —z'w,uﬁ,

where w stands for the frequency of the electromagnetic waves.

In the linear case, the polarization is induced linearly by the electric field:

where x(l) is called the linear susceptibility tensor. Thus, if a beam of angular fre-
quency w is passing through the medium, a polarization oscillating at w is produced
which in turn serves as a source for the further propagation of the original wave at
w.

If the light intensity is high (as lasers), the nonlinear effect will play a role and

the polarization will depend nonlinearly on the electric field [52]:
P=xWE @ g2 1 ,B)F

where x(l) is the i-th order susceptibility tensor. Throughout, we restrict our at-

tention to the 2nd order susceptibility by ignoring the higher order terms. Hence

5 _ (1) @) e g
P= > xjE+ X xjiEEk
j=172a3 ],A=1,2,3



where E; is the i-th component of E. 1t is clear that the second term in the

polarization may generate fields of frequency 2w. Let
EUw) — Ef(()jw)(x)e—'ijwt + ETO’(jw)(I)eijwt_
We can write the total field as
E=EW) 4 Ew),
Tidwt terms,

Then, by omitting e

EjEk _ (E(u-))(:r)e_zwt+E( )( Je 2wt+EOJ )(:l:) —22wt+E(2w)(x)622wt)

0y 0y
(E(w)( )e~ E(w)(m) 2wt+E( )(z) —12wt E(i‘”)( Je szt)
— E(w)E((;;C)) —12wt E(g(;) E(()iw)e’lwt + E(U{)Eék)eﬂwt
+ E( )E(Qw) —iwt + E(zw)E( )e—zwt E(zw)E(w) zwt

07 ~0k 07 “0k 0k ©

It follows that

(W —zwt (W) wt (2w) —i2wt | m(2w) 2wt
P = le] E +E0] e +E0j e +E0j e ")

) —i2wt | pW) p(20) dwt | p(W) GW) i2wt
+Z zjk € + By Egy €+ Egy Ege
(W) (2w) —iwt | p(20) (W) —iwt | p(2w) (W) iwt
+ By Bgy et B By et 4 B By et

by ignoring the 3w and higher order terms. Evidently, the combination of two fields
of frequency w generates the second harmonic field.
The time-harmonic Maxwell’s equations become (by dropping subscript 0 to

simplify the notation)

)

vxﬁ(') zweOE +szx k w)+E](-2w)E(w)),



2w) 2u))

\V/ xE( = —z‘).u;zOH(

7 (2w 2 (w
va( ) = z‘ueOE( w) +22u2£x ; )Ek )
J

The nonlinear polarization may be treated as a source term in Maxwell’s equations.
p Yy

Rewrite the equations as

Vv xH =iweFE + 3, (1.1.1)

where g is the source term.

The rest of this paper is organized as follows. In the next section, spherical
harmonics are introduced to represent the magnetic field. The boundary condition
is derived on the artificial boundary Sp. Section 3 is devoted to establishing the
LP estimate on S R- The wellposedness of the model problem is proved in Section 4

and Section 5.

1.2 Spherical Harmonics

Consider a bounded nonlinear medium enclosed by a boundary surface S. Assume
that the dielectric coefficient is €7 inside S; ¢ outside of S. It is assumed to be
vacuum outside the medium.

Now let Sp be the sphere of radius R such that Sp encloses the whole nonlinear
medium. Outside the medium, the electromagnetic fields satisfy (1.1.1) with g = 0.
For simplicity, the arrows are omitted throughout this section. Taking curl of the

second equation and eliminating the electric field E' gives:
vV x(vxH)= —w2;teH.
By employing the vector identity:

VX (VxA)=v(v-A)—(V-V)A,



Figure 1.1. Geometry of the scattering problem

Nonlinear Medum €=¢€

and

\VA (V X B) = Oa
we obtain the Helmholtz equation:

AH +k2H =0, (1.2.1)

where k = w2

ep is the wave number in vacuum.
To ensure the uniqueness of the solution, the following Sommerfeld’s radiation

condition is imposed:

oH .
loor(_("—);: —ikH) =0.

line
T —
We will now use spherical harmonics to represent the solution of this equation.

Spherical harmonics are the angular portion of an orthogonal set of solutions to



Laplace’s equation represented in a system of spherical coordinates. The readers
are referred to [45] and [1] for detailed discussions of spherical harmonics.
In spherical coordinates, equation (1.2.1) becomes

19, 90H 1
222+ A
T

—Z 2y
Tzar(r o 5 SUH+kH 0,

where

1 9% 109, .0
ASU " sin2 0 0¢2 * sinG%(smgﬁ)

is the Laplace-Beltrami operator on the unit sphere S;. The Hermitian product in

L2(SU) is given by

2r T
/SU uﬁdaz/o /0 u(6, $)v(0, @) sin 0dHd¢.

Let H 1(SU) be the Hilbert space
HY(S) = {u € L*(Sp), v, u € (LA(Sp))*)

with its Hermitian product

u,v = - | uvdo+ v qu v)do.
( )HI(SU) 1)s S( SUAVAED)

The Laplace-Beltrami operator is self-adjoint in the space L2(S ). It admits a family
of eigenfunctions which constitutes an orthogonal basis for the space LQ(S). This
basis is also orthogonal for the scalar product in H 1(S). These eigenfunctions are
called spherical harmonics.

Denote by }); the space of homogeneous polynomials of degree [ that are har-
monic, with restrictions to the unit sphere. We list the following theorem from [45]

without proof:

Theorem 1.2.1. Let Ylm, =l <m <, denote an orthonormal basis of Yy for the
hermitian product of LQ(S). The functions Ylm, for 1 >0 and =l < m <, consti-

tute an orthogonal basis in LQ(S), which is also orthogonal in HI(S). Moreover, J)



coincides with the subspace spanned by the eigenfunctions of the Laplace-Beltrami

operator associated with the eigenvalue —I(l + 1), i.e.,
AgY" +1(l+1)Y" =0,
and the eigenvalue —I(l + 1) has multiplicity 21 + 1.

The spherical harmonics of order [ are the 2! + 1 functions of the form:
1

l
m _ (_1\m 2( zm¢ m oS

where IP’lm(cos(O)) are associated Legendre functions. They have the following

properties:

-m ml—m)
P =00 (z+m§!lpl’

Y™ (6, 6) = (—1)™Y;™(6,4),

where the superscript * denotes complex conjugation. The spherical harmonics form
a complete set of orthonormal functions and thus form a vector space analogous to
unit basis vectors. On the unit sphere, any square integrable function can thus be

expanded as a linear combination of these:

szz

l=0m=-1

The expansion coeflicients can be obtained by:

2 s
= /Q 1(6,6)Y™ (6, 6)d92 = /0 do /0 dsin8f (8, 6)Y[™* (6, 9).

We now expand the magnetic field by spherical harmonics. Let

H(r,0,¢) = Zle) Z Y™, 6).

=0 m=—I

10



Suppose that on the boundary Sp:

HRO9= z 6.0

l=0m=-—
for some constants uzn. Substituting this solution into the Helmholtz equation, we

have

l(l+1)
r

d%H, RLL

2 _
d7‘2 r dr + (k

JH) =0,

i.e., the spherical Bessel equation. It can be transformed by rescaling to

d2Hl 2dH, I1+1) + 1)
—t4(1- = 2.

72 r I + ( . ——)H; =0. (1.2.2)

A useful Lemma from [45] about the spherical Bessel equation is stated here without

proof.

Lemma 1.2.1. The spherical Bessel equation (1.2.2) admits two families of solu-

tions, known as spherical Hankel functions, which satisfy the recursion formulas

d ! I+1
g = H-H y=———H+H_

20 + 1
Hy1+H_1=—

H.

The spherical Hankel functions are given by the expressions

w ) = (—r)l(%%)%%),
2 1d
WD) = (G e,

more specifically by

hl(l)(7)=(—z)le (a{)wi’ o+ (B L),
nP ) = e
5£n_ (m+1)!

m!(l —m)!12m’

11



The function

satisfies the recursion formula
(51— U=D)(z+1+1) =12
Moreover,

1 1 2, (1), 12
l1+ay— +...+a;—= =7r°|h;" ' (1)|%,
|5+t af g =V o)
Il _ ol am
om = BmbPm.-

In addition

Writing the solution as:

Hy(r) = vt h () + 223 (kr).

By looking at the explicit forms of spherical Hankel functions:

W00 = ' g+ it L ok D
»

hP () = ! )(r),

we obtain:

H =3 S R k) - in{D k),

l=0m=-I

+ kv'?h;"'(%hl@)(kr) — i (k)Y (6, 6).

12

(1.2.3)



From Theorem 1.2.1, we know that
ikr ikr ikr

SV ) = D r) ~ (- g — i )
= A=)
irﬂz@)(kr) — i (kr) ~ () -ike‘i’;;:; e~tkr i(i)le_:kr)

But by the Sommerfeld’s radiation condition, we need r(aa—H —ikH) —» 0asr — oo,
r
which concludes that 712 =0.

Plugging in the boundary condition, the solution becomes

Hr6,0)=Y Y —(l-l)— mym 9, ). (1.2.4)
=0m=—th (kR)

On Sp, we have

oOH
lsp =TrRH = Z Z —zl (kR)u]"Y]™(6, ). (1.2.5)

l=0m=-1

It follows that the problem may be truncated into a bounded domain with the

boundary Sp and a boundary condition (1.2.5) on Sp.

1.3 Boundary Estimate

Our goal is to establish global estimates for the solutions of the scattering problem.
We first present a local estimate from [18] which provides the LP estimate inside
the dielectric and on the interface. Throughout the paper, C stands for a positive
generic constant whose value may vary step by step but should always be clear from
the context.

Let 1 < p < 00, let B be an open ball in R3 and let § € LP(B). Let E € LP(B)
and H € WL P(B) be a solution of (1.1.1).

13



Let Sbea C2 surface embedded in R3 such that S divides B into two connected

components Bt and B~. Assume the electric permittivity € is defined by
et in BY,
€ in B™.
Theorem 1.3.1. (Local estimate) For any B' with B' C B,
1EN Lo gy + 181 1, p gy < CUAN o gy + 18l o) + 1 -1, p )
where C 1is a constant depending only on p, B' and B.

Therefore, in order to establish global estimates, it suffices now to obtain LP
estimates for the solutions of Maxwell’s equations on Sp. Our main result in this

paper is:

Theorem 1.3.2. Let 2 = {z|R -6 < |z]| £ R}, 1 < p < oo. Assume that
HewbhP(Q), E € LP(Q) in Q satisfy:

\V/ xE = —iw,uﬁ,
v xH = iwek.
Then
H < C|H
for any ¥ = {z|]R—§ < R' < |z| < R} C Q.

Remark 1.3.3. In fact since no forcing term is present, Theorem 2.5.2 holds also for

p=1, co.

Let Q; = Q and Qe = {z|R < |z| < R+ 6}, and Q9 = {z|R - 0 < |z| < R+ 4}
Thus in Q9, the Helmholtz equation (1.2.1) holds. We have

”H”WI’p(Ql) < CHH”LP(Q2),

14



for any Q7 C € from standard interior elliptic estimates [34]. Let Q7 = Q;(1€;.
Then

IH1] <ClH|

leP(Q’I) wlp) = ClH Lp(y)

In order to prove the theorem, we need to estimate “H“Lp(Qe) by “H“LP(Q)
i
Claim: ”H“Lp(Qe) < C“H”Lp(SR)'

If the claim is true, then we have

H H H
1H11,p(gy < CUH 2, + 1 p(s )
The trace theorem and Nirenberg-Gagliardo inequality [2] imply that

1H|E 58

181 p(spy < CIHI 1 <cla|® Hlo)

L,por
=+, W E(Q7)
w2 Py

<n|H + Cpl|H Y
1
where 0 < ¢ < 2 0 < a < 1, n is any positive constant, and Cp depends on the

choice of . Thus

”Hnwl,p(ﬂll) < C”H“Lp(Qi)'
Proof of the claim. We prove the result by examining each of the three possible
cases.
Case 1: p=2. Note that

9 2w 00
112, / g mYm(9, 6)-
| = Om = —

Z Z al'y™ (8, ¢) R? sin 0dfds
Z Z [u |2R2

l=0m=
by the orthonormality of spherical harmomcs. It follows from (1.2.3) that

15



l=0m= -1
! (1)
RS m 252 R+06 ny(kr) 212—(1
= > W l(l) |R2r
I—om=—1 by (kR)
I I

! R+6 2 L
=Y Y 2R r k2r? dr
! R  R2 ;1 T

k2 R2
! 1+ +otalt
2 o [ 115 “anal
l=0m = —I 1+a1—2—§+...+alm
00 l
<630 D PR
l=0m=-1
<ClH|?, . .
L*(Sp)
It is worthwhile to note that from the computation above
H < ||H for all r > R.
| ”LQ(ST) < ”LQ(SR) >

Case 2: 2 < p < o0.

We only need to consider the case p = 0o, the rest follows from Riesz convexity
theorem. The idea here is that we show first that for small enough § > 0, there
is a positive function f(r) on [R, R + d] such that the maximum of f(r)|H| on Qe

is on 0€¢, i.e., we have the maximum principle for f(r)H on the domain Q¢. Re-

16



member that this f(r) is needed since H itself can not have the maximum principle.

After this modified maximum principle is established, we only need to show that

H <C|H .
| ”LOO(SR-i-é) <C| “LOO(SR)
To construct the function f(r), set V = f(r)H. We have

AV = (02 ) + 5 A5V

_9%H oH OH
= L)+ 25 L)+ I OH + 25 1)+ ZHI0) + 5 ASH()

— _k2H[(r) + 298
or
1%

o—
__2 _f’ fll fl
_kv+28rf+fv+ Vf

Vlf f fll 2 fl
i) vyl

72 —+-fV—+— 7
IRV ggv 2°f

In order to use maximum principle of elliptic differential equations, we need to find

Fr)+ fVH + 2H ()

= —k2V +2f'

a function f such that

/ " 2 !
2yl L2
f forf
Let — = y. Then the equation becomes

2
k2+y2—y’—7y§0.

Now set y = k tan(k(r—R)), 6 < ﬂ Then y' = k2(1+ta712( k(r—R))) = k2+y2,

2y
and y > 0 on [R, R + ¢]. Consequently, k2 4 y2 -y - T <0on [R,R+/].

It is easy to verify that
1
cosk(r — R)

is a solution for y = k tan(k(r — R)). Therefore 1 < f < /2 on [R, R+ 6] for any

f=

™ . . . .
d < —. When 7 € [R, R + §], the function |V| achieves its maximum value on the

4k

boundary.

17



Next, we will show that
H < C|H .
| ”LOO(SR " 6) <] “LOO(SR)
From the arguments for p = 2, we know that

<ClHl 2,5 ) < ClHI 005 )

17 "LQ(R <r<R+25)" (SR)

The standard elliptical theory concludes that

IH]| < C|H|

W22(R+6/2<r<R+36/2) L] (R<r <R+28)

The Sobolev embedding theorem implies that
H <C|H .
| ”LOO(SR +6) = 1412, 2(R+6/2 <1< R+36/2)
Combing these estimates yields
H <C||H .
I ”LOO(SR+ 6) <Cl ”LOO(SR)

Case 3: 1<p<2.

Consider a sequence of smooth function {Hn} on Sp, such that

\Hn — H| 1 — 0 aa n — oo Write Hp in spherical har-
L*(SR)
00
monics: Hp(R,0,¢) = Z Z h Define THp(R,0,¢) =
[=0m=—
Z Z —(lﬂ——hnlYlm(Q,d)). There exists g(r,0,¢) € L%(Qe) and
l=0m=—lhl (kR)

U= U Frrrs1] = [RR+7], and ||gk(9,¢)[|Loo(Qk) < 2, where
k=1 k=1 '
Q. = {(r,0,9)|r € I}, such that

18



[ Hnll = |THn(R,0,9)]

LY(Qe)
iy / THn(R,0,$)g(r,8, $)dV|
Qe

LY(Qe)

N
1Y [ THu(R6,6)940,¢)x;,4V1

N
1Y [ THn(R.0.0)04(0,0)aV| = T
= k

Write g;.(0, ¢) in expansion of spherical harmonics:

Z Z Y] (6, 0),

l=0m = -l

N Tk +1 2 7 00 l 9
-1y /O /0 THR6,¢) Y Y anlem(G,d))r sin 8ddgdr]

N T 2 o
k+1
-1y [P [ HRe
1
= Lo 2
: Z Z —_nlel (8, @)r° sin 0dfdodr|

From Case 2, we know that ITg;.(6,9) ”LOO(Qe)

IN

Cll Z Z nqu 0¢||Loo (Sp) Therefore

=0m=—

I<ClH]| 1 Z IT gl oo (g, Tkl < CIIH|

1 .
R) 2, L' (SR)

By the density of C%°(Sp) in LI(SR), we proved the conclusion for p = 1. Again

from the Reisz Convexity Theorem, we get

for1 <p<2 a
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1.4 Existence and Uniqueness

In this section, we establish the existence and uniqueness of solutions for the lin-

earized SHG problem. By linearization, we mean the following equations:

\V/ xE(w) = —iwuol-—l‘(w),

\V/ x W) = iweoﬁ(w)
and

v xE(z“") = —i2w,u0ﬁ(2w),
\V4 x H(20) — i2w605(2w) + iQwaF?IZE](w)E}(Cw).
J, k
This approximation assumes that the electric field of the incident and diffracted
waves at the initial frequency w inside the nonlinear medium acts as a source for
field generation at 2w. In addition, the SHG is assumed to be so weak that its
influence on the field at the initial frequency is negligible.
From the regularity result proved in this paper, we obtain the following well-

posedness result.

Theorem 1.4.1. Let Sp = {r| |z| = R}, B = {z | |z| < R} and Q C Bp.

Suppose X(]Ql)c € L°(N), X(]21)c =0 in B\ Q, supp(m) C Br \ Q for somer < R,

and m € L®°(Q). Let

€ n BR\Q,

€ =
€1 in L
Then the linearized SHG model problem

\V/ xE(w) = —iwuﬁ(“}),

—

v x H() = e EW) +m,
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\V4 XE(ZU) = —i2w;1ﬁ(2w),

v x H(2) = iQwGE(Qw) + 12w Z x(j})cE](w)E’{W) in Bp,
Jk
OH .

has a unique solution (I_{'(w),ﬁ@“’)) e WhiP and (E(w)’E‘(Qw)) € LP for any

1< p<oo.

Proof. By [1], we know that there is a unique solution AW) e wl 2(Q) and EW) €
L(Q).
From the regularity result Theorem 2.5.2, H(“) € wlP(Q) and EW) e LP(Q).

~ . 2) L(w) (w
Hence § = szZx_(jlz,E.g )El(c ) € Lp/2(Q), for1 <p < oo
5k
It follows that there exists a unique solution A(2w) ewhp (Q) and consequently
Ew) ¢ p () by a similar argument. O

Remark 1.4.2. If in addition, X(]zl)c € C%(N) and m € C*(R), we have H(2w) ¢
wlr@ynecl ¢@) and Ew) ¢ LP(2) N C*(2) by the following argument.
According to the standard elliptic regularity theory in [34], H € C g () for some

0<B<1and |H]| < C with Q' C Q.

cBq)
The standard elliptic regularity results indicate the C 1, regularity of H away
from a tubular neighborhood of S and near the boundary Sp.

For any fixed 20¢Sandr> 0, denote
Qr ={z| |- I(l)| <r,|rg - .’L‘(Z)l <rlrg— :Lg| <r}.

One may choose R such that Qp C €. Using a transformation, Q i is mapped into
a set containing a neighborhood @ Ry of the origin. Without loss of generality, the
preimage of @ Ry is assumed to contain @ R/2: For simplicity, we shall omit the

primes and set (in the new coordinate system)
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QEO =R, (Viz3 > 0},Q}g0 = QR [{z3 < 0}.
Consider a more general model problem in Q Ry

Ou 0 Ju

0
O—Ii(aijﬁj)+67j(bj)u+cj67j+du+f—0. (1.4.1)

Suppose that u € C7(QRO)ﬂH1(QRO). Suppose also that the coefficients aij,

bj € C’Y(Qﬁo) and ¢, d, f € C(ng) have a jump at z3 = 0, bj, and the principle

part of the operator is elliptic in QRO’ i.e., there is a constant ¢ such that

1Y aii€650 > colél?.

The C1: @ regularity of H near the boundary S can be obtained by the following

theorem. See (8] for a proof.

Theorem 1.4.3. Under the above assumptions, the solution of (1.4.1) satisfies

uGCl’a

+
@, 4

for some 0 < a < 1.
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CHAPTER 2

Numerical Solution of Nonlinear

Diffraction Problems

2.1 Introduction

Consider a plane wave with frequency w which is incident on a nonlinear periodic
structure (grating). The nonlinearity of the structure gives rise to the diffracted
waves at both frequency w and 2w. This important phenomenon is known as Sec-
ond Harmonic Generation (SHG) in nonlinear optics. A significant application of
SHG is to obtain coherent beams of light in parts of the spectrum at which lasers
cannot be made and to construct optoelectronic devices based on nonlinear effects in
waveguides and optical fibers. We refer to [52] for a detailed description of nonlinear
optics.

In practice, however, the SHG optical effects are often too weak to be observed.
Therefore, modeling and enhancement of SHG are of great interest to potential real
applications. Recently, a PDE model was introduced in [48], [49] and [50] to describe
nonlinear SHG in diffractive gratings. It is also pointed out in [49] and [50] that

the SHG can be greatly enhanced in periodic structures. Questions on the existence

23



and uniqueness have been studied in [8]. We also refer to [12] for more recent results
on the optimal design of nonlinear gratings.

To solve the model scattering problem, the first difficulty is to truncate the
domain into a bounded computational domain. In [7] and [11] the authors used finite
element method based on variational formulation in the bounded domain containing
the medium, with periodic condition in x] direction and transparent boundary
condition on the top and bottom boundaries. The derived transparent boundary
condition is represented by a quasi-differential operator and is nonlocal. In practical
computations, the infinite series in the definition of the quasi-differential operator
have to be truncated. Here we apply the perfectly matched layer (PML) technique
to truncate the unbounded domain. PML was first introduced by Berenger in [21]. It
provides a reflectionless interface between the region of interest and the PML layers
at all incident angles. The layers themselves are lossy, so that after a few layers the
wave is significantly attenuated. The main advantage of a perfectly matched layer
as a boundary condition is that it provides a reflectionless interface for the outgoing
wave at all incident angles. Another advantage is that it preserves the sparse nature
of the FEM matrix, so that the matrix system can be solved easily. We refer to [54]
for a review on PML methods. In practical applications involving the PML method,
there is a judicial compromise between a thin layer, which requires a rapid variation
of the artificial material property, and a thick layer, which requires more grid points
and hence more computer time and more storage (See [25]). In this paper, we use
an a posteriori error estimate to determine the PML parameters. Moreover, the
derived a posteriori error estimate shows exponential decay in terms of the distance
to the computational domain. This property leads to coarse mesh size away from
the computational domain and thus makes the total computational cost insensitive
to the thickness of the PML absorbing layer.

Moreover, since the grating surface is usually piecewise smooth, and across the
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surface the dielectric coefficient is discontinuous, the solution of the scattering prob-
lem will have singularities which slow down the finite element convergence when
using uniform mesh refinements. The a posteriori estimate adaptively determines
the finite element mesh size which overcomes this difficulty.

We refer the readers to [10],[11], and [47] for a general review of the modeling
and computation of the grating problem. An introduction of PML and adaptive

finite element method applied to linear grating problems may be found in [22].

2.2 Modeling of the Nonlinear Grating Problem

Assume the medium is nonmagnetic (1 = p() and no external current or charge is
present in the field. For convenience, the magnetic permeability is assumed to be
unity everywhere. The following time harmonic Maxwell’s equations (time depen-

dence e~ W) hold:

Vxﬁz?H V-H=0, (2.2.1)
~ W = o
VxH=-—D V-D=0, (2.2.2)

where E is the electric field, H is the magnetic field, D is the electric induction, and

c is speed of the light. The constitutive equation is:

—_ —

D=c¢E+ 47rx(2)(:c,w) : FE,

where € is the dielectric permittivity, w is angular frequency, and x(z) is the second

order nonlinear susceptibility tensor of third rank, i.e., x(2) . EE is a vector whose

3
jth component is Z Xﬁ)l ELE;, j =1,2,3. The medium is said to be linear if

k,l=1

D = €E or X(Q) vanishes. In principle, essentially all optical media are nonlinear,

i.e., D is a nonlinear function of F.

25



In this paper, we only consider the 1-D grating problem by assuming that all
fields are constant in the r3 direction. The medium is determined by the dielectric
coefficient €(z,w) = €(z1,z9,w). Assume that the dielectric coefficient is periodic

in z1 direction with period L:
€(r1 +nL,r9,w) = €(z1,79,w), Vz],T9 € R, n integer.
Assume that the nonlinear medium is contained in the region
Q={(x1,79): 0 <z <L and by <z9 <by}

for some positive constants by and bg.
Assume that € is constant away from a region 2, i.e., there exist constants €}

and €9, such that:

€(z1,29,w) = €1(w) in Q) = {(z1,z9) : z9 > b1},

€(z1,T9,w) = €e9(w) in Q9 = {(z1,79) : 29 < by},

and € is piecewise constant in {2 with jumps at certain interfaces. Assume further
that 7, Q9 are linear media.

The assumption on the piecewise linear medium is technical which is needed
to assure proper regularity of the solution. The main theoretical results (Theorem
2.4.1, Theorem 2.5.2) remain valid in the case of an inhomogeneous medium with
sufficient smooth € and interfaces by the regularity result in [8].

The electric field of the incident and diffracted waves at the fundamental fre-
quency wj inside the nonlinear medium acts as a source for the field generation at
the second harmonic frequency 2wy, and it is assumed that the SHG is so weak that
its influence on the field at the fundamental frequency is negligible. This is the well

known undepleted pump approximation in the literature. See [49] and [50]. Under
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Q9
T]

Figure 2.1. Geometry of the grating problem

this assumption, the electric induction D may be written as:

ﬁ(z,wl) = e(x,wl)E(l',wl),

ﬁ(r,wQ) = e(x,wQ)E(I,wQ) + 47rx(2)(:£,w2) : E(z,wl)g(x,wl),

where wy = 2wy.

In the linear case, TE polarization means the electric field is transversal to (z1,
z9) plane. TM polarization means the magnetic field is transversal to (z7, z9)
plane. In the nonlinear case, however, the polarization is determined by group sym-
metry properties of x(z). Here we assume that the electromagnetic fields are TM
polarized at the frequency wj and TE polarized at the frequency wg. This polariza-
tion assumption is known to support a large class of nonlinear optical materials, for
example, crystals with cubic symmetry structures. See [12] for detailed information.

Therefore

H(z,wy) = H(z,w])73,

i

E(r,w9) = E(x,wy)r3.
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Define for convenience

w;
kj(:r) = ?],/e(x,wj), in §,

W
S —, (w

j)1 j’ l = 1’ 2'
From equation (2.2.2), we deduce that

0H(z,wy) O0H(z,wq) iw
Ty a0 =~ relmwn) - (Bi(zwn), Eylaw), Eg(awp))

So
8[‘1(:1:,&)1) _ iwl
Torg ¢ e(z,w1)Ey(z,w1),
OH(z,wy)  iwp
gy T e €(z,wq)Ey(z,wy).

Also from equation (2.2.1),

OE2 OE, OE; OEa 0E, OE iw
(83:3_8 2’6 l_a 3’3 2‘5 1y="1(0,0, 1),
g 0Ozz Org Ory Or) <) c

where for simplicity, we omitted the variables. Hence

iw_lH — 6E2 _ 6E1
c dr; Oxo’
It follows that

2 2 52 2
1 c“  OH OH c“ 0“H 0“H
Ve (5VH) =V (—(5—7—0) = (5 + —5),
2V =V o e ae ) = 2 5 T o)
c 0By 0E;, ¢ 9°H 9’H

T iw) Oz 019 )

= - _
w%e Br% 8:::%

Therefore we get the equation at frequency wy:

1
V-(—QVH)+H=O.
k
1
By a similar derivation, the equation at frequency w9 can be obtained:

2
—4Tl'w.2

2 , Z} ) SXL()E-%(JI,w2)(E(z,w1))j(E(I’w1))l
Jt=1,4,

(A +k3)E =

= Y pj 10z ; HOx H,
jl=1,2
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; 167 2
a 2)X§, )1
(e(z,wy))e Y
Throughout, we assume that ky; > 0, Rko; > 0, Sko; > 0, Rkq(z) > 0,
17 2j 2j 1

where Pl = (-1)

Sky(z) > 0.

2.3 Variational Formulation

Let uy = @121 = P12 pe the incoming incident plane wave upon the grating
surface from the top, where a; = kyysinf, 31 = kjjcosé, and —g <0< ZQT- is
the angle of the incident. We are interested in the “quasiperiodic” solutions, i.e.,
solutions (H, E), such that u = He™'@1%1 and v = Ee~ 0271 (ag = koysin#)
are periodic in 7 with period L.

2
For each integer n, let a(n) = % Since u and v are periodic in z7, they have

the following Fourier expansions:

u(z),79) = Y u(")(ﬂfz)eia(n)xl,
ne
vz z) = ) o) ($2)eia(n)x1,
nez
L . (n L :
where u(n)(:cg) = %/0 ue_w‘( )xldarl and v(n)(xQ) = %/0 ve_w‘(n)zldzl.

Hence we have the expansion for H and F:
H = 4t®12] — Z u(n)eia(n)xl + i01 7
nez

E = ve!@271 = Z U(n)eia(n)xl + i)
nez

Define Pj = {(z1,29): 0 <] < L,z9 = b]-}, j = 1,2. We wish to reduce
the problem to the bounded domain 2. The radiation condition for the diffraction
problem insists that (H, E) is composed of bounded outgoing plane waves in {21 and

§9, plus the incident wave uy in €.
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Since H satisfies the Helmholtz equation AH + k%lH =0 in Q1, we have

n d? n 1 a( ) ay)z
> Ik - )+01)2+Pu( J(zg)ei@™ +ar)z1 _ g
nez 2
2
k%l - (a(n) + 01)2 + %u(")(xQ) =0 forzg > by. (2.3.1)
2

For any integer n, and j,! = 1,2, define ﬂn that satisfies (ﬁn )2 = k2- - (a(n) +

a])2

then be written as

and (8% ) > 0. One can easily verify that ﬁll = f31. Solution of (2.3.1) can

u(M (zg) = yMef172 1 (M ~i01172

with complex constants U {n) and U l(n) . The radiation condition implies UYL) =0

in Q] and gives:

i(a(™)
H=u;+ Z Uln +al)1:1+2ﬁ11.1‘2 T € ().
nez

Similarly, we can deduce the following equations:

H = z U2 z(a +a1)rc1 - iﬁ?QxQ, z € Qy,

nez
Z Vl )+02)zl+2ﬁ21z2 z €y,
nez
n
E= )" v2 (™) +ag)zy — Ty z € Q9.
nez

o (n
For any quasiperiodic function at frequency wq, f = Z f(n)ez(a( ) +a1)7)

nez

or at frequency w9, f = Z f (n) il (n )+“2)T1,deﬁne respectively the Dirichlet

nez
to Neumann operator, which is introduced in [11],

(1) .
Tﬂfz Z ZB](I)I( )e’(a +aJ)Il, O0<zy<L,jl=12
nez
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The 1-D grating problem can then be formulated as follows:

V-(%VH)-#—H:O in ,
k
DAY .
(A+k5E= Y pj 100 ; Hog H in 9,
=12

O(H — uy)

—6V—I—T11(H—u])=0 Onr‘l,
OH

B —T1oH =0 on 'y,
OF

o —T91E=0 onI'q,
%—g —TooE =0 on 'y,

where v is the unit outer normal to 92. See [8] for the details.
To find the variational form of this problem, we need to use the above transparent

boundary conditions and introduce the following subspace of H 1(Q):
Xj(Q) ={we Hl(Q): wa =we Il s periodic in ] with period L}.

Define Bj: Xj(Q) X Xj(Q) —

2
1 — — 1 —
Bile.v) = [ (VWi -pl)ds= 3 [ o (Tyj0)ida,

2
32(99,¢)=/V¢V$—/k§¢$— > / Tojey.

8,
Note that % —Ty1uy = —2iB uy; the weak formulation of the nonlinear 1-D grat-
v
ing problem then reads as follows: Given incoming plane wave uj = @171 ~ B 172

find H € X1(Q2) and E € X9(€) such that:

3
BI(H,d;)z—/I; 200, Tde, o € X1(Q),

k2
OH OH —
ByEp)=— 3 Jz/ Tz 0ag e VY € Xo(0)
7,0=1,2
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Assume in the following that the variational problem has a unique solution. Then
the general theory in [6] implies that there exists constants y; > 0, y9 > 0, such

that:
1B (¢, ¥)]
sup g

ol Yo € X:(9).
0#£veH (" "HY(Q)

2.4 PML Formulation

Now we introduce the PML layers. We surround our computational domain 2 with
two PML layers of thickness 61 and d9 in §21 and (29, respectively. The specially
designed model medium in the PML layers should be chosen such that either the
wave never reaches the outside boundary or the reflected wave is so small that it
essentially does not affect the solution in Q. Let s(z9) = sy(zg) + isg(xg) be
the model medium property which satisfies s1,s9 € C(R), s > 0, s9 > 0, and

s(zg) =1 for by < z9 < by. Introduce the PML regions:

Q{DML = {(z1,29): 0 <z1 < L and by < z9 < by + 01},

Q2PML = {(z1,29): 0 <] < L and by — dy < x9 < by},

lH{DML = {(z1,29): 0 <z < L and 79 = by + &1},

I‘gML = {(z1,29): 0 <z] < L and 29 = by — d9}

and the PML differential operators:

L0 L@y, 0 L 1 2
17 0n K2(z) “Dor, T bxy k2(z) s(x2) Oz

9,98 1 8. 9
- a1’1(5(12)(9:[1 " oy s(zz)(?;rg) + k5 ()s(zg)-

) + s(x9),

Lo

Let D = {(z1,79): 0 <y < L,bg — 9 < 9 < by +61}. The PML model can

be formulated as follows:
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Figure 2.2. Geometry of the PML problem

L1H=—g
1 1 in D,
LoE = —g9
where
.
Liur in Q{DA'[L,
g1 = |
L 0 elsewhere,
(
0 in Q{JML U QgML’
92 = § ) )
- 3 pjlc')_q;]- HBIZH elsewhere

with boundary conditions:

A~

H(0,z9) = e 1L A (L, 2y) for by — 8y < x9 < by + 61,

~

E(0,79) = e 1 2L E(L 25) for by — 8y < T9 < by + 6,
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f{=u] on F{DML,
fr=0 on TPML,
E=0 on I’{)]WL,
E=0 on FQPAIL.

Let G be any open set in D, introduce the subspace of HI(G):

Xj(G) ={we Hl(G) D Wo = we” Y371 i periodic in z1 with period L}

and the sesquilinear form AjG: Xj(G) X Xj(G) — C as follows:

B 1 o¢ Oy 1 1 8¢ o -
A1) = [ ( 2 D a0y * ) T Dagng D
B 8¢ O 1 3¢ 8 o -

Ag60) = [ (sleg) 57 5 + s SE S B (ws(ap)oi)de

Define X;(D) ={we X;(D), w=0on F{DMLUFgML}. Then the weak formu-
lation of the PML model reads as follows: Find H € X 1(D) and Ee X2° (D), such
that H = uj on I‘{DML, H=0o0n FgML, and

Aypli) = [ avida v € X (D), (2.4.1)
Ay (B, ) = /D govdz VY € X5(D). (2.4.2)
1

Let ATllj = |k%j —(a(n)+al)2|2 and Up; = {n: k%j > (a(”)+al)2}, j=12
And let

Aij = min{A?j ‘n € Ulj}, Ai“]- = min{A?j ‘né Ulj}.

Introduce the following notations:

b1 + 61 by
o1 =/b s(T)dr, o9 = /b 5 s(r)dr.
1 2702
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-~ +
207, 201,

M71 = max( ,
-1
( ~ +

max(

- ’ R A+
291811 1 291211

TES -
T R ) if Seg(wy) =0,
e“72712 -1 772712 -1
2|k12|

R
\6202 |%k12| -1

Mio = <

if Seg(wy) > 0,

R

where o i and aJI. are the real and imaginary parts of o, respectively. Define

¢ =/1+ (b —by)~L.

It is proved in [22] that the problem (2.4.1) has a unique solution H, if (Mq1+
Mlz)(:’2 < 71, and the following estimate holds:

IIH - Hlll1q = sup
< Muc M€y g

< CEM =l + G o

Next we prove the existence and uniqueness of (2.4.2) and derive an error
estimate between E and E. We first find an equivalent form of (2.4.2) in do-

main Q. Similar to the previous argument, we write E in the expansion £ =

. (n
Z 1}(”)(332)61(0‘( ) +a2)Z1 and deduce that

nez
n [ n [72
) i 21/ s(t)ydr —1 21/ s(r)dr
E= (V(n)e b + Vl(n)e ) ez(a(n) +ag)zy
nez
naPML
b by
i3 / s(tydr —i3% / s(T)dr
E= ( - (1) 22 x9 + V2(n) 22 T9 ) ei(a(n) + a9)z]
nez
in Qé’ML
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Then the constants Vl(n), Vl(n) , VQ(n) and V2(n) can be uniquely determined by the

boundary conditions E=0on I’{)ML and FgML:

1 1
T T9
i3 s(t)dr —iBY s(t)dr
V(n)e 21 '/ + Vl(n)e 21 / =0,
7™ L M () ),
b b
i3 s(t)dr —i30 s(T)dr
(n), 2 /12 Lo, /x2 _ o

Thus we have:

o 3 S eita™ +aiay iy oPML,
€Z

E =

where

) 2
—‘i/332/ s()dr 'iﬁgQ/b 5 s(7)dr
2 — 02 )

—e
. (n
For any quasiperiodic function f = Zf(")el(a( )+ QQ)II, define

(TQIEAJLf)(II) = Z 1[33'] Coth(—iﬁgjaj)f(n)e'i(a(n) + 0'2)171, 1=12.
nez

Then

OE _, .PML;
5 Ta E
oE
Ov

=0 onT}y,

PML ¢
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Introduce the sesquilinear form BQPML: X9(02) x X9(2) — C as follows:

2
Bg’f‘fL(¢,¢)= /Q (wv@-k%(x)w)dx— > /r .(T{;M%)'&dm-
J

J=1
We get the following variational problem: Find ¢ € X9(2), such that:
PML 0H 3H -
9, ¢9) = — 2.4.
BLML(p,y) lzﬂpﬂfﬂax ol (2.43
.77 -

The following lemma establishes the relation of this variational problem to the PML

model problem (2.4.2). The proof is straight-forward from the above constructions.

Lemma 2.4.1. Any solution E of (2.4.2) is a solution of (2.4.3). Conversely, any

solution ¥ of (2.4.3) can be uniquely extended to the whole domain D to be a solution

of (2.4.2).

1
Let Agj = |k2 . — (a(n) +02)2|5 and U2j ={n: kz- > (a(”) +02)2}, j=12,

then ﬁgj = for n € Up; and ,62] 2] for n ¢ U2] Let
— _ . n . X
AQJ' = mm{AQj,n € Uy;}, A2] mln{AQJ,n ¢ Ug;}-

From Lemma 2.2 and Section 5 of [22], we have the following lemma which plays an

important role in the subsequent analysis.

Lemma 2.4.2. For any ¢, ¥ € Xo(92), the following estimate holds:

PML g
Szl < Mo / 2.4.4
|/ Toj = To5 L nl < Myjlol 2 W2y 244)
where
M ( ) )
191 = max T n_ ’ R ’
271821 _1 (291891 _
( 205, 203, .
nla)\( QO,IA— ) QO-RA"‘ ) 'l,f \SEQ(L"2) = O)
Moy = 4 2222 1 ¢ 22 -1
2k :
— Lf}' if Segwg) > 0.
| (202 1Skaal _
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Lemma 2.4.3. For any ¥ € Xo(Q),

19l 2 Sl 1 <Clel

220 = Wi = Wi o) (245)

with € = \/1+ (b) —by)~L, if

Il’ ZwOQ (b (n) + a9)r] on Fj’
90,1y = (& 3 1™+ aal)2lug) B2
J nez

Theorem 2.4.1. Let v9 > 0 be the constant in the inf-sup condition, and (Mo +
A122)6'2 < ¥9. Then the problem (2.4.3) attains a unique solution E. Moreover,

the following estimate holds:

NE-Ellljg = sup 'Bﬁfj —E.v) (2.4.6)
0£veH\(Q) "THY(Q)
< CMy 1Bl 2, +CMplBl 2,
# OV = Hl1 o) I 1 45 + 11 45yl

for some constant C which depends on the data of the original grating problem and
1

some constant § € (0, 5)

Proof. 1t follows from Lemma 2.4.2 and Lemma 2.4.3 that

BEML(6, )] > |By(6,v)] - Z/ (Ty;0 — TEMLg)iday
j=1

> |By(0, )| — (Mgq + 1"1'22)0 ol el

)" "H @y
From the assumption (Mo + AIQQ)C'Q < 79, it is obvious that the bilinear form

Bé) ML gatisfies the inf-sup condition, and hence the problem (2.4.3) has a unique

solution. It remains to prove the estimate (2.4.6).
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Clearly,

By(E - E,¢) = BEML(E ) - By(B,v) + By(E,p) - BYML(E, )

=/ (TQl—TQIz‘ML)E‘;de1+/ (Tyo — TRM L) Eddry

0H 0H 0H OH -
+],z§1 QPJI/Q 9z;0z) 015 oz, 05,V

By Holder’s inequality,

OH 8H OH 8H
Y ey 5r; 5z, ~ 0x; 0

71=1,2
B OH 8(H — H) 0O(H - H) aH /
=| Z Pjl Q(Bm Ox; * 9z ) |
=12
. oH O(H — H) H) aH H) a_H
< 'z§1 2|P]l|[| Q0z; o | ¢d ]
- 1
< 3 Il = Hlgy o (o ( >2w2dz>z
5Hl=12
N 2 1
+IIH—HIIH1(Q)( ( ) dz)?]
- oH
< XY el -Hl L, Q){[ [ G 2pd;,,- 2,,(/ 3% dz)%
jl=1,2

o /Q (gfi 2P 7 / 520dz)%)

1 1
for some 1 < p,q < oo, such that — + — =1,

p q
<Gy 5 Ipjll - Hi 1 g 11,20,
jvl =1,2
+ 4|

- . 1
for some constant Cy. By (12], (28], H,H € H 5(9) for some 4 € (0, 5) Take

1
p=——,q= 5 and using Sobolev imbedding theorem, we have:
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OH 6H OH 0H
>

I pil | (G—r— — 57 )¥de]
j,l=1,2 J 0 317] aIl (91‘] 0.’171
<C|H-H H +|H :
< CIA = Hll g1 o W8T 4 50 +1E T4 5, 1D 1
where C depends on the data of the original grating problem. a

2.5 Discrete Problem

In this section we introduce the finite element approximation of the PML prob-
lems. Let M}, be a regular triangulation of the domain D. Recall that any trian-

gle T € My, is considered closed. We assume that any element T must be com-

pletely included in Q{) ML , Qg ML o ©. We also require that if (0, z) is a node
on the left boundary, then (L, z) is also a node on the right boundary, and vice
versa. Let th(D) € X j(D) be the conforming linear finite element spaces and
Vjoh(D) = th(D)ﬂX;(D). Denote by I}: C(D) — Vyp,(D) the standard finite
element interpolation operator.

The finite element approximation to the PML problem reads as follows: Find
ffh € V(D) and Eh € Vop,(D), such that ffh = Ipuy on I‘{)ML, ﬁh = 0 on
Fé)ML, Eh =0 on I"{)ML, E’h =0on I’gML, and

AL p(Hp.vp) = /D g1z € VS, (D), (25.1)
Aop(Ep,vp) = /D gop¥pdz Vi, € Vi (D), (2.5.2)
where
0 in QPMLoPML,

9h = R R
2h — Z pjl(?xthamth elsewhere.

5l=12
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Assume the problem (2.5.1) and (2.5.2) has a unique solution (Hh, Eh) € V1x(D) x

Vgh(D). Let

Then

s(z9) 0
A 0 >= k2 ()

L1 =V-(41(2)V) + By (),
Lo =V - (Ay(z)V) + By(z),

Ay p(66) = /D(Alu)ww _ By (2)¢0)dz,

Aop(d,9) = /D(AQ(:::)Vti)Vz/_} — By(z)¢vp)dz.

For any T € My, denote by hp its diameter. Let Bj, denote the set of all sides

that do not lie on Fj, J = 1,2. For any e € By, he stands for its length. For any

T € My, introduce the residuals:

Ry = L1Hylr + a1l (2.5.3)

Rop = LoEp| T + gop T (2.5.4)

For any interior side e € By, which is the common side of T7 and Ty € M}, define

the jump residuals across e as:

Jie = (A\VH| = AIVHIT,) - ve, (2.5.5)
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where ve is the unit normal vector to e pointing from Ty to T}. If e is the side on
the left boundary and €’ is the corresponding side on the right boundary which is

also a side of some element of T”, we define the jump residuals as:

Tl = Auﬂ%(ﬂhm - e"iQIL%(ﬁhITf)], (25.7)
T = Alll[eiangi—l(ﬂMT) - =)l (25.8)
Je = A211[O%(Eh|:r) - e—i‘*?L;I—l(EMTI)L (2:5.9)
Joer = A211[ei02L6%1(Eth) - %(EMT')]- (2.5.10)

For any T € Myj, denote by ;T the local error estimator, which is defined as

follows:

1
1 9 — )
nj7 = max_pj(z)hpl Rl 2, + (5 hellJjell )2], j=1,2,
= st oy + G 5 el

where T is the union of all elements having nonempty intersection with 7" and

|S($2)16—Rjk(362) re _QII;ML, k=12 |
pj(z2) = i=12
1 T €9,

with Rjk(xg) defined as:

T

T
le(:c2)=min(A]”.1 A SQ(T)d‘r,A;l/b s1(7)dr),
1 1
min(A’ fb25 (1)dr, At szs (1)dr)) if Seg(w;) =0
Rjo(zg) = j2lry " Ty ey 7l 25
b :
RIFA f$§ s1(T)dr if Seg(wj) > 0.
Define also
- I + R
287, P1T ant AN
M7 3 = max( , ),
DY —ont ot
1—e 21191 1- 74711
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|-

1
216]‘1512 2(1 + 261(A;1 + k]l))

C;1 = C max( , 7
i —2A7 0{ —2At o{z
l1—e J1 1—e 71
( 1 1
. 2k 002 2(1 + 209(AY, + kj9))2
Cma.x( -]2 2— 1, ]A2+ }]2 ) ]f JEQ(L‘)]) = O’
Cjo = 4 1- €_2Aj20 1- e_2 j2021
. 2[max(1, [k;o])(1 + 209(|Sk;9| + |k;9]))]2
o [ (L, ]2[)( ;(I _72' | ]2|))] i %Cg(wj) >0

for 7 = 1,2. The following is the a posterior estimate of the magnetic field at

frequency w which is proved in [22]:

Theorem 2.5.1. There exists a constant C > 0, depending only on the minimum

angle of the mesh My, such that the following a posterior error estimate is valid:

. Cﬁfll N éﬂ{l? 3
g i - 8 —y + 74 2.5.11
il rllig < ( "'%1 I Hy, 1|!L2(F1) ( k%2 ) hIILz(F2) ( )

C'Mlg

N s —u 2.5.12
O Mher =il 2 ey, (2512

1

+C(1+Cp +Ca)( Y, ,,%T)z,

TEMh

We next establish the corresponding estimate for the electric field at frequency

2wy, which is the main error estimate of this paper.

Theorem 2.5.2. The following estimate holds:

—F < (CMo)E M. 3 5.
IIE = ERlllaq < (CMay)|l ;,HLQ(FI)HC 22)”E’l||L2(r2) (2.5.13)
1
+C(1+C1 +Cp)( Y. ndp)?
T € My,
CCMy, . .
H H H, —
+( k%l )(ll IIH1+5(Q)+II ;LIIH1+5(Q))II 3 U]”LQ(FI)
CCM
+( 12

2 D0y + 115 IR
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CCM :
+( k.%ll?’)(HHHHl +8(qy P IR 146 s =il 2 pPary

N

+COW+Coy + Cop)(IHN 1 4 6y + 1Rl 1 45 ) D2 mip)?,
TGAIh

In order to prove this result, we first establish some lemmas. For any ¥ € X9(12),

we extend it to be in Xo(D) denoted by ¥ as follows:

&(11’1:2) - Z 2_]_(_z_2_)w(n)( j)ei(a(n) + a2).’L‘1 in Q‘;DML, j=1,2.

nez

Lemma 2.5.1. ( [22]) Let vj be unit outer normal to QfAIL. Then for any ¢,
Y € X9(2), the following identity holds:

PML, 2
T5. oYdry = —/ ¢—dz1. 2.5.14

In what follows, for the sake of simplicity, whenever no confusion of the notation

is incurred, we shall not distinguish 12' from ¥ in Q]P ML

Lemma 2.5.2. (error representation formula) For any ¢ € Xo(2), let ¢ be extended

to the whole domain D as above, and ¥y, € V2°h(D),

+A1 (T21 —TQI;AI{L)EhIZ’dl'l
1

+ /I, (Tyg - T35 1) By idary
2

al:lh 8[:Ih OH OH | -
+ - - — Jdzx. 2.5.15
; lgl Qle/Q( dzj Ozr; Oz 8:cl) ( )

Proof. From the definition,

Bo(E — Ey, ) = Bo(E — E,¥) + Bo(E — E), ¥)
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- /r (To1 — THM D) Eddey + /r (Tyg — THM L) Edday
] 2

OHOH OHOH -,
+ ¢dI
lg:l 2p]1/Q 6x 8171 8:c a:cl)

+BEML(E - By ) / (T - gML)(E— Ep)iddz
7=1

= /F (Tyy = Ty M) Bz + /1“ (Tag - T3M B B dary
1 2

H 0H H 0H
+Z 0H 8 0H 0

7 PML
,0][ Q(a:l: 8:cl 3:6 &El) d +B (E E ¢)

7,0=1,2
Also

BEYML(E — By ) = Agq(E = Epw) = 3 /F.TQP-ML(E—Eh)J)d:cl

and from Cg'z[—) = 0 and Green formula

S — By oY) = L — By )—dzy.
AQQfML(E Ep.v) / (B = Ep)g,-dry
Hence
BEML(E — By, ) = Ayp(E — Ep, )
= /D 9on, (0 = Up)dx — Agp(Ep, ¥ — ¥p) + /D(QQ — gop ¥z,
which completes the proof. a

Lemma 2.5.3. ( [22]) For any ¢ € X9(R), let ¥ be extended to D as before. Then

the following estimate holds:

j=1,2. (2.5.16)

-1 ft5¢ < Coilly
s~ e ¢||L2(Q§3ML) = 21”‘“}11(9)’

We are now ready to prove Theorem 2.5.2.
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Proof. Proof of Theorem 2.5.2 From the definition,
By(E — Ep, ) = /D 9on (& = ¥p)dz — Ay p(Ep, & — vp)
+/ (Ty1 — THME) Bz
I
+ /r (Tyg — T MDY Ep ddzy
2

3Hh6Hh OH OH | -
+_ Z p]l/Q( (93: oz 6:5 axl)wdm

=IT1+1V+V+VI+VII

By integration by parts and using (2.5.3)-(2.5.10),

I +1V = ( / Rop( =dp)dz+ > / Joe(¥ = Yp)dz).
T e My eC BT
Using the interpolation estimate in [51] and Lemma 2.5.3, we get

HIT+IVI<C Y myrlloy 1Vul
T e Mh

<SCU+Coy+Co)( Y ndp) Wl g1
TGMh

L*(T)

It follows from Lemma 2.4.2 and Lemma 2.4.3 that

V +VI| < (CMoq||E Moo E
[V +VI| < (CMa|| hIIL2(P1)+C 2ll hIILQ(F2))IlwllH @’

By an argument similar to that used in the proof of Theorem 2.4.1, we conclude

that

8Hh oH), oH oH
Vi =| Z pﬂ j Oz 81 axl Jpda]
5Hl=12

< COHN 1 46y + WHRN 145 MI1HR = Hllllll 1

where C depends on the data of the original grating problem by Theorem 2.4.1.

The proof is now complete. O
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Air

ZnS

Figure 2.3. ZnS overcoated binary silver gratings

2.6 Numerical Examples

Our first example is from [12]. See also [22] for the implementation of the algorithm.
This example is concerned with the grating enhancement of the SHG effects for ZnS
overcoated binary silver gratings, see Figure 2.3. The enhancement of the field at 2w
is computed and shown in Figure 2.4 with respect to the associated flat structure.
Here, the period of the grating is L = 0.4 um, the incident angle is 28.92°, and the
wavelength A = 1.06 ym. The results were obtained for a thickness t = 0.33 pm of
the coating layer, the fill factor 0.43 with respect to the groove depth d.

Another example comes from [43]. The structure is a subwavelength square
grating of the period L = 0.65), the fill factor FF = 0.09, and the depth varying
from d = 0.01X to d = 1.01A. The refractive index of the material is taken to be
ny = 3.346 at the fundamental frequency and ny = 3.539 at the second harmonic
frequency, corresponding to the material properties of GaAs at Ay = 1.907um and
A9 = 0.954pumn, respectively. The nonlinear coefficient is taken to be 240um/V. The
incident angle is 30°. Figure 2.5 shows the enhancement of the grating structure

with respect to the bulk material.
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Figure 2.5. Second harmonic enhancement
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CHAPTER 3

Inverse Medium Scattering in

Breast Cancer Detection

3.1 Introduction

Breast cancer is a big threat to women’s health. Early detection is the best way
for protection. Mammography is the most effective technology presently available
for breast cancer screening. According to the report from the U.S. Institute of
Medicine (IOM), limitations of mammography include missing up to 15% of breast
cancers, difficulty in imaging women with dense breasts, and inconclusive results.
The limitations of X-ray mammography provide clear motivation for the develop-
ment of a complementary breast-imaging tool to assist in detection and diagnosis.
Studies show that the dielectric properties of normal breast tissues are significantly
different from those of malignant breast tissues in the microwave frequency range.
Other tissues in the breast, like the glandular tissue and blood vessels, also have
dielectric properties different from the surrounding fatty tissue, but the difference
is not nearly as significant as for the cancerous tissue. Typical dielectric properties

of various tissues in the breast are listed in Table 3.1. Readers are also referred



Table 3.1. Typical dielectric properties of various tissues in the breast [27]

Media €s Os er(6GHz) o(6GHz)
skin 37.00 1.10 34.72 3.89
tumor 54.00 0.70 50.74 4.82
fatty tissue 10.00 0.15 9.80 0.40
average tissue 16.29 0.23 15.66 1.03
fibroglandular tissue 21.57 0.31 21.5 1.7

to [19] and [41] for the measurement of dielectric properties at specific radiowave
and microwave frequency bands. It is apparent that there is a wide range of di-
electric properties between the tumor tissue and other normal tissues in the human
breast. Under microwave illumination, tissues with different dielectric properties
will generate different responses. Significant dielectric contrast will lead to a high
imaging contrast.

Microwave imaging for breast cancer detection has gained intense attention.
Ultra-wideband (UWB) confocal microwave imaging (CMI) approach provides qual-
itative high resolution images of backscattered energy distributions of the interior
of the breast. See [30] for a review of different approaches on CMI. See, for ex-
ample, [53], [31], [44], for analysis and numerical examples on different approaches.
The nonlinear inverse scattering approach is able to provide quantitative images of
dielectric properties of objects with high contrasts. An iterative algorithm needs
to be used. In each iteration, an equation describing electric field distribution in
heterogeneous media is solved. Then the dielectric properties are adjusted by min-
imizing the errors between measured and calculated electric fields. An iterative
reconstruction algorithm based on the Levenberg-Marquardt method is presented
in [32]. In [24], the authors use Newton-type reconstruction combined with Mar-
quardt and Tikhonov regularizations to update an initial dielectric property distri-
bution iteratively in order to minimize the squared difference between computed and

measured data. Recently the group at Rensselaer has designed and built electrical
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impedance tomography process that applies currents through electrodes attached to
the surface of the body and measures the resulting voltages. This system uses the
electrical measurements to reconstruct and display approximate pictures of the elec-
tric conductivity and permittivity inside the body. The mammography geometry is
modeled as a rectangular box with electrode arrays on the top and bottom planes.
The reconstruction algorithm is based on linearizing the conductivity about a con-
stant value. In the case that the target conductivity is extremely high compared
to that of the background solution, there is a large discrepancy between the true
and the reconstructed conductivity values. A review of EIT techniques for breast
cancer detection can be found in [56]. See also [23] for numerical implementation.
By considering the tumor tissue as small inhomogeneity in the surrounding normal
tissues, an algorithm using small volume asymptotics has been used to reconstruct
conductivity distributions. In [4] and [5], the authors give theoretical derivation
of the asymptotic formula. In [3] some numerical examples are given. Since the
approach is perturbative, the significant contrast makes the reconstruction more
challenging.

In this paper, we formulate the problem as an inverse scattering problem, which
is to determine the dielectric property of the tissues from the measurements of
electromagnetic field on the breast surface, given the incident field. Our approach
follows the general idea of [20] and employ the recursive linearization algorithm
from [16] and [15].

In two dimensional cases, the electromagnetic intensity satisfies the Helmholtz

equation:
Au+ k3(z)(1 + q(kg, z))u = 0, (3.1.1)

where u is the total field; k(z) = kg/e(kg,z) is the wavenumber; kg is the

wavenumber in vacuum; g(k(, x) is the scatterer which has a compact support and
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€(kg,z) = 1+ q(kg, z) is the dielectric permittivity in dispersive medium, which is

assumed to satisfy the Debye model [35]

olkn,x
€(kg,z) = er(kg,z) — @ (ko - )
ko, /-2
1)
= fOO + _600(:1: -1 (312)

1+zk0‘/ ko /

in microwave range frequencies, where €r is the relative permittivity; o is the con-

ductivity; es = lim € €00 = lim € 0s5= _lim o; ¢ is the permittivity in
0—0 kg — o0 ko -0

vacuum. In the following, we assume that the material is nonmagnetic, i.e., ug = 1.

The scatterer is illuminated by a one-parameter family of plane waves
ut = etko " T (3.1.3)
Evidently, such incident waves satisfy the homogeneous equation
Au 4 K2 = 0.
The total electric field u consists of the incident field u and the scattered field uS:
u= ui + ub.
It follows from the equations (3.1.1) and (3.1.3) that the scattered field satisfies
DS + K2 (2)(1+ q)u’ = (—k%(2)(1 + q) + A)u’. (3.1.4)

In free space, the scattered field is required to satisfy the following Sommerfeld

radiation condition

ou

- l_1£1100\/;<—0—7'— — ikgu > =0, r=|z|,

uniformly along all directions —. In practice, it is convenient to reduce the problem

=)

to a bounded domain. For the sake of simplicity, we employ the first order absorbing
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boundary condition [36] on the surface of the breast:
o’ _ kou® = 0. (3.1.5)

Given the incident field ui, the direct problem is to determine the scattered
field u® for the known scatterer q(kq,z). Using the Lax-Milgram lemma and the
Fredholm alternative, the direct problem is shown in [16] to have a unique solution
for all kg > 0. An energy estimate for the scattered field is given in this paper,
which provides a criterion for the weak scattering. Furthermore, properties on the
continuity and the Fréchet differentiability of the nonlinear scattering map are ex-
amined. For the regularity analysis of the scattering map in an open domain, the
reader is referred to [9], [39] and [26]. The inverse medium scattering problem is
to determine the scatterer g(k,z) from the measurements on the surface of the
breast, u’ |Fb, given the incident field u. Two major difficulties for solving the
inverse problem by optimization methods are the ill-posedness and the presence of
many local minima. In this paper we developed a continuation method based on
the approach introduced in [16]. The algorithm requires multi-frequency scattering
data. Using an initial guess from the Born approximation, each update is obtained
via recursive linearization on the wavenumber kg by solving one forward problem
and one adjoint problem of the Helmholtz equations.

In addition to the ill-posedness and nonlinearity of the inverse scattering prob-
lem, one major difficulty lies in the multiple scales of the problem. The tumor is
comparably small in the computational domain, which makes the computation chal-
lenging. The strategy is to map the boundary data to the artificial boundary of a
fairly small domain that encloses the tumor. The idea of mapping follows from [55].
The problem may be then reduced to a smaller domain which can be solved by finite
element method. Suitable boundary conditions and jump conditions must then be

added on the boundary of the smaller domain and the surface of the breast. Nystrom



Figure 3.1. Geometry of the inverse scattering problem

method is used on the integral equation in the annulus region between the surface
and the smaller domain. Another difficulty is due to the dispersive nature of the

human body. We employed the simplified Debye model:

e(kg, ) = es(z) — i’:os\(/%’

which is the approximation when the frequency is below the range of the Debye

model. The Debye model (3.1.2) is suitable for dielectrics exhibiting resonance
effects at the frequency 1011 ~ 1012Hz. The frequency used in our experiments
range from 109 ~ 1019Hz. With this model, the reconstruction of ¢ can be done
separately for the real and imaginary part.

The plan of this paper is as follows. The analysis of the variational problem
for direct scattering is presented in Section 3.2. The Fréchet differentiability of the
scattering map is also given. In Section 3.3, an initial guess of the reconstruction
from the Born approximation is derived in the case of weak scattering. Section
3.4 is devoted to numerical study of a regularized iterative linearization algorithm.

Numerical examples are presented in Section 3.5.
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Figure 3.2. Diclectric properties at frequencies described by Debye model [42]
£ A
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3.2 Analysis of the Scattering Map

In this section, the direct scattering problem is studied to provide some criterion
for the weak scattering, which plays an important role in the inversion method.
The Fréchet differentiability of the scattering map for the problem (3.1.4), (3.1.5) is
examined.

To state our boundary value problem, we introduce the bilinear form a :

HY(9) x HY{(y) - C
a(6, %) = (V$, Vo) — k2((1+ )¢, v) — ik (¢, v),
and the linear functional on H1(12)
b() = (K*(1+q) — k§)u’, ¥).
Here, we have used the standard inner products

(6,0) = /wadz and (6,9) = /Fb¢- Tds,

where the overline denotes the complex conjugate.
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Then, we have the weak form of the boundary value problem (3.1.4) and (3.1.5):

find u% € Hl(Qb) such that
a(u®,€) = b(€), VEe HY(Qp). (3.2.1)

Throughout the paper, the constant C stands for a positive generic constant
whose value may change step by step, but should always be clear from the contexts.

For a given scatterer ¢ and an incident field ui, we define the map S (q,ui) by
uS = S(q,ui), where uS is the solution of the problem (3.1.4) and (3.1.5) or the
variational problem (3.2.1). It is easily seen that the map S(q, u’) is linear with
respect to u«? but is nonlinear with respect to q. Hence, we may denote S(q, ui) by
S(a)t.

Concerning the map S(q), a continuity result for the map S(q) is presented in
Lemma 3.2.3.

Lemma 3.2.1. Given the scatterer ¢ € L%°(Sp), the direct scattering prob-

lem (3.1.4) and (3.1.5) has at most one solution.
Please see [16] for the proof.

Lemma 3.2.2. If the wavenumber kg is sufficiently small, the variational prob-
lem (3.2.1) admits a unique weak solution in H 1(Qb) and S(q) is a bounded linear
map from LQ(Qb) to Hl(Qb). Furthermore, there is a constant C dependent of Y,

such that

Lt | L

< ko + kg 1+ X*B)“q“Loo(Qb))“"2“L2(Qb)' (3.2.2)

IS@ll 1

Proof. Decompose the bilinear form a into a = aj + k2a2, where

ap(u®,€) = (Vu®,VE) — ik (u®, €),

ag(u®,€) = —((1 + q)u®,§).
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We conclude that aq is coercive from

a1, u®)| 2 C(I90°|% +kOWﬁnsz )

() (T'p)
. uS 2 uS 2
> Chko(IV HLQ(Qb) + | ”H1/2(I‘b))
L 1.,S12
> Ckpllu “Hl(Qb),

where the last inequality may be obtained by applying standard elliptic esti-

mates [34]. Next, we prove the compactness of ag. Define an operator A : L2(Qb) —

H(2) by
a)(Au®,€) = ag(u®,€), VE € H'(D),
which gives
(VA VE) - iko(Au®,€) = —((1+q)u’,€), V€€ HI ().
Using the Lax-Milgram Lemma, it follows that

| AuS|| (3.2.3)

C
H(Qy) : k_0|lus”L2(Qb)’
where the constant C is independent of k. Thus A is bounded from L2(Qb) to
Hl(Qb) and Hl(Qb) is compactly imbedded into LZ(Qb). Hence A : L2(Qb) —
LQ(Qb) is a compact operator.

Define a function ¢ € L2(Qb) by requiring ¢ € Hl(Qb) and satisfying
a1(6,€) =b(e), Vee HY(Qy).

It follows from the Lax-Milgram Lemma again that

o1 <o Rl W Y] 3.2.4)
¢ HY Q) = ko + ko( +E) WLy lu L2() (32

Using the operator A, we can see that the problem (3.2.1) is equivalent to find

u’ € LQ(Qb) such that

(T + k2 A’ = ¢. (3.2.5)
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When the wavenumber k() is small enough, the operator Z + k2A has a uniformly

bounded inverse. We then have the estimate

<Cligll 2 (3.26)

]l ,

L () (%)
where the constant C is independent of k. Rearranging (3.2.5), we have u® =
¢ — k2Au5, so u’ € Hl(Qb) and, by the estimate (3.2.3) for the operator A, we

have

k
I +C—— |’

<110, * Chg

[

H' ()
The proof is complete by combining the estimates (3.2.6) and (3.2.4) and observing

that u5 = S(q)u’. O

For a general wavenumber k > 0, from the equation (3.2.5), the existence follows
from the Fredholm alternative and the uniqueness result. However, the constant C

in the estimate (3.2.2) depends on the wavenumber.

Remark 3.2.1. It follows from the explicit form of the incident field (3.1.3) and the

estimate (3.2.2) that

]

Hl () < 91/2(C1 + Callal oo g, )

where (2 is the compact support of the scatterer g and the constant C7, Cy depends

on ko, Qb
Lemma 3.2.3. Assume that qq,q9 € L°°(). Then
Sl )t — Sl < Cllas — ¢ , 3.2.7
where the constant C' depends on kg, Qp, and “qQHLOO(Qb)’
Proof. Let uj = S(ql)ui and u§ = S(qz)ui. It follows that for j = 1,2

Au'; + k.2(1 + qj)u§ = (—k2(1 +4q5) + k(Q))ul.
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By setting w = uj — u3, we have
Aw + k2(1 +q))w = —k2(q1 - q2)(ui + u%).

The function w also satisfies the boundary condition (3.1.5).

We repeat the procedure in the proof of Lemma 3.2.2 to obtain

w <Cllg1 = q2lly o0 ut + ud| )

Using Lemma 3.2.2 again for u3 yields

I3l 1) < C||q2|1Loo(Qb)||uiuLz(Qb),

which gives

S(g1)uby — S(g)ud < Cllgy - '
1S(a1)ug — S(ag)u ”Hl(D) < Cllay = a2l oo py llu ”LQ(Qb)’
where the constant C' depends on €, kq, and ||go| s Q) O

Let v be the restriction (trace) operator to the boundary I';. By the trace
theorem, v is a bounded linear operator from H 1(Qb) onto H1/ 2(I‘b). We can now
define the scattering map M (q) = vS(q).

Next, consider the Fréchet differentiability of the scattering map. Recall the map
S(q) is nonlinear with respect to q. Formally, by using the first order perturbation
theory, we obtain the linearized scattering problem of (3.1.4), (3.1.5) with respect

to a reference scatterer q,

Av + k‘2(1 +q)v = —k25q(ui + u%), (3.2.8)
ov .
o ikgv =0, (3.2.9)

where u’ = S(q)ul.

Define the formal linearzation T'(¢) of the map S(q) by v = T'(q)(dq, ui), where
v is the solution of the problem (3.2.8), (3.2.9). The following is a boundedness
result for the map T'(q). A proof may be given by following step by step the proofs

of Lemma 3.2.2. Hence we omit it here.
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Lemma 3.2.4. Assume that q,6q € L°(Qp) and ul is the incident field. Then
v =T(q)(q, ui) € Hl(Qb) with the estimate

T(q)(5q, u* <Cls ’ , 3.2.10
where the constant C depends on kg, Y, and ||q||Loo(Qb).
The next lemma is concerned with the continuity property of the map.

Lemma 3.2.5. For any q,q9 € L%°(Q) and an incident field ui, the following

estimate holds

T(q1) (69, u*) — T(q2)(8q, u* < Cllqy - :
IT(q1)(8g, ") — T(q2)(6q,u )”Hl(Qb) < Cllar = a2llpoo ()
16 : , (3211
Ioal o, Il 2 g, - (321
where the constant C depends on kg, Yy, and “q2”L°O(Qb)'
Proof. Let v = T(qj)((Sq, ui), for j =1,2. It is easy to see that
A(v) — v9) + k*(1 + ) (v1 — v9) =
— K28q(uf — uf) - k(a1 — ap)va,

, s _ R
whereuj S(gz)u’.

Similar to the proof of Lemma 3.2.2, we get

vy = v2||H1(Qb) < C(H&IIILoo(Qb)IIU‘f - USIIHl(Qb)
+ g1 - qzllLoo(Qb)|l1'2|lH1(Qb))-

From Lemma 3.2.2, we obtain

vy —vzllHl(Ql

D

) < Cllay - QQ”LOO(Qb)“(SQHLOO(Qb)”ul”LQ(Qb)’

which completes the proof. a
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The following result concerns the differentiability property of S(q).
Lemma 3.2.6. Assume that q,6q € L°°(Qy). Then there is a constant C dependent

of k,§Y, and ”q”Loo(Qb)’ for which the following estimate holds

IS(a +8q)u’ = S(@u' = T@(a.u)l g1 ¢, 1 < ClléalFoo g l1e'l

Q) = L2(Q)

(3.2.12)
Proof. By setting u{ = S(q)ui,ui =S(g+ Jq)ui, and v = T(q)(éq,ui), we have
DS + K2 (1+ q)uf = (—k2(1 + q) + k),
AuS + k2(1+ g+ 8q)u§ = (—k2(1 + g + 8q) + k),

Av + k2(1 +q)v= —kzéqu‘f - k26qui.

In addition, u7,u3, and v satisfy the boundary condition (3.1.5).

Denote U = uj — u] — v. Then
2 _ 32 S S
AU +k“(1 + q)U = —k“dq(ug — uj).
Similar arguments as in the proof of Lemma 3.2.2 give

U < Cl||dq us — us§ .
Ul1q,) < Cloal oo,y =l g

From Lemma 3.2.2, we obtain further that

< Cllsal 700, o'l

11410, 20y

Finally, by combining the above lemmas, we arrive at

Theorem 3.2.2. The scattering map M(q) is Fréchet differentiable with respect to

q and its Fréchet derivative is

DAM(q) = 7T(q). (3.2.13)
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Figure 3.3. Geometry of the inverse scattering problem

3.3 Inverse Medium Scattering

In this section, a regularized recursive linearization method for solving the inverse
scattering problem of the Helmholtz equation in two dimensions is proposed. The
algorithm requires multi-frequency Dirichlet and Neumann scattering data, and the
recursive linearization is obtained by a continuation method on the wavenumber
kg. It first solves a linear equation (Born approximation) at the lowest kg, which
gives the initial guess of g(kg,z). Updates are subsequently obtained by using
a sequence of increasing wavenumbers. For each iteration, one forward and one
adjoint equation are solved. Since in this sl;eciﬁc problem, the tumor is very small
compared to the breast, finite element method is time-consuming. Our strategy is
to map the boundary data to the artificial boundary of a fairly small domain that
encloses the tumor.

Let €2 be the circle that contains the breast; let 'y = 9, be the surface of the
breast; let () = R? /Sp; let T be the artificial boundary that contains the tumor;

let ©2 be the domain enclosed by T'; let Q~b = Qb/Q. We assume
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)
€0 in Qo,
: kg in £,
€= €} in £, k=
k‘b in Qb'
ep(1+4g) in Q.
\
The problem can be modeled as follows:
Au+k2(1+q)u=0 in 2, (3.3.1)
Adl 4 k20 =0 in Q, (3.3.2)
u=u0=u +u on I'p, (3.3.3)
ou ouS o
I Gb(-a—n + —a;) on Fb’ (3.34)
ous |
%—zkou‘g:O on I'p,

where (3.3.3) and (3.3.4) are the jump conditions on the surface of the breast.

3.3.1 Born Approximation

Define a test function @ = e*Fb% " d, d = (cos8,sin6),6 € [0,27]. Hence @ satisfies:

Ad+kZi=0 inQy (3.3.5)

Multiplying the equation (3.3.1) by i, and integrating over 2 on both sides, we

have

A 2 N
tAudx + k / (1 + q)audx = 0.
A% b Joy
Integration by parts yields

/ Auudzx +/ kg(l + q)uldx +/ (ugf - u@)ds = 0.
Qp Q Ty an on

We have by noting (3.3.5) and the jump conditions (3.3.3) and (3.3.4) that
- s .97 1
,/Q kgqu&dx = /Fb(us—g% - ebd%in)ds + /Fb(ul% - ebﬁ%)ds,
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where we take into account that ¢ has compact support in §2. Using the special form

of the incident wave and the test function, we then get

. ~ o - . =08
/Q kgquezkbx -dq dr = /F (ikbn . dlezkbx -dy us — ezkbx -dy Q-u—)ds
b

on

(3.3.6)
From Lemma 3.2.2 and Remark 3.2.1, for a small wavenumber, the scattered field
is weak and the inverse scattering problem becomes essentially linear. Dropping the
nonlinear term of (3.3.6), we obtain the linearized integral equation
. - - : - . o
/ kgqo(x)eZkOI ~do +ikyz - dy g _ / (ikyn - dotkpT - dy,s _ kT dl%‘—)ds
Q Ty n
+ /I: etkoT - dg + ikyz - dy (ikyn - dy — epikon - dy)ds, (3.3.7)
b
which is the Born approximation.

Since the scatterer qq(k(), ) has a compact support, we use the notation
qAO(é) — /;2 qo(l‘)CZkOI . d2 + 'lkb(l: . dld.’lf,

where §p(€) is the Fourier-Laplace transform of gg(z) with § = (kotfl + kaQ), due

to the presence of the evanescent waves. Choose
dj = (cosej,sm9j) , 7=12,

where 0]- are spherical angles. It is obvious that the domain [0, 27] of 9]-,_7' = 1,2,
corresponds to the ball {€ € R? €] < kg + |kpl}. Thus, the Fourier modes of gg(€)
may be beyond the disk with radius 2k. Please refer to [17] for detailed analysis.
The scattering data with the higher wavenumber must be used in order to recover
more modes of the true scatterer.

The integral equation (3.3.7) can be written as the operator form

A(kg, 6; z)q(x) = f(ko,0). (3.3.8)
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It is implemented by using the method of least squares with Tikhonov regulariza-

tion [29)
ao(kg,z) = (Ax A+al)”Lf,

where a is a small positive number, Ax* is the adjoint operator of A. gq is used as

the starting point of the following recursive linearization algorithm.

3.3.2 Recursive Linearization

As discussed in the previous section, when the wavenumber is small, the Born ap-
proximation allows a reconstruction of those Fourier modes less than or equal to
kg + |kp| for the function g(x). We now describe a procedure that recursively de-
termines kg at kg = kj for 7 = 1,2,... with the increasing wavenumbers. Suppose
now that the scatterer a5 has been recovered at some wavenumber k, and that the
wavenumber k is slightly larger than k. We wish to determine qj., or equivalently,

to determine the perturbation
0g = gk — qj.-

For the reconstructed scatterer qj., we solve at the wavenumber k the forward

scattering problem

Ad+ k(1 + qp (k,2))i = 0 in p,
A + k30 =0 in 0,
ﬂz'&0:ﬁ3+ul on I'p,
du ou® o
%—Eb(aﬁ-—ﬁ;) on Fb’
o _ ikga® =0 on I (3.3.9)
on
For the scatterer g;., we have
Au-&—kg(l +qp.(k,x))u =0 in €,
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Auo + k%uo =0
0

u=u =us+ui
ou_ o ot
on v\ on on
ou’

—a—ﬁ- —ikous =0

in ),
on Fb’
on I'p,

on Fb'

(3.3.10)

Subtracting (3.3.9) from (3.3.10) and omitting the second-order smallness in dq and

in du = u — %, we obtain

Abu+ k2(1 + ap (k,2))du = ~k2dqi

A6u0 + k3sud = 0

ou = 6ud = §us
du 96’
on b on
S
8;1‘1 — ikgou’ =0

in {p,
in Q,
on [y,
on Iy,

on Fb'

(3.3.11)

For the scatterer g;. and the incident wave ui, we define the map S(qy., ui) by

S(qp, ) = u

where uo

trace operator to the boundary I';. Define the scattering map

M(gy.u") = 7S(gg, v).

is the total field data corresponding to the incident wave ub. Let v be the

For simplicity, denote M (qy., ui) by M(qy.). By the definition of the trace operator,

we have

M(qy) = oI,

Let DM(q;.) be the Fréchet derivative of M(qy.) and denote the residual operator

by

.0 _ -0
R(qk) =u IFb U |Fb.
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It follows from Theorem 3.2.13 that
D]\I(qic)éq = R(q]-c). (3.3.12)

In order to reduce the computation cost and instability, we consider the Landweber

iteration of (3.3.12), which has the form
g = BDM(a) Rlay), (33.13)

where [ is a relaxation parameter and DM "(qic) is the adjoint operator of DM (ql::).
In order to compute the correction dq, we need some efficient way to compute

DM "(qic)R(qk), which is given by the following theorem.

Theorem 3.3.1. Given residual R(qk), there exists a function ¢ such that the

adjoint Fréchet derivative DM‘(qk) satisfies
* _ = n 1
DM (g Ry ap)le) = e) - (3:3.14)
where U is the solution of (3.3.9).

Proof. Let u be the solution of (3.3.9). Consider the following problem

Abu+ k2 (1 + az (k, ))5u = ~k26q in €, (3.3.15)
A6u0 + k350 = 0 in 9,
du = §u0 = §uS on [,
déu _ odu’ 0T
on b on on e
S
agz — ikoﬁu.s =0 on ['p.

and the adjoint problem

A+ E2(1 + 3 (k,2)) =0 in
A0+ k3 =0 in Q,
é)u’/‘o

= tikg? =Wl -a

5 on I, (3.3.16)



Since the existence and uniqueness of the weak solution for the adjoint problem may
be established by following the same proof of Lemma 3.2.2, we omit the proof here.
Multiplying the equation (3.3.15) with the complex conjugate of ¢ and integrat-

ing over (), on both sides, we obtain

— 2 - 2 _ -
Aduydrx —+—/ ki (1 + q;)duydz =/ —kidquypdz.
/Qb Q b1+ ap) Q

Integration by parts yields

-00u op. ., .9 _
/Pb(i/) o 6u6n)ds— ky /Qb dquypdz.

It follows from (3.3.12) and the boundary conditions of (3.3.15) and the adjoint

problem that

/ (u? — @O)kZeyduds = k2 / Sqiipdz,
Ty Q

DM/(q;)éqR ~eds=/5111/3d1‘.
/Fb (45,009 R(qg)ep %

We know from the adjoint operator DM* (qic) that

Sqep DM (q;)R ~ds=/6a1,/3dx.
/Qb gepDM (g7) R(qz,) Q%

Since it holds for any dq and since ¢ has compact support in 2, we have

1 _-
DM*(q;)R(q;) = g;uw.

Taking the complex conjugate of the above equation and letting ¢ = ¥ yields the

result. O

Using this theorem, we can rewrite (3.3.13) as

||‘Q
U

8q = —u. (3.3.17)

€

S
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So for each incident wave and each wavenumber kg, we have to solve one forward
problem (3.3.9) along with one adjoint problem (3.3.16). Since the adjoint problem
has a similar variational form as the forward problem, essentially, we need to com-
pute two forward problems at each sweep. Once dq is determined, aj. is updated by

a5, + 4gq.

3.4 Implementation

In this section, we discuss the numerical solution of the forward scattering problem
and the computational issues of the recursive linearization algorithm.

The scattering data are obtained by numerical solution of the forward scattering
problem. To implement the algorithm numerically, we employ Nystrom’s method
in the annulus region Qb and add some suitable boundary conditions on I' and
I'p. Readers are referred to [40] for a detailed description of Nystrom’s method.
See also [26] for the implementation of Nystrém’s method on integral equations
generated by Helmholtz equation. Based on Kirsch and Monk’s idea in [37] and [38],
the exterior problem is solved by integral equation with radiation condition.

Define the space

_ _ ) ous
W(R\Qp) = {u’ € Hl{)C(R\an ,lim VT (3; - zkous) =0, r=|z|}.

Define the operators

(

H™3(T) x H™3(Ty) — HL({Y),

1
G;: H 2()— HY\(Q),
Gm:

H

Ge: HT3(Ty) — W(R\Q)

1 1
by the following boundary problems. Given Ap € H ™ 2(I") and /\pb € H 2(I),
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define G, A\ = w where w € HI(Q) is the weak solution of

Aw + kg(l + q];(k,x))w =0 in Q,
;:gw-kdow-—kr onT. (34.1)

Define G (A, /\Fb) as the weak solution of

Aw+k§w =0 in Q~b’

-61;%; + thkgw = Ap onT,

10w +ikgw = A onT (3.4.2)
€} on 0 Ty b o

Similarly define G’e)\pb = w as the weak solution of

Aw + kdw =0 in R\,
ow .
an +ikgw = /\Fb on Iy,
: ow .
, ]—1>moo VT (—a—r— - zk0w> =0, r=|z|. (3.4.3)

To ensure continuity of solution of the forward problem across I' and T'p, it suffices

1 1
to choose Ap € H™ 2(T") and )\Fb € H™ 2([y) such that

z i
G \r +G; (66_ + tkgu® ) =GmAr + Gm(%— + ikgu' ) onT, (3.4.4)
ut

The function Ap and Ap, are approximated by trigonometric polynomials of or-
r Iy

der N. Represent I' by z(t) = (rpcosfy,rpsinfy),0 < 6; < 2m, Ty by

N-1
z(t) = (TFb cos@Q,ersinOQ),O < 0y < 27 Write Ap = Z bnemel and
n=-N
N -1 '
)‘Fb = Z anemeZ Thus for (3.4.4), 2N + 1 finite element problems need to
n=-—-N

be solved on the left hand side, and 2N + 1 Nystrom problems need to be solved
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on the right hand side. Similarly for (3.4.5), 2NV + 1 Nystrom problems need to
be solved on the left hand side, and since I'y is a circle, we can compute Ge’\Fb

explicitly as a finite linear combination of Hankel functions:
N-1 inf
1 ane’’"’2 1
Ge/\l‘b = I”_O- Z (1) = e HT(L )(kOT)
n=—N (Hp ') (korr,) +iHn " (korr,)

As for the adjoint problem, the continuity conditions are:
Gr + Gi((u=wkE) = GmAr — Gm((w—@)k) onT,
GmAr, + Cm((u =4 akd) = Gedr, — Ge((u =14 @kZ) on Ty,

where the data on the artificial boundary I' can be obtained from the data on I,

by a least square method introduced in [55].

3.5 Numerical Experiments

In the following, to illustrate the performance of the algorithm, two numerical ex-

amples are presented for reconstructing the scatterer of the Helmholtz equation in
.2.63714

two dimensions. Assume the dielectric constants €ty mor(kg, ) = 54 —1i ko and
€normal (K0, 7) = 16.29 — lw (see [27]).
Example 1. Define 0
212
(Stumor _ pyeiziZ-000252  |4| < 0.0025 in 2,
q(kp, ) = ¢ €normal
0 elsewhere in (2.

See Figure 3.4 and 3.5 for the surface plot of the real and imaginary part of scatterer
function in the domain |z| < 0.003. Figure 3.8 and 3.9 are the final reconstructions
using the wavenumber kg = 7.1, which has relative error 6%. Figure 3.6 and 3.7

shows the result of the Born approximation.
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Figure 3.4. Real part of smooth scatterer function

x0.01 0457104

Example 2. [31] Assume the diameter of the breast is 10cm and a 6-mm-diameter

tumor is located in the center.

Sumor _ 3 42 4 52 <0.0032 inQ,
q(kg,z) = €normal
0 elsewhere in Q.

See Figure 3.10 and 3.11 for the surface plot of the real and imaginary part of
scatterer function in the domain Q = {z : I% + z% < 0.0062}. Figure 3.14 and 3.15
are the final reconstructions using the wavenumber ky = 6.1, which has relative error
26.66%. Figure 3.12 and 3.13 shows the result of the Born approximation. It is easily

seen that this scatterer is difficult to reconstruct because of the discontinuity.



Figure 3.5. Imaginary part of smooth scatterer function

Figure 3.6. Born Approximation of the real part of smooth scatterer function

x0.01
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Figure 3.7. Born Approximation of the imaginary part of smooth scatterer function
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Figure 3.8. Final construction of the real part of smooth scatterer function
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Figure 3.9. Final construction of the imaginary part of smooth scatterer function
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Figure 3.10. Real part of piecewise scatterer function
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Figure 3.11. Imaginary part of piecewise scatterer function
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Figure 3.12. Born Approximation of the real part of piecewise scatterer function
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Figure 3.13. Born Approximation of the imaginary part of piecewise scatterer func-
tion
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Figure 3.14. Final construction of the real part of piecewise scatterer function
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Figure 3.15. Final construction of the imaginary part of piecewise scatterer function
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