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ABSTRACT

MODEL SELECTION AND DATA WEIGHTING METHODS FOR STATISTICAL

CATCH-AT-AGE ANALYSIS: APPLICATION TO 1836 TREATY WATER STOCK

ASSESSMENTS

By

Brian C. Linton

Recommended harvest limits for lake trout Salvelinus namaycush and lake

Whitefish Coregonus clupeaformis stocks in the 1836 Treaty Waters of the Great Lakes

are based on statistical catch-at-age analysis (SCAA). The assessment models and

methods are similar to those used to assess fish stocks in many ofthe word’s major

fisheries. My objective was to evaluate these methods with an eye towards suggesting

improvements both for 1836 treaty waters and more generally. My results provide

general guidance to stock assessment scientists with regard to data weighting and

selecting among alternative assessment models. As a first step, I performed an analysis

of the Lake Huron lake Whitefish models’ sensitivity to changes in “known” inputs and

model structure, selected as examples of basic type of assessment used throughout treaty

waters for lake Whitefish and lake trout. All of the Lake Huron lake Whitefish models

were sensitive to changes in the methods used to estimate recruitment and time-varying

selectivity, as well as to changes in their objective functions, and this indicated that

further study of these aspects of the assessment methods was warranted.

Specifically with regard to the objective function, the assessment models were

sensitive to changes in pre-specified variances associated with process and observation

errors, which are used to weight the different data sources. This result is consistent with

concerns expressed more broadly in the literature. I evaluated alternative approaches for



estimating log catchability (process error) and log total catch (observation error) standard

deviations within SCAA using Monte Carlo simulations: an ad hoc approach that tunes

the model predicted log total catch standard deviation to match a prior value, and a

Bayesian approach using either strongly or weakly informative priors for log catchability

standard deviation. When process error variance is large relative to observation error

(likely for many fisheries), reliable estimates of log catchability and log total catch

standard deviations can be obtained in SCAA using a Bayesian approach with only a

weakly informative prior on log catchability standard deviation.

The sensitivity of the Lake Huron Whitefish models to the method used to model

time-varying selectivity is also consistent with indications in the broader literature that

SCAA assessments can be sensitive to misspecification of selectivity. I therefore

evaluated four approaches for modeling time-varying selectivity within SCAA using

Monte Carlo simulations: double logistic functions with one, two and all four ofthe

function parameters varying over time, as well as age-specific selectivity parameters that

all varied over time. None of these estimation methods out performed the others in all

cases. In addition, I compared model selection methods to identify good (i.e., accurately

matching the true fish population) estimation models. Degree of retrospectivity, the best

selection method, was based on a retrospective analysis of bias in model parameter

estimates as the data time series for estimation is sequentially shortened. I recommend

this method of model section when considering different time-varying selectivity

estimation approaches in SCAA.
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CHAPTER 1

SENSITIVITY ANALYSIS OF LAKE WHITEFISH STOCK ASSESSMENT MODELS

USED IN THE 1836 TREATY WATERS OF LAKE HURON

Introduction

In 1836, Native American Bands in the region to become the state of Michigan

signed a treaty with the US. government which reserved their right to fish in the

Michigan waters of lakes Huron, Michigan, and Superior. These fishing rights were

reaffirmed by the US. federal courts in 1979. The federal district court later approved

the fishery regulations created by the Chippewa/Ottawa Treaty Fishery Management

Authority (COTFMA) in 1982, while mandating that total allowable catches (TACs) or

harvest regulating guidelines (HRGs) be established for important fish species in order to

prevent over-fishing. Federal, state, and tribal biologists worked together to estimate

TACs for lake Whitefish Coregonus clupeaformis during 1979-1982. During this period,

the stock assessment methods used in the treaty waters were evolving and constrained by

limited data. Where possible stock sizes were estimated by application of a simple age-

structured model. Although there was no formal harvest policy, TACs were generally set

near the estimated maximum sustainable yield if the stock size was near the associated

biomass and to lower values when stock sizes were lower (e. g., AHWG 1979).

The 1985 Consent Decree laid out a 15 year agreement between federal, state and

tribal agencies for the allocation of fishery harvest between the parties. The Technical

Fisheries Review Committee (TFRC) was created by the decree to assess stocks of

important fish species. As part of this mandate, the TFRC recommended TAC/HRGs for



lake Whitefish stocks within the ceded territory to federal, state and tribal governments.

Stock assessments produced for the TFRC were generally based on simple age-structured

models (Clark and Smith 1984). The 1985 decree did not specify a harvest policy, but

based on TTWG (1984) the TFRC adopted a policy to limit total mortality to specified

levels less than 70%.

The 2000 Consent Decree was a new 20 year agreement, which set guidelines for

the management of important fish species, as well as allocating fishery harvest. As part

of the new decree, the Technical Fisheries Committee (TFC) was formed, which serves

many of the same functions as did the TFRC under the previous decree. Also at this

time, COTFMA was reorganized as the Chippewa/Ottawa Resource Authority (CORA).

Unlike the previous decree, a reference mortality rate for lake Whitefish of 65% was

specified, which partially defines a harvest policy. New methods for conducting lake

Whitefish stock assessments and projecting TAC/HRGs were developed during the

negotiation period for the 2000 Consent Decree by an interagency modeling group. The

decree specifies that a newly formalized Modeling Subcommittee (MSC) of the TFC

should build upon the work of the interagency modeling group to continue the lake

Whitefish stock assessment program.

The new stock assessment methods employed statistical catch-at-age models,

which were created for each lake Whitefish stock by the interagency modeling group and

further developed by the MSC. These stock assessment models used catch-at-age and

effort data from the commercial fisheries to estimate population abundances, mortality

rates, fishery harvests, and other population parameters of interest. Estimated quantities

from the assessment models were used to project each stock’s abundance and mortality



rates into the future, and then TAC/HRGs were calculated from these projections and a

reference mortality rate.

The 2000 Consent Decree established requirements governing the calculation of

TAC/HRGs. The reference level of total annual mortality (65%) specified for lake

Whitefish plays a different role depending on whether the yield from a particular

management unit is allocated entirely to the tribes (tribal unit) or partially allocated to the

state (shared unit). For shared units, 65% total mortality is treated as an upper limit and

TACs are established so as to allocate the yield between the parties as specified in the

decree. State and tribal management agencies are responsible for separately

implementing management actions (e.g., limits on entry to the fishery, gear restrictions,

size limits, and trip limits) to constrain fishery yield at or below levels specified by

TACs. If state or tribal fishery harvest exceeded their TAC/HRG by 25% or more, either

in a single year or over the course of five years, then that party’s TAC in the following

year is reduced by the amount that the previous TAC was exceeded. For tribal units, 65%

total mortality is viewed as an upper target level, and management actions by the tribes

are intended to prevent this level from being exceeded on average.

One of the complications of applying a reference mortality rate to the results of

the new age-structured assessment models is that these models account for the fact that

fishing mortality varies with age. The MSC chose a conservative solution to the problem

for lake Whitefish by further defining the reference mortality rate. First, for the reference

mortality rate, the maximum total mortality across all ages was not to exceed the

specified value of 65% (for most units). In addition, the spawning stock biomass per

recruit (SSBR) at this mortality schedule was required to be at least 20% of the SSBR for



the unfished stock. If the SSBR was below the 20% threshold, then the maximum total

mortality was reduced until the resulting SSBR was at least 20% of the unfished SSBR.

Due to the rapid development and implementation of the stock assessment

models, not all of the approaches used in the models have been fully evaluated. For

example, there were numerous methods for modeling each of the biological processes

represented within the models from which the MSC analysts could select. Once a

particular method for modeling a process was chosen, reasonable parameter starting

values and bounds on what values those parameters could take also had to be selected by

the analysts. It was unknown how much these choices affected stock assessment results.

Therefore, my objective was to further evaluate the stock assessment models for lake

Whitefish in the 1836 treaty waters of Lake Huron, with a view toward suggesting

possible improvements. This objective linked to a broader goal for my work, to form the

basis for advice that is broadly applicable in the field of fishery stock assessment. As a

first step to achieve this objective, I performed a general analysis of the models’

sensitivity to changes in “known” inputs and model structure.

Methods

The 1836 treaty waters of Lake Huron were divided into five lake Whitefish

management units, each thought to contain a distinct lake Whitefish stock (Figure 1.1).

Separate stock assessment models were developed for each of the lake Whitefish

management units. When the models were originally developed, it was assumed that the

net movement of lake Whitefish between management units was nil.



Stock Assessment Model

Here I provide an overview of the stock assessment models’ general structure.

Ebener et a1. (2005) provides a detailed description of the models. All of the stock

assessment models consisted of two basic submodels, a population submodel and an

observation submodel. The population submodel described the population dynamics of

the stock in terms of abundance-at-age excluding the first year and the first age in

subsequent years:

‘Za

Na+l,y+l = Na,ye ,y ,

where Na,y was the number of fish in age a and year y and lay was the total

instantaneous mortality rate in age a and year y. Numbers-at-age in the first year were

estimated as a vector of relative population variation parameters (i.e. a vector of

deviations that must sum to zero). A population scaling parameter then converted these

deviations to numbers-at-age. Numbers of fish in the first age ofeach year also were

estimated as a series of scaled deviations using the same population scaling parameter,

but were penalized for deviating too greatly from a Ricker stock-recruitment function:

N _e‘.BGy—a0-l ’

aGy-(00,)! = a0 -1)

where N was the number of fish in the first age a0 and year y, Gy_(a0 _1) was the
a0 ,y

number of eggs produced aO-l years prior to year y, a was the productivity parameter,

and 6 was the density dependent parameter. The number of eggs was calculated within

the submodel, based on a constant weight-specific fecundity. The productivity and

density dependent parameters were estimated within the submodel. Numbers-at-age were



converted to biomass using observed mean weight-at-age data. Total mortality consisted

of four component parts:

Za,)’ = M +ML,a,y +FG,a,y + FT,a,y’

where Mwas the natural mortality rate, ML, a,y was the sea lamprey induced mortality rate

in age a and year y, FG, a,y was the gill net fishing mortality rate in age a and year y, and

F130,), was the trap net fishing mortality rate in age a and year y. Natural mortality was

assumed to be constant for all ages and years, and was estimated as a model parameter.

Pauly’s equation (Pauly 1980) was used to calculate an initial value for the natural

mortality parameter to provide a reasonable starting point for parameter estimation. Sea

lamprey mortality was calculated externally to the model based on observed sea lamprey

wounding rates. Fishing mortality was estimated by relaxing the assumptions of the fully

separable fishing mortality model and allowing gear selectivity to vary with time:

Fi,a,y = Si,a,yqiEi,y§i,y ’

where Si,a,y was the gear selectivity of age a fish in fishery i and year y, q; was the

catchability in fishery i, E;y was the observed fishing effort in fishery i and year y, and

(,3), was the deviation in fishing mortality from direct proportionality to observed fishing

effort in fishery i and year y. Selectivity was estimated with a double logistic function of

age, and one of the parameters of the function was allowed to change with time according

to a quadratic function. This allowed age-specific selectivity to change gradually over

time. An adjustment factor was applied to the observed gill net effort in order to account

for changes in the number of meshes deep that were set through time.



The observation submodel predicted catch-at-age for the gill net and trap net

fisheries. Catch-at-age was predicted using Baranov’s catch equation:

 

Fi,a,y —Z

Cifiay = Zay Na-y(l—e thy),

where Ci.a.y was the number of age a fish caught in fishery i during year y, and all of the

other parameters were estimated in the population submodel. Predicted catch-at-age was

converted to a total annual catch and a proportion of catch-at-age for each fishery. An

underreporting factor, representing the proportion of the actual catch that was reported,

was applied to the total catch in order to account for underreporting and discards in the

fisheries. The underreporting factor was obtained by comparing reported fishery landings

to actual sales.

The parameter values providing the best fit were found using Bayesian methods

(i.e., prior densities were assigned to all parameters). In particular, best fit parameter

estimates maximized the joint posterior density, and for numerical reasons this was done

by finding parameter values that minimized the weighted sum ofthe negative log

likelihoods and the negative log prior densities. Separate likelihood components were

calculated for gill net total catch, gill net proportion of catch-at—age, trap net total catch,

and trap net proportion of catch-at-age. Total annual catch was assumed to follow a

lognorrnal distribution, with the negative log likelihood (ignoring some additive

constants) given by:



where a,- was the standard deviation for log-scale observed total catch in fishery i, C,3y

A

was observed total numbers of fish caught in fishery i and year y, C was predicted
13y

total numbers of fish caught in fishery i and year y, and n was the total number of years

included in the model. Observed catch was reported as weight of fish harvested, which

was converted to numbers of fish using the observed mean weight of a harvested fish.

Proportion of catch-at-age was assumed to follow a multinomial distribution, with the

negative log likelihood (ignoring some additive constants) expressed as:

n m A

L<PJ= ‘ZNEM Elm... mam),
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where NE, ,3y was the effective number of fish used to calculate the age composition in

fishery i and year y (Fournier and Archibald 1982), Pi.y.a was the observed proportion of

catch-at-age a in fishery i and year y, 13, a was the predicted proportion of catch-at-age
,y

a in fishery i and year y, n was the total number of years included in the model, and m

was the total number of ages included in the model. In addition to the likelihood

components, the joint posterior density included terms related to prior densities for the

model parameters. First, deviations of predicted recruitrnents from the Ricker stock-

recruitrnent function were assumed to follow a lognorrnal distribution. Second, deviation

of predicted natural mortality from the prior natural mortality value (i.e. the Pauly’s

equation value) was assumed to follow a lognorrnal distribution. Third, deviations in the

fishing mortality from direct proportionality to observed fishing effort were assumed to

follow a lognorrnal distribution. The log of all remaining model parameters were

assigned proper uniform prior densities, which follows common practice with the intent



of being weakly informative. Therefore, prior densities of the log of the remaining

parameters were constants for all parameter values.

Each likelihood component, the prior density for deviations between recruitment

and the stock-recruitment function predictions, the prior density for natural mortality, and

the prior density for deviations in the fishing mortality from direct proportionality to

observed fishing effort were weighted by an emphasis factor as described by Methot

(1990). If all likelihood components, prior densities, and their associated standard

deviations or effective sample sizes were correctly specified, then the emphasis factors

should all be 1.0. If there was a misspecification in the objective function, then the

emphasis factors provide a simple way for analysts to adjust how closely the model

attempts to fit observed and predicted data for each likelihood component.

Projection Model

Recommended yields for a reference (sometimes called target) mortality rate were

then calculated using stock assessment model output in a projection model. The stock

assessment model output included estimated numbers-at-age, estimated total mortality,

estimated natural mortality, and assumed sea lamprey mortality, all from the last year of

the model, as well as, estimated trap net and gill net mortality rates that were averaged

over the last three years ofthe model, and estimated average recruitment (over the last ten

years) of the model. Along with the stock assessment model output, observed weight-at-

age in the fisheries, observed mean proportion of females in the population, observed

maturity schedules represented as year and age-specific proportions, and observed time of

year of spawning represented as a proportion of the year were also used in the projection

model for SSBR calculations.



The projection model took the abundance-at-age estimates from the beginning of

the last year of the stock assessment model, projected abundance to the beginning of the

year for which recommended yields were desired, then projected yields for the trap net

and gill net fisheries. Trap net and gill net fishery multiplier parameters were used to

adjust age-specific fishing mortality rates by the same proportion for each age. The

values of the two multipliers were set so as to achieve the reference mortality rate, while

maintaining a desired allocation between trap net and gill net yield. There were two steps

to determining the appropriate values for the multipliers, which corresponded to how the

reference mortality was defined. First, the multipliers were adjusted so that the

maximum total annual mortality for any age did not exceed the reference (typically 65%).

Second, the ratio of SSBR at this mortality schedule to SSBR without fishing was

calculated (hereafter the SSBR ratio). If this ratio was less than 0.2, then the multipliers

were decreased until the SSBR ratio equaled 0.2.

Sensitivity Analysis

Sensitivity analysis quantifies the effect of changes made to a model’s input

values and underlying assumptions on the model’s output (Morgan and Henrion 1990).

My sensitivity analysis tested changes to the stock assessment models’ input quantities

and model structure (i.e., underlying model assumptions). Changes to observed input

data represented possible changes in data collection (e.g., collecting more or less data),

while changes to input values based on expert judgment (e.g., parameter starting values)

represented a changes made by the analyst during the model fitting process. Changes in

model structure were based on alternative modeling procedures suggested in the
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literature. The WFH—03 management unit model was not included in the following

analysis, due to a lack of convergence to a satisfactory solution.

The stock assessment models were tested for their sensitivity to changes in input

values. The observed mean weight-at-age of harvested fish was varied for all ages at

once by i10% of the original values. The year- and age-specific maturity schedule was

varied by reassigning maturity values from each age to the next oldest age (e.g., maturity

values for age 4 fish became the maturity values for age 5 fish). Then the first age was

given a maturity value of zero. Similarly, the maturity schedule was varied by

reassigning maturity values from each age to the next youngest age (e.g., maturity values

for age 4 fish became the maturity values for age 3 fish), and setting the maturity in the

last age equal to 1.00. Fecundity was adjusted by making it a linear function of average

weight-at-age at the time of spawning. The gill net adjustment factors for number of

meshes deep set through time were set equal to 1.00 to test the overall effect of the

adjustments. The gill net adjustment factors also were varied using the following

formula, which assumed the trend in the factors over time was alternatively more and less

extreme than originally thought:

xy = 7c +chO,y -)—C),

where xy was the new adjustment factor in year y, 7: was the average of the original

adjustment factors across all years, x0,y was the original adjustment factor in year y, and

scalar c alternatively equaled 0.8 to represent a less extreme trend and 1.2 to represent a

more extreme trend. Adjustment factors were included in the original models to account

for underreporting in each year of the fisheries. The underreporting factors were set to

1.00 for one fishery at a time to test the overall effect of the adjustments. The

11



underreporting factors were increased and decreased by a value of 0.2 for one fishery at a

time. The proportion of females in the population was set to 0.5. The proportion of

females also was increased and decreased by a value of 0.2. The time of year of

spawning was increased and decreased by a value of 0.2. Bounds for each model

parameter, which limited the range of values a given parameter could take, were

increased one at a time by decreasing the lower bound by 20% of the original value and

increasing the upper bound by 20% of the original value. Bounds for each model

parameter were decreased one at a time by increasing the lower bound by 20% of the

original value and decreasing the upper bound by 20% of the original value. Starting

values for each model parameter were increased and decreased one at a time by 20% of

the original values. Natural mortality was altered by fixing the parameter to the starting

value and by increasing and decreasing the starting value by 20% of the original starting

value.

The stock assessment models were tested for their sensitivity to changes in model

structure. Recruitment in each year was estimated as a free parameter without any

penalty for deviating from stock-recruitment model predictions. Also, a Beverton-Holt

stock-recruitment function, rather than a Ricker stock-recruitment function, was used to

predict recruitment (Beverton and Holt 1957):

N _ aGy—ao—l

“W _ 1+ [30

 

y-ao—l.

Rather than using deviations between observed and predicted numbers of fish caught in

the objective function, deviations between observed and predicted biomass of fish caught

were used. The predicted numbers of fish caught were converted to mass of fish caught,

using the mass—at-age of a harvested fish, comparing them assuming a lognormal
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distribution. The likelihood component emphasis factors were doubled and halved one at

a time. Gamma likelihood components were substituted for all lognormal likelihood

components, keeping the same coefficient of variation:

L(C,' ) = —¢i i In[ (Shy ] - (gay :I ,

y=1 13y Chy

  

where ¢,~ was the inverse of the squared coefficient of variation for observed harvest in

fishery i (Cadigan and Myers 2001) and the other variables were the same as in the

lognormal likelihood component. Dirichlet likelihood components were substituted for

all multinomial likelihood components, with fixed parameters setting the effective sample

size equal 100:

n m A m A m A

L(P.-)= Z 1nr[2r,-P.-,y,a]— Zlnrlrle,y,a)+ Xvi-Pry. —1)1nP.-,y,. .
y=l a=l a=l 0:]

where 7,- represented the effective sample size for fishery i, Fwas the gamma function,

and the other variables were the same as in the multinomial likelihood component.

Each stock assessment model was rerun for each of the changes tested. In order

to better specify the standard deviation around the stock recruitment relationship, an

initial recruitment standard deviation was input into the model. The standard deviation of

predicted recruitment was then calculated at the conclusion of model fitting. The

predicted recruitment standard deviation then replaced the former input standard

deviation, and the model was renm leading to a new predicted recruitment standard

deviation. This process was repeated 50 times with the goal of getting the ratio between

input recruitment standard deviation and predicted recruitment standard variation as close

to unity as possible. After the 50 runs, the model was considered to have converged to a

13



satisfactory solution if: 1.) the ratio of recruitment standard deviations was between 0.98

and 1.02; 2.) the maximum gradient component, which measures the maximum amount

of change in parameter estimates during model fitting, was less than 1 x 10-2; and 3.) the

Hessian matrix, which is used to calculate standard deviations for the parameter

estimates, was positive definite.

The sensitivity of the stock assessment models to change was monitored by

tracking several of the models’ output quantities. The output quantities of interest

included: the estimated fully selected gill net and trap net fishing mortality rates averaged

for the last three years of the assessment, estimated population biomass averaged for the

last three years of the assessment, estimated SSBR of the unfished population, predicted

SSBR at reference mortality levels, estimated SSBR ratio, and the estimated yield

calculated for reference mortality rates for the projected population. Model sensitivity

was calculated as the percent difference ofthe test quantity of the adjusted model from

the baseline value of the test quantity of the original model (Table 1.1):

a-eo

0

x100, D%=

where D% was the percent difference, 60 was the baseline value of the test quantity,

andt9‘ was the value of the test quantity from the adjusted model. I considered a model to

be sensitive to a change if that change produced a 10% or greater change in one of the

output quantities.
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Results

All of the stock assessment models were sensitive to changes in the input values.

As expected, increasing observed mean weight-at-age of a harvested fish led to an

increase in the projected TAC/HRG in all of the projection models (Table 1.2).

Likewise, decreasing mean weight-at-age led to a decrease in the projected TAC/HRG in

all of the projection models. These effects upon projected TAC/HRGs were greater for

the gill net fishery in WFH-Ol and WFH-04, and were greater for the trap net fishery in

WFH-02 and WFH-OS. Changes in mean weight-at-age of a harvested fish in the gill net

fishery had no effect upon the projected TAC/HRG in the WFH-OS model, due to the

small size of the gill net fishery in that management unit.

Surprisingly, setting gill net effort adjustment factors for number of meshes deep

set through time to one, increasing gill net effort adjustment factors, and decreasing gill

net effort adjustment factors increased the projected TAC/HRG by 34.7% and changed

the remaining test quantities to a lesser degree (0. 146%), except for SSBR ofthe

unfished population which was unaffected, in the WFH-02 model (Table 1.2). All of

these changes to gill net effort adjustment factors had slight effects (OJ-3.3%) on all of

the test quantities, except for SSBR of the unfished population, in all of the other models;

though no clear patterns were apparent. The WFH-Ol model failed to converge when gill

net effort adjustment factors were set equal to one.

As anticipated, shifting the maturity schedule later by one age led to substantial

decreases (21 .2-48.2%) in the SSBR of the unfished population and SSBR at the

reference mortality schedule, with a greater decrease in SSBR at the target schedule,

because the fish were maturing later after more mortality had occurred, and mortality was
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higher for the reference schedule (Table 1.3). The greater decrease in SSBR at reference

mortality schedule led to a decrease in the SSBR ratio. Likewise, shifting the maturity

schedule earlier by one age led to substantial increases (13.6-55.4%) in the SSBR of the

unfished population, SSBR at the reference mortality schedule, and the SSBR ratio in all

of the models, due to the resulting increase in spawning biomass. Unexpectedly, shifting

the maturity schedule later by one age increased the projected TAC/HRG in WFH-02 and

WFH-04 by 38.5% and 14.4% respectively. Changes in the maturity schedule also had

modest influence on fully selected gill net and trap net mortality, biomass, and projected

TAC/HRG (01-59%) in all of the models. There was some influence because maturity

schedule values are used to calculate the number of eggs produced for the stock-

recruitrnent function, and this affects the objective function. The WFH-02 model failed

to converge when the maturity schedule was shifted earlier by one age.

Setting the average proportion of females in the population equal to 0.5 led to an

increase (21.8-31.6%) in SSBR of the unfished population and SSBR at the reference

mortality schedule in all of the models, except the WFH-04 model which failed to

converge (Table 1.3). As expected, increasing the proportion of females led to an

increase (47.9-52.6%) in SSBR of the unfished population and SSBR at the reference

mortality schedule in all of the models, because the spawning stock was considered to be

the mature females within the population. Decreasing the proportion of females led to a

decrease (48.9-52.6%) in SSBR of the unfished population and SSBR at the reference

mortality schedule in all of the models, due to the resulting decrease in spawning stock.

All of the adjustments made to the proportion of females led to slight changes (OJ-5.4%)
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in the fully selected fishing mortalities, biomass, and SSBR ratio; and larger changes

(23.8-37.2%) in the projected TAC/HRG for the WFH-02 model.

As expected, increasing trap net fishery underreporting adjustment factors led to

increases in fully selected trap net mortality (12.8-18.1%) in order to account for the

increased trap net harvest, except for a 1.3% decrease in trap net mortality in the WFH-OS

model, and decreases in fully selected gill net mortality (7.6-22.3%; Table 1.4).

Decreasing trap net fishery underreporting adjustment factors led to decreases in fully

selected trap net mortality (10.7-13.4%) due to the lower trap net harvest, except for a

1.1% increase in trap net mortality in the WFH-OS model, and increases in fully selected

gill net mortality (5.5-22.6%). Likewise, increasing gill net fishery underreporting

adjustment factors led to increases in fully selected gill net mortality (6.8-29.8%) and

decreases in fully selected trap net mortality (13.4-16.7%) due to increased gill net

harvest, except for a 1.8% increase in trap net mortality in the WFH-OS model.

Decreasing gill net fishery underreporting adjustment factors led to decreases in fully

selected gill net mortality (6.1-18.7%) and increases in fully selected trap net mortality

(103-14.5%) due to decreased gill net harvest, except for a 1.2% decrease in trap net

mortality in the WFH-OS model. The small, but unforeseen, changes in firlly selected

fishing mortality rates (< 2%) in the WFH-OS model appeared to be due to the small gill

net fishery, which effectively makes WFH-OS a one (trap net) fishery system. It appears

the WFH-OS assessment model accounted for adjustments in observed trap net harvest by

making large changes to the biomass and small changes to fishing mortality. Likewise,

changes in gill net harvest led to only small adjustments of the biomass and trap net

fishing mortality because of the small size of the fishery. Changes in the fishery
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underreporting adjustment factors also affected biomass (0.5-28.5%), SSBR at the target

mortality schedule (0-4.4%), and SSBR ratio (0-4.4%), though no patterns were apparent.

Changes in the fishery underreporting adjustment factors had no effect on the SSBR of

the unfished population.

As anticipated, increasing the time of year of spawning led to a decrease (2.7-

12.4%) in SSBR of the unfished population, SSBRat the reference mortality schedule,

and SSBR ratio because fewer fish survived to spawn later in the year (Table 1.3).

Increasing the time of year of spawning also led to an increase (0.3-36.2%) in the

projected TAC/HRG for all of the models because the spawning stock was exposed to the

fisheries for a longer period of time before spawning. Decreasing the time of spawning

led to an increase (2.8-14.5%) in SSBR of the unfished population, SSBR at the reference

mortality schedule, and SSBR ratio because more fish would survive to spawn earlier in

the year. Decreasing the time of spawning also led to a decrease (0.4-1.1%) in the

projected TAC/HRG for all of the models because the spawning stock was exposed to the

fisheries for a shorter period oftime, except in the WFH-02 model which had an

unexpected increase in the TAC/I-IRG of 33.0%. Adjustments to the time of spawning

led to slight changes (0-5.1%) in the fully selected fishing mortalities and biomass with

no clear pattern in all of the models. These slight changes appeared because time of

spawning is used to calculate the number of eggs produced for the stock-recruitment

function, which influenced the objective function.

Both increasing and decreasing the parameter bounds for natural mortality led the

WFH-O2 model to converge to the same solution, different from the original one, where

fully selected trap net mortality decreased by 0.2%, fully selected gill net mortality
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increased by 1.2%, biomass increased by 4.6%, SSBR of the unfished population

remained unchanged, SSBR and SSBR ratio decreased by 0.1%, and projected

TAC/l-IRG increased by 34.7% (Table 1.5). This alternate solution was very similar to

the one reached by the model for this unit when changes were made to the gill net effort

adjustment factors. Increasing and decreasing the natural mortality parameter’s starting

value for this unit also led to the same solution described above. Decreasing natural

mortality’s starting value led to 0.1% changes in fully selected trap net mortality,

biomass, SSBR and SSBR ratio, and projected TAC/I-IRG in the WFH-04 model. The

WFH-Ol and WFH-05 models were unaffected by changes to natural mortality.

Surprisingly, decreasing trap net catchability bounds and increasing and

decreasing gill net catchability bounds in the WFH-02 model led to the same alternate

solution described above, where projected TAC/HRG increases by 34.7% while all the

other test quantities, except for SSBR of the unfished population, changed from 01-46%

(Table 1.6). Increasing and decreasing the trap net catchability starting value and

increasing the gill net starting value again led to the same alternate solution for WFH-02

with the 34.7% increase in projected TAC/HRG. None of the other models showed any

sensitivity to changes in the catchability parameters.

Increasing and decreasing the population scaling parameter’s bounds, and

decreasing the population scaling parameter’s starting value led to the state with the

34.7% increase in projected TAC/HRG in the WFH-02 model (Table 1.7). Decreasing

the relative population variation parameters’ bounds led to a 31.9% increase in firlly

selected gill net mortality, a 25.2% increase in the projected TAC/HRG, and smaller

changes (22-80%) in fully selected trap net mortality, biomass, and SSBR and SSBR
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ratio in the WFH-02 model. The other models were unaffected by changes to the

population scaling parameter and relative population variation parameters.

Increasing the bounds of the Ricker stock-recruitment function’s productivity

parameter led to a 37.2% increase in projected TAC/HRG and smaller changes (0.4-

5.4%) in the fully selected fishing mortalities and biomass in the WFH-02 model (Table

1.8). Decreasing the bounds of the Ricker function’s productivity parameter led to

changes (0.2-10.8%) in all of the test quantities, except for SSBR for the unfished

population, for the WPH-01 and WFH-OS models. The WFH-02 model failed to

converge when both the Ricker function’s productivity parameter’s bounds and starting

value were decreased. Increasing the bounds of the Ricker function’s density dependence

parameter, increasing the starting value of the productivity parameter, and increasing and

decreasing the starting value of the density dependence parameter led to the state where

the projected TAC/HRG increases by 34.7% in the WFH-O2 model. Increasing the

bounds of the Ricker function’s density dependence parameter led to a 20.6-43.4%

increase in the projected TAC/HRG and smaller changes (0.3-15.2%) in the remaining

test quantities, except for SSBR of the unfished population, for the WFH-Ol and WFH-04

models.

Increasing the bounds of the gill net selectivity function’s first inflection point and

decreasing the bounds of the gill net selectivity function’s first slope parameter in the

WFH-02 model led to the same state noted earlier with the 34.7% increase in the

projected TAC/HRG (Table 1.9). Decreasing the bounds of the gill net selectivity

function’s first inflection point led to changes (3.0-15.4%) in all of the test quantities,

except SSBR of the unfished population, in the WFH-02 and WFH-04 models. The
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WFH-02 model failed to converge when the bounds on the gill net selectivity frmction’s

second inflection point were widened. Decreasing the bounds of the trap net selectivity

function’s first inflection point led to changes (5.3-18.1%) in all of the other test

quantities, except for SSBR of the unfished population, in the WFH-04 model (Table

1.10). The WFH-Ol model failed to converge when the starting value for the gill net

selectivity function’s second slope parameter was increased. Increasing and decreasing

the starting values for the gill net selectivity function’s first and second inflection points,

decreasing the starting values for the gill net selectivity function’s first and second slope

parameters, decreasing the starting value for the trap net selectivity function’s first

inflection point, increasing and decreasing the starting value for the trap net selectivity

function’s second inflection point, and decreasing the starting value for the trap net

selectivity function’s second slope parameter led to the alternate state with the 34.7%

increase in the projected TAC/HRG in the WFH-02 model. The WFH-02 model failed to

converge when the starting value for the trap net selectivity function’s first inflection

point was increased. The WFH-04 model failed to converge when the starting value for

the gill net selectivity function’s first inflection point was decreased. Adjustments to the

starting values for the gill net selectivity function’s parameters led to 0.2-131.0% changes

in fully selected trap net mortality, 1.4-1,277.2% changes in fully selected gill net

mortality, 1.6-50.9% changes in biomass, 0.7-14.4% changes in SSBR and SSBR ratio,

2.4—87.7% changes in projected TAC/HRG, and no change to SSBR for the unfished

population for the WFH-05 model. Increasing the starting value for the trap net

selectivity function’s second inflection point, and increasing and decreasing the starting

value for the trap net selectivity function’s second slope parameter led to a 0.1% change
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in firlly selected trap net mortality for the WFH-Ol model. Decreasing the starting value

for the trap net selectivity function’s second inflection point led to changes (OJ-0.4%) in

all of the test quantities, except for SSBR of the unfished population, for the WFH-Ol

model.

Increasing and decreasing the likelihood emphasis factor for natural mortality led

to the alternate solution with a 34.7% increase in the projected TAC/HRG for the WFH-

02 model (Table 1.11). The WFH-Ol model failed to converge when the trap net catch

and age composition emphasis factors were increased. The WFH-O4 model failed to

converge when the trap net catch emphasis factor was increased, and when the trap net

and gill net age composition emphasis factors were decreased. All the remaining

adjustments to the likelihood emphasis factors led to positive and negative changes (0.1-

62.0%) that showed no pattern in all of the test quantities, except SSBR of the unfished

population, for all of the models.

All of the stock assessment models also were sensitive to changes in model

structure. Holding natural mortality constant at its starting value in the WFH-02 model

led to the state with the 34.7% increase in projected TAC/HRG (Table 1.12). Modeling

fecundity as a linear function of weight led to changes (0-38.8%) in all of the test

quantities, except for SSBR of the unfished population, for the WFH-Ol , WFH-02, and

WFH-OS models, because fecundity was used to calculate the number of eggs produced

(stock size) for the stock-recruitment function (Table 1.6). The WFH-04 model failed to

converge when fecundity was modeled as a linear function of weight.

Estimating each year’s recruitment as a free parameter led to changes (0. 1 -39.8%)

in all of the test quantities, except for SSBR of the unfished population, for the WFH-02
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and WFH-OS (Table 1.12). The WFH-Ol and WFH-04 models failed to converge when

recruitment was estimated as free parameters. Estimating recruitment using a Beverton-

Holt stock-recruitment model led to (0.3-54.3%) changes in all of the test quantities,

except for SSBR of the unfished population, in all of the models.

Fitting mass, instead of numbers, of fish caught in the objective firnction led to

changes (3.7-39.6%) in all of the test quantities, except for SSBR of the unfished

population, for the WFH-02, WFH-04, and WFH-OS models (Table 1.12). The WFH-Ol

model failed to converge when the mass of fish caught was used in the objective function.

The use of the gamma likelihood function in place of the lognormal likelihood

function led to small changes (01-07%) in all of the test quantities, except for SSBR of

the unfished population, in the WFH-Ol, WFH-04, and WFH-OS models (Table 1.12).

The WFH-02 model failed to converge when the gamma likelihood firnction was used.

The use of the Dirchlet likelihood function in place of the multinomial likelihood

function led to changes (0-25.9%) in all of the test quantities, except for SSBR of the

unfished population, for all of the models.

Most of the adjustments made to the models led to negative log-likelihood values

that were the same as, or higher than, the original likelihood values, which means that the

model fit was not improved. In particular, the alternate solution often arrived at by the

WFH-02 model had a higher likelihood value (4,340.5) than the original model (4,337.6).

There were, however, several changes that led to a decrease in the negative log-likelihood

value, which means that the changes produced parameter estimates that fit the data better

than the original parameter estimates. In particular a better fit was obtained after

decreasing the bounds of the Ricker recruitment function’s density dependence parameter
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in the WFH-Ol and WFH-04 models and after decreasing the starting value of the gill net

selectivity function’s second slope parameter in the WFH-OS model (Table 1.13). These

instances of better model fit could be due to random chance given the large number of

model changes explored. Likelihood values could not be directly compared to determine

better model fit in cases where the model structure was changed or when the likelihood

emphasis factors were adjusted, because these changes altered the objective function.

Discussion

I performed a simple sensitivity analysis of the stock assessment models for lake

Whitefish in the 1836 treaty waters of Lake Huron to changes in input quantities and

model structure. The changes I tested could be divided into two alternate categories that

affect the way in which the results are interpreted. First, changes to the observed data

and model structure led to changes in the objective function (negative log-likelihood) and

thus altered the optimal solution (i.e., the best-fit parameter estimates) from the optimal

solution of the baseline model. In this case, changes in the output quantities represent the

model seeking the new optimal solution. Second, changes to the parameter starting

values and parameter bounds did not alter the optimal solution from the optimal solution

of the baseline model. In this case, changes in the output quantities mean that the model

has become trapped at a local minimum for the objective function or found the true

global minimum for the objective function depending upon whether the likelihood value

is greater than or less than, respectively, the baseline model’s likelihood value.

A simple sensitivity analysis, like the one conducted here, can be useful for

identifying models that are unstable and highly sensitive to change. The WFH-02 stock

assessment model appears to be such a sensitive model. Thirty-five of the 111 changes
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tested led the model to converge to an alternate solution, which provided a poorer fit

between observed and predicted values than the original model. The alternative solution

was similar to the original model’s solution except for a large increase in the projected

TAC/HRG, due to a change in the estimated selectivity patterns. It appears that the

WFH-OZ model can easily become trapped at a local minimum for the objective function,

which leads to this alternate solution, rather than finding the global minimum. Besides

identifying unstable models, sensitivity analysis can also provide clues for analysts as

they seek the best fit for an unstable model. Sensitivity analysis can reveal to which

parameters ofthe model important outputs are most sensitive to change. It is critical for

analysts to try a wide range of starting values and bounds for those parameters in order to

help ensure that the global minimum for the objective function is found each time the

model is updated. Failure to find the global minimum can lead to dangerous

management decisions] (e.g., setting harvest limits based on an overestimated projected

yield, as in WFH-02). To this end, I have created a program for the MSC to automate my

sensitivity analysis, using AD Model Builder software (ADMB 2002). This program will

allow analysts to more easily evaluate the sensitivity of the stock assessment models

whenever the models are updated.

All of the stock assessment models were sensitive to changes in the stock-

recruitrnent function’s parameter bounds. Decreasing the density dependence parameter

bounds led to better fit parameter estimates for the WFH-Ol and WFH-04 models, which

significantly reduced the projected TAC/HRG in both models. It appears particularly

important to do sensitivity analysis using a range of starting values and bounds for

recruitment parameters each time the models are updated.
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Sensitivity analysis also can reveal patterns of sensitivity across models, which

may point to assumptions about underlying basic model structure (i.e. the way various

biological, fishery, and data producing processes are included in the models) that should

receive more attention. I found that the Lake Huron stock assessment models were

sensitive to my assumptions embodied in stock-recruitment functions, gear selectivity,

and assumed probability distributions used to define the likelihood functions. Of

particular importance, the WFH-02 and WFH-04 model test quantities underwent similar

changes, which resulted in increased TAC/HRGs, when the Beverton-Holt recruitment

function was employed. A number of authors have considered the consequences of

assuming different stock-recruitment relationships to the management advice stemming

from those assumed relationships (Myers et a1. 1994; Barrowman and Myers 2000).

Other authors have discussed the relative merits of estimating stock-recruitment

parameters inside stock assessment models versus outside them (Maunder and Deriso

2003). The issue here is somewhat different than is addressed in that work since I was

only considering short-term projections. My concern here is more on whether including

stock-recruitment functions as a form of a “prior” influences and potentially improves

estimates and resulting short-term management advice, given a harvest policy exists. A

simulation study, where either freely estimated recruitment or priors based on different

recruitment functions were used would allow for a more detailed analysis of how

different approaches to estimation of recruitment fare.

I did not explicitly consider alternative approaches to estimating selectivity.

However, all of the models showed sensitivity to changes in gear selectivity starting

values and parameter bounds. While sometimes the changes were small, in other cases
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changes were pronounced (e.g., WFH-02 and WFH-OS). These results reinforce concerns

that have arisen about the general suitability of the current double logistic selectivity

function during the development of the stock assessment models. As a result of problems

encountered during the original models’ development, all the selectivity parameters are

estimated in only one of the Lake Huron lake Whitefish assessment models (WFH-Ol). In

each of the other models, some of the selectivity parameters must be held constant in

order for the models to even converge on a solution. Thus, issues clearly go beyond

simply finding the best starting values and parameter bounds. Reduced or constrained

versions of the double logistic are not the only alternatives. For example, logistic curves

(Punt et al. 2001), double logistic curves (Methot 1990), gamma-type fimctions (Deriso et

al. 1985), and polynomials (Fournier 1983) have all been used to model selectivity.

Kimura (1990) and Radomski et al. (2005) found that use of an inappropriate selectivity

function can greatly increase the error in modeling results. This is another area where a

simulation study could be used to help evaluate the current and alternative approaches to

modeling selectivity. Alternatively, an empirical selectivity experiment could be used to

determine the actual gear selectivity, but this would need to be done for both gill nets and

trap nets.

All of the models showed some sensitivity to changes in the negative log

likelihood function, both when likelihood emphasis factors were altered and when

alternate distributional assumptions were made. In theory, if the assumed standard

deviations for the natural mortality, catch, and effort data and the assumed maximum

effective sample sizes for the age composition data are correct, then all of the likelihood

emphasis factors should be set to one. Methot (1990) warns that sensitivity to changes in
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the emphasis factors indicates that there is some inconsistency between the data sources

or that some process has not been modeled correctly. Sensitivity analysis of the models

to the likelihood emphasis factors should be tested whenever the emphasis factors are

adjusted during model updates in order to report this sensitivity along with model results.

Replacing the lognormal likelihood function with the gamma likelihood function led to

only small changes in the test quantities. Cadigan and Meyers (2001) found similar

results when comparing the two likelihood functions, although they emphasized that the

gamma likelihood function is more robust to invalid distributional assumptions than the

lognormal. Williams and Quinn (2000a, 2000b) successfully used the Dirchlet likelihood

function to represent age composition data for Pacific herring, where sample sizes were

large. Replacing the multinomial likelihood function with the Dirchlet likelihood

function led to some changes in the test quantities, particularly the TAC/HRGs, in all of

the models. Again I believe a simulation study could be used to evaluate the robustness

of assessments based on these alternative distributions, and to evaluate potential

approaches to selecting between them.

In conclusion, sensitivity analysis provides a useful tool for analysts applying

stock assessment models. Running a sensitivity analysis whenever models are updated

with new data can reveal unstable models which are highly sensitive to change.

Furthermore, such analysis can identify particular parameters or assumptions that

generally have a large influence on outputs of interest. This can help focus attention on

these aspects of the assessment models. Such attention could come in the form of using

simulations to evaluate performance of alternative modeling approaches or collecting

new kinds of data to distinguish among modeling choices.
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Figure 1.1. 1836 treaty-ceded waters and lake Whitefish management units in lakes

Huron, Michigan and Superior.
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CHAPTER 2

EVALUATING METHODS FOR ESTIMATING PROCESS AND OBSERVATION

ERRORS IN STATISTICAL CATCH-AT-AGE ANALYSIS

Introduction

Modern statistically-based stock assessment models allow a stock assessment

analyst to explicitly account for process and observation errors. Observation errors

within statistical catch-at-age analysis (SCAA) commonly take the form of differences

between observed and true fishery catch or survey indices of abundance. Process errors

within SCAA generally take the form of annual deviations in recruitment, catchability, or

fishery selectivity. Errors within SCAA also can be combinations of observation and

process error. For instance, fishing effort can be predicted within SCAA using estimates

of annual fishing mortality rates on fully selected fish and fishery catchability. Some

analysts implicitly treat the deviations between observed and predicted effort as

observation error. In reality these deviations are due to interannual variation in

catchability (process error, which will often dominate) as well as errors in observing the

nominal amount of fishing effort. Similarly, deviations between model and observed

values of fishery catch per unit effort (CPUE) arise from a combination of observation

error and interannual variation in catchability. The variances associated with all of these

error sources or the ratios of those variances are used in SCAA to weight the different

data sources during the model fitting process (Foumier and Archibald 1982; Deriso et al.

1985).
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It is important to understand how values for process and observation error

variances are obtained because those values can affect SCAA results. Deriso et al. (1985)

demonstrated that altering the assumed known ratio of catch variance to effort variance,

which they used to weight fishing effort and catch data, affected estimates of fully-

selected fishing mortality, surplus production and year-class strength of halibut. Chen

and Paloheimo (1998) found that misspecifying the ratio of catch variance to effort

variance could lead to increased estimation bias in catchability and natural mortality. The

National Research Council (1998) recognized the importance of correctly weighting

different data sources within stock assessments, and recommended that more research is

needed to determine how those weights should be set.

Process and observation error variance values can be derived either separately

from SCAA or estimated within SCAA. Derivation of error variance values separate

from SCAA is the more common approach, with these estimates or their ratio then

assumed known during the subsequent SCAA. A plausible estimate of observation error

variance for data subsets such as observed annual catch, effort, or abundance indices

often can be obtained through analysis of the raw data used to derive these quantities,

taking into account the sampling designs (Law and Kelton 1982; Sitar et a1. 1999).

Process error variances cannot be estimated in the same way, by analysis of assessment

data subsets external to the model, because by themselves these data are not informative

about how model parameters such as catchability are varying. As a result, assessment

scientists often rely on expert opinion to obtain estimates of this component of variance.

Merritt and Quinn (2000) applied this expert opinion approach and other empirical data

weighting approaches to the assessment of a recreational fishery, and judged that the
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expert opinion approach produced the best model based on an analytic hierarchy process,

a decision making technique. Since they were working with actual fishery data, Merritt

and Quinn (2000) could not evaluate the accuracy of the variance estimates produced by

expert opinion. With estimates (or educated guesses) of observation and process error

variances in hand, the assessment often then proceeds assuming these values or their ratio

is known. There are several potential disadvantages to such a two-step procedure. First,

uncertainty surrounding the error variance estimates is ignored in the subsequent SCAA

(Maunder 2001). Second, the reliability of process error variances based on expert

judgment can be questioned. Francis et al. (2003) discovered that the standard values

used in New Zealand stock assessments for the coefficients of variation (CV) for

commercial CPUE (effectively the CV for process errors in catchability), which primarily

are derived from expert opinion, typically were too low to be consistent with the resulting

interannual variation in assessment model estimates of fishing mortality. In contrast, they

found the prespecified trawl survey CVs were too large to be consistent with the resulting

deviations between assessment model estimates of catchable stock abundance and

observed survey indices.

Process and observation error variances generally are not estimated within SCAA

due to difficulties in estimating the variances as parameters. This task is particularly

difficult when multiple variances are being estimated. The potential advantages of

estimating variances in SCAA are that 1) all of the data in the analysis can be synthesized

to obtain the variance estimates, and 2) for some methods, uncertainty surrounding the

variance estimates can be quantified and accounted for in the analysis. Two main

statistical methods exist for estimating process and observation error variances in SCAA
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(Schnute 1994). First, a Bayesian approach could be taken, in which prior information

about the process and observation error variances is incorporated into the analysis to

derive marginal posterior densities of the variance estimates as well as other parameters

and quantities of interest. Second, a mixed model approach could be taken, in which the

process errors are treated as random effects, rather than parameters, which can sometimes

allow for the estimation of both the process and observation error variances as model

parameters. Richards et al. (1997) suggested a third approach to estimating process and

observation error variances. This method requires a prior point estimate of observation

error variance. In essence the method is to repeatedly fit the assessment model, each time

using a different assumed known variance ratio, and choose the ratio that produces

deviations between observed data and model predictions that are most consistent with the

prior estimate of observation error variance. Unlike the other two methods, this approach

does not account for uncertainty in variance estimates in the analysis, and I refer to it as

the ad hoc method, because the approach to estimating the ratio of the variances was not

based on a formal statistical justification. To my knowledge, no previous attempt has

been made to compare these different approaches within SCAA.

My objective was to determine whether or not process and observation error

variances could be reliably estimated within SCAA. To answer this question, I evaluated

two different methods for estimating the variances associated with annual variations in

catchability (i.e., process error) and total catch (i.e., observation error) in SCAA. The

two methods I examined were the ad hoc approach described by Richards et al. (1997)

and a Bayesian approach. I looked at using both strongly and weakly informative priors

on catchability variance for the Bayesian approach. In addition, I initially attempted to
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implement a mixed model approach using the random effects module for AD Model

Builder (Otter Research Limited 2005), but that estimation model failed to converge to a

solution for any of the simulated data sets with which I tested it. The mixed model’s

failure to converge likely was due to the highly complex nature of the model which

prevented the estimation of the random effects and associated variance parameters. The

random effects module ofAD Model Builder has not been used to estimate variance

parameters in SCAA before to my knowledge. Additional experimentation with this

software may produce statistical catch-at-age mixed models with better convergence

properties. Monte Carlo simulations were used to investigate the performance of the

different methods.

Methods

I used a simulation study to evaluate different methods of estimating process and

observation error variances in SCAA. A data generating model was used to simulate data

sets from a hypothetical fish population. The estimation models, each using a different

error estimation method, were fit to the simulated data sets. The data generating model,

ad hoc and Bayesian estimation models were all built using AD Model Builder software

(Otter Research Limited 2004). For the following discussion, descriptions of all the

symbols are given in Table 2.1, while many of the equations describing my models are

given in Tables 2.2 and 2.3. I reference these equations as Equation x.y, where equation y

is found in Table x.
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Data Generating Model

I developed a data generating model to simulate the dynamics of a hypothetical

fish population based on lake Whitefish stocks in the upper Great Lakes. The p0pulation

dynamics were described using abundance-at-age and age-specific mortality rates created

by the model. A gill net fishery operating on the population produced observed total

annual catch, age composition and fishing effort data.

I generated abundance-at-age using an exponential population function (Equation

2.2.1). To produce abundance-at-age in the first year (Equation 2.2.2), mortality was

applied to randomly generated numbers of age-1 fish, which were drawn from a

lognormal distribution (Table 2.4). The mean of the distribution was chosen by assuming

the population experienced equilibrium recruitment prior to the model time series.

Recruitment to the first age in subsequent years was calculated with a Ricker stock-

recruitrnent function (Equation 2.2.3; Table 2.4). The number of female spawners was

calculated as one-half of the number of fish age-3 and older, thereby assuming knife-edge

maturity and a 1:1 sex ratio.

Total mortality was partitioned into natural mortality and fishing mortality

sources (Equation 2.2.4). Natural mortality was a constant value for all years and ages

(Table 2.4). Fishing mortality was generated using a fully separable fishing mortality

model (Equation 2.2.5), where the age effect consisted of age-specific selectivity and the

year effect consisted of year-specific catchability and observed fishing effort. Age-

specific selectivity values were specified to create a dome-shaped selectivity curve,

which is typical of gill net fisheries (Table 2.4). Catchability varied from year to year

according to a lognormal white noise model (Table 2.4):
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The value for the standard deviation of log catchability 021 was randomly generated from

a lognormal distribution with three different means representing low, medium and high

levels of catchability variation (Table 2.4). An “observed” point estimate of the log

catchability standard deviation was generated, which simulated information that a stock

assessment analyst might possess. The observed point estimate was drawn from a

lognormal distribution:

(2) 0'

2
~ N 0,0" .

{q ( aq J

The log-scale standard deviation of the log catchability standard deviation 0' a q was

given the same value as was used to cause the true standard deviation of log catchability

to depart from its underlying median. Therefore, I effectively assumed that the observed

point estimate of the standard deviation of log catchability came from a lognormal

distribution with the same median as the true standard deviation of log catchability, but

with double the log-scale standard deviation as did the true standard deviation’s

generating distribution. Doubling the standard deviation represents the addition of

observation error to the measurement of the log catchability standard deviation. Fishing

effort was specified so that effort increases to a maximum in the middle of the time series

and then decreases to the end of the time series (Table 2.4). This fishing effort pattern

simulated a growing fishery that was regulated by effort limitations during the second
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half of the time series. Total mortality Z0 used to produce abundance-at-age in the first

year (Equation 2.2.2) was generated with Equations 2.2.4 and 2.2.5 with the assumption

that fishing effort in years prior to the first year of the analysis was equal to fishing effort

in the first year of the analysis.

1 generated observed data from a gill net fishery from simulated abundance-at-age

and mortality rates. Catch-at-age was calculated using Baranov’s catch equation

(Equation 2.2.6). Observed total annual catch Cy was calculated by summing catch-at-

age Cyfi across ages for each year and incorporating observation error say:

_ :y

(3) Cy ’ ZCy,a ‘3 ’

a=l

5C,y ~ N(0,ag).

I chose to use multiplicative lognormal errors because this is a standard assumption in

SCAA (Fournier and Archibald 1982; Deriso et al. 1985). The value for the standard

deviation of log total catch 0'C was randomly generated from a lognormal distribution

with two different means representing low and high levels of observation error (Table

2.4). An “observed” point estimate of the log total catch standard deviation was

generated, which simulated information that a stock assessment analyst likely would

possess. The observed estimate a'C was drawn from a lognormal distribution:

(4) at: = ace“ ,

2

4C ~ N(0,ao_c )
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The log-scale standard deviation of the log total catch standard deviation 0'0C was given

the same value as was used to cause the true standard deviation of log total catch to

depart from its underlying median. Observed fishery age composition data was generated

by drawing a random sample from a multinomial distribution with a sample size of 100,

and proportions calculated from cateh-at-age in the fishery (Equation 2.2.7). Any errors

in measuring fishing effort were lumped with interannual variation in catchability as

process error. Natural mortality was known without error.

Estimation Models

The estimation models used the same equations as the data generating model

except when estimating abundance-at-age in the first year, recruitment, and selectivity.

Annual recruitment was estimated as a mean recruitment parameter and a vector of

annual recruitment deviation parameters (i.e., a vector of deviations that must sum to

zero). Abundance-at-age in the first year was estimated as a mean abundance parameter

and a vector of abundance deviation parameters (i.e., a vector of deviations that must sum

to zero). Selectivity was estimated as a double logistic function of age (Equation 2.2.8).

Abundance-at-age (Equation 2.2.1), total mortality (Equation 2.2.4), fishing mortality

(Equation 2.2.5), catchability (Equation 2.1), catch-at-age (Equation 2.2.6), total catch

(Equation 3), and proportion of catch-at-age (Equation 2.2.7) were calculated as in the

data generating model. True parameter values produced by the data generating model

were used as starting values for parameters in the estimation models, to expedite

numerical searches during the simulations.

The estimation models differed from each other in the method used to estimate

variances for process error in catchability and observation error in total catch. First, an
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ad hoc approach was used in which the proportion of process error variance was set so

that predicted observation error variance was consistent with an observed point estimate

of observation error variance (Richards et al. 1997). This approach has Bayesian aspects

because conditional on the value of the proportion of process error variance, point

estimates are obtained by maximizing the posterior density (Schnute 1994). Second, a

Bayesian approach with explicit priors on the variances was used in which the marginal

posterior densities of the variances were estimated. I considered two variants of the

Bayesian approach, one with an informative lognormal prior for log catchability variation

and the second with only a weakly informative lognormal prior for this variation.

Ad Hoc Estimation Model

In the ad hoc approach, I estimated the variances using a technique developed by

Richards et a1. (1997). This approach requires repeated fits of the model with the

proportion of total variance due to log catchability variance p:

2
0'

(5) p=—%,
K

(6) K2=ag+ag,

being varied among fits. During each fit of the model, total variance was estimated as a

model parameter, and from this parameter the variances of log catchability a"; and log

total catch 03; were calculated as follows:

(7) 0.3 = px’.

(0 03=0-pk2-
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I varied the proportion of log catchability variance from 0.1 to 0.95 in increments of 0.05,

and refit the estimation model to a given data set for each value of p . I chose as best

among these model fits the one where the predicted standard deviation of log total catch

was closest to the “observed” point estimate of the log total catch standard deviation

created by the data generating model.

For a given model fit (specific p) using the ad hoc approach, highest posterior

density estimates of the parameters (a widely used approach, see Schnute 1994) were

obtained by maximizing the posterior density of the parameters conditional on the

observed data (Equations 2.3.1, 2.3.2a, and 2.3.3). I chose to minimize the negative log

posterior density (Equation 2.3.4) for ease of computation.

The probability density of the data conditional on the parameters was separated

into two components for total annual catch and proportion of catch-at-age (Equation

2.3.5). Total annual catch was assumed to follow a lognormal distribution, with the log

density (ignoring some additive constants) given by Equation 2.3.6. Proportion of catch-

at-age was assumed to follow a distribution that would arise ifNE fish were observed,

with numbers observed at each age following a multinomial distribution, with the log

density (ignoring some additive constants) given by Equation 2.3.7. Note that the

probability density of the data conditional on the parameters is equivalent to the classical

likelihood function. Therefore, the highest posterior density parameter estimates are

equivalent to the maximum likelihood estimates.

The prior probability density of the parameters was separated into three

components for the general model parameters ¢ , catchability deviations sq, and total
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varrance K (Equatron 2.3.8a). Devratrons 1n catchabrlrty were assumed to follow a

lognormal distribution, with the log prior density (ignoring some additive constants)

given by Equation 2.3.9. The prior densities of the log of all model parameters in ¢ and

2 . . . . . .

K were assrgned proper unrfonn prror densrtres, whrch follows common practice with the

intent of being weakly informative. Therefore, prior density of the log of ¢ and K were

constants for all parameter values.

Bayesian Estimation Models

In the Bayesian approaches statistical inference was made on the posterior density

of the parameters conditional on the observed data (Equation 2.3.1) which was derived

using a Markov Chain Monte Carlo (MCMC) method. I chose to work with the negative

log posterior density for ease of computation (Equation 2.3.4). The standard deviations

of log-scale catchability and total catch were included as parameters to be estimated in

the model (Equation 2.3.2b). The probability density of the data conditional on the

parameters was separated into two components for total annual catch and proportion of

catch-at-age (Equation 2.3.5). The log densities for each of the components were the

same as in the ad hoc estimation model (Equations 2.3.6 and 2.3.7).

The prior probability density of the parameters was separated into four

components for the prior probability densities of the general model parameters ¢ ,

catchability deviations sq, log catchability standard deviation oq, and log total catch

standard deviation O'C (Equation 2.3.8b). Deviations in catchability were assumed to

follow a lognormal distribution as in the ad hoc estimation model (Equation 2.3.9). In
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the first version of the full Bayesian approach, hereafter referred to as the informative

Bayesian approach, the standard deviations for log total catch and log catchability were

assumed to follow a lognormal distribution, with log prior density (ignoring some

additive constants) expressed as:

 (9) ln[p(0'i)] = — 12 (Inc;- —ln0',-)2 —ln 0'01. ,

20'

0i

where i indexes the two error sources (i.e., total catch and catchability). The values for

the prior standard deviations for the standard deviations of log total catch and log

catchability were the same values used to create the true standard deviations in the data

generating model. The prior densities of the log of all general model parameters ¢were

assigned weakly informative proper uniform prior densities. Therefore, prior density of

the log of ¢ was a constant for all parameter values.

Marginal posterior densities for the standard deviations of total catch and

catchability were estimated using a MCMC method. The highest posterior density

parameter estimates served as starting values for the MCMC chain. A Metropolis-

Hastings algorithm with a scaled multivariate normal candidate generating distribution

was used to determine the marginal posterior densities (Gelman et al. 2004). The MCMC

chain was run for 500,000 cycles with values being saved every 25th cycle. The first

2,000 saved cycles of the MCMC chain were dropped as a bum-in period, in order to

remove the effect of the starting values (Gelman et al. 2004).

In reality, stock assessment analysts rarely have the data necessary to set such an

informative prior on the standard deviation of log catchability as I did in the informative

Bayesian estimation approach. Therefore, I also evaluated performance of the full
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Bayesian method using a less informative prior. 1 refer to this as the objective Bayesian

approach. This approach was identical to the informative Bayesian approach except that

the prior density for the standard deviation of log catchability was assumed to follow a

lognormal distribution (Equation 9) with mean (0.35) and variance (0.49) specified so

that the prior density spanned all three levels of catchability variation.

Estimation Model Evaluation

My Monte Carlo simulation included six scenarios based on the three levels of

catchability variation and two levels of total catch variation. Five hundred data sets were

generated for each scenario for a total of 3,000 simulated data sets. Each estimation

model was fit to each of the simulated data sets. Estimation model runs were dropped

from the analysis if they exhibited poor convergence characteristics. After examining

preliminary results, ad hoc estimation model convergence was judged to be poor if the

. . -4 . . . .

maxrmum gradient component was greater than 1x10 . After exarnrmng prelrmrnary

results, informative and objective Bayesian estimation model convergence was judged to

be poor if the effective sample size for log catchability standard deviation, log total catch

standard deviation, total abundance in the last year of analysis or highest posterior density

value was less than 200. Effective sample sizes were calculated from MCMC chains

using the method described by Thiebauz and Zwiers (1984) with lags out to 100 for

autocorrelation calculations.

The three approaches for estimating process and observation errors were

evaluated using the relative error (RE) of the standard deviations of log catchability,

standard deviation of log total catch and total abundance in the last year of the analysis.

The RE of the standard deviations of log catchability and log total catch indicated how
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well the variances were estimated, while the RE of total abundance indicated how well

the approaches estimated a key management quantity. Relative error was calculated as

follows:

(10) RE: , 

where J? is a point estimate of the quantity of interest from the estimation model, and X

is the true value of the quantity of interest from the data generating model. For the

Bayesian methods I used the median of the marginal posterior distribution as a point

estimate, whereas for the ad hoc method the highest posterior density estimates were

used. The median of the relative errors (MRE) was used to examine systematic bias in

estimates from the estimation models. Median absolute relative error (MARE) , which

captures elements of bias and precision, was used to compare the range of relative errors

estimated by the estimation models.

Results

The following results are based on sample sizes of 500 model runs per scenario

for the ad hoc approach, 380 to 431 model runs per scenario for the informative Bayesian

approach, and 345 to 396 model runs per scenario for the objective Bayesian approach.

The number of poorly converged model runs for the informative and objective Bayesian

approaches is likely an artifact of my simulation study design. I had to limit the length of

the MCMC chains to reduce computational times and make the study feasible. Under

normal circumstances, an analyst would probably run longer MCMC chains or run

multiple chains from different starting points to improve convergence properties.
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The informative Bayesian approach outperformed the ad hoc and objective

Bayesian approaches in the estimation of log total catch standard deviation. The

informative Bayesian approach was less biased than ad hoc and objective Bayesian

approaches in estimating standard deviation of log total catch (Figure 2.1). Informative

Bayesian approach MRE values for all six scenarios were close to zero and ranged from -

0.023 to 0.018. Objective Bayesian approach MRE values for all six scenarios exhibited

positive bias and ranged from 0.021 to 0.153. Ad hoc approach MRE values exhibited

negative bias and ranged from -0.338 to -0.019, except for the high catchability-low total

catch variance scenario (0.004).

Informative and objective Bayesian approaches demonstrated higher levels of

precision than the ad hoc approach in the estimation of log total catch standard deviation

(Figure 2.1). The differences in MARE values between informative Bayesian and ad hoc

approaches were small (-0.030 to 0.001) for medium catchability-low total catch, high

catchability-low total catch, and high catchability-high total catch variance scenarios

(Figure 2.2). The differences in MARE values between informative Bayesian and ad hoc

approaches were larger (-0.249 to -0.114) for low catchability-low total catch, low

catchability-high total catch, and medium catchability-high total catch variance scenarios

(Figure 2.2). The differences in MARE values between objective Bayesian and ad hoc

approaches were small (-0.074 to 0.050), except for the low catchability-high total catch

variance scenario (-0.246) (Figure 2.3).

The informative Bayesian approach also out performed the ad hoc and objective

Bayesian approaches in the estimation of the log catchability standard deviation. The

informative Bayesian approach was less biased than the ad hoc and objective Bayesian
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approaches in estimating the standard deviation of log catchability (Figure 2.4).

lnforrnative Bayesian approach MRE values for all six scenarios were close to zero, with

a small positive bias, ranging from 0.002 to 0.023. Objective Bayesian approach MRE

values generally were close to -1.0. The two exceptions were the medium catchability-

low total catch variance and high catchability-low total catch variance scenarios for

which the objective Bayesian approach MRE values were -0.048 and -0.064 respectively.

Ad hoc MRE values were negatively biased and ranged from -0.758 to -0.3 77.

The informative Bayesian approach was more precise than the ad hoc and

objective Bayesian approaches in estimating the standard deviation of log catchability

(Figure 2.4), although all methods had much lower precision for estimating the standard

deviation of catchability than for estimating the standard deviation of catch (note

difference in scale between Figure 2.1 and Figure 2.4). The differences in MARE values

between informative Bayesian and ad hoc approaches were substantial and ranged from -

0.637 to -0.292 (Figure 2.2), where the informative Bayesian approach was more precise.

The differences in MARE values between objective Bayesian and ad hoc approaches

generally were large and ranged from 0.235 to 0.548 (Figure 2.3), where the ad hoc

approach was more precise than the objective Bayesian approach. The two exceptions

were the medium catchability-low total catch variance and high catchability-low total

catch variance scenarios, -0.321 and -0.262 respectively, where the objective Bayesian

approach was more precise than the ad hoc approach.

Differences in performance between ad hoc, informative and objective Bayesian

approaches in the estimation of the total abundance in the last year of the analysis were

less marked than for variance estimates. For all three methods, the bias of the estimates
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of total abundance in the last year increased at high catchability and total catch variance

levels (Figure 2.5). Ad hoc approach MRE values were negatively biased, and ranged

from -0.271 to -0.033. Informative Bayesian approach MRE values generally were close

to zero, positively biased, and ranged from 0.001 to 0.054. The one exception was the

high catchability-high total catch variance scenario which was 0.107. Objective Bayesian

approach MRE values generally were close to zero and ranged from -0.067 to 0.017. The

one exception was the high catchability-high total catch variance scenario which was -

0.124.

Precision ofad hoc, informative and objective Bayesian approach estimates of

total abundance in the last year decreased as catchability and total catch variance levels

increased (Figure 2.5). The Ad hoc approach was slightly less precise than the

informative Bayesian approach, with differences in MARE values ranging fiom -0.024 to

0.011 (Figure 2.2). Differences between objective Bayesian and ad hoc approach MARE

values were small and ranged from -0.015 to 0.059 (Figure 2.3).

Discussion

My results show that observation error variance will be more reliably estimated

than process error variance in SCAA. Observation error variance is better estimated due

to the availability of better prior information about observation errors. Estimates of

observation error variance obtained separately from SCAA, through analysis of the raw

data used to derive such quantities as observed total catch, provide a good source of prior

information for estimating observation error variance in SCAA. Such prior information

does not exist for process error variance because separate from SCAA the raw observed

data are not informative about how model parameters such as catchability vary. This was
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demonstrated in my study when the ad hoc and objective Bayesian approaches produced

more accurate and precise estimates of log total catch standard deviation then of log

catchability standard deviation. These two approaches used more weakly informative

prior information or no prior information for log catchability standard deviation than for

log total catch standard deviation.

Use of the Bayesian approach allows for reliable estimation of both observation

and process error variances using a realistic, weakly informative prior for the process

error variance, when process error variability is greater than observation error variability.

Under this condition, the relatively strong informative prior for the observation error

variance and the strong signal for the process errors in the observed data allow SCAA to

reliably estimate the amount of total variance and successfully partition that variance

between observation and process error variances. In my study, this was evident when the

objective Bayesian approach was able to accurately estimate the log total catch and log

catchability standard deviations in scenarios where annual variability in catchability was

the dominant error source. Schnute and Richards (1995) found that, in general, their

catch-at-age estimation models performed better in a Monte Carlo simulation when

process error in recruitment was greater than observation error in an index of abundance.

Their estimation models estimated the process and observation error variances by

specifying the proportion of total variance due to process error variance, similar to the ad

[we approach, and obtaining maximum likelihood estimates of the variances analytically.

Unfortunately, Schnute and Richards (1995) did not look specifically at how their

estimation models performed at estimating the error variances. I hypothesize that process

error variability likely will be greater than observation error variability, and hence the
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associated variances can be estimated, in any well monitored commercial fishery, as well

as most well monitored recreational fisheries. Chen and Paloheimo (1998) also have

suggested that errors due to environmental variation (i.e., process errors) may be greater

than observation errors for many fisheries. This finding emphasizes that another means

of improving the estimation of process and observation error variances, as well as stock

assessments in general, is to improve the quality of fishery monitoring data.

The ad hoc approach failed to reliably estimate the process and observation error

variances in my study. I was not surprised by this finding since the ad hoc approach

utilized the least amount of prior information (i.e., a single point estimate of log total

catch standard deviation) to estimate both of the standard deviations. More interesting

was the consistent underestimation of total variance in the system when using the ad hoc

approach. This negative bias might in part be explained by the statistical properties of the

estimator for the variances. Unlike the Bayesian approach which derived variance

estimates from the median of the posterior probability density, the ad hoc approach

simply used highest posterior density estimates to obtain variance estimates. Highest

posterior density parameter estimates share many similar properties with likelihood-based

parameter estimates, since highest posterior density estimates are obtained by

maximizing the probability density of the data given the parameters p(x|6) (Equation

2.3.1), which is identical to the likelihood firnction. Under this paradigm, the prior

probability densities p(6) could be thought of as penalty terms added to the likelihood

function. The maximum likelihood estimator of variance is known to be negatively

biased, thus the highest posterior density estimate of variance probably would possess the

same negative bias.
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The ad hoc approach produced unbiased estimates of the log total catch standard

deviation in scenarios where catchability variation was greater than total catch variation,

but this apparent success is deceptive and potentially dangerous for analysts. Even in the

scenarios where catchability variation was dominant, the estimation model still

underestimated the total variance as evidenced by the associated negative bias in

estimates of the log catchability standard deviation. The estimation model was able to

match predicted and observed log total catch standard deviation values by adjusting the

proportion of total variance due to catchability variance, but the selected catchability

variance proportion did not match the true proportion from the data generating model. In

a real stock assessment where the true variances are unknown, such a result would lead

the analyst to believe that the total variance had been well estimated when, in fact, it had

been underestimated. This problem might be solved by correcting the predicted total

variance by the number ofparameters estimated in the model, thus producing an unbiased

estimate of the total variance. Further study is needed to determine how well this total

variance correction would work, but it has the potential of making the ad hoc approach a

viable variance estimation technique.

I should point out that my study examined the ability of the ad hoc approach to

estimate one form of process error (i.e., catchability variation). The only other published

use of the ad hoc approach was to produce estimates of recruitment variability in a state-

space age-structured model, but the approach was applied to actual fishery data and its

performance was not quantified nor evaluated (Richards et al. 1997). The ad hoc

approach can be classified with other methods that use residual model error to estimate

associated variances, because the ad hoc approach employs the measured interannual
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variation in the observed data as prior information for the stock assessment model

estimates of the process and observation error variances. As another example of this

class of methods, Francis et al. (2003) compared standard specified values of commercial

CPUE and trawl survey CVs to resulting residual variation between observed values and

stock assessment predictions of CPUE. This approach could be applied in an iterative

method to obtain variance estimates. An initial variance value would be specified and the

stock assessment model fit to the observed data. The resulting residual variation in

model results would be used to specify a new variance value for the next model run. This

process would be repeated until the specified variance value matched the resulting

residual variation in model results. The assessment models used for lake Whitefish in

1836 treaty waters have used a such an iterative approach to setting the variance

associated with variability about an assumed stock-recruitment relationship (Ebener et al.

2005). The Francis et al. (2003) study examined actual data from New Zealand fisheries,

and the Whitefish assessments use actual data also, so it is unknown how accurately

residual variation in stock assessment model results measures the true underlying

variance. Further study of the ability of these residual-based variance estimation

approaches to estimate other forms of process error variability, such as time-varying

selectivity and annual recruitment variations, would be useful and informative.

The ad hoc and Bayesian approaches performed equally well at estimating

numbers of fish in the last year of the analysis, even though the ad hoc approach

consistently underestimated the process and observation error variances. In theory, the

poor performance of the ad hoc approach in estimating the variances should have resulted

in poorer estimates of the final number of fish. To address this issue, it is necessary to
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consider when it is important to properly estimate the error variances. Methot (1990)

suggested that when the different data sources used in SCAA do not trend over time, or

when trends are consistent between data sources, assessment model results will be less

sensitive to changes in the variances which are used to weight the different data sources.

It is when trends in the different data sources are inconsistent with each other that

assessment model results will be sensitive to changes in the variance values (Methot

1990). Therefore, it is most important to properly estimate the error variances when the

data sources are sending mixed signals about the population dynamics to the assessment

model. In my study, total catch did trend over time, but catchability did not since the

catchability deviations were generated using a white noise model. IfI had generated

catchability so that it trended over time, then it is likely that I would have seen

differences in the estimation model performances when it came to estimating the final

number of fish. Such an analysis was beyond the scope of this study, since I wanted to

determine if it were possible to estimate the error variances under the simplest conditions

I could imagine. Actual stock assessments are generally more complex, incorporating

multiple sources of observation and process error. As a result, I feel it would be

informative to evaluate the Bayesian and ad hoc approaches when estimating more than

two sources of variation.

1 recommend that stock assessment analysts use the Bayesian approach when

attempting to estimate process and observation error variances in SCAA. The Bayesian

approach is fairly robust when existing data allow for the designation of strongly

informative priors for the error variances, particularly process error variance. The

Bayesian approach still can produce reliable estimates of the error variances with a
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weakly informative prior for the process error variance, as long as high quality

monitoring data are available. I do not recommend the use of the ad hoc approach based

on my findings. The ad hoc approach consistently underestimates the error variances,

which could lead to biased estimates of important management quantities when the

different data sources send inconsistent signals concerning the dynamics of the

population.
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Table 2.1. Symbols and descriptions of variables used in data generating and estimation

 

 

models.

Symbols Description Application

Cyfl Number of fish caught by year and age Both

5y Observed number of fish caught by year Both

Ey Fishery effort by year Both .

FJ40 Instantaneous fishing mortality by year and age Both

M Instantaneous natural mortality Both

Nyfl Abundance by year and age Both

N0 Mean abundance for abundance in first year Estimation

NE Number of fish used to calculate age composition each year Both

Pyfl Proportion of catch by year and age Both

FLO Observed proportion of catch by year and age Both

R0 Mean recruitment Estimation

Sy Number of female spawners by year Generation

Zyfl Instantaneous total mortality by year and age Both

Zofl Instantaneous total mortality for abundance in first year by age Generation

b1 First inflection point of double logistic selectivity function EStimation

b2 First slope of double logistic selectivity funcion Estimation

b3 Second inflection point of double logistic selectivity function Estimation

b4 Second slope of double logistic selectivity funcion Estimation

m Total number of ages Both

n Total number of years Both

10(9le Posterior probability density of parameters conditional on data Estimation

p(x|6) Probability density of data conditional on parameters Estimation

p(6) Prior probability density of parameters Estimation

qy Fishery catchability by year Both

(7 Median catchability Both

50 Fishery selectivity by age Both

or Productivityparameter of Ricker recruitment function Generation
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Table 2.1 (cont’d).
 

fl

ERJ’

5w

3C.y

¢

2

K

#N

9

p

V’a

CC

Density dependent parameter of Ricker recruitment function

Process error in recruitment by year

Process error in catchability by year

Observation error in number of fish caught by year

Subset of model parameters common to both estimation

models

Total variance

Mean age-1 abundance for abundance in first year

Set of all model parameters

Proportion of total variance due to catchability variance

Standard deviation of age-l abundance for abundance in first

year

Standard deviation of log-scale recruitment

Standard deviation of log-scale catchability

Observed point estimate of log catchability standard deviation

Log-scale standard deviation of log catchability standard

deviation

Standard deviation of log-scale total catch

Observed point estimate of log total catch standard deviation

Log-scale standard deviation of log total catch standard

deviation

Process error in recruitment by year

Process error for abundance in first year by age

Observation error in log catchability standard deviation

Observation error in log total catch standard deviation

Generation

Generation

Both

Both

Estimation

Estimation

Generation

Estimation

Estimation

Generation

Generation

Both

Both

Generation

Both

Both

Generation

Estimation

Estimation

Generation

Generation
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Table 2.2. Data generating and estimation model equations.
 

 

 

Equations Application

2.2.1 —Z Both

Ny+l,a+l = Ny,ae y,a

2.2.2 a—l Generation

- 220,}

N“, = N2_a,le 1:1 ;fora >1

2.2.3 Ny,l =aSy_1e“flSy_le£R’y §5R,y ~ N(0,a,2¢) Generatron

2.2.4 Zy,a = M + Fy,a Both

2.2.5 Fy,a = Saquy Both

2.2.6 F -Z Both

_ y’a _ ysa

Cy” — Z (I e )Ny a

y,a

2.2.7 Cy 0 Both

Pya = ’

Cy

2.2.8 Estimation

  
1 l

= 1-

S“ 1+e—b2Ia-bIII 1+e-b4fa-b31]
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Table 2.3. Posteriormrobability density equations for estimation models.
 

 

Equations Application

2-3-1 pIGIX)°<= p(x|9)p(9) Both

2.3.2a e = I¢I5q,yl;:1sKI Ad hoc

2.3.2b 6 = I14, [qukz] , Oq O'CI Bayesian

2'3'3 ¢= INo Ill/1m,-___1”KO 101]",-_.16] b1b2 b3 b4I BOth

2-3-4 —1nlp(4x)loc444461-14pr Both

2-3-5 14449)]:14446111114461 B...

2.3.6 ~ Both

ln[p(C|6)]=—Tity::l[(ln Cy — In Cy )2] — n In 0C

y= a=

2.3.83 ln[p(t9)] = ln[p ¢)]+ lnlpleq IJ+ ln[p(rc)] Ad hOC

2.3.81» lnlp(6)l=In[p(¢)]+lnlpleqll+1nlpla.)l+1n[p(oc)l Bayesian

2.3.9 1n[p(gq)] $2:quy] ’11an Both
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Table 2.4. Values of variables used in data generating model to create simulated data

sets.
 

 

Variable Level Value

n 20

m 8

#N 355000

0N 0.4

a 10.1

fl 5.10E-06

0R 0.4

M 0.24

E 0.1, 2.0, 3.0, 3.1, 3.3, 3.7, 4.4, 5.3, 6.5, 8.0, 8.0, 6.5, 5.3, 4.4, 3.7,

y 3.3, 3.1, 3.0, 2.0, 0.1

Sa 0.04, 0.15, 0.43, 0.85, 1.00, 0.82, 0.57, 0.37

(7 0.15

Eq Low 0.2

Medium 0.5

High 0.8

Uq 0.2

a-‘C Low 0.25

High 0.75

0"aC . 0.2

NE 100
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Figure 2.1. Box plots representing relative error distributions for estimates of log total

catch standard deviation across different levels of catchability and total catch variance.

The bars represent median relative errors. The boxes, whiskers, and circles represent

25th and 75th, 10th and 90th, and 5th and 95th percentiles of the distributions,

respectively.
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Figure 2.2. Differences in median absolute relative errors (MARE) between informative

Bayesian approach and ad hoc approach across different levels of catchability and total

catch variance. Symbols represent informative Bayesian approach MARE values minus

ad hoc approach MARE values.
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Figure 2.3. Differences in median absolute relative errors (MARE) between the objective

Bayesian approach and the ad hoc approach across different levels of catchability and

total catch variance. Symbols represent objective Bayesian approach MARE values

minus ad hoc approach MARE values.
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Figure 2.4. Box plots representing relative error distributions for estimates of log

catchability standard deviation across different levels of catchability and total catch

variance. The bars represent median relative errors. The boxes, whiskers, and circles

represent 25th and 75th, 10th and 90th, and 5th and 95th percentiles of the distributions,

respectively.
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Figure 2.5. Box plots representing relative error distributions for estimates of total

abundance in the last year of analysis across different levels of catchability and total

catch variance. The bars represent median relative errors. The boxes, whiskers, and

circles represent 25th and 75th, 10th and 90th, and 5th and 95th percentiles of the

distributions, respectively.

84



CHAPTER 3

EVALUATING AND SELECTING METHODS FOR ESTIMATING TIME-VARYING

SELECTIVITY IN STATISTICAL CATCH-AT-AGE ANALYSIS

Introduction

Statistical catch-at-age analysis (SCAA) is a common method of fisheries stock

assessment. Age-structured catch data from a fishery are used to estimate quantities of

interest, such as population abundance and mortality rates, using likelihood methods

(Fournier and Archibald 1982). Auxiliary data that provide an index of abundance either

directly or indirectly, such as survey catch-per-unit-effort (CPE) or fishery effort, are

essential for reliable estimation (Deriso et al. 1985; Methot 1990). Estimated population

quantities from the last year of the analysis are typically used as a starting point for short-

term projections that are the basis for recommending harvest limits or targets.

In many SCAA models fishing mortality is assumed to be separable into year and

age effects, with their product being the fishing mortality rate for a given year and age

(Doubleday 1976). Here I refer to the year effect as fishing intensity, and to the age

effect as fishery selectivity. Selectivity refers to the relative vulnerability of specific ages

of fish to a fishery, so that age classes that are highly selected tend to be overrepresented

in the catch in comparison to their relative abundance in the population. Selectivity is

influenced by fishing gear characteristics, as well as fishing and fish behavior.

Selectivity often is modeled either as a function of age or it is allowed to vary

freely among ages. The parameters of the selectivity function or the selectivity values for

each age are estimated within SCAA along with other model parameters. Logistic
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(Millar 1995; Punt et al. 2001), double logistic (Methot 1990; Ebener et al. 2005),

exponential-logistic (Thompson 1994), normal (Millar 1995), lognormal (Millar 1995),

gamma (Deriso et al. 1985; Millar 1995), and polynomials (Foumier 1983) are some of

the functions used to model selectivity. Regardless ofhow selectivity is modeled, a

restriction often must be applied to ensure a unique parameterization of the age and year

effects (Doubleday 1976). Selectivity functions generally are constrained by normalizing

the function to a reference age or to the age ofmaximum estimated selectivity. When

selectivity is allowed to vary freely with age, selectivity commonly is constrained by

setting selectivity at some reference age(s) equal to one.

The separability assumption can be relaxed, allowing selectivity to change over

time, when there is evidence to suggest that selectivity is not constant (i.e., gear

characteristics or fish behavior have changed). Separate selectivity values can be

estimated for different blocks of time within SCAA (Radomski et al. 2005). Some ofthe

selectivity function’s parameters can vary over time independently from year to year

(Bence and Rogers 1993), according to a polynomial in time (Ebener et al. 2005) or

random walk process (Gudmundsson 1994; Ianelli 1996). Nonadditive models have been

used to allow selectivity to vary with changes in fishing mortality (Myers and Quinn

2002; Radomski et a1. 2005).

Statistical catch-at-age analysis has been shown to be sensitive to the choice of

how selectivity is modeled. Incorrect assumptions about selectivity have been shown to

generate errors in SCAA estimates of biomass (Kimura 1990), spawning biomass (Punt et

al. 2002; Radomski et al. 2005), exploitation rate (Radomski et al. 2005), and the ratio of
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stock biomass in the first year to the stock biomass in the final year of analysis (Yin and

Sampson 2004).

Radomski et al. (2005) looked specifically at how specification of time-varying

selectivity affected SCAA. They compared three methods for estimating selectivity:

constant, time-blocked and nonadditive and found no one method for estimating time-

selectivity performed best in all situations, but they did discover that time-varying

selectivity SCAA models performed as well as constant selectivity SCAA models when

selectivity was constant, and outperformed constant selectivity SCAA models when

selectivity varied with time. They speculated that allowing selectivity to vary according

to a random walk might improve the estimation of time-varying selectivity (Radomski et

al. 2005). Radomski et al. (2005) also recommended that research was needed to

determine the extent to which correct or adequate selectivity models could be identified.

The objective ofmy study was to compare the performance of different time-

varying selectivity functions within SCAA. In addition, I strove to identify a model

selection method that could allow analysts to select among alternative time-varying

selectivity functions within a specific SCAA. This contrasts with an objective of

determining a single “best” time-varying selectivity estimation method, which works well

in most situations. Of course, one possible outcome ofmy work could have been that an

omnibus procedure for modeling selectivity works better than selecting among

alternatives. 1 addressed my objectives through Monte Carlo simulations, in which 1

evaluated different methods of both modeling time-varying selectivity within a stock

assessment and selecting among the methods.
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Methods

I used Monte Carlo simulations to compare four time-varying selectivity

estimation methods and evaluate three model selection techniques. I used a data

generating model to simulate data sets from a hypothetical fish population. The data

generating model used two different approaches to simulate time-varying selectivity: 1) a

double logistic function in which the first inflection point varied according to a first order

autoregressive process, and 2) selectivity for each age varied independently according to

a first order autoregressive process. I chose these two approaches to provide contrast in

how freely selectivity varies over time. The double logistic function is constrained so

that only selectivity of younger age fish changes over time. The age-specific selectivity

parameters allow selectivity to vary more freely, with age-specific selectivity values

changing independently of each other. I fit four estimation models, each using a different

time-varying selectivity estimation method, to the simulated data sets. The selectivity

estimation methods consisted of 1) a double logistic function in which the first inflection

point varied according to a random walk, 2) a double logistic function in which the first

and second inflection points varied according to random walks, 3) a double logistic

function in which all four parameters varied according to random walks, and 4)

selectivity for each age varied according to a random walk with a smoothing function

across ages. I chose these estimation approaches because they represent the two general

approaches for estimating selectivity in SCAA, namely modeling selectivity as a function

of age and estimating age-specific selectivity parameters. In addition, these four

estimation approaches form a continuum of increasing flexibility in how selectivity is

allowed to vary over time. The three model selection techniques included 1) root mean
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square error (RMSE), 2) degree of retrospectivity, and 3) the Deviance Information

Criterion (DIC). The data generating model and four estimation models were all built

using AD Model Builder software (Otter Research Limited 2004). For the following

discussion, descriptions of all the symbols are given in Table 3.1, while most of the

equations describing my models are given in Tables 3.2 and 3.3. I reference equations as

Equation x.y, where equation y is found in Table x.

My Monte Carlo simulation included two scenarios based on two different

methods for generating time-varying selectivity. Five hundred data sets were generated

for each scenario for a total of 1,000 simulated data sets. Each of the four estimation

models was fit to each of the simulated data sets. I applied the three model selection

techniques to each estimation model fit to a simulated data set.

Data Generating Model

I developed a data generating model to simulate the dynamics of a hypothetical

fish population based on lake Whitefish stocks in the upper Great Lakes. The population

dynamics were described using abundance-at-age and age-specific mortality rates created

by the model. A gill net fishery operating on the population produced observed total

annual catch, age composition and fishing effort data. Each simulated data set included

20 years of data for fish ages 1 to 8+, where 8+ is a plus group containing all fish age-8

and older.

I generated abundance-at-age using an exponential population equation (Equation

3.2.1). In order to produce abundance-at-age in the first year, mortality was applied to

randomly generated numbers of age-1 fish (Equation 3.2.2). The number of age-1 fish

was randomly drawn from a lognormal distribution (Table 3.4). I selected the mean of
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the distribution by assuming the population experienced equilibrium recruitment prior to

the simulated time series. I calculated recruitment to the first age in each year with a

Ricker stock-recruitment function (Equation 3.2.3; Table 3.4). I calculated the number of

female spawners as one-half of the number of fish age-3 and older, thereby assuming

knife-edge maturity and a 1:1 sex ratio.

I partitioned total mortality into natural and fishing mortality components

(Equation 3.2.4). Natural mortality was a constant value for all years and ages (Table

3.4). I modeled fishing mortality by relaxing the assumption of full separability

(Equation 3.2.5). I generated year and age-specific selectivity using two different

methods to create a dome-shaped selectivity curve, which is typical of gill net fisheries. I

defined fishing intensity as a function of fishing effort (Equation 3.2.6). The errors

associated with fishing intensity were a combination of process error due to annual

variation in catchability and observation error in nominal fishing effort. I assumed that

variation in catchability would outweigh observation error in fishing effort and, therefore,

treat the fishing intensity errors as process error. The value for the standard deviation of

log fishing intensity 0,1 was randomly generated from a lognormal distribution for each

simulated data set (Table 3.4). I specified fishing effort so that effort increased to a

maximum in the middle of the time series and then decreased to the end of the time series

(Table 3.4). This fishing effort pattern simulated a growing fishery during the first half

of the time series that was regulated by effort limits during the second half of the time

series. I generated the total mortality used to produce abundance-at-age in the first year

Z0 (Equation 3.2.2) using Equations 3.2.4, 3.2.5 and 3.2.6 with the assumption that

fishing effort in years prior to the first year of the analysis was equal to fishing effort in
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the first year of the analysis, and selectivity in years prior to the first year of the analysis

was constant at the initial values.

The two methods I chose to generate time-varying selectivity provide contrast in

how selectivity changes over time. For the first method, I generated selectivity using a

double logistic function of age (Methot 1990):

l l

s — L ‘ 1— .

(1) a 1+e—b2ia‘bl,yll: 1+e—b4(a-b3)]

  

I varied the first inflection point overtime from an initial value according to a first order

autoregressive process (Table 3.4): 6y ~ N(0, 0;)

(2) loge bl,y+l = loge bi + pl (loge bl,y '— loge bl IT 6y r

2
5}, ~ N(0, 0'5 ).

I randomly drew the initial value of the first inflection point from a lognormal

distribution with mean 51 and standard deviation 05 The value for the standard

deviation of log first inflection point 05 was randomly generated from a lognormal

distribution for each simulated data set (Table 3.4). I normalized age-specific selectivity

in a given year using the maximum generated age-specific selectivity value for that year.

By allowing the first inflection point to vary over time, I was simulating a scenario in

which the vulnerability of young fish to the fishery was changing over time. For the

second method, I chose a more flexible approach to generating time-varying selectivity

based on a method used by Butterworth et al. (2003). In this approach, age-specific

selectivity varied over time from initial values according to a first order autoregressive

process (Table 3.4):
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(3) loge Sy+1,a = loge s2, + p2 (loge 3),", —loge sgj+ 7y“; ,

2

7y,a ~ NIO’Ur I

I used the same correlation and standard deviation parameters for all ages. I randomly

drew the initial values for selectivity at each age from lognormal distributions with means

so and standard deviation 0,. The value for the standard deviation of log selectivity 0'),

was randorrrly generated from a lognormal distribution for each simulated data set (Table

3.4). I normalized age-specific selectivity in a given year using the maximum generated

age-specific selectivity value for that year. By allowing age-specific selectivity values to

vary over time, I simulated a scenario in which the vulnerability of all age classes of fish

to the fishery changed independently over time.

I generated observed data from a gill net fishery from simulated abundance-at-age

and mortality rates. I calculated catch-at-age using Baranov’s catch equation (Equation

3.2.7). I calculated observed total annual catch by summing catch-at-age across ages for

each year and incorporating observation errors (Equation 3.2.8; Table 3.4). The value

for the standard deviation of log total catch 0", was randomly generated from a lognormal

distribution for each simulated data set (Table 3.4). I generated observed fishery age

composition data by drawing a random sample from a multinomial distribution with a

sample size of 400, and proportions calculated from catch-at-age in the fishery (Equation

3.2.9). Natural mortality and observed fishing effort were known without error (Table

3.4).
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Estimation Models

The estimation models used the same equations as the data generating model

except when estimating abundance-at-age in the first year, recruitment, and selectivity. I

estimated annual recruitment as a mean recruitment parameter and a vector of annual

recruitment deviation parameters (i.e., a vector of deviations that must sum to zero). I

estimated abundance-at-age in the first year as a mean abundance parameter and a vector

of abundance deviation parameters (i.e., a vector of deviations that must sum to zero). I

calculated abundance-at-age (Equation 3.2.1), total mortality (Equation 3.2.4), fishing

mortality (Equation 3.2.5), fishing intensity (Equation 3.2.6), catch-at-age (Equation

3.2.7), total catch (Equation 3.2.8), and proportion of catch-at-age (Equation 3.2.9) using

the equations described for the data generating model. I used true parameter values

produced by the data generating model as starting values for parameters in the estimation

models to expedite numerical convergence during simulations.

The estimation models differed from each other in the method used to estimate

time-varying selectivity for the fishery. The four methods I chose represent increasing

flexibility in the estimation of time-varying selectivity. The cost associated with

increased flexibility is an increase in the number of parameters that must be estimated. In

the first estimation approach, I allowed the first inflection point of the double logistic

function to vary over time according to a random walk:

  

1 I l :I

sa = _ , _ a 1— __ _ ,

(4) 1+e bZI“ bl,yl l+e b4(a b3)

2
logewa =loge b1,y +ny, 77y ~ N(0,0',7 ).

93



This approach is the least flexible of those I examined since it only changes the lower

ages at which selectivity increases most rapidly over time. In the second estimation

approach, I allowed the first and second inflection points of the double logistic function

to vary over time according to random walks:

1 1

5 = . . 1_ . . ’

( ) 5“ 4010471,le 1+e‘b4ia‘53,yl]
l+e

  

loge bi,y+l = loge bi,y +77i,y . 771,)» ~ NIQUé).

where i indexes the inflection points of the double logistic function (i.e., b1,y and b3’y). I

made the simplifying assumption that the standard deviations of the two log-scale

inflection points were equal. This approach of varying the two inflection points allows

the ascending and descending limbs of the selectivity curve to expand and contract over

the course of time. In the third estimation approach, I allowed the two inflection points

and the two slopes of the double logistic function to vary over time according to random

walks:

  
l I

(6) s = . . 1— . . ,

a 1+e—b2’yIa—bl’y) 1+e—b4’yIa—b3’y)

2

loge bi,y+l = loge bi,y + "Ly, Tli,y ~ N(0,0',7 )9

10 b- =16 b- +r- r- ~N(0 0'2)
ge 1.1/+1 ge by 1:)” by r r ’

where i indexes the inflection points and j indexes the slopes (i.e., bz’y and b4'y) of the

double logistic function. Again, as I did for the infection points, I assumed that the

standard deviations of the two log-scale slopes were equal. This approach of allowing all

of the double logistic function parameters to vary over time provides maximum flexibility
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in the estimation of time-varying selectivity for this functional form. In the fourth

estimation approach, I allowed age specific selectivity values to vary over time according

to random walks (Butterworth 2003):

(7) loge Sy+l,a =loge Sy,a +wy,av

in)” ~ N(0,ag, ).

I made the simplifying assumption that the year-specific standard deviations of log

selectivity were equal for all years. I constrained age-specific selectivity with a curvature

penalty using squared third-differences to ensure smoothness in selectivity across age

classes (Butterworth 2003):

 

‘ 1 -3l 1
(8) g(S5y a;0_02): i1,":13Megay,a+3- ogesy,,2a+:.0-+3 Ogesy,a+l logesy, (1)2 .

y]: 01: ¢

I made the simplifying assumption that the age-specific standard deviation of log-scale

selectivity was the same for all ages. I added this curvature penalty term to the negative

log posterior density. In all four time-varying selectivity estimation approaches, I

normalized age-specific selectivity using the maximum estimated age-specific selectivity

value. I estimated the variances associated with log total catch, log fishing intensity and

log selectivity using a Bayesian approach in which the marginal posterior densities were

estimated with Markov Chain Monte Carlo simulations.

I made statistical inference on the posterior density of the parameters conditional

on the observed data (Equation 3.3.1) which was derived using a Markov Chain Monte

Carlo (MCMC) method. More specifically, I used MCMC with the Metropolis-Hastings

algorithm as it is implemented in AD Model Builder (Otter Research Limited 2004).

Maximum likelihood parameter estimates were used as starting values for each MCMC
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chain. I ran the MCMC chain for each model for 1,000,000 cycles, saving parameter

values every 10th cycle. I dropped the first 40,000 cycles from the chain of saved

MCMC values as a burn in period, which reduced the effect of chain starting values on

final MCMC estimates (Gelman et al. 2004). I dropped model runs with poor

convergence properties from the analysis. I judged MCMC chain convergence to be poor

if the effective sample size for the highest posterior density value was less than 300. I

selected the highest posterior density value because it provides an overall measure ofhow

the MCMC chains are mixing. Effective sample sizes were calculated from MCMC

chains using the method described by Thiebauz and Zwiers (1984) with lags out to 100

for autocorrelation calculations. I chose to minimize the negative log posterior density

(Equation 3.3.2a) for ease of computation. For the fourth estimation approach in which

age-specific selectivity values varied over time, I added the curvature penalty term

(Equation 8) to my negative log posterior density (Equation 3.3.2b). The parameters

estimated in the model (Equation 3.3.3) included the subset of parameters common to all

of the estimation models and the subset of time-varying selectivity parameters ¢ specific

to each estimation model.

The subset of parameters used to model time-varying selectivity depended upon

the method used to estimate selectivity. For the first estimation approach in which the

first inflection point of the double logistic function varied with time, the selectivity

parameters included the first inflection point in the first year, annual deviations in the

first inflection point, standard deviation of the log-scale first inflection point, and the

other three parameters of the double logistic function (Equation 3.3.4a). For the second

estimation approach in which both inflection points of the double logistic function varied
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with time, the second inflection point was replaced by a second inflection point in the

first year, annual deviations in the second inflection point, and a standard deviation of the

log-scale second inflection point selectivity deviations (Equation 3.3.4b). For the third

estimation approach in which all four parameters of the double logistic function varied

with time, both slopes were also replaced by corresponding slopes in the first year, annual

deviations for each of these parameters (Equation 3.3.4c). For the fourth estimation

approach in which the age-specific selectivity values varied with time, the selectivity

parameters included the age-specific selectivity values in the first year, annual deviations

for each age-specific selectivity value, and standard deviations for the year and age-

specific log selectivity values (Equation 3.3.4d) ,

I separated the probability density of the data conditional on the parameters into

two components for total catch and proportion of catch-at-age (Equation 3.3.5). I

assumed total annual catch followed a lognormal distribution, with the log density

(ignoring some additive constants) given by Equation 3.3.6. I assumed proportion of

catch-at-age followed a distribution that would arise ifNEfish were observed, with

numbers observed at each age following a multinomial distribution, with the log density

(ignoring some additive constants) expressed by Equation 3.3.7.

For all of the time-varying selectivity estimation approaches, I assumed the prior

probability densities of the random walk deviations for selectivity parameters followed

lognormal distributions, with the log prior densities (ignoring some additive constants)

expressed as:

6) lan(X.-)I=--1-2-§I112,yI-(n-1)1n01,
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where i indexes the time-varying selectivity parameters (e.g., first inflection point of

double logistic function). I assumed the prior probability densities of the log total catch,

log catchability, and log selectivity standard deviations followed lognormal distributions,

with the log prior densities (ignoring some additive constants) expressed as:

(10) 1n[p(a,.)]= —-—17(In0';- 466,-)2 —1n.9,-,

2.9,-

where i indexes the error sources (e.g., observation errors in total catch). 1 assigned a

strong informative prior density (i.e., identical to the generating distribution from the data

generating model) to the log total catch standard deviation (Table 3.5). Thus, I assumed

the analyst had good prior information on how observation errors in total catch were

distributed, which is a reasonable assumption for a well monitored commercial fishery. I

assumed the analyst would not have such strong prior information for the other standard

deviations. Therefore, I assigned more weakly informative prior densities which allowed

the remaining standard deviations to vary over a realistic range of values (Table 3.5).

The time-varying age-specific selectivity parameter estimation model failed to converge

to a solution when weakly informative prior densities were assigned to the year and age-

specific log selectivity standard deviations, am and 0‘0 respectively. As a result, I fixed

the values for the year and age-specific log selectivity standard deviations at 0.15 and

0.08 respectively for all simulations. This solution followed the common practice of

assuming variances to be known when they cannot be estimated in the estimation model.

I assigned weakly informative uniform prior densities to the logs of all other model

parameters. Therefore, prior densities for each log-scale model parameter, excluding the
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selectivity random walk deviations and their associated variances, were constants for all

parameter values.

I compared the performance of the four estimation models by calculating the

relative error (RE) of population biomass and exploitation rate in the last year of the

analysis, for each simulated data set:

(11) RE =—,

where If is the point estimate of the quantity of interest from the estimation model, and

Xis the true value of the quantity of interest from the data generating model. I used the

median of the marginal posterior distribution as a point estimate. Estimated biomass and

exploitation rate in the last year often play an important role when stock assessment

results are used to inform management actions. In addition, I used the median of the

relative errors (MRE) to examine whether there was systematic bias in estimates from the

estimation models. I used the median absolute relative error (MARE), which captures

elements of bias and precision, to compare the range of relative errors made when using

the estimation models.

Model Selection Methods

I evaluated the performance of three model selection techniques to determine

which technique(s), if any, could identify consistently the “best” time-varying selectivity

estimation approach. The three model selection techniques I used to identify the best

time-varying selectivity estimation approach were RMSE, degree of retrospectivity, and

DIC. By best selectivity estimation approach, I mean the estimation approach which

most closely predicts the true fish population as produced by the data generating model.
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More specifically, for each simulated data set I measured relative performance of the

different estimation models based on the RE of population biomass and exploitation rate

in the last year of the analysis. I used three definitions of the best or nearly best

estimation model(s) for a given simulation run: 1) the estimation model producing the

lowest final population biomass or exploitation rate RE, 2) estimation models producing

RES within 0.05 of the lowest RE, and 3) estimation model producing RES within 0.1 of

the lowest RE. I allowed for this relaxation in the definition of best or nearly best

estimation model because in a real stock assessment, where the true population

characteristics are unknown, alternative estimation models which produce similar results

often would be treated as equally viable. In particular, I chose the values 0.05 and 0.1

because they represented a difference in model results that most analysts would consider

negligible. In addition, I used the MRE and MARE to examine bias and precision in

estimates from the estimation models chosen by each selection method. Comparison of

the model selection methods was made using the subset of simulation runs in which all

four estimation models converged on adequate solutions to avoid problems with different

convergence rates between the estimation models.

My first model selection procedure focused on proportion of catch-at-age

residuals, with the selected model minimizing the RMSE for these residuals. I chose this

as one possible method because I thought generally large proportion of catch-at-age

residuals might occur for estimation models that incorrectly modeled selectivity patterns.

These residuals were calculated from the posterior medians of predicted proportions of

catch-at-age.
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My second model selection method is based on retrospective analysis, which

involves the comparison of successive estimates of model output quantities as additional

years of data are added to the stock assessment (Parrna 1993; Mohn 1999). For this

selection method I selected the model that minimized the absolute value of Mohn’s

(1999) degree of retrospectivity statistic:

X(l:y),y _X(1:n),y
 (12) DR =

9

y=n-10 X(1:y).y

where X(1 3,),y is the predicted value of quantity X in yeary estimated from the data set

spanning year 1 to year y and X(1 _.n),y is the predicted value of quantity X in year y

estimated from the data set spanning year 1 to the last year of the full data set n. Here I

conducted a retrospective analysis for each estimation model-simulated data set fit by

dropping a year of data from the simulated data set and refitting the estimation model,

repeating this process until the last 10 years of data had been sequentially removed from

the analysis. Systematic retrospective patterns in model quantities can occur when time-

varying processes are modeled as being constant over time (Mohn 1999). Though all of

my estimation models allowed selectivity to change over time, I expected to see

retrospective patterns in cases where an estimation model had difficulty tracking changes

in selectivity. To make this approach practical, I used highest posterior density estimates

of the parameters with the variance parameters fixed at their point estimates from the

analysis of the full data set.

My final selection method was to select the model that minimized the Deviance

Information Criterion (Spiegelhalter et al. 2002). Information-theoretic model selection

criteria generally work by balancing model goodness of fit against model complexity
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(i.e., the number of parameters in the model). The effective number ofparameters in

complex models, such as my SCAA models, is often less than the actual number of

parameters due to various constraints placed upon those parameters. I chose to use DIC,

as opposed to the more commonly used Akaike’s Information Criterion (AIC; Akaike

1973) and Bayesian Information Criterion (BIC; Schwartz 1978), because DIC provides a

means of estimating the effective number ofparameters. Wilberg (2005) demonstrated in

a different SCAA application that selection by DIC could result in estimates with lower

mean square errors, than always using any particular single model.

Deviance Information Criterion is composed oftwo components (Spiegelhalter et

al. 2002):

(13) DIC=I§+pD,

where D is the average deviance andpD is the effective number of parameters. I

estimated the average deviance as (Spiegelhalter et al. 2002):

_ C

(14) D =é—Z—2Iog. p(xl6c),
c=l

where C is the number of MCMC cycles saved minus the burn in and p(x|t9c) is the

probability of data x conditional on parameters 6 from MCMC cycle c. I estimated the

effective number of parameters as (Wilberg 2005):

(15) PD =D—‘D(9ML)a

where D(9M1.) is the deviance evaluated at the maximum likelihood parameter estimates

and the other variables are described above.
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For each model selection method, I calculated in what percentage of the

simulation runs the method selected the best or nearly best estimation models. In

addition, for each selection method I examined the distribution of RES for final

population biomass and exploitation rate estimates.

1 compared the performance of using estimation models selected by degree of

retrospectivity to the performance of always using the same estimation model, for each of

the estimation models. The objective here was to determine if this model selection

technique outperformed the omnibus approach of always using the same estimation

model. I used model selection by degree of retrospectivity in this evaluation because of

the good performance of this model selection method (see Results). To properly make

this comparison, I used degree of retrospectivity to select the best estimation based on

final population biomass and exploitation rate for each simulation run, rather than for the

subset of simulation runs where all four estimation models converged on solutions.

Comparisons were made using MRE and MARE values for final population biomass and

exploitation rate selected by degree of retrospectivity and estimated by each of the

estimation models.

Results

Model runs exhibiting poor convergence characteristics were dropped from the

analysis. The following results are based on sample sizes of 333 to 425 model runs per

scenario (Table 3.6). All of the dropped model runs failed to converge to highest

posterior density solutions, thus MCMC simulations could not be run. I suspect that with

sufficient effort, which would be warranted for a real assessment, an analyst could have

made adjustments in many of these cases to achieve convergence. This was not practical
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in the context of this simulation study. It should be noted that the subsets of simulation

runs demonstrating poor convergence characteristics generally were different for each of

the estimation models (i.e., incidents of poor convergence were not due to characteristics

of particular simulated data sets).

Estimation Models

There was little difference in the biases of the four estimation models’ estimates

of population biomass in the last year of analysis within each data generating scenario

(Figure 3.1). The four estimation models produced less biased estimates of the final

population biomass in the double logistic generating scenario compared to the age-

specific selectivity parameters generating scenario. Median relative error values for final

population biomass ranged from 0.01 to 0.13 for the double logistic function generating

scenario (Table 3.6). In contrast, MRE values for final population biomass ranged from -

0.23 to 0.55 for the age-specific selectivity parameters generating scenario. The

estimation model using the double logistic function with four time-varying parameters

produced the most biased estimates of population biomass in both data generating

scenarios.

The four estimation models produced more precise estimates of population

biomass in the last year of analysis when the estimation models more accurately

represented the true underlying population (i.e., when selectivity estimation and data

generating models were similar) (Figure 3.1). Median absolute relative error values for

final population biomass varied from 0.20 to 0.26 for the three double logistic function

estimation models in the double logistic function generating scenario (Table 3.6). On the

other hand, the age-specific selectivity parameters estimation model had a final
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population biomass MARE value of 0.54 for the double logistic function generating

scenario. The age-specific selectivity parameters estimation model had final population

biomass MARE value of 0.35 for the age-specific selectivity parameters generating

function. In contrast, the three double logistic function estimation models had final

population biomass MARE values ranging from 0.50 to 0.61 for the age-specific

selectivity parameters generating scenario. The estimation model using the double

logistic function with four time-varying parameters produced estimates of final

population biomass that were less precise than the estimation models using double

logistic functions with one and two time-varying parameters (Figure 3.1).

There was little difference in the biases of the four estimation models’ estimates

of exploitation rate in the last year of analysis within each data generating scenario

(Figure 3.2). The four estimation models produced less biased estimates of the final

exploitation rate in the double logistic generating scenario compared to the age-specific

selectivity parameters generating scenario. Median relative error values for final

exploitation rate ranged from -0.10 to -0.02 for all four of the estimation models in the

double logistic function generating scenario (Table 3.6). In contrast, the MRE values for

exploitation rate ranged from -0.36 to -0.18 for all four estimation models in the age-

specific selectivity parameters generating scenario. The estimation model using the

double logistic function with four time-varying parameters produced the most biased

estimates of population biomass in both data generating scenarios.

The four estimation models produced more precise estimates of exploitation rate

in the last year of analysis when the estimation models more accurately represented the

true underlying population, though the difference was not as pronounced in the age-
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specific selectivity parameters generating scenario (Figure 3.2). Median absolute relative

error values for the final exploitation rate varied from 0.20 to 0.25 for the three double

logistic function estimation models in the double logistic generating scenario (Table 3.6).

On the other hand, the age-specific selectivity parameters estimation model had an

exploitation rate MARE value of 0.58 for the double logistic generating scenario. The

age-specific selectivity parameters estimation model had a final exploitation rate MARE

value of 0.38 for the age-specific selectivity parameters generating function. In contrast,

the three double logistic function estimation models had final exploitation rate MARE

values ranging from 0.48 to 0.57 for the age-specific selectivity parameters generating

scenario.

Model Selection

1 compared the performance of the model selection methods by examining the

subset of simulation runs where all four of the estimation models exhibited good

convergence properties. All of the estimation models converged on good solutions for

438 of the 1,000 simulation runs.

Degree of retrospectivity selected the best or nearly best estimation model, based

on final population biomass and exploitation rate RES, as often as or more often than DIC

and RMSE (Figure 3.3). Degree of retrospectivity selected the best or nearly best model

in 34-57% of the simulation runs when the best or nearly best model was chosen based on

final population biomass RE, and in 33-52% of the simulation runs based on final

exploitation rate RE. Deviance information criterion selected the best or nearly best

model in 27-48% of the simulation runs when the best or nearly best model was chosen

based on final population biomass RE, and in 27-50% of the Simulation runs based on
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final exploitation rate RE. Root mean square error selected the best or nearly best model

in 29-49% of the simulation runs when the best or nearly best model was chosen based on

final population biomass RE, and in 33-49% of the simulation runs based on final

exploitation rate RE.

Selecting estimation models using degree of retrospectivity produced estimates of

population biomass and exploitation rate in the last year of analysis that were as biased

and precise as or less biased and more precise than estimation models selected using DIC

and RMSE (Figures 3.5 and 3.6). In particular, degree of retrospectivity selected

estimation models that produced final population biomass and exploitation rate estimates

that were less biased and more precise than estimates selected by DIC and RMSE in the

age-specific selectivity parameters generating scenario (Table 3.7).

Degree of retrospectivity performed as well as or better than the individual

estimation models at estimating final population biomass and exploitation rate. Degree

of retrospecitivity produced a final population biomass MRE of 0.05 and MARE of 0.24

in the double logistic generating scenario, which is comparable to the estimation

performances of the three time-varying double logistic functions in that same scenario

(Table 3.6). Degree of retrospecitivity produced a final population biomass MRE of -

0.01 and MARE of 0.40 in the age-specific selectivity parameters generating scenario,

which is less biased than any of the individual estimation models and of intermediate

precision between the age-specific selectivity parameters and double logistic function

estimation models in that same scenario (Table 3.6). Degree of retrospecitivity produced

a final exploitation rate MRE of -0.05 and MARE of 0.24 in the double logistic

generating scenario, which is comparable to the estimation performances of the three
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time-varying double logistic functions in that same scenario (Table 3.6). Degree of

retrospecitivity produced a final exploitation rate MRE of 0.03 and MARE of 0.42 in the

age-specific selectivity parameters generating scenario, which is less biased than any of

the individual estimation models and of intermediate precision between the age-specific

selectivity parameters and double logistic function estimation models in that same

scenario (Table 3.6).

Discussion

There was no single time-varying selectivity estimation model that outperformed

the others in all situations that I examined. Rather, the estimation model(s) that produced

the estimates most tightly distributed about true population biomass and exploitation rate

in the last year of analysis was the one that most closely represented the true underlying

population. The three estimation models that used variants of the double logistic function

to model time-varying selectivity produced better estimates of final population biomass

and exploitation rate than the age-specific selectivity parameters estimation model when

the selectivity of the true population was generated with a double logistic function.

Likewise, the age-specific selectivity parameters estimation model produced better

estimates of final population biomass and exploitation rate than the three double logistic

function estimation models when the selectivity of the true population was generated with

age-specific selectivity parameters. This sort of result is common to simulation studies

where there are similarities between data generating and estimation models (e.g.,

Radomski et al. 2005; Wilberg and Bence 2006).

My study suggests that if an analyst knows the underlying form that selectivity

takes in a fish population, then he or she can model time-varying-selectivity reasonably
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well. This begs the question, how well can an analyst know true selectivity patterns and

how they vary over time? Many fishing gears such as gill nets and trap nets are size

selective. If one makes the assumption that the size and age of fish are correlated and by

extension selectivity and age of fish are correlated, then modeling selectivity as some

function of ages, which produces a smooth selectivity curve, is a reasonable approach. It

is more difficult to think of situations where age-specific selectivity values vary relatively

independently of each other overtime. Kimura (1990) demonstrated that estimating age-

specific selectivity parameters outperformed the use of a selectivity function when the

function was incorrectly specified. The approachiof Buttervvorth et al. (2003) that I used

in this study is an extension of Kimura’s (1990) approach, which allows the age-specific

selectivity parameters to vary over time. Further study is needed to determine whether

estimation models that assume time-varying age-specific selectivity parameters

outperform a time-varying selectivity function when the function is misspecified.

Model complexity is another issue that must be addressed when evaluating

different time-varying selectivity models. Increased model complexity means an

increased number of parameters that must be estimated, which can lead to over-

pararneterization of the model. An over-pararneterized model can produce poor

parameter estimates with high variances (Bumham and Anderson 2002). In my study,

the issue of model complexity was most clearly demonstrated in the performance of the

double logistic function with four time-varying parameters and two associated variances.

I expected the four time-varying parameter selectivity estimation method to outperform

the other double logistic function approaches when the observed data were generated

using age-specific selectivity parameters, due to the increased flexibility granted by
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allowing all four double logistic firnction parameters to vary over time. Instead, I found

that the four time-varying parameter double logistic function produced more biased

estimates of final population biomass than the other double logistic function estimation

approaches when the observed data were generated using age-specific selectivity

parameters. One of the two variances associated with the slopes and inflection points of

the four time-varying parameter double logistic function was estimated as nearly zero

(i.e., making it effectively the same as the two time-varying parameter double logistic

function) in many of the simulation runs, which suggests that the observed data were not

informative enough to estimate all of the selectivity parameters.

The performance of the four time-varying parameter double logistic function in

my study could be due to my data generating model design. The observed data were

generated by allowing selectivity parameters to vary over time according to a first order

autoregressive process, which did not follow any trend over time, and for which the

deviations among ages were not correlated. The performance of the time-varying double

logistic methods, may have improved had the generating selectivity function produced

correlated changes in selectivity for adjacent ages, like those that would be generated by

variations in one or more parameters of a firnction.

I was surprised to see how well degree of retrospectivity performed as a time-

varying selectivity model selection method compared to DIC and RMSE. Estimation

models selected using degree of retrospectivity produced final population biomass and

exploitation rate estimates that were more or equally accurate and precise compared to

estimates selected by DIC and RMSE for the data generating scenarios I examined. In

particular, degree of retrospectivity selected final p0pulation biomass estimates that were
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much more accurate and precise than those estimates selected by DIC and RMSE when

observed data sets were generated using age-specific selectivity parameters. The

robustness of degree of retrospectivity as a time-varying selectivity estimation model

selection method probably is due to the fact that it can detect consistent patterns in model

estimates over time (i.e., as new years of data are added to the model). As I expected,

these consistent or retrospective patterns do appear to be indicative of an estimation

model that has difficulty estimating time-varying selectivity. Deviance information

criterion and RMSE lack this ability to detect retrospective patterns since they merely

evaluate the model fit to the complete time series of observed data. Parrna (1993)

developed an alternative metric for identifying retrospective patterns using the square

root of the mean square error between the retrospective estimate of a model quantity and

a corresponding reference estimate on the log scale. Mohn (1999) points out that this

mean square error metric is unable to differentiate between retrospective and random

patterns since it uses a mean square, rather than signed sum, in its calculation. Though I

did not test Parrna’s (1993) metric, I suspect that it would perform similarly to my DIC

and RMSE methods. I recommend that degree of retrospectivity be used to select

between estimation models using different methods of estimating time-varying

selectivity, based on its performance in my study.

Selecting from multiple estimation models using degree of retrospectivity worked

better than choosing a single estimation model in my study. Nothing is lost in estimation

performance by using degree of retrospectivity, even if an analyst is able to correctly

specify time-varying selectivity. In addition, degree of retrospectivity outperforms

estimation models which misspecifiy time-varying selectivity (i.e., assuming a double
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logisitic function when true age-specific selectivity values vary over time). Therefore, I

recommend that degree of retrospectivity be used to select between time-varying

selectivity models.

I should note that my study only looked at the performance of model selection

methods on an individual basis. The ability to select the best estimation model may be

improved by using combinations of different selection techniques. For example,

estimation models could be ranked based on their degree of retrospectivity. If multiple

estimation models have equal or nearly equal degree of retrospecitvity values, then DIC

or RMSE values could be used to select between those models with degree of

retrospecitvity values close to zero. Further study of using such multiple model selection

methods would be informative.
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Table 3.1. Symbols and descriptions of variables used in data generating and estimation

models.

 

Symbol Description Application

Cyfl Number of fish caught by year and age Both

6:y Observed number of fish caught by year Both

Ey Fishery effort by year Both

Fyfl Instantaneous fishing mortality by year and age Both

M Instantaneous natural mortality Both

Nyfl Abundance by year and age Both

N0 Mean abundance for abundance in first year Estimation

NE Number of fish used to calculate age composition each year Both

Pyfl Proportion of catch by year and age Both

PM, Observed proportion of catch by year and age Both

R0 Mean recruitment Estimation

S), Number of female spawners by year Generation

Zyfl Instantaneous total mortality by year and age Both

ZQa Instantaneous total mortality for abundance in first year by age Generation

b1,y First inflection pt. of double logistic selectivity function by year Both

b2 First slope of double logistic selectivity funcion Both

b3 Second inflection pt. of double logistic selectivity function Both

b4 Second slope of double logistic selectivity funcion Both

bi Mean of first inflection pt. of double logistic selectivity function Estimation

13, Fishing intensity by year Both

m Total number of ages Both

n Total number of years Both
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Table 3.1 (cont’d).
 

piglx)

pQW)

19(9)

q

Posterior probability density of parameters conditional on data

Probability density of data conditional on parameters

Prior probability density of parameters

Fishery catchability

Fishery selectivity by year and age

Mean fishery selectivity by age

Mean fish weight by age

Productivity parameter of Ricker recruitment function

Density dependent parameter of Ricker recruitment function

Process error in selectivity parameter i by year

Process error in first inflection point of double logistic function

by year

Process error in recruitment by year

Subset of time-varying selectivity parameters

Process error in selectivity by year and age

Process error in inflection points of double logistic function by

year

Error in fishing intensity by year

Mean number of age-1 fish for abundance in first year

Set of all model parameters

Prior standard deviation of log-scale fishing intensity standard

deviation

Prior standard deviation of log-scale inflection points standard

deviation

Prior standard deviation of log-scale total catch standard

deviation

Prior standard deviation of log-scale slopes standard deviation

First correlation parameter for first order autoregressive process

Estimation

Estimation

Estimation

Both

Both

Generation

Both

Generation

Generation

Estimation

Generation

Generation

Estimation

Generation

Estimation

Both

Generation

Estimation

Estimation

Estimation

Estimation

Estimation

Generation
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Table 3.1 (cont’d).
 

P2

0N

Second correlation parameter for first order autoregressive

process

Standard deviation of number of age-1 fish for abundance in

first year

Standard deviation of log-scale first inflection point

Generating mean of log-scale first inflection point standard

deviation

Standard deviation of log-scale recruitment

Standard deviation of log-scale selectivity

Generating mean of log-scale selectivity standard deviation

Standard deviation of log-scale inflection points

Prior mean of log-scale inflection points standard deviation

Age-specific standard deviation of log-scale selectivity

Standard deviation of log-scale fishing intensity

Generating and prior mean of log-scale fishing intensity

standard deviation

Standard deviation of log-scale slopes

Prior mean of log-scale slopes standard deviation

Standard deviation of log-scale total catch

Generating and prior mean of log-scale total catch standard

deviation

Year-specific standard deviation of log-scale selectivity

Process error in slopes of double logistic function by year

Observation error in number of fish caught by year

Process error in selectivity by year and age

Process error in recruitment by year

Process error for abundance in first year by age

Generating standard deviation of log-scale first inflection point

standard deviation

Generation

Generation

Generation

Generation

Generation

Generation

Generation

Estimation

Estimation

Estimation

Both

Both

Estimation

Estimation

Both

Both

Estimation

Estimation

Both

Estimation

Estimation

Estimation

Generation
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Table 3.1 (cont’d).
 

C Generating standard deviation of log-scale selectivity standard Generation

7 deviation

4). Generating standard deviation of log-scale fishing intensity Generation

standard deviation

4V Generating standard deviation of log-scale total catch standard Generation

deviation
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Table 3.2. Data generating and estimation model equations.
 

 

 

Equation Application

3.2.1 —2 Both

Ny+l,a+l = Ny,ae y,a

3.2.2 a—l Generation

_ 220,].

Nl,a = N2—a,le 1:]

3.2.3 -,BS _ c 2) Generation
Ny’l = y_]e y ‘e as, ~N(0,a,

3.2.4 Zyfl = M + Fyfl Both

3.2.5 Fyfl = Sy,afy Both

3.2.6 fy : que/ly My ~ N(0,oi‘) Both

3.2.7 F _ Both

Cy,a = _y,a Ny’a(1—e Zy’a)

Zyfl

3.2.8 ~ U Both

Cy = ZCJ’fl e y,uy ~ N(0,03)

a

3.2.9 C Both

Py a = C?"

y
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Table 3.3. Posterior probability density equations for estimation models.

Equation
 

3.3.1 p(t9|x) oc p(x|t9)p(0)

3.3.22: 444441-«Loner-motor

3.3.2b —1n[p(t9|x) + gISy,a :0; )6: -1n[P(x|9)]— ln[p(6)]+ gIsy,a;a%)

3.3.3 6 = INo,IV/aI;n=1’RO’IwJ’h=2’q’¢I

3.3.4a ¢ = {bl’l’[,7y}"y:1,o-n,b2,b3,b4j

3.3.4b ¢_ Ibrr [my]:l1,,b2 63,, [n3y}";' ”b40vi

334C ¢= $11 {Thy};=ll, [221, {12),}! 9,9173] [773,d}; ”b4,l [14,)»:y11,0",01}

3.3.4d ¢ = {ISI,aI:=1’l:Iwy.a};:1:|:=1’Uw MP}

3.3.. 14446)]-[undermine]
3.3.6

1n[p(C|6)]=—n[(ln Cy - In Cy )2 ] — n In 0C

25:-C y:_1

3.3.7

1.1.6.): ZN in... w...)
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Table 3.4. Values of quantities used in data generating model to create simulation data

sets.
 

Quantity Value
 

n 20

m 8

.UN 355,000

O'N 0.4

a 10.1

fl 5.10E-06

as 0.4

IWa 123:1 0.20, 0.48, 0.73, 0.91, 1.32, 1.52, 1.76, 2.15

M 0.24

[E }n 0.8, 1.6, 2.4, 3.2, 4.0, 4.8, 5.6, 6.4, 7.2, 8.0, 8.0, 7.2, 6.4, 5.6, 4.8, 4.0, 3.2,

y y=l 2.4, 1.6, 0.8

q 0.15

0:1 0.4

C) 0.1

bf 4.01

[6,. 1:2 1.40, 3.49, 0.50

[3; 31:] 0.04, 0.15, 0.43, 0.85, 1.00, 0.82, 0.57, 0.37

p] 0.9

02; 0.2

45 0.1

p2 0.9

0’7 0.15

6, 0.1

0;, 0.05

4., 0.1

NE 400
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Table 3.5. Values used to define prior probability densities in estimation models.
 

Quantity Value

 

a; 0.4

.9A 0.25

0;, 0.2

.9” 0.42

0;, 0.05

.9, 0.1

a; 0.2

.9, 0.42
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Table 3.6. Median relative errors (MRE), median absolute relative errors (MARE), and

number of replicates (N) for estimates of final population biomass and exploitation rate

produced by the time-varying selectivity estimation models: double logistic functions

with one (DLl), two (DL2), and four (DL4) time-varying parameters, and time-varying

age-specific selectivity parameters (ASP).

Population Biomass

 

 

Estimation DLl ASP

Model MRE MARE N MRE MARE N

DLl 0.05 0.20 414 0.23 0.50 411

DL2 0.06 0.22 361 0.33 0.57 425

DL4 0.13 0.26 333 0.55 0.61 430

ASP 0.01 0.54 382 -0.23 0.35 409

Exploitation Rate

DLl -0.04 0.20 414 -O.18 0.50 411

DL2 -0.06 0.21 361 -0.24 0.51 425

DL4 -0.10 0.25 333 -0.36 0.48 430

ASP -0.02 0.58 382 0.30 0.38 409
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Table 3.7. Median relative errors (MRE), median absolute relative errors (MARE), and

number of replicates (N) for estimates of final population biomass and exploitation rate

chosen by the model selection methods: root mean square error (RMSE), deviance

information criterion (DIC), and degree of retrospectivity (DR).

Population Biomass

 

  

 

Model DLl ASP

Selection MRE MARE N MRE MARE N

RMSE 0.10 0.21 179 0.43 0.53 259

DIC 0.10 0.22 179 0.40 0.51 259

DR 0.07 0.22 179 -0.05 0.35 259

Exploitation Rate

RMSE -0.08 0.21 179 -0.32 0.54 259

DIC -0.09 0.22 179 -0.29 0.50 259

DR -0.06 0.24 179 0.10 0.37 259
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Figure 3.1. Box plots representing relative error distributions for estimates of population

biomass in the last year of analysis across different data generating models. The data

generating and estimation models include double logistic functions with one (DLl), two

(DL2), and four (DL4) time-varying parameters, and time-varying age-specific selectivity

parameters (ASP). The bars represent median relative errors. The boxes, whiskers, and

circles represent 25th and 75th, 10th and 90th, and 5th and 95th percentiles of the

distributions, respectively.
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Figure 3.2. Box plots representing relative error distributions for estimates of

exploitation rate in the last year of analysis across different data generating models. The

data generating and estimation models include double logistic functions with one (DL1),

two (DL2), and four (DL4) time-varying parameters, and time-varying age-specific

selectivity parameters (ASP). The bars represent median relative errors. The boxes,

whiskers, and circles represent 25th and 75th, 10th and 90th, and 5th and 95th percentiles

of the distributions, respectively.
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Figure 3.3. The percentage of model runs when the model selection methods chose the

best or nearly best estimation model based on estimates of final population biomass. The

model selection methods include root mean square error (RMSE), deviance information

criterion (DIC), and degree of retrospectivity (DR). The best or nearly best estimation

model(s) is defined as the model(s) producing A) the lowest final population biomass

relative error, B) within 5% of the lowest final population biomass relative error, and C)

within 10% of the lowest final population biomass relative error.
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Figure 3.4. The percentage of model runs when the model selection methods chose the

best or nearly best estimation model based on estimates of final exploitation rate. The

model selection methods include root mean square error (RMSE), deviance information

criterion (DIC), and degree of retrospectivity (DR). The best or nearly best estimation

model(s) is defined as the model(s) producing A) the lowest final exploitation rate

relative error, B) within 5% of the lowest final exploitation rate relative error, and C)

within 10% of the lowest final exploitation rate relative error.
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Data generating model

Figure 3.5. Box plots representing relative error distributions for estimates ofpopulation

biomass in the last year of analysis chosen by model selection methods across different

data generating models. The data generating models include double logistic functions

with one time-varying parameter (DL1) and time-varying age-specific selectivity

parameters (ASP). The model selection methods include root mean square error

(RMSE), deviance information criterion (DIC), and degree of retrospectivity (DR). The

bars represent median relative errors. The boxes, whiskers, and circles represent 25th and

75th, 10th and 90th, and 5th and 95th percentiles of the distributions, respectively.
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Figure 3.6. Box plots representing relative error distributions for estimates of

exploitation rate in the last year of analysis chosen by model selection methods across

different data generating models. The data generating models include double logistic

functions with one time-varying parameter (DL1) and time-varying age-specific

selectivity parameters (ASP). The model selection methods include root mean square

error (RMSE), deviance information criterion (DIC), and degree of retrospectivity (DR).

The bars represent median relative errors. The boxes, whiskers, and circles represent

25th and 75th, 10th and 90th, and 5th and 95th percentiles of the distributions,

respectively.
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