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ABSTRACT

SHRINKAGE PROCEDURES FOR MIXED MODEL ANALYSES OF

MICROARRAY EXPERIMENTS

By

Lan Xiao

Two color microarray systems are amongst the currently most popular functional

genomics tools that have permeated animal science research. This novel technology

facilitates the simultaneous profiling of the behavior of tens of thousands of genes under

various experimental conditions.

Data generated by microarray experiments are typically influenced by a number of

complex sources of systematic and random experimental variation. Mixed models

provide a powerful means to account for multiple sources of variation in very general and

efficient experimental designs. Now the nmnber of hypotheses tests are a linear function

of the number of genes, each test limited by generally few replicates per treatment

condition due to the substantial costs of a microarray experiment. Although several

Bayesian methods have been deemed effective for borrowing information across genes

for the analysis of microarray data, there remains unresolved issues for more elaborate

design structures characterized by differing levels ofreplication.

Two alternative Bayesian approaches to mixed model inference of microarray

experiments are presented in this dissertation. These methods facilitate more reliable

inferences on gene effects by borrowing information from the whole ensemble of genes

on not just one but several layers of variability. A proposed empirical Bayes mixed model

(EB-ANOVA) pools information on ANOVA mean squares for random and residual

effects across genes, thereby improving sensitivity for detecting differential expression



while providing adequate control of the false discovery rate (FDR). A second model

(BAYESRATIO) was subsequently constructed to generalize the common correlation

assumption for microarrays having two or more spots per gene, as currently implemented

in the popular R software package LIMMA. The BAYESRATIO model was shown to

have better performance on ROC curves and FDR control, where LIMMA was formd to

be too liberal for controlling FDR. A third chapter compares different image analysis

software combined with the statistical methods we proposed in previous two chapters.

The significantly different data features from different image software result in dissimilar

statistical inferences. The findings from this work support the contention that the

background adjustment may substantially reduce the precision and increase the variability

of intensity estimation.
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INTRODUCTION

1. Statistical Challenges in Gene Selection for

Microarray Data Analysis

Microarray technology has empowered biomedical researchers to study the

simultaneous expression of thousands of genes as influenced by various experimental

conditions. Of course, the large volume of gene expression data also poses many

statistical inference challenges. One important goal in microarray studies is to identify a

subset of genes which is differentially expressed between two or more treatments. A

main limitation in this exercise is the limited availability ofnumbers of samples (i.e., less

than 10 samples per treatment) and the extremely large number of genes (i.e., thousands

of genes). Small sample sizes may substantially compromise statistical power for

analyses conducted separately for each gene; compounding this problem further is the

multiple testing considerations that must be considered when conducting thousands of

hypothesis tests. Moreover, microarray experiments involve multi-step processes such as

extraction of mRNA, reverse transcription, labeling, hybridization, scanning, and image

analysis. Each step represents a potential source of variation and error, thereby affecting

the measurement of gene expressions and further exacerbating the detection of

differential expression.

The most common experimental design for two color arrays (cDNA microarray) is the

reference design, where each experimental sample is hybridized against a common

reference sample. A less common design is the loop design where each sample is

hybridized to each of two different samples in two different dye orientations and can be



connected as a loop (Kerr & Churchill 2001). For more complex factorial treatment

structures (Glonek & Solomon 2004), some contrasts might be considered to be more

important than others, thereby influencing design choices. That is, an efficient design

typically utilizes more direct comparisons, i.e. within arrays, for the most interesting

contrasts and indirect comparisons for others. Furthermore, a typical microarray

experiment has many sources of variation which can be attributed to biological and

technical levels of replication (Zakharkin et al. 2005). Confusing technical duplicates

with biological replicates will lead to misconceptions in conducting and interpreting

statistical tests (Peng et al. 2003 ).

Image analysis is an important stage of microarray experiments and can have a

potentially large impact on subsequent analyses, such as the identification of differentially

expressed genes (Yang et al. 2002). The primary purpose of image analysis step is to

convert TIFF images which contain both Red and Green channels to numeric data,

specifically foreground and background intensity information for each spot and

wavelength for each of the two different dyes (e.g. Cy3 and Cy5). The process of image

analysis after scanning the array includes locating each spot on the slide, partitioning the

pixels within each grid box into foreground and the background, and quantifying the

intensity values and some quality control measures for the Cy3 and Cy5 channel for each

spot on the microarray. This data set generated by such image analysis is the object used

for statistical analysis. The choice of segmentation method in image analysis software

forms a crucial preliminary step in microarray analysis as any errors incurred at this step

are bound to propagate through subsequent data analysis.



2. Hypothesis testing for microarray experiments

Mixed model methods provide a natural framework for analyzing microarray

experimental data generated from efficient and flexible experimental designs including

those where it is fundamentally necessary to discriminate between biological and

technical replication. A widely popular two-step mixed model procedure (step one:

normalization model only contains global effects; step two: gene-specific model only

contains gene-specific effects) for the analysis of microarray data was first introduced by

(Wolfinger et al. 2001) based on separate mixed model ANOVA for each gene. However,

the low power for one gene-at-a-time hypothesis testing based on small sample sizes is

not well served by this simple approach.

Empirical Bayes estimation is an inference procedure having great practical potential

for microarray data by combining information on thousands of gene expression levels,

each characterized by limited replicates per treatment group (Efron 2003). The

information extracting across genes is summarized as prior distributions which can be

then used to improve the estimates for individual genes by shrinking estimates to a

common value; hence empirical Bayes is often referred to as shrinkage estimation. Much

work has been pursued on shrinkage estimation for simple microarray experimental

designs based on a single error structure (Efron et al. 2001; Newton et al. 2001; Broet et

al. 2002; Lonnstedt & Speed 2002; Kendziorski et a1. 2003; Wright & Simon 2003;

Edwards et al. 2005). However, most of these approaches are not readily applicable to

experimental designs with hierarchical replication structures. Empirical Bayes extensions

ofmixed model analysis appears to be a promising strategy as realized in a recent version

of LIMMA (Linear Models for Microarray Data) (Smyth et a1. 2005) , MAANOVA (Cui



et al. 2005) and another recently published paper (Feng et al. 2006). Nevertheless, there

are still unresolved issues with those procedures: strong common correlation assumption

in LIMMA, shrinkage on variance components in MAANOVA which may not result in

more accurate denominator of F-statistics for hypothesis testing, and arbitrary choice of

the posterior degree of freedom in Fang et al., (2006).

3. Specific objectives

We combine the strengths of these two approaches for inference: the mixed effect

model and Bayesian methods to improve the precision of identifying differentially

expressed genes in microarray study.

The overall aim for this thesis is to improve the efficiency of statistical inference of

microarray data, specifically mixed model analysis of efficient experimental designs. The

three objectives for this dissertation are as follows:

1) To develop an empirical Bayes extension ofmixed model analysis for microarray data

by combining information on gene-specific variance components for every random

source of variability including blocking, experimental and technical sources.

2) To critically evaluate the empirical Bayes strategy in the popular microarray analysis

software LIMMA for managing within-array technical replicates via a comparison with a

firlly Bayesian method.

3) To study different data features coming from different image analyses software and

suggest transformations and models that would be most appropriate for the respective

characteristics of data.



4. Dissertation outline

The first major part ofthe thesis includes a literature review on the biological research

underpinnings and required statistical inference relevant for the analysis of cDNA

microarrays, including an overview of cDNA microarray technology, experimental

design, image analysis methods, data normalization, single gene analysis methods,

multiple test adjustment issues and relevant statistical concepts. The second major part of

this dissertation consists of three independent papers. Paper I proposes an alternative

empirical Bayes strategy for mixed model ANOVA to infer upon differentially expressed

genes, and to assess the performance by comparing this strategy with recently proposed

methods based on empirical Bayes (Peng et. al., 2006) and gene-specific inference

(Wolfinger et. al., 2001). Paper H uses a fully Bayesian model to investigate a strong

distributional assumption of LIMMA (Smith et. al., 2005), that being of a constant

within-array correlation for technical replicates across all genes. Paper 1H compares four

different image analyses software representing three segmentation methods: adaptive

circle, adaptive shape and histogram methods to investigate the variability of data

derived ftom different segmentation methods and its impact on subsequent data analyses.

The third major part of this dissertation is the conclusions and areas for future study. The

summary of results address the specific objectives stated at the beginning of this

dissertation. The implications ofthis dissertation and proposal for firture work are discussed.
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CHAPTER 1. LITERATURE REVIEW

1.1 Introduction

Two color microarrays are widely used as powerful functional genomics tools in the

animal sciences. Because of the vast amount of data generated by microarray experiments,

the rapid growth of this technology has required necessary scaling developments for

statistical inference. Many aspects of statistical methods are driven by this requirement,

including experimental design, image analysis and hypothesis testing.

This review discusses widely used methods for segmentation in image analysis software,

experimental designs and the statistical analysis of gene expression data from DNA

microarrays. Discussion on normalization and multiple testing adjustments for

hypothesis testing are also provided.

This review is broken down into two major sections. Section 1, albeit very short,

provides a brief general overview of microarray technology. Section 2 contains a general

development and discussion of the current issues in the statistical analysis of microarray

data and is further subdivided into four parts: Section 2.1, common experimental designs;

Section 2.2, image analysis; Section 2.3, data normalization and Section 2.4 statistical

inference.

1.2 DNA microarray technology

Microarrays were originally developed to facilitate the measurement of simultaneous

expression of thousands of genes (Schena 1995). As a result, various studies have been



conducted to study gene expression profiles under various conditions including the study

of complex diseases and developmental processes.

DNA microarrays are typically made of glass slides with orderly arranged spots of

DNA fragments. The DNA fragments act as probes, which have various characteristics

for different platforms. Before the turn of the millennium, traditional cDNA and short

oligonucleotide probe microarrays predominated whereas long oligonuleotide (50-70

mer) platforms have now become more popular (Woo et al. 2004). A standard glass slide

is 1x3-inch (Gershon 2002), Since the sizes of the spots are typically less than 200

microns in diameter, microarrays are generally large enough for thousands of spots,

thereby allowing an investigator to study the expression of nearly just as many genes

within a single slide.

Spotted microarrays are one particular type of microarray where competitive

hybridization is used to compare the relative amount of mRNA transcript for each gene

from two samples treated under different conditions; e.g. treated vs. control. This process

as indicated in Figure 1 starts with reverse transcribing mRNA from each sample into

cDNA. Each sample is typically labeled with one of two fluors or dyes. The most

common pair of dyes are Rhodamine (Cyanine 5, red) and Fluorescein (Cyanine 3,

green». Roughly equal volumes of each sample are generally hybridized together within

a single array.

After hybridization, the array or slide is scanned with lasers in order to produce two

digital images with Tagged Image File Format (TIFF), one for each dye channel.

Different dyes absorb and emit light at different wavelengths. In order to measure the

abundance of the two fluorescent dyes for each spot, the scanners are designed to



generate excitation light at different wavelengths and detect different emission

wavelengths. The dyes Cy3 and Cy5 have emission in 510-550nm and 630-660nm

wavelength ranges, respectively (Yang et al. 2002a). The digital images scanned at the

two wavelengths are then used to produce a pseudoimage of the array. If one spot

corresponding to a particular gene in the pseudoimage appears to be red, it qualitatively

suggests that a higher level ofexpression for the specific gene at the spot exists within the

sample labeled with Cy5 whereas a green spot indicates relatively greater gene

expression in the Cy3 labeled sample. Any difference in expression between the two

samples (up- or down-regulation) is referred to as differential expression. Qualitatively,

non-differentially expressed genes (probes) are expected to yield yellow spots because of

the equal expression of Cy3 and Cy5 (Qin et al. 2005).
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1.3 Summary of statistical issues for two color

microarray experiments

Consideration of appropriate statistical methods is needed for various stages of any

microarray experiment. Firstly, the experimental design should be carefully constructed

prior to actually conducting the experiment itself. Secondly, the fluorescence intensities

procedure from image analysis should be normalized to adjust for dye-bias and for

systematic variation. Thirdly, hypothesis testing is needed to determine which genes are

differentially expressed between different conditions (Smyth et al. 2003). Differentially

expressed genes identification is usually the first biological concern and also the core

goal to be reviewed for this stage. The sections of this review correspond roughly to these

various steps.

There are other important analyses conducted for microarray experiments that involve

categorizing genes or samples according to gene expression profiles. For example,

various clustering methods are used to group similar gene expression patterns across a

number of samples (D'Haeseleer 2005). Other computational methods such as gene set

enrichment analysis (GSEA) determine if predefined biological classes of genes are

differentially expressed in different phenotypes (Shi & Walker 2007), whereas gene

expression networks construct paths with links to connect genes having clear

dependencies in expression (Khanin et a1. 2006). Although these methods are

increasingly important, they are beyond the scope of this dissertation and not discussed

further.
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1.3.1 Experimental Design

Optimizing the design based on the experimental goal is an important part of a

successful microarray experiment. There are a number of considerations which should be

addressed before conducting an experiment:

1. How many microarray slides need to be used to get balance power against control

of false discovery rates (FDR)

2. What should be the relative emphasis of technical to biological replication?

3. What are the most important comparisons?

4. How many experimental factors will be involved?

The answers for these questions can be somewhat addressed by considering the two

basic components of experimental design, namely, treatment structure and design

structure (Montgomery 1984). Generally speaking, the treatment structure consists of

those factors that the experimenter has selected to study; e.g., treatments (patient vs.

control), genders (male vs. female). The design structure consists of grouping of the

experimental units into homogeneous blocks. Some commonly used design structures are:

the completely randomized design (CRD), the randomized complete block design

(RCBD), and various deviants of an incomplete block design. Work on microarray

experimental designs have been based on applications and extensions of these classical

designs. Since a two color microarray experiment is based on hybridizing two samples

for pair of comparison on the same slide, it is common to draw a figure with arrows,

where each arrow represents one microarray slide and the arrow’s tail and head denote

the Cy3 (Petersen et al.) and Cy5 (red) labeled samples respectively (see Figure 2).

I3



These tails connect the samples involved in the experiment to provide information about

both treatment and design structures.

Kerr and Churchill (2001) first recognized the utility of classical block designs for two

color microarray experiments. Figure 2 depicts some simple examples for microarray

designs, where caption letters A, B and C refer to treatment assignments for experimental

samples and R refers to reference sample. An example of a common reference design is

provided in Figure Za; here, a reference sample is typically defined as a uniform sample

that is used for all hybridizations. Since reference designs typically use the log-ratio of

the treated over the reference sample as the response variable, the subsequent design can

be analyzed as a CRD. A dye-swap design for two treatment comparison is provided in

Figure 2b. Here arrays serve as experimental blocks that facilitate within block

comparisons somewhat comparable to a RCBD. The connected loop design in Figure 2c

is an example of an incomplete block design for comparing three or more treatment

groups where only a pair of treatments can be considered for any one hybridization.

When considering different levels of replication, the simplified representation in Figure 2

is not specific enough to indicate whether or not the two separate hybridizations

involving, for example, Group A, derive from a single biological replicate or from two

different biological replicates. This distinction is fundamentally important to determining

proper experimental replication, the basis for formal hypothesis testing on treatment

mean differences. Figure 3 is a clearer representation ofFigure 2 in that the subscripts of

each letter A, B and C index the biological replicates; hence the delineation of

experimental from technical replication is more clearly represented than in Figure 2.
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Figure 1.2 The letter A, B and C indicate experimental samples for different groups and

R refers to reference sample. Each arrow represents one microarray slide and the arrow’s

tail and head denote the Cy3 (green) and Cy5 (red) (Petersen et al. 2005): a) common

reference design or indirect design. b) direct design. 0) connected loop design.
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R refers to reference sample. The subscripts of each letter represent biological replicates.

Each arrow represents one microarray slide and the arrow’s tail and head denote the Cy3

(green) and Cy5 (red) (Petersen et al. 2005): This is a more suitable graphical

representation of microarray experiments than in Figure 2. a) common reference design

or indirect design. b) direct design. c) connected loop design.

RRRR BszBjBZ

15



The literature on experimental design for microarrays has been extended to consider

different sources of variation and hierarchical replication. Hierarchical replication is

actually illustrated by Figure 30) since each sample is hybridized twice such that there is

a need to distinguish between the number of samples per treatment (biological replication)

and number of hybridizations per sample (technical replication). Kerr and Churchill

(2001) first considered A-optimality as a criteria to construct efficient experimental

designs; A-optimality pertains to designs where the average squared standard errors of

treatment comparisons are minimized. Yang and Speed (2002) emphasized the

importance of deciding whether to use direct (within slides) or indirect (between slides)

treatment comparisons based on the priority of various research questions. Glonek and

Solomon (2004) broadened some simple results established by Yang and Speed (2002) to

a conceptual and formal fi'amework by minimizing the standard error of the comparisons

of interest as a means to optimize statistical efficiency of factorial and time course

designs (Glonek & Solomon 2004). Wolfinger et al. (2001) firrther extended the approach

of Kerr and Churchill (2001) to include random effects in a mixed model ANOVA for

microarray data analysis . Tempelman (2005) compared various deviations of reference

and loop designs for determinations for statistical precision, power and robustness based

on mixed model analysis. Each design deviation was defined by different arrangements

of biological replication within the same design layout. Rosa et al. (2005) further

reassessed experimental design and analysis of cDNA microarray experiments using

mixed effects models
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1.3.2 Image Analysis

The process of scanning an array to create a TIFF file is known as image acquisition,

whereas the process of converting images to numerical data is referred to as image

quantification or processing. The relative abundance of mRNA for any particular gene

between the two samples hybridized against each other on a microarray is represented by

the relative amount of Cy3 (green) to Cy5 (red) fluorescence at the corresponding spot

(Petersen et a1. 2005). The data set generated by image quantification provides

information about foreground and background intensities and some quality control

measures for the red and green channels for each spot on the microarray.

The two major objectives of image analysis are therefore to determine the discrete

spot locations and to quantify the spot intensities (Rahnenfuhrer & Bozinov 2004).

The known geometry which places all features presenting the array into a rectangular

grid or approximate geomeu'y of the cDNA printing procedure as an input for grid

placement enhances the spot-finding procedure (Bozinov & Seidel 2004). This step is

typically done automatically using image analysis software along with some user

intervention to increase reliability (Smyth et al. 2003). The center of each small square in

the grid is an idealized spot center, and the region around each spot center is used to

identify the boundaries of the spot in the grid. The pixel values in each grid box are the

values used to summarize the expression intensities for each spot (Shaw & Tollett 2001).

The next step is to segment the pixels in each grid box into the precise pixels within

spot (the foreground) and those in the background. Various segmentation algorithms have

been developed for this kind of spot analysis. These approaches can be broadly classified

into methods A. Fixed Circle, B. Adaptive Circle, C. Adaptive Shape and D. the
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Histogram methods. A critical assumption invoked for Method A and B is that all spots in

the image are circular; in fact, for A, the sizes of all spots are assumed to be the same.

The center of each spot and the diameter of the circle can be variable for Method B.

Foreground intensity values using Methods A and B are based on the pixels’ fluorescence

intensities inside the defined circle. Background fluorescence intensities for Method A

are simply based on the fluorescence intensities of the pixels outside the fixed circle but

inside the grid box. Pixels from the valley spot, which consists of representative pixels

fi'om the four comers of the square that encapsulate a given spot, are often used to

estimate background fluorescence intensities in Method B. Genepix and MolecularWare

are two software programs which implement this algorithm

Now spots within a microarray image can take shapes other than circular such as ellipses

or shapes even more irregular. The adaptive shape segmentation algorithm (Method C) as

implemented in Spot uses seeded region growing (SRG) and watershed techniques to deal

with different shapes in image segmentation. The assumption of this method requires an

initial point, known as the seed. Adjoining pixels are then progressively added to the spot

until adjacent spots appear to have distinct pixel value and the running mean of values

(Qin et. al., 2005). Therefore, the foreground intensity for a certain spot using Method C

is determined by the pixels surrounding this seed as defined by the region growing

approach. The background for Method C is estimated by using a non-linear filter called

morphological opening. This operation removes all spots, local peaks including artifacts

such as dust particles and leaves only the background intensities (Yang et al., 2002a). The

histogram-based segmentation uses a target mask which is chosen to be larger than any

spot and a histogram is formed from the intensities of the pixels within the mask. A
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threshold is computed by using Mann-Whitney test to segment each pixel into foreground

or background. Those pixels whose values are greater than this threshold are assigned to

foreground region and otherwise as background region. Variations on this method are

implemented in Quantarray software, ScanArray Express and Imagene software programs.

It should be noted that each of the segmentation techniques work under certain implicit

assumptions (Method A and B: shape of each spot as a circle, Method C: the known

initial seed, Method D: a suitable mask size) and hence are susceptible to errors when

these assumptions are somewhat violated.

It is common to use background corrected fluorescence intensities, i.e. foreground

minus background intensities, as microarray data. The motivation of background

correction is to obtain a quantification of hybridization not influenced by fluorescence

emitted from other chemicals on the glass (Smyth et al. 2003). However, background

correction also results in: 1) loss of information associated with low fluorescence

intensities due to negative adjustments for spots when foreground intensities are lower

than background estimates thereby rendering missing values after log-transformation and

2) greater variability for low intensities where negative adjustments do not occur (Yang

et al. 20023). Therefore, there is some emerging consensus that the background

subtraction is not helpfirl (Allison et al. 2006).

The comparison for different image analysis software programs has been studied

mainly based on different segmentation methods (Jenssen et al. 2002; Yang et al. 2002a;

Ahmed et al. 2004; Korn et a1. 2004; Qin et al. 2005). The precision of the ratio ofCy3 to

Cy5 fluorescence intensities based on different segmentation methods associated with

different image analysis software has been compared using various aspects such as the
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spot to spot variability (Yang et al. 2002a; Ahmed et a1. 2004), the correlation coefficient

(Jenssen et al. 2002; Ahmed et al. 2004), the repeatability coefficient (Jenssen et al. 2002;

Ahmed et al. 2004) and the intra-class correlation coefficient for replicates (Korn et al.

2004). Similar comparisons have also been used for test reproducibility across different

microarray platforms (i.e., cDNA, Oligonucletide, and Affymetrix GeneChip) (Woo et al.

2004; Petersen et a1. 2005; de Reynies et a1. 2006).

1.3.3 Data normalization and transformation

Normalization refers to the process of removing global systematic effects (Cui et al.

2003) after an appropriate data transformation, typically a log transformation to base 2.

Data normalization always includes a calibration of the signals from different

microarrays to put all signals on a comparable scale (Cui et al. 2003). Data normalization

approaches have been proposed based on different assumptions. However, one of the

most common assumptions in microarray experiment data is that the majority of the

genes are not differentially expressed between comparative conditions (Cheadle et al.

2003) and that the relative number of upregulated and downregulated genes between the

two samples on a slide is roughly the same.

There are a large number of data normalization procedures that have been proposed.

For example, global ANOVA methods (Kerr et al., 2000; Jin et al., 2001; Wolfmger et al.,

2001) have been proposed to adjust for overall effects of array and dye or/and other

systematic effects across genes. Wang et a1. (2002) further proposed an iterative

regression normalization algorithm to unify the tasks of estimating normalization

coefficients of regression mapping from gene expression values of reference channel to
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other channels and identifying the control gene set to normalize microarray expression

data.

The choice of appropriate data transformations may depend upon various features of

microarray data. There are several strategies to transform microarray data in order to

remove dependence on mean-scale dependencies that are often observed with microarray

fluorescence intensities. One transformation involves the shift method, which adjusts the

signals of the two channels using an additive constant prior to logarithmic transformation;

this constant is typically estimated by minimizing the absolute deviation ofeach log ratio

from the median log ratio of the array (Newton et a1. 2001; Kerr et al. 2002). Other

examples include curve-fitting strategies, which use local (on intensity axis) regression to

estimate a standard curve and then re-center the data (Yang et al. 2002b». Rocke and

Durbin (2003) and Huber et. a1. (2002)independently introduced a family of

transformations (the generalized-log family (glog)) to further stabilize the variance of

microarray data . Ishwaran and Rao (2003) used permutation methods to cluster genes

with similar variance and rescaled gene expression within each cluster to stabilize

variance. A z-score transformation was introduced by Cheadle et a1. (2003) to standardize

the data across genes and arrays.

In this section, I will review some commonly used data normalization and

transformation methods for cDNA microarray data.

1.3.3.1 LOWESS:

Sometimes the nature of required normalization is different from either removing

mean-scale dependencies or global systematic effects. Consider the plot of the log
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fluorescence ratio M = log2(Cy5/Cy3) against the average log fluorescence intensity A =

(log2(Cy5) + log2(Cy3))/2 for each spot between the two samples hybridized together on

a cDNA microarray. Under the assumption that most genes are not differentially

expressed and/or roughly equal number of genes are upregulated and downregulated

between the two samples, this plot should ideally resemble a uniformly spaced horizontal

band of points. However, most M vs. A plots are somewhat curvilinear in shape with

some evidence ofvariance heterogeneity (Figure 4). A seemingly effective normalization

to remove the dye-intensity bias is to fit a smooth LOWESS curve between M and A such

that the corrected M values are expressed as deviations from this curve to reconstitute the

LOWESS -corrected Cy3 and Cy5 logarithmic intensities (Figure 5).
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Figure 1.4 M is log-ratio of two expression intensities (Cy3/Cy5) and A is mean

log-expression of the two. M vs A plot for one array before LOWESS normalization

(data source: (Wade et a1. 2005)).
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Figure 1.5 M is log-ratio of two expression intensities (Cy3/Cy5) and A is mean

log-expression of the two. LOWESS-corrected M versus A plots.
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Since differentially expressed genes may appear as outliers on M vs A plots, robust

fitting procedures are preferred LOWESS fitting requires a choice of the “span” which

determines which data are local relative to the estimated fit. If the span is too large, the

curvature cannot be removed effectively. If the span is too small, the data will be over-

fitted. The choice of span is generally subjective; however, usually 20% ofthe points are

chosen for providing a local fit (Yang et al. 2002b). In theory, the largest span that

removes the obvious intensity-dependence of the log ratios is ideal, but this may be

difficult to assess. Hence, the LOWESS data fitting procedures are straightforward yet a

bit perilous as there is risk of overfitting the data and introducing errors larger than those

removed (Cui et al. 2003). One possible way to alleviate the problem may be to optimize

the span value which minimizes the bias corrected Akaike Information Criteria (AIC)

(Hurvich et al. 1998).

1.3.3.2 Variance stabilization transformation

As indicated previously, a logarithmic transformation is typically used to break apart

the mean variance relationship inherent with microarray data whereas subsequent

LOWESS normalization removes the dependencies of the logarithm of fluorescence

intensities on the average fluorescence intensities. It has been recently proposed by

Rocke and Durbin (2003) that a particular stochastic model may be responsible for both

phenomena. This model decomposes the measurement error into additive and

multiplicative errors as follows:

_ ’7:

ya. -0«'.- +biXke * +£ik, (1)
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where yik is the measured raw expression level for channel i and spot k, art—mean

background intensity of channel i, Xr—the true gene expression level of spot k.

Furthermore, 77,, ~ N(o,o-;,),e,, ~ N(0,o,.2,).

It can be mathematically derived from Model (1) that a quadratic relationship between

variance and intensity of microarray signals. Figure 6 demonstrates that this might be a

reasonable assumption for one particular example. Two similar transformations have

been developed independently to break apart this dependency. The glog transformation

proposed by Rocke and Durbin (2003) has the expression as follows:

 

(yr): _ai +\Ryik _ai)2 +21)

2

where A = 0.126 «60321; (801277 _1)).

A similarly effective arsinh transformation was proposed for microarray data by Huber et.

 

hl(yik) =ln[ :1:

al. (2002):
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0:27; “ii; 2 _ in i7) 7-
b.=e (e -1>/a..andc.--—a.-(e (e —1»/a.-..

Here, the associated parameters can be estimated through a robust variant of maximum

likelihood estimation (Cui et. al., 2003), where 214 is a maximum likelihood estimation.

The two transformations (glog and arsinh) are essentially equivalent, being

reparameterizations of each other; nevertheless, the arsinh transformation can be easily

implemented using the R package VSN. Both transformations rely upon the assumption

of a quadratic relationship between the variance and intensity of the original microarray

signals. Nevertheless, the effectiveness of this transformation may further depend on the
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Figure 1.6 Mean intensity vs. variance of intensity plot for each gene (data source:(Wade

et al. 2005)). The curve represented by the grey star points is the predictive curve based a

quadratic function.
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precision ofparameter estimation as the curvature correction of this transformation

introduces four parameters for each array (Cui et al. 2003).

1.3.4 Identification of differentially expressed genes

Due to the large volume and intrinsic variability of microarray data and the increasing

interest to consider many experimental conditions, including different time series,

factorial and other more complicated design arrangements, a wide variety of statistical

methods have been proposed to infer upon differential gene expression between various

treatment groups. Proposed methods range from simple fold change criteria to more

general mixed model approaches.

1.3.4.1 Comparison between two treatment groups

Conclusions on differential expression between treatment groups in the earliest

microarray experiments were based on simple fold-change criteria not involving any

formal statistical inference as noted by Cui & Churchill (2003). For instance, if the

average fluorescence intensity ratio between any two conditions exceeded an arbitrarily

chosen threshold (i.e., two fold change), one might conclude differential gene expression.

Fold change criteria eventually gave way to simple statistical procedures including

non-parametric (e.g. Wilcoxon test) and parametric methods (e. g. Student’s t-test).

Breitling et. al. (2004) proposed an interesting deviation called ranking products from

replicate experiments and used permutation based estimation to determine significance

levels. A standard t-test can be conducted for the log ratios on a gene-by-gene basis. The

variances for t-test are either estimated from each gene by assuming hetereogeneous
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variation across genes (Callow et al. 2000) or a simple pooled variance across all genes

(Arfin et al. 2000).

1.3.4.2 Comparison of more than two treatment groups

The fixed effects ANOVA model was first suggested by Kerr et. al., (2000), which

was declared to be theoretically reasonable but also realistic for routine implementation

to analyze the data from microarray experiments (Kerr et al. 2002). Although it can

integrate data normalization and differentially expressed gene identification together

(Kerr & Churchill 2001), the fixed effects model can only contain one source of random

variation.

1.3.4.3 Mixed model multiple factor

The design structure of microarray experiments may be complicated by multiple

factors, each involving multiple levels. The sources of variation could be technical

variation or biological variation or both. Models that specify the responses to be

functions of fixed systematic effects and random sources of variability are generally

referred to as mixed effects models or, simply, mixed models. To fully address the data

structure of factorial microarray experiments characterized by multiple random sources of

variability, mixed model analysis of variance has been proposed (Wolfmger et. al., 2001)

and since then has been widely used and cited in hundreds of papers since it was

introduced.

We illustrate the mixed model using, by example, the microarray experimental design

used from an earlier experiment available at http://genome-www.stanfordedu/swisnf
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(Eisen et al., 1998). The corresponding experiment is based on the comparison of four

treatments, each arrayed using three replicates or hybridizations versus a common

reference. All treatment samples were labeled with Cy3 against the Cy5 labeled reference

sample for all 12 arrays.

Let ygij be the base-2 logarithm of the intensity from gene g (g=1,2,... ,6), treatment i

(i=1,2,3,4, R) and arrayj (i =1,2,...12).

Wolfinger et al. (2001) proposed a two-step mixed model approach. The first stage model

is used for normalization and could be described by:

yg,j=p+]}+Aj+(TA)ij+eg,-j. (3)

Here it corresponds to an overall mean value, T,- is the main effect for treatment i, Aj is

the main effect for array j, (TA) ,3- is the interaction effect of array j and treatment i, and

8g.)- is stochastic error. This normalization model is fitted for all genes simultaneously (i.e.

across all g, i, andj). Let rgij denote the estimated residuals (i.e. estimates of egg) from

Model (3), determined by subtracting the predicted ygij , using estimates based on Model

(3), from the ygij values. The second stage model which is fitted separately for each gene

is then specified as

"gij = (38 + (GT)g,. + (GA)gj + ygij (4)

This model has the similarly written as the normalization model (3), except that now

all effects are indexed by g or separately for each gene, (GT)g,- is the main effect for

treatment i for gene g, which is main interest of the study; (GA) 8,- is the main effect for

arrayj for gene g, and ygij is stochastic error for gene g. The array effect GA is crucial to
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the model, as it specifies random blocking factor array effect and accounts for the

insidious spot-to-spot variability inherent in spotted microarray data. Wolfinger et a1.

(2001) indicates that the inclusion of this effect allows us to extract appropriate

information about the treatment effects and obviates the need to form ratios.

Standard stochastic assumptions are made for the preceding two-stage linear mixed

models as with conventional mixed models. In the first stage model (3), random effects

Aj, (TA)ij , egij , are all assumed to be normally distributed with variance

components 031,072“, and 0'3 whereas in the second stage model, (GA)gi , and ygij , are

specified to have gene-specific variance components USA and 032, , respectively,

g g

across all genes g = 1,2,. . .,G .

The method of restricted maximum likelihood (REML) (Searle et al. 1993; Littell et al.

1996) is typically used to estimate variance components for the two-stage mixed models.

REML is an alternative to firll maximum likelihood estimation. Rather than maximizing

the likelihood of the data, REML frees the fixed effects and maximizes the likelihood of

the observed residuals over the non-negative space of variance component estimator.

REML provide unbiased estimates while ML estimators yield biased estimates of

variance components. REML does not always eliminate all the bias since REML can not

return negative estimates of variance components and set all negative values to zero

(Khattree 1999). This REML method has also been applied in other microarray data

analysis studies (Burgueno et al. 2005; Bhowmick et al. 2006; Fang et al. 2006).
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1.3.4.4 Shrinkage estimation

Microarray experiments typically include too few replicates to reliably estimate gene-

specific differential expression even though these experiments provide information on

thousands of genes simultaneously. Empirical Bayes (EB) approaches to inference seem

natural for this kind of data feature. EB characterizes the situation when inference on

one particular element (e.g. gene) is supplemented by borrowing information from other

elements whose effects could be characterized by a distribution. That is, these prior

distributions sharpen inference on estimates at the gene level that is superior to gene-

specific statistical inference.

The BB strategy of borrowing information across genes has been well developed for

simple experimental design structures. For example, SAM (Statistical Analysis of

Microarray) by Tusher et al.,(2001) slightly moderates the Student t-statistic for any one

particular gene by adding a constant to the standard error in the denominator of this

statistic. This strategy effectively eliminates more false positives caused by unusually low

values of these denominators for individual genes while increasing statistical efficiency

in picking up more truly differentially expressed genes. Efron et al. (2001) introduced a

simple nonparametric EB model, which is used to guide the efficient reduction of the data

to a single summary statistic per gene, and also to make simultaneous inferences

concerning which genes were affected by the treatment. Similar nonparametric EB and

fully Bayesian approaches were finther discussed and compared in Pan et a1. (2003) and

Do et al. (2005) respectively. Fully Bayesian approaches are somewhat different from

more approximate EB procedures in that complete uncertainty in the parameters of the

prior distribution of the elements are accounted for; however, they tend to be much more

computationally intensive. Lonnstedt and Speed (2002) present an EB log posterior odds
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B-statistic for analysis of a simple microarray design comparing two conditions

(Lonnstedt & Speed 2002). Smyth (2004) re-parameterized the B statistic into LOD the

log odds-ratio B and extended the model to accomodate three or more treatments (Smyth

2004). Lonnstedt and Britton (2005) compared fully Bayes and EB approaches for false

discovery rates (FDR) and computational tractability and demonstrated that fully

Bayesian approaches do not necessarily improve performance in terms of false discovery

rates and computer running time to the EB methods for log odd-ratio B based on their

data. Lonnstedt et al. (2005) further demonstrated how to convert B statistics to one-way

ANOVA F-statistics for detecting differentially expressed genes across several treatment

conditions. Ishwaran and Rao (2003) introduced Bayesian ANOVA for microarray

(BAM) to make use of a weighted average of generalized ridge regression estimates,

which provide benefits of shrinkage and model averaging. In that paper, the ANOVA

model was rewritten as a linear regression model. The problem of identifying

differentially expressed genes was then transformed into spike and slab variable selection

for high-dimensional regression problems(lshwaran & Rao 2000). The expression “spike

and sla ” refers to the prior for coefficients in a linear model used in their hierarchical

formulation, which was chosen so that each coefficient was mutually independent with a

two-point mixture distribution made up of a uniform flat distribution (the slab) and a

degenerate distribution at zero (the spike). Ishwaran and Rao (2003) extended the method

for detecting differentially expressed genes between two biological groups to multi-group

data. A rescaled spike and slab hierarchical model is developed by grouping variances

into clusters with each cluster having a unique value. Other authors have also developed

alternative methods that utilize information generated from the whole ensemble of genes
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(Newton et al. 2001; Broet et al. 2002; Kendziorski et al. 2003; Wright & Simon 2003;

Edwards et al. 2005). All such methods, however, are generally only appropriate for

simple designs where shrinkage is only required on a single error structure. It may be

difficult to extend their work to more complicated cases, such as experimental designs

with technical and biological replicates leading to multiple strata of random variation for

each gene. Only mixed effects models can properly delineate between different

hierarchical levels ofvariability.

The unresolved issues related to shrinkage estimation in mixed models was partly

realized and considered by Smyth et a1. (2005) in an updated version of the popular

LIMMA software (Linear Models for Microarray Data) in R, which is a freely available

software environment (www.r-project.org) for statistical computing and graphics.

LIMMA facilitates a distinction between two particular types of replication, that of

within-array technical versus between-array biological replication. A structural mixed

model was proposed recently to flexibly model the residual variance that vary across

genes and conditions (Jaffrezic et a1. 2007). This model was applied to two real data sets

and found to perform similarly to LIMMA and better than SAM. Cui et al. (2005)

proposed a shrinkage procedure currently implemented in the software MAANOVA, for

mixed model analysis of microarrays. They developed an estimator of all variance

components based on borrowing information across all genes using the James-Stein-

Lindley shrinkage concept to modify F test statistics. The issue of choosing a shrinkage

parameter and using the reciprocal of an estimator of the variance instead of an estimator

of the reciprocal of the variance was discussed by Tong and Wang (2007). The optimal

shrinkage parameters under both Stein and squared loss functions were derived for the
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estimator of the reciprocal of the variance. The family of shrinkage variance estimators

compared favorably with the shrinkage procedure suggested by Cui et. al. (2005) in terms

of both estimation and hypothesis testing for identification of diflerentially expressed

genes. Feng et al. (2006) also derived a promising shrinkage estimation procedure for

use with general mixed model analyses of microarrays. The theoretical basis for this

procedure was borrowed from Box and Tiao (1973) and firrther developed by Wolfinger

and Kass (2000); this procedure involves use of an independent chains algorithm to

estimate the marginal posterior density of the variance components in mixed models.

This work extends EB inference for most microarray experimental design layouts,

including those considered in Figure 3.

1.3.4.5 Error Control and Multiple Hypothesis Testing

As a typical microarray experiment measures expression levels for thousands of genes

simultaneously, a large number ofhypotheses are tested within any one experiment. High

throughput gene expression microarrays has spurred substantial theoretical work in

multiple testing as microarray data has (i) a dimension (i.e. number of genes) generally

much larger than the sample size, (ii) the variables (i.e. genes) are often correlated, and

(iii) a large proportion of the null hypotheses is generally expected to be true. Traditional

approaches to multiple testing were reviewed by Hochberg and Tamhane (1987). More

recent developments in the field include resampling methods (Westfall & Young 1999;

Pollard & van der Laan 2004); to control the farnilywise error rate (FWER) and

procedures that control the FDR (Benjamini & Hochberg 1995) and positive FDR (pFDR)
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(Storey & Tibshirani 2003). Dudoit et al. (2003) recently reviewed and made a

comparison of all these procedures.

Given unadjusted p-values for inferences on all gene-specific treatment comparisons,

i.e., based on Model (4), multiple test adjustments need to be applied if one wishes to

control the FWER for all hypothesis tests. FWER is the probability of committing one

Type I error in a series ofhypothesis tests. A classical and commonly used procedure for

controlling FWER is the Bonferroni test (i.e., Troyanskaya et al. 2002). However, as

microarray experiments involve thousands of multiple tests, at least one for each gene on

the array, controlling the FWER, particularly with a rather conservative Bonferroni test,

is generally considered to be far too insensitive for finding truly differentially expressed

genes. Hence, this review will concentrate on a detailed description about pFDR.

Positive False Discovery Rate (FDR) Control

False Discovery Rate (FDR) is a new approach to the multiple comparisons problem.

Instead of controlling the chance of any false positives (as Bonferroni or random field

methods do), FDR controls the expected proportion of false positives within a list of

genes declared to be differentially expressed Estimated FDR’s for any particular

threshold of statistical significance can be determined from the observed P-value

distribution for the hypothesis test of interest across genes. The weakness of the classical

approach to FDR based on Benjamini and Hochberg (1995) is that the FDR is

conservatively assessed by setting no = 1(the true proportion of all genes that are truly not

expressed) without using any information in the data to infer upon Ira In contrast, pFDR

utilizes this information to estimate to), thereby yielding a less stringent procedure and

35



greater sensitivity, while maintaining nominal control of FDR. Suppose that V is the

number of true false positive results and R is total number of genes declared to be

differentially expressed. Then FDR andpFDR can be defined to be

FDR = E(%| R > O)Pr(R > 0) and

pFDR = E02 | R > 0) (Storey 2002).

The term ‘positive’ has been added to reflect the fact that we are conditioning on the

event that positive findings have occurred; i.e. at least one gene has been declared to be

differentially expressed. Therefore, the determination of the probability of differential

expression with the probability of 95% or greater should correspond closely to a positive

false discovery rate (pFDR) of 5% or less (Storey 2002).
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Chapter 2: A Linear Mixed Model with an Empirical

Bayes Adjustment to Detect Differential Gene Expression

for Microarray Experiments

Abstract

Analysis of gene expression data using two color microarrays is often

complicated by the effects of multiple random experimental sources of variability in

addition to the systematic fixed effects of treatments or dyes. Hence microarray data

analysis typically necessitates the use of mixed model ANOVA to properly specify

correct statistical tests. Some of these random sources of variability are identifiable (e.g.

subject on array) and can be modeled explicitly with the remaining sources typically

aggregated together as residual effects. Borrowing information on random and residual

effects across genes using hierarchical Bayesian techniques then seems desirable given

that microarray experiments generally involve inference on thousands of genes, each

typically characterized by a limited amount of biological replication across groups or

treatments. We propose a hierarchical linear mixed model for each gene that combines

gene-specific information with information on ANOVA expected mean squares for

random and residual effects across genes. Our procedure leads to a Bayesian ANOVA

table that is augmented with posterior sums of squares and posterior degrees of freedom

for each random and residual effect.

We compare our method to a recently developed method based on shrinkage of

REML estimates of variance components as well as gene-specific mixed model analyses

based on REML or ANOVA estimates of VC. Our model was seen to have greatest
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power to detect differentially expressed genes while providing correct control of the false

discovery rate. We also demonstrate the various methods on two publicly available

microarray data sets; in both cases, our proposed method was able to detect more

statistically significant genes at the same false discovery rate.

Keywords: Empirical Bayes; cDNA microarray; mixed model; ANOVA component;

ANOVA; REML

2.1 Introduction

Microarray technologies have been developed to measure the simultaneous

expression of thousands of genes across various experimental conditions. Spotted two-

color microarray platforms use competitive hybridization to directly compare the

amounts of mRNA transcribed from each gene in the two samples to be compared

(Murphy 2002). The cDNA that are reverse transcribed from the mRNA from the two

different samples are separately labeled with different fluors (typically, Cy3 versus Cy5)

and then hybridized together on a glass slide having separate spots with bounded targets

for each complementary expressed sequence tags (EST) or long oligonucleotide sequence

of interest. Relative mRNA abundance for each gene is then typically quantified as the

average or total fluorescence intensities at the corresponding spots using image scanning

and analyses software. In other words, upon appropriate normalization (Yang et al.

2002), the ratio of Cy3sz5 fluorescence intensities for each spot is interpreted as the

ratio ofcorresponding mRNA transcript copies in the two samples.

For efficient experimental designs such as the loop design (Tempelman 2005;

Vinciotti et al. 2005), several identifiable random sources of variation potentially
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influence the fluorescence intensity measurements in such a way that a mixed model

ANOVA is most appropriate for statistical analysis for each gene (Wolfinger et al. 2001).

However, gene-specific analyses are typically plagued by low power in minimally

replicated studies, if replication is properly defined at the biological rather than technical

level.

Shrinkage or empirical Bayes estimation has been shown to be statistically

efficient and powerfirl in a number of applications where inference on parameters for a

certain class or group of experimental units is based on combining information of that

group-specific statistics with information across all other groups (Casella 1985). The

idea of modifying estimators of variances for individual genes by borrowing information

across all genes was proposed originally for simple designs (Baldi & Long 2001;

Lonnstedt & Speed 2002) and later extended for multifactorial studies (Wright & Simon

2003; Smyth 2004). However, these methods fail to borrow information across random

effects factors with some special nested design exceptions (Smyth 2004). Since VC for

random effects factors generally display varying degrees of heterogeneity across genes in

microarray experiments (Cui & Churchill 2003; Chen et al. 2004), this issue is

particularly important when random effects factors such as subjects within treatments

serve as key experimental error terms for ANOVA F-tests in experimental designs.

There have been at least a couple of recent methods that have considered

shrinkage estimation for mixed effects models with applications to microarray

experiments. Cui et al. (2005) recently proposed a shrinkage procedure, currently

implemented in the software MAANOVA (Wu et al. 2003), for mixed model analysis of

microarray data. Their inference procedure is based on the use of permutation testing
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which is indeed known to be robust to potential distributional misspecifications (e.g. non-

normality) in simple fixed effects models and some special mixed model cases. With

regards to the latter, Cui et al. (2005) note that a proper permutation testing strategy

should be based on identifying observations that could be deemed exchangeable under

the null hypothesis; this is somewhat synonymous to identifying observations that share

all of the same random effects. As an example, they indicated that samples hybridized

against each on an array are exchangeable since they share the same array effect.

However, consider the connected loop design in Figure 2(a) from Tempelman (2005) or

the alternating loop design provided in both Figure 1(b) from Kerr and Churchill (2001)

and in Figure 3 from Dobbin et al. (2003). In these designs, mRNA from each biological

replicate is partitioned into two aliquots, one labeled with Cy3 and the other labeled with

Cy5, such that the same biological sample is used in two different hybridizations or

arrays. With such designs, it is not readily apparent how to define exchangeable units for

permutation testing since there are no two aliquots that jointly share the same random

array (block) and biological replicate (experimental error) effects.

Feng et al. (2006) recently introduced a more general and promising procedure for

mixed model analysis of microarray data based on shrinkage estimation of REML

estimates ofVC. However, its statistical properties, e.g. receiver operating characteristics,

control of false discovery rates, are not well known relative to methods that use only

gene-specific information like classical ANOVA based on ANOVA or REML estimates

of VC. In this paper, we also develop a second general shrinkage estimation mixed

model procedure which extends the method ofWright and Simon (2003) for each random

factor in a mixed model ANOVA and evaluate its statistical properties relative to the
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procedure of Feng et al. (2006) and to conventional mixed model analysis based on

ANOVA or REML estimation ofVC.

2.2 Methods and Materials

2.2.1 Loop Design with Dye Swap

Consider, for example, a published cDNA microarray data set (Liang et al., 2002,

GEO Accession: GSE3588) that was used to study mRNA expression of 1751 genes in

rat renal medulla associated with the development of salt-sensitive hypertension. The

factorial treatment structure was defined by two strains of rats (MCW versus BN13) and

two diets (low salt versus high salt) for a total of four treatment groups. A connected

loop design (Tempelman, 2005) with dye swaps on the same two samples was used for

each of 3 identically constructed loops for a total of 24 arrays as in Figure 1. In other

words, the amount of biological replication was 3 rats per treatment. Although the

original study by Liang et al. (2002) involved duplicate spots per gene, we study their

design further within the context ofa single spot per gene for pedagogical considerations.

A mixed model ANOVA can be fitted to the expression data on a gene-by-gene

basis. The fixed effects factors are treatment and dye with random effects factors being

array, rat within treatment and residual. For the design in Figure 1, the symbolic

ANOVA table using the Type III or fully adjusted quadratic forms (Searle et al. 1992)

along with expected mean squares is provided in Table 1. Note that arrays are specified

as random effects instead of fixed effects to facilitate efficient combined interblock and

intrablock analysis for the estimation of treatment contrasts in incomplete block designs

(Yates 1940). Also further note that subject with treatment serves as the experimental
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unit or error term for treatment. That is, under the global null hypothesis of no treatment

differences (the noncentrality parameter 7,, = 0 for treatment with gene 1), the ANOVA

MS (M8,?) for treatment and the MS (MSiz) for subject within treatment share the same

 

. . . . MS- . .
EMS. In conventron wrth ANOVA theory, the F-test statistic Pi, = MS“ rs consrdered

i2

to be a random draw from a F distribution with V, numerator and V2 denominator

degrees of freedom (i.e. F}, ~ Fv,,v2 ). Of course, if the global null hypothesis for

treatment effects is false (i.e. 7i, i 0), then FL! =-AA-E:i—’ is distributed as a noncentral F

12

with noncentrality parameter 7), . The ability (i.e. power) to correctly reject the null

hypothesis in this case is increased by larger treatment effects or 7:7 and larger V2.

Because the loop design in Figure 1 is an balanced incomplete block design, the VC

estimates based on various methods (e.g. REML, Type I or Type III ANOVA) will be

necessarily different such that subsequent inference on treatment effects will be

necessarily different as well.
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Figure 2.1 Connected Loop Design with Dye Swap from Liang et al. (2002) with 24

arrays and 3 rats per each of four treatments defined by a 2 x 2 factorial of strains

(SS/Mew versus SSBN13) and diets (low salt versus high salt). Each oval designates an

experimental unit (rat) and each arrow denotes an array with circle end denoting the Cy3

labeled sample and tail denoting the Cy5 labeled sample.
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Table 2.1 Classical mixed model ANOVA table based on the fully adjusted (Type 1H)

quadratic forms for the analysis of log fluorescence intensities for any particular

gene (i = 1,2. . ..,g) spotted once per array in the connected loop design with dye

swap as in Figure 1.

 

 

 

 

 

 

     

Source SS“ df Mean Squares ExpectedMean Squares

Treatment 55,, v,=3 MS”: ss,-,./vt 005 + 23 0122 + 01.23 + 7n:

Dye SSid vd=l MS”: SSid/vd 003-21 + 00,22 + 03-23 + yidi

Amy SSiI ”=21 MSi1= SSH/V1 a1 = 1720-3 + 00,22 + 01%

Subject(Treatment) 551.2 V2=6 MSi2=SSi2N2 ¢iZ : 00,121 + §_0,_22 + 0.23

3 t 1

Residual ss,-3 V3=14 MSi3= SSi3/V3 a3 = 003 + 00}, + 0,23

 

*Sums of squares (first subscript identifies gene; second subscript identifies factor)

lDegrees of freedom (presumed constant from gene to gene with no missing data)

I 7,, is the noncentrality parameter for treatment for ANOVA of gene i. When there are

no treatment mean differences, )9, = 0 such that treatment and subject (treatment) then

have the same expected mean square so that Fit = MSi/MSiz is a random draw from a F

distribution with Vt numerator and v2 denominator degrees of freedom.

”I" is the noncentrality parameter for dye such that if there is no dye mean difference,

7rd =0 and Fid: MSid/MSi3 is a random draw from a F distribution with vd numerator

and V3 denominator degrees of freedom
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2.2.2 Reference Design with Dye Swap

We also consider the common reference design as used by Pritchard et al. (2001)

and further studied by Cui and Churchill (2003). A 5406-clone spotted cDNA microarray

was used to quantify transcript levels in the kidney, liver, and testis from each of 6

normal male C57BL6 mice. A common pooled reference sample was created by

combining equivalent amounts of mRNA from each of the three organs (treatments) of

each mouse and was used for all array hybridizations. Four separate hybridizations were

conducted for each organ mRNA sample from each animal against the common

reference. For two of these arrays, mRNA samples were labeled with Cy3 dye and paired

with the Cy5 labeled reference with dye assignments swapped for the other two arrays

(Pritchard et al.,2001). Hence, a total of 72 arrays were utilized in this particular

experiment as illustrated by Figure 2. Note that for a common reference design, it

suffices to use the logarithm of the ratio of treatment sample over the common reference

sample fluorescence intensities at each spot as the response variable for subsequent

ANOVA. The ANOVA table based on the analysis of these log ratios is provided in

Table 2 for this design. Unlike the loop design considered previously, the expected mean

squares are somewhat invariant to the choice of quadratic forms, e.g. Type 1, Type HI,

MIVQUE-O (Searle et al. 1992), used to derive the SS and their expectations. From

Table 2, one should note that subject by treatment interaction MS serves as the

experimental error term for the F-test on treatment differences.
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Figure 2.2 Common Reference Design with Dye Swap from Pritchard et al. (2001) with

72 arrays and 3 organs per each of six mice. This figure is an example of arrays

performed for one organ (i.e. 24 arrays). Each oval designates an experimental unit

(mouse*organ) and each arrow denotes an array with circle end denoting the Cy3 labeled

sample and tail denoting the Cy5 labeled sample.
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Table 2.2 Classical mixed model ANOVA table for the analysis of log fluorescence

intensity ratios (treatment/reference) for any particular gene (i = l,2....,g) spotted once

per array in a dye swapped common reference design.

 

 

 

 

Source SS* df Mean Squares ExpectedMean Squares

Treatment 88,-, vt=2 MSit= SSi/vt 003-21 + 40322 + 0,23 + 7,71

Dye ssid vd=l Ms“: ssid/vd 06,3l + 0032 + 6,23 + 7,3

Subject ssi, v1=5 {3,1 = Ms,-1: SS,-[At] a), = 120-31 + 405 + or},

 

Subject*Treatment 551.2 v2=10 én = MSi2=SSi2/v2 #2 ___ 00-5 +4032 + 01%

 

 
Residual 55,, v3=53 45,3 =MS,~3= SSH/V3 03 = 00,21+OO',-22 + 0'33     
 

*Sums of squares (first subscript identifies gene; second subscript identifies factor)

1'Degrees of freedom (presumed constant fi'om gene to gene with no missing data)

1 71’: is the noncentrality parameter for treatment for ANOVA of gene i. When there are

no treatment mean differences, 71'! = 0 such that treatment and subject (treatment) then

have the same expected mean square so that Fit = MSi/MSz-z is a random draw from a F

distribution with Vt numerator and v2 denominator degrees of freedom.

”I'd is the noncentrality parameter for dye such that if there is no dye mean difference,

7rd =0 and Fid: MSid/MSi3 is a random draw from a F distribution with vd numerator

and v3 denominator degrees of freedom
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2.2.3 Empirical Bayes ANOVA

Let the total number of random and residual effects factors be denoted by r and

the total number of genes under consideration be g. For the moment, we consider the

loop design from Figure l and Table 1. Note from Table 1 that the random effects factors

are numbered fromj=1 to r=3 for array (1), subject within treatment (2) and residual (3)

according to the subscripts for the ANOVA sums of squares (SS), degrees of freedom (v),

mean squares (MS) and expected mean squares (4)). Since VC for these random effects

factors appear to be highly heterogeneous across genes (Cui & Churchill 2003; Chen et al.

2004), we assume all of the ANOVA terms in Table 1 to be unique for each gene i except

for degree of freedom thereby implying the same experimental design for each gene (i.e.

no missing data). In other words, we specify a linear mixed model (Searle et al. 1992)

where the data vector for each gene i is written as a linear function of any number of

fixed effects (e.g. treatment and dye effects as in Table 1), r -1 sets of NIID random

effects, each characterized by its own VC 0};- ,j=1,2,...,r-1, and finally the set of n NIID

residual effects with variance 03%.

Under a classical mixed model ANOVA, the expected mean square (EMS)

components (0,,- for each set j of random and residual effects based on the ANOVA of

each gene i can be written as a linear function of the r VC 6,- = [03-21 (7,22 032] '

for that gene; i.e.

<Pr=l¢r1 ¢iz ¢rr]'=C6r [1]
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Here C is a r x r matrix of known coefficients that depends upon the design. In other

words, the elements of C are provided under the EMS colrnnn within a classical ANOVA

table (Cochran & Cox 1957; Hinkelmann & Kempthome 1994; Giesbrecht & Gumpertz

2004). For example, it can be seen fiom the loop design of Table 1 that

P _

lO

1 [2]

o
o
q
|
i
3

O
w
l
o
o

1

  - d

For the common reference design in Figure 2 and Table 2, there are also,

coincidentally, r = 3 sets of random and residual effects, being subject (1), subject by

treatment (2), and the residual effects (3). For that design then, it can be readily seen

from Table 2 that:

12 4 l

C: o 4 1 [3]

0 0 1

Suppose that (i) denotes the vector of ANOVA mean squares (MS) for random

effects factors that one would typically find under the MS column of a classical ANOVA

table. ANOVA estimates of VC are then derived by equating MS (6)) to EMS; i.e.

solving (it = Co for o. In other words, the classic ANOVA estimator of elements of 0’ is

a = C10.

Our empirical Bayes ANOVA (EB-ANOVA) method is a mixed model extension

of the method presented previously by Wright and Simon (2003). From classical mixed

model ANOVA theory in Searle (1971), it can be demonstrated that
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Z.U=LLmr [q

0i % U

such that from a Bayesian perspective, the data likelihood for inference on (115 can be

written as a scaled chi-squared density

. %
-.~—— ; '=1,2,...,r 5¢Ij dftj [3]. .l 1 1

Suppose that the prior distribution for the EMS are specified to be inverted

gamma distributed; i.e. (0,-1- ~ IG(a/j, flj) with mean 'Bj . Then it can be shown using 

%

a' A

Wright and Simon (2003) that 734%- ~ FZaj,vj , i = 1,2,. . .,g. This result facilitates the

j

determination of marginal maximum likelihood (MML) estimates of dj and ,3}- for 0'}-

dB r Ib "‘ mf‘ a u dB Ntmman j , respec 1ve y, y maxrrmzrng ;- 261'er; wr respec o aj an j. o e

1

this MML optimization can be conducted independently for each set ofrandom and

residual effectsj = 1,2. . .,r. Alternatively, a method ofmoments estimator may be used

but we prefer the MML estimator for reasons of statistical efficiency as in Wright and

Simon (2003). Using Wright and Simon (2003) further, it can be also demonstrated that

V-+20.'- --
I J ¢f1l¢y ~13j+2aj’j=1’2""’r’Where

J

 

 

4)- = , ' [51
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represents a posterior MS for random effects factorj for gene i such that the numerator is

—I

-Q- +2aj

J 1 fl,- .
wrth thea posterior SS combining gene-specific information Qj-—

VJ + Zaj

-l

harmonic mean [—,3j] of Q}- for all iwith respective weights of Vj and 2a}- . Note that

J

in [5], aj and ,5,- would be replaced by its corresponding MML estimates it}- and ,8}-

Therefore, the less heterogeneity (i.e., larger aj) in Qj across genes for random effects

factor j, the greater the weight (i.e. shrinkage) that the overall harmonic mean has on

determining QJ- and, consequently, the greater the posterior degrees of freedom

Vj + 2a].

The implications for these results for the two designs in Tables 1 and 2 are

substantial. Recall previously that subject within treatment serves as the experimental

unit for treatment in the loop design (Table 1) whereas subject by treatment serves as the

experimental unit for treatments in the reference design (Table 2). Given the borrowing

of information on sets of random and residual effects across treatments, the posterior F-

. . MS- . . .
ratio for treatments can be deterrmned as Fir =41- 1n both desrgns, which can be

'2

shown to be a random draw from a FIG-V2 +202 under the global null hypothesis for

treatments. Iftreatment effects do exist (i.e. 71-, 36 0), then the posterior ANOVA table (as

determined by the posterior SS, posterior df and posterior MS for each set of random and
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residual effects), should have greater statistical power than gene-specific classical

ANOVA (Wolfinger et al. 2001) where information across genes is not borrowed.

2.3 Simulation Study

We studied the loop design more extensively based on a simulation study

involving 6000 genes, of which 1100 were specified to be differentially expressed

between various treatment groups. Two treatments were specified to have identical

means for each one of the 6000 genes. The other two treatments were specified such that

one ofthe treatments was downregulated and the other treatment upregulated with respect

to the first two treatments with fold changes being [1.25'1,1], [1.25,].25'1], [1.5'l,l.25] ,

[1.5,1.5“], [2",1.5], [2,24], [2.5",2], [2525“], [3",25], [3,3"], and [1,3“] for each of

11 sets of 100 genes, respectively, relative to the first two treatments.

For each gene i and random effects factorj, VC 03-12- were randomly drawn fi'om

independent inverted gamma densities IG(0',-Jz- Mic, JVC) , i=1,2,...,G as defined by

parameters ayc and film , j = l, 2, 3. Inverted-gamma densities appear to well

characterize the distribution of variances for two color microarray data (Wright & Simon

2003). For each VC, we specified either air = 3 or arc = 12. Since the standard

for aVC >2 , then air/C = 3

re

re) . 131'

VC VC 1 J
(a, —1),/aj -2

deviation of 16(05- Iaj-IC, J rs

specifies a situation of highly heterogeneous VC or, synonymously, a high level of
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heteroskedasticity across genes for random effects factor j. Values of flJVC were then

VC

specified by equating the VC means to—— ;i.e., the mean of IG(0',-JZ- |a;/C,flJVC) . It
(ZVC
aj —l

is important to realize that these specifications for aj-IC defining heteroskedasticity of

VC for each random effects factor in the simulation study do not directly correspond with

the specifications for aj which define heteroskedasticity for EMS for each random

effects factor within our EB-ANOVA model. In other words, the simulation model was

designed to not favor any one particular analysis model.

After VC were randomly drawn for each gene, log fluorescence intensities for the

connected loop were then simulated from a mixed model conditional on linear

combinations of random effects drawn from normal distributions using these VC draws

and the specified treatment log fold changes relative to Treatment 1. In all, there were

then a total of 22 =4 different dataset combinations generated for each design, one for

each possible duplet combination of values of {a2a,VC arVC }; i.e. {3,3}, {3, 12}, {12,3},

and {12,12}. Here myC = 3 always as statistical inference on treatment effects is robust

to specifications on VC for blocking factors like array for the loop design and subject for

the cormnon reference design. VC estimates for the three methods were compared for

their mean absolute deviation (Wolfinger et al. 2001) from the true VC value such that

smaller values indicate greater precision of VC estimation. We anticipated that the

smaller the MAD ofVC estimates, the more likely the corresponding procedure will lead

to greater sensitivity and specificity of estimated generalized least squares (EGLS)

hypothesis testing on treatment mean differences.
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Once VCs were estimated by each method, they were used to provide the

corresponding EGLS inferences on treatment effects for each dataset within each of the

two designs. Furthermore, the positive control method of GLS (i.e. based on treating the

known simulated values ofthe VC as known) was used for inference on treatment effects.

Mixed model EGLS F-test statistics for treatment effects were computed based on the

estimated VC for each method. The denominator degrees of freedom for the EGLS tests

based on EB-REML were conservatively set to 5 in accordance with recommendations

put forth by Feng et al. (2006) since the null distributions of the corresponding F-test

statistics are not known. Furthermore, EGLS based on REML, or EGLS-REML, was

additionally adjusted using the procedure of Kenward and Roger (1997) which has been

noted to lead to substantially better control of Type I error rates for EGLS-REML in

recent work (Schaalje et al. 2002; Spilke et a1. 2005).

Receiver Operating characteristics (ROC) curves were also used to compare the

four EGLS methods and the GLS method for the relative frequency of true positives (i.e.

differentially expressed) to false positives for every possible gene list as based on all

possible thresholds for declaring statistically significant genes. ROC comparisons have

been effectively used in other studies for comparing statistical methods and experimental

designs in microarray studies (Vinciotti et al. 2005; Feng et al. 2006).

The estimated false discovery rates (EFDR) or q-values for the EGLS F-test on

treatments based on the procedures of Storey and Tibsharani (2003) was also computed

using the F-test P-values for each of the four EGLS methods and the GLS method. To

facilitate a finer comparison of the five methods, the EFDR was estimated based on the

true proportion no of non-differentially expressed genes being known; i.e.
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4900 . . . .
no =60—00= 0.8167. For every possrble gene lrst; i.e. all possrble thresholds (O < q-

value <1) of statistical significance, the true false discovery rate (TFDR) was evaluated

for the declared significant genes. Each method was then evaluated for the relative

agreement between the EFDR to TFDR across all values of EFDR to assess whether or

not the nominal FDR rate was being actually controlled.

A similar but smaller scale simulation study was conducted based on the reference

design with dye swap previously mentioned. In that case, we concentrated on one

simulated dataset using estimates of a1 a2 , a3 , ,Bl , [32 , and [33 as the corresponding

parameters for directly generating the EMS and hence indirectly the VC for the random

and residual effects. Analogous to the loop design, we generated log ratios for the

reference design based on the linear mixed model implied by Table 2 for 6000 genes, of

which 11 sets of 100 genes (i.e. 1100 genes) were differentially expressed. As before,

1100 genes were specified to have fold changes ranging from 30", 25", 2.0“], 1.5",

1.251, 1, 1.25, 1.5, 2.0, 2.5, and 3.0 with respect to the first two treatments for each of 11

sets of 100 genes each, respectively.

2.4 Data Applications

We also applied each of the EGLS methods to the actual datasets related to the

loop design provided by Liang et al. (2003) and for the reference design with dye swap

provided by Pritchard et al. (2001). Since there were duplicate spots per transcript in the

Liang et al. (2003) array, the Cy3 and Cy5 logarithmic (base 2) intensities were averaged

as response variables for each transcript within an array for pedagogical reasons although
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certainly a fourth random effects factor (spot within array) could have been additionally

modeled without any implications for inference on treatment effects. For both datasets,

5% of the extreme VC estimates from each of the two tails were trimmed for robust

empirical Bayes inference using either EB-REML or EB-ANOVA. Each EGLS method

was compared for the number of genes declared significant for various FDR thresholds.

A SAS macro invoking PROC MIXED (version 9.1.3) was used for all analyses.

2.5 Results

2.5.1 Simulation study

The MAD of the VC estimates from their true values are provided for each

method (EB-REML, EB-ANOVA, ANOVA and REML) for the 4 simulated datasets as

based on 4 possible duplet combinations of or; and 0t 3 are provided in Figure 3. The EB-

ANOVA method consistently had the lowest MAD followed closely by REML. The

performance and advantage over other methods for EB-ANOVA for MAD was

particularly noted for increasing values of erg/C and erg/C. This should be anticipated

since less heteroskedasticity is specified with larger values of org/C and erg/C , thereby

facilitating greater borrowing of information across genes. One possible explanation is

that for about 62% of the genes, the estimate of 0% converged to 0 using REML; this

bounded estimate would then cause ripple effects for other VC estimates (Stroup and
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Figure 2.3 Mean absolute deviations for estimates of all variance components (array,

animal(trt), and residual) for each of four variance component estimation methods (EB-

ANOVA(V), EB-REML(A), ANOVA(o) and REML(<>)): a) a5” =3,a§’C=3 , b)

a§C=3,a§’C=12,c)a§C=12,a§’C=3 d) a§c=12,a§’C=12
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Little, 2004). Subsequently, it might not be possible for EB-REML to improve upon

such affected estimates appreciably.

The ROC curves for the EGLS F-tests for treatments based on four VC estimation

methods (EB-ANOVA, EB-REML, ANOVA and REML) and GLS F-tests based on the

true VC (TRUE) are provided for each of4 different simulated datasets for the loop

design in Figures 4 and 5, respectively. As expected, GLS based on the true VC lead to

the best ROC curve (i.e. largest number of true positives for a certain number of false

positives within any significant gene list) for all 4 datasets. Among the EGLS methods

(i.e. GLS based on use ofVC estimates), the EB-ANOVA appeared to clearly outperform

all of the other methods. In fact, its performance and advantage over the other methods

improved with lower levels of heteroskedasticity as anticipated to the point that its

performance was almost indistinguishable from true GLS for (Ii/C =12,a§,C =12. The

EB-REML procedure had the next best ROC performance although it substantially

lagged behind EB-ANOVA for most situations except for erg/C = 3,01%,C = 12 . For

example, for the situation where erg/C = 12,0t5/C = 12 and a gene list already including

100 false positives, EB-REML would pick up just over 800 true positives whereas EB-

ANOVA would pick up roughly 900 true positives.
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Figure 2.4 Receiver operating characteristic curves for loop design with dye swap (n = 3)

using estimated generalized least squares F-tests on treatment effects based on four

methods (ANOVA, REML, EB-ANOVA, EB-REML) of variance component estimation

and GLS based on known VC (TRUE) for each of4 simulated datasets defined by 22

factorial combination ofparameters specifying different levels of heteroskedasticity for

random effects subject within treatment (agc ), residual (org/C) given all/C = 3 for array:

a) agc =3,a§/C =3 , b) a5” =3,a§’c =12, c) aQ’C =12,a_¥C =3 d)

aQ’C =12,a§/C =12.
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The TFDR versus EFDR for four EGLS procedures and the GLS procedure are

provided in Figure 5. As anticipated, TFDR z EFDR based on use of GLS for both

designs since the test statistics for treatments are exact F-tests with infinite degrees of

freedom (i.e., equivalent to an exact chi-square test). A general congruence between

TFDR and EFDR was also more or less true for EGLS based on REML although it

tended to be slightly too conservative (TFDR<EFDR) such that estimated proportion of

false positives within a gene list would be understated. Conversely, EGLS based on

ANOVA appeared to be substantially liberal (TFDR>EFDR). For example, consider

panel c) afc =12,a§’c =3 of Figure 4. Using ANOVA, an EFDR of 0.20 actually

translates into a TFDR exceeding 0.30; in other words if an investigator decides upon a

list of genes based on a EFDR cutoff< 0.20, he or she might expect the true proportion of

false positives to be closer to 0.30. Similar conclusions between the effect of REML and

ANOVA on Type I error rates in EGLS inference has also been noted for unbalanced

data situations by Stroup and Littell (2002).

For the two shrinkage procedures, EGLS-REML also tended to be too liberal for

0.10 < EFDR < 0.80 thereby implying that if investigators chose gene lists based on

EFDR < 0.10, the EFDR would closely match the actual proportion of genes that are false

positives. Conversely, EGLS-ANOVA appeared to lead to effective control of FDR

throughout all possible values of EFDR.
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Figure 2.5 Actual versus estimated false discovery rate for loop design with dye swap (n

= 3) using estimated generalized least squares (GLS) F-tests on treatment effects based

on four methods (ANOVA, REML, EB-ANOVA, and EB-REML) of variance

component estimation and GLS based on known VC (TRUE) for each of 4 simulated

datasets defined by 22 factorial combination of parameters specifying level of

heteroskedasticity for random effects animal within treatment (anC) and residual (aé’C)

given aIVC =3 for array a) a§C=3,a§/C=3 , b) a§C=3,a§/C=12 , c)

afc =12,a§’C =3,d) afi’c =12,a§’C =12.  
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Similar results from the simulation study on the reference design with dye swap from

Pritchard et al. (2001) using the estimated values ofa1 a2 ,a3 , ,3; , ,62 , and ,63 (provided

later) as the true parameters are summarized in Figure 6. Figure 6a) is similar to Figure 3

in that the gene-specific methods (ANOVA and REML) generally had the poorest

performance for VC estimation than EB-ANOVA. However, this time, EB-ANOVA did

not clearly dominate MAD properties of VC estimation; although EB-REML had the

worst performance for estimating 0'32 (residual), it had the best performance for

estimating 0'12 (animal). This result might help explain the ROC performance for the

various derivative EGLS methods in Figure 6b). There appeared to be less of a

distinction between the two shrinkage methods for each of their ROC curves, with both

approaching the ROC curve based on GLS using the true variance component values.

Nevertheless, as further indicated by Figure 6c), EB-ANOVA was able to maintain

proper control ofFDR whereas EB-REML was either too conservative or too liberal.
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Figure 2.6 Simulation study results for common reference with dye swap design based on

four methods (ANOVA, REML, EB-ANOVA, and EB-REML) of variance component

estimation and GLS based on known VC (TRUE) for each of 4 simulated datasets: a)

mean absolute deviation of variance component estimates, b) receiver operating

characteristic curves and 0) actual versus estimated false discovery rates.
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2.5.2 Data analysis

2.5.2.1 Renal data (L00p design with dye swap)

The dataset from Liang et al. (2003) was analyzed using the mixed model ANOVA of

Table l and using the average Cy3 and Cy5 arcsinh transformed intensities over duplicate

spots for each gene within an array as response variables. The arsinh transformation was

deemed appropriate for this particular dataset because a quadratic relationship was

observed between the variance and intensity of microarray signals (Huber et al. 2002).

The MML estimates i their asymptotic standard errors for al a2 ,a3 , fll , flz , and [33

were, respectively, 6.14:t0.35, 2.02iO.ll, l.83:b0.07, 4.89d:0.31, 0.15i0.01, and 0.07

$0.003.

Figure 7 plots the number of declared significant genes against p-value and q-value

cutoffs. It is interesting to note that q-values were less than p-values because of the fact

that the estimated proportion of genes that were not differentially expressed was rather

low; i.e. IIO=0.17 for EB-REML. EGLS based on REML appeared to detect the least

number of genes with EGLS based on ANOVA having a slightly larger number for

various P-value and q-value cutoffs; these results are consistent with ROC comparisons

previously noted from the simulation study involving this design. Note that EB-REML

declared smaller number of genes significant for q—value < 0.02 and more genes for

threshold q-value > 0.02 compared to EB-ANOVA. Again, this result may be somewhat

consistent with the FDR control issues previously noted from Figure 5 in that EB-REML

potentially overestimates FDR for low q-values but underestimates FDR at all q-values >

0.02. EB-ANOVA detects more genes than gene specific methods (ANOVA and REML)
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Figure 2.7 Renal data results: Number of declared differentially expressed genes (DF) vs.

a) p-values, b) q-values.
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and would be expected to control FDR very well throughout all possible values ofEFDR

as expected based on our simulation study results.

2.5.2.2 Mouse organ data (Reference design with dye swap)

The data from Pritchard et a1. (2001) were analyzed using the mixed model

ANOVA of Table 2. Since we did not observe the same quadratic mean-variance

relationship for fluorescence intensities like we did for the other dataset, we preprocessed

this data using the lowess transformation and scale-adjustment procedure of Yang et al.

(2002b). The MML estimates :t their asymptotic standard errors for al a2 ,a3 “61,52,

and ,63 were, respectively, 5.29i0.30, 3.75i0.13, 16310.03, 0.86:1:0.06, 0.58:1:0.02, and

0.37zi:0.01.

Figure 8 indicates that EB-REML and REML did not detect any differentially

expressed genes if critical q-value was set to be less than 0.4. This attribute may be due

to overestimating FDR at EFDR<0.4 for EB-REML and all FDR values for REML as

demonstrated by simulation in Figure 6c. EB-ANOVA resulted in the greatest number of

differentially expressed genes compared to all other methods for q-value < 0.2. Although

Figure 8a) shows that the numbers of differentially expressed genes detected by EB-

ANOVA are greater than those detected by ANOVA for p—values <0.5, Figure 8b)

appears to have a different pattern where ANOVA seems to detect slightly more genes

than EB-ANOVA if the q-value > 0.2. The reason may rely upon the different

distribution of p—values and the stochastic effects of non-differentially expressed genes

resulting from these two methods.
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Figure 2.8 Mouse organ data results: Number of declared differentially expressed

genes (DF) vs. a) p-values, b) q—values.
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2.6 Discussion

In this paper, we explored alternative mixed model inference methods on two-color

microarray data sets under two of the most common designs, namely the loop design and

common reference design to demonstrate. In addition to desirable ROC and FDR

properties already noted, our proposed shrinkage method EB-ANOVA is relatively easy

to implement, requiring only a slight modification of mixed model software such as, for

example, SAS PROC MIXED. It can also be expandable for other efficient microarray

experimental designs except for repeated measures designs that require specifications of

general temporal covariance structures. The underlying assumption of our model that

ANOVA components within gene variance are distributed as inverse gamma distributions

is appropriate (Box GEP. and Tiao GC.,1973) and appears to be reasonable in actual

experiment data. It turns out to be a close approximation in our real data as well.

Our EB-ANOVA method was also demonstrated to detect the greatest number of true

positives when controlling false positives for both designs. We believe that one of the

reasons for this includes more precise variance component estimates. In gene-specific

model, the sample size is usually small such that variance estimates can be imprecise

(Wright and Simon, 2003), but the number of genes is very large. Empirical Bayes or

shrinkage methods are ideally suited for these situations. Another reason for BB-

ANOVA’s improved performance is the ability to estimate a posterior degrees of freedom

that is best reflective of the distribution of EMS across genes and is generally

substantially larger than the classical ANOVA degrees of freedom, the difference

coming from the prior distribution for the error term increases the power of hypothesis

tests. Finally, we also noted (not reported) slightly more accurate estimates of treatment
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mean differences using EB-ANOVA which is partly attributable to the better recovery of

the interblock information when variance components are estimated with greater

precision.

In a mixed model analysis, negative variance component estimates are possible

for ANOVA whereas in REML, otherwise negative estimates are set to zero. These VC

estimation situations affect inference on fixed effects in ways that are not generally well-

understood (Stroup, 2003). Therefore, we also investigated how ANOVA versus REML

as well as EB~ANOVA vs EB-REML influenced EGLS on treatment effects. Our results

for the classical REML and ANOVA gene-specific methods agreed with the conclusion

in Stroup and Littell (2002). The use ofREML tends to deflate statistical power, resulting

in a conservative test for EGLS on treatment effects when it is likely to have an excessive

number of zero estimates for the VC pertaining to the experimental error term For

microarray data, it is not uncommon to have a larger number of such situations because

the variance for technical replicates is often substantially larger than the variance for

biological replicates for many genes (Cui and Churchill, 2003).

The null distribution for testing treatment effects may have a direct impact on

identification of differentially expressed genes. We extended a formal derivation (Wright

and Simon, 2003) to form our null distribution and estimated denominator degrees of

freedom for the denominator of F-test from the data. In our simulation study for both

designs, we found that the empirical distribution of the F-statistics corresponded well

a' A - .

with theoretical F-distributions using 4%- ~ FZaJ-yj in spite of the fact that the

fl;

simulation model and EB-ANOVA model did not match. However, the EB-REML
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procedure (Feng et al., 2006) is based on the use of 5 degrees of freedom because of

simulation work that Feng et al. (2006) pursued. This approach may not be reasonable for

analysis such as determining differentially expressed genes by pre-set cut-off significance

levels, but it may be appropriate to another goal such as gene ranking. Our simulation

studies show the poor performance in terms of controlling FDR in both designs.

We have also addressed the issue of multiple testing for the four methods. The

positive FDR method (Storey 2002) is commonly used for microarray and other data sets

with the large number of comparisons. In our simulation study, we examine the behavior

of different methods in terms of controlling FDR. It gives some ideas that the estimated

FDR might overestimate or underestimate the true FDR depending on which method is

used. In our examples, the EB-ANOVA method has reasonably good FDR control in

both designs. Clearly, there is much more to learn, for example, how the distributions of

p-values from different methods change with variability among the VC; and those

methods differ relative to the efficiency of design and the number of replicates.

Therefore, we justify this result with caution to general cases.
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Chapter 3: Assessing Shrinkage Procedures for Differential

Gene Expression in Microarray Experiments Having Within-

Array Replicate Spots

Abstract

Empirical Bayes methods have been promising for moderating test statistics for

inference on differential expression in small microarray experiments based on shrinking

gene-specific estimates of variance to a common value. Yet many microarray

experiments are characterized by both biological and technical replicates, the latter of

which may include, for example, several spots per probe on an array, thereby invalidating

the use of much available empirical Bayes software. A popular R software package,

LIMMA, was recently extended to help addressing this inferential problem for special

cases by assuming a constant correlation for the within-array replicates for each gene.

We assert that assumption would not be true for most experimental situations and test this

in this paper.

Results. A BAYESRATIO model is constructed to generalize the common correlation

assumption. We conducted a simulation study based on real data parameter estimates to

compare LIMMA software with other alternative methods. Those include the

BAYESRATIO model proposed in this paper, the Gene-specific model with ANOVA or

REML (Wolfinger et a1. 2001), the Empirical Bayes with REML (EB-REML) (Feng et al.

2006) and the Empirical Bayes with ANOVA (EB-ANOVA) (chapter 1). The comparison

is based upon various scenarios of heterogeneity of correlation coefficients. The LIMMA

package was found to be too liberal in terms of controlling for false discovery rates
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(FDR) when the data difi‘ers from the common correlation assumption, particularly with

increasing numbers of technical replicates per gene. An alternative method, the

BAYESRATIO model was shown to have superior performance on ROC curves and

FDR control. Moreover, the method EB-ANOVA we proposed in Chapter 1, which is a

shrinkage procedure with linear mixed model, has demonstrated robust performance for

controlling FDR and has reasonably good ROC curves compared to any other

competitive methods. Furthermore, EB-ANOVA is adaptable to any mixed model

fi'amework, where the LIMMA package has design limitations.
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3.1 Introduction

Gene expression profiling or microarray analysis has enabled the measurement of

thousands of genes in a single hybridization experiment. Microarray studies are also

stimulating the discovery of new targets for the treatment of disease which is aiding drug

development, immunotherapeutics and gene therapy (http://www.microarrayworld.com/).

A comparison of gene expression in cells or tissues from different conditions may

provide useful information regarding important biological processes and functions. In this

type of experimental setup, the main interest is the identification of differentially

expressed genes in different conditions (treated vs. untreated samples, diseased vs.

normal tissue, mutant vs. wild-type organisms, etc.) (Breitling et al. 2004). The challenge

is how to detect those genuine changes from noisy data which still exists, although much

attention has been given to the statistical analysis ofmicroarray data (Smyth et a1. 2005).

As with all designed experiments, it is necessary to replicate microarray studies in

order to infer upon differential gene expression between various treatment groups or

conditions (Kerr et al. 2002). There are often two categories of replication in these

studies: biological and technical (Churchill 2002). Whereas technical replication is

useful to control measurement error, biological replication is vital for valid statistical

inference. Mixed model ANOVA is the primary statistical inference tool for experiments

with different levels of replication; in other words, mixed model inference is able to

disentangle multiple strata of random variation as by different levels of replication or

blocking. Typically these analyses are conducted separately for each gene using REML

to estimate variance components of each random effect (Wolfmger et al. 2001).
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Empirical) Bayes (EB) procedures have been popularized for the analysis of

microarray studies, since test statistics for differential expression incorporate information

across all genes in the study, thereby improving reliability of inference for any one gene

(Baldi & Long 2001; Newton et al. 2001; Tseng et al. 2001; Lonnstedt & Speed 2002;

Wright & Simon 2003; Smyth 2004). Most such methods have been developed for

models assuming a single error strata or residual variance. Hence, these procedures are

not readily adaptable to experimental designs characterized by technical and biological

replicates thereby leading to multiple strata of random variation for each gene. Cui et al.

(2005) proposed a shrinkage procedure, currently implemented in the software

MAANOVA (http://www.iax.org[staffh/churchill/labsite/software) for mixed model

analysis of microarrays. Their procedure for variance component inference is based on

borrowing information across all genes using James-Stein-Lindley shrinkage to modify F

test statistics for treatment effects on any one gene. Accurate estimation of variance

components using shrinkage estimation should translate into more accurate estimates of

ANOVA expected mean squares (EMS) for random effects factors. Since the ANOVA

mean squares (MS) for some of these factors constitute the experimental error for

treatment efl‘ects, greater statistical power should then be afforded for inference on

differential expression. This is particularly true, for example, for within-array technical

replicates where the array within treatment MS serves as the experimental error term for

the analysis of log-ratio data in common reference designs. Feng et al. (2006) recently

introduced a promising moderation procedure based on direct shrinkage estimation of

ANOVA EMS rather than VC in balanced mixed effects models. Their procedure is

based on work by Wolfinger & Kass (2000) who demonstrated that REML could be
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specified as a function of independent ANOVA EMS in balanced designs. A major

limitation of their procedure, which we denote as EB-REML, is how to appropriately

determine the degrees of freedom for test statistics on treatments; they arbitrarily chose 5

degrees of freedom for the example they illustrated in their method (Feng et a1. 2006).

In the previous chapter, we proposed an alternative shrinkage estimation procedure for

mixed model inference of microarray data. The null distribution for testing differentially

expressed genes based on this procedure, that we labeled as EB-ANOVA, was

demonstrated to be well defined by F densities having readily estimated denominator

degrees of freedom. We subsequently demonstrated superior performance of EB-

ANOVA vs. EB-REML for unbiased control of false discovery rates and receiver

operating characteristics for inference on treatment effects. Smyth (2005) recently

developed a between-gene shrinkage analysis method for a particular type of mixed

model design, those where the technical replicates are either within-array (i.e. each gene

is spotted more than once on an array) or special cases of between-array replicates where

each sample is hybridized more than once. Smyth (2005) invoked the assumption that

the correlation of these technical replicates are constant within genes based on a linear

model analysis of log-ratios. This modeling strategy is currently available as the dupcor

option in the popular R software LIMMA. The implications of this assumption are that an

investigator can build up degrees of freedom of test by increasing the number oftechnical

replicates while holding constant the number of biological replicates.

In this paper, we develop a fully Bayesian model approach that models variability on

the within gene correlation of technical replicates. We compare this approach, which we

label the BAYESRATIO model, to the LIMMA dupcor procedure in order to evaluate the
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robustness of the latter in situations when the correlation is heterogeneous across genes.

We also compare both of these methods with those previously considered in Chapter 1,

namely EB-ANOVA, EB-REML, and the two non-shrinkage counterparts based on

ANOVA and REML estimation ofvariance components.

The paper is organized as follows. In Section 1, LIMMA (without Empirical Bayesian

adjustment) and EB-LIMMA for technically replicated procedures, and the development

of BAYESRATTO model, are described. In Section 2, an application is introduced. In

Section 3, we simulate data based on this application and varying degrees of

heterogeneity of variance ratio and residual variances with average correlation

coefficients 0.6 and 0.9 imitating the scenarios of top and bottom halves and side-by-side

rcplicates to explore the robustness of the LIMMA procedure and also to compare its

performance with our alternative methods. The results and discussion from simulation

study are in Section 4. Real data application is provided in Section 5. Our conclusions are

summarized in Section 6.

3.2 Mixed model presentation of Smyth’s constant

correlation method

We present the approach of Smyth et al. (2005) but in the more general context of a

linear mixed model with a single random effects factor. Suppose, as in Smyth et al.

(2005) that the data vector yg , constitutes log-ratios for gene g, g = 1,2,...,G, as might

be considered appropriate for common reference designs where the ratios are expressed

as treatment relative to reference sample for each array. Consider a particular common

reference design case where for each of t treatments (not including the common
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reference), there are n different arrays, experimental or biological replicates, with each

biological replicate consisting of m technical replicates. Hence the dimension of yg is

tnm. We model yg as a linear function of gene-specific k x 1 vector of fixed effects

(8g) which may include not only treatment effects but other covariates, a n x 1 vector of

biological or subject effects (ug ), and a tnm x 1 vector of residuals (eg ):

ye =XB¢+Zua+ e: [13]

with

ug ~ N(0,1,,ojg) [1b]

and

eg ~ N(0,I,,,,,afg) [1c]

as in Smyth et a1. (2005). Here the design matrices X and Z of dimensions tnm x k and

tnm x n , respectively, are specified to be the same for all genes. Again, ug is used to

model experimental or biological variability whereas eg is used to model technical or

measurement error variability. Now Smyth et al. (2005) further assumed an effectively

known and constant correlation pg = between technical replicates within

experimental replicates across all genes, i.e. p = p] = p2 = ....pG . It is well established

0.2

e

that when ,0g is known, or synonymously, when 11g =—§— is known, the best linear
0.2

”g

unbiased estimator (BLUE) of any linear estimable combination of [lg , say, 08,, for C
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being a known contrast matrix, can be determined as C'fig using Henderson’s mixed

model equations (Henderson 1984):

[iii 23:: ] lg {if} [21
+ g 11g Z Yg

As a byproduct of solving [2], rig is the best linear unbiased predictor (BLUP) of 118

which might be of little direct interest in microarray studies. Further note fiom [2] and

from Henderson (1984) that the BLUE of fig does not depend on knowledge of either

0'2 or 0'2 when 2. is known.
ug 88 g

Now 8g can also be shown to be the generalized least squares (GLS) estimator of

- i -l " _ t —l _ _ I 2 2
ngrovrded by XVg Xllg—XVg yg where var(yg)—Vg-ZZO'ug +IO'eg.

Writing Vg = Wgoi with Wg = (Z251; +I), it can be further confirmed from the

g

GLS estimation equations that 8g depends only on knowing rig in Wg using

0 -l " __ I -l
X WgXBg—X Wg yg

Under the null hypothesis Ho: C'Bg = m with m typically specified to be a null vector,

Henderson (1984) demonstrated that, given known 18 , the resulting F-test statistic would

have denominator degrees of fi'eedom that build up on both increasing n and m:

—1
V A I 0 I -1 I a " 2

(c 0 —m) (C (x wg X)C) (C 0— m)o,.g ~ memmmkm [3]

where
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- _(y'xfig)w§l(y"xfig) of 2

6:8 _ tnm - rank(X) ~ tnmg-I me—l [4]

 

Consider a simple design involving t = 1 treatment with log-ratios expressed relative

to either a common reference or a second treatment in a balanced block design. Again,

the design uses It biological or experimental replicates with m technical replicates per

each biological replicate. Now suppose that no additional covariates are modeled, i.e. X

= 1",", such that fig is scalar and k=rank(X) = 1. Then the contrast scalar C’ = l with m

= 0 in the test for differential mean expression of the treatment of interest relative to the

other. Given that special case, the square root of [3] would simplify to Equation (4) of

Smyth et al. (2005) noting that the square root of F 1M4 is a t-test statistic with the same

denominator degrees of freedom as provided by Smyth et a1. (2005).

Consider again the same experimental design but where now [38 includes additional

covariates with rank(X) = k as in Section 4 of Smyth et al. (2005). As in Smyth et al.,

(2005), let org = c'flg for c being a known contrast vector chosen such that it is of interest

to test: Ho: 01g = 0. Then the square root of the test statistic in Equation [3] is equivalent

to the t-test statistic provided near the tap of page 2071 in Smyth et al. (2005) with nm-k

degrees of freedom. If the design is extended to consider more than t = 1 treatments

relative to a reference, with again each treatment having n biological replicates with m

technical replicates per biological replicate, then the corresponding test statistic would

based on tnm-k degrees of freedom as in Equation [3].
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Recognizing the utility of further moderating the estimator of 0': in [4], Smyth et al.

g

(2005) proposed an inverse Gamma prior 0nd? . Using the inverse Gamma

g

specification IG(ae,fle) such that the prior expectation 0'82 is E(0’Z ltd-£21..

g g e —

Combining the likelihood contribution from [4] with this inverse prior, the posterior

density of of is

g

(tmn-l+20e)6'3

g~12 [Q02 tmn—l+20'e

eg

where

-l

I [—e]

“g (tmne—l)+2ae

 

[6]

—l

. . . . . ,. . . 0!

IS a combmatron of the data Information O'e2 and prior harrnomc mean[4]

g e

weighted by data degrees of freedom tmn—l and prior degrees of freedom Zae,

respectively. Note that the posterior estimate in [6] is similar to that provided as 5'; in

Smyth et al. (2005) except for different parameterization; i.e. their do is our 2% and their

-1

so is our .

I3:
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3.3 Accounting for variability in within-array replicate

correlation across genes

pg
 Recognizing that 2?. = , we model variability in p by modeling variability in

g 8

pg

2'8 = 2;. Again, we start with the linear mixed model in [1]. Let the prior distribution

for 03g be 10 (ale, fie) as in the previous section and further let the prior distribution for

fit
73 be IG(at,,5¢)such that E(rg)= aT-l’ Since we also aim to infer upon ac , fie,

1

(1 + 0)2

 at, and [3,, we specify the same proper yet vaguely informative prior p(t9) oc

that seems useful for parameters defined on the positive real line (Albert 1999) for each

of these four parameters.

We pursue a Markov Chain Monte Carlo (MCMC) approach (Gelman et al. 1995) to

implement fully Bayesian inference with this model. In MCMC, one samples from the

joint posterior density of all unknown parameters by simply generating random samples

from the full conditional distributions (FCD) for each unknown parameter or groups

thereof conditional on simulated values for all remaining parameters and the data

y=[ y] yz y'G_1 Yt} :l'. In our example, these parameters include

Bg,ug, 2'3, and 038 forg =1,2,...,G as well as ae,fle, at, and/3,. In the following

specifications of the FCD, we use “ELSE” to specify all parameters other than those that

we are specifying the FCD for. For example, it can be readily shown using results from

Wang et al. (1993) that the joint FCD of fig , n8 is multivariate normal

9]



2: xx x'z ‘1

u ,ELSE~~N 7
13g, 3 Iy Z'X Z'Z+Ir§I []

for gene g = 1,2,. . .,G. Note that scalar FCD sampling of individual elements of fig or

ug are possible using developments in Wang et al. (1994) if a joint sample fi'om [7] is

computationally intractable. The FCD of 0:, .,G, can also be shown to be an

 

. . . tm +1 n u u e e

mverted gamma densrty wrth parameters (——-2—l—+a'e and .321 g + g2 g + fie for

8

g = y3 —XBg —Zug. Fruthermore, the FCD of 7g (g=1,2,...,G) is also inverted

 

. n 11g 11g

gamma wrth parameters —- + a, and + ,61.

2 20'

eg

The FCD of a, and ,6, can be written proportionately as follows.

0‘16 _ +

p(afly’ELSE)oc.(fl2_—_G[ 161 (7g) (“1' l)]__1_.§., [83]

(I‘(az_)) g=l (Ii-QT)

and

p(flt I yJELSE)°c°<(flt)“’G II eXP—46;] —1—2- [8b]

g=1 (1+ ,6,)2

with the FCD of ae and flebeing similarly written as for an, and ,6, in [8a] and [8b],

respectively. Since the FCD for these four parameters were not recognizable, we

embedded a Metropolis-Hastings step (Chib & Greenberg 1995) for sampling from each

of these four FCD within the MCMC scheme. Doing so, we found that as with fie and

a, with ,6, were highly correlated, as might be expected since are and ,Be jointly
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determine the mean residual variance across genes whereas a,with ,6, jointly determine

the mean variance ratio across genes. This high correlation substantially limits MCMC

mixing and hence the number of effectively independent samples that one might obtain

for a fixed number ofMCMC samples. To improve MCMC mixing, we drew Metropolis

fit fie
Hastings samples from it,=— ,ue =—, ae , and a, and determined the

correlations between the samples from these four parameters to be substantially

dampened, thereby improving MCMC mixing.

3.4 Description of experimental design and simulation

study

We based our comparison of various methods on the cDNA microarrray design

utilized by Wade et a1. (2004, 2005) who investigated differences in gene expression in

telencephalon brain tissue between the two sexes ofjuvenile (25—day old) zebra finches.

A balanced block design with n = 8 birds per sex was used whereby the mRNA sample

from one male was hybridized against that for one female for each of 8 different slides.

That is, four of the arrays involved a Cy3 labeled male sample hybridized against Cy5

labeled female sample whereas the opposite dye assignments on bird sex were used for

the remaining four arrays. One of the 8 slides was eventually discarded because of

quality control flags leaving a total of 7 slides.

Now each microarray was spotted with 2399 cDNAs of which two (B-actin and

GAPDH) were controls that were printed with each of the 32 print-tips arranged in a 8

metarow x 4 metacolumn grid, thereby leading to a 8 x 4 patch arrangement on the
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microarray. The remaining 2397 genes were duplicate spotted on the array with both

duplicates being drawn from the same 384 well source plate. Each such pair of wells on

the corresponding source plates were located within the same column but two rows apart

such that duplicates were printed within the same meta-column but two meta-rows apart

on the 8 x 4 microarray grid. Given the potential spatial variability that exists on a slide,

we deem this strategy to be sounder for spotting duplicate spots relative to having each

duplicate spot located nearly adjacent to each other on the slide.

We decided to model our simulation study on the same 8 slide design as that

considered in Wade et al. (2004) but based on G=6000 duplicated spotted genes. Now

the expected values of the residual variances and variance ratios were based on those

estimated from the data of Wade et al. (2004), being E(a§g] = 0.03 and E (1'8) = 1.95

respectively, on the logarithmic to base 2 scale. One thousand of these genes were

specified to be differentially expressed based on fold changes for 10 equally-sized groups

of differentially expressed genes having fold changes 1.25, 1.5, 2, 2.5, 3, 1.25", 1.5", 2",

2.5", and 3'1 for each of 100 genes between the two treatments. Hence the proportion of

genes that were not differentially expressed between the two treatments (sexes) was

750 =m= 0.83 .

6000

We wanted to address several issues with respect to the comparison of LIMMA and

the competing alternative BAYESRATIO model that we propose:

1) How does the level of residual heteroskedasticity (are) influence the relative

performance of the competing methods? We choose to compare are = 3 (high

level of heteroskedasticity) to (1,, = 12 (mild level of heteroskedasticity),
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anticipating that in particular the empirical Bayes based methods should perform

better for are =12.

2) How does the level of variance ratio heteroskedasticity (at) influence the relative

performance of the competing methods? We choose to compare a, = 3 (high

level of heteroskedasticity) to a, = 30 (very low levels of heteroskedasticity),

anticipating that in particular the LIMMA-based methods should perform

relatively better for a, = 30 as homoskedasticity of variance ratios (and hence

within-class correlation coefficients) is implied.

3) How does the magnitude of the correlation coefficient influence the comparison

of the competing methods? We choose to compare E(pg) = 0.6 to E (pg ) = 0.9

with the former being representative of replicated spots being distributed

throughout the slide, as based on the described study by Wade et al. (2004),

whereas the latter is more representative of replicated spots being spotted by the

same print-tip or as also reported as being typical by Smyth et al. (2005). We

anticipated that LIMMA was likely to be substantially more liberal compared to

other methods with larger E(pg).

4) How does the number of replicated spots (m=2 versus m=4) per gene influence

the comparisons between the competing methods? Again, we anticipated that

LIMMA would be likely substantially more liberal compared to other methods

with larger m.

Our study was based on generating data from the full complement of 24 = 16 different

datasets based on a 24 unreplicated factorial for the 4 factors characterized above.
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The linear mixed effects model that was used to generate data from this experimental

design is based on equation [1] and can be specified in scalar notation as follows:

ygijk = fig + Ygr' + 0g," +egijk - [9]

Here ygy-k is the normalized logarithmic female vs.male intensity ratio for gene g

=1,2,...,6000 at spot I: =1,2,...,m within array j=1,2,..,8 and female sample dye

assignment of i = 1,2. The fixed effects include the female versus male mean difference

[13 and the effect of dye 7g,- i=l,2 whereas array effects agv,j=1,2. . ..,8 are specified to be

random agj ~ NIID(0,0'3g) whereas the residuals egg-k ~ NIID(0,0’3g ).

For model [9], it can be demonstrated using classical ANOVA that the denominator

mean square MSBg for the F-test statistic used to test Ho: pg = 0 is based on both 03

g

and 0'3 ; i.e.

g

E (MSBg ) = of +m0’2
g “8

Hence, the estimates MSBg for each of the seven methods were compared for their mean

G

2 IMSBg —E(MSBg)|

absolute deviation MAD= g=1 G from the true. Methods characterized
 

by smaller MAD should lead to more sensitive and specific hypothesis testing on

treatment effects given that the numerator of the associated F test is the same for all

methods.

For each method, receiver operating characteristics (ROC) curves were determined by

plotting the number of true positives (i.e. truly differentially expressed) genes versus the

number of false positive genes. ROC curves provide effective visualizations to compare
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methods and experimental designs for the trade-off between false positives and negatives

(Vinciotti et al. 2005; Feng et al. 2006). The greater the number of true positives for a

fixed number of false positives within a particular gene list, the better the method or

design (De Smet et al. 2004).

The estimated false discovery rates (FDR) for the F-test on treatment effects based on

the procedure of Storey (2002) were implemented using the fdr.control function in R. In

order to facilitate a finer comparison on FDR control between the various methods, the

true proportion of non-differentially expressed genes was not estimated but set to be

known as 7: = %%g z 0.833 for estimation ofFDR for comparison against the true FDR.

3.5 Results and Discussion

The MAD ofMSBg from its expectation are provided for each of the seven methods for

the 24 simulated datasets in Figures 1 (m=2, p = .6), 2 (m = 4, p = .6), 3 (m =2, p = .9),

and 4 (m = 4, p = .9). Regardless of the value ofm or p, EB-REML was consistently the

worst performing method for estimating E(MSBg) except for the situation characterized

by the smallest levels of heteroskedasticity for both random effects: 0tt = 30 and (IC = 12,

in which it slightly outperformed ANOVA and REML. These results suggest that the

method as proposed by Feng et al. (2006) has limited merit for microarray data analysis

in spite of its shrinkage basis. For all four combinations of at and ore, the BAYESRATIO

method had generally the best MAD performance for estimating E(MSBg) with relative

performance generally improving as ae and at increased (i.e. decreasing

heteroskedasticity) as expected. There were, however, two general exceptions. First,

EB-ANOVA outperformed BAYESRATIO whenever a, = 3 and ae =12. Secondly,
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whenever a, =30 , BAYESRATIO was generally slightly inferior for MAD to E-

LIMMA for m = 2 but then slightly superior to E-LIMMA for m= 4.

With, again the exception of EB-REML, all shrinkage based procedures vastly

outperformed the gene-specific methods (LIMMA, ANOVA and REML) for low residual

and variance ratio heteroskedasticity (a, = 30 and are = 12). Nevertheless, LIMMA

generally outperformed REML and ANOVA and somewhat approached the shrinkage

based methods for high and variance ratio heteroskedasticity (at = 3 and “e = 3).

REML always slightly outperforms ANOVA but not distinguishable in the plots for

estimating MSBgas was shown in our previous study (Chapter 1).
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Figure 3.1 MAD (Mean Absolute Deviation) ofMSBg from their true values was plotted

for seven methods respectively for two replicate spots per gene within slides(mean

correlation coefficient =0.6): A). a,
“residuals :12; C)-

lamiduab = 3 ; B). (ZZ— = 3,

=12.
soraresrdualr = 3 i D). at“ = 3oraresiduals
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Figure 3.2 MAD (Mean Absolute Deviation) ofMSBg from their true values was plotted

for seven methods respectively for four replicate spots per gene within slides(mean

correlation coefficient =06): A). a, 3 i B)- at = 3raresiduals = 12 i C)-: 3, aresiduals

30a “residuals = 12 -302aresiduals = 3 i D)- ata,
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Figure 3.3 MAD (Mean Absolute Deviation) ofMSBg from their true values was plotted

for seven methods respectively for two replicate spots per gene within slides(mean

correlation coefficient =0.9): A). a, = 3,0,6,ka “residuals = 12 i C)-
3;B). a,=3,

=12.
30’ “residuals = 3 i D)- at = 3O’aresiduals

at:
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Figure 3.4 MAD (Mean Absolute Deviation) ofMSBg from their true values was plotted

for seven methods respectively for four replicate spots per gene within slides(mean

correlation coefficient
aresiduals = 12 ; C)-0-9)3 A)- at = 3raresiduals = 3 ; B)' a! = 3’

30: aresiduals = 3 i D)- at = 30’ “residuals
=12.(It:
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The ROC curves for EGLS inferences on mean treatment differences methods based

on the four VC shrinkage estimation methods and the true variance components are

provided for the 24 simulated datasets in Figures 5 (m=2, p = .6), 6 (m = 4, p = .6), 7 (m

=2, p = .9), and 8 (m = 4, p = .9). As expected, GLS based on the true VC had the best

ROC performance throughout; i.e., for any gene list based on a FDR cutoff having a

certain number of false positives, the number of true positives was maximized. For the

four shrinkage-based methods, these curves could not be distinguished from each other

for high levels of heteroskedasticity (amiduals =3, a, =3). For ae=12 and a,=3, the

EB-LIMMA procedure was slightly worse than the other shrinkage based methods m = 2

and much worse for m =4 when p = 0.6. This comparison potentially reflects a problem

of inflated degrees of freedom for larger m using the EB-LIMMA procedure (i.e. 4*8-

1=31 for 4 replicates and 2*8-l=15 for 2 replicates). However, the inferior performance

for EB-LIMMA compared to other shrinkage based procedures is barely discernible

when p = 0.9 (Figures 7 and 8); in other words, regardless of the value of at, for the

upper bound ofvalue 1 on p creates even less variability in p when p = 0.9 than when p =

0.6 (Figure 5 and 6). For act= 30, the EB-LIMMA and BAYESRATIO methods have

similar performance and were somewhat superior to EB-ANOVA and EB-REML,

particularly when ae =3. With the lower level of residual heteroskedasticity (ae =12),

EB-ANOVA had similar ROC performance as EB-LIMMA and BAYESRATIO and was

superior to EB-REML. EB- LIMMA was also expected to outperform EB-ANOVA and

EB-REML for low levels of variance ratio heteroskedasticity (a, = 30).
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Figure 3.5 Number of true positives vs. Number of false positives obtained by difl'erent

Empirical Bayes and full Bayes gene selection methods for two replicate spots per gene

within slides(mean correlation coefficient =O.6): Upper left graph).

“1: = 3’arasiduals = 3 ; Upper right graph). at : 3>aresiduals = 12; Lower lefi graph).

a, = 30, 6!,“wa = 3; Lower right graph). (21 = 30,a,.es,-dua]s = 12 .
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Figure 3.6 Number of true positives vs. Number of false positives obtained by different

Empirical Bayes and full Bayes gene selection methods for four replicate spots per gene

within slides(mean correlation coefficient =0.6): Upper lefi graph).

or, = 3,6!,“wa = 3 ; Upper right graph). a, = 3, aresia‘uals = 12 ; Lower left graph).

or, = 30, amgiduab = 3 ; Lower right graph). on, = 30,a,.es,-dual, = 12 .
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Figure 3.7 Number of true positives vs. Number of false positives obtained by different

Empirical Bayes and full Bayes gene selection methods for two replicate spots per gene

within slides(mean correlation coefficient =0.9): Upper left graph).

at : 32 armiduals = 3 ; Upper right graph). at = 3, “residuals =12; Lower lefi graph).

or, = 30, amiduab = 3; Lower right graph). a, = 30, “residuals = 12 .
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The ROC curves for EGLS inferences on mean treatment differences methods based

on the three gene-specific estimation methods (ANOVA,REML, and LIMMA) and the

true variance components are provided for the 24 simulated datasets in Figures 9 (m=2,

p = .6), 10 (m = 4, p = .6),]1 (m =2, p = .9), and 12 (m = 4, p = .9). In virtually all

situations, REML and ANOVA gene specific methods had similar performance in terms

of ROC curves. This result was anticipated since precision in estimating the

denominators of F-test was shown to be very close for these two methods in MAD

comparisons in Figures 1 - 4. These REML method was inferior to LIMMA methods as

shown in Smyth et al., (2005).
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Figure 3.9 Number of true positives vs. Number of false positives obtained by different

gene-specific selection methods for two replicate spots per gene within slides(mean

correlation coefficient =06): Upper left graph). (1, = lama-duals = 3 ; Upper right

graph). or, = 3, amiduals = 12 ; Lower left graph). or, = 30, aresiduals = 3; Lower right

graph). “1' = 30’ “residuals = 12 -
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Figure 3.10 Number oftrue positives vs. Number of false positives obtained by different

gene-specific selection methods for four replicate spots per gene within slides(mean

correlation coefficient =0.6): Upper left graph). a, = 3flresiduals = 3; Upper right

graph). or, = 3, amiduals = 12 ; Lower left graph). or, = 30, “residuals = 3; Lower right

graph). at = 30:“residuals =12 -
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Figure 3.11 Number of true positives vs. Number of false positives obtained by different

gene-specific selection methods for two replicate spots per gene within slides(mean

correlation coefficient =0.9): Upper lefi graph). or, = 3, amiduab = 3 ; Upper right

graph). or, = 3, amiduals =12; Lower left graph). a, = 30, “residuals = 3; Lower right

graph). at = 30’aresiduals = 12 -
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Figure 3.12 Number oftrue positives vs. Number of false positives obtained by different

gene-specific selection methods for four replicate spots per gene within slides(mean

correlation coefficient =0.9): Upper left graph). or, = lamiduals = 3 ; Upper right

graph). or, = 3, amiduals = 12 ; Lower left graph). or, = 300%,.“an = 3; Lower right

graph). at = 30»aresiduals = 12 °
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The TFDR (true false discovery rate) versus EFDR (estimated false discovery rate) for

GLS and EGLS based on all shrinkage based methods are provided for the 24 simulated

datasets in Figures 13 (m=2, p = .6), 14 (m = 4, p = .6), 15 (m =2, p = .9), and 16 (m = 4,

p = .9). As expected, TFDR: EFDR for GLS as the test statistics for treatment effects

are exact z-tests; a similar performance could be noted for EB-ANOVA. A general

agreement between TFDR and EFDR was also observed for BAYESRATIO for all cases;

again this might be anticipated since the model generation process matched that of

BAYESRATIO. The EB-REML procedure tended to be slightly too conservative

(TFDR<EFDR) for low values of EFDR and far too liberal (TFDR>EFDR) for the high

values ofEFDR in virtually all cases.

Our particular attention was drawn to the EB-LIMMA procedure. It tended to be too

liberal particularly when a, =3 and when m = 4 (Figures 14,16). Even when the

distributional assumptions for EB-LIMMA method were closely matched (a, =30), it

was still too liberal and again particularly if m = 4 (Figure 14,16). However, even when

m = 2, EB-LIMMA was too liberal for a, =3 particularly for p = 0.9 (Figure 15). In

essence then, microarray experiments characterized by high number of within-array

replicates (m), high within-array correlation (p) between spots, and high levels of

variance ratio heteroskedasticity (low at) should generally incur far more false

discoveries when using EB-LIMMA.
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Figure 3.13 Actual Proportion of False Positives vs. Estimated False Discovery Rate for

different Empirical Bayes and full Bayes methods for two replicate spots per gene within

slides(mean correlation coefficient =06): Upper lefi' graph). a, = 3,amidmls = 3 ;

Upper fight graph) 4'1 = 3, “residuals = 12 ; Lower lefi graph) 6!: = 30, amt-m1: = 3 ;

Lower right graph). (1, = 30, “residuals = 12 .
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Figure 3.14 Actual Proportion ofFalse Positives vs. Estimated False Discovery Rate for

different Empirical Bayes and full Bayes methods for four replicate spots per gene within

slides(mean correlation coefficient =06): Upper left graph). a, = lamiduals = 3;

Upper tight gmph)- a1 : 3’ “residuals = 12 ; Lower lefi graph). at = 30saresiduals = 3 ;

Lower right graph). 0:, = 30, amiduals = 12 .
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Figure 3.15 Actual Proportion of False Positives vs. Estimated False Discovery Rate for

different Empirical Bayes and full Bayes methods for two replicate spots per gene within

slides(mean correlation coefficient =0.9): Upper left graph). or, = 3, aresiduals = 3 ;

Upper right graph). a, = 3,01%”de = 12 ; Lower left graph). a, = 30, “residuals = 3;

Lower right graph). a, = 30, amiduals = 12 .
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Figure 3.16 Actual Proportion of False Positives vs. Estimated False Discovery Rate for

different Empirical Bayes and full Bayes methods for four replicate spots per gene within

slides(mean correlation coefficient =O.9): Upper left graph). a, = 3, aresiduals = 3 ;

Upper right graph)- a: = 3, arm-duals =12 ; Lower lefi graph). 01 = 30,aresiduazs = 3 ;

Lower right graph). or, = 30, “residuals =12.
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The TFDR versus EFDR for GLS and EGLS based on all gene-specific methods are

provided for the 24 simulated datasets in Figures 17 (m=2, p = .6), 18 (m = 4, p = .6), 19

(m =2, p = .9), and 20 (m = 4, p = .9). It can be quickly gleaned from these plots that

LIMMA is also liberal with FDR assessments, particularly when m = 4 (Figure 18, 20),

whereas EGLS based on REML and ANOVA generally demonstrate excellent agreement

between TFDR and EFDR. EGLS based on ANOVA had the performance that was

expected since the resulting EGLS test statistics are random samples from a F-

distribution under the null hypothesis ofno differential expression.
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Figure 3.17 Actual Proportion of False Positives vs. Estimated False Discovery Rate for

different gene-specific methods for two replicate spots per gene within slides(mean

correlation coefficient =0.6): Upper left graph). or, = lawn-duals = 3 ; Upper right

graph). a, = 3, amiduals = 12 ; Lower lefi graph). or, = 30, aresiduals = 3; Lower right

graph). “1' = 30raresiduals = 12 -
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Figure 3.18 Actual Proportion ofFalse Positives vs. Estimated False Discovery Rate for

different gene-specific methods for four replicate spots per gene within slides(mean

correlation coefficient =0.6): Upper left graph). a, = 3, “residuals = 3; Upper right

graph). a, = 3, “residuals = 12 ; Lower left graph). 0', = 30%“;de = 3; Lower right

graph). at = 3O:aresiduals =12 '
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Figure 3.19 Actual Proportion ofFalse Positives vs. Estimated False Discovery Rate for

different gene-specific methods for two replicate spots per gene within slides(mean

correlation coefficient =0.9): Upper left graph). on, = lama-duals = 3 ; Upper right

graph). a, = 3, aresiduals = 12 ; Lower left graph). or, = 30, aresiduals = 3; Lower right
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Figure 3.20 Actual Proportion of False Positives vs. Estimated False Discovery Rate for

different gene-specific methods for four replicate spots per gene within slides(mean

correlation coefficient =0.9): Upper left graph). a, = 3,a,esiduals = 3; Upper right

graph). (2', = lamiduals = 12 ; Lower left graph). a, = 30, aresiduals = 3; Lower right
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3.6 Data Analysis

We applied all of the seven methods to the data set with within array technical

replicates on an existing dataset (Wade et al. 2004; Wade et a1. 2005). The dataset was

analyzed using the mixed model ANOVA [9] and using the logarithmic female and male

lowess normalized intensities as response variables (Yang et al., 2002b).

For the BAYESRATIO model, we estimated the hyperpararneters to be

é'e = 2.98, fie = 0.06, (if, = 2.83 , and ,8, =3.62 such that the overall estimated mean

residual variance E(0‘§)- 0'06 =0.03 and the overall estimated variance ratio

_ 2.98—1

 

 = 1.98; in other words, a point estimate for the overall estimated within-

1.98

: 0.66. For EB-LIMMA, we determined

98 + 1

 spot correlation could be determined as

an overall correlation estimate of 0.601,estimates of S3 = 0.051, thereby defining the

estimated harmonic mean of 082, and do = 5.74 which is equivalent to 2&8. Hence

these results are comparable to those attained from BAYESRATIO with the important

exception that EB-LIMMA presumes that the estimated correlation between spots within

an array to be the same for all genes in the microarray experiment.

For EB-ANOVA, we estimated the hyperparameters to be cite = 2.35 , fie = 0.042 ,

(3", =2.54, and ,8” =0.20 such that the overall estimated mean residual variance

 

 E(0’3) = 2052421: 0.031 and the overall estimated expected mean square for array
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E (MSB) = 0'20 = 0.13 being an estimate of 0'? + 203;,2 such that the overall estimate

2.54—1

 

0. —0.03 . . . .

E(afi) =_L2__1=0.05, thereby translatmg into an overall correlation estimate of

0.05

——=0.62 again leading to inferences on dispersion parameters similar to those

0.05 + 0.03 1

for BAYESRATIO. For EB-REML, we estimated the hyperparameters to be de = 3.5 ,

fie =0.038, Cir” =2.5, and [9,, =0.10 such that the overall estimated mean residual

variance E(O'ez)=-;%-8-= 0.015 and the overall estimated expected mean square for

 

0.10 . .

array E(MSB)=—= 0068 being an estimate of 0’? +203 such that the overall

2 5 l

 

.068 — 0.015

estimate 13(03): = 0.026, thereby translating into an overall correlation

AA

0026 0.63. E(ofi) and E(afi) are 0.046 and 0.031 for ANOVA,
0.026+0.015 =

 

estimate of

0.047 and 0.030 for REML. Overall correlation would be 0.60 for ANOVA and 0.61 for

REML, which correspond the similar dispersion parameter estimates as those for

BAYESRATIO.

Plots relating the ANOVA F-test p-value and the corresponding q-values for

differential expression versus the number of genes selected for that particular p-value and

q-value cutoff are presented for each of the seven methods in Figure 21. It is instructive

to note that p-values and q-values did not appear to depend upon shrinkage estimation

whatsoever for this dataset. BAYESRATIO tended to detect more genes than EB-

LIMMA and the other five methods in p-value plot. Recognizing that most current
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experiments would depend upon q-value determinations, the corresponding q-values for

differential expression versus the number of genes selected for the particular q-value

threshold was shown to have the same pattern as p-value plot but more separate in close-

up plot in Figure 21. For example, BAYESRATIO picked up more genes than EB-

LIMMA and LIMMA which in turn declared more genes significant than EB-ANOVA.

EB-REML, ANOVA and REML were not able to declare any significantly expressed

genes for small q-value thresholds.
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Figure 3.21 Wade data results: A). Number of declared differentially expressed genes

(DF) vs. critical p-values, B). Number of declared differentially expressed genes vs.

critical q-values.
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3.7 Discussion and Concluding Remarks

“Many assumptions that have been made for modeling microarray data have yet to be

verified. Hopefully evidence either for or against these assumptions will emerge

(Storey et al. 2004). Commonly used microarray data analysis software LIMMA

accommodates the analysis of designs that involve technical replicates. The assumption

for LIMMA software is that the within array replicate correlation coefficients for each

gene are constant across all genes. Using this assumption, the experimental degrees of

freedom associated with the test statistics in LIMMA software is more than doubled

compared with a regular linear mixed model approach. For example, the experimental

degrees of freedom for inference on treatment effects would be specified to be nearly

equal for experiments with only two biological replicates per treatment but with eight

technical (i.e. spots) replicates per biological replicate compared to another design with

sixteen biological replicates per treatment and one technical replicate per biological

replicate using the LIMMA procedure. In this paper, we introduce a BAYESRATIO

model for generalizing the common correlation assumption in LIMMA. Our motivation

was stimulated by the data set we used, which was checked against the common

correlation assumption in LIMMA. This case with within-array replicates was found to

have high level of heterogeneity for variance ratios, which means that the genewise

correlation estimates were too variable across genes to be compatible with a common true

correlation. High levels of heteroskedasticity, as shown in our real data, and various

levels of heteroskedasticity in the combination of two components variance ratios and

residual variances, the magnitude of the correlation coefficient, and the number of

technical replicates per gene affected statistical inference. It was shown that the violation

127



of common correlation assumption results in a poorly controlled false discovery rate and

becomes worse with the increase of technical replicates per gene within slides by using

the LIMMA procedure. The causes for poorer performance seem to be due to: l). The

denominator degrees of freedom are exaggerated as discussed before. 2). The

denominators of F tests for treatment effects are not comparably estimated by seven

methods. EB method is compromised as implemented in LIMMA because it forces the

variance ratios to equalize across genes.

The BAYESRATIO model we suggested in the paper facilitates describing

complicated microarray experimental data with various degrees of heteroskedasticity

between genes. It extends the common correlation assumption for the LIMMA procedure

to more general cases. We compare the performance of seven methods, which include

BAYESRATIO method, EB-LIMMA, EB-ANOVA, EB-REML, LIMMA, ANOVA and

REML gene-specific models. To do this we simulate data based on real data structure and

scenarios as may occur in real microarray experiments. Some conclusions can be drawn

on the basis of results from the representative simulation studies:

1). BAYESRATIO method consistently is superior or at least similar to three other

comparative methods: EB-LIMMA, EB-ANOVA and EB-REML. The lowest or slightly

second to the lowest MAD for the denominator of F test points to one of the most

accurate controls of FDR and the best ROC curves of all the simulation scenarios. The

weak assumption of BAYESRATIO method makes the model robust enough to use in

any real-world microarray experiment setting with both within-array or between-array

technical and biological replicates. The Bayesian approach has several features that make
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it advantageous for the analysis of microarray data. These include the incorporation of

prior information, flexible exploration of arbitrarily complex hypotheses, easy inclusion

of nuisance parameters, and relatively well developed methods for handling missing data

(Yang et al. 2004). We are not too worried about its computational complexity because

our BAYESRATIO model was implemented in R software in the computer with Pentium

(R) 2.4GHz AND 1.00 GB ofRAM and took less than 10 hours for 100,000 iterations for

6000 genes in one simulation study.

2). EB-ANOVA we suggest in the first chapter performs reasonably well for any

mixed model analyses of microarray experiment design with technical as well as

biological replication fiom the view point of robust-efficiency. The data sets are not

simulated on the basis of EMS components (expected mean square components in

traditional ANOVA table), which is basic assumption for the model using EB-ANOVA.

The results from simulation study support the conclusion of the first chapter, which is

that EB-ANOVA performs better than EB-REML, ANOVA and REML gene specific

models in terms of precisely estimating variance components and correctly detecting the

largest number of differentially expressed genes when controlling for the false discovery

rate. For the data sets simulations favoring the BAYESRATIO methods, in which the

variance ratio follows inverse gamma distribution, EB-ANOVA performs reasonably

well comparing to BAYESRATIO method in terms of ROC curves and controlling FDR

for most cases. Nevertheless, BAYESRATIO outperforms EB-ANOVA for the cases

with high heterogeneous residual variances ( aresia'uals =3) and constant variance ratios

(0:, =30) across genes.
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The BAYESRATIO model referred to in this paper and the new function

duplicateCorrelation in the LIMMA package can’t deal with situations which include

technical replicates in both within-array and between-array simultaneously. The BB-

ANOVA has more flexibility for all kinds of experimental designs because of its

shrinkage procedure for EMS components with mixed model approaches. “Essentially,

all models are wrong, but some are useful” (Box and Draper, 1987). Since no model can

fit all microarray data, the verification of the model assumptions should be the important

step to the choice of a good model and then make our models more useful.
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Chapter 4: Data Comparison for Two-Channel Microarray

Image Analysis Methods

Abstract

Image analysis is a key component of microarray experiments. Potentially it has large

impact on subsequent data analysis such as identifying differentially expressed genes.

Segmentation of the microarray images as foreground and background pixels is an

important step influencing data precision. Little consideration has been given to the study

of the data features and the statistical modeling to identify difierenfially expressed genes

resulting from three commonly used segmentation methods (adaptive circle, adaptive

shape and histogram methods). In this paper, we use four image analysis software

programs (Genepix, MolecularWare, Spot and Imagene) representing the three

segmentation methods to investigate the variability of data derived from each method.

This impacts subsequent data analysis resulting in different numbers of differentially

expressed genes. The histogram method (Imagene) gives significantly higher variability

across replicate spots compared to other methods. The adaptive shape method (Spot) and

the adaptive circle method (Genepix and MolecularWare) share similar data features. Our

EB-ANOVA (Chapter 2) is beneficial to the analysis of data generated from all four

image software programs combined with different preprocessing methods such as Lowess

and Arsinh normalization in identifying differentially expressed genes compared to the

gene-specific model.
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Keywords: Microarray, Image analysis, Segmentation method, Adaptive circle, Adaptive

shape, Histogram, Genepix, MolecularWare, Spot, Imagene, Lowess, Arsinh, EB-

ANOVA

4.1 Introduction

Gene expression profiling using microarrays is considered an important tool and

powerful technology allowing researchers to study interactions among thousands of genes

simultaneously. The cDNA microarray technology is based on an approach where cDNA

clone inserts are robotically printed onto a glass slide and subsequently hybridized to two

differentially fluorescently labeled probes. The probes are pools of cDNAs which are

generated after isolating mRNA from cells or tissues in two states that one wishes to

compare (Gilber 2006). Usually, samples from two sources are labeled with different

fluorescent dyes (Cy3 and Cy5). The end product of a comparative hybridization

microarray experiment is a scanned array image, where the relative intensities between

dyes on each spot refer to an indirect measurement of the relative gene expression for

further analysis. One of the major challenges of this approach is the image process step.

The purpose of this step is to extract information which includes foreground and

background intensity estimates and quality measures. The accuracy of image processing

has substantial impact on subsequent analyses such as clustering or the identification of

differentially expressed genes (Yang et al. 2002a).

The process of image analysis can be categorized into three steps: 1) Gridding:

assigning coordinates to individual spots. A precise and automatic microarray gridding

method can eliminate the need for human intervention and correct the potential alignment
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and rotation problems (Wang 2005); 2) Segmetation: classify pixels either as foreground

corresponding to the intensity of interest due to the specific hybridization of the DNA

samples or as background; and 3) Quantification: extract intensity information for each

spot, which includes calculating foreground fluorescence intensity pairs (Rhodamine

(Cyanine 5, red) and Fluorescein (Cyanine 3, green)), background intensities and some

quality measures (Yang et al. 2002a). Performing the first two steps reliably and

accurately results in precise quantification for the subsequent analysis. Most image

software provide both manual and automatic gridding procedures which are very diverse

and hard to make fair comparisons. Segmentation is supposed to be the most important

step for the processing of the microarray images (Istepanian 2003). The methods of

summarizing individual pixel data by segmentation could have major effects on the

precision of the data (Ahmed et al. 2004).

The variability arising from image analysis can preclude the yield of meaningful

biological information It is therefore important to understand and reduce the noise

introduced from different image processing methods and develop the corresponding data

analysis scheme. The segmentation method is supposed to be predominant step among

the three sequential steps (gridding, segmentation, quantification) in the processing of the

microarray images (Istepanian 2003). Several studies have been published to compare

different segmentation methods (Yang et al. 2002a; Ahmed et a1. 2004; Korn et al. 2004;

Qin et al. 2005). The precision of the ratio measurement from different segmentation

methods represented by different image analysis software was compared in terms of spot

to spot variability (Yang et al. 2002a; Ahmed et al. 2004), the correlation coefficient

(Jenssen et al. 2002; Ahmcd et al. 2004), the repeatability coefficient (Jenssen et al. 2002;
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Ahmed et al. 2004) and the intra-class correlation coefficient for replicates (Korn et al.

2004). Yang et al. (2002a) discussed the advantages and disadvantages of the different

segmentation methods and developed Spot image software based on the adaptive shape

segmentation algorithm. That paper also declared that the choice of background

correction method has a larger impact on the ratio measurement than the segmentation

method. Jessen et al. (2002) introduced the repeatability coefficient as an indicator of

internal quality of a single microarray experiment. The reason of using the repeatability

coefficient instead of correlation to assess the agreement between two methods is well

described in Bland & Altman (1999). Korn et al. (2004) described an objective means of

comparing different microarray image analysis systems with a comparison of cDNA

microarray data generated by histogram segmentation method in UCSF Spot (University

of California, San Francisco (UCSF), San Francisco, CA, USA; th://jainlab.ucsf.edu/)

and adaptive circle segmentation method in GenePix (Axon Instruments, Union City, CA,

USA). The intra-class correlation is used as one indicator to make comparisons. The

results in the paper showed that the adaptive circle segmentation method in Genepix

performed slightly better than the histogram segmentation method in UCSF Spot on

average. Ahmed et al. (2004) investigated the effect of different segmentation methods on

the variability of data and their results in different numbers of the declared differentially

expressed genes by comparing the three segmentation methods (adaptive, fixed circle and

histogram). The finding that the histogram method gave the lowest variability across

replicate spots compared to other methods in Ahmed et al. (2004) is controversial given

the results in Korn et al. (2004), which showed that adaptive circle segmentation methods

performed better than histogram segmentation methods. However, these studies do not
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offer a clear choice of segmentation method in connecting with different statistical

modeling to investigate how the image analysis influences the data precision and its

ultimate impact on the identification of differentially expressed genes.

We address here a comparison of three segmentation methods (adaptive circle,

adaptive shape and histogram method) using a series of slides with duplicate spots. We

utilize the methods described in the studies by Yang et al. (2002a), Ahmed et al. (2004),

Korn el al. (2004) and Jessen et. a1 (2002 to compare the data precision for the three

segmentation methods. Since the Bayesian model is shown to be more reliable by making

use of information generated by the whole set of genes in the study, we also consider the

heterogeneous variability across the genes introduced from the competing segmentation

methods. The subsequent statistical analyses include: 1) Commonly used normalization

methods: Lowess (Yang et al. 2002b) and variance stabilizing transformation: Arsinh

(Huber et al. 2002); 2) Gene significance analysis: Gene-specific mixed model

(Wolfinger et al. 2001) and EB-ANOVA (Chapter 2). All data sets from the different

segmentation methods will be analyzed in all combination of these normalization and

significance analysis approaches in order to optimize the statistical modeling scheme for

the individual segmentation methods. In addition, the issue of background correction is

also taken into account. We use both the background subtracted and the non-backgrormd

subtracted data for all the analyses. The results of background correction will not be

shown in the paper for the purpose of brevity, but the conclusion will be drawn in regard

of this issue in the discussion section.

The algorithms used by different segmentation methods have been described in detail

in Yang et al. (2002a) and Qin et al. (2005). We will review three representative
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categories implemented in four software programs: 1) Histogram-based segmentation (e.g.

software Imagene (BioDiscovery, Los Angeles, CA, USA). Histogram segmentation uses

a “target” mask (a region larger than any spot) and estimates foreground/background

intensity for each spot from the pixel values histogram inside the mask. A threshold using

the Mann-Whitney test is computed and applied for assigning pixels for foreground and

background estimation; 2) Adaptive circle segmentation (e.g. software: Molecularware

(Molecularware Inc, Cambridge , MA, USA), Genepix). The shape of each spot is

considered as a circle and the center and diameter of the circle is estimated for each spot.

Manual adjustment of the diameter of each spot is allowed in these two software

programs; and 3) Adaptive shape segmentation (e.g. software: Spot). Two commonly

used methods for adaptive segmentation are Seeded Region Growing (SRG) and

Watershed techniques, which are implemented in Spot One of the advantages of using

SRG in microarray image processing is that the location of foreground pixels and

background pixels can be estimated (Qin et al. 2005). We will choose this option SRG in

Spot to generate the data for further study.

In this paper, we show if the choice of segmentation method results in significantly

different data features. These findings have direct, practical implications as the variability

in precision between the four methods influence the choice of normalization method and

model to get accurate numbers of genes identified as differentially expressed. In order to

analyze differences between segmentation methods, (independent of other sources of

possible noise), we perform comparisons of data from histograrn-based, adaptive circle

and adaptive shape segmentation using identical digital image files in Tagged Image File

Format (TIFF) . Both the Molecularware and the Genepix software programs were used
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for the adaptive circle method because we wanted to check if there is any significant

difference for the same segmentation method coming from different image analysis

software. Having identified different data features between methods, the benefits of

normalization method and Empirical Bayes mixed model ANOVA method are discussed.

4.2 Data

To uncover sexually dimorphic gene expression in the developing zebra finch brain,

an experiment was developed to compare gene expression between the sexes using RNA

from the telencephalon of males and females on the 25th day, a juvenile stage when song

memorization in occurring and morphological differentiation of the song circuit is

enhanced. Eight slides were hybridized with females and males using dye-swap design.

One array was not used due to a quality issue. Fluorescent dye labeled cDNA probes

were hybridized to DNA microarrays containing 2400 cDNAs randomly selected from

normalized telencephalic pSportl library of males and females at posthatching days 10-

60. These cDNAs, along with various controls, were located in 32 patches (16 patches in

upper section and the duplicated another 16 patches in bottom section) (Wade et al. 2005).

Image processing

The four image software programs are implemented to get data for foreground and

background signal intensity summary calculation and quality measures. Gridding refers

to the localization of rectangular patches that contain the spots. The gridding template is

created by defining the number of metacolumns, metarows, columns and rows within

patches, and the information about the spot diameter and distance. A little user interaction
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is involved for all four image software to move the patches around to cover all spots with

the patches. Segmentation is the process of distinguishing the set of pixels within a probe

as foreground or background. GenePix and Molecularware assume that the spots are

circular with the centers and the sizes of the circles adjusted automatically or with the

additional interaction of the user with individual spots. A little interaction by the user is

also involved in using Spot software to adjust individual spots in segmentation step. The

data which include mean and median intensities for foreground and background pixels

and some quality measures for each spot are extracted automatically after finishing

gridding and segmetation process for all four software programs.

4.3 Statistical Methods

All duplicate spots from each array are included in the analysis. The mean foreground

pixel intensities and the median background intensities are used for further study (Korn et

al. 2004). Data features are assessed by the variability of preprocessed (see below )

expression ratio for spots within and between arrays and coefficient of repeatability.

Analysis of variance (Ryden et al.) is used to compare the correlation values across these

four image analysis software programs. We preprocessed the intensity data using two

methods: Lowess normalization combined with scale-adjustment (Yang et al. 2002b) and

Arsinh transformation (Huber et al. 2002; Rocke & Durbin 2003) with further

normalization model (Wolfinger et al. 2001). The differentially expressed genes are

identified by using gene-specific mixed model and Empirical Bayes ANOVA (Chapter 2)

with mixed model approach for both preprocessed data sets.
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4.3.1 Comparison of foreground mean intensities and local

background median intensities across methods

We first visually display foreground mean intensities and local background median

intensities from these four image analysis software programs. Scatter-plots of the

foreground mean and background median estimates for pairs of methods are produced to

see how the estimates from different methods are correlated and if there is any

systematically occurring difference across methods. All spot intensities from all arrays

are included in each plot.

4.3.2 lntraclass correlation coefficients for genes across arrays

The lntraclass Correlation (ICC) assesses reliability of different measures by

comparing the variability of different samples of the same set of genes to the total

variation across all biological and technical replicates. To compare the four image

analysis software programs, we use one-way ANOVA based on the following model:

ygkrj =flg+7gk+agi+egki'a (1)

where ygkij is preprocessed (Lowess or Arsinh) log ratios of female vs. male intensity

for gene g=1,2,...,G; 73;, is the fixed effect of dye, k=Cy3 and Cy5; a g,- is the random

effect of array, i=1,2,..,n; replicate j=1,2,...,b with the assumption that ag, ~ N(0, 0'3 )

8

2

and 981“] ~ N(0, deg ).
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For each gene g, let yg, be the sample mean of the replicate observations on array 1'

and fig for the overall sample mean across all arrays. MSBg and MSEg for mean square

for array and residual respectively,

M58 1 {if ‘ )2=— y '.—y ., ,
g n—li-_-1]'=1 g g

 

n b
- 2

MSE = z 2 (y ---y -) ,
g n(b—1) i=1 j=1 gy g,

Standard linear model results show that 373 , MSBg and MSEg are sufficient statistics for

,ug, 0'8 and ,og (Graybill 1976).

The intraclass correlation for each gene can be written as

 

( ) “38 MSBg -MSEg :> 1 (2)
cor .. ... = = fl = — — =—

yeasy ,0g 0.3 + 0.3 MSBg +(b—1)MSEg pg 1+1 / 73

g 3

where 18. = 0’3 /0'e2 is defined as a variance ratio.

g g

We assume the variance ratios and residual variances have inverse gamma distribution as

  

follows (Chapter 3):

2 ~ . . _ fleae 2 ‘(a’e‘l'll _ fie

O'eg IG(ae,/ie), Le. , P£0£g Iaeaflej" r(ae)(0eg] CXP 0.2 ’

3g

1"(aul ’3

From expression (2), we know that variance ratio 78 is a monotonic increasing

transformation of pg , which takes values within the interval (0,1). The procedure
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BAYESRATIO we developed in Chapter 3 is used to estimate hyperparameters in

expression (3) for the data from four image software programs. Therefore, the

heteroskedasticity of the intraclass correlation coefficients across genes can be estimated

and compared for these three segmentation methods.

4.3.3 Correlation coefficients within arrays

The correlations between data obtained from within arrays are compared since these

data are relatively independent of variations in slide printing or sample preparation

(Ahmed et al. 2004). We calculate the Pearson’s correlation coefficient (r) for log ratio of

duplicate genes within slides as follows:

G

.2 _ (J’ij ‘7y')(J’z'j' ’71)“)

G _ 2 G - 2
Z (yij-yij) 2 (yijv-yy')

,- 1 r=1

 

where array index i=1,2,..,n; gene pairs 0, j’)=1,2,...,G and j indicates the genes in top

halves of array and j’ refers the genes in the bottom halves of array. Furthermore, yij is

. . _ 1 G _ l G .
log ratros for each spot wrth yij = — Z yij and yijv = -- 2‘. yij- where G rs the number of

G jzl G jI=l

genes within slides. There are seven arrays and four different software programs resulting

in 28 correlation coefficients. ANOVA model is used for testing the correlation

difference between these four methods as follows:

rsi=lu+as+ui+esi (5)
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where or, isthe fixed effect of image analysis software, s= Genepix, Imagene,

MolecularWare, or Spot; 11,- is the random effect of array, i=1,2,...n; r,,- is the correlation

coefficient; and ui ~ N(0, 012 ), es, ~ N(0, (7%) .

4.3.4 Repeatability

Repeatability is relevant to the closeness of agreement between measurements

obtained with the same method on identical test material, under the same conditions. The

coefficient of repeatability is defined as the range of 95% of the differences between

repeated measurements (British Standards Institution 1975). Lower repeatability

coefficient represents higher precision. The use of correlation might be misleading

because data which seem to be in poor agreement can produce high correlation, for

example, a method that consistently overestimates the high expression ratio and

underestimates the low expression ratio (Korn et al. 2004). We repeat the analysis as

correlation coefficients within arrays using the coefficient of repeatability values to

compare among these four image analysis software programs. We calculate repeatability

coefficient for duplicate genes within arrays as 2.83x6‘, where 6 is as estimated as

follows:

 

 a: 1 g fog—ml, (6)
nS-Gi=1j=1

145



where ns is the total number of spots within array; G is the number of genes; b is the

b

number of replicates for gene i; and fii =% Z yy- (Jenssen et al. 2002). The model (5)

J'=1

also applies for testing significant difference among these four competing methods.

4.3.5 Within slide variability

Each slide contains duplicate spots for 2,397 genes. We calculated the within slide

standard deviation of the log ratio of intensities for all duplicate spots and for all arrays,

which totaled to have 2,397 X 7 = 16,779 estimates of spot-pair deviation for each

competing method. A visualized plot is produced based on estimated proportion vs. spot-

pair deviation for all four image analysis methods.

4.3.6 Lowess Normalization

Lowess normalization was processed using R as based on the paper by Yang et al.

(2002b). A box plot for M-value (log(ratio)) across arrays was produced for each

competing image analysis method Further scale normalization (Yang et al. 2002b) is

needed if there is obviously big difference in spreads for different boxes for arrays in the

plot.
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4.3.7 Arsinh Transformation

It has been demonstrated that there is often dependency between the variance and

signal intensity (Rocke & Durbin 2001). When log-transformation is performed, the

variance is usually stable at high intensity but vary considerably at low intensity. Arsinh

transformations were proposed to stabilize the variance especially at the low intensity end

(Huber et al. 2002; Rocke & Durbin 2003). The assumption for Arsinh transformation is

that there is a quadratic relationship between mean signal intensities and variances. To

visualize the relationship, we plot mean signal intensities vs. variances of genes for the

four competing image analysis software programs. Arsinh transformation is processed in

R by using the fimction vsn in bioconductor package if the assumption appears to be not

strictly violated Similar box plots as the above section are provided.

4.3.8 Gene-specific two step mixed model and Empirical Bayes with

ANOVA method to identify differentially expressed genes

The significance test used to detect differentially expressed genes is proceeded by the

following two approaches:

Two step mixed model by Wolfmger et al. (2001)

1). Step 1: further normalization:

Yijlk =fl +Dj +T1 +(TAlil+Ai+£ijlk (7)

Step 2: gene-specific model

egg-1k = ,ug + Dgi + T3, + (TA)g, + Ag,- + egg-,1, (8)

where g=1,2,...,G, i=1,2,..,n; j=Cy3,Cy5; k=1,2,...,b; ya”, is the preprocessed intensity;

D} is the fixed effect for dye; A; is the random effect for array and rgU-k is the residual from
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model (7). The distribution assumption for random and residual terms are specified as

follows

A.- ~N(0,oi),(TA>. ~N(0,of>,8.-,- ~N<0=0i>

A8,. ~ N(0, ago ), (TA)g,, ~ mom; ~ N(0, age),
)9 egzj

2). Empirical Bayes with ANOVA

Step 1: Use the variance component estimates from model (8) to calculate expected

mean squares for Array and Treatment "' array for each gene.

Assume:

E(MSAg)~IG(01,.31) and E(MS(TA)g)~IG(02,fl2) (9)

df‘MSAg / ,61(MSA ) F

E(MSAg) “”1 1 g (111,254

ANOVA property

 

df MS(TA)2 g ~13]? Dag/£2(MS(TA)g)~Fdf2,2a2

  

E(MS(TA)g)

- d MSA +2 - d MSTA +2
then MSAg= f1 g ’6‘ and MS(TA)g= f2 ( )8 ’32 (10)

df1+2ar1 dfz-I-Zdz

The null t distribution will increase from (if; to dfz +20t2 because the error term for this

model is Treatment*Array .

Step 2: Transform the updated mean square estimates of Array and Treatment * array

back to variance component estimates for Array and Treatment * array.
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Step 3: Rerun model (8) using the results from step 2 and setting variance component

parameters as fixed to those results.

After p-values are obtained for Sex*gene effect by using gene-specific model

(Wolfinger et al. 2001) and Empirical Bayes with ANOVA approach, q-values for

Sex‘gene are then calculated by q-value procedure (Storey 2002) in software R to control

the false discovery rates. The comparison is based on the numbers of differentially

expressed genes identified by these two models applied to the data from these four image

analysis methods respectively using the threshold as p-values and their equivalent q-

values.

4.4 Results

4.4.1 High correlation for foreground intensities and low

correlation for background intensities

Scatter plots of mean foreground and median background estimates for any pair image

analysis methods show whether there is systematical agreement for the two methods.

Figure 1 indicates that there are high correlations for foreground intensities between any

pair of image analysis methods. The red line is the reference line for equal values of x

axis and y axis. The foreground intensities from MolecularWare and Imagene have the

strongest agreement for high intensity estimates but a relatively large variant with the low

intensity estimates among these six pair comparisons. There was consistent agreement

between foreground intensities from Genepix and MolecularWare for low and high

intensities. The reason is that these two software programs use the same segmentation

methods: the adaptive circle method. Spot seems to produce more globally similar data to
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the adaptive circle method (Genepix and MolecularWare) than the histogram method

( Imagene). Figure 2 provides plots for the median background comparison for the pair

image analysis methods. They show very low correlations among these four methods

except the pair of MolecularWare vs. Imagene. The correlations for background

intensities between data from Spot and other three image software programs are close to

zero. This finding further supports the idea that background adjustment may substantially

reduce the precision and increase the variability of intensity estimates (Yang et al. 2002a).
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Figure 4.1 Pair wise comparisons for foreground mean intensities.
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4.4.2 Segmentation methods influence intra-class (array) correlation

To investigate whether the segmentation methods have important impacts on

reliability of measurement, the procedure we developed in Chapter 3 is implemented for

the data from these four image analysis methods. Log-ratios of intensities without

background adjustment are used as they are more stable and biological meaningful. The

hyperparameter estimates for variance ratio, which is equivalent to intraclass correlation

coefficient, and residual variance distributions are listed in Table l and Table 2 (Arsinh

preprocessed data). The shape parameter or in the inverse gamma distribution defines the

heterogeneity of the random variable. The first moment ofthe inverse gamma distribution

,6

a-l

 is used to represent the expectation of this random variable. Tables 1 and 2 show

that the variance ratio distribution for histogram segmentation method by lmagene has

the highest (2m iance_m,,-0 and the second lowest flvmiance_mfio among these four image

software programs, which indicates that this method produces the most homogeneous

variance ratios with the lowest mean across genes. However, the second lowest é'residual

in Table 1 and the lowest émidua] in Table 2 and the highest firesidual in both tables for

histogram segmentation method result in the highest mean of residual variances. This

further explains that the variability for duplicate spots within slides is higher than other

methods and the most homogeneous variance ratios imply over-fitting problem across

slides. The mean of residual variances for Spot is higher than those from Genepix and

MoleculareWare, which use the same segmentation method and have similar

hyperparameter estimates. There is no obvious difference for variance ratio
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hyperparameter estimates between circle adaptive (Genepix and MoleculareWare) and

shape adaptive (Spot) methods.
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Table 4.1 Hyperparameter estimates for variance ratio and residual variance

distributions in model (3) (Lowess preprocessed data)

 

 

 

 

 

 

     

Image Variance ratio Residual

software évar iance—ratio .Bvar iance—ratio dresidual firesidual

Genepix 2.8300i 0.2200 3.6196 :1: 0.3771 2.9846i 0.1190 0.0572 :l: 0.0028

hnagene 5.9247 3: 2.2194 2.3142 :1: 0.9678 2.4983 i 0.0988 0.1536 i 0.0076

Molecular

Ware 2.6150 1 0.2269 2.0357 :t 0.2423 3.2800 1: 0.140 0.0737 i 0.0038

Spot 2.6904 3: 0.2238 3.0098 :1: 0.3370 2.3228 1 0.0839 0.0477 i 0.0022

 

Table 4.2 Hyperparameter estimates for variance ratio and residual variance

distributions in model (3) (Arsinh preprocessed data)

 

 

 

 

 

 

     

Image Variance ratio Residual

software dvar iance-ratio fiveriance—ratio d’resz'dual firesidual

Genepix 2.6298 i 0.2057 3.4537 i 0.3603 2.8819 i 0.1 158 0.0340 i 0.0017

lmagene 4.2723 1 2.3051 1.7920 :1: 1.1973 2.1980 1 0.0849 0.0766 :1: 0.0038

Molecular

Ware 2.2429i 0.1674 l.6782:l:0.1802 2.9539i 0.1200 0.0333 i 0.0017

Spot 2.6442 1- 0.2148 2.6165 i 0.2913 2.3099 i 0.0845 0.0298 :1: 0.0014
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4.4.3 Histogram segmentation method gives lower within-slide

correlation

The Pearson’s correlation coefficient (r) for preprocessed M ratio values obtained

from 2397 pairs of replicate spots for each of seven arrays are calculated for these four

image software in Table 3. The histogram segmentation method implemented in lmagene

software shows much lower correlation coefficient within arrays than others. We further

use the ANOVA model to confirm whether there are significant differences for pair wise

comparisons between these four image analysis software in Table 4. After using the

Bonferroni adjustment procedure for p-values of pair wise comparisons, we observe that

the correlation coefficients from Histogram segmentation method are significantly lower

than others. There are no significant differences between the other two segmentation

methods: adaptive circle (MolecularWare and Genepix) and adaptive shape (Spot).
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Table 4.3 Within-slide correlations between 2397 replicate spots from seven slides by

image analysis software and categorized by Lowess and Arsinh preprocessed data

 

 

 

 

 

 

 

 

          

Lowess preprocessed Arsinh preprocessed

Molecular Molecular

array Genepixlmagene Ware Spot Genepix Imagene Ware Spot

1 0.7751 0.3038 0.6978 0.7581 0.7843 0.3081 0.7329 0.7676

2 0.6994 0.4492 0.7273 0.6401 0.7030 0.4807 0.7479 0.6556

3 0.8485 0.4647 0.7466 0.7219 0.8463 0.4927 0.7716 0.7289

4 0.7522 0.3353 0.6864 0.7721 0.7368 0.3377 0.7007 0.7564

5 0.8104 0.5744 0.6902 0.5981 0.7970 0.4501 0.5672 0.5892

6 0.6443 0.4544 0.6156 0.4503 0.6327 0.4160 0.6153 0.5177

7 0.5641 0.2515 0.4851 0.8082 0.6229 0.3088 0.5555 0.8301
 

Table 4.4 Significance tests for pair-wise comparisons between four image analysis

 

software (within-slide correlation) and categorized by Lowess and Arsinh preprocessed

data

 

 

 

 

 

 

 

 

 

Software Software Lowess preprocessed Arsinh preprocessed

Difference P value Difference P value

Genepix lmagene 0.323 <.0001 0.3327 <.0001

Genepix Molecular

Ware 0.0636 0.2527 0.0617 0.184

Genepix Sp0t 0.0493 0.3722 0.0396 0.388

lmagene Molecul

Ware -02594 <.0001 -0.271 <.0001

lmagene Spot -0.2736 <.0001 -0.293 1 <.0001

MolecularWare Spot

-0.0143 0.7948 -0.0221 0.6288      
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4.4.4 Coefficient of repeatability confirms lower precision of the

Histogram segmentation method

Although correlation coefficients have a simple interpretation, they may not

consistently agree with repeatability as the correlation coefficient is not a measure of

sameness (Bland & Altman 1999). We repeated the analysis using the coefficient of

repeatability values to compare these four image analysis methods. Table 5 and 6 show

the same pattern as Tables 3 and 4, which confirm that the histogram segmentation

method has lower precision than the other two segmentation methods. Furthermore, there

are no significant differences between the other two segmentation methods.

158



Table 4.5 Coefficient of repeatability (defined as 283* 6' ) between 2397 replicate

spots from seven slides by image analysis software and categorized by Lowess and

 

 

 

 

 

 

 

 

   

Arsinh preprocessed data

Lowess preprocessed Arsinh preprocessed

Molecular Molecular

array IGenepix lmagene Ware Spot Genepix lmagene Ware Spot

1 0.1293 0.3431 0.1491 0.1362 0.0934 0.2440 0.0900 0.1011

2 0.1929 0.3236 0.1638 0.2266 0.1435 0.2148 0.1015 0.1684

3 0.1280 0.3074 0.1442 0.1459 0.0942 0.2198 0.0899 0.1063

4 0.1301 0.2776 0.1372 0.2414 0.0998 0.1972 0.0882 0.2162

5 0.2141 0.3067 0.2260 0.2170 0.1939 0.3495 0.2295 0.1792

6 0.1961 0.2754 0.1930 0.2630 0.1618 0.2538 0.1421 0.1867

7 0.2169 0.3660 0.2429 0.1447 0.1507 0.2195 0.1413 0.1017       
 

Table 4.6 Significant tests for pairwise comparisons between four image analysis

software (coefficient of repeatability) and categorized by Lowess and Arsinh

 

 

 

 

 

 

 

 

preprocessed data

Software Software Lowess preprocessed Arsinh preprocessed

Difference P value Difference P value

Genepix lmagene -0.1418 <.0001 -0.1087 0.0001

Genepix Molecular

Ware -0.0069 0.7464 0.0078 0.7465

Genepix Spot 00239 0.2732 .0.0174 0.4741

lmagene Molecular

are 0.1348 <.0001 0.1166 <.0001

lmagene Spot 0.1178 <.0001 0.0913 0.0009

Molecular Spot

Ware -0.0169 0.4345 -0.0252 0.3024       
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4.4.5 Histogram segmentation method shows higher proportion of

high spot-pair deviation

We summarize the spot-pair deviation of log ratio of intensities as the proportion of

pairs falling with equal spaced ranges 0-0.25, 025-05 and so on. Figure 3 indicates that

the Histogram segmentation method implemented in Imagene has higher proportion of

large spot-pair deviation than other two methods with three image analysis software

programs. There is not much difference among the remaining software programs. We

investigate whether scaling might cause the higher spot deviation. Figure 1 does not

support this possibility because the other three image software programs tend to have

higher foreground intensities for more spots than those from lmagene software. Therefore,

the Histogram segmentation method overall introduces more variability than the adaptive

circle and adaptive shape segmentation methods.
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Figure 4.3 The proportion of observations inside fixed width intervals of within gene

spot-pair deviation for data sets from the four image analysis software programs: a)

Lowess preprocessed data; and b) Arsinh preprocessed data.
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4.4.6 Lowess normalization and Arsinh transformation both are

applicable for all data sets

Within arrays, the Lowess normalization method is implemented in each array and

each image analysis method. Sometime scale normalization is needed to make a series of

arrays have the same median absolute deviation if there are substantial scale differences

between arrays (Smyth et al. 2003). Figure 4 displays side-by-side box-plots for

normalized M-values (log(ratio)) for a series of seven arrays for each image analysis

method to visualize if it is necessary to flirther proceed the scale normalization procedure,

which might cause over-fitting problem if done without caution (Yang et al. 2002b). It

appears that there is no obvious difference in data distributions across arrays for each

image analysis method, so we decide not to go with further scaling procedure for all four

competing methods.

Figure 5 shows that the assumption of quadratic relationship between the means and

the variances of raw intensities is met by all data sets from the four competing image

software programs. Therefore, variance stabilizing transformation Arsinh is conducted

for all data sets. The box plots in Figure 6 show the M-values (log(ratio)) across each

array after Arsinh transformation.

The box-plots in Figure 4 (after Lowess normalization) and Figure 6 (after Arsinh

transformation) show no evidence that one transformation strategy is better than another.

Therefore, both preprocessing procedures are used for the data from the four competing

image software programs for all comparisons.
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programs after Lowess normalization: a) Genepix; b) lmagene; c) MolecularWare; and d)

Figure 4.4 Boxplot for M-values across arrays from the four image analysis software

Spot.
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programs after Arsinh transformation: a) Genepix; b) lmagene; c) MolecularWare; and (1)

Figure 4.6 Box-plot for M-value across arrays from the four image analysis software

Spot.
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4.4.7 Less numbers of differentially expressed genes are identified by

the histogram segmentation method. ANOVA EB has more

sensitivity to detect differentially expressed genes across all four

image analysis programs

We first use the gene-specific two-stage model introduced by Wolfinger et al. (2001).

Stage 1 is designed for further normalization for globally dye and array effects. Stage 2

is used to test differentially expressed genes. The number of genes are 2, 3, 2 and 3 for

Genepix, lmagene, MolecularWare and Spot for the data after Lowess normalization, and

1, 2, 1 and l for the data after Arsinh transformation respectively at the threshold of p-

value<0.001. The differentially expressed gene IDs selected from Arsinh transformed

data are subsets of genes from Lowess normalized data for each image analysis software

program.

Empirical Bayes with ANOVA method is applied to the stage 2. The marginal

maximum likelihood estimates i their asymptotic standard errors for hyperparameter

estimates for each mean square component are listed in Table 7 for Lowess normalized

data and Table 8 for Arsinh transformed data. Array*treatment is the experiment unit for

this data set. The estimates of mean square of this term array‘treatment

( MS(array*treatment) ) determine the denominator of F test for sex effects. Therefore,

the accuracy of this estimation has direct impact on statistical inference. dandy,” in

Table 7 and Table 8 indicate the degree of heterogeneity across genes for each image

software. We use EB ANOVA to combine the prior distribution of mean square of

array*treatment with the estimates from gene-specific models. The posterior means are

weighted average as expressed in equation (10) and the degree of fi'eedom for F-test is

increased by 2* danaytm . Intuitively, the bigger value of éanayatm representing more
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homogeneous mean square component has more degree of freedom, which has directly

impact on the inference of fixed effect. Table 7 and 8 indicate high heterogeneity exists

for the data sets from these four competing image software. The Lita arm 5 are around 3.
my

lmagene seems to have the biggest dandy," with the biggest flaflaysm with Lowess

normalized data and the second biggest d'armysm with the biggest flarray'ftrt with

p
Arsinh transformed data. The calculation of the mean based on the first moment

 

shows that lmagene has larger average MS(array*treatment) across genes than others.

MolecularWare shows the slightly smaller average MS(array*treatment) estimates and

bigger dafiaysm than Genepix and Spot for Lowess normalized data and the

biggest CAI/arrays”, for Arsinh transformed data . Overall, Arsinh transformed data have

smaller variances than Lowess normalized data, and the data scale for Arsinh

transformation is also lower, so the CV (coefficient of variation) is similar between these

two methods. It is not surprising that the results from Lowess normalized and Arsinh

transformed data are similar across the four competing image analysis software. The

number of genes identified as differentially expressed by EB-ANOVA are shown in

Table 9. The Figure 7 for Lowess normalized data demonstrates that gene IDs resulting

from Genepix and MolecularWare are the same, Spot has one more unshared genes and

those from lmagene are the subset of genes from Genepix, MolecularWare and Spot with

one extra gene. Actually, the gene lists are shared by the two different preprocessing

methods as the smaller numbers are the subsets of the bigger numbers in Table 9 for each

image software program respectively.
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Table 4.9 Number of Significant Genes and Estimates of False Discovery Rates ( in

 

 

 

 

 

           

Parentheses)

Lowess normalized data Arsinh transformed data

Unadjusted lmagene Genepix Molecular Spot lmagene Genepix Molecular Spot

p-value Ware Ware

0.0001 2 3 3 3 2 3 3 4

(0.08) (0.06) 40.05) 0.03) (0.03) (0.04) 40.04) (0.03)

0.0005 4 6 7 6 4 6 8 9

(0.22) (0.18) (0.14) (0.11) (0.29) (0.15) (0.12) (0.13)

0.001 5 8 8 9 4 8 9 10

(0.4) (0.29) (0.22) (0.23) (0.29) (0.23) (0.21) (0.16)

Spo

   

 

Genepix

MolecularWare

Figure 4.7 Numbers of genes identified by different image software programs at cutoff

point ofp-value<0.001 for lowess normalized data.
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4.5 Discussion

In this paper, we have discussed data features from different image analysis methods

with various segmentation approaches (adaptive circle, adaptive shape and histogram).

We have compared a number of software (Genepix, lmagene, MolecularWare and Spot)

on one experiment with replicated spots on each slide. The comparison indicates that the

background intensities vary a lot among these methods but foreground intensities share

much more similarity with high correlation. It suggests that the choice of image analysis

software would have much smaller impact if we use the data without background

corrected intensities for further analysis than the data with background correction. We

also used two preprocessed procedures (Lowess and Arsinh) for background corrected

intensities to fit BAYSRATIO model and EB-ANOVA model. The results show that

there are more heterogeneity for variance ratios, residual variances for background

corrected intensities than without background correction and it is also true for mean

square components. These findings indicate that shrinkage methods would provide less

benefit for backgrormd corrected intensities than without background correction. Thus,

our advice is to utilize the foreground intensities without background correction as input

for identifying differentially expressed genes. This idea is also suggested in (Cui et al.

2003)

Our comparison of different methods for data feature suggests that:

1) The Histogram method yields significantly lower within-slide correlation with

higher spot-spot variability than other segmentation methods. The Histogram method

defines the ratio of foreground and background as the mean intensities between
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predefined percentile values, usually 5%-20% for background, 80%-95% for foreground

(Qin et al. 2005), which is expected to have lower variability ifthe background correction

data is compared. Nevertheless, histogram methods have been found to suffer from the

difficulty in choosing a suitable mask size, so the foreground intensities resulting fi'om

this method might not be as accurate as other recently introduced segmentation methods

(Yang et al. 2002a).

2) The lowest mean of common intra—class (slides) correlation coefficients with the

most homogeneity further confirms that there might be overfitting problem in the

histogram method.

3) The same segmentation method in different image analysis software gives a similar

data feature. We have compared correlation, repeatability and spot-deviation for the two

software MolecularWare and Genepix which share the same segmentation method

(adaptive circle). Results show that there is no significant difference between them and

that they share more similar features than other comparing pair software (as expected).

4) The data features from the adaptive circle and adaptive shape methods are not

significantly different from each other based on our findings. The reason may lie in that

most spots are supposed to be circular for high quality microarray slides.

The EB ANOVA with mixed model approach has more sensitivity to detect

differentially expressed genes than gene-specific mixed model for the data from all image

analysis software programs. The two different data preprocessing methods identify a

similar list of genes for all image analysis software respectively. Lowess normalization
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and Arsinh transformation has different algorithms to process data. Lowess is aimed to

correct curvatures in MA plots (log ratio vs. mean of log intensity) while Arsinh

transformation is intended to stabilize the variances across genes. All comparisons based

on these two normalization methods give similar results for the four competing image

software programs. Furthermore, Tables 7 and 8 show that the resulting data from these

two data preprocessing methods have similar degree of heterogeneity across genes for all

mean square components. Therefore, it is not surprising that the two normalization

methods do not make much difference in detecting significant genes, and the shrinkage

procedure does increase the power by borrowing information across genes for the data

from all image software programs. The histogram segmentation method does not benefit

as much as the other two segmentation methods, the adaptive circle and adaptive shape

methods from shrinkage procedure, because of its more variable data features.

Due to the complexity of images caused by the noise sources inherent in the DNA

microarray process, it is challenging to develop tailor-made image processing

methodologies (Istepanian 2003). In any case, this paper gives researchers some idea on

the choice of image analysis software to match the features of microarray images and

subsequent data analysis strategy.
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Chapter 5: Discussion, Conclusions and Future Work

5.1 Discussion and Conclusions

The main objective of this dissertation is to propose new methods to improve the

efficiency of statistical inference for differentially expressed genes using microarray

experiments, specifically those based on efficient experimental designs that account for

multiple random sources of variation As elucidated thus far in this dissertation,

statistical methods are typically involved in several distinct stages of a microarray

experiment such as experimental design, image analysis and class comparison analysis

and/or class discovery. Microarray experiments are generally characterized by a very

limited number of replicates due to high costs; nevertheless, a large number of genes are

typically studied. This data feature of microarrays is often referred to as “large p, small

n” issue (West 2003). Here, “p” represents the number of variables, i.e. genes, and “n”

is the sample size for each gene. The development of statistical methods for class

comparison analysis ranges from non-pararnetric methods and t-tests for simple designs

comparing two conditions, ANOVA for comparing three or more conditions, to mixed

effects models for analyzing more efficient and elaborate designs. Empirical and

Bayesian methods are natural approaches for microarray data analysis as they facilitate

borrowing of information across large p to improve the low power for individual gene

tests due to small n. Therefore, Bayes extensions to mixed model analyses could facilitate

efficient analyses of microarray experiments characterized by multiple error strata; e.g.

biological versus technical replication.
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In Chapter 2, an empirical Bayes mixed model with shrinkage on ANOVA

components (EB-ANOVA) for estimating variance components was developed and

compared with other methods such as an alternative empirical Bayes (EB-REML) mixed

model (Feng et al. 2006) and classical mixed model methods (Wolfinger et al. 2001).

Two procedures for shrinking variance components across genes were investigated, each

based on shrinking expected mean squares for random effects. EB-ANOVA was based

on ANOVA inference on variance components whereas EB-REML was based on REML

(Feng et a1. 2006). The distinction between the two methods is somewhat inconsequential

in balanced designs except when ANOVA estimates are negative in which case REML

constrains those estimates to zero as with the shrinkage procedure proposed by Feng et al.

(2006). Stroup and Littell (2004) determined that this phenomenon might be partly

responsible for the differences between the two methods in how they influence Type I

error rates on fixed effect inference in unbalanced linear mixed models. They concluded

that the standard ANOVA F tests based on ratio of mean squares yield acceptable control

of Type I error whereas REML did not for an unbalanced design or models with

correlated errors.

This dissertation further addresses the choice between REML and ANOVA when

extended to shrinking estimates across many responses (i.e. genes). Data sets representing

two popular microarray experimental designs, the 100p design and common reference

design, were used to compare our proposed method with other alternative methods.

Various degrees of heteroskedascity of all random effects were simulated to represent a

wide range of scenarios that might be plausible for microarray data. The performance of

the competing methods was evaluated by mean absolute deviation for variance
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component estimates, and ROC curves and FDR control for inference on differential gene

expression. The results from simulation study indicated that the proposed EB-ANOVA

method provided better performance in detecting true positives while adequately

controlling for false positives in both designs. The study also demonstrated that EB-

ANOVA produced more precise variance component estimates and subsequently more

accurate treatment effect estimates in loop designs, likely due to the increased efficiency

of combining interblock and intrablock information. In addition, it was deemed possible

to formally derive the correct ANOVA F-test denominator degrees of freedom for

hypothesis testing using EB-ANOVA thereby combining its sensitivity with better

control ofType I error and false discovery rates compared to EB-REML.

In Chapter 3, a fully Bayesian method named BAYESRATIO was presented to

critically evaluate the empirical Bayes strategy in the popular microarray analysis

software LIMMA for managing within-array technical replicates. Microarray

experimental designs are often characterized by technical and biological replicates. It is

essential to correctly specify the experimental units for statistical analysis, particularly to

control Type I error. For those situations where each gene is spotted two or more times

on an array, the LIMMA software invokes a very strong shrinkage assumption, that being

a constant ratio of within to between slide variability across all genes. In essence then,

the treatment of technical replicates is somewhat based on simple moderation methods

designed for a single error strata.

Motivated by an application which was determined to violate this common intraclass

correlation assumption, BAYESRATIO was proposed to directly model heterogeneity in

this intraclass correlation and the residual variance across genes. The performance of
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LIMMA procedure and BAYESRATIO were directly compared to each other, our EB-

ANOVA model and other conventional mixed model estimation methods. The simulated

data sets were based on differing levels of heterogeneity for variance ratios and residual

variances across genes. Simulations also differed in the number of technical replicates

(spots per gene on an array) and also the magnitude of the correlation coefficients

representing the typical top-and-bottom versus side-by-side replicated spots for genes on

an array. LIMMA was illustrated to have poor performance in controlling false discovery

rates, worsening with larger numbers of spots or technical replicates per gene within

slides. Conversely, BAYESRATIO had overall equal or superior performance to any

other methods in terms of precisely estimating variance components, balance between

false positive and false negative rates and FDR control. Moreover, the weaker assumption

of BAYESRATIO regarding the distribution of the intraclass correlation coefficient

across genes makes it applicable to microarray data with any level of heteroskedascity

and for different design layouts; for example, for those designs where there may be either

within slides or between slides technical replicates or both. EB-ANOVA in Chapter 2

was also shown to be robust and effective even for the simulations from Chapter 3.

In Chapter 4, different data features coming from different image analyses software

were studied, and transformations and models that would be most appropriate for the

respective characteristics of data were suggested. Image processing may have a

substantial impact on subsequent analysis such as the identification of differentially

expressed genes (Yang et al. 2002). In this chapter, we show that the choice of

segmentation methods results in significant data features such as variability in precision

which may influence the preferable choice of normalization method and statistical model
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for formal inference. TIFF files from one microarray experiment were employed as the

basis for comparing four image software programs Genepix, lmagene, Molecularware

and Spot. Since background intensities varied substantially among these image software

programs whereas foreground intensities were highly correlated among them, analyzing

data that is not background corrected has smaller impact caused by different choice of

image analysis software than with background correction. Based on TIFF files that were

used to make comparisons intensities, the histogram segementation method of lmagene

software produced significantly greater variability for duplicated spots and more

homogeneous correlation coefficients across genes indicating a potential over-fitting

problem. The shape adaptive algorithm by Spot image software and circle adaptive

methods by Genepix and MolecularWare software programs were found to share similar

data features in our data. The proposed EB-ANOVA model was demonstrated to have

greater sensitivity for identifying differentially expressed genes compared with the

conventional mixed model (Wolfmger et al. 2001) for data generated from all four image

analysis software programs.

5.2 Future Work

In this dissertation, I focused on statistical methodology development and applications

for microarray data analysis. An empirical Bayes extension of mixed model analysis of

microarrays was proposed in Chapter 2 and a Bayesian method for modeling

heterogeneity of intraclass correlation coefficients of arrays characterized by multiple

spots per gene presented in Chapter 3 was shown to be more suitable and flexible

compared to the increasingly popular LIMMA software. Different segmentation methods
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based on different image software programs were compared and subsequent statistical

analysis method was suggested in Chapter 4.

All the models considered in this thesis are based on the general mixed model

framework The error term and all random effects are assumed to be normally distributed

in conventional mixed models and we did not deviate from that assumption in our

Bayesian or shrinkage based extensions. As microarray experiments are characterized by

multiple complex steps, it is not uncommon for some data influenced by artifacts; i.e.

there are outliers. Hence, one potentially important extension of this work is to formally

accommodate outliers. A Student t error specification for the random error terms would

be robust method to outlier fluorescence intensities. A hierarchical Bayesian model with t

distributed errors has been proposed up by Gottado et al. (2003). Dror et al. (2003) also

introduced a model that includes novel features such as heavy-tailed additive noise and a

gene-specific bias term. An unresolved issue in these Bayesian-based approaches is that

they are very computationally intensive and time consuming. Hence it is necessary to

consider alternative and efficient algorithms to fit Student t-error model in a reasonable

amount of time for large data sets like those generated from microarray experiments. A

ECME (expectation-conditional maximization either) (Liu & Rubin 1995) may be one

such efficient algorithm.

The methodology we discuss in this study is developed primarily for two color

microarray systems. In short oligonucleotide microarrays (i.e. Affymetrix arrays), the

probes, several of which form a single gene, are designed to match parts of the sequence

of known or predicted mRNAs. There are several methods proposed for normalizing data

at probe level and the expression of each gene can be based on summarizing the values of
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distinct probe pairs. After data have been properly normalized, the essential difference

between two color microarray data and single-channel microarray is that two sample

expression profiles are paired in two color arrays whereas only one sample is hybridized

in single-channel microarrays (Fan & Ren 2006). Subsequent statistical analysis is then

similar to common reference experiments (Smyth 2005). Therefore, the pr0posed

methods can easily extend to the analysis of short oligonucleotide arrays. It would be

useful to explore how beneficial the proposed methods are for improving statistical

inference when applied to data generated from short oligonucleotide microarray

experiments.
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