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ABSTRACT

MEASUREMENT OF THE DIPHOTON DIFFERENTIAL CROSS-SECTION IN

pp COLLISIONS AT \/§ 2 1.96 TeV

By

Joshua Marc Dyer

The diphoton differential cross—section as a function of mass up to 300 GeV/c2, qT

up to 100 Gel~’/c, and opening angle over a range of 0 to 7: radians is measured. The

measurement. is performed using 1046.19 pl)"1 of data collected at Fermi National

Accelerator Laboratory using the D0 detector. This analysis considers all direct

diphoton states but attempts to suppress contributions due to fragmentation.
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CHAPTER 1

Introduction

The information provided by this dissertation attempts to extend the knowledge base

of the particle physics community. This thesis presents research into the very tiny

world of particles and fundamental forces, but focuses on particles that are massless.

Photons are occasionally produced in pp collisions. Direct photon production

refers to processes in which the final state photons are produced directly from the

hard scattering of incoming quarks and gluons, and not from secondary decays. It

is particularly interesting to study photons since their energies and angles are well

defined, unlike those of a jet, so that important information can be extracted regarding

the underlying fundamental processes. A particularly useful process to examine is

that of double photon production, or diphotons. Diphoton production has long been

recognized as an important process for testing the parton model, the dynamics of

quarks and gluons, and their interactions. In addition, the postulated Higgs boson is

theorized to decay into two photons and thus an accurate measurement of the QCD

diphoton background is important for any Higgs search.

This analysis presents a measurement of direct diphotons produced at D0. The

rate at which direct diphotons occur in proton-antiproton collisions as a function of

invariant mass, the diphoton’s transverse momentum, and the opening angle between

the two photons is revealed. These measurements are performed at higher energies
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and with a larger dataset than has ever previously been available. As such, the

measurements are made with greater precision and with a larger mass range than in

previous analyses.

Chapter 2 provides background and some highlights of particle physics as well as

an indication of the importance of this analysis. Chapter 3 briefly describes the Fermi

National Accelerator Laboratory’s proton-antiproton collider and the D0 detector and

some of its intricacies. Chapter 4 gives a description of the dataset and Monte Carlo

programs used in this analysis. Chapter 5 explains the identification of photons,

electrons, and jets and discusses the analysis cuts, their respective efficiencies, and

background suppression. Chapter 6 describes the final steps of the analysis which use

a matrix inversion technique. The resulting cross-sections are also presented in this

chapter.



CHAPTER 2

Theory

2.1 The Standard Model

The Standard Model is a theory that describes most particles and forces quite well.

It is widely accepted and used by the physics community. The Standard Model de-

scribes all matter as being composed of point-like elementary particles called fermions.

Fermions have half-integer spin and both quarks and leptons are of this type. Quarks

and leptons come in families of three generations each and are listed in Table 2.1 and

Table 2.2, respectively.

 

 

 

 

 

    

Generation Particle (symbol) Charge (e) Mass (GeV)

1 Up (u) + 2/3 0.0015-0004

Down ((1) — 1/3 0004—0008

2 Charm (c) + 2/3 1.15-1.35

Strange (s) - 1/3 0.80-0.130

3 Top (t) + 2/3 178.1

Bottom (b) - 1/3 4.1-4.4
 

Table 2.1: Standard Model Quarks [2].

 



 

 

 

 

 

     

Generation Particle Charge (e) Mass (MeV)

1 Electron (e) -1 0.511

Electron Neutrino (11,.) 0 < 2 x 10’6

2 Muon (,u) -1 105.66

Muon Neutrino (11),) 0 < 0.19

3 Tau (T) -1 1776.99

Tau Neutrino (VT) 0 < 18.2

 

Table 2.2: Standard Model Leptons [2].

Quarks are the particles that have fractional charge and make up protons and

neutrons. They come in six flavors: up, down, strange, charm, top, and bottom.

Particles made of quarks are called hadrons, which are further divided into baryons

(containing three quarks) and mesons (containing two quarks). Leptons are particles

that have integer charge and do not interact via the strong force. The charged leptons

are the electron, muon, and tau, each having a corresponding uncharged neutrino

called the electron neutrino, muon neutrino, and tau neutrino. All particles have an

antiparticle that has the same characteristics except for reversed charge, and anti-

fermions have Opposite parity from fermions.

The four fundamental forces, electromagnetic, strong, weak, and gravity, are all

mediated or “carried” by particles called vector bosons which have integer spin. The

bosons’ characteristics are listed in Table 2.3.



 

 

 

   

Interaction Mediating Particle Rel. Strength Range (m) Charge (e) Mass (GeV)

Strong Gluon (g) 1 10‘15 0 0

Electroweak:

Electromagnetic Photon (7) 10‘2 oo 0 0

Weak Wi 10-5 10-18 11 80.425

Z0 0 91.1876

Gravity Graviton 10‘39 co ? ?     
Table 2.3: Standard Model Gauge Bosons [2, 3].

Particles with electric charge interact via the electromagnetic force, which is me-

diated by the photon. The weak force is carried by exchange of the W and Z bosons.

The W and Z bosons have large masses compared to the others, and work over short

distances. Gravity is theorized to be mediated by the graviton, but no well-developed

quantum theory of gravity has yet been proposed, and no evidence of the graviton has

yet been discovered. The strong force acts between quarks, works to form baryons,

mesons, and holds the nucleus of the atom together. This force is mediated by the

gluon. Gluons are chargeless and massless, but do have a different quantum num-

ber called color or color-charge. Quarks come in three colors, red, green, and blue,

while antiquarks come in cyan (antired), and magenta (antigreen), yellow (antiblue).

Only particles whose elementary particle color combinations are white or colorless

are allowed to freely exist. As such, particles containing three quarks are composed

of quarks where each has a different color (i.e. red, green, and blue) and particles

containing two quarks are composed of a quark color—anticolor pair.

Although the Standard Model is not complete, a completely new theory is not ex-

pected. Due to much experimental testing confirming its predictions, only extensions

of it are expected.



 

2.2 QCD and Higgs Searches

2.2.1 QCD and the Requirement of Color

Quantum Chromodynamics (QCD) is the theory that predicts interactions due to

the strong force. This thesis studies events containing direct diphotons in proton-

antiproton collisions, and are a direct result of the strong force interaction. Basically,

protons and antiprotons are each a container of three quarks. These quarks exchange

gluons as necessary to maintain a bound, stable state. Since gluons and quarks carry

color, they can couple to themselves and can emit gluons. One feature of the strong

force is that as the energy of a collision increases, the interaction strength of the

strong force gets weaker and minimizes the chance of quarks and gluons to radiate.

As such, a collision between proton and antiproton containers is considered to be an

interaction between just one constituent (quark or gluon) of each. Given, however,

that hundreds of particles can be formed by these collisions, a cross-section (a) is

often calculated as a measurement of how likely a particular interaction will occur,

such as a quark and an antiquark producing two photons.

Color is often a new and strange concept for most and can seem completely con-

trived. Several physical instances actually mandate its existence, however, and a brief

overview is provided here. It is not the case that if you grouped millions of red up

quarks together that the human eye would see them as red. Color is instead merely

a characteristic held by quarks and gluons whose interaction happens to mirror the

color theory of light. This characteristic is, however, necessary to resolve the issues of

spin and statistics in baryon spectroscopy [4]. For instance, consider the A++(1232),

which has spin %. This particle is the bound, ground state system of mm and should

have a totally symmetric wavefunction under exchange of up quark pairs. However,

since this particle has spin %, the wavefunction is required to be antisymmetric under

exchange of up quark pairs, which is a problem since spin, space, and flavor consid-

6



erations do not produce an antisymmetric wavefunction. This issue is resolved if the

color parameter is introduced as it provides an antisymmetric wavefunction. Other

examples exist, including experimental data on e+e‘ annihilations [4].

2.2.2 The Higgs Boson

The Higgs Boson is a particle that is theorized to couple to any particle with mass.

This boson comes from the Higgs mechanism, which introduces a field, called the

Higgs field, and has a non-zero vacuum expectation value. This mechanism predicts

three massive vector bosons (Z0, Wi), one scalar boson (H), and also gives mass to

the quarks and leptons. The discovery of spontaneous symmetry breaking and the

Higgs mechanism were a major breakthrough toward unifying the electromagnetic

and weak forces. The formal mathematics can be found in [4].

The theory of the Higgs mechanism is very successful, but for the theory to con-

tinue, the Higgs boson must be discovered. Higgs searches are ongoing at D0 and

GDP at Fermilab and will also be performed at the Large Hadron Collider (LHC)

being built at CERN in Switzerland. The Higgs is theorized to have a number of

decay modes, and their branching ratios are shown in Figure 2.1. One of the decay

modes is that of two photons, making this analysis interesting not only as a QCD

measurement, but also for measuring the 77 background for future Higgs searches.

2.3 Direct Diphotons

While the Higgs boson is expected to have a two photon decay channel, two photons

may also be directly produced in a number of other interactions as shown in Figure

2.2. Direct diphotons and the mechanisms by which they are produced are sensitive

to the gluon distribution of the proton and are an excellent method for testing both

perturbative and non-perturbative QCD. This thesis includes events from all direct

7



 

 

  

T
I
I
I

 

l
'

I

 

I
I

I
l
I
I
l

I
I

I
I
I
I
I
I
]

 

I
I
I
‘
I
‘

 I FTIIII
I
I

I
I
I
I
I
I
I
I
]

  
 

10 1 i r r

90 100 200 300 400 '

MhSM(GeV)

Figure 2.1. Branching ratios of the dominant decay modes of the Standard Model

Higgs boson.



 

Figure 2.2. Leading order (L0) Feynman diagrams for direct diphoton production in

QED, QCD, and mixed.

diphoton processes. The contributions shown in Figure 2.2, are only the leading

order processes for direct diphoton production, and therefore the radiative corrections

should also be mentioned, and are shown in Figure 2.3. In the Feynham diagrams, the

straight lines represent quarks, the wavy lines represent photons, and the curly lines

represent gluons. A few other diagrams that include photons due to fragmentation

do exist and are sometimes included in theory calculations [6], but the cuts used in

this analysis inevitably suppress those contributions.



 
Figure 2.3. Radiative corrections to the LO Feynman diagrams.
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CHAPTER 3

Fermi National Accelerator

Laboratory and the D0 Experiment

This chapter will provide a brief description of Fermi National Accelerator Laboratory

(Fermilab or FNAL) , the D0 detector, giving more emphasis to the detector subsys-

tems that are pertinent to this analysis, as well as the trigger and data acquisition

(DAQ) systems.

3. 1 Fermilab

Fermilab is the site of the world’s, currently, highest energy particle accelerator, the

Tevatron, and also is home to a few high energy physics experiments including D0,

CDF, and MINOS. Fermilab was commissioned by the US. Atomic Energy Commis-

sion on November 21, 1967. It is located in Batavia, IL, 40 miles west of Chicago, on

what used to be the village of Weston and covers 6800 acres of farmland [7]. Origi-

nally named the National Accelerator Laboratory, it was renamed in 1974 in honor of

Enrico Fermi, the 1938 Nobel Prize recipient for his work on the artificial radioactiv-

ity produced by neutrons, and for nuclear reactions brought about by slow neutrons

[8]. Fermilab also holds facilities for cancer treatment, science outreach, and a herd

11



of American bison that produces calves each year — always a popular attraction for

visitors. The Tevatron itself is a particle accelerator ring that has a circumference of

4 miles, and collides protons and anti—protons at a center-of-mass energy of \/§ = 1.96

TeV. The Tevatron Collider has been run for two major periods of operation, referred

to as Run I and Run II. Run I lasted from 1992 to 1996, at which time the Tevatron

was shut down for upgrades to both the Tevatron itself and to the detectors that it

serves. The data presented in this analysis are from the Run II portion of the D0

experiment which started recording data in March 2001.

3.2 Accelerator and Antiproton (19') Production

Fermilab uses a series of accelerators to generate the proton and antiproton beams

that are collided. The information about the accelerator process is based on [9] and

[10]. This process starts with tanks of hydrogen gas and the Cockcroft-Walton pre-

accelerator. The hydrogen, consisting of one electron and one proton, is ionized to

have two electrons, and then accelerated to 750 keV. The H‘ ions then enter the

500 ft. linear accelerator (or LINAC) and are accelerated to 400 MeV using quickly

oscillating electric fields that also cause the protons to be grouped into bunches. Once

the ions are accelerated, they pass through a carbon foil that strips off the electrons,

leaving only protons to continue to the next stage. These protons then travel 20 feet

below the surface to the Booster (a synchrotron), where magnets force them to travel

in a circle and accelerate them up to 8 GeV, where they are then passed to the Main

Injector.

The Main Injector accelerates these protons to 120 GeV. A few of these continue

to be accelerated to 150 GeV and injected into the Tevatron, while the rest are

sent to the antiproton source. Those that are sent to the anti-proton source collide

with a fixed nickel target where a wide variety of particles are produced, one of

12



which is the antiproton. For every million protons that hit the target, about 20

antiprotons are produced. The antiprotons that are produced are focused into a

beam using a lithium lens, and passed through a pulsed magnet, acting as a charge-

mass spectrometer, that removes the particles that are not antiprotons. Now, since

the protons strike the nickel target at the same time the antiprotons that are produced

have a small variation (or width) in time, but a large width in energy since they can

be produced at different energies. So, these are now sent to the Debuncher where

radio-frequency (or RF) cavities are used to exchange the energy and time widths,

creating a continuous (instead of bunched) beam of antiprotons of similar energy.

This antiproton beam is diffuse due to the different, random angles at which they

are produced. This randomness can be likened to temperature. It is important to

remove the diffuseness and focus the beam in order to increase the probability of

producing rare particles in the collider. To accomplish this, the beam is “cooled”

using a method called Stochastic Cooling. The beam is then sent to the Accumulator

where the beam is further focused and the antiprotons are stored and re—bunched.

Once enough antiprotons are produced (which takes several hours), they are sent back

to the Main Injector, accelerated to 150 GeV, and injected into the Tevatron in the

Opposite direction of the protons signaling a new “store” of 36 bunches of protons

and 36 bunches of antiprotons.

Once in the Tevatron, the proton and antiproton beams are accelerated to almost

1 TeV, and have a speed nearly that of light. The beams are kept in a helical orbit

around the ring by a 4.2 T magnetic field created using about 1000 superconducting

magnets cooled, using liquid helium, to 4.3 K. The beams are then steered so the

bunches cross each other every 396 ns producing collisions at two interaction locations,

one of which is centered in the D0 detector.

13
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Figure 3.1. Layout of Fermilab’s accelerators [9].
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3.3 The D0 Detector

Most of the collisions that happen every 396 ns are glancing collisions that produce

uninteresting results. Sometimes, however, a head-on collision or hard scatter occurs

between one parton of the proton (a part of the proton which is either a quark or

gluon) and one parton of the antiproton. In these collisions, the partons not in the

collision travel down the uninstrumented beam pipe, but the two that did collide can

annihilate and produce new particles that travel through the D0 detector and are

studied.

The D0 detector, pictured in Figure 3.2, is a nearly-hermetic, 47r detector [11].

Portions of the detector are completely new with respect to Run I, whereas other

portions have been recycled and are again being used in Run II. The detector consists

of several subdetectors that are layered like an onion or parfait. These subdetectors

are each designed to measure different traits of particles.

3.4 Coordinate System and Variables

The D0 detector uses a right-handed coordinate system with the origin at its geometric

center. The positive z-axis is defined to be in the direction of the protons, and the

positive y-axis is upward. The angles 6, and 45, are the polar and azimuthal angles,

respectively, with the 6 = 0 defined along the beam line and (25 = 0 along the x-axis

[12].

For relativistic particles, it is natural instead of using 6, to use the Lorentz invari-

ant variable rapidity, y, defined as

 _l

”—2
In (23:) (3.1)

for finite angles in the limit that lim :g. —> 0 [12]. This variable is more convenient to
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Figure 3.2. The D0 Detector [11].
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use when approximated by the pseudorapidity, 17, defined as

0

Pseudorapidity calculated from the origin to a position in the detector is called detec-

tor 17, or met, whereas the pseudorapidity calculated using the point of the collision,

or primary vertex, is the physics 77, or simply n. This distinction is made since the

primary vertex does not always occur at the origin.

While the proton-antiproton collisions occur at a fixed center-of-mass energy («3),

these protons and antiprotons have a parton structure due to their constitution of

a number of subatomic particles. This parton structure prohibits the use of total

conservation of energy principles in the analysis since the individual partons only

carry a fraction of the proton/antiproton’s total energy, with the rest of the energy

escaping down the beam pipe with the other partons [13]. Instead, conservation of

momentum and conservation of energy are applied in the transverse plane (or the

plane perpendicular to the beam pipe). This may be used since the transverse energy

and momentum balance prior to the collision are zero. Consequently, useful variables

are defined:

0 Transverse Energy, ET 2 E sin 0

0 Transverse Momentum, pr = pSiDQ = VPE: + P3

0 Missing Transverse Energy, ET.

ET occurs when a particle, such as a neutrino, is produced in the collision but not

found by the detector, and thus carries away some amount of energy. When energy

conservation in the transverse plane is performed, the total does not sum to zero

revealing this missing transverse energy.
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3.5 Tracking System

The tracking system of the detector, pictured in Figure 3.3, is completely new for Run

II and is designed to detect charged particles as well as locate the primary vertex with

a precision of 35pm. The tracking system consists of the Silicon Microstrip Tracker

(SMT), the Central Fiber Tracker (CFT), and is surrounded by a solenoidal magnet

with magnetic field strength of 2T [11]. The magnetic field will cause a charged

particle’s path to deflect in a circle allowing its momentum to be measured. The

equation that predicts this phenomenon is

r = E (3.3)

where r is the radius of curvature, 1971 is the transverse momentum, q is the charge,

and B is the magnetic field strength.

3.5.1 Silicon Microstrip Tracker

The SMT provides tracking and vertexing information over a pseudorapidity range

of -3 < 17 < 3. Given that the primary vertex does not always occur at the origin and

some particles decay after a short distance creating secondary vertices, a combination

barrel-disk design for the SMT, pictured in Figure 3.4, was employed. In this design,

the barrel portions and the OFT detect particles of low 17, and the disks detect particles

with high 7). The SMT consists of six barrels, and each barrel has four silicon readout

layers. Each layer is composed of silicon modules known as ladders. The ladders

are mechanical support structures made of silicon with beryllium strips that aid in

alignment with carbon-boron fiber/Rohacell rails that bridge the beryllium strips.

All of the barrels use p-type axial sensors and n-type stereo silicon sensors. Layers

one and three of the four inside barrels use 90° stereo, double-sided silicon sensors,
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Figure 3.3. Cross-section of the D0 tracking system [11].
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Figure 3.4. Barrel/Disk design of the SMT [11].
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while the outer two barrels use single-sided sensors in these layers. Layers two and

four of all of the barrels use double-sided silicon sensors but only have a 2° stereo

oflset. The centers of the barrels are located at [z] = 6.2, 19.0, and 31.8 cm.

Each barrel is capped with an F-disk composed of 12 double-sided, trapezoidal

shaped, wedge detectors built in a planar arrangement, and three more F-disks are

placed at each end of the barrel-disk assembly. The F-disks are located at |z| = 12.5,

25.3, 38.2, 43.1, 48.1, and 53.1 cm. Next, four H-disks composed of 24 single-sided

wedge detectors, also built in a planar arrangement, are located at [2| 2 100.4 and

121.0 cm for high 17 coverage. Finally, all of this is supported by beryllium bulkheads.

 
 

 
Figure 3.5. Cross sectional view of the SMT [11].
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Figure 3.6. Positioning of two fiber ribbons to form a doublet [11].

These bulkheads are designed to support the ladders and disks as shown in Figure 3.5,

as well as allow support for signal readout cables and coolant. All of these detectors

operate at a temperature below 5° C [11].

3.5.2 The Central Fiber Tracker

The CFT is the second portion of the tracking system and surrounds the SMT. The

CFT is composed of about 77,000 scintillating fibers positioned on eight concentric

cylinders (made with a core of Rohacell and coated with linear carbon fibers impreg-

nated with 40% resin) and fills the space from 20-52 cm from the center of the beam

line. The inner two cylinders are only 1.66 m long to allow space for the SMT H-disks,

while the other six cylinders are 2.52 m long.

The scintillating fibers are arranged into ribbons of 128 fibers each. Two of these

ribbons are formed into a doublet by positioning the second layer in the interstitial

spaces of the first, pictured in Figure 3.6. Each cylinder contains one axial doublet

ribbon oriented along the beam path and one stereo doublet ribbon of either 11 or v

oriented at i3°. These stereo layers start on the inner cylinder with a u layer, and

alternate for each cylinder. The scintillating fibers are 835 microns in diameter. This

small diameter provides a doublet resolution of 100 microns. The fibers are made

of polystyrene doped with fluorescent dyes of 1% paraterphenyl that emits light at

340 nm, and, due to paraterphenyl’s low mean free path in polystyrene, a secondary

wave-shifter dye of 3-hydroxyflavone at 1500 ppm that absorbs the 340 nm light and
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emits 530 nm light that transmits well through the polystyrene. These fibers are

then doubly clad with polymethylmethacrylate and then fluoro—acrylic. The dual

claddings provide for both better optical and mechanical performance. One end Of

the fibers is capped with an aluminum coating that provides a reflectivity of 90%.

The other end is connected to waveguides pictured in Figure 37, whose composition is

the same as the fibers except for the dyes, which pipe out the light from the detector

for readout [11]. The waveguides are connected to Visible Light Photon Counter

(VLPCs) cassettes that are immersed in a liquid helium cryostat and turn the light

from the OFT into electrical signals. The VLPCs Operate at 9 K, have a quantum

efficiency of > 75%, a gain of 22,000 to 65,000, and are able to detect single photons

[11]. The pp resolution at me, = 0 of the entire tracking system can be parameterized

 

as OPT/m = \/0.00152 + (0.0014107)2 [11].

3.6 Preshower

The preshower detectors, also new for Run II, are the next layer of the detector after

the SMT, CFT, and the magnetic field producing solenoid. The preshower is de-

signed to improve photon and electron identification, enhance tracking and calorime-

try matching, and help correct electromagnetic energy measurement offline due to

the uninstrumented solenoid, a lead radiator (which, combined, is about two radia-

tion lengths in thickness), and other material such as structural support and readout

cabling. It is divided into three portions, the central preshower (CPS) and the two

forward preshower (FPS) detectors. Both the CPS and FPS are made of triangular

strips of scintillator with a wavelength-shifting fiber in the center and then coated

with two layers of mylar to increase light yield. The fibers are read out by VLPCs

similar to the OFT. The triangular strips are arranged so that no dead space exists

between them. The CPS and FPS detectors are made from the same material, but

22



256-channel fiber

CFT Of CPS flaw Central calcrimelier

waveguide bundle ‘ “VOW W3"

 

Strain

'9'“ Clearance

'1 ll for FPS

(not shown)

lenoid

services

Solenoid _

OUIBI' OHITIGIBI'

wail support

Figure 3.7. Gross sectional view of the CFT and associated waveguides [11].
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their geometries, pictured in Figure 3.8, are a little diflerent.

The CPS detector is composed of three layers of the scintillating strips and is

positioned in the 5 cm gap between the solenoid and the central calorimeter. The

three layers are in an axial, u, and v geometry with the u-layer at a stereo angle of

23.774° and the v-layer at a stereo angle of 24.016°, and have 1280 strips each [11].

The two FPS detectors are positioned on the heads of the calorimeter endcaps.

Each FPS detector is made of two layers of the triangular strips, a two radiation

length thick layer of lead-stainless-steel absorber, and two more layers of triangular

strips. The inner layers are called the MIP (minimum-ionizing particle) layers and

the outer layers are called the shower layers. This is due to the inner layers typically

detecting charged MIPS, and the outer layer also detecting particle showers produced

in the absorber. These detectors are also read out using the VLPCs.

3.7 Calorimeter

The D0 calorimeter system, shown in Figure 3.9, is unchanged from Run 1. It is de-

signed to provide very accurate energy measurements for electrons, photons, and jets.

It is a compensating- sampling calorimeter that consists Of three portions, the central

calorimeter (CC), and two endcap calorimeters (EC). (It is called a. “compensating-

sampling” because the calorimeter collects only a sample of a particle’s energy, but

is considered compensating since uranium releases extra energy by fast neutron fis-

sion during a particle’s shower.) The CC covers [met] < 1.2 and the E03 extend the

coverage up to |ndet| z 4. In the ¢-dimension, the calorimeter consists Of 32 sepa—

rate modules with unavoidable gaps between them. These gaps, Often referred to as

phi-cracks, make it possible for particles to both escape through them, and be mis-

measured if their position is too close to the edge of the modules. All three portions of

the calorimeter are made of three distinct sections: an electromagnetic (EM) section,
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a fine hadronic (FH) section, and a coarse hadronic (CH) section made Of plates of

metal to act as absorbers. The EM section of the CC uses 3 mm thick and the EC

uses 4 mm thick plates Of pure depleted uranium, 238U. The fine hadronic sections are

made of 6 mm thick plates Of uranium-niobium (2%) alloy, and the coarse hadronic

sections use 46.5 mm thick plates of copper in the CC and stainless steel in the EC.

The calorimeter uses liquid argon at a temperature of 90 K as the active material

that fills the space between the plates.

The absorbers cause particles produced from the collision to shower into secondary

particles at a geometric rate as they interact with the absorber atoms. Electromag-

netic objects, namely photons and electrons, lose energy by traveling through matter

primarily by two shower processes: bremsstrahlung (e —> 67) (literally braking ra-

diation) and pair production (7 —> e+e‘). As these showers occur, the secondary

particles ionize the argon atoms which are collected and provide a measurement of

the original particle’s energy, given that

E(a:) -_-_— Ema??? (3.4)

where x is the distance traveled, and X0 is the radiation length of the material

through which it travels. X0 is defined for electrons as the mean distance over which

the electron will lose E]? of its energy through the bremsstrahlung process, and defined

for photons as the thickness of material through which a photon travels so that the

probability of its converting to an electron-positron pair is equal to 7/9, provided that

the energy of the photon is of order 1 GeV [14]. The radiation length for uranium

is approximately 0.34 cm [16]. Due to the nature of EM objects, the calorimeter is

designed with four layers of uranium plates aptly called EM], EM2, EM3, and EM4
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Figure 3.9. D0 calorimeter [11].

which extend radially outward from the beam pipe where these objects will deposit

most Of their energy in a narrow shower.

Hadrons (particles often present in jets), however, interact differently than EM

objects. Hadrons interact with the uranium nuclei through the strong force and have

an associated quantity similar to radiation length, called nuclear interaction length,

A. Nuclear interaction length is defined as the mean free path between inelastic

interactions, and is calculated by

“’3' 01'
A IAEAJ'

 (3.5)

where NA is Avogadro’s number and w, is the weight fraction of the jth element in

the element [16]. These hadrons typically break up into other particles as well as
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Figure 3.10. Calorimeter unit cell [17].

causing the uranium atoms to fission. This leads to larger showers in both width and

length in the calorimeter. Layer depths for the EM, FH, and CH, are shown in Table

3.1.

 

EM FH CH

 

 

CC depth 1.4, 2.0, 6.8, 9.8Xo 1.3, 1.0, 0.76/\ 3.2/\

 

EMdepth 1.6, 2.6, 7.9, 9.3x0 1.1,1.1,1.1,1.1,\ 3.2x      
 

Table 3.1: Depths of the calorimeter layers.

All of these layers are instrumented to create readout cells of size 0.1 x 0.1 in

eta-phi space, with the exception Of the EM3 layer. This layer is further divided into

0.05 x 0.05 to increase EM shower precision in position.

Each cell, pictured in Figure 3.10, is made of an absorber plate, a gap filled

with liquid argon, a G-10 sheet coated with copper and then by an insulating epoxy,

another gap of liquid argon, another absorber plate, and so on. As each particle

passes through the detector, it starts a shower of particles inside the absorber plate
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Figure 3.11. Pseudo-projective geometry and segmentation pattern of the calorimeter.

producing many secondary particles. The secondary particles proceed to ionize the

liquid argon. The ionized electrons are then attracted to the G-10 sheet due to an

electric field generated by grounding the absorber plates, and placing a positive high

voltage on the G-10 sheets. The electron drift time across the 2.3 mm liquid argon

gap is about 450 us [11]. The drifting electrons induce an image charge on the copper

which is read out as the signal.

The cells of each layer are aligned and grouped to form pseudo-projective towers,

as shown in Figure 3.11. These are considered pseudo-projective because the centers

of the cells lie on rays projecting from the center of the calorimeter, but the cell

edges are perpendicular to the absorber plates. These towers are also aligned in the

approximate direction of shower development.
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3.8 Muon System

Muons are much more massive than electrons and most of their energy loss comes from

interaction with the detector material rather than from bremsstrahlung like electrons.

Because Of this behavior, muons above 2. 3.5 GeV typically pass through the entire

calorimeter, which is why the muon system is the outermost layer of the detector and

is well protected from debris from the hadronic and electromagnetic showers in the

calorimeter. The D0 muon system is intended to identify muons and independently

measure their momenta in a toroidal magnetic field. The muon system is comprised

of three main components:

0 Wide Angle MUon Spectrometer (WAMUS) covering [77[ < 1

0 Forward Angle MUon Spectrometer (FAMUS) covering 1 < [n[ < 2

0 Solid-iron magnet forming a toroidal field of 1.8 T.

The WAMUS has three layers of proportional drift tubes and two layers of plate

scintillation counters that help with triggering and removal of background muons

from cosmic rays. The FAMUS has three layers of mini-drift tubes and three layers

of scintillation pixel counters that help with triggering [18]. More information on this

system can be found in [11] and [18].

3.9 Luminosity Monitor (LM)

D0 has two luminosity detectors mounted at z = i140 cm on the outer surface of the

endcaps and are positioned in the area between the beam pipe and the FPS (pictured

in Figure 3.3). These detectors monitor the luminosity at the D0 interaction region

by detecting inelastic p13 collisions [11]. The LM detectors constitute two arrays of

scintillation counters, are 15 cm long, and cover 2.7 < [7}[ < 4.4. Luminosity is a
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quantity that can be described to the layperson as the amount of data recorded. To

the physicist, however, luminosity, E, is given by

1‘leM

L = f (3-6)
 

OLM

where NLM is the average number of inelastic collisions per beam crossing, f is the

beam crossing frequency, and oLM is the effective cross section.

3.10 Trigger System and DAQ

As stated previously, the proton and anti-proton beams cross every 396 ns which

equates to 2.5 million crossings every second (2.5 MHz). Most of these events consist

of glancing collisions and are considered uninteresting by today’s standards. Con-

sidering this and the amount of data space required per event, it would be wildly

inefficient to record every event. This is where the Trigger System and the Data

Acquisition come into play by saving and writing to tape only the events that are

deemed interesting.

The D0 trigger has three distinct levels of decision and, Overall, was designed

to reduce 7 MHz of input rate to 50 Hz written to tape, as illustrated in Figure

3.12. The trigger decisions are made looking for certain signatures in the detector

that correspond to different objects or events. Each level allows fewer events to pass

than the previous by examining events in more detail and consequently taking a little

more time. For example, an EM event trigger might require two detector sections (or

towers) with at least 6 GeV deposited in each tower’s EM layers at Level 1, require

one of those detector towers and its neighboring towers (or cluster) to have at least a

total of 15 GeV deposited in the EM layers at Level 2, and require that cluster to be

completely reconstructed to an EM physics Object Of at least 35 GeV at Level 3, but
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Figure 3.12. Designed D0 trigger scheme[l7].
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veto on events containing hadronic objects and events with only one EM object.

3.10.1 Level 1 Trigger

The first level (L1) is composed of a hardware trigger consisting of Field Pro-

grammable Gate Arrays (FPGAs) holding short algorithms in order to make quick

decisions since it must do so for every beam crossing. These algorithms view the de-

tector in a very coarse fashion only using calorimeter towers, for example, instead of

actual physics objects. At L1, only the calorimeter, CFT, muon system, and luminos-

ity monitor portions of the detector are used. The information from these detectors

is read into the trigger framework, and based on a maximum of 128 different And/Or

trigger terms, or trigger hits, the event is either rejected and dumped, or it is passed

onto level 2.

3.10.2 Level 2 Trigger

The second level (L2) consists Of preprocessors for each detector subsystem that

combine signals from the system into physics Objects. It no longer views information

in terms of calorimeter towers and hits in the tracker, but rather electromagnetic

Objects and tracks. L2 also contains global processors (L2Global) that can look at

these objects on an event wide basis. This level contains both hardware and software

algorithms referred to as firmware. L2 was designed to take up to 10 kHz input with

a maximum acceptance rate Of 1 kHz.

Level 2 Global

L2Global is responsible for making trigger decisions based on the physics Objects cre-

ated by each subsystem’s preprocessors. These decisions can be made based solely

on the objects themselves or by combining objects from different systems. For exam-
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ple, it can make a decision based on a muon object itself, or it can decide based on

whether a muon object has a spatially matched track object as well.

The decision process begins by examining which of the 128 bits fired in L1. Each

L1 bit has an associated L2 script that contains a number Of filters and a minimum

number of global Objects to pass each filter. These global objects are made from tools.

Tools are specific C++ classes that build objects based on selection criteria that decide

which from the list of L2 preprocessor objects should be made into global objects.

These tools are also where objects from different preprocessors can be combined into

a single global physics object. An example of a script requires two EM objects greater

than 7 GeV with matched STT tracks and one EM object with isolation less than

0.2. If any L2 script passes, the event is passed to level 3.

3.10.3 Level 3 Trigger

The third level (L3) is a completely programmable software trigger that is designed

to reduce 1 kHz of input rate to 50 Hz to be recorded to tape for offline analysis. This

trigger is run on a collection of Linux based computers, or Linux farm, that processes

the events in parallel [11]. At L3, the software constructs the physics Objects into

photons, electrons, muons, taus, jets, vertices, and missing energy, as well as the

relationships between them like azimuthal angle and invariant mass. One or more L3

scripts each containing filters are assigned to each L2 bit that fires and is compared

to a programmable trigger list. If the event is accepted, it is then written to tape.

3.10.4 Data Acquisition (DAQ)

There are a great many detectors and electronic systems in this experiment, as pre-

viously outlined. A program called COOR controls the systems and is used for DAQ.

COOR performs everything from calibration to synchronizing the systems to actually
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recording the data. All of these detector systems also have monitoring systems to

ensure that they are running properly and the data are not compromised. The mon-

itoring systems and COOR are controlled by physicists around-the-clock on a shift

schedule whenever a store of protons and anti-protons is in the Tevatron.

3.11 DORECO and CAF

After an event is written to tape, the entire event is reconstructed for use in analysis.

This is done by the DORECO program on many farms Of computers. DORECO uses

all of the information from the detector not only to reconstruct all of the particles

detected in an event, but also to trim down their associated variables to a bare-

bones format called thumbnails (or TMBs) for ease in handling and hard-drive space

considerations for the analyst. The specifics of the reconstruction algorithms relevant

to this analysis are discussed later in Section 5.1. These TMBs are stored in the

sequential access via metadata (SAM) data handling system. All of the data are then

skimmed by the Common Samples Group (CSG) at D0 into separate datasets that

group similar events together. Examples of this would be events that contain two

electromagnetic Objects of high pr, or events that contain 3 jets. The events are also

processed into a format that is designed to be universal for all collaborators at D0

called CAF (Common Analysis Format).

CAF is a set of C++ classes and scripts that allow the users to create a ROOT-

based file to access all the variables they need including likelihoods and matrix al-

gorithms designed by other users [19]. This allows for users to share their work so

that everyone does not have to design their own methods. It also, however, provides

the ability to access only the variables they need, thus, writing only the variables

of interest. For example, this analysis is principally concerned with photons, and

therefore, does not require information regarding the muons.
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CHAPTER 4

Dataset and Monte Carlo

This chapter will explain the triggers used to collect the data used in this analysis,

and the Monte Carlo samples used to simulate expected results. It will also describe

the size of the data sample and the method that was used to skim the data into

different dataset definitions.

4. 1 Trigger

The events used in this analysis were selected using a number of triggers that fire due

to high-p7» electromagnetic Objects. This allows for examination Of a small subset Of all

the data collected with the D0 Detector. The triggers used are listed in Table 4.1, and

are broken down by trigger list version. Fermilab is continually making improvements

to the Tevatron in an attempt to increase the instantaneous luminosity delivered to

its experiments by increasing the number of bunches of particles in the ring and

by increasing the number of particles per bunch. As these improvements are made,

tighter triggers must be employed to keep the recording rate within acceptable limits.

For this reason, as well as to make use of better algorithms that collaborators design,

D0 must periodically alter the triggers, thus creating different trigger list versions.

Each trigger list version has the suite of triggers logically “OR’d” together.
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Trigger List Trigger L1 L2 L3

v8-v1 1 EM_HI CEM(1,10) - ELELOOSE(1,30)

EM_HI_SH CEM(1,10) - ELELOOSESH.T(1,20)

EM_MX CEM(1,15) — ELELOOSE(1,30)

EM_MX_SH CEM(1,15) - ELELOOSESH_T(1,20)

EM_HI_2EM5_SH CEM(2,5) - ELELOOSESH-T(1,20)

v12 E1.SHT20 CEM(1,11) - ELE_NLV.SHT(1 ,20)

E2_SHT20 CEM(2,6) - ELE_NLV_SHT(1,20)

E3_SHT20 CEM(2,3) - ELE_NLV_SHT(1,20)

CEM(1,9)

E1.SH30 CEM(1,11) - ELE_NLV_SH(1,30)

v13 E1.SHT22 CEM(1,11) L2CALEM(15,x) ELE.NLV_SHT(1,22)

E2.SHT22 CEM(2,6) L2CALEM(15,x) ELE_NLV_SHT(1 ,22)

E3_SHT22 CEM(2,3) L2CALEM(15,x) ELE.NLV_SHT(1 ,22)

CEM(1,9)

E1.SH30 CEM(1,1 1) L2CALEM(15,x) ELE.NLV_SH(1,30)

v14 E1.SHT25 CEM(1,12) L2CALEM(15,x) ELE_NLV_SHT(1,25)

E3.SHT25 CEM(1,12) L2CALEM(x,11,0.2) ELE_NLV_SHT(1,25)

E1.SH35 CEM(1,12) L2CALEM(15,x) ELE.NLV_SH(1,35)

E3_SH35 CEM(1,12) L2CALEM(x,1 1,0.2) ELE_NLV_SH(1,35)

ELISHT22 CEM(1,12) L2CALEM(15,x) ELE_NLV_SHT(1,22)

IsoEleSHT(1,22)

E3JSHT22 CEM(1,12) L2CALEM(x,11,0.2) ELE_NLV_SHT(1,22)

IsoEle_SHT(1,22)

ELISHBO CEM(1,12) L2CALEM(15,x) ELE_NLV_SH(1,30)

IsoEle_SH (1 ,30)

E3.ISH30 CEM(1,12) L2CALEM(x,11,0.2) ELE.NLV_SH(1,30)    IsoEleSH(1,30)

 

Table 4.1: 'Ifiggers by trigger list.

 



The notation in Table 4.1, is described by the following:

CEM(n,x) represents the number of EM trigger towers, n, with energy of at least x

(GeV).

EM(1,12) requires one EM candidate with energy of at least 12 GeV.

L2CALEM(15,x) represents an L2 cluster with at least 15 GeV.

L2CALEM(x,E,0.2) requires a single tower EM object with isolation less than 0.2

and energy of at least E (GeV).

L2CALDIEM(18) requires the sum of the two highest EM towers to be at least 18

GeV.

ELE_LOOSE(n,x) represents the number of loose electron candidates, n, with energy

of at least x (GeV).

ELE-LOOSE.SH-T(n,x) represents the number of loose electron candidates, n, with

energy Of at least x (GeV), satisfying transverse shower shape require-

ments.

ELE_NLV(n,x) represents the number of loose electron candidates, n, with energy of

at least x (GeV).

ELE-NLV.SH(n,x) represents the number of loose electron candidates, n, with energy

Of at least x (GeV), satisfying loose shower shape requirements.

ELE_NLV_SHT(n,x) represents the number of loose electron candidates, n, with en-

ergy of at least x (GeV), satisfying tight shower shape requirements.

IsoEleSHT(1,22) represents one isolated electron candidate satisfying tight shower

shape requirements and at least 22 GeV.

39



IsoEle_SH(1,30) represents one isolated electron candidate satisfying loose shower

shape requirements and at least 30 GeV.

In the cases like CEM(2,3)CEM(1,9), the trigger bits are “AND’d” together, so in

this instance, the event will pass the trigger if two trigger towers contain at least 3

GeV, and one of those contains at least 9 GeV. More information on triggers can be

found in the trigger database [20].

4.2 Trigger Efficiencies

All of the events in this analysis are required to have fired an unprescaled trigger

from its respective trigger version listed above. These triggers and their respective

efliciencies, including their “OR’d” response, have been studied by the Electron ID

group and used in other analyses at D0 [21, 22, 23], and only highlights will be

presented here.

The trigger efficiencies were measured using a tag-and-probe method where Z —>

e+e‘ events were used by requiring two electron candidates with an invariant mass

> 65 GeV, or near that of the Z boson [24]. One of the candidates becomes the

“tag” and must pass tight electron identification cuts, while the other candidate,

the “probe”, is used to measure the trigger efficiency. The “OR’d” response of these

triggers was studied, and while flat in mm and did“, the response has a pp dependence,

Often referred to as turn-on, and is shown in Figure 4.1. Their parameterizations can

be found elsewhere [22].

Due to the changes in triggers and trigger list versions, an average trigger efficiency

must be calculated. This efficiency is weighted by the percentage of total integrated

luminosity collected by each trigger version and is shown in Table 4.2. The estimated

trigger efficiency for the diphoton process is 0.99 :t 0.05.
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Figure 4.1. Trigger turn-on curves for OR’d single EM triggers [23].

V
8
-
l

l
T
r
i
g
g
e
r
E
f
fi
c
i
e
n
c
y

 

0
.
6

1
9
.
7
6
i
0
.
6
9

0
8
2
+

1
1
8
1

0
.
2

3
5
-

v
=
§
[
"
a
‘
[
:
e
l
”
(
S
E
N

B C
0
.
6
6
“
1
0
.
0
0
1
0

D E

 
.
L
l
.
x
l

0
1
0

A
A
A
3
1
(
)

.
M
y
]

5
0

P
T
(
G
e
V
/
c
)

 

V
1
3

T
r
i
g
g
e
r
E
f
fi
c
i
e
n
c
y

 

JALIJL'

0—

 
 
 
 

IJlll.

B
0
.
9
1
3
5
:
0
.
1
2
1
6

C
0
.
6
6
4
1
:
0
.
0
”

D
1
1
3
1
:
1
1
2
6

6
.
1
5
6
t
0
.
2
3
9

,‘
,i

=§
[;

fé
‘1

ét
l:

‘1
éi

[l
5
0

P
T
(
G
e
V
/
c
)

0
.
6

0
.
2

lllllll'  
 
 

O

O

V
1
2
T
r
i
g
g
e
r
E
f
f
i
c
i
e
n
c
y
 

l

 
 
 
 
 
 
 

5
4
2
1

l
3
4

A
2
1
.
“
:
0
.
2
7

B
1
.
4
5
:
0
.
2
3

0
0
.
6
6
2
6
t
0
.
0
”

D
1
8
.
6
8
:
0
8
9

6
.
8
1
5
:
0
.
5
4
2

i=
¥[

':
j"

'1
§t

l:
f1

‘e
t[

l
5
0
'
p,

(
G
e
V
/
c
)

0
.
6

'Illlllllllll

0
.
2

 111111--

 
 

O

O

V
1
4

T
r
i
g
g
e
r
E
f
fi
c
i
e
n
c
y

 

 

z
’
i
n
d
t

3
1
.
1
2
/
3
2

A
2
1
.
9
3
:
v
o

a
1
.
0
m
m

c
u
n
a
n
i
m
o
u
s

o
2
0
.
:
8
1
m

m
u
m

,
v
f
l
'
w
‘
t
l
fi
l
r
'
l
é
i
l
l

5
0

p
,
(
G
e
V
/
C
)

0
.
6

LILIIJAALILJIIAI

0
.
2

 
 

iIlllllll

 

9.

o



 

 

 

 

 

 

 

 

Trigger Version Efficiency Trigger Lum. Weighted Efficiency

v8-vll 0.975 0.102 0.099

v12 0.996 0.221 0.220

v13 0.984 0.359 0.353

v14 0.987 0.318 0.314

Total 1.0 0.986    
Table 4.2: Summary of trigger efficiencies.
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4.3 Dataset

The data used in this analysis were recorded between October 2002 and February

2006. These data were reconstructed using DORECO production release 17 (p17)

and use trigger lists v8-vl4. These data amount to a total integrated luminosity of

1046.19 pb‘lzt 6%, and are broken up by trigger version in Table 4.3.

 

 

 

 

 

 

 

 

 

 

Trigger List [£(Pb-l)

v8 5.81

v9 24.78

v10 10.75

v11 65.24

v12 230.96

v13 375.55

v14 333.11

Total 1046.19    
Table 4.3: Total integrated luminosity by trigger list.

The datasets used here come from two different CSG skims. The first is the

2EMhighpt skim and is comprised of two data definitions. The first definition

is CSG_CAF2EMhighpt_PASS3-p17.09.03, and contains data from runs 165973-

210437. The second definition is CSG_CAF_2EMhighpt.PASS2_p17.09.01, and con-

tains data from runs 210442-215670. The two data definitions were broken up this

way due to a mistake found in the hadronic calibration and fixed before processing

runs 210442-215670. The 2EMhighpt skim requires two EM objects of IID| = 10,

11 and pr > 12 GeV. The second skim is the QCD skim and, for the same rea-

son as above, also has two definitions which are CSG-CAF_QCD_PASSB_p17.09.03
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and CSG_CAF_QCD_PASSZ_pl7.09.01. The QCD skim requires one of the follow-

ing jet triggers to fire: JT_125TT, JT_95TT, JT_65TT, CJT5, JT_8'TT, JT-15TT,

JT_25TT_NG, JT_45TT, JT_L3M225, JT_L3M250, JT_L3M380, JT_L3M430. Both

skims are further skimmed down using a copy of the photon_id_tools CAF package

similar to [25] and stored into ROOT-tuples, a ROOT-based [26] data format.

4.3.1 Data Quality

Not all the data collected at D0 are used in this analysis. Some data are rendered

useless due to issues like malfunctioning detectors or problems with electronics read-

out. These problems are tracked and studied by the Data Quality group and released

to the collaboration. The results are linked in CAF and remove runs of bad data and

bad luminosity blocks.

A run of data is defined as the data recorded from when the DAQ software starts

recording to when it is stops. Every time the DAQ software is started and stopped,

a unique run number is assigned to that run of data. If a detector subsystem shifter

observes a malfunction during a particular run of data, they will mark that run as

bad according to their detector sub-system. Also, if the Data Quality group finds a

problem during offline examination, they will also mark it as bad. All of these are

recorded in the bad runs list.

Sometimes small malfunctions occur during the course of a run that only require

a small piece to be discarded. Since runs can sometimes last a few hours, it is better

to discard only the problematic data rather than the entire run. This can be done by

recording the luminosity block number (LBN) and marking it as bad. A luminosity

block is the basic unit of time for a luminosity measurement. Each block has a unique

number assigned to it and corresponds to a separate raw data file. These luminosity

blocks are incremented for every start of data recording, every initialization of the

trigger framework, or every 60 seconds [11]. If a problem occurs, these LBNs can be
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Figure 4.2. Eta vs. Phi lego plot illustrating hot cells.

vetoed without biasing the luminosity calculation. These bad LBNs are tabulated by

the Data Quality group.

Certain run numbers were noted to contain an excess of events with two EM

candidates that continually occur at the same location in eta-phi space, as can be

seen in Figure 4.2. Due to the extremely low probability of this occurring naturally,

these runs are believed to contain hot cells in the calorimeter, and, consequently, were

manually discarded from this analysis and accounted for in the luminosity calculation.
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4.4 Monte Carlo

While this analysis is primarily data driven, some computer simulated events are

used as a means to predict the response of the D0 detector and to compare results to

theoretical predictions. These simulated events are produced by generators known as

Monte Carlo. The diphoton samples used in this analysis are generated using Pythia

6.3 [27], CTEQ6L1 PDF’s [28], and GEANT3 [29]. These packages simulate the pp"

interaction from collision and hard scatter to fragmentation to detection, including

effects of the D0 detector materials and magnetic field, to reconstruction. This Monte

Carlo was produced in three mass ranges with 98250 events of range M7, = 50 - 130

GeV, 51500 events of range M7,, = 130 - 250 GeV, and 26750 events of range M7, =

250 - 500 GeV.

RESBOS [30] and DIPHOX [31] theoretical predictions are also used in this anal-

ysis. The RESBOS prediction comes from [32], and is a theoretical prediction that

includes all-orders soft-gluon resummation and is valid to next-to—next-to—leading

logrithmic accuracy. The DIPHOX Monte Carlo, [33], is an event generator at the

parton level designed to calculate the hadroproduction of two photons. It provides a

prediction up to NLO, but does not include gluon box contributions at NLO. Since

the DIPHOX prediction does not include gluon box diagram components at NLO,

and will be added from another source, the LO gluon box component was removed

from the DIPHOX calculation. Both the L0 and NLO were then calculated from [34]

and added into the DIPHOX prediction. Since there are inheirent differences in these

theory calculations, some differences are expected between the predictions.
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CHAPTER 5

Photon ID and Background Study

This chapter will discuss the variables and search techniques for identifying photons

in a hadron collider. It will describe the reconstruction algorithms that RECO uses

to identify photon-like objects and the analysis cuts used to fully identify photons.

The sources of background and specifically how the analysis cuts reject much of this

background and the associated cut efficiencies will also be presented here.

5.1 Reconstruction Algorithms

As previously stated in Section 3.11, after an event passes the different trigger levels,

it is written to tape. Then, offline, the DORECO software, using various algorithms,

reconstructs all of the particles detected in the event and stores them in a TMB.

Photons and electrons (electrons are taken to mean both electrons and positrons) are

reconstructed as follows: A group of calorimeter towers in a cone of R = 0.4, where

R = «an? + M2 (5.1)

centered around a calorimeter tower of high energy content is identified as an EM

cluster. This cluster must have a minimum transverse energy of 1.5 GeV, and an

electromagnetic fraction, as defined in Section 5.2, of EMF > 0.9. If a track exists
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within

Induster —' 1Itrackl < 005 and l¢cluster — ¢track| < 0.05

this cluster will be assigned [ID] = 11, and if not, the cluster will be assigned ID = 10.

An EM cluster with [ID] = 10 or 11 is considered a loose EM candidate, or a potential

photon or electron. The DORECO software also accounts for a number of other

corrections due to geometrical effects, non-linearities in electronics, hot cells, and

calorimeter noise [37, 38].

5.2 Particle Signatures

There are many particles that can be produced in proton+anti-proton collisions. In

order to distinguish between these different particles, it is important to know what

characteristics each one has so that one can distinguish between them.

5.2.1 Photons

A photon (or gamma particle) is simply a particle of light. It is massless, charge-

less, and is entirely electromagnetic in nature. As a result, one can exploit these

characteristics to distinguish photons from other particles.

When a photon travels through the D0 detector, it leaves a signature of:

o a narrow electromagnetic shower in the calorimeter

o no tracks matched to the electromagnetic shower

5.2.2 'Electrons

Electrons are particles that are also electromagnetic in nature. As such, electron

signatures are very similar to those of photons. Electrons have a key difference,
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however, in that they carry an electric charge that will not only cause a deflected

trajectory in the magnetic field of the detector, but also leave a matched track in the

detector.

5.2.3 Jets

A jet is a relatively localized spray of particles that can consist of both electromag-

netic and hadronic particles Because jets contain many particles, the showers that

deve10p in the calorimeter are often much wider than those of electrons and photons,

the showers often deve10p much deeper in the detector into the hadronic sections,

which does not happen with electrons and photons, and the particles can leave many

associated tracks.

5.2.4 Muons

Muons are particles that typically pass through the calorimeter without depositing

any significant amount of energy. These particles are, however, detected in the muon

system described in Section 3.8. Since this analysis is not concerned with muons,

further detail will not be given here.

5.3 Signal Variables

Due to these characteristics of photons, electrons, and jets, some variables are de-

fined to better distinguish these particles: electromagnetic fraction, isolation, track

probability, track isolation, and missing ET.

Electromagnetic fraction (EMF) is defined as

 EMF 2 EB” (5.2)

Etotal
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where EEM is the energy deposited in the electromagnetic layers of the calorimeter, as

described in Section 3.7, and Em“, is the total energy deposited in the the calorimeter.

A high EMF (value > 0.9) corresponds to an object that deposits most of its energy

in the EM layers of the calorimeter, such as a photon or an electron.

Isolation (iso) is defined as

_ Etotal (R < 0.4) — EEM(R < 0.2)

_ EEM(R < 0.2)

 iso (5.3)

where EMMR < 0.4) is the total energy deposited in the calorimeter in a cone

of radius 0.4 and EEM(R < 0.2) is the energy deposited in the EM portion of the

calorimeter in a cone of radius 0.2. 130 is a measure of how isolated an electromagnetic

object is in the calorimeter. A small isolation (iso < 0.2) corresponds to a single

electromagnetic object where no other particles traveled through the detector close-

by. If another particle were to travel through the detector nearby (within AR < 0.4),

it would cause a larger value.

Track matches are done using a probability. First, the tracks are reconstructed by

extrapolating them from their origin to the EM3 layer (the most segmented calorime-

ter layer). Next, the position of the EM object and the track are compared using the

equation

<><>
where 617 is the difference in 17 between the track and the EM object, (id) is the

difference in (1) between the track and the EM object, and 0,, and 04, are the root-

mean—square (RMS) values of n and d), respectively, determined by experimental

distributions [36]. A spatial track match of x2 > 0.01 is considered to be a track

match with a 77% efficiency [36].

Track isolation (IsoHC4) is defined as the 197 sum of all tracks within a hollow
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cone. This hollow cone is of size 0.05 < AR < 0.4, and the sum must be below 2

GeV/c. This variable is used to remove particles that have any kind of activity in the

tracking portion of the detector, since photons’ signatures do not contain a track.

Missing transverse energy, ET , as described in Section 3.4, is found by performing

a total energy conservation in the transverse plane, and returning a non-zero value.

ET is produced when either energy is added to the event by an outside source, or,

the more likely instance, by undetected particles such as neutrinos, which cannot be

directly detected with the D0 detector. Cosmic rays are continually bombarding the

earth and the D0 detector, and while the odds are quite small, it is possible for a

cosmic ray to be detected in the calorimeter and leaving a photon-like signature. As

such, a cut of ET < 30 GeV is employed as a precautionary measure, and removes

only 2.5% of the events.

Some distributions of these variables in the dataset are shown in Figure 5.1.

5.4 Background

A number of event topologies do exist that contain objects whose signature resembles

that of a photon. These t0pologies are referred to as background, and need to be

minimized as much as possible. The main source of background is a jet that leaves

a signature that is similar to a photon, called a fake-photon. This can occur, for

example, if the jet contains a neutral pion (71° or pizero) that carries most of the jet’s

associated momentum. Pizeros typically decay to two photons (more than 98% of

the time [35]), and due to the pizero being energetic and of low mass (134.97MeV/c2

[35]), the Opening angle between the two photons is very small. This angle is so

small, in fact, that the two photons can appear as one in the detector. They can,

however, have a wider shower shape in the detector than the average photon, and

the probability of one of these two photons beginning its shower in the preshower
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detectors is enhanced compared with a single photon.

While these features can also be exploited to remove some of these events, some

will still remain as irreducible background. At that point, all that can be done

is to statistically estimate how much of this background is present in the overall

measurement.

5.5 Analysis Cuts and Efficiencies

5.5.1 Analysis Cuts

As this analysis is concerned with measuring the diphoton cross-section, background

suppression is a key component to an accurate measurement. As such, some tight

cuts are applied to the above variables that will appropriately remove much of the

QCD fake-photon contribution. The cuts used here are EMF > 0.95, iso < 0.07,

trkprb < 0.001, IsoHC4 < 2.0 GeV/c, and ET < 30 GeV. Some of the distributions

relating to the cuts are shown in Figure 5.2. In addition to these cuts, a couple of

geometric cuts are also applied.

The D0 detector phi-cracks as mentioned in Section 3.7, require some careful

analysis. In order to minimize the effect of these cracks in particle measurements, a

cut is employed, referred to as a phi-fiducial cut, to remove events that have particles

near these cracks. This phi-fiducial cut is not well-modeled in the MC, and cuts

out approximately 9% more events than it should. This discrepancy is accounted

for when determining the analysis cut efficiencies, and is shown in Figure 5.3. The

average acceptance in the MC is 70.81%, while the average acceptance in the data is

77.78%.

Also, the detector, as pictured in Figure 3.11, has large gaps between the cen-

tral calorimeter and the end-caps. These inter-cryostat detector (1CD) regions are
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Figure 5.3. Phi_fiducial acceptances as a function of pr in diphoton MC (top) and

data (bottom).
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problematic and are not well-understood. In addition, the tracking efficiency in the

end—caps is slightly worse than in the central calorimeter, as well as the complimen-

tary algorithms for the preshower detectors of the CC are not available in the EC.

Thus, a pseudorapidity cut of 177cm] < 1.1 is applied to the data to remove these

concerns.

Finally, the pT threshold is raised on the highest energy photon to 21 GeV while

the threshold on the second highest energy photon is set at 20 GeV. These p7» cuts

were selected to improve the trigger efficiency as well as to prOperly compare our

result to theories that prefer asymmetric transverse momentum cuts.

The distribution of di-EM events as a function of mass prior to these cuts is shown

in Figure 5.4.

Note the presence of a peak due to the process Z ——> 6+0”. The result of these

cuts on the dataset is presented in Figure 5.5 as a function of mass.

5.5.2 Cut Efficiencies

The efficiencies of the above cuts have been measured using a diphoton MC as de-

scribed in Section 4.4, and have distributions presented in Figures 5.6 and 5.7.

The efficiencies are defined as

 

Fizz: <59

where e is the efficiency, Night is the number of events satisfying the tight analysis

cuts, and NMC is the number of input Monte Carlo events. The efficiencies are

measured on a bin-by—bin basis and as a function of Mass, qT, and A05”. These

efficiencies are then used on a bin-by-bin basis and are presented in Figure 5.8. For

masses below 50 GeV/02, the efficiency is extrapolated.
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Data Smearing

The calorimeter has a particular energy resolution that can cause energy measure-

ments to be slightly above or below the actual value, an effect known as smearing.

Due to the relative shape of these histograms, this smearing can cause an excess of

events in the neighboring histogram bin. This smearing has been modeled in the

computer simulated detector, and is accounted for in these efficiencies, as the Nag,“

is considered to be a detector smeared value, and the NMC is an unsmeared input

value. The application of the efficiencies in Figure 5.8 will effectively unsmear the

data and yield the true cross-section measurement.

The efficiencies shown here shall be applied to the data in the following chapter.
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CHAPTER 6

Cross—Section Analysis

This chapter will explain the method used to separate the diphoton signal from back-

ground events, thus yielding a final cross-section. The variables used will be described,

the mathematics involved will be explained, and the final cross-section measurement

including efficiencies and associated errors will be presented.

6.1 Matrix Inversion Method

As mentioned in Section 5.4, even though the analysis cuts have exploited the dif-

ference in particle signatures in the detector to remove events that do not contain

diphotons, some background events remain. Now, a statistical method must be em-

ployed to separate the portion of true gamma-gamma events from gamma-jet and

jet-jet events where the jets have signatures similar to that of a photon.

This statistical method requires a discrimination variable, a variable that shows

a different response to photons and jets. When a cut is then placed on this variable,

there will be efficiencies, 57, for a photon to pass this cut, (1 — 5,), for a photon to fail

this cut, 5,, for a photon-like jet to pass this cut, and (1 — 5,), for a photon-like jet

to fail this cut. Given that the events in this analysis contain two photonic objects,
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combinatorics suggests the following three equations:

Npp = 53.01,, + €7€jN7j + 5;“?ij (6-1)

Np}? = 257(1 — 5,)NW + [5,(1 — 53') + (1 — 5,)5,-]N7j + 25,-(1 — 5,)ij (6.2)

NFF = (1 — ’51)?va + (1 - 50(1 — *3le513' + (1 - 52')?ij (63)

where Npp is the number of events where both objects pass the cut, Npp is the

number of events where one object passes and one object fails the cut, Npp is the

number of events where both objects fail the cut, N7, is the number of events that

contain a diphoton, N7,- is the number of events that contain a photon + jet, and M,-

is the number of events that contain a jet + jet. Taking the coefficients of equations

6.1, 6.2, and 6.3, a matrix equation can be formed

Npp 8.2, 8753‘ 5? IV.”

Npp 2 287(1— 87) 57(1 — Ej)+(1— 5.1,)83' 2€j(1 — Ej) N7‘ (64)

N55 (1 '— 51)? (1 - €1)(1 - 53') (1 — 5:12 1‘02“

When the 3x3 matrix is inverted, N77, N71, and 1ij are determined, thus yielding

the true diphoton signal.

6.2 Efficiency Data Samples

A pure set of photons should be examined using a discrimination variable, but no cur-

rently discovered particle of reasonably high energy and relatively high production
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Figure 6.1. Histogram of the Z-mass from the data.

decays into photons, preventing the use of photons from data to tune the discrim-

ination variable cut. Electrons, however, basically shower identically to photons in

the detector, save for a matched track, and are often produced by a decaying Z bo-

son. Since the Z boson has a well-known mass, a relatively high production rate,

and decays into high energy electrons, it is possible to get a pure sample of electrons

that will model a photon’s response in the detector by selecting events in data that

contain two electrons and possess a reconstructed invariant mass within the Z boson

mass window. The Z-mass peak is presented in Figure 61.

Pure photon Monte Carlo samples could be used in lieu of this electron substitu-

tion, however, there are some observable differences between Monte Carlo and data

that will be avoided by keeping this analysis data driven.

A pure set of photon-like jets in data is a little easier to obtain. The QCD dataset
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detailed in section 4.3 is used, requiring in the event one good jet, an EM—object

that passes the analysis cuts from section 5.5.1, and ET < 10 GeV to remove event

topologies such as W —-> 51/ that would naturally contain a jet and an electron and

bias the efficiency. A good jet is defined in [39].

The efficiencies of the electrons or photon-like jets to pass the discrimination cut

are measured as a function of pp, and are determined by

1VF’ass

NPass + NFail

 (6.5)
51/1 =

6.3 Discrimination Variables

Presented in the following subsections are three variables that do show a difference

between photons and jets and will be used as the discrimination variables in this

analysis.

6.3.1 Phi Width

Phi Width is a measure of the width squared of the object’s shower measured by

the EM3 layer of the calorimeter. The larger the value, the wider the shower the

object created in the calorimeter. Histograms of the phi width of photons in MC,

electrons in data, and EM-jets in data are shown in Figure 6.2, and show that large

values correspond to jets, while smaller values correspond to electrons and photons.

In agreement with the D0 Photon-ID group, a cut is placed at Phi Width < 14 cm2

[40]. The related efficiencies of this cut are shown in Figure 6.3 as a function of pr.

6.3.2 CPS_RMS

The CPS_RMS variable is an energy weighted root-mean-square of the difference in

each strip’s phi position with that of the EM3 layer’s phi position. This is done for
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Figure 6.2. Distributions of the Phi Width variable in electrons (top), MC photons

(middle), and jets (bottom).
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every strip in a CPS cluster and the result is the sum of each layer. Large values

correspond to particles with large widths in the CPS detector, such as jets, whereas

small values correspond to particles such as photons and electrons. Distributions of

this variable for photons in MC, electrons in data, and jets in data are shown in

Figure 6.4. A cut is placed at CPS_RMS < 0.003, and the efficiencies for this out are

shown in Figure 6.5 as a function of pr. More information on how this variable is

determined can be found in [41].

6.3.3 CPS_RMS Squared

The CPSRMSSQ variable is similar to the CPS-RMS variable except that the weight-

ing is done by the energy of the strip squared. This is done in an effort to magnify

the result when two objects pass through the CPS with a very small opening angle

between them, such as a pizero that has decayed to two photons. Again, small values

correspond to electrons and photons, whereas large values correspond to jets. This

can be seen in the distributions presented in Figure 6.6.

A cut on this variable is placed at CPS_RMSSQ < 0.0012, and the resulting

efficiencies are shown in Figure 6.7 as a function of pT.

More information on how this variable is calculated can also be found in [41].

6.4 Result of Matrix Inversion

Using the efficiencies in the plots presented, a matrix is produced and inverted for

each pr bin. The result for each discrimination variable is determined independently,

overlayed on each other, and shown in Figures 6.8, 6.9, and 6.10.

The matrix inversion is applied to the mass distribution on a bin-by-bin basis
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able efficiencies as a function of opening angle between the two photons.

using the good approximation that

MW

2

7 N

PT~
 (6.6)

For the distributions of transverse momentum of the diphoton and the opening angle

between the two photons, an average efficiency across all pp is used for the matrix

inversion. These distributions show good agreement, and will provide a method of

determining the systematic errors involved with this matrix inversion method.

6.5 Cross-Section

Given the equation,

N77 : OWL: (6-7)
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where NT, is the number of direct diphoton events found in a dataset containing

luminosity, C, the cross-section of the direct diphoton process, a”, can now be cal-

culated. The cross-section is calculated as a function of mass, qT, and opening angle

by averaging the three separate results of the matrix inversion, dividing by the lu-

minosity from Section 4.3, and applying the efficiencies from the previous sections.

Application of the efficiencies will account for true diphoton events removed by the

analysis cuts, thus correcting N77 to its true value. Figures 6.11, 6.12, and 6.13 show

the differential cross—section for direct diphoton production as a function of invariant

mass of the diphoton, the qq» of the diphoton, and the Opening angle between the two

photons, respectively.

The dotted line at the bottom of each plot is a nominal line, while the solid

curve around it expresses the systematic error on the data. The systematic errors

on the mass plot range from 4.9% at the mass peak to 160% at high masses, the

systematic errors on the qT plot are 6.4% at low qTand 2.5% at high qT, and the

systematic errors on the A057, plot are 360% at small opening angles and 3.2% near

77 (i.e. back-to—back). The two continuous curves in the figures correspond to two

different theoretical predictions. The solid line represents the RESBOS prediction,

and the dotted line represents the DIPHOX with the addition of the gluon-gluon box

contribution at L0 and NLO. The bin widths change as statistics allow for better

mapping of the cross-section. Figure 6.11 shows a fall off in the cross-section at low

masses. This is due to the transverse momentum cut on each photon. Above an

invariant mass of about 50 GeV/c2 it is seen that the cross-section falls smoothly as

a function of mass as predicted by both theoretical curves. Figure 6.12 also shows

the cross-section falling with increasing qT in general agreement with the theories,

but it is noted that the DIPHOX prediction is significantly higher than the data at

low qT. Figure 6.13 also shows essential agreement between the data and the two

theoretical predictions, indicating that most diphoton states are produced back-to-
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back (A037.7 ~ 7r). When A457, is far from 7r, the cross-section arises from the extra

jet produced in the NLO calculations and is very sensitive to the isolation cuts made

in this analysis. The theory predictions are also not well modeled in this region due

to uncertainty in fragmentation function parameters.
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CHAPTER 7

Conclusions

The differential cross-section of the direct diphoton process as a function of mass,

qT, and Opening angle at \/§ = 1.96 TeV has been measured using 1046.19 pb’l of

luminosity collected with the D0 detector between October 2002 and February 2006.

The results shown are in good agreement with theory.

This measurement of the diphoton production at the Tevatron can be used to

predict the QCD production at the upcoming LHC at CERN, which is scheduled to

start within the next couple of years. This in turn will be useful in predicting the

irreducible background to Higgs searches at LHC.

CDF has previously attempted this analysis in Run II with one-fifth of the data

[42]. They are currently updating their analysis to include more statistics.

An alternative approach to the matrix inversion technique used here would be

to cut on any or all of the three discrimination variables. This would increase the

purity of the final sample which could then be used to study other aspects of the

diphoton production (e.g. associated particle production). This method, however,

would involve much larger inefficiencies and an unknown background contamination.

It would also likely suffer from low statistics.

The cross-sections presented in Figures 6.11, 6.12, and 6.13 are the average of the

cross-sections resulting from the application of each of the discrimination variables in
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the matrix inversion technique. This averaging is likely not to be strictly accurate,

especially if the three variables are coupled (as the CPS_RMS and CPS_RMSSQ

variables are likely to be). Future analyses could study the interdependence of these

variables and shed further light on the dynamics of diphoton production.

Further interesting analysis could be performed to study the non-perturbative

QCD aspects of this process by implementing a qT < M77 cut. This out should remove

events containing perturbative effects such as the Feynman diagrams presented in

Figure 2.3. The result of such a cut would be most pronounced in the opening angle

plots by continuing to slope downward at 1.5 radians instead of leveling off. The

differential cross-sections could also be measured as a function of other kinematic

variables.
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