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ABSTRACT

INVESTIGATION OF METAL NANOPARTICLES ENCAPSULATED IN
POLYELECTROLYTE MULTILAYERS FOR CATALYTIC AND ANTIBACTERIAL
APPLICATIONS
By

SRIVIDHYA KIDAMBI

Metal nanoparticles are an interesting class of materials because they often exhibit
properties different from those of the corresponding bulk metals. For example, bulk Au
is not catalytically active, but recent studies show that Au nanoparticles can serve as
catalysts for oxidation and hydrogenation reactions. Without a suitable support, however,
metal particles aggregate, reducing surface area and eventually affecting the particle
properties. To overcome this problem, this research employs the layer-by-layer (LbL)
assembly technique, which was introduced by Decher in 1991, as a convenient method to
prevent the aggregation of nanoparticles and immobilize them on solid supports. While
the multilayers help in stabilizing the nanoparticles, they also aid in retaining important
properties of Pd (catalytic) and silver (antibacterial) nanoparticles.

Catalytic Pd nanoparticles in multilayer polyelectrolyte films can be easily
prepared by alternating depositions of poly(acrylic acid) (PAA) and a polyethylenimine
(PEI)-Pd(II) complex on alumina, and subsequent reduction of the Pd(II) by NaBHy4. The
polyelectrolytes limit aggregation of the particles and impart catalytic selectivity in the
hydrogenation of a-substituted unsaturated alcohols by restricting access to catalytic
sites. Hydrogenation of allyl alcohol by encapsulated Pd(0) nanoparticles can occur as

much as 24-fold faster than hydrogenation of 3-methyl-1-penten-3-ol. In a related



system, alternating adsorption of PdCls> and polyethylenimine (PEI), followed by
reduction of Pd(II), yields catalysts with a higher activity than found in [PAA/PEI-
Pd(0)],PAA films due to greater accessibility of the Pd nanocatalysts. In the [PAA/PEI-
Pd(0)].PAA system, turnover frequency decreases with the number of layers deposited,
suggesting that the outer layer of the film is primarily responsible for catalysis. In
contrast, turnover frequency increases with the number of deposited layers for reduced
[PAC14*/PEI], films.

We also report work examining the antibacterial properties of Ag nanoparticle-
containing multilayer polyelectrolyte films deposited on polyethersulfone ultrafiltration
membranes. Rubner and others suggested that the mechanism of antibacterial action by
Ag nanoparticles in polyelectrolyte films presumably involves oxidation of nanoparticles
and slow release of Ag®. In principle, this should lead to sustained antibacterial efficacy
of membranes containing Ag nanoparticles compared to membranes containing Ag* ions.
Studies of silver leaching confirm that the rate of leaching of silver in Ag*-containing
films is nearly an order of magnitude greater than that in Ag’-nanoparticle containing
systems, confirming that the use of Ag nanoparticles rather than ions could enhance the
longevity of an antibacterial coating. Filtration of bacteria-containing suspensions
through modified membranes indicates that the flux decline associated with bacterial
fouling in silver-containing films is lower than that in membranes without any silver
coating, but it is difficult to distinguish between Ag* and Ag’-containing films in short-

term fouling studies.
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Chapter 1: Background Information

1.1. Introduction

This thesis aims to illustrate a simple procedure for preparing metal nanoparticles
incorporated in polyelectrolyte multilayer films, which has a tremendous potential for
creating selective catalysts and antibacterial coatings. The widespread realization that
metal nanoparticles have a remarkable potential in a variety of applications is evident
from the exponential increase in the number of publications related to nanoparticles in the
last several years (Figure 1.1). On the other hand, the commercial use of nanoparticles is
not as extensive as the number of publications in this area might suggest (Figure 1.2),
with sales only approximately doubling from 2000-2005.! The relatively small industrial
market for nanoparticles may be attributed to the difficulty not only in making the
particles in nano-scale dimensions, but also in retaining them as nanoparticles after their
formation. This is because nanoparticles have a general tendency to aggregate, thus
forming a less desirable agglomerated morphology. This issue of aggregation could be a
serious challenge for various applications such as catalysis, where the size of the
nanoparticles plays an important role in deciding their properties.2 In this chapter, I
introduce the general procedure of layer by layer assembly which can be employed to
address this challenge of aggregation of nanoparticles. Also, I discuss some of the other
techniques that have been employed to prepare and stabilize nanoparticles, particularly
for catalytic applications. Subsequently, a brief background of the use of metal
nanoparticles in the area of antibacterial coatings is discussed. Finally I present the

outline of the dissertation.
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1.2. History and Development of Layer by Layer Assembly

In the early 1990s, an interesting technique for building ultrathin polymer films,
layer by layer (LbL) assembly of polyelectrolytes, was developed by Decher and
coworkers.>® This method has become widely used over the last 15 years because it of
its simplicity and versatility.® LbL assembly simply involves alternate adsorption of
polycations (positively charged polymers) and polyanions (negatively charged polymers)
on literally any substrate. Such films are being applied in a wide range of research areas

1911 and biotechnology'> . This

from sensors and electronics’” to tissue engineering
explosion in interest can be attributed to the flexibility achieved by using different
polyelectrolytes for the formation of multilayers on any substrate for many applications.
Not only has the application aspect of these polyelectrolyte multilayers (PEMs) aroused

widespread interest, but theoretical aspects of LbL are also being investigated. Many

studies have focused on understanding the basic formation of PEMs and the effect of

22,23 24, 25

various parameters such as pH'*'", jonic strength's'z', temperature“” <, and solvent
on film growth.

The popularity of LbL assembly method is due primarily to its ability to
controllably form polymer thin films with a wide range of functional groups using a
convenient deposition process that is inexpensive and reproducible (Scheme 1.1). In this
method, a charged substrate is immersed into a solution of oppositely charged
polyelectrolyte. A layer of a polyion adsorbs due to electrostatic interactions between the
substrate and the polyelectrolyte. This process is driven by the increase in entropy due to
the displacement of counter-ions from the surface of the deposited polyelectrolyte chain

-~

and from the substrate.”® This step is followed by rinsing with water, which removes any



excess of the unadsorbed polyelectrolyte solution, and subsequent immersion into an
oppositely charged polyelectrolyte results in another layer on the substrate. This
sequence of steps yields a “bilayer” of polyelectrolyte film, and the procedure can be
repeated as many times as necessary depending on the application, to form PEMs. The
technique, which was initially started with simple polyamines and polysulfonates, has
now branched out to the incorporation of literally any charged species including electro-

35, 36

active polymers,”” *® quantum dots,”>' DNA,**** charged viruses, inorganic

39-42 43-47 48-50

27.31.38 and a wide variety of proteins,*®** enzymes,**" and other biosystems.

sheets,
One of the most advantageous and interesting aspects of the LbL-technique is that active
macromolecules can be introduced in the polyelectrolyte multilayer films without
significantly altering their electrical, chemical or biological properties.

Although layer-by-layer assembly of polymeric electrolytes began in the 1990’s,
the precedent for such assembly was established in 1966 in the layer-by-layer assembly

! With either colloids or polymeric

of oppositely charged colloidal particles by Iler.’
electrolytes, one advantage of this technique is that electrostatic attractions between
opposite charges are flexible and yet they tightly hold the film together. Another
advantage over the classical Langmuir-Blodgett technique is that adsorption processes are
independent of substrate size and topology. Also in contrast to the Langmuir-Blodgett

technique, one can work with water-soluble molecules in LbL assembly, which is a

prerequisite for deposition of many functional macromolecules.
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Scheme 1.1. Schematic diagram of the “Dip and Rinse” procedure used for the
layer-by-layer deposition of a bilayer of a polyelectrolyte multilayer film.



1.3. Incorporation of Nanoparticles in PEM Films to Form Composite

Materials

Nanotechnology is expected to be the basis of many of the main scientific and
industrial innovations of the 21* century, and there is tremendous growth in the research
and development of this field throughout the world.>> A major outcome of this global
interest is the development of new materials in the nanometer scale, including
nanoparticles. Metal nanoparticles are an interesting class of materials because they
often exhibit properties different from those of the corresponding bulk metals.”>*® For
example, bulk Au is not catalytically active, but recent studies show that Au

nanoparticles can serve as catalysts for oxidation and hydrogenation reactions.” >

2, 57, 59

Additionally, nanoparticle properties can be tuned by varying their sizes and

environments.** Because of these unique characteristics, metal nanoparticles are being

57, 61 3

intensively studied for applications in catalysis, optoelectronics,62 preservatives,6
and sensing®.

Without a suitable support, however, metal particles aggregate, reducing surface
area and eventually affecting the properties of the particles. To overcome this problem,'
metallic nanoparticles have been immobilized on solid supports, e.g., carbon,® metal

67.%8 or stabilized by capping ligands that range from small organic

oxides,* and zeolites,
molecules to large polymers® 2, Encapsulation by polymers is advantageous because in
addition to stabilizing and protecting the particles, polymers offer unique possibilities for
modifying both the environment around catalytic sites and access to these sites. In this

thesis, we present the application of metal nanoparticles encapsulated in polyelectrolyte

multilayer films for selective catalysis and as antibacterial coatings.



1.4. Motivation and Research Goals
1.4.1. Application of Encapsulated Nanoparticles in Selective Catalysis

Catalysis provides a natural application for nanoparticles because their large
surface area-to-volume ratio allows effective utilization of expensive metals, and research

70. 7375 Catalysis by

in this area has increased dramatically in the last several years.
nanoparticles has been termed ‘“semi-heterogeneous catalysis” because it represents a
transition between molecular, homogeneous catalysts and less controlled heterogeneous
materials. Using nanoparticles, there have been improvements not only in the efficiency
and selectivity of reactions, but also in the recovery and recyclability of the catalytic
materials.”® Typically nanocatalysts are prepared from a metal salt, a reducing agent, and
a stabilizer and are supported on oxides,® cha.rcoal,65 or zeolites.®” %® There are a wide
range of stabilizers that have been explored to prevent the aggregation of nanoparticles
such as metal-binding ligands, surfactants, dendrimers and polymers.”

The use of ligands for stabilizing metal nanoparticles has been of great
importance since they can also be employed to tune the properties of the catalytic
materials.”® This helps in controlling and optimizing the catalytic efficiency to obtain the
desired properties such as high yield and selectivity. One group of commonly used
ligand stabilizers are organothiols. Pd nanoparticles stabilized by dodecanethiol can be
used as recyclable catalysts in the Suzuki reaction of chloroarenes with phenylboronic
acid at ambient temperature.”’ Enantioselective reactions have also been successfully
carried out with metal nanoparticles to achieve high ee values.”®®! One of the earliest
asymmetric reaction catalyzed by metal nanoparticles used Rh nanoparticles during the

hydrogenation of 2-methylanisole o-cresol trimethylsilyl ether, where Rh nanoparticles



with chiral amines as ligands induced enantioselectivity.78 Pt orPd nanoparticles capped
with cinchonidine ligands were employed during the hydrogenation of ethyl pyruvate
with an ee of upto 98%.” Also, enantioselective allylic alkylation reactions were
reported with 97% ee using catalysis by Pd nanoparticles stabilized in the presence of
chiral xylofuranide diphosphite.®'

Surfactants have also been widely employed to stabilize nanoparticles. Recently,
Pd nanoparticles stabilized by N,N-dimethyl-N-cetyl-N-(2-hydroxyethyl)ammonium
chloride salt have been investigated for catalytic hydrogenation and dehalogenation of
various halogenoarenes.®’>  Also, cetyltrimethylammonium bromide was reported to
promote and stabilize the formation of metallic Cu nanoparticles on several metal oxides,
which were employed for the selective dehydrogenation of methanol to produce
formaldehyde and hydrogen with 100% H, selectivity.®

Recently, there has been a lot of interest in using polymers as innovative
stabilizers. Polymers stabilize metal nanoparticles using their steric bulk framework,
which prevents nanoparticle aggregation. Moreover, polymers can also weakly bind to
the nanoparticle surface through heteroatoms that can impart certain desired properties.
Poly(N-vinyl-2-pyrrolidone) (PVP), for example, has been commonly used for
nanoparticle stabilization and catalysis. PVP-stabilized Pt, Pd, and Rh nanoparticles that
are synthesized by the reduction of the corresponding metal halide in refluxing ethanol
and immobilized in an ionic liquid are very efficient olefin and benzene hydrogenation
catalysts at 40°C, and these catalysts can be recycled without loss of activity.* Also,

palladium and bimetallic (PdAu, PdPt, and PdZn) nanoparticles were stabilized in block



copolymer micelles derived from polystyrene-block-poly-4-vinylpyridine (PS-b-P4VP)
and studied in selective hydrogenation of dehydrolinalool.ss

Another commonly used polymer type that that has been recently explored
extensively for nanoparticle stabilization is dendrimers.®" % Richard Crooks has
pioneered the the use of metal nanoparticles encapsulated in dendrimer systems.®" 8
There are several advantages in using a dendrimer as the stabilizing agent. (1) the
dendrimer templates possess uniform composition and structure, and therefore they yield
well-defined nanoparticle; (2) the nanoparticles are stabilized by encapsulation within the
dendrimer, thereby preventing particle agglomeration; (3) the encapsulated nanoparticles
in dendrimer systems are catalytically active; (4) the dendrimer branches can be used to
selectively control access of small molecules to the encapsulated nanoparticles; (5) the
functionality on the dendrimer can be tailored to control solubility of the hybrid

nanocomposite. This work shows that nanoparticles in PEMs show catalytic selectivities

that are equivalent to those in dendrimers.

1.4.2. Application of Encapsulated Nanoparticles as Antibacterial Coatings on
Membranes
Antimicrobial surface modifications help in preventing growth of detrimental

microorganisms, which is a highly desired goal. The potential use of antimicrobial

87-89

surface coatings appears in fields ranging from medicine, where medical device

%91 textilc-.,92

infection is associated with significant healthcare costs, to the construction,
and food industries®™ *. Microbial adhesion to surfaces is usually followed by cell

growth, thus resulting in the formation of a complex biofilm matrix capable of protecting
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the underlying microbes from antibiotics and host defense mechanisms.” *® In the case
of biomedical devices such as catheters, prosthetics, and implants, surface microbial
contamination can result in critical infection and device failure.”” Hence, there is a
significant interest in the development of antimicrobial surfaces and coatings in several
industries. Antimicrobial coatings need to provide desirable attributes such as potent
antibacterial efficacy, environmental safety, low toxicity, and ease of fabrication.

Antibacterial coatings may be of great interest to reduce or minimize biofouling
on membrane surfaces used in water treatment applications. Typical adverse effects of
membrane biofouling include (i) a reduction in membrane water flux, (ii) biodegradation
and/or biodeterioration of the membrane surface (iii) development of human pathogens
on membrane surfaces, (iv) increased energy requirements; this is due to the higher
pressure requirements needed to overcome the biofilm resistance and the flux decline.”®
9

Effective prevention of microbial growth in a membrane system can be achieved
by maintaining a sufficiently high concentration of chlorine. However, this may not be
desirable based on environmental concerns and stricter legislative regulation
corresponding to the discharge of chlorinated brines.'® Moreover, many materials are
attacked by chlorine, so this treatment greatly limits the type of membranes that may be
employed.

More effective and ecologically sound methods are needed to prevent or control
the formation of biofilms on membrane surfaces. This need has led to the development

101, 102

of surface modification of membranes with polymers, and surface functionalization

103-105 106, 107 108, 109 110-112 In

with silver, quaternary ammonium groups, metals or chitosan
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this work, I exploit metal nanoparticle/polyelectrolyte films to create a new antifouling

coating for membranes.

1.5. Outline of the Thesis

Chapter 2 introduces a new approach for preparing catalytic metal nanoparticles
encapsulated in PEMs. I examine the catalytic activity of Pd nanoparticles incorporated
in poly(acrylic acid) (PAA)/polyethylenimine (PEI) films on alumina. In this case,
alternating adsorption of PAA and a PEI-Pd(II) complex on alumina and subsequent
reduction of Pd(II) by NaBH, yield catalytic Pd nanoparticles embedded in multilayer
polyelectrolyte films. The chapter describes both the activity and remarkable selectivity
of these Pd nanocatalysts during the hydrogenation of structurally similar unsaturated
alcohols.

In Chapter 3, I first describe a modified LbL method for preparing immobilized
Pd nanoparticles where catalytic Pd nanoparticles in multilayer polyelectrolyte films are
prepared by alternating immersions of a substrate in PdCl,* and PEI solutions followed
by chemical reduction of Pd(II) with NaBH,. Since only one polymer is used for the
preparation of PEMs, the catalytic access to the Pd nanoparticles is high than in the films
described in chapter 2. Since reduced PdCl42'/PEI system is not well-studied in literature,
I first characterize these films using UV-visible spectroscopy, X-ray photoelectron
spectroscopy, atomic absorption spectroscopy, and transmission electron microscopy, and
compare the catalytic properties of these films with the system discussed in Chapter 2.

The effect of the number of bilayers on the catalytic activity and selectivity is presented

11



to show the high accessibility of nanoparticle in reduced PdCl,*/PEI films along with
good catalytic selectivity.

Silver is known as one of the oldest antimicrobial agents. Silver ions are thought
to inhibit bacterial enzymes and bind to DNA and have been used effectively against
different bacteria, fungi and viruses. In Chapter 4, I discuss the application of silver
nanoparticles incorporated in PEMs as antibacterial coating on polyether sulfone
membranes. The mechanism of antibacterial action by the nanoparticles presumably
involves slow release of Ag" ions, leading to sustained life of nanoparticle coatings
compared to coatings containing Ag' ions. Leaching experiments with silver
nanoparticles and ions indicate that the rate of leaching of silver nanoparticles is about an
order of magnitude lower than that of silver ions.

In the last chapter of this thesis, I present the conclusions obtained from my

research work and finally discuss some of the future prospects of my studies.
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Chapter 2: Selective Hydrogenation By Pd Nanoparticles Embedded In
Poly(Acrylic Acid)/Polyethyleneimine Multilayers

2.1. Introduction

Metal nanoparticles are an interesting class of materials because they often exhibit
different properties than the corresponding bulk metals.'” For example, bulk Au is not
catalytically active, but recent studies have shown that Au nanoparticles can serve as
catalysts for oxidation and hydrogenation reactions.®”’ Additionally, nanoparticle

8,10, 11

properties can be tuned by varying their sizes and environments.'?> Because of these

unique characteristics, metal nanoparticles are being intensively studied for applications

10,13

in catalysis, optoelectronics,'* preservatives,'® and biosensing'ﬁ.

Metal nanoparticles are particularly attractive for catalysis because their large
surface area-to-volume ratio allows effective utilization of expensive metals.* '
Moreover, variation of nanoparticle size sometimes allows control over catalytic
activity. ' Unfortunately, however, aggregation of naked nanoparticles often prohibits
tailoring of particle size.'"® To overcome this problem, catalytic nanoparticles have been
immobilized on solid supports (e.g., carbon, metal oxides, and zeolites) or stabilized by
capping with ligands ranging from small organic molecules to large polymers.”’

0 and

Recently, novel systems such as dendrimers,'® block copolymer nanospheres,2

crosslinked lyotropic liquid crystals'® were employed to encapsulate metal nanoparticles.
Multilayer polyelectrolyte films (MPFs) are especially attractive for encapsulating

metal nanoparticles because their layer-by-layer deposition is both convenient and

11-20

versatile. We are developing catalytic nanoparticles embedded in multilayered

polyelectrolyte films because the layer-by-layer deposition of these coatings, which
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simply involves alternating adsorption of polycations and polyanions, offers a versatile
platform for potentially controlling catalyst properties.z"23 There are two main strategies
for preparing nanoparticle-containing polyelectrolyte films. In the first, the nanoparticles

2425 \while in the second,

serve as the polycation or polyanion during film deposition,
metal ions are incorporated into polyelectrolyte films and subsequently reduced to form
nanoparticles (Scheme 2.1).2%?" Either way, the simple layer-by-layer procedure permits
deposition of films on nearly any surface, thus allowing the formation of catalytic
systems on recoverable, high-surface-area substrates such as alumina. Moreover,
because nearly any highly charged material can be used in alternating polyelectrolyte
deposition,' variation of constituent polyelectrolytes should allow tailoring of the
nanoparticle environment as well as control over access to catalytic particles.

This chapter will discuss the use of Pd nanoparticles embedded in polyelectrolyte
multilayer films, [poly(acrylic acid) (PAA)/polyethyleneimine (PEI)], films in particular,
as selective catalysts during hydrogenation of structurally similar alcohols. Pd
nanoparticles encapsulated in polymer films are not only active, but also selective during
hydrogenation reactions. Nanoparticles in [PAA/PEI-Pd(0)]3sPAA films can catalyze
hydrogenation of allyl alcohol at a rate that is an order of magnitude faster than
hydrogenation of 3-methyl-1-penten-3-ol. Studies of transport in diffusion dialysis
experiments suggest that differential rates of transport to the Pd nanoparticles may

account for the selectivities. First-order reaction rates are also consistent with diffusion-

limited kinetics.

2.2. Experimental Section
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2.2.1. Materials

Polyethyleneimine (PEI) (M,, = 25 000 Da), poly(acrylic acid) (PAA) (25 wt % in water,
M,, = 90 000 Da), poly(styrene sulfonate) (PSS) (sodium salt, M, = 125 000 Da),
palladium (5 wt % on alumina powder), a-alumina (100 mesh, typical particle size 75-
100 gm), allyl alcohol (99%), 1-penten-3-ol (99%), and 3-methyl-1-penten-3-ol (99%)
were purchased from Aldrich. Potassium tetrachloropalladate(II) (99.99%) was obtained
from Alfa Aesar, and sodium borohydride was acquired from Spectrum. All reagents
were used as received, and solutions were prepared with deionized water (Milli-Q, 18.2

MQ cm).

2.2.2. Preparation of Pd Nanoparticles Encapsulated in PAA/PEI multilayer films
Synthesis of [PAA/PEI-Pd(0)],PAA films occurs through alternating immersions
of alumina particles in solutions of PAA and a PEI-Pd(II) complex, followed by
reduction of Pd(II) by NaBH, to give catalytic Pd nanoparticles in a PAA/PEI film
(Scheme 2.1). Specifically, 15 g of a-alumina was mixed with 100 mL of a solution
containing 20 mM PAA (pH adjusted to 4.0), and the suspension was stirred vigorously
for 10 min. Subsequently, the alumina was allowed to settle, and the supernatant was
decanted. The alumina particles were then washed with three 100-mL aliquots of
deionized water to remove any excess PAA. To deposit a PEI-Pd(II) layer, 100 mL of a
PEI-Pd(II) complex (1 mg/mL PEI 2 mM K,PdCl,, pH adjusted to 9.0) was added to the
PAA-coated alumina, and the particles were stirred for 10 min and washed as described
above. Subsequent bilayers were deposited similarly Reduction of Pd(II) in these films

was effected by exposure of the coated alumina to 100 mL of fresh 1 mM NaBH4 for 30
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min (with stirring). The reduced films were washed three times with water after exposure
to NaBH,. Films were always capped with PAA and rinsed between the depositions of
each polyelectrolyte. All the catalysts were vacuum-dried after NaBH,4 reduction, and no
flocculation of the alumina was observed during deposition and rinsing. The coated

alumina easily dispersed upon exposure to hydrogenation solutions.

2.2.3. Characterization of Pd Nanoparticles

Reduced [PAA/PEI-Pd(II)];PAA films were also deposited on carbon-coated
copper grids for transmission electron microscopy (TEM). Prior to film deposition, the
grids were cleaned in a UV/ozone cleaner for 1 min, and TEM was performed on a JEOL
100CX microscope using an accelerating voltage of 100 kV. The digital images were
taken with a Mega View III Soft Imaging System. Films were prepared using alternating
5-min immersions in PAA and PEI-Pd(II) solutions with 1-min water rinses between
polycation and polyanion depositions. Nanoparticles formed upon reduction with 0.1 M
NaBH;, for 15 min. We used somewhat shorter deposition times than those employed for
the catalyst synthesis because of the small surface area of the TEM grid.

UV-Visible absorption spectra of [PEI-Pd(II)/PAA], films on quartz slides were
obtained using a Perkin-Elmer UV/Vis (model Lambda 40) spectrophotometer. To form
films on quartz, slides were alternatively immérsed into PEI-Pd(II)-complex and PAA
solutions for 10 min each, with a 1-min water rinse after each deposition. These
depositions began with PEI-Pd(II) rather than PAA because quartz is negatively charged

at the pH values used in deposition.
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Scheme 2.1. Formation of Nanoparticles in PEMs
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2.2.4. Hydrogenation Reactions

Catalytic hydrogenations were run in a 200-mL, 3-neck, round-bottomed flask.
H; was bubbled through a frit at the bottom of the solution at 50 kPa and the solution was
vigorously stirred throughout the reaction. The aqueous hydrogenation solutions (200
mL) initially contained 2.0 mmol of substrate and either 10 mg of commercial palladium
catalyst (5 wt% Pd on alumina powder, Aldrich) or 250 mg of alumina coated with 3.5
bilayers of PAA/PEI-Pd(0). (The amounts of catalyst were chosen to achieve
approximately the same quantity of Pd loading in the reactor in the two cases.) The
alumina coated with PAA/PEI-Pd(II) was treated with fresh 1.0 mM NaBH4 and washed
3 times with water before the hydrogenation reaction to ensure that all of the Pd was
reduced. (Nanoparticles may oxidize over time, and this second reduction step seemed
necessary to maintain catalyst activity.) Suspensions of catalyst in H,O were bubbled
with H, for 30 min before adding the substrates, all of which were liquids. Gas
chromatography (Shimadzu GC-17A equipped with an RTx-BAC1 column) was used to
monitor the reactions. The sensitivity of the flame-ionization detector was assumed to be
the same for products and reactants because they contain the same number of carbon
atoms. This has been verified in several cases. For reactions with more than one
product, GC-MS and 'H NMR were used to identify the products. Turnover frequencies
were calculated from the slopes of the linear portions of plots of percent hydrogenation
versus time. Slopes were determined by forcing the intercept to be zero except in the
case of commercial catalyst coated with 3.5 PAA/PEI bilayers. In that case, the intercept
was not forced to be zero because of a small offset that occurred primarily with allyl

alcohol. Fitting the intercept rather than forcing the fit through zero resulted in only
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small (<25%) changes in selectivity and a 35% decrease in the turmover frequency for

allyl alcohol.

2.2.5. Determination of the Amount of Pd in Catalysts

To calculate turnover frequencies, the amount of Pd in the catalyst must be
known. For both the commercial and synthesized catalysts, the percentage of palladium
in the material was determined by atomic emission spectroscopy. Standard solutions (0.1
to 0.5 mM) were prepared by dissolving K,PdCl, in 0.1 M HNO;, and sample solutions
were prepared by stirring 250 mg of synthesized catalyst or 10 mg of commercial catalyst
in 2 mL of aqua regia for 15 min. The solutions were diluted to 12 mL and centrifuged
(the a-alumina support does not dissolve in aqua regia), and the supernatant was
analyzed using its emission at 633 nm. The amounts of Pd in 250 mg of 3.5-bilayer
PAA/PEI-Pd(0) on alumina and 10 mg of 5% Pd-on-alumina were 3.3x10° and 5.3x10°®
moles, respectively. The amount in the commercial catalyst corresponds to 5.6 wt%, and

the manufacturer reported 5 wt%.

2.2.6. Determination of Transport Rates by Diffusion Dialysis

A home-built diffusion dialysis set-up was used to study the transport of
unsaturated alcohols through polyelectrolyte multilayer films. The apparatus consists of
two glass cells (100 mL) between which a 0.02 ym alumina membrane (Anodisc™)
coated with (PAA/PEI), film, was sandwiched as shown in Figure 2.1.22° The feed side
of the glass cell initially contained 20 mM of the unsaturated alcohol (allyl alcohol,

penten-1-ol or 3-methyl penten-1-ol), while the permeate side contained pure water. The
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feed and permeate sides were both stirred continuously to minimize concentration
polarization at the membrane interface. Aliquots of samples were taken from the
permeate side at regular intervals of time, and were then analyzed by GC to determine the

rate of transport through the coated membrane.

Stirrer

®

I_._.
Receiving Phase Source Phase

y

Alumina Membrane

O-ring

Figure 2.1. Home-built diffusion dialysis set-up for transport experiments
(Figure courtesy of Dr. Jinhua Dai)
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2.3. Results and Discussion
2.3.1. Film Deposition

In investigation of catalysis by nanoparticle-containing films, it is important to
first understand film growth and composition. We performed UV/Vis spectroscopy of
[PEI-Pd(II)/PAA], films on quartz to demonstrate that layer-by-layer deposition occurs.
As shown in Figure 2.2, the absorbance of PEI-Pd(I)/PAA films at 222 nm, which is
likely due to a Pd(II)-amine charge transfer band,'* ' increases linearly with the number

of bilayers.

0.2

Absorbance
o
° =
- o

o
o
o

0 T T
200 250 300 350 400
Wavelength (nm)

Figure 2.2. UV-Vis absorption spectra of [PEI-Pd(II)/PAA],PEI-Pd(II) films
on quartz substrates with n =0, 1, 2, and 3 (from lower to upper curves).
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2.3.2. Film Characterization

To investigate the reduction of Pd(II) to form nanoparticles, we performed TEM
of films deposited on the Cu-coated TEM grid. The TEM image in Figure 2.3 confirms
the formation of Pd nanoparticles during exposure of [PAA/PEI-Pd(I)];sPAA films to
NaBH,. The particles have diameters of 1-3 nm and are distributed throughout the film.
(We note that there may be particles with diameters <1 nm, but these would be difficult

to see and likely unstable.)

Figure 2.3. TEM image of [PAA/PEI-Pd(0)]JPAA on a carbon-coated copper grid.

2.3.3. Selective Catalysis of Hydrogenation

To show that encapsulation of Pd nanoparticles in polyelectrolyte films can result
in selective catalysis, we hydrogenated a series of unsaturated alcohols using PAA/PEI-
Pd(0) films on alumina particles as well as a commercial Pd-on-alumina catalyst. Table

2.1 summarizes the turnover frequencies (TOFs) for aqueous hydrogenation of allyl
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alcohol (1), 1-penten-3-ol (2), and 3-methyl-1-penten-3-ol (3), which differ only in the
substituents at the a-carbon of the double bond.

On “naked” 5% Pd-on-alumina catalyst (Table 2.1, column 2), the reaction rates
for 1, 2, and 3 are very close (1/2 = 1/3 = 0.87), showing that the presence of additional
alkyl groups at the a-carbon does not have a significant effect on reactivity. However,
for alumina coated with [PAA/PEI-Pd(0)];PAA (3.5 bilayers of film, Table 2.1, column
3), the initial rate for hydrogenation of 1 is 3- and 12-fold faster than that for 2 and 3,
respectively. Figure 2.4 indicates the amount of substrate hydrogenated as a function of
reaction time for 1, 2, and 3 using [PAA/PEI-Pd(0)];PAA-coated alumina as a catalyst.

To further improve selectivity, we capped two bilayers of PAA/PEI-Pd(0) with
five bilayers of PAA/PEI (without any Pd). With the capping layers, selectivity for 1
over 3 increases to 24 (Table 2.1, column 5). The presence of the capping layers
decreases the hydrogenation rate for all of the alcohols, but hydrogenation of 3 is most
attenuated. This likely results from very slow diffusion of 3 through the film (see below).
We also carried out the hydrogenation in a 4:1 methanol-water mixture because hydrogen
and the unsaturated alcohols (particularly 2 and 3) are more soluble in organic solvents
than in water. The rate of hydrogenation of 1 is 40% lower in 80% methanol than in pure
water, but selectivities are 60-80% higher (Table 2.1, column 4). The increased
selectivity and decreased rate probably result from less swelling of the film in the
methanol-water mixture. These selectivities are, in general, about 2-3-fold higher than
those reported for dendrimer-encapsulated Pd nanoparticles, suggesting that the

polyelectrolyte films provide highly restricted access to catalytic sites of nanopaﬂicles.z'
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Table 2.1. Tumover Frequencies (TOFs) for hydrogenation of structurally related
unsaturated alcohols by several Pd catalysts.

TOF (moles hydrogenated per mol Pd per h)
Substrate 5% P<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>