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ABSTRACT

ANALYSIS OF DAMAGE IN LAMINATED COMPOSITES SUBJECTED To BLAST

LOADING

By

Anoop Goyal

A finite element code based on interlaminar shear stress continuity and interlaminar

displacement discontinuity conditions and presented by Lee was utilized in the thesis

research to analyze the in-plane damage and interfacial condition of a composite laminate

subjected to blast loading. The displacement discontinuity conditions between different

composite plies were enforced by using both shear slip approach and embedded layer

approach. The delamination scheme was validated for a composite plate subjected to

sinusoidal loading by an elasticity solution extended from the Pagano’s problem. For

perfectly bonded composites, the finite element solutions matched well with the elasticity

solutions given by Pagano. However, for imperfect bonding conditions, the finite element

model could only account for the shear slip across the interfaces, but not the normal

separation. To understand the nature of blast loading, a brief explanation about the

pressure profile and other parameters involved in blast waves was elaborated. Numerical

results obtained by simulating the blast loading on composite laminate were presented.

Various in-plane and delamination failure criteria were applied using these results.

Although the numerical results for interlaminar analysis agreed with that of experiment,

the numerical results for in-plane analysis did not match with that of experiment.

Absence of geometric non-linearity in the laminate theory and coupling between in—plane

stretching and out-of-plane deflection were considered to be the sources of discrepancy.
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1. INTRODUCTION

1.1 Background and Motivation

Explosions can be both awesome and devastating. They have their utilities in mining,

building demolition, pyrotechnics and even construction. At the same time, they are of

interest to those who are involved with disasters such as explosion and earthquakes, civil

defense precautions and to those concerned with defense against terrorists [2]. Explosives

when detonated result in powerful blast waves which can destroy the whole structure and

the property and personnel along with it. Hence it is very important to understand the

mechanism behind these blast waves, so that we can design our structures properly.

Among all kinds of materials, composite are one of the most widely used. They find

their usage in a wide variety of engineering applications ranging from aircrafts and

submarines to pressure vessels and automotive parts. This is because of their high

strength-to-weight and high stiffness-to-weight ratios, which make them light but at the

same time very strong. However at the same time, these materials have their own

limitations. Hence, when various types of loading come upon them during manufacturing

or service conditions, these materials may result in various complex damage mechanisms.

Delarnination is one of the most common types of damage in composites. When

composites are subjected to loading conditions, their anisotropy and lack ofhomogeneity

may cause mismatch of properties across different laminas, which in turn may lead them

to separate from each other, or in other words delamination. This makes the whole

structure very weak and easily penetrable.

A finite element model which can capture the mechanism of delamination in composite

materials and can simulate it for any given requirement is very significant.



This will not only be inexpensive and saves time but also provide a lot of scope for

parametric studies leading to a better understanding of the damage process. This thesis

work is an attempt to study the mechanism behind blast loading and then incorporating it

with in a suitable finite element model to analyze interfacial damage of laminated

composites.

1.2 Organization of Thesis

This thesis is divided into seven chapters. In Chapter Two, literature survey

concerning the various aspects of blast loading, laminate theories dealing with interfacial

damage and blast simulations are discussed. Chapter Three elaborates on the elasticity

analysis for a simply supported [0/90/0] plate with different interfacial bonding

conditions. Two analytical models — (1) Embedded layer approach and (2) Slip approach

-— are presented and used for the analysis. Chapter Four gives us an explanation about

Lee’s laminate theory. Using the numerical code based on Lee’s laminate theory [1],

embedded layer approach and shear slip approach are individually utilized to analyze

Simply supported [0/90/0] plate with different interfacial bonding conditions. In Chapter

Five, the results from finite element simulations in Chapter Four are compared with the

elasticity solutions found in Chapter Three in details.

Finite element simulations of composite laminates with a stacking sequence of

[0/90/90/0] subjected to blast loading is presented in Chapter Six. The results from the

simulations are compared with the experimental results. Chapter Seven summarizes the

conclusions of the present study and ends with recommendations for future studies. The

Appendices follows Chapter Seven and includes various figures and the computer

programs developed for this thesis research.



2. LITERATURE REVIEW

This chapter gives a detailed account of literatures surveyed for blast theories, various

laminate theories dealing with interfacial damage and blast simulations.

2.1 Blast theories and Phenomenological models

A blast wave is a pressure wave of finite amplitude generated due to a rapid release of

energy in the medium [3]. The study of blast waves generally involves mechanisms and

sources for its generation, analysis of pressure profile which includes variation of

pressure with respect to time and distance and structural encounter ofblast waves.

There are many possible mechanisms by which blast waves can get generated. The two

main mechanisms are detonation and deflagration. Depending on the amount of energy

provided and the nature of the explosive, the explosive may undergo decomposition or

oxidation by either deflagration or detonation, differentiated by the speed of the

decomposition of the explosive. In the case of deflagration, the Speed of decomposition

of the explosive is way below the speed of sound, for instance, a typical gun propellant in

a gun barrel burn at a rate of 400 mm/s. On the other hand, detonation is the form of the

reaction of an explosive where the decomposition rate of the explosive goes in the range

of 1500 — 9000 m/S, way above the speed of the sound. This reaction is accompanied by

large pressure and temperature gradients at the Shock wave front and the reaction is

initiated instantaneously. One example of detonation is TNT which is having a detonation

velocity of 6,940 m/s [4]

There could be different sources for explosion. Depending on the medium and the

surroundings, they will be producing different blast effects. The figure below gives a

description about that. The nuclear and chemical explosives undergo the detonation



mechanism to generate blast waves. Dust explosions, on the other hand are accidental
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Figure 2.1 Sources and Mechanism of Blast waves
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which occur in places like flour mills, grain silos etc. due to high levels of suspending

combustible dust particles in the air space during various operation [5]. Gas and vapor

cloud explosives undergoes both detonation and deflagration depending on the initial

conditions and the external environmental factors. For instance, vapor cloud explosive

like hydrocarbon when blown in a confined environment with certain boundary

conditions can undergo detonation and can lead to intense damaging consequences. On

the other hand, the same explosive when blown in an unconfined environment like open

air may not produce any damaging effect at all [6]. This thesis research will mainly be

focusing on chemical explosives.

The pressure waves generated after the explosion vary as time and distance change and

hence are a function of both. Over the period of many years, researchers tried formulating



various models for different blast parameters numerically as well as by using available

extensive data obtained by testing of explosives [7]. Many authors tried solving the

equations for air blast transmission coupled with jump conditions, known as the

Rankine—Hugoniot conditions [7] both numerically and analytically and proposed

different solutions. Brode [8] was the first one to propose a solution in 1955. Henrych

also proposed a solution [4] for the variation of the peak static overpressure with respect

to distance from the source of explosion. It was found that the accuracy of predictions

and measurements by these models in the near field was somewhat lower than in the

medium to far field. This discrepancy was attributed to complexity of the flow processes

involved in forming the blast wave close to the charge where the influence of explosive

gas was difficult to quantify. Beshara [9] gave a detailed summary of many available

models till 1992 for chemical explosions, nuclear explosions as well as unconfined vapor

cloud explosions. This paper mainly dealt with external blast loading on aboveground

structures and included numerical and empirical models for blast parameters like

overpressure, time duration, arrival time, reflected and dynamic overpressure. In another

paper, Beshara [10] gave description of different models concerning confined blast

loading, explosion induced ground shocks and dust explosions. Graham and Kinney in

their book [11] gave empirical models for various blast parameters like peak static

overpressure, arrival time, duration of blast wave and intensity. Saleh and Adeli also cited

another model [12] for overpressure, arrival time and pressure variation w.r.t distance.

As the blast waves travel, the pressure profile also varies with respect to the time. When

the blast waves reaches at a particular location, the pressure at that point suddenly jumps

from atmospheric pressure to the pressure at the shock fiont and as time passes, the



pressure at that location decays to atmospheric value, then drops to a partial vacuum and

eventually returns to ambient pressure [13]. In order to explain this type of variation of

pressure with respect to time, various authors proposed different phenomenological

models. Flynn [7] in considering blast loading of structures assumed a linear decay of

pressure and presented a two parameter model. This form, admittedly oversimplified, is

often adequate for response calculations. Ethridge [7] gave an exponential two parameter

model, which was more accurate than Flynn. Friedlander [7] gave a three parameter

model which is most widely used as it is optimally accurate and also computationally

inexpensive. Ethridge [14] presented a four parameter model which were more accurate

but computationally more rigorous also. Brode [8, 15] finally gave two most complex

five parameters models. All of these models will be explained in details in chapter six.

2.2 Interfacial Damage

Although composite laminates find a wide variety of usages in the engineering structures,

interfacial damage may take place in them during manufacturing operations or in service.

This may reduce the load bearing capacity of the laminate. There are two types of

interfacial damage which are observed in composite laminates. The first one is called the

weak bonding and the second one is the delamination [16]. In the case of weak bonding

there are displacement discontinuities, or displacement jumps between the layers despite

non-zero continuous interfacial stresses. In the case of delamination, interfacial stresses

vanish on those layers. It may be possible that the weak bonding may lead to

delamination.



Lot of literature is available on delamination. Two types of delamination namely edge

delamination and central delamination [17] have been widely investigated. Both of them

can be viewed as a result of interlaminar stress concentration caused by material property

variation in the thickness direction and high external loading. The various analytical and

numerical methods available for analyzing the delamination in composite plates can be

broadly classified as region approach and layerwise models [18]. In a region approach,

the delaminated laminate is divided into sublaminates or segments and the continuity

conditions are imposed at the delamination junctions. Each of these sublaminates is

analyzed using what is known as the equivalent single layer theories (ESL). The ESL

plate theories are derived from the three dimensional elasticity theory by making suitable

assumptions regarding the stress state or kinematics of deformation, which allow the

reduction of a three dimensional problem into two dimensional problem. The ESL

theories are further classified into classical laminated plate theory; first order shear

deformation theory and third order shear deformation theory. A fuller perspective can be

found in Reddy [19], Ghughal and Shimpi [20]. Roy and Chakraborty [21] developed a

finite element model to study the chances of delamination at the interfaces of hybrid FRP

composite laminates using three dimensional eight noded isoparametric solid elements.

The delamination initiation at the interface was assessed using the criteria of Choi et.al

[22].

In a layerwise model, modeling of the laminate is done using the layerwise theories

which are based on piecewise layer-by-layer approximations of the response quantities in

the thickness direction. This is further divided into full layerwise theories and the partial

layerwise theories. The delamination can be modeled as an embedded layer or by



introducing discontinuity functions in the displacement fields [18]. Detailed description

can be found in Reddy [19], Ghughal and Shimpi [20] and Carrera [21]. Ghosal et. al.

[24] studied the transient analysis of delaminated composite and smart composite plates

using the improved layerwise theory or the partial layerwise theory, extended to include

large deformation and the interlaminar contact in the delaminated interface. They used

the first- order shear deformation-based displacement field to address the overall

response of the laminate and layerwise functions to accommodate the complexity of

zigzag-like in-plane deformation through the laminate thickness. In order to model the

multiple, discrete delamination, the assumed displacement field was supplemented with

Heaviside unit step functions, which allows discontinuity in the displacement field.

Ghosal et a1 [25] used the Fermi-Dirac distribution firnction in place of the Heaviside unit

step firnction to model a smooth transition in the displacement and the strain fields of the

delaminated interfaces. The improved layer wise theory was incorporated into Fermi-

Dirac distribution function to account transverse shear affects of anisotropic laminated

composites.

As far as the weak bonding is concerned, its study is again divided into two parts - shear

Slip and general weak bonding [16]. Shear slip implies no opening up of layers and

accounts for shearing mode weak bonding. Liu et a1 [26] analyzed shear Slip between the

layers by using the interlayer shear slip theory (ISST). ISST implies that shear stresses

are continuous across the layers; however the variation of interlaminar transverse

displacements is linearly proportional to the interlaminar shear stress. The numerical

version of the ISST theory is used in this thesis research. General weak bonding accounts

for opening up of layers and hence opening mode weak bonding. Liu et. al. [27]



presented an interlaminar bonding theory, which was an updated version of ISST, in

order to also account for general weak bonding. Interlaminar bonding theory, in addition

to ISST, implies that interlaminar normal stresses are continuous and the interlaminar

normal separation is linearly proportional to the interlaminar normal stresses. ISST and

its updated version interlaminar bonding theory make use of layer wise displacement

fields. Soldatos et a1 studied shear slip [28] and updated it to include the general weak

bonding [29] using the global or smeared displacement theories rather then the layerwise

theories. However, in all of the above studies, weak bonding along the whole interface

was considered. Thus in order to account for local weak bonding which occurs on part of

an interface, the above study [28, 29] were further extended by Shu [16] to develop a

generalized laminate model which accounted for both local weak bonding and local

delamination. The method used [28, 29, 16] is based on the successful combination of the

stress analysis information obtained from the three-dimensional elasticity solutions of

simply supported plates [30] with smeared or global laminate theories. The main

advantage with this method was the use of small number of degrees of freedom,

irrespective of the number of layers involved, whereas it can accommodate the boundary

conditions imposed at the edges.

2.3 Blast Simulations

The design of structures subject to blast loading has been a rapidly growing area of

interest in the last few years. Lot of work has been done for explosive loading of

materials such as concrete [31] and steel [32]. There has been very limited data available

on polymer composite structure response to blast loading.



Librescu and Nosier [33] investigated the response of laminated rectangular flat panels

subjected to explosive blasts and sonic boom loadings. Only the theoretical analysis was

being presented. Friedlander’s equation [7] was used to define the pressure time history.

It was assumed that the plate dimensions are too small as compared to blast and sonic

boom wave front and hence pressure at any instant is uniformly distributed over the plate.

The response of the composite plate was characterized in terms of different parameters

being found out using high order shear deformation theory and the results were being

compared with their counterparts obtained by first order shear deformation theory and

classical plate theory. It was found that working in the fiamework of higher order shear

deformation theory was much better than the first order shear deformation theory and

classical laminate theory. This was because the first order Shear deformation theory

required incorporation of a shear correction factor, largely dependent on the laminate

sequence, relative anisotropy of the layers etc. and the claasical laminate theory gives

inaccurate results for thick plates. Turkmen and Mecitoglu [34] did the experimental,

analytical and numerical study of the laminated composite plates subjected to blast

loading. The pressure variation with respect to time was defined by using the

Friedlander’s decay function while the Spatial distribution was approximated by

multiplying the Friedlander’s decay function with sine functions. The finite element

modeling was done in ANSYS. The finite element model of the plate comprised of an

assembly of two-dimensional eight noded shell elements with seven layers in the

transverse direction and no interfacial conditions were assumed between the layers. On

the theoretical side, dynamic equation of plates was solved by considering a new

displacement firnction. The experiments were carried out on the laminated composite
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plates with clamped edges for two different blast loads. Theoretical and finite element

results were found to be in good agreement with each other. Qualitative agreement was

found between the analyses and experimental in the first load for the first loading,

however the results did not matched for the second one. Turkrnen and Mecitoglu [3 5] did

experimental and numerical investigation of a stiffened composite laminate plate

subjected to blast loading. The pressure variation with respect to the time produced by the

blast loading was defined using the Friedlander decay function. The laminated composite

plate and the stiffner were modeled using the two dimensional, eight-noded, shell

elements named SHELL91 in ANSYS. The element had six degrees of freedom. It was

assumed that there was no slippage between the element layers and normals to the center

plane before deformation remain straight after deformation. Good agreement was found

between the peak strains given by the experimental and numerical analysis in both linear

and non-linear ranges. Discrepancy was dound on the stiffner, however it was attributed

to the presence of the adhesive layer between the plate and the stiffner. Zyskowski et.al.

[36] used the numerical code AUTODYNE in order to Simulate the structural response

following the detonation caused by an explosion cloud in an unvented structure. Initial

phases of the blast wave propagation were calculated one dimensionally using

quadrilateral elements while the oblique wave reflections from the structure were

modeled three dimensionally using brick-shaped elements. It was found that the

numerical results calculated by AUTODYNE and the experimental results had a good

correlation. Hence it was concluded that structural response caused due to internal blast

loading can be properly addressed by the AUTODYNE code. Trabia et.al. [37]

investigated different methods using LS-DYNA to simulate both the explosive loading
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and the structural response of a cylinder subjected to it. One of the methods used for

modeling the explosive loading involved using the Lagrangian elements along with the

CONWEP air blast function Another two methods used the Arbitrary-Lagrangian-

Eulerian (ALE) coupling procedure along with the Jones-Wilkins-Lee-Baker (JWLB)

equations of state and Jones-Wilkins-Lee (JWL) equation of states for the explosive

detonation products. The cylinder geometry was modeled using Lagrangian and Eulerian

solid elements for composite layers. The numerical values for strain matched well with

that of the experimental for two out of three cylindrical test cases.
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3. ELASTICITY SOLUTION FOR BI-DIRECTIONAL

COMPOSITES

3.1 Modified Pagano’s Problem

In order to validate delamination simulations based on computational schemes such as

finite element analysis, an elasticity solution is desired for justifying the computational

approach. Among the very few elasticity problems available for laminated composite

analysis, Pagano’s problem [30] offers such an opportunity. Pagano had found out a three

dimensional elasticity solution for stress and displacement fields of a composite laminate

with simply supported boundary conditions subjected to sinusoidal loading on the top

surface, as shown in Fig. 3.1. Since perfect bonding conditions were assumed on the

laminate interfaces, Pagano’s solutions could not be used for composite laminates with

delamination. In order to account for the interfacial damage between composite laminae,

a modified Pagano’s problem was necessary [3 8].

 

 

    
 

Figure3.l. - A [0/90/01 plate subjected to sinusoidal loading on the top surface
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3.1.1 Fundamental Equations

Consider a laminate composed of N orthotropic layers. Figure 3.1 shows such a

composite laminate with N=3. The body is simply supported and a normal traction

0', = q0 (x, y) is applied on the top surface. The constitutive equations for any orthotropic

layer can be expressed by:

0:: C11 C12 C13 8x

O’y = C2, C22 C23 8), (3.1)

0'2 C31 C32 C33 ‘9

T}: = 44yyz’ sz : C55712’ Try = COnyy (32)

where Ci]- are the compliance coefficients. While the governing field equations can be

written in terms of the displacement components as,

Cllu’xx +C66u’13' +C55u’zz +(6‘12 + C66 )v’xy +(C13 + C55 )w’n = 0

(C12 + C66 )um +Cbbvm +C,,v,_,, +C,,v,,, +(C23 + C44 )w = 0 (3.3)
’ yz

+C33w =0
’22(C13 + C55 )u’xz +(C23 + C44 )V’yz +C55 w,” +C44W’ y)“

3.1.2 Boundary Conditions

The following boundary conditions are required if the exact solution to the modified

Pagano’s problem is sought. They are identical to those used in the Pagano’s problem.

A. The conditions on the top surface of the plate, 2 = + h/2 are given by
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0. (Ly-’25) =qo(x, y) = min pr sin qy

Tn (x, y,+ h/2) = 0 (3.4)

7W (x, y,+ h/2) 0

where h is the total thickness, 0 is the length of the composite plates, b is the width of the

. . 7: 7r . .
compOSIte plates, qo Is a constant, p = — and q = F . Theses three boundary condItrons

a

reveal that the normal stress on the top surface of the composite beams is equal to the

prescribed sinusoidal loading while the shear stresses vanish.

B. The bottom surface is traction free, hence both the normal stress and the Shear stress

vanish, i.e

0'2[x,y,— 121-] = O

T..(x,y,- h/Z) 0 (3.5)

T}: (x9 y9_ h/Z) : 0

C. The following simply supported boundary conditions are imposed at both edges of the

composite plates, i.e.

Atx=0,a: 0' =v=w=0

(3.6)

Aty=0,b: 0'},=u=w=0

Here u, v and w are the displacements in the x, y and z directions, respectively.
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3.1.3 Interfacial Conditions

The deviation of the extended Pagano’s problem from the original Pagano’s problem is

primarily based on the interfacial conditions, or the continuity conditions on the laminate

interfaces. In the original Pagano’s problem, perfect bonding conditions are assumed on

the laminate interfaces, hence both stress and displacement components are continuous

through the interfaces of composite plates. However, in the modified Pagano’s problem,

the laminate interfaces are allowed to be poorly bonded or completely delaminated.

A. The stress continuity conditions shown below remain to be true for composite

interfaces with various bonding conditions as they are essentially based on Newton’s

third law. In the following equations, a local coordinate system based on the mid-plane of

each composite layer is used. The thickness of each layer is represented by h with

superscripts i and 1’+1 denoting the adjacent layers corresponding to the laminate

interface of interest, respectively.

azi(x,y,—h':/2)= azi+l(x,y, hiH/Z)

szi(x,ya—hi/2) = szi+l (x,y, hiH/z)

(3.7)

ryzi(xaya‘hi/2)= Tyzi+1(x’y’ hM/z)

i=l,N—-l

B. For the case of perfectly bonded composite laminate, the displacement will also be

continuous across the interface of two consecutive layers and hence we have
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uiIx,y,— hi/ZI ui+l (x, y, hH/Z)

vi(x,y,— hi/Z) vi+1 (x, y, hi+1/2)

(3.8)

wi(x,y,- hi/2)= wi+l(x,y,hi+l/2)

i=1,N—l

However, when delamination takes place, the continuity of interfacial displacement

components across the laminate interface will be lost. The interfacial displacement

continuity equations used in the original Pagano’s problem must be modified to include

slippage or mismatch on the laminate interfaces for simulations of poor bonding as well

as delamination. There are two ways to handle this situation -— the first approach is called

the embedded layer approach which will be discussed in section 3.1.5 and the second

approach make use of the normal separation theory and shear slip theory which will be

explained in detail in section 3.1.6. We will call it the Slip Approach. Both of these

approaches were used to get the elasticity solutions for a [0/90/0] composite plate

subjected to sinusoidal loading and correlation between them was derived in section 3.1.7

3.1.4 Elasticity Solution

The solution proposed by Pagano for perfectly bonded composite plates can be used to

solve the modified Pagano’s problem. The following displacement equations are assumed

for each single layer, which satisfy the simply support edge conditions (3.6),
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u = U(z)cos px sin qy

v = V(z)sin px cos qy (3.9)

w = W(z)sin px sin qy

A. If the material of the layer is non-isotropic then equations (3.9) and the governing field

equations (3.3) on simplification yield the following stress equations,

3

o". = sin pxsin quMUUjm, (i = 1,2,3)

j=1

. 3

ryz = C44 8111 pxcos qu(mJ-Lj + qu )/Vj(z)

Fl

3

sz =C55 COSPXSinqul(mj+PRj)I/j(z) (3.10)

J:

3

rxy = C66 cospxcosqyzl(q + pLj Ill-(z)

J:

where 0'l , 0'2 , and 0'3 stands for O'x , o", , and 0'z

While the displacement equations are given by,

3

U(2)= ZlUj(Z)

J:

V(z)=ZLjUj(z) (3.11)
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Uj(z)= FjCj(z)+ 0152(2)

(j=1,2, 3) (3.12)

W]. (z) = GjCj(z)+ a1.1332(2)

Hence, the solution process for N layers composite plate is reduced to determine 6N

constants ij, ij (where an additional subscript k is introduced to identify the various

layers), 6 constants for each layer, associated with the boundary conditions given by

Equations (3.4) and (3.5) and the modified interfacial conditions given by either the

embedded layer approach or the slip approach. Once these coefficients are identified, the

stress and displacement distributions of the composite beam can be found from

corresponding equations, i.e. Equations (3.10) and (3.9).

B. In the event that the material of a given layer is isotropic, the stress equations (3.10)

for that particular layer must be replaced by the following equations,

O'x = l— pCHVl +C,2(-qV2 + V3')Jsin pxsin qy

0y = I—qcire +C.2(—pV. + ailsinpxsinqy

0'2 = ICIIV3 ”C12(PVI +qV2)]Sin szm qy

(3.13)

2ryz = (CH —C12XV2' +qV3)sin pxcos qy

27x2 = (C11 - C12 XVI + PV3 )COS PX Sin ‘0’

22'er :(CII _C22XqVI +pV2)cospxcosqy

l9



Where Vi refer to the displacements and primes denote derivatives with respect to z. The

displacement function given by Equations (3.11) and (3.12) for an isotropic layer must be

replaced by the following equations (3.14) and (3.15),

V.(z)= (ali +a3iz+c15izzjexp .(cz)+(a2i +a4iiz+a6z2)exp .(—cz) (i=1, 2, 3) (3.14)

where

V1 , V2, V3 are used in place of U, V, W and aji are constants related as,

=a .=0

a 6151'

“31 = Pa32’qa41 = ”42’ “’31 = pa33’ca41 = 'Pa43

(3.15)

qa +6., ..._,,a Leg—2:311;
22 23 21 p C12+C11a41

C 3C

qa12 +""13 =P"11 p[ d:+C1111]a31

Hence the 6 independent constants for an isotropic layer to be determined using the

interfacial conditions and boundary conditions are an, an, a3], a.“ and one term from

each of the pairs (an, a13) and (an, a23). If the laminate contains one or more isotropic

layers, we must replace equations (3.11), (3.12) and (3.10) with equations (3.14), (3.15)

and (3.13) for those layers. In this way, we can handle any situation involving a laminate

having a combination of isotropic and non-isotropic layers.
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3.1.5 Embedded layer Approach

One way to study the imperfectly bonded interface is by inserting extremely thin layers

between the adjacent layers of the composite plate [26]. These embedded layers have a

critical thickness value and their properties are isotropic in nature. In order to simulate all

the possible bonding conditions from perfect to imperfect to delamination, the material

properties (For example the Young’s Modulus, Shear Modulus etc.) of these interfacial

layers are varied.

Perfect bonding conditions can be simulated by selecting the properties of these

embedded layers to be very close to matrix properties. Delamination can be simulated by

selecting these properties to be near zero value and any bonding condition in between the

perfect bonding and delamination can be simulated by varying the properties of these

embedded layers.

In conclusion, two steps are involved in embedded layer approach. Firstly, the critical

thickness value of the embedded layer is required and secondly, the properties of the

embedded layers are altered in order to simulate different bonding conditions.

3.1.5.1 Determination ofcritical thickness value

In order to determine this, we use Pagano’s solution assuming perfect bonding conditions

(which was mentioned in section 3.1.4). We will take a [0/90/0] composite as given in

Figure 3.1 and introduce two embedded layers such that the modified composite is

[0/0/90/0/0], assuming that the properties of these embedded layers is same as that of top

layer with orientation 0°. This was done for the purpose of making the analysis easier. It

is observed that as the thickness of the embedded layer reduces and approaches a critical

value, the three-dimensional elasticity solutions for the composite with embedded layers,
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i.e. [0/0/90/0/0] approaches the composite without interfacial layers, i.e. [0/90/0] for the

case of perfect bonding conditions between the interfacial layers. Following plots clearly

show this comparison between various stress and displacement values.
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Figure3.2- Normalized Transverse shear stress distribution along the height of a [0/0/90/0/0]

composite plate for different values of embedded layer thickness (ELT) with perfect bonding

conditions
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Figure3.3- - Normalized Transverse shear stress distribution along the height of a [0/0/90/0/0]

composite plate for different values of embedded layer thickness (ELT) with perfect bonding

conditions
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plate for different values of embedded layer thickness (ELT) with perfect bonding conditions
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Figure3.5— - Normalized in-plane displacement variation along the height of a [0/0/90/0/0] composite

plate for different values of embedded layer thickness (ELT) with perfect bonding conditions

Figures (3.2) and (3.3) show the variation of ‘L'yz and In with respect to the height of the

laminate. From these figures it is very clear that as thickness of the embedded layers

approaches towards zero, the solution of the [0/0/90/0/0] approaches the solution of

[0/90/0]. Figures (3.4) and (3.5) display the variation of displacement across the thickness

of the composite for different thickness of the embedded layers. Appendix A gives a list

of all the remaining figures for the stresses and displacements.

Fig 3.6 below gives a description of the percent error in the stresses and displacements

between the [0/0/90/0/0] composite with different ELT (embedded layer thickness) and

the [0/90/0] composite with no embedded layer. We can easily see that, when the

thickness of the embedded layer is either 0.0001 inch or 0.001 inch, which are 0.011%

and 0.11% of the total thickness, the error is very small. Moreover, for all practical

purposes the thickness of the matrix joining the adjacent composite layers is generally of
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the order of 0.001 in and hence we will select the critical thickness of the embedded layer

to be equal to 0.001 in [26].
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Figure3.6- Error calculation of the stresses and displacements between perfectly bonded [0/0/90/0/0]

composite plate and perfectly bonded [0/90/0] composite

Thus we find from the above plots that the critical thickness value of the embedded layer

is 0.001 in, which is 0.11% of the total thickness of the composite laminate. At this

particular thickness, the stress and the displacement values are matching with the least

amount of error. For instance, the maximum error for O2 is 1.87%, while for 1,2 and In it

comes out to be 1.15% and 1.34%.

3. 1.4.2 Alteration in properties ofembedded layers

After determining the critical thickness value, we make the embedded layers to be

isotropic. The thickness of these isotropic embedded layers is 0.001 inch, or 0.1 1% of the
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total thickness of the composite laminate. In order to simulate all the bonding conditions

from perfect to imperfect the shear modulus and young’s modulus of these layers are

varied from the order of 106 psi to 0 psi. The solutions are obtained by determining the

unknown coefficients using the boundary conditions given by equations (3.4), (3.5) and

(3.6) and the interfacial conditions given by equations (3.8) and (3.9). Once these

unknown coefficients are evaluated, the stress and displacement distribution of the

composite plate can be found from corresponding Pagano’s three dimensional elasticity

solutions (given before in section 3.1.4). For the isotropic layers in the composite plate,

the elasticity solutions are found out by using equation (3.13), (3.14) and (3.15). While,

for the non-isotropic layers, the elasticity solutions are derived by using the equations

(3.10), (3.12) and (3.13) Results from these elasticity studies can be used to justify

delamination simulations based on computational schemes such as finite element

analysis. The MATLAB program written for this elasticity study is included in Appendix

B. Based on the elasticity solutions, following plots for stress and displacements were

obtained
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Figure3.7- Normalized Transverse shear stress distribution for different bonding conditions obtained

by varying the material properties of the embedded layers of a [0/1/90/1/0] composite plate. [I —

isotropic]
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The through-the-thickness distributions of transverse shear stresses at the center of the

[0/90/0] composite plate for different values of properties of embedded layers are shown

in figures (3.7) and (3.8). AS against section 3.1.4.1, the embedded layer properties are

isotropic in nature and hence their Young’s Modulus and Shear Modulus are related by

poison’s ratio. Thus the variations of G and E are proportionate to each other. As we

decrease the values of E and G of the embedded layers, the interlaminar shear stresses

also kept decreasing. We can observe that when the E and G of the embedded layers is of

the same order as that of the other layers of composite, the shear stresses values coincide

with the case when there are no embedded layers. In other words, this is a perfect

bonding condition. Moreover, we can also notice that when the Young’s Modulus and

shear Modulus is of the order of 100 then the shear stress vanishes in the embedded

layers. This happen only when delamination takes place [16] and all the conditions in

between represent imperfect bonding conditions.
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Figure3.9- Normalized in-plane displacement along the height of laminate for different bonding

conditions obtained by varying the material properties of the embedded layers of a [0/1/90/1/0]

composite plate. [I - isotropic]
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Figure3.10— Normalized in-plane displacement along the height of laminate for different bonding

conditions obtained by varying the material properties of the embedded layers of a [0/1/90/1/0]

composite plate. [I - isotropic]

Figures (3.9) and (3.10) Show how the transverse displacements at the center of the

[0/90/0] composite plate vary as the bonding condition changes from perfect to imperfect.

We can see from the above figures that as the Young’s Modulus and Shear Modulus

starts to go below the order of 104, the variation of displacement across each embedded

layer is not zero. In other words, the displacement across the interfacial layers is

discontinuous. This supports our observation from the figures (3.7) and (3.8). Appendix

C covers all the remaining figures for the stresses and displacements.

We shall now discuss the second approach to deal with slippage or discontinuity on the

laminate interfaces to simulate poor bonding as well as delamination.
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3.1.6 Slip Approach

When interfacial damage takes place across the interfacial layers, the continuity of the

interfacial displacements will be lost. The interfacial displacement continuity equations

used in the original Pagano’s problem can also be modified using the linear shear slip

theory and linear normal separation theory to include slippage or mismatch on the

laminate interfaces for simulations of poor bonding as well as delamination.

A. Linear Shear Slip Theory — If a composite interface is non-rigid or imperfect, the in-

plane displacements across the adjacent layers are going to be different. This kind of

displacement discontinuity is also known as shear slip which may lead to shearing mode

delamination [26]. A linear shear slip theory is used to correlate the interlaminar shear

stress with the mismatch in the in-plane displacement between the components above and

below the laminate interface, i.e.

u"(x i)—u’(x h—l)-D z" (x h—l)-D r"(x Ji) (316)
try, 2 9y, 2 5x R 9y, 2 5x xz 3y) 2 ’

_ u I l n

v" (x,y,—:—) — v’(x,y. 52-) = 15,11, (Ly/’3) = D._,.r;; (x.y.— 52—) (3.17)

When the shear slip coefficient D” and D5), vanishes, equation (2.9) reduces to

 

_hu 1 h!

u“ x9 9 "U X, 9— =09( y 2 ) ( y 2)

v"(x __h“)_v’(x 11:):0
3y, 2 9y, 2 9

i.e. a perfect bonding condition as the in-plane displacement component on the bottom

surface of the upper layer is equal to that on the top surface of the lower layer. As D“ and
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D5), increases, the mismatch of the in-plane displacement components between the two

layers increases. For a completely delaminated composite interface, D” and D53. become

very large and interlaminar shear stresses In and rfl, become negligibly small. That it, in

order to have a finite value of displacement mismatch, Der and DW should approach

infinity. Accordingly, any condition between perfect bonding and complete delamination

can be simulated with a value Ostx and D53, between zero and infinity.

B. Linear Normal Separation Theory - In a similar fashion, out of plane displacements

between the two layers which share the same interface will be different. This type of

displacement mismatch is known as normal slip which may lead to opening mode

delamination. The imperfect normal bonding conditions can be modeled by using a linear

normal separation theory. The mismatch in the out-of-plane displacement between the

components above and below the laminate interface is related to the interlaminar normal

stress by the following equation

14u _hu h! h] u ’1

W (L307)- wl(x9y9—2—) : k0:(x9y9—2—) = kO-z (x9y9_'_2_) (318)

Again, different bonding conditions on the laminate interface can be simulated by using

different values of k. That is, a laminate interface with a perfect bonding condition can be

represented by k = 0, that with a complete delamination condition can be represented by k

with an infinitely large value while that with an intermediate bonding condition can be

represented by a finite k value.

Hence, the solution process for a three-layer composite plate is reduced to determine

unknown coefficients associated with the boundary conditions given by the equations
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(3.4), (3.5) and (3.6) and the interfacial conditions given by equations (3.16), (3.17) and

(3.18). Once the coefficients are identified, the stress and displacement distributions of

the composite plate can be found from corresponding equations, i.e. equations (3.10),

(3.11) and (3.12). With different interfacial shear slip coefficients, Der and D5). and

different interfacial normal separation coefficients, k, different interfacial bonding

conditions can be simulated for composite plate. The values for different interfacial shear

slip coefficients, D” and D”, were selected based on their relationships with G given by

equations (3.22) and (3.23), which are discussed later in section (3.2). Similarly, the

values of different normal separation coefficients, k, were derived based on its

relationship with E by utilizing the equation (3.26) discussed later in section (3.2). In this

way, we The MATLAB program written for this elasticity study is included in

Appendix D. The results obtained for stresses and displacements by the matlab code are

plotted and are shown below.
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Figure3.1 l-Normalized transverse shear stress distribution along [0/90/0] composite plate obtained

by different shear slip constants D”r and Dsy and normal slip constant k
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Figure3.12-Normalized transverse shear stress distribution along [0/90/0] composite plate obtained

by different shear slip constants DH and D3), and normal slip constant k

Figures (3.11) and (3.12) give the Shear stress variations across the height of the laminate

for all bonding conditions. As the shear slip coefficients Ostx and D”, and the normal

slip coefficients k changes, the value of the Shear stresses also changes. Just like our

observations with Embedded Layer Approach, we can clearly see that when the shear slip

coefficients D“ and D3), are greater then or equal to 0.01 and the normal Slip coefficient

k is greater then or equal to 0.0417, delamination takes place. Similarly for perfect

bonding conditions, the value of the shear slip coefficients D” and D”, are lesser then or

equal to 10’9 and the normal slip coefficient k is lesser then or equal to 4.17x10'm. All

other intermediate values represent poor bonding conditions.

33



 

 

   

 

 

  
 

05 I I I I I I l

. . +sz=Dsy=1 5-1 1 and K=4.17E-12
\a . +sz=Dsy=15-9 and K=4.175-1o

0-4 - \ . .\ . +sz=Dsy=1E-7 and K=4.17E-8 -

. +sz-Dsy-1 5-5 and K-4.1 7E—6

- ‘ +sz=Dsy=1 E-3 and K-4.17E-4

0-3 — +sz=osy=1 5-1 and K=4.17E-2 e

‘ —+— sz=Dsy=1 E+1 and K=4.1 7E0

~ ‘

0.2 -

= f \
T

0.1 — -

N 0 e —i

-0.1 - 'i

.02 — —

-03 — 4

\
-O.4 — _

-0 1 I I I I I 1

4?.08 006 -0.04 -002 0 0.02 0.04 0.06 0.06

U(0, b/2 , z)

Figure3.13-Normalized in-plane displacement variation along [0/90/0] composite plate for different

bonding conditions obtained by varying the shear slip constants D“ and D3), and normal slip

 

  

 

    

constant k

0.5 1 f , I I _-

+sz=Dsy=1E-11 and K=4.17E-12

—¢— sz=Dsy=1 BS and K=4.1 7E-1 0

0.4 __ +sz-Dsy-1 E-7 and K-4.1 75-8

-0— sz-Dsy-1 E-5 and K-4.17E—8

+sz-Dsy-1E-3 and K-4.17E-4

03 _ +sz-Dsy=1 E-‘l and 104.1 7E-2

—t— sz=Dsy=1E+1 and K=4.1 7E0

0 2 ~

\
J

0.1 ~— g

N 0 ~ —

-O.1 — -

-0.2 _ —

-0.3 ~ I

-0.4 — -

_0 4 1 1 1 I I 1

456.08 -0.06 -0 04 -0 02 0 0.02 0.04 0.06 0.08

V(a/2 ,0, z)

' Figure3.14-Normalized in-plane displacement variation of a l0/90/0] composite plate for different

bonding conditions obtained by varying the shear slip constants D” and D3}, and normal slip

constant k

34



Figures (3.13) and (3.14) give the variation of the displacement across the height of the

composite laminate for different bonding conditions. We can observe that when the shear

slip coefficients D3, and D5), are greater then or equal to 10'5 and the normal slip

cOeffrcient k is greater then or equal to 4.17x10'6, the in plane displacement on the

interface between the adjacent layers become discontinuous, indicating the poor bonding

conditions. Appendix E covers the plots for all the remaining stresses and displacements.

On comparing figures (3.7), (3.8), (3.9) and (3.10) given by embedded layer approach

with figures (3.11), (3.12), (3.13) and (3.14) we can find that they are very similar. For

the case of perfect bonding, the maximum errors for shear stress, tyz and “cu and

displacements U and V between slip and embedded layer approach are 0.277 %, 0.18%,

0.92% and 0.024%. Similarly for the case of delamination, they amount to 0.311%,

0.16%, 1.04% and 0.64%. Hence both these techniques produce equivalent results.

3.2 Relationship between the Embedded Layer and the Slip Approach

Although the embedded layer apprOach and the slip approach are based on different sets

of fundamentals, a relationship can be found between them and is shown in the following

analysis. Consider a [0/90/0] laminate having embedded layers with thickness h. Since

the embedded layer is made of isotropic material, the shear deformation of the plate can

be considered independently. Let us first consider that an embedded layer is undergoing

pure shear deformation as Shown in figure 3.15, i.e., point B in the embedded layer

moved to b after deformation due to a shear stress In acting on the layer. Since the

embedded layer is made of isotropic material, the shear deformation of the plate can be

considered independently. Let us first consider that an embedded layer is undergoing
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pure shear deformation as shown in figure 3.15, i.e., point B in the embedded layer

moved to b after deformation due to a Shear stress rxz acting on the layer.
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Figure 3.15 Pure shear deformations in embedded layers (EL)

The height of the embedded layer is considered to be h while B and G denote the

Young’s Modulus and Shear Modulus of the embedded layer. Hence, the deformation in

the x direction can be written as,

Bb = Au (3.19)

Thus, I” can be expressed as,

Ausz _ 0(7) (3.20)

If we consider the 900 layer above the embedded layer, using the linear shear Slip theory

and interfacial conditions, we can say that

Au = Darn (3.21)

Using equations (3.20) and (3.21) we can say that,
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rch = 21 = C(32) , or in other words,

D” h

h
D = _ 3.22

.. G ( )

Based on a similar analysis, we can conclude that the shear slip coefficient DSy can be

given as follows,

D =
(3.23)

S)‘

Q
l
=
~

Let us now consider that the embedded layer is undergoing pure normal deformation as

shown in figure 3.16 below, i.e., the thiCkness of the embedded layer is changed from h

to h’ after deformation due to a normal stress 02 acting on the layer.

Hence, the deformation in the z direction can be written as,

0', = E[fl] = E[fl) (3.24)

h h

If we consider the 900 layer above the embedded layer, using the normal separation

theory and interfacial conditions, we can say that

 

 
  

 

Aw = h — h'= kg, (3.25)
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Figure 3.16 Pure normal deformations in embedded layers

Hence using equations (3.24) and (3.25), we can say that
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0', = _A_vy = E(A!) , or in other words,

k h

h
k = _

3.26E ( )

We also know that for an isotropic material, E and G are related as,

E (3.27)

=__)20+v

Hence using equations (3.22), (3.23), (3.26) and (3.27), we can say that,

1),, = Di, = 2k(1+ v) (3.28)

We can clearly see from equation (3.27) that G and E are dependent on each other and

cannot be selected arbitrarily since the value of poisson’s ratio Should lie between -1 and

0.5 for an isotropic material. On the other hand, sz, Dsy and k can be selected

independent of each other.
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4. FINITE ELEMENT SOLUTIONS

4.1 Lee’s Laminate theory

Lee proposed a laminate theory [1] in order to analyze delamination based on the

interlaminar shear stress continuity theory. Based on this, he also created a FORTRAN

code which will be used in this thesis. The explanation of the various steps taken for

achieving the theoretical foundation of his work is as follows.
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Figure4.1 A composite plate subjected to loading on the top surface

4.1.1 Displacement Field

A composite laminate consisting ofN laminae as shown in the figure 4.1 is considered. A

Cartesian coordinate system is chosen such that the edges of the mid-plane of the

laminate form the x-y plane while the z axis is normal to the middle surface. A normal

traction q(x,y) which could be a function of time was also applied at the surface of the

composite. The total height of the laminate is h while its length and width are a and b.

The displacement field at a generic point (x, y, z) in the laminate for layer (1') are assumed
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to be of the form as shown below, where u, v and w are displacements in the individual

layers assuming that the displacements on the middle surface are zero:

u =ZU2i—l ¢l +T2I—I ¢2 +U2I¢3 +T2i¢4

i=1

V=XV2H¢I+Szi_1¢2+Vz,-¢3+S2;¢4 (4.1)

i=1

w = w0

Where ¢,,¢2,¢3, 654 are Hermite cubic Shape functions which can be expressed as

Iii: = l - 3K2 — z,._l )/ hir + 2K2 — z,._l )/ hi]3

<{”2I = 3[(2 ‘Zi-1)/ hi]2 - 2K2 - Zi—1)/ hi? .

¢; = (z - z,._l I] - (z - 2:1;l )/ h]2 H

.¢i = (2 -z.--i)2I(z - z.-. )/ h.- -1]/ h.- 
(4.2)

¢Ii=¢i=¢3i=¢i=0 Z<zi-l 01' z>zi

The superscript (i) represents for the layer number, i.e., the ith layer of the composite

laminate, and h,- is the thickness of the layer. As shown in figure 4.2 below, (Alp..- and IQ.-

are the node values of the displacements U and V at the point (x, y, 2,.) in the layer (i),

while Uzi-+1 and I921“ are the node values at the same point but in layer (i+1). Moreover,

since the layers are imperfectly bonded, the displacements values are not continuous

A A A A

across the layers and hence U 2,- and Vziare not same as U 2.41 and V2m. However, 8’3

and T’s are the first derivatives of U and V with respect to z axis, respectively. More

specifically, .52.- and T2.-
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Figure 4.2 Nodal Variables for the composite laminate

represents the node values of t? and g at the point (x, y, 2,) in layer (i) while 3'er and

Z Z

T27.1 are at the same point but in layer (1' +1). Moreover, although the interlaminar shear

stresses are continuous across the interface, the interlaminar shear strains are not, unless

the material properties in layer (i) are identical to those in layer (i+1). Consequently,

A A A A

S 2.- and T 2.- are not the same as Szm and T2m.

4.1.2 Fundamental Equations

The linear strain-displacements equations using equation (4.1) are written as follows:
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For any composite laminate, the constitutive equations are given by:

{a} = Idle}

r a (i) -— (i) r i (i)

I Q11 912 913 @16— 8"

0'

0y] _ 512 Q22 Q23 Q26 8.” t
0' _ _. _ _

z 913 923 _Q_33 Q36 82

[Try _Q16 Q26 Q36 Q46; I70

I" (i) E Q (i) 7 (i)

{In} =|:§45 @55] {7x2}

      

¢4+—

6w

6x

(4.3)

(4.4)

(4.5)

(4.6)

(4-7)

(4.8)

(4.9)

In the above notations, the superscript (i) pertains to layer (i). [Q] refers to the stiffiress

matrix and it relates the stress and strain matrices. The various coefficients Q}. forming

the stiffness matrix are known as the stiffness matrix coefficients.
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4.1.3 Boundary Conditions

The following boundary conditions are used in arriving at the solution.

A. The conditions on the top surface of the composite plate are given by

h

0. (xix?) = 6106, y, t) (4.10)

h h

1,, (x,y,-2-) = 5.0.34.5) = 0 (4.11)

B. The bottom surface is traction free, hence both the normal stress and the shear stress

vanish,i.e.

h h h

0' , ,—— =2}, , ,—— =er , ,—— =0 4.12.(xy 2) (xy 2) ,(xy 2) ( )

4.1.4 Interfacial conditions

The Shear stress is assumed to be continuous through out the composite laminate with

various bonding conditions and hence the stress continuity equations remain the same as

equations (3.7) mentioned before. Due to delamination, the continuity of interfacial

displacement components is lost and hence in order to take that into consideration two

different approaches were taken which were similar to the ones taken to solve the

modified Pagano’s problem. The first approach makes use of the linear shear slip theory

and the second one is the embedded layer approach

4.1.4.1 Linear Shear Slip Theory

A linear shear slip theory is used to correlate the interlaminar shear stress with the

mismatch in the in-plane displacement between the components above and below the
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laminate interface. The displacement field as mentioned in equations (4.1) assumes that

the normal displacement remains constant through the thickness at a particular location in

the x-y plane of the laminate. This is because it is expected that (52 is extremely small and

in most of the cases, it can be neglected. Hence, normal displacement separation theory

was not included in the finite element analysis. Using the linear Shear slip theory we get,

[12141—1921' = 1331'}:

i=1,2,...,n—1 (4.13)
A A

V2141" Vzi = Di???

This can also be written as,

[12M = (321+ D3132)

i=1,2,...,n —1 (4.14)
A A

V2141 = V2r+ DASH?

Here, U 21.1 and U2.- represents the node value of U in the layers (i) and (i+1). Similarly,

(i) and 2.0)

12 )2
V2.41 and V2.- represents the node value of V. t represents the Shear stress in

(i+l)

12
the layer (i) and are of same value as r and If” because of the shear stress

continuity. BL? and Di: represents the shear slip constants in the layer (i). When these

constants vanish, equation (4.14) reduces to,

U2i+l = Uzi ,

A A l=1,2,...,n-l (4.15)

V2i+l = V2i

which is perfect bonding conditions. As the value of these shear Slip constants increases,

the discontinuity between the displacement values across the adjacent layers of the



composite also increases and in this way, one can simulate the various degrees of

imperfect bonding by the variation of these shear slip constants. Finally, when these

constants approaches infinity, delamination takes place.

Moreover, by visualizing the equations (4.14), we can also conclude that for each nodal

point, we require only one node value for the displacement in place of two as they are

both related to each other by the shear Slip constants and hence we can denote them as

follows:

(921' = (All

A A i=l,2,...,n—1

V2i = Vi

(4.16)

U1 =Uo U2n=Un

A A ’ A

VI =V0 V2n =Vn

4.1.5 Generalized Strain Solutions

Considering layer (i) and (i+1), if we combine equations (4.7), (4.8) and (4.9), we will

get:

1' (i) a“) EU) 521‘ 'I' '2:— EUH) @041) SZi+l + ‘31:-

{in} = [44) 4;) ] A = [441) 454 A aw (4.17)

x2 Q45 Q55 T2;+_ Q45 55 T2,.+1 +_

8x x

Expressing equations (4. 17) in another way, we get,

A '1 (') 6w“(1') —(i) ‘ —

Szi _ Q44 Q45 Ty: _ 6y 418

A " —(i) —(i) 6w ( ' )

T2,. Q45 Q55 TU _

6x
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" —(i+l) —(i+1) “ (i) —

Szi+1 _ Q44 Q45 T}: _ 6y

’ —(i+n —(i+1) (4-19)

A 6w
T2i+1 45 55 "Z —

6x

On further simplification, we can get,

 

A
_l 1') 6w

—<n '—(r') i —

S21. = 1 [Q55) -Q(45:| {In} _ 5y

A —(.-)—(.-) —102 —0' -i)

T2; QSSQM-Q45 _Q45 Q44 sz 0—W

6x

4.20
6,, ( )

A A (i) r (n a

=[ ” '2] — i=l,2...n—l

A12 A22 7,2 %

6x

A
. (.) aw.

Si+ A A (1+1) TV, I —

A“ =[ H 12] {I - 5y i=1,2...n—1 (4.21)

T2I+I A12 A22 TE 2“:

6x

Now, using the boundary conditions (4.12) we get,

L§I+—

0

I IzIAmII 6y
(4.22)

0 A 6w

TI+—

6x

This gives us,

iii—EW—

:

(4.23)

T1 = ——

6x

Similarly, on using the boundary condition (4.1 1) we will get,
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I§2n =—ia"u‘)

, 52’

%Zn =—@

I 6x

(4.24)

If we combine the equations (4.1) of the displacement fields with equations (4.21), (4.23)

and (4.24), along with the interfacial conditions expressed by equations (4.14) and (4.16),

we will get,

I (i) _ (H) (H) (i) (H) (i) (H) W

u —(sz Tn +Ui—l 1+(A12 7): +’422 TA! _—]¢2

(I) (I) (I) (I)

+U,.¢3 +(A12 r), +A22rn ——6x 654

(I) _ (1-1) (1-1) (I) (H) (I) (H)

V — (D5? TYZ + VP] #1 + [All Tyz + A12 sz _ 6y ¢2

+ 14¢. {49:13 + 494: ~35).

i = 2,3,...n —1 

A

I

6w 6w

7;). + w. + [4942 + are - 5;)».IuU) = U0¢1 +(

5y 
v“) = V0¢I + [’ %)¢2 + Vl¢3 + (AWN? + AI21)72) - QEJW

L

f

6w
(n)_ (n-I) (n-I) (n) (n—l) (n) (n—l)__

u - (D31 TE +Un-lyl +(A12 Ty: +A22 sz 6x ¢2

6w

+ Un¢3 + (— EJ¢4

(n) _ (n—l) (ll-l) (n) (n-l) (n) (n-l) _5W

V - (D3,? sz + VII-l y] + [All Tyz + A12 Tn 6y J¢2

6w

V3 "_ 4+.+¢[ 6y) L
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(4.25)

(4.26)

(4.27)



Equations (4.25) can be written in a further simpler form as follows

f

 

(I) _ (I) (I) (H) (I) (1-1) (I) (I) (I) (I) (I) (I)
u —Al U,._,+A2 rx: +A3 rm +A4 U,+A5 rm +A6 Ty, +A7 5;

4.. .. .. . .. .. .awt428)
v“) = A,“’VH + Aggy” + Agnes,” + Am + 21.39794. (”712+ AI” —

I ' ' 5y

The various constants A,,A,,A3,A4,A5,A6,A7,AS,A9 are definedasfollows:

A1”) = (111 i=1,2,3...n

w: 0 i=1

’ ng”¢,+A§;’¢, i=2,3...n

m: 0 i=1

3 AW, i=2,3...n

Ag" =¢3 i=l,2,3...n

m_ A30, i =1,2,3...n—1

A5 - .
0 1=n

AM AW, i=l,2,3...n—l
6 _

O i=n

AI” = “(¢2 + ¢4)

A: {0 i=1

D$”¢1+Al‘{’ 2 i=2,3...n

(..,_ Aff’¢, i=1,2,3...n-l (4.29)

A) - .
0 I=n

Thus, by using the displacement formulations given in equations (4.28) and (4.29), we

can obtain the generalized strain formulations as follows:
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Using the above equations, total potential energy, kinetic energy and the interfacial

energy of the laminate were calculated. Then using the Hamilton principle of minimum

energy, finite element equations were derived by Lee. Hence, the thru-the thickness

assembly was performed by hermite cubic functions as shown in the above equations 4.1-

4.30. The in-plane assembly was performed by using both CO continuity and C1

continuity interpolation functions. For in-plane

variables,U,.,U.,__1, Vi,V,._1,1"”,2""” I“) I“) bilinear interpolation functions were
x2 9 xz’ yz’
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6w 62w 62w 62w

_9 2 3 2 and " ' — , 12 telIIlS

6x 6x 6y 6x6y

used while for the transverse variables w,

interpolation functions were used.

These finite element formulations were then implemented in a FORTRAN code.

Lee’s FORTRAN code was used to analyze interfacial damage for [0/90/0] composite

laminate. We used the same loading conditions and the simply support conditions given

by equations (3.4) and (3.6) to obtain the stress and displacement variations along the

height of the composite laminate. In order to simulate imperfect bonding of different

layers, the values of the shear slip constants sz and D5). were varied from 0.0 to 1.0 and

values of stresses and displacements were calculated.

  

 

   

   

0.9 T... . 7.. ._ I -. I l l

. . i -fih ‘_

0.7— ' ' , x. —

. _ _ .... --’ : " i +sz,Dsy-1E-11

. —.- "1 . _ " +sz,Dsy—1E—9

0.6 - r , 6“" _ ‘ —+—sz.Dsy-1 E-7 "

._ ”3.. +sz,Dsy-1E-5

O 5 _ . +sz,Dsy-1E—3 _

'
—e— sz,Dsy-1E-1

N 5'; -€—-sz,Dsy-1 E+1

0.4 " :' —<

0.3 L 5 i 1 f I' ‘7. ~ ,. -'_ . __ 1.1.. _ _

0.1 — i i — ‘7‘?" . r

-. H~'$fi’w

:3...“ " _:L i-M_ . J l I

3.5 | 0.5 2 2.5

{SIM/2,2)

Figure4.3- Normalized transverse shear stress distribution along the height of [0/90/0] composite

plate for different bonding conditions obtained by different shear slip constants D” and D”.

Figure 4.3 and 4.4 show the variation of transverse shear stresses at the center of the edge

of the [0/90/0] laminate as a unction of thickness for different bonding conditions. As we
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start to increase the value of shear slip coefficients, the interlaminar shear stress goes on

decreasing until it becomes zero when the values of D“ and D5), are 0.1 or 1.0. This is the

point of delamination. As we go from perfect bonding conditions (sz and D3), =10'9) to

delamination (sz and D5}, =1), transverse stresses vary significantly.
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Figure4.4 -Normalized transverse shear stress distribution along the height of [0/90/0] composite

plate for different bonding conditions obtained by different shear slip constants D“ and Dsy

Figure 4.5 and 4.6 show the variation of transverse displacements at the center of the

edge of the [0/90/0] laminate as a function of thickness for different bonding conditions

the We can also see from figures 4.5 and 4.6 that as we go towards imperfect bonding

conditions, the discontinuity of the interlaminar displacements goes on increasing.

Appendix F gives the list of all the remaining figures for stresses.
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Figure4.5-Normalized in-plane displacement variation along the height of [0/90/0] composite plate

obtained by varying the shear slip constants D”( and By

0.9

0.8—

O.7~

0.6~

0.5~

0.4-

0.3—

0.2»

 

  

      

  

 

1 l l I

—B— szDsy-1E-11

—¢— DmDsy-1E—9

—+- 05x. Dsy-1 E-7 _

-—9— sz.Dsy-1 E-S

+szDsy-1 E-3

49- sz,Day-1 E-1

—+— sz.Dsy-1 E+1

 

   

 

 

 

 
 

Figure4.6-Normalized in-plane displacement variation along the height of [0/90/0] composite plate

for different bonding conditions obtained by varying the shear slip constants sz and D3),
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4.1.4.2 Embedded layer Approach

Another approach to take care of the discontinuities of displacements across the laminate

interfaces is the embedded layer approach which we discussed in section 3.1.5.

Embedded layers were introduced in the composite laminate. Each embedded layer was

0.11% of the total thickness of the composite laminate and its properties were isotropic in

nature. By varying the Young’s Modulus and Shear Modulus of these layers, all the

bonding conditions from perfect to imperfect were simulated. The different values of

Young’s Modulus and Shear Modulus were modified in accordance with the relationships

derived in section 3.1.7. The shear slip constants D” and D”, were set to zero. Following

plots of displacement and stresses were obtained.
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Figure4.7- Normalized transverse shear stress distribution for different bonding conditions obtained

by varying the material properties of the embedded layers of a [0/1/90/1/0] composite plate. [I —

isotropic]
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Figures 4.6 and 4.7 show the variation of transverse shear stress across the height of the

composite laminate. If we compare them with Figures 4.3 and 4.4, we find that they are

very similar. For perfect bonding, the maximum percent error for In and In come out to

be 1.5% and 0.44 % respectively. Similarly for the case of delamination, maximum the

percent error for In and ryz is 2.15% and 2.16%.
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Figure4.8- Normalized transverse shear stress distribution for different bonding conditions obtained

by varying the material properties of the embedded layers of a [0/1/90/1/0] composite plate. [I —

isotropic]

Figures 4.9 and 4.10 explain the variation of the transverse displacement across the

height of the composite laminate. If we compare them with figures 4.5 and 4.6, we find

that the maximum percent error in case of perfect bonding come out to be 2.14% and

0.52% for U and V respectively. Similarly for the case of delamination, the percent errors

are 3.37% for both U and V, respectively. Hence we can see that both these techniques

are equivalent to each other. Appendix G covers all the remaining plots for stresses
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5. VALIDATION OF FORTRAN CODE

In this thesis, four different approaches are pursued to analyze the interfacial damage in a

composite laminate plate. Two of them are analytical approaches and make use of

Pagano’s solution and the other two are numerical approaches and make use of Lee’s

Laminate theory. This is clearly shown in the following figure.

 

Interfacial damage

Analysis

I

f |

Modified Pagano’s Laminate Theory

 

  

Solution

l—L—I l——;l

Slip Approach Embedded Layer Embedded Layer Shear Slip

      

 

        
Approach Approach Approach

 

Figure 5.1 Approaches to analyze interfacial damage in a composite

The solutions proposed by Pagano using the slip approach or the embedded layer

approach are exact solutions and hence can be used to validate the numerical solutions

using the laminate theory. In order to achieve this end, firstly, the solutions given by

Pagano for perfect bonding conditions were used to validate the FORTRAN code.

Secondly, solutions in case of imperfect bonding obtained by the modified Pagano‘s

problems were matched against the solutions by laminate theory. Based on the

comparisons, appropriate conclusions regarding the validity of the Laminate theory were

derived. Also different situations for the utility of the Embedded layer vs. the slip

approach were analyzed.
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5.1 Perfect Bonding Conditions

Consider a [0/90/0] composite laminate as shown in figure 3.1. In order to attain perfect

bonding conditions using the slip approach, the shear slip coefficients, Der and Dy), and

the normal separation coefficient, k were set to zero appropriately. In the case of

embedded layer approach, the young’s modulus E and the shear modulus G of the

embedded layers were set equal to that of the matrix. Thus our composite becomes

[0/1/90/1/0], where ‘1’ stands for isotropic embedded layers. The thickness of the

embedded layers was set equal to 0.001 in, which was 0.11% of the total thickness. The

loading conditions and the simply support conditions were set to be same as that of

Pagano’s problem given by equations (3.4), (3.5) and (3.6).

Using these 4 approaches, all stresses and displacements were obtained. For each

particular stress and displacement, all the four cases were plotted on the same figure as

shown in the figures below.
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Figure 5.2-Comparison of Normalized in-plane stress along the height of laminate between Lee’s

solutions and Pagano’s solutions of a perfectly bonded |0/90/0] composite plate
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Figure 5.3-Comparison of Normalized in-plane stress along the height of laminate between Lee’s

solutions and Pagano’s solutions of a perfectly bonded [0/90/0] composite plate

Figures 5.2 and 5.3 show the normalized in-plane stress at the center of the [0/90/0]

composite plate as a function of thickness. The solutions obtained via all the 4

approaches are shown. We can notice that the accuracy of the Lee’s laminate theory,

using either the shear slip or the embedded layer method, to predict the normal stresses is.

good. The maximum error for ex and 0,, between the Lee’s laminate theory and Pagano’s

solutions come around 10 % and 4 %.

Figures 5.4 and 5.5 below give us the values of normalized transverse shear stresses at

the center of the edge of the [0/90/0] composite plate across the height of the laminate. It

can be seen that except at few places, the shear stresses predicted by the laminate theory

matches well with that of the exact solutions. In case of normalized shear stress, ryz, the

maximum error occurs at the center of the middle layer while in case of normalized shear

stress, rxz, it occurs at the center of the top and bottom layers. The value of the

normalized shear stress, tyz and rxz, predicted by laminate theory is 0.293 and for Pagano
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it is 0.277. On the interface, the value of the normalized shear stress, ryz and In, predicted

by Lee’s laminate theory is 0.258 and for Pagano, it is 0.252
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Figure 5.4-Comparison of Normalized transverse shear stress along the height of laminate between

Lee’s solutions and Pagano’s solutions of a perfectly bonded [0/90/0] composite plate
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Figure 5.5-Comparison of Normalized transverse shear stress along the height of laminate between

Lee’s solutions and Pagano’s solutions of a perfectly bonded |0/90/0] composite plate
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Figure 5.6-Comparison of normalized in-plane displacement along the height of laminate between

Lee’s solutions and Pagano’s solutions of a perfectly bonded |0/90/0] composite plate

 

 

   

   
 

0-5 I I l f I I T I I

-0- Pagano-Embedded Layer

0 4 _ +Pagano-Sheer Slip I

' +issct-Shea Slip

+issct-Embedded layer

0.3 F

0.2 —

0.1 —

N 0 —

-0.1 —

-02 _

-o_3 _

-0.4 —

_o 5 I I I l l I I 1 I

-0.025 -0.02 -0.015 -0.01 -0.005 _0 0.005 0.01 0.015 0.02 0.025

V(a/2 ,0, 2)

Figure 5.7-Comparison of normalized in-plane displacement along the height of laminate between

Lee’s solutions and Pagano’s solutions of a perfectly bonded |0/90/0] composite plate

Figures (5.6) and (5.7) display the variation of normalized in-plane displacements at the

center of the edge of the [0/90/0] composite plate across the height of the composite. The
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maximum error for displacement U between the Lee’s laminate theory and Pagano’s

solutions occur at the center of the middle layer, while for displacement it is in the top

layer. The value of the normalized displacements U and V, predicted by Lee’s laminate

theory is 0.0028 and -0.0159 while for Pagano, it is 0.00225 and -0.015

Another important thing to notice from all the above figures is that the solutions proposed

by the Pagano- Embedded layer method match exactly with that of the Pagano-Slip

approach. The same is true with ISSCT-Embedded layer method and the ISSCT-Shear

slip approach. Since the laminate theory assumes normal stress to be zero and normal

deflection to be constant, there are no plots shown for them.

The error between the Pagano’s solutions and Lee’s laminate theory’s solutions could be

attributed to two factors. Firstly, Lee’s laminate theory assumes that the normal

displacement W (z) is constant across the height of the laminate based on the assumption

that the normal stress in the thickness direction is negligible compared to other stresses.

Secondly, it was also observed that as we refine the meshing of the plate in the finite

element solution by increasing the no of elements, the accuracy of the solution increases.

Figures 5.8 and 5.9 display the variation of normalized transverse shear stresses at the I

center of the edge of the [0/90/0] composite plate using the ISSCT-Shear Slip Approach

with different no of elements. We can clearly see that the solution accuracy improves

with using 100 elements as compared to 36 elements. In the case of shear stress, tyz, the

maximum percentage error by 100 elements is 4.41% as against 6.47 % with 36 elements.

. In the case of shear stress, In, the maximum percentage error by 100 elements is 5.47%

as against 9 % with 36 elements.
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Figure 5.8 Comparison of normalized transverse stresses obtained by 36 elements vs. 100 elements
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5.2 Imperfect Bonding Conditions

In order to validate the Lee’s laminate theory’s solutions with that of Pagano for

imperfect bonding conditions, we considered one particular case of delamination. In

order to simulate this particular case using the embedded layer approach, the shear

modulus G of the embedded layer was set equal to 0.01 psi and the corresponding

Young’s modulus E was set equal to 0.024 psi (assuming the poison’s ratio of the

embedded layer to be equal to 0.2). In order to simulate the same condition using the slip

(or shear slip) approach, the shear slip coefficients, D” and D”, were set equal to 0.1 and

the normal separation coefficient, k was set to 0.0417 appropriately using the

relationships defined in section 3.2.

Figures 5.10 and 5.11 show the normalized transverse stresses at the center of the edge of

a [0/90/0] laminate as a function of thickness. We can notice that for imperfect bonding

conditions the results calculated by the laminate theory do not match well with that of the

Pagano’s theory. This is expected because for the laminate theory, the normal deflection

is assumed constant through the thickness. But for Pagano's solution, the variation of

normal deflection W with respect to thickness is always considered. As a result of this,

there is a loss of contact between the layers. As we see from the figures 5.10 and 5.11 for

Pagano's solution, only the top layer takes the load for poor bonding. The other two

layers are basically free of stress. That is the reason we have much bigger normal

deflections as it can be seen in figure 5.12. On the other hand, the ISSCT keeps the

interfaces in contact, although shear slip might occur. The load passes thru all the three

layers.
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[0/90/0] composite plate between Lee and Pagano [sz=Dsy=0.1, k=0.0417, E=0.024 psi,G=0.01 psi]
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Figure 5.12- Normalized deflection calculated at the center of top layer of |0/90/0] composite plate for

different bonding conditions.

Although these differences exist between the Pagano’s solutions and the Laminate theory

approach, there are certain similarities existing between them which make us utilize the

laminate theory.

We can notice from the figures 5.10 and 5.11 that the stresses at the interface of the

adjacent layers in case of slip (or shear slip) approach and stresses in the embedded layers

in case of embedded layer approach vanish. Thus the laminate theory predicts the

presence of delamination accurately. This same thing is confirmed in the figures 5.13 and

5.14 where the laminate theory clearly shows that the in-plane displacements across the

layers become discontinuous in case of shear slip approach or vary significantly across

the thickness of the embedded layer, thus predicting delamination.
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Another important thing to conclude is that although the values of the stresses predicted

by the laminate theory do not match exactly with that of the Pagano’s solutions, they are
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of the same order and always lesser then the maximum value of the stress calculated by

Pagano.

Also we can observe that the solutions obtained by the Pagano-slip approach matches

exactly with that of the Pagano-embedded layer approach. Same is true in the case of

laminate theory. Hence we can conclude that slip (or shear slip) approach is equivalent to

embedded layer approach in many cases. However, as we will discuss in section 5.3,

when we have situations which do not give the provision for normal slip, the embedded

layer approach cannot be used. Hence, in order to validate the shear slip model given by

the laminate theory, we cannot use the embedded layer approach. This is because the

inherent assumptions of constant normal displacement in the laminate theory only allow

modeling the shear slip and not the normal slip. Thus we will be using the Pagano-slip

approach to validate the shear slip modeling of laminate theory is section 5.4. Appendix

H covers all the remaining figures for stresses and displacements for section 5.2

5.3 Validation by Pagano’s Slip Approach

In order to simulate only the shear slip conditions for perfect and imperfect bonding

conditions using the Pagano’s slip approach, the shear slip coefficients, D” and D8. can

are varied in between 0.0 and 10.0 while the normal separation coefficient, k is set to

zero appropriately. We noticed before in figures 3.10 and 3.11, that for [0/90/0]

composite laminate as soon as the shears slip coefficients, D” and D53, have a value of

1.0, delamination takes place. In creasing the value of the shear slip coefficients, D3,. and

1),, above 1.0 will only be simulating delamination. Similar thing can be done in case of

Lee’s laminate theory to simulate the perfect and imperfect bonding conditions. In the
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following figures, two particular cases of imperfect bonding were analyzed and the

results of the Pagano-shear slip approach are compared with the results predicted by the

laminate theory. These two cases of imperfect bonding were simulated by setting the

shear slip coefficients D” and D3}, to 1) 10'7 2) 10.

Figures 5.15 and 5.16 show the variation of the transverse stresses at the center of the

edge of a [0/90/0] composite plate as a fimction of thickness. We can see that the results

match fairly well. In case of normalized shear stress, tyz, the maximum error occurs at the

center of the middle layer while in case of normalized shear stress, In, it occurs at the

center of the top and bottom layers. When the shears slip coefficients, D” and DH are

10.0, the value of the normalized shear stress, 1,2 and I“, predicted by laminate theory is

0.465 and for Pagano it is 0.425. On comparing figures 5.15 and 5.16 with figures 5.10

and 5.11, we find that the stress variation across the layers changes significantly when we

have normal separation across the layers. Due to normal separation, the load is not

allowed to be evenly distributed across all the layers. Figures 5.17 and 5.18 below show

the variation of the normalized in-plane displacements at the center of the edge of a

[0/90/0] composite plate as a function of thickness.
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plate for 2 different bonding conditions
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Figure 5.19 below shows the variation of the normalized normal deflection as a function

of the shear slip coefficients D” and D3)” We can see that the results match quite well. It

was found that the percentage error comes out to be around 2.7%. Appendix I covers all

the remaining figures for stresses and displacements for section 5.2
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6. BLAST SIMULATIONS

Advanced composites have found tremendous amount of utility from aircrafis and

submarines to pressure vessels and automotive parts. In all of these applications, the

composite structures are subjected to different kinds of loading. Amongst all of them,

blast loading is one of the most significant types of loading. Especially, when it comes to

safety ofpeople involved, it is of critical importance.

In order to study interfacial damage of the laminated composite plates subjected to blast

loading, we incorporated the blast loading in Lee’s FORTRAN code. In order to do that

we need to have a very clear understanding of the pressure profile created due to blast

wave. This will be discussed in detail in section 6.2

6. 1 Experimental Work [39]

In order to simulate the air-blast loading in the laboratory, a shock tube was used. The

shock tube consists of combining a shock wave generator and a wave transformer and is

capable of providing high-pressure, high-temperature and high-velocity shock waves.

Figure 6.1 shows a photograph of a shock tube housed at Michigan State University. The

shock wave generator has a constant cross-sectional area. The outer diameter of the tube

is 120 mm while the inner diameter 80 mm. The total length of the shock wave generator

is 6 m. The left section, 2 m long, stores a relatively high pressure gas and is called the

high-pressure chamber. The right section, 4 m long (two sections, each 2 m, joined by

flanges), stores a relatively low pressure gas and is called the low-pressure chamber.
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Figure 6.1 Shock wave generator at MSU [39]

In order to produce a shock wave pressure, the diaphragms between the high-pressure

chamber and the low-pressure chamber need to be removed instantaneously. The

diaphragm chamber is about 40 mm long. It is bounded by two diaphragms, one at each

end, and is used to store a gas with a pressure equal to the average of the high-pressure

gas and the low-pressure gas.

The pressure waves produced from the shock wave generator are of one-dimensional

nature and hence a pressure transformer is used to convert these one-dimensional shock

waves into spherical or hemispherical blast waves to simulate real blasts. Figure 6.2

shows a schematic diagram of the shock tube which depicts changing the one-

dirnensional shock wave into a hemispherical blast wave.

A [0/90/90/0] composite plate of 2.4mm thickness and 127m in diameter was mounted

inside the Protection vessel as we can see in figure 6.2. The mounting was designed to

provide fully clamped boundary conditions. Hence there are no displacements in the in-

plane and out-of-plane directions on the boundaries in the tests.
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Figure 6.2 - A funnel-type wave transformer [39]

The [0/90/90/0] composite plate had the following properties

E1] = 38.6 GPa, E22 = 8.27GPa, E33 = 8.27GPa,

Gl2 = 4.14GPa, G13: 4.14GPa, G23 = ZGPa

v12 = v23 = v13 2 0.26 (6.1)

X, = 1062 MPa, Xc = 610MPa, S = 72MPa

Y,=3lMPa YC=118MPa

Here X,, X0 and Y, , Yc refers to the strength of the material in tension or compression in

the direction ofmaterial coordinates. S is the interlaminar shear strength of the material.

The air blast pressure was measured before the test at regular intervals of time using a

pressure transducer, P6, fixed at the same position as the composite plate and is shown in

figure 6.3 below. The signals obtained from the pressure transducer were amplified by
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using a charge amplifier and the pressure time profile of figure 6.4 was obtained. This

experimental pressure-time

. '(‘t' 1 ~

"1—

\\\\\‘7]. Iv. ' III/III”

\\\'\l\“/////////////A

'IA

 

Figure 6.3 Location of pressure transducer [39]

profile was modeled using various phenomenological models proposed by several authors

and was incorporated into the FORTRAN code. That will be shown later in section 6.2.2.

The nozzle of the shock tube, as can be seen in figure 6.2, is having a diameter of

12.7mm and hence the blast loading was concentrated only on that area of the plate at the

center of the plate.
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Figure 6.4 Loading history for finite element simulation [39]
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6.2 Analysis of blast propagation

A blast wave is a pressure wave of finite amplitude generated due to a rapid release of

energy in the medium. These waves are accompanied with a transient change in the gas

density, pressure and velocity of air surrounding the explosion point. Regardless of the

source of the initial pressure disturbance, the properties of the medium as a compressible

gas will cause the front of this disturbance to steepen as it passes through the air, until it

exhibits nearly discontinuous increase in pressure, density and temperature. The resulting

shock front moves supersonically faster than sound speed in the air ahead of it. Figure 6.5

below shows that more clearly.

Compressed

Medium

 

Explosive gas 

 

Wave front

 
Figure6.5 Blast Wave

When these blast waves impinges on any surface, the magnitude of loading on the surface

at any instant depends on the type of the explosive, weight of the explosive, the distance

traveled by the blast waves from the point of explosion to the surface and the time
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elapsed from the moment when the blast waves first came in contact with the surface.

They also depend on other factors like the medium ofpropagation. In this report we have

considered air as the medium. There are basic equations which govern the transmission of

blast waves through air. Solving these equations either numerically or deriving a solution

empirically gives us the variation of pressure as a function of distance. In order to

appreciate the solutions to these equations properly, two fundamental concepts of blast

phenomenon are required to be understood - Equivalent TNT weight and scaling laws.

Along with this, there are various phenomenological models explaining the pressure time

variation of the blast waves, at a particular location, some distance away from the

explosive source.

6.2.1 Equations for air blast transmission

The air blast transmission equations are generally described in one of the three one

dimensional cases, that is, cases in which the shock and flow fields are described in terms

of a single spatial variable and time. This is because of the ease with which these

equations can be solved. These cases are linear flow, spherically symmetric flow and

cylindrically symmetric flow. Of these three cases, the one most applicable to blast waves

in air is spherically symmetric. This case applies both to a spherical source far from any

reflecting surface and to a hemispherical source located on a perfectly rigid reflector,

both of which approximate a number of real blast sources. In this case, all quantities

depend only on time t and the distance r from the origin of coordinates. All flows are

radial with a single velocity component, u. the fundamental equations are:
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Conservation. of momentum

au 6a + 1 6p (6.2a)

at 6r ,0 6r

where p is fluid density and p is absolute pressure

Conservation of mass

(6.2b)

a—’0+u(’3—’0+,o@+2£=0

6t 6r 6r r

Conservation of energy

as uaS (62C)

—— +— = 0

6t 6r

where S is entropy of a fluid element

An equation of state is needed to complete the set of equations and is given by,

p =f(p.S) (62d)

In the steep gradients within shock fi'onts, the above equations are not all valid because

heat conduction and viscosity effects become important. Hence, in blast theory, certain

jump conditions are formulated called the Rankine-Hugoniot equations. These equations

for a coordinate system moving with a discontinuity are given by:

“Ipr =u2p2

p1 + prurz = P2 + pzuz2 (6.3)

el +-I—)'—+-1—u,2 =e2 +&+-1—u22

.01 2 ,02 2

Here subscripts 1 or 2 denote one side or the other of the discontinuity.
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Many analytical and numerical solutions are being proposed to these equations. Some

yield high accuracy. In order to appreciate those solutions better we will now discuss two

very fundamental concepts which are very fiequently used in Blast theory. One ofthem is

Equivalent TNT weight and the other is Scaling law.

A. Equivalent TNT weight

From the time of Second World War, many researchers and scientists have done

extensive testing for some of the explosives like TNT and pentolite and have amassed

huge datasheets detailing the variations of different blast parameters with respect to time

and distance. In order to avoid following the same process for all kinds of explosives,

which will be very time consuming and expensive, they have defined the concept of

equivalent TNT weight. Given the weight of the explosive we can find an equivalent

TNT weight using the heat of combustion of the explosive. The formula for equivalent

TNT weight is given by:

 

WTNT : wexp
(6.4)

Where, Hexp is the heat of combustion of the explosive and Hnw are the heat of

combustion of TNT. wexp and Wm, are the weight of explosives and equivalent weight of

TNT. Using this equivalent TNT weight one can easily found out the values of all air

blast parameters at a particular distance and time from the point of explosion.

B. Hopkinson Scaling Law

Experimental studies of blast wave phenomenology are often quite difficult and

expensive, particularly when conducted on a large scale. Hence various investigators
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have attempted to generate model or scaling laws that would widen the applicability of

their experiment or analysis. The most common form of scaling law is Hopkinson or

“cube root” scaling. This law states that self-similar blast waves are produced at identical

scaled distances when two explosive charges of similar geometry and the same explosive,

but of different size are detonated in the same atmosphere. It is customary to use as the

scaled distance a dimensional parameter, Z

Z - R (scaled distance)
— Wl/3

t

r =— scaled time 6.5W ( ) ( )1/3

1/3

I

=— scaledim ulse4 w ( p )

Here, R is distance fi'om center of explosive source, I is the positive impulse of the blast

wave, t is time and W is energy of the explosive. Z refers to scaled distance, 2' refers to

scaled time and 9‘ refers to scaled impulse. In simple terms, this law states that pressure,

velocity, scaled impulse and scaled time are unique functions of scaled distance.

t I R

Hence, given any explosive and its weight, we can find its equivalent TNT weight using

equation (6.4). And then using equations (6.5) and (6.6) we can find everything about the

various parameters of blast loading for that particular explosive.
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Nearly all the data which are reported in the literatures uses the above two concepts. For

instance, in their book [5], Smith and Hetherington gives us a plot of side on blast

parameters for spherical charges of TNT. We find that the variation of all the blast

parameters including pressure, velocities etc are given in terms of Hopkinson’s scaling

law.

6.2.2 Pressure profile

6.2.2. 1 Pressure-timeprofile

As the blast waves travel, the pressure profile varies as a function of the distance covered

from the point of explosion as well as the time incurred. If we just consider the pressure

time profile, the pressure at a particular location, exponentially decreases as time passes.

This is depicted in the figure below:
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Fig 6.6 Pressure Time History [7]

Consider that an explosion has occurred at time t = 0. A pressure transducer was fixed at

some distance from the point of explosion and it recorded the time history of absolute

pressure. The record produced by such a gage is depicted in figure 6.6. For some time
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after the explosion, the gage records atmospheric pressure p0. At the arrival time, ta, the

pressure at that point suddenly jumps from atmospheric pressure, p0 to pressure at the

shock front, P5. As time passes from ta to ta+td+, the pressure decays to atmospheric

value, p0 , then drops to a partial vacuum and eventually returns to ambient pressure. (P,-

p0) or AP, is known as peak side-on overpressure or merely the peak overpressure and to

is called the arrival time. The portion of the time history above initial ambient pressure,

tf is called the positive phase of time duration, while the portion below ambient

pressure, td' is known as the negative phase of the time duration. Similarly, positive and

negative impulses are defined as,

ta +1;

1:: flp(t)- Poidt

ta (6.7)

ta H;H;

1.? = [[100 -p(t)]dt

taH;

In other words, the area under the positive phase and negative phase of the pressure time

curve is known as the positive and negative impulse. The slope of the pressure time curve

at time t=ta is called the initial decay rate.

We can notice from figure 6.4 that the pressure time profile measured in shock tube is

little different fiom the usual pressure time profile obtained fi'om the regular blast

explosions. First of all, the pressure rise is not instantaneous but it rises linearly from

20.18MPa to 32.2MPa. The equation governing this pressure rise can be written as,

p(t) = 51.588t + 20.18 (6.8)

Here, the unit ofpressure is in MPa and the unit oftime is in ms.
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Also as time progresses, the pressure do not decay to ambient value of 0.1MPa but it

decays to a constant value of 1.37MPa. Hence while modeling we need to take into

considerations these factors. Moreover, in order to find out the various constants involved

in the phenomenological models, we also need to use the initial decay rate and the

impulse calculated from the experimental data of figure 6.4. For our case, the

approximate value of initial decay rate and positive impulse can be calculated to be equal

 

t0,

d—p = —4.37542 MPa (6.9)
dt ms

This slope was obtained using the two point formula. Here the initial peak overpressure at

time t=0.18ms was taken as the first point, while the overpressure at t=1. 73 ms was taken

as the second point.

I; = 103.0529 MPa.ms (6.10)

The area under the pressure time curve was calculated using the trapezoidal rule.

In order to model the exponential pressure variation at a given location with progressive

time, a number of authors had proposed different phenomenological models. Using each

of these models we will try to model the pressure time profile of figure 6.4. Flynn had

proposed a simple linear decay model for the pressure variation as follows:

p(t)=p0+(PS—po{l—t—t7] 0<tstd+ (6.11)

d

Using the experimental data of figure 6.4, we can find that the value of P, is 32.2MPa,

while the time duration td+ amounts to 15.767ms. Using these values, the Flynn decay

model can be written as,
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p(t): 32.2—1995.35: (6.11)

Here, 1‘ is in s and p(t) is in MPa. The corresponding curve is shown in figure 6.7.

Ethridge proposed a two parameter model which was slightly more accurate and

computationally inexpensive too:

p(t)= 120 +0”. — pole—6’ (6.13)

c and P, are the two independent parameters.

In order to calculate these parameters, we can use the amplitude Ps and the Impulse

calculated from the experiments. The relation between blast impulse and parameter c can

be obtained by integration of equation (6.13). That is,

tau;

1; = flp(t)- p0]dt = l[e"ac —e_("’+’d )0] (6.14)

ta C

Thus using equations (6.14) and (6.10), we can get the value of c which will result in the

following pressure time profile,

p(t) = 1.37 + 30.83e‘03277t (6.15)

Here, t is in ms and p(t) is in MPa. The corresponding curve is shown in figure 6.7.

Later on Friedlander proposed another model which was a 3 parameter model. This

particular model is the most widely accepted and used since it is quite accurate and also

computationally inexpensive:

_bt

p(t)=po+ (R-po{1--tt:]e /; (6.16)

d
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In order to obtain the three independent parameters PS, td+ and b, we used the peak

overpressure, time duration and impulse from the experimental data. Similar to equation

(6.14), the impulse can be obtained fiom equation (6.16) as follows

Impulse _ l_-1_ _ —b

[(B—g)xzd+]-[b b2(1 6 l]
(6.17)

Thus solving equations (6.17) and (6.10), we can get the value of b, which will result in

 

the following equation

 

—3.343t

p(t) =1.37 + 3083(1— 0 0’1 58}; 00158 (6.18)

Here, t is in s andp (t) is in MPa. The corresponding curve is shown in figure 6.7

Ethridge had proposed another model which is a four parameter model which goes like

this:

p(t)=po+ (8—poil-é]e[_b[l%]%3] (6.19)

d

In order to obtain the four independent parameters PS, td+, f and b, we used the peak

overpressure, time duration, initial decay rate and impulse from the experimental data.

The decay rate of equation (6.19) at 2‘ =0 can be written as,

-b1_fi t

d —1 z —b 2bt [[ 1+] ,+]

i=(PS-Po “177+[1- +] ++ f e /d/d

d
dt t +2

d d ’d (6.20)

—1 —b

= (PS ’Po + + +

Using equation (6.20) and equation (6.9), we can find, b=1 .2377

9’3

dt  
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Using this, we numerically integrated the equation (6.19) to obtain the integration in

terms of parameterf Then with the help of equation (6.10), we found out that the value

off=-4.6021 Using these values in equation (6.19) we obtained the pressure-time history

curve as follows

 
t je[-1'2377(1+4'6021%.0158)%).0158)

t=l.37 30.831-
p() +[ [ 0.0158

as shown in figure 6.7

Brode proposed a 5 parameter model in 1955, which is,

t "a It

p(t)=p.+[<P.—p.)[1—t—.]e A]
d

The coefficient a is defined as,

 

 

 
 

0.5 + APS APS S latmos

a = 0.5 + APS[1.1 — (0.13 + 0.2APS )EL] latmos < APS < 3atmos

d

b
a + t 3atmos 5 APS S 50atmos

l+ c—

- ’d

Where,

a _ I— 0.231 +0.388AP, —0.0332AP,2 AP, 3 lOatmos

_0 APS >10atmos

b = 'AP,(0.88 +0.072APS) AP, <10atmos

_AP,(1.67 —0.011APS) AP, >10atmos

c = 8.71+O.1843AP9 — 104

AP, +10
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In our particular case, since the pressure decays to 1.37 MPa in place of ambient

pressure, hence we will consider that value in place of atmospheric pressure.

Hence, we can easily calculate the values of all the parameters and can obtain the

equations as follows;

41.031 i t

_ 1+ll.845 —’ 0-0153

p(t) =1.37 + 3083(1— 0 0’1 58}: [ [001658)] (6.25) 

Here, t is in s and p(t) is in MPa. The corresponding curve is shown in figure 6.7

Later on Brode proposed another 5 parameters model in 1956, which is as follows:

p(t): p. {(2. 1.117218%”? +(1_..).-/"/’5D (626)
d

where,

a: APS +0.5

P0

 

APs

P0

[H016 A135]

P0

N’s

P0

 fl = 70+10 (6.27)

 

 a:

1+
 

Hence, we will get the equation as follows,

 

—23.003t —295.037t

p(t)=l.37+30.83 1— ’ 0.196e O~0158+0.804e 4.0158 (6.28)

0.0158
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Figure 6.7 Pressure time profiles given by different models

If we closely examine the pressure profiles in the above figure then we can conclude that

the pressure time history given by Ethridge has the best fit for the experimental results.

Hence we decided to use this pressure-time profile in our analysis.

6.2.2. 2. Pressure-distance profile

The shock or blast wave is produced when the atmosphere surrounding the explosion is

forcibly pushed back by the hot gases produced from the explosion source. The front of

the wave, called the shock front, has an overpressure much greater then that in the region

behind it. This peak overpressure decreases as the shock is propagated outward. For

instance, in figure 6.8, it is shown that an explosive was detonated in air at a height of c

from the laminated composite plate. For any particular point (x, y) on the composite, the

pressure profile p(r, t) is going to be a function of distance r between the explosive and

the point (x, y) on the plate and time. Many authors have done analytical and
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experimental work to derive the relationships between various blast loading parameters

and the distance. Saleh and Adili [12] in their work presented the following relationships

to determine the detonation pressure.

 

  

a

Figure 6.8 Schematic diagram of a laminate subjected to blast loading

The blast pressure at the point of denotation, p (t), is given by equation (6.21) where the

Overpressure AP, as a function of detonation velocity can be written as

AP, = 4.18x10‘77v2(1 + 0.87). (6.29)

In the above equation, AP, is in the unit of kbars, 7 is the specific gravity of the

explosive, and v is the denotation velocity in ft/s. On the surface of the laminate, the

distributive pressure loading is controlled by the traveling shock wave front. The

pressure can be written as

0, t < L

p(r. t) = ,‘f (6.30)

t e_r, t 2 —p( ) v

The distance from the location of the blast to the laminate is determined as, if the blast at

the center ofthe laminate,
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r=\/(x—-‘i)2 +(y—2)2+cz (6.31)
2 2

Where a and b are the length and width of the rectangular plate shown in figure 6.8, while

c is the perpendicular distance between the explosive and the plate.

Graham and Kinney [11] in their book modeled the experimental data given in the figure

6.6 for various parameters of pressure profiles and gave following models for chemical

explosives. For the peak overpressure, the following relationship explains as to how it

varies with sealed distance, Z

808[1+(—‘—Z—)2] (632)
p 4.5

5 _.
 

p0 {[1+{O§48)][1+[5%]ii”[é
]l}

Here, the proximity factor, Z is the actual distance scaled to an energy release of 1 kg of

 

TNT in the standard atmosphere. Similarly, the travel time, ta, required for the shock

front to travel out to various distances is given by,

 

 

  

- -1/2

R

6.33

to = —1- 16p dr

( )

do ’6' 1+ S

_ 7P0 A

Where, a0 is the speed of sound in the undisturbed atmosphere

The duration of the blast wave is one aspect of its ability to cause damage, for the damage

inflicted depends in part on how long the damaging forces are applied. Because the

positive pressure phase of the blast wave is the more damaging one, the positive phase

duration can be taken as an index of the time duration of the entire blast wave system.

. . . + . .

This time duration, td , lS given as,
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10

980 1+(L)

t + 0.54

d _
  

 

 

— , (6.34)
l 3 I, 2

W 1le (216 1le
1+ —— 1+ — 1+ —

0.02 0.74 6.9

Where, the duration for positive overpressure is in ms.

In a similar fashion, positive impulse per unit area of the blast wave was given by,

0.006721+ Z 0.23 4
I/A = ‘/ ( / ) (6.35)

223([1 +(Z/1.55)3

Here Z is the actual distance scaled to an energy release of 1 kg of TNT in the standard

atmosphere. Hence using all these parameters, one can easily derive the whole pressure

profiles. This pressure profile can then be used for the purpose of simulations.

In our particular experiment, due to the relative small dimensions of the loading area

when compared to blast wave front it was assumed that the pressure is constant all over

the loading area and hence the pressure profile mentioned in figure 6.4 and later on

modeled in figure 6.7 can be used safely for the purpose of simulations at all the points in

the loading area. In other words, the pressure profile in our case can be written as,

r>R
0,

P(r,t) ={p(t). r sR (6.36)

Here, p(t) is given by equation (6.21). R is the diameter of the shock tube nozzle and is

equal to 0.5 inch. The distance of any point on the laminate from the center is determined

as r and is given by,

 

r =\/(x--;-)2 +(y-g)2 (6.37)

Here a is defined as the width of the entire plate
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6.3 Finite Element Analysis

The finite element model for the plate is shown in the figure 6.9 below. The square plate

shown below is having the width equal to that of the diameter of the circular plate used in

the experiment. Simulation of the circular plate with rectangular elements was achieved

by selecting a rectangular plate of the same dimension as the diameter of the circular

plate, which consisted of an assembly of three-dimensional quasi rectangular four-noded,

hundred elements. The degrees of freedom per node are dependent on the number of

layers involved in the composite material. For four layers, each node had nineteen

degrees of freedom. All edges of the plate are modeled by using the clamped boundary

conditions. Moreover, in order to simulate the response of the plate more precisely, all

the nodes between the four lines shown below and the vertices were also fully clamped.

These four lines were drawn on the basis that they act as tangent to the circular plate used

in our experiments. Since the shock tube nozzle diameter is only 0.5”, hence the pressure

came only on that area of the plate at the center. In other words, a circular area with

diameter 0.5” at the center of the plate was loaded with blast pressure as a function of

time. For the linear transient analysis of the plate, time integration was done using the

Newmark method. Time increment was taken to 0.04ms. The shear slip constants, sz and

Dsy were set to zero. However, the FORTRAN program had the capability to account for

delamination. Whenever, the interfacial shear stress, rxz or ryz, for any node would exceed

the interfacial shear strength, the programme would automatically increment the shear

slip constants, D5,, or D5,, from 0 to 0.1 in order to account for delamination and reiterate

all the solutions for displacements and stresses.
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Fig 6.9 Finite Element discretization of the plate

6.4 Results and Discussion

In this study, the air blast loading is obtained using the shock tube. In order to find out the

occurrence of failure or delamination, different failure criteria and delamination criteria

were used. In order to use these failure criteria, knowledge regarding maximum stress.

values is essential.

6.4.1 ln-plane failure

Figure 6.10, 6.11 and 6.12 show the variation of the inplane normal stress and shear

stress across the plane of the quarter part of the composite plate. The stress was measured

at the interface between 00 and 900 layer and at time 0.04 ms and 0.24 ms after the blast

loading impact on the plate. We can clearly see that the transverse normal stresses ex and

csy are having maximum values at node 61, which is the center of the plate, irrespective of

any time. In the case of shear stress, oxy, the stress is not having maximum value at the
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center of the plate, but it is at node 26. The coordinates of that node are (2a/10, 3a/10),

where a refers to the width of the square plate.

At these node points, through-thickness distribution of stresses were plotted in order to

determine the z coordinate at which they have maximum values. Selection of time t equal

to 0.04ms, 0.24ms were randomly chosen in order to study the in-plane and through-

thickness distribution of stresses.
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Figure 6.10 Variation of transverse normal stress at the interface across the plane of the quarter

[0/90/90/0] composite plate
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Figure 6.12 Variation of transverse shear stress at the interface across the plane of the quarter

[0/90/90/0] composite plate
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On observing the figures 6.13, 6.14 and 6.15, we can clearly notice that the values of

stresses linearly increase or decrease along the z coordinate of each ply. Moreover, for

each ply they possess highest magnitude on the surface of the ply. This is true at any

instant of time. We can also see that the stresses are symmetric across the mid-plane of

the composite. Hence in order to analyze the in-plane failure of the composite laminate

we will be only focusing on the ply 1 and ply 2, lying above the mid-plane.

Based on these observations table 6.1 gives us the value of maximum in-plane stresses

for ply l and ply 2 at each instant of time.
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Figure 6.13 Variation of transverse normal stress at the center across the height of the [0/90/90/0]

composite plate
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Figure 6.14 Variation of transverse normal stress at the center across the height of the [0/90/90/0]

composite plate
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Figure 6.15 Variation of transverse normal stress at the center across the height of the [0/90/90/0]

composite plate

We can observe in table 6.1 that the magnitude of stresses increases as time progresses.

This is expected because the blast loading pressure applied on the plate increases from

time t = 1 second to time t = 0.233 second and after that it starts decreasing exponentially,
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as shown in figure 6.4. Based on the maximum stress values of table 6.1, failures

criterions were applied in order to analyze the in-plane failure of composite laminate.

Table 6.1 Maximum in plane stress values for plyl and ply2.

 

time

(MS) (71 0'2 012
 

MPa MPa MPa
 

Ply 1 Piy2 Ply 1 Ply2 Ply1 Piy2
 

0 815.51724 512.61379 276.71034 117.98621 54.348276 26.79931
 

0.04 898.89655 565.02759 305.0069 1 30.04828 59.905517 29.54
 

0.08 982.27586 617.44828 333.30345 142.11034 65.463448 32.28069
 

0.12 982.27586 617.44828 333.30345 142.11034 65.463448 32.28069
 

0.16 1149.1034 722.27586 389.89655 166.24138 76.57931 37.761379
 

0.2 1232.4828 774.68966 418.1931 1 78.30345 82.137931 40.501379
 

0.24   1257.7931  790.62069  426.7931  181 .97241  83.827586  41.334483
 

The following failure criterions were used in this report [40]

1. Norris Failure Criteria

Norris postulated [41] that failure would occur under plane stress

following equations is satisfied

(3H

2

fl

.1
.52

XY

2

+[q—2] 21,

S

2 2

[fl)210r(-Ol) 21

X Y

2. Tsai Hill failure Criteria

if any one of the

Tsai Hill [42] gave a similar failure criterion, which can be stated as follows

(111

2

2:;

I)

3. Fischer Theory

00'

2

[12] 21

S

Another orthotropic strength criterion given by Fischer 9 [43] is as follows
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K:

6113:2123
Ell (1+V21)+E22 (1.1-VIZ)

0'1 02

XY

275,013,, (1+ v,, )(1+ v,,)

where 01 and 02 represents the in-plane principle stresses. 2'12 represents the in-plane

principle shear stress. X and Y are either tensile or compressive strengths consistent with

S

2

)21

the sign of 61 and 62, S is the interlaminar shear strength.

Based on table 6.1 and equations (6.38), (6.39) and (6.40), failure criterions were applied

on a ply by ply basis. A laminate is assumed to fail analytically if the strength criterion of

any one of its laminae is reached. In reality, load distribution usually occurs with in a

laminate upon actual failure of an individual ply and hence failure of an individual ply

need not necessarily cascade into total fracture of the structure [40]. However, such kind

of analysis, often known as the progressive damage analysis is out of the scope of this

study. Table 6.2 summarizes the result achieved by applying the failure criterions. The

values shown are the calculated left hand side values obtained from equations (6.3 8),

(6.39) and (6.40),

Table 6.2 Result from various failure criterions.

 

 

 

 

 

 

 

 

time (ms) Norris Hill Fischer

ply 1 ply 2 ply 1 ply 2 ply 1 ply 2

0 74.1363 13.0223 80.8016 14.8073 72.4775 12.5780

0.04 89.8803 15.8057 97.9658 17.9716 87.868 15.2667

0.08 107.3390 18.8598 116.7818I 21.4434 104.7392 18.2168

0.12 107.3390 18.8598 116.7818l 21.4434 104.7392 18.2168

0.16 146.9540 25.7716 160.1794 29.3059 143.6625 24.8920

0.2 168.8395 29.6286 184 33.6965 165.0663 28.6162

0.24 176.1484 0.9792 192.0137 35.2244 172.1999 29.9227
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Table 6.2 very clearly shows us that the composite laminated plate is supposed to fail

immediately as soon as it comes in contact with the blast loading. However, the

experimental result shows us that this was not the case. The plate did not undergo any

failure with the blast loading shown in figure 6.4. Only when the maximum pressure of

the blast wave reached 36.5 MPa did the plate failed as shown by the following

experimental results

16.8 MPa 26.6 MP8 29.4 MPa 32.2 MPa 34.3 MPa

“ ‘ .g’"? 7" fiat- Fm“; 36.5MPa

 
Figure 6.16 Experimental Results

In order to explain this discrepancy, it was suggested that the strain displacement

relations employed in Lee’s Laminate theory as given by equations (4.3) — (4.8) are linear

in nature and hence they may over-predict the stresses. This claim was supported by the

fact that the through thickness distribution of stresses given by figures (6.13), (6.14) and

(6.15) are linear in nature, which indicates the absence of geometric non-linearity in the

laminate theory. Moreover, in order to study this more deeply, strain analysis was also

performed as follows.
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6.4.2 Strain Analysis

Similar to stress analysis, the variation of in-plane strains are shown in figures 6.17 and

6.18. These figures show us variation of the in-plane normal stress and shear stress across

the plane of the quarter part of the composite plate. The strain was measured at the

interface between 00 and 900 layer and at time 0.08 ms after the blast loading impact on

the plate. We can clearly see that the transverse normal stresses ex and 8y are having

maximum values at node 61, which is the center of the plate, irrespective of any time. In

the case of shear stress, 8,3,, the stress is not having maximum value at the center of the

plate, but it is at node 38. The coordinates of that node are (3a/10, 4a/10), where a refers

to the width of the square plate
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Figure 6.17 Variation of in-plane normal strain at the interface across the plane of the quarter

[0/90/90/0] composite plate
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Figure 6.18 Variation of in-plane shear strain at the interface across the plane of the quarter

l0/90/90/0] composite plate

At these node points, through-thickness distribution of strains were plotted in order to

determine the z coordinate at which they have maximum values. Selection of time t equal

to 0.04ms, 0.08ms and 0.24ms were randomly chosen in order to study the in-plane and

through-thickness distribution of strains.
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Figure 6.19 Variation of in-plane normal strain at the center across the height of the [0/90/90/0]

composite plate
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Figure 6.20 Variation of in-plane normal strain at the center across the height of the [0/90/90/0]

composite plate
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Figure 6.21 Variation of in-plane shear strain across the height of the [0/90/90/0] composite plate

On observing the figures 6.19, 6.20 and 6.21, we can clearly notice that the values of

strains linearly increase or decrease along the z coordinate of each ply. Moreover, for

each ply they possess highest magnitude on the surface of the ply. This is true at any

instant of time. We can also see that the strains are symmetric across the mid-plane of the

composite. Hence in order to analyze the in-plane failure of the composite laminate we

will be only focusing on the ply 1 and ply 2, lying above the mid-plane.

Based on these observations table 6.3 gives us the value ofmaximum in-plane strains for

ply 1 and ply 2 at each instant of time. We can observe that the magnitude of strains

increases as time progresses. This is expected because the blast loading pressure applied

on the plate increases from time t = 1 second to time t = 0.233 second and after that it

starts decreasing exponentially, as shown in figure 6.4. Also, we can see that the as soon

as the blast loading come in touch with the plate, the maximum strain values at the center

of the plate goes up to 1.85 and 2.43%. These values then increases to 2.85 and 3.74%.

Figure 6.16 shows us that during the loading process; internal damage in the specimen
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should cause the material to behave non-linearly (as the tested specimen showed

permanent deformation). Hence the calculated stresses and strains are all larger.

6.3 Maximum In-plane strains for plyl and ply 2

 

 

 

 

 

 

 

 

 

3:?) 31 32 312

Ply1 Ply2 Ply1 P|y2 Ply1 Ply2

0.0000 0.0185 0.0090 0.0243 0.0121 0.0139 0.0069

0.0400 0.0204 0.0133 0.0268 0.0099 0.0153 0.0076

0.0800 0.0223 0.0146 0.0292 0.0108 0.0168 0.0083

0.1200 0.0223 0.0146 0.0292 0.0108 0.0168 0.0083

0.1600 0.0260 0.0170 0.0342 0.0126 0.0196 0.0097

0.2000 0.0279 0. 0183 0.0367 0.0135 0.0210 0.0822

0.2400 0.0285 0.0186 0.0374 0.0138 0.0215 0.0106         

Another possible reason which could have caused the stress and strain values to increase

was the coupling between the in-plane stretching and the out—of-plane deflection. Since

the composite was fixed around all the edges, the in-plane constraint prevented a large

transverse deflection from happening. In the meanwhile, it also caused the in-plane

stresses to increase. This was not found in the experiments because in reality we cannot

have fully clamped situations and hence when the blast loading comes on the plate, the

plate can stretch in the x-y plane.

6.4.3 Delamination Analysis

Composite laminates are heterogeneous and anisotropic. Their properties vary with in a

lamina and also from one lamina to another through the laminate thickness. Because of

the mismatch in material properties, the non-uniform stress distribution through the

laminate thickness may cause delamination in the composite laminate. Once delamination

takes place with in a composite laminate, it is very easy for the impact loading to destroy

the composite by cracking the matrix and moving aside or destroying the fibers in
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individual laminae. Hence, analysis of delamination is very critical for composite

analysis.

Figure 6.22 and 6.23 shows us the variations of shear stress across the plane of the

quarter composite laminate. The stress was measured at the interface between 00 and 900

layer and at time 0.04 ms and 0.24 ms alter the blast loading impact on the plate. We can

observe that the shear stress, Tn, possess maximum values at node 50, while the shear

stress, ryz , is having maximum value at node 4. Hence at these nodes, we can find the

maximum value of shear stresses at all the interfaces at each instant of time.

. +StressXZ-t=0.24ms

+StressXZ—t=0.04ms

..4

i
n

C
3

 

 

 an 1 I l | 1 4L  r 1 0 20 30 40

Node Number

Figure 6.22 Variation of transverse normal stress at the interface across the plane of the quarter

[0/90/90/0] composite plate
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Figure 6.23 Variation of transverse normal stress at the interface across the plane of the quarter

[0/90/90/0] composite plate

Table 6.4 below gives us the value of the shear stresses at different instants of time across

all the interfaces. We can see that just like table 6.1 the magnitude of shear stresses at

each interface goes on increasing as the magnitude of pressure loading keeps on

increasing.

Table 6.4 Values of shear stresses across each interface at different instants of time

 

 

 

 

 

 

 

 

 

   

time

(ms) T)" TH

MPa

Interface Interface Interface Interface Interface Interface

1 2 3 1 2 3

0.0000 30.1828 33.3924 30.1841 -20.0214 -30.6234 -20.0214

0.0400 33.2690 36.8069 33.2703 -22.0683 -33.7545 -22.0683

0.0800 36.3552 40.2214 36.3572 -24.1 159 -36.8862 -24.1 159

0.1200 36.3572 40.2214 36.3572 ~24.1159 -36.8862 -24.1159

0.1600 42.5283 47.0503 42.5283 -28.2103 43.1490 -28.2103

0.2000 45.6145 50.4648 45.6145 -30.2579 -46.2807 -30.2572

0.2400 46.5524 51 .5028 46.5524 -30.8800 -47.2324 -30.8800       
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The values obtained from table 6.4 were used in order to find out if delamination took

place in the composite plate. The delamination failure criterion proposed by Sun and

Zhou [44] was used in this particular analysis. The criterion states that in order for

delamination to take place across any interface,

 (6.41)

where S is the interlaminar shear strength, while rm and ryz are the maximum values of

shear stresses on a particular interface. Using this criterion following results were

generated as shown in table 6.5.

Table 6.5 Results from delamination criterion

 

 

 

 

 

 

 

 

     

Time (ms) lnterface1 Interface2 Interface 3

0 0.253 0.396 0.253

0.04 0.307 0.481 0.307

0.08 0.367 0.575 0.367

0.12 0.367 0.575 0.367

0.16 0.502 0.786 0.502

0.2 0.578 0.904 0.578

0.24 0.602 0.942 0.602   

Hence we find that, with the blast loading profile given in figure 6.4, delamination cannot

take place in the composite plate. We can see in the table 6.4 for time t =0.24ms and for

ply 2 or the 900 ply, the criterion indicates that at time t = 0.24 ms, the value of the left

hand side of equation (6.41) is equal to 0.94 which is very near to 1. In other words, if we

increase the loading, then delamination will take place.

108



7. CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

An elasticity analysis was performed to study the response of the interface of [0/90/0]

composite plate under different bonding conditions. The well known Pagano’s cylindrical

bending problem was extended for an imperfectly bonded composite plate. The [0/90/0]

composite plate was simply supported at the ends and was subjected to a sinusoidal

tensile loading at the top surface. In order to represent different bonding conditions at the

interface, two different approaches were taken, the embedded layer approach and the slip

approach. In the embedded layer approach, an additional matrix layer of very small

thickness was introduced between the laminae and the different bonding conditions were

simulated by varying the Young’s Modulus and Shear Modulus of the embedded layers.

In the slip approach, a linear shear slip theory and a linear normal separation theory were

used to account for the variation in interfacial displacement

For the finite element simulation of the interfacial damage, again two approaches were

presented, the embedded layer approach and the shear slip approach. In the embedded

layer approach, the different bonding conditions were simulated by varying the Young’s

Modulus and Shear Modulus of the embedded layers. In the shear slip approach, only the

linear shear slip theory was used for the interfacial displacement.

The two delamination models given by the finite element simulation were used to

analyze the [0/90/0] composite plate and the results were compared with the two

approaches used in elasticity analysis. Results matched well for the case of perfectly

bonded composite laminated plates. For the case of imperfectly bonded composite, the
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finite element model qualitatively predicted the presence of delamination, however only

shear slip on the interfacial layers could be modeled by it.

A brief explanation about the nature of pressure profile and various other parameters

involved in blast loading was given. The finite element model was used to investigate the

response of [0/90/90/0] composite laminate subjected to blast loading. The results from

the simulations were compared with those from the experiments. The simulation results

were not in agreement with the experiments. The discrepancy was attributed to the

absence of geometric non-linearity in the laminate theory and also due to the coupling

between the in-plane stretching and the out-of-plane deflection.

7.2 Recommendations

The finite element code used was unable to capture the stress variation caused due to

the sudden blast loading on the composite plate. By incorporating non-linearity in the

strain displacement relations of the plate and including the coupling effects between the

in-plane stretching and the out-of-plane deflection, this defect is expected to be resolved.

Hence an improved laminate theory including the non-linearity of strain displacements

and coupling effects should be investigated.

The laminate theory used in the present study incorporates displacement discontinuity

across the interface using the shear slip theory. However, it does not include the normal

separation theory to account for the normal separation between the interfaces. Hence, we

find that for imperfectly bonded composite, the finite elements results do not match well

with that of the modified Pagano’s problem results in case of tensile loading. Thus a

revised laminate theory incorporating the normal separation theory would be very useful.
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Appendix A

Figures of stresses and displacements in order to determine critical thickness of the
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Appendix B

Matlab code for the analysis of imperfectly bonded composite laminate using the

Embedded Layer Approach

clc

clear all

hold on

N=5; %No. of Layer

point=10; %Calculate 10 points per Layer

toplayer l;

midlayer 3;

botlayer N;

tt=0;

 

t(l)=0.3;

t(2)=0.001;

t(3)=0.3;

t(4)=0.001;

t(5)=0.3;

for k = 1:N

tt = tt+t(k);

end

%tt=l;

a=tt*4; %tt*(a/h)

P=Pi/a;

b=1*a; %rectangular proportion

Q=Pi/b;

Sigma=-1;

x=a/2;

Y=b/2;

C=((p‘2)+(q‘2))‘o.5;

YM = input('Enter the value of Youngs Modulus, E = ');

MR = input('Enter the value of Shear Modulus, G = ');

o=tt/2;

S=a/tt;

h(1)=o;

for k = 1:N

h(k+1)=h(k)-t(k);

end

for k = 1:N
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E(1,l)=25€6;

E(l,2)=186;

E(1,3)=186;

G(1,1)=.5e6;

G(1,2)=.2e6;

G(1,3)=.5e6;

V(l,1)=.25;

v(1,2)=.25;

V(1,3)=.25;

E(2,l)=YM;

E(2,2)=YM;

E(2,3)=YM;

G(2,1)=MR;

G(2,2)=MR;

G(2,3)=MR;

V(2.1)=(YM/(2*MR))-1i

v(2,2)=(YM/(2*MR) ) -1;

V(2.3)=(YM/(2*MR))-1;

E(3,l)=1€6;

E(3,2)=25€6;

E(3,3)=le6;

G(3,1)=.Se6;

G(3,2)=.5€6;

G(3,3)=.286;

v(3,1)=.01;

V(3,2)=.25;

V(3,3)=.25;

E(4,l)=YM;

E(4,2)=YM;

E(4,3)=YM;

G(4,1)=MR;

G(4,2)=MR;

G(4,3)=MR;

v(4,l)=(YM/(2*MR) ) -1;

v(4,2)=(YM/(2*MR))-l;

V(4,3)=(YM/(2*MR))-l;

E(5,l)=25€6;

E(5,2)=l€6;

E(5,3)=1€6;

G(5.l)=.5e6;

G(5,2)=.286;

Gl5,3)=.5€6;

V(5,l)=.25;

v(5,2)=.25;

v(5,3)=.25;

Layer=k;

v(k,4) = v(k,l)*E(k,2)/E(k,1); %V21

v(k,5) = v(k,2)*E(k,3)/E(k,2); %v32
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v(k,6)

delta(k) = (1-(v(k,1)*v(k,4))-(v(k,2)*v(k,5))-(v(k,3)*v(k,6))...

= V(k,3)*E(k,3)/E(k,l); %v3l

-(2*v(k,1)*v(k,2)*v(k,6)))/(E(k,1)*E(k,2)*E(k,3));

C(k,1)

C(k,2)

c(k.3)

C(k,4)

C(k,5)

C(k,6)

C(k.7)

C(k,8)

C(k,9)

A(k)

B(k)

cc(k)

(1-V(k,2)*v(k,5))/(E(k,2)*E(k,3)*delta(k)l; %C11

(l-v(k,3)*v(k,6))/(E(k,3)*E(k,1)*delta(k)); %C22

(1-v(k,1)*v(k,4))/(E(k,1)*E(k,2)*delta(k)); %C33

G(k,2); %C44

G(k,3); %C55

G(k,l); %C66

C(k,3)*C(k,7)*C(k,8);

(p‘2)*(C(k,7)*(C(k,1)*C(k,3)-(C(k,6))*2)...

+C(k,8)*(C(k.3)*C(k.9)—2*C(k.6)*C(k,7)))...

+(q‘2)*(C(k,8)*(C(k,2)*C(k,3)-(C(k,5))12)...

+C(k,7)*(C(k,3)*C(k,9)-2*C(k,S)*C(k,8)));

(-p‘4)*(C(k,9)*(C(k,1)*C(k,3)-(C(k,6))A2)...

+C(k,8)*(C(k,l)*C(k,7)-2*C(k,6)*C(k,9)l)...

+(p‘2)*(q*2)*(—C(k,1)*(C(k,2)*C(k,3)-(C(k,5))‘21...

-2*(C(k,4)+C(k,9))*(C(k,6)+C(k,8))*(C(k,5)+C(k,7))...

-2*C(k,7)*C(k,8)*C(k,9)+2*C(k,1)*C(k,5)*C(k,7)...

+C(k,4)*C(k,3)*(C(k,4)+2*C(k,9))...

+C(k,6)*C(k,2)*(C(k,6)+2*C(k,8)l)-

<q‘4)*(C(k.9>*<c1k.21*c<k,3>...

D(k) =

-(c(k,5)1‘2)+C(k.7>*(C(k.2)*c<k,8)-2*C(k.5)*C(k.9))1;

(p‘6)*C(k.1)*C(k.8)*C(k.9)+(p‘4)*(q‘2)*(C(k,8)*(C(k,1)*C(k,2)...

d(k)

t(k)

27*A(k)‘3

H(k) II
V

II
II

step

I

-C(k,4))+C(k,9)*(C(k,1)*C(k,7)-2*C(k,4)*C(k,8)l)...

+(p‘2)*(q‘4)*(C(k,7)*(C(k,1)*C(k,2)-C(k,4)‘2)...

+C(k,9)*(C(k,2)*C(k,8)-2*C(k,4)*C(k,7)l)...

+(q‘6)*C(k,2)*C(k,7)*C(k,9);

(3*CC(k)*A(k)+B(k)*2)/(-3*A(k)*2);

(2*(B(k))*3+9*A(k)*B(k)*CC(k)+27*D(k)*(A(k))‘2)/(-

((f(k))‘2)/4+((d(k))‘3)/27;

(h(k)-h(k+l))/point;

% Whether the layer is isotropic or not

kind: input('Is this an isotropic layer? Enter 0 or 1(O—isotropiC/l-

non—isotropic): ');

if kind ==l;

phi(k) = acos(-f(k)*sqrt(27)/(2*(-d(k))A1.5))i

for j = 1:3

gamma(k,j) = 2*sqrt(-d(k)/3)*cos(1/3*(phi(k)+2*(j-l)*pi));

mtk,j) = sqrt(abs(gamma(k,j)+(B(k)/(3*A(k)))));

if (gamma(k,j)+(B(k)/(3*Atk))))>0

CU(k.j)

CM(k,j)

cosh(m(k,j)*h(k)); %Cj(z) at h/2
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(v(k,4)+v(k,6)*v(k,2))/(E(k,2)*E(k,3)*delta(k)); %C12.C2l

(v(k,5)+v(k,6)*v(k,l))/(E(k,3)*E(k,l)*delta(k)li %c23,c32

(v(k,6)+v(k,4)*v(k,5))/(E(k,2)*E(k,3)*delta(k)); %Cl3,C3l

cosh(m(k,j)*(h(k)+h(k+l))/2); %Cj(z) at midlayer



cosh(m(k,j)*h(k+1)); %Cj(z) at ~h/2

SU(k,j) = sinh(m(k,j)*h(k)); %Sj(z) at h/2

SM(k,j) = sinh(m(k,j)*(h(k)+h(k+l))/2); %Sj(z) at midlayer

SB(k,j) = sinh(m(k,j)*h(k+1)); %Cj(z) at -h/2

alfa(k,j) = 1;

for g = 1:point+1

hh(k,g) = h(k)-(g-1)*step;

CZ(k,g,j) = cosh(m(k,j)*hh(k,g));

SZ(k.g,j) = sinh(m(k,j)*hh(k,g)).

end

elseif (gamma(k,j)+(B(k)/(3*A(k))))<0

CU(k,j) = cos(m(k,j)*h(k)); %Cj(z) at h/2

CM(k,j) = cos(m(k,j)*(h(k)+h(k+l))/2); %Cj(:) at midlayer

CB(k,j) = cos(m(k,j)*h(k+1)); %Cj(z) at —h/2

SU(k,j) = sin(m(k,j)*h(k)); %Sj(z) at h/2

SM(k,j) = sin(m(k,j)*(h(k)+h(k+1))/2); %Sj(z) at midlayer

SB(k,j) = sin(m(k,j)*h(k+1)); %Cj(z) at ~h/2

alfa(k,j) = -1;

for g = lzpoint+1

end

else

hh(k,g) = h(k)-(g-1)*step;

CZ(k,g,j) = cos(m(k.j)*hh(k.g));

SZ(k,g,j) = sin(m(k.j)*hh(k.g));

‘Error'

end

J(k,j)

L(k,j)

C(k,3)*C(k,7)*m(k,j)‘4

+alfa(k,j)*(m(k,j)‘2)*(-(p‘2)*(C(k,7)*C(k,8)...

+c(k,3)*C(k,9))+q*2*(C(k,5)*2-C(k,2)*C(k,3)...

+2*C(k,5)*C(k,7)))+(C(k,9)*p‘2 ...

+C(k,2)*q*2)*(C(k,8)*p‘2+C(k,7)*q‘2);

=p*q/J(k.j)*(alfa(k.j)*(m(k.j)‘2)*(c(k,3)*(C(k,4)+c(k.9))...

~<c<k.s)+C(k.7))*(c<k,6)+c<k.8>)1...

—(C(k.4)+C(k,9)1*(C(k,8)*p‘2+C(k,7)*q*2)1;

R(k,j) =p*m(k,j)/J(k,j)*(a1fa(k,j)*(m(k,j)‘2)*C(k,7)*(C(k,6)...

M(k.j.1 )

+C(k,8))-(C(k,6)+C(k,8))*(C(k,9)*p‘2+C(k,2)*qA2)...

+(q‘2)*(C(k,5)+C(k,7))*(C(k,4)+C(k,9)));

= 'p*C(krl)'

q*C(k,4)*L(k,j)+alfa(k,j)*m(k,j)*R(k,j)*C(k,6)i

M(k.j.2 ) = “P*C(kr4)'

q*C(k,2)*L(k,j)+alfa(k,j)*m(k,j)*R(k,j)*C(k,5)r

M(k.j,3 ) = -p*C(k,6)-

q*C(k,5)*L(k,j)+alfa(k,j)*m(k,j)*R(k,j)*C(k,3);

%V
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v13(k,j)= CB(k,j)*L(k,j);

v23(k,j)= SB(k,j)*L(k.j);

v1U(k.j)= CU(k,j)*L(k.j);

v2U(k.j)= SU(k,j)*L(k,j);

%W

W1B(k,j)= alfa(k,j)*SB(k,j)*R(k.j);

w23(k.j)= CB(k,j)*R(k.j);

WlU(k,j)= a1fa(k,j)*SU(k,j)*R(k,j);

W2U(k,j)= CU(k,j)*R(k,j);

%SigmaZ

Sigmazra(k.j)=CB(k,j)*M(k,j,3);

sigmazza(k.j)=SB(k,j)*M(k,j,3);

sigma21U(k,j)=CU(k,j)*M(k,j,3);

Sigmaz2U(k,j)=SU(k,j)*M(k,j.3);

%TauXZ

TauXZlB(k.j)=C(k.8)*(alfa(k,j)*SB(k,j)*(m(k.j)+p*R(k,j)));

TauXZ2B(k,j)=C(k,8)*(CB(k,j)*(m(k,j)+p*R(k,j))lr

TauXZ1U(k.j)=C(k,8)*(alfa(k,j)*SU(k,j)*(m(k,j)+p*R(k,j)));

Tauxzzu(k,j)=C(k,8)*(CU(k,j)*(m(k,j)+p*R(k,j)));

%TauYZ

TauYZ1B(k,j)=C(k,7)*(alfa(k,j)*SB(k,j)*(m(k,j)*L(k,j)+q*R(k.j)l);

TauYzza(k,j)=C(k,7)*(CB(k,j)*(m(k,j)*L(k,j)+q*R(k.j)));

TauYz1U(k,j)=C(k,7)*(alfa(k,j)*SU(k,j)*(m(k,j)*L(k,j)+q*R(k.j)));

TauY22U(k,j)=C(k,7)*(CU(k,j)*(m(k,j)*L(k,j)+q*R(k,j)));

for g = 1:point+l

hh(k,g) = h(k)-(g-1)*step;

v12(k.g.j)= CZ(k.g.j>*L(k.j);

vzz(k,g.j)= SZ(k,g.j)*L(k,j);

w12<k.g.j)= alfa(k,j)*SZ(k,g,j)*R(k,j);

wzz(klgrj)= CZ(kIgrj)*R(krj)i

SigmaZlZ(k,g,j)=CZ(k,g,j)*M(k,j,3);

SigmaZ2Z(k,g,j)=SZ(k,g,j)*M(k,j,3);

TauXZ1Z(k,g,j)=C(k,8)*(alfa(k,j)*SZ(k,g,j)*(m(k,j)+p*R(k,j)));

Tauxzzz(k,g,j)=C(k,8)*(CZ(k,g,j)*(m(k,j)+p*R(k,j)));

TauYZ1Z(k,g,j)=C(k,7)*(alfa(k,j)*SZ(k,g,j)*(m(k,j)*L(k,j)+q*R(k.j)))r

Tauvzzz(k,g,j)=C(k,7)*(CZ(k,g,j)*(m(k,j)*L(k.j)+q*R(k.j)));

TauXYiz(k,g,j)=C(k,9)*(q+(p*L(k,j)))*CZ(k,g.j);
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TauXY2Z(k,g,j)=C(k,9)*(q+(p*L(k,j)))*SZ(k,g,j);

SigmaX1Z(k,g,j)=M(k,j,1)*CZ(k,g,j);

sigmaxzztk,g,j)=M<k,j,1)*SZ(k,g.j);

SigmaYlZ(k,g,j)=M(k,j,2)*CZ(k.g.j);

SigmaY2Z(k,g,j)=M(k,j,2)*SZ(k:9:j)i

end

end

else

%Ratio amd other constants

r=(c(k.1)-c(k,4))/(c(k.4)+C(k,1));

s=(C(k.4)-(3*C(k,1))l/(C(k.4)+C(k,1));

t=C(k.l)-C(k.4);

o
\
°

U

CB(k,:)=[exp(c*h(k+1)),exp(-c*h(k+1)),exp(c*h(k+1))*h(k+1)];

SB(k,:)=[exp(-c*h(k+1))*h(k+1),0,0];

CU(k.:)=[exp(c*h(k)),exp(-c*h(k)).exp(c*h(k))*h(k)];

SU(k.:)=[exp(-C*h(k))*h(k).0.0];

%V

VlB(k.:)=[0,0.((q*h(k+1)/p)*exp(C*h(k+1)))1;

V2B(k,:)= [((q*h(k+l)/p)*exp(-c*h(k+1))),exp(c*h(k+l)),exp(-

c*h(k+1))];

v1U(k.:)= [0,0,((q*h(k)/p)*exp(c*h(k)))];

V2U(k.:)= [((q*h(k)/p)*exp(-C*h(k))).exp(c*h(k)),exp(-c*h(k))l;

W1B(k,:)=[(p/c)*exp(c*h(k+1)).(-p/C)*exp(-

C*h(k+1)),((s/p)+(c*h(k+1)/p))*exp(C*h(k+1))1;

W2B(k,:)= [((s/p)+(-c*h(k+l)/p))*exp(-

c*h(k+1)),(q/c)*exp(C*h(k+l)).(-q/c)*exp(-c*h(k+1))];

w1U(k.:)= [(p/C)*exp(c*h(k)).(-p/c)*exp(-

C*h(k)).((S/p)+(C*h(k)/p))*exp(C*h(k))];

w2U(k.:)= [((s/p)+(-C*h(k)/p))*exp(-

c*h(k)).(q/c)*exp(c*h(k)),(-q/c)*exp(-c*h(k))];

%SigmaZ

sigma21B(k,:)=[(C(k,1)-c(k,4))*p*exp(c*h(k+1)).(C(k,1)-

C(k,4))*p*exp(-c*h(k+1)).(C(k,1)-

C(k,4))*exp(c*h(k+1))*(c/p)*((h(k+1)*c)+(-2*C(k,1)/(C(k,1)+C(k,4))))l;

Sigma22B(k,:)=[(C(k,1)-C(k,4))*exp(-

c*h(k+1))*(c/p)*((h(k+1)*c)+(2*C(k,1)/(C(k,1)+C(k,4)))),q*exp(c*h(k+l))

*(Ctk,1)-C(k.4)),q*exp(-c*h(k+1))*(C(k,1)-C(k,4))];

SigmaZ1U(k,:)= [(Ctk,l)-C(k,4))*p*exp(c*h(k)).(C(k.1)-

C(k.4))*p*exp(-c*h(k)),(C(k.1)-C(k,4))*exp(c*h(k))*(C/p)*((h(k)*c)+(-

2*C(k,1)/(C(k,1)+C(k,4))))l;
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Sigma22U(k,:)=[(C(k,1)-C(k,4))*exp(-

c*h(k))*(C/p)*((h(k)*c)+(2*C(k,l)/(C(k,l)+C(k,4)))),q*exp(c*h(k))*(C(k,

1)-C(k,4)),q*exp(-c*h(k))*(C(k,1)-C(k,4))];

%TauYZ

TauYZlB(k,:)=[(t/2)*(q*p/c)*exp(c*h(k+1)),(t/2)*(-q*p/c)*exp(-

c*h(k+l)),t*(q/p)*exp(c*h(k+1))*(-r+(c*h(k+1)))];

TauYZZB(k,:)=[t*(q/p)*exp(-c*h(k+1))*(-r-

(c*h(k+l))),(t/2)*exp(c*h(k+1))*(((q‘2)/c)+C).(-t/2)*exp(-

C*h(k+1))*(((q‘2)/C)+c)];

TauYZlU(k,:)=[(t/2)*(q*p/c)*exp(c*h(k)).(t/2)*(-q*p/C)*exp(-

c*h(k)).t*(q/p)*exp(c*h(k))*(-r+(c*h(k)))];

TauYZ2U(k,: =[t*(q/p)*exp(-c*h(k))*(-r-

(c*h(k))).(t/2)*exp(c*h(k))*(((q‘2)/C)+c),(-t/2)*exp(-

C*h(k))*(((q‘2)/C)+C)l;

%TauXZ

TauXZiB(k,:)=[(t/2)*(((p‘2)/c)+c)*exp(c*h(k+i)),(-

t/2)*(((p‘2)/c)+c)*exp(-c*h(k+1)),t*exp(c*h(k+1))*(-r+(c*h(k+1)))];

TauXZ2B(k,:)=[t*exp(-c*h(k+1))*(-r-

(c*h(k+1))).(t/2)*exp(c*h(k+1))*(q*p/C).(-t/2)*exp(-c*h(k+1))*(q*p/c)l;

TauXZlU(k.:)=[(t/2)*(((p‘2)/c)+c)*exp(c*h(k)).(-

t/2)*(((p‘2)/c)+c)*exp(-c*h(k)).t*exp(C*h(k))*(-r+(C*h(k)))];

TauXZZU(k,:)=[t*exp(-c*h(k))*(-r-

(C*h(k))),(t/2)*exp(c*h(k))*(q*p/C).(-t/2)*exp(-c*h(k))*(q*p/C)];

for g = 1:point+1

hh(k,g) = h(k)-(g-1)*step;

CZ(k,g, :)= [exp(c*hh(k,g) ) ,exp(-

c*hh(k.g)),exp(c*hh(k,g))*hh(k.g)l;

SZ(k,g,:)=[exp(-c*hh(k,g))*hh(k,g),0,0l;

VlZ(k,g.:)=[0.0,((q*hh(k.g)/p)*exp(c*hh(k,g)))l;

V2Z(k,g,:)= [((q*hh(k,g)/p)*exp(-

c*hh(k,g))),exp(C*hh(k,g)).exp(-c*hh(k,g))l;

W12(k,g,:)=[(p/c)*exp(c*hh(k,g)),(—p/c)*exp(-

c*hh(k.g)),((s/p)+(c*hh(k,g)/p))*exp(c*hh(k.g))l;

wzz(k,g.:)= [((s/p)+(-c*hh(k,g)/p))*exp(—

c*hh(k.g)).(q/c)*exp(c*hh(k,g)).(-q/c)*exp(-c*hh(k.g))l;

SigmaZlZ(k,g,:)=[(C(k,1)-

C(k.4))*p*exp(c*hh(k,g)).(C(k,1)-C(k,4))*p*exp(-c*hh(k,g)),(C(k,1)-

C(k.4))*exp(C*hh(k,g))*(C/p)*((hh(k,g)*c)+(—

2*C(k,1)/(C(k.l)+C(k,4))))li

SigmaZ2Z(k,g,:)=[(C(k,1)-C(k,4))*exp(-

C*hh(k,g))*(C/p)*((hh(k,g)*C)+(2*C(k,l)/(C(k.1)+C(k,4)))),q*exp(c*hh(k.

g))*(C(k.l)-C(k.4)),q*exp(-c*hh(k.g))*(C(k,1)-C(k,4))];

TauYZ1Z(k,g,:)=[(t/2)*(q*p/c)*exp(c*hh(k,g)),(t/2)*(-

q*p/c)*exp(-c*hh(k,g)).t*(q/p)*exp(c*hh(k,g))*(-r+(c*hh(k.g)))];

TauYZ2Z(k,g,:)=[t*(q/p)*exp(-c*hh(k,g))*(-r-

(c*hh(k.g))).(t/2)*exp(C*hh(k,g))*(((q‘2)/C)+c).(-t/2)*exp(-

c*hh(k,g))*(((q‘2)/c)+c)];

TauXZ1Z(k,g.:)=[(t/2)*(((p‘Z)/c)+c)*exp(c*hh(k,g)),(-

t/2)*(((p‘2)/C)+c)*exp(-c*hh(k.g)),t*exp(c*hh(k,g))*(-r+(c*hh(k,g)))];
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TauXZ2Z(k,g,:)=[t*exp(-c*hh(k,g))*(-r-

(c*hh(k.g))),(t/2)*exp(c*hh(k,g))*(q*p/C).(-t/2)*exp(-

c*hh(k,g))*(q*p/C)];

TauXYlZ(k,g,:)=[((C(k,1)-

C(k.4))/2)*q*exp(C*hh(k.g)).((C(k,l)-C(k.4))/2)*q*exp(-

C*hh(k.g)).((C(k,l)-C(k.4))/2)*2*q*hh(k.g)*exp(c*hh(k.g))l;

TauXY2Z(k.g.:)=[((C(k,1)—C(k,4))/2)*2*q*hh(k,g)*exP(-

C*hh(k.g)).((C(k.1)-C(k.4))/2)*P*exp(C*hh(k.g)). ((C(k,l)-

C(k.4))/2)*p*exp(-c*hh(k.g))1;

SigmaX1Z(k,g,:)=[-t*p*exp(c*hh(k,g)),-t*p*exp(-

c*hh(k.g)).exp(c*hh(k,g))*(((2*c*C(k.4)/p)*-r)+p*hh(k.g)*-t)];

Sigmax2Z(k,g,:)=[exp<—c*hh(k.g))*(((-2*c*C(k.4)/p)*-

r)+p*hh(k.g)*-t),0.0];

SigmaY1Z(k,g,:)=[0,0,(exp(c*hh(k,g))/p)*((2*c*C(k,4)*-

r)+(hh(k,g)*q‘2*-t))l;

SigmaY2Z(k,g,:)=[(exp(-c*hh(k,g))/p)*((-2*c*C(k,4)*- r

r)+(hh(k.g)*q‘2*-t)).q*exp(c*hh(k.g)).q*exp(-c*hh(k.g))]; l

1

1

1

end

end

end

% Boundary conditions

for j = 1:3

Z(lrj)

Z(l.j+3)

Z(2.6*(N-l)+j)

Z(2,6*(N-1)+j+3)

Z(3,jl

Z(3,j+3)

Z(4,6*(N-1)+j)

Z(4,6*(N-1)+j+3)

z(5.j)

Z(5.j+3)

Z(6,6*(N-1)+j)

Z(6,6*(N-1)+j+3)

M(l,j,3)*CU(1,j);

M(lljr3)*SUllrj)i

M(N,j.3)*CB(N,j);

M(N.j.3)*SB(N,j);

(m(1.j)+p*R(1.j))*alfa(l.j)*SU(1.j);

(m(1.j)+p*R(1,j))*CU(1,j);

(m(N.j)+p*R(N,j))*a1fa(N.j)*SB(N,j);

(th,j)+p*R(N.j))*CB(N.j);

(m(l,j)*L(1.j)+q*R(1.j))*alfa(1.j)*SU(1.j);

(m(1,j)*L(l.j)+q*R(l.j))*CU(1.j);

(m(N,j)*L(N.j)+q*R(N.j))*alfa(N.j)*SB(N,j);

(m(N.j)*L(N,j)+q*R(N.j))*CB(N.j);

end

%Interfacial conditions

for i = 1:(N-1)

%U

ii=6*i+l;

qq=6*(i-1);

for j = 1:3

Z(ii,qq+j)=CB(i,j);

Z(ii,qq+j+3)=SB(i.j);

Z(ii,qq+j+6)=-CU(i+1,j);

Z(ii,qq+j+9)=-SU(i+l,j);

end

%v

ii=6*i+2;

for j = 1:3

Z(ii.qq+j)=v1B(i.j);

Z(ii,qq+j+3)=V2B(i,j);

Z(ii,qq+j+6)=-V1U(i+1,j)i

Z(ii,qq+j+9)=-V2U(i+1,j)i
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end

%W

ii=6*i+3;

for j = 1:3

Z(ii,qq+j)=W1B(i,j);

Z(ii,qq+j+3)=W2B(i,j);

Z(ii,qq+j+6)=-W1U(i+l,j)i

Z(ii,qq+j+9)=-W2U(i+1,j);

end

%Sigma Z

ii=6*i+4;

for j = 1:3

Z(ii,qq+j)=Sigma21B(i.j);

Z(ii,qq+j+3)=Sigma22B(i,j);

Z(ii,qq+j+6)=-SigmaZlU(i+1,j);

Z(ii,qq+j+9)=-SigmaZZU(i+1,j);

end

%Tau XZ

ii=6*i+5;

for j = 1:3

Z(ii,qq+j)=TauXZ1B(i,j);

Z(ii,qq+j+3)=TauXZZB(i,j);

Z(ii,qq+j+6)=-TauXZ1U(i+1,j);

Z(ii,qq+j+9)=-TauXZZU(i+1,j);

end

%Tau YZ

ii=6*i+6;

for j = 1:3

Z(ii,qq+j)=TauYZ1B(i,j);

z(ii,qq+j+3)=TauYZ2B(i,j);

Z(ii,qq+j+6)=-TauYz1U(i+1,j);

Z(ii,qq+j+9)=—TauYZ2U(i+l,j);

end

end

for i = 1:6*N

P(i,l)=0;

end

P(1,1)=Sigma;

2:

P;

FG = inV(Z)*P;

FG;

%'Sigmax at the top surface'

SigmaXtop=0;

n =toplayer-1;

for j = 1:3

SigmaXXtop(j) = M(1,j,1)*(FG(n*6+j)*CU(l,j)...

+FG(n*6+3+j)*SU(1,j)l;

SigmaXtop = SigmaXtop + SigmaXXtop(j);

end

SigmaXtop=SigmaXtop/(Sigma*s‘2);

%'SigmaX at the bottom surface'

Sigmaxbot=0;

n =botlayer-1;
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for j = 1:3

SigmaXXbot(j) = M(3,j,l)*(FG(n*6+j)*CB(3,j)...

+FG(n*6+3+j)*SB(3.j));

SigmaXbot = SigmaXbot + SigmaXXbot(j);

end

SigmaXbot=SigmaXbot/(Sigma*S‘2);

%SigmaX Plot

for k = 1:N

n = k-l;

for g = lzpoint+l

SigmaX(k,g)=0;

for j = 1:3

SigmaXX(k,g,j) = (FG(n*6+j)*SigmaX1Z(k,g,j)...

+FG(n*6+3+j)*SigmaXZZ(k,grj))i

SigmaX(k,g) = SigmaX(k,g) + SigmaXX(k,g,j);

end

SigmaX(k,g)=SigmaX(k,g)/(Sigma*s‘2);

%plot(SigmaX(k,g),hh(k,g), '*b');

end

end

%SigmaY at the top of middle layer'

SigmaYtop=0;

n =midlayer-1;

for j = 1:3

SigmaYYtop(j) = M(2,j,2)*(FG(n*6+j)*CU(2,j)...

+FG(n*6+3+j)*SU(2,j));

SigmaYtop = SigmaYtop + SigmaYYtop(j);

end

SigmaYtop=sigmaYtop/(sigma*s*2);

%SigmaY at the bottom of mid layer'

SigmaYbot=0;

n =midlayer-1;

for j = 1:3

SigmaYYbot(j) = M(2,j,2)*(FG(n*6+j)*CB(2,j)...

+FG(n*6+3+j)*SB(2.j));

SigmaYbot = SigmaYbot + SigmaYYbot(j);

end

SigmaYbot=SigmaYbot/(Sigma*S‘2);

%SigmaY Plot

for k = 1:N

n = k-l;

for g = 1:point+1

SigmaY(k,g)=0;

for j = 1:3

 

SigmaYY(k,g,j) = (FG(n*6+j)*SigmaYlZ(k,g,j)...

+FG(n*6+3+j)*SigmaY2Z(k,g,j));

SigmaY(k,g) = SigmaY(k,g) + SigmaYY(k,g,j);

end

SigmaY(k,g)=SigmaY(k,g)/(Sigma*S‘2);

%plot(SigmaY(k,g),hh(k,g),‘*b');

end

end

123



%Sigmaz Plot

for k = 1:N

n = k-l;

for g = 1:point+1

SigmaZ(k.g)=0;

for j = 1:3

%SigmaZZ(k,g,j) = M(k,j,3)*(FG(n*6+j)*CZ(k,g,j)...

% +FG(n*6+3+j)*SZ(k,g,j));

SigmaZZ(k,g,j) =

(FG(n*6+j)*SigmaZthk,g,j)+FG(n*6+3+j)*SigmaZZZ(k,g,j));

SigmaZ(k,g) = Sigmaz(k,g) + SigmaZZ(k,g,j);

end

SigmaZ(k,g)=SigmaZ(k,g)/(Sigma);

%plot(SigmaZ(k,g),hh(k,g),'*b');

end

end r

%TauXZ at (O,b/2,0)'

TauXZmid=0; '

n =midlayer-1; l

for j = 1:3

TauXXZZmid<jl = C(2,8)*(m(2,j)+p*R(2,j))*(alfa(2,j)...

*(FG(n*6+j)*SM(2,j)+FG(n*6+3+j)*CM(2,j)l);

 

TauXZmid = TauXZmid + TauXXZZmid(j);

end

TauXZmid=TauXZmid/(Sigma*S);

%TauXZ Plot

for k = 1:N

n = k-l;

for g = 1:point+1

TauXZ(k,g)=0;

for j = 1:3

TauXXZZ(k,g,j) = C(k,8)*(m(k,j)+p*R(k,j))*(alfa(k,j)---

*(FG(n*6+j)*SZ(k,g,j)+FG(n*6+3+j)*CZ(k,g,j)l);

Tauxxzz(k,g,j) =

(FG(n*6+j)*TauXZlZ(k,g,j)+FG(n*6+3+j)*TauXZ2Z(k,g,j));

TauXZ(k,g) = TauXZ(k,g) + TauXXZZ(krgrj)F

end

rauxz(k.g> = TauXZ(k.9)/(Sigma*S);

%plot(TauXZ(k,g),hh(k,g),'*b');

end

end

%TauYZ at (a/2,0,0)'

TauYZmid=0;

n =mid1ayer—1;

for j = 1:3

TauYYZZmid(j) = C(2,7)*(m(2,j)*L(2,j)+q*R(2,j))*(alfa(2,j)...

*(FG(n*6+j)*SM(2,j)+FG(n*6+3+j)*CM(2,j)));

TauYZmid = TauYZmid + TauYYZZmid(j);

end

TauYZmid=TauYZmid/(Sigma*S);
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%TauYZ Plot

for k = 1:N

n = k-l;

for g = 1:point+1

TauYZ(k,g)=0;

for j = 1:3

TauYYZZ(k,g,j) =

(FG(n*6+j)*TauYZlZ(k,g,j)+FG(n*6+3+j)*TauYZ2Z(k,g,j));

TauYZ(k,g) = TauYZ(k,g) + TauYYZZ(k,g,j);

end

TauYZ(k,g) = TauYZ(k,g)/(Sigma*S);

%plot(TauYZ(k,g),hh(k,g),'*b');

end

end

%TauXY at the top surface'

TauXYtop=0;

n =top1ayer-1;

for j = 1:3

TauXXYYtop(j) = C(1,9)*(q+p*L(1,j))*(FG(n*6+j)*CU(l,j)...

+FG(n*6+3+j)*SU(l,j));

TauXYtop = TauXYtop + TauXXYYtop(j);

end

TauXYtop=TauXYtop/(Sigma*s*2);

%TauXY at the bottom surface'

TauXYbot=0;

n =bot1ayer-1;

for j = 1:3

TauXXYYbot(j) = C(N,9)*((q+p*L(N,j))*(FG(n*6+j)*CB(N,j)...

+FG(n*6+3+j)*SB(N.j)));

TauXYbot = TauXYbot + TauXXYYbot(j);

end .

TauXYbot=TauXYbot/(Sigma*S‘2);

%TauXY Plot

for k = 1:N

n = k-l;

for g = 1:point+1

TauXY(k,g)=0;

for j = 1:3

TauXXYY(k,g,j) = (FG(n*6+j)*TauXY1Z(k,g,j)...

+FG(n*6+3+j)*TauXY2Z(k,g,j));

TauXY(k,g) = TauXY(k,g) + TauXXYY(k.g.j);

end

TauXY(k,g) = TauXY(k,g)/(sigma*s*2);

%plot(TauXY(k,g),hh(k,g),‘*b');

end

end

%X Displacement (U) Plot

for k = 1:N

n = k-l;

for g = 1:point+1

DiSpX(k,g)=O;

for j = 1:3

DistX(k,g,j) = (FG(n*6+j)*CZ(k,g,j)...
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+FG(n*6+3+j)*SZ(k,g,j));

Dist(k,g) = Dist(k,g) + Dispxx(k,g,j);

end

Dist(k,g) = E(1,2)*Dispx(k,g)/(Sigma*tt*S‘3);

%plot(Dist(k,g),hh(k,g),'*b');

end

end

% Y Displacement (V) Plot

for k = 1:N

n = k-l;

for g = 1:point+1

DispY(k,g)=O;

for j = 1:3

DispYY(k,g,j) = (FG(n*6+j)*VlZ(k,g,j)...

+FG(n*6+3+j)*V2Z(k,g,j));

DispY(k,g) = DispY(k,g) + DispYY(k,g,j);

end

DispY(k,g) = E(1,2)*DispY(k,g)/(Sigma*tt*s‘3);

%plot(DispY(k,g),hh(k,g),'*b‘);

end

end

%Z Displacement at middle height(W) Plot

k = midlayer;

n = k-l;

Dispz=0;

for j = 1:3

DispZZ(k,g,j) = R(k,j)*(FG(n*6+3+j)*CM(k,j)...

+alfa(k,j)*FG(n*6+j)*SM(k,j));

Dispz = DispZ + DispZZ(j);

end

DiSpZ;

DispZ = 100*E(l,2)*DispZ/(Sigma*tt*SA4);

% plot(S,DispZ,'m.');

%X Displacement (W) Plot

for k = 1:N

n = k-l;

for g = 1:point+1

DiSpZ(k,g)=0;

for j = 1:3

DispZZ(k,g,j) = (FG(n*6+j)*W1Z(k.g,j)---

+FG(n*6+3+j)*W2Z(k,g,j));

DispZ(k,g) = Dispz(k,g) + DispZZ(k,g,j);

end

DispZ(k,g) = 100*E(1,2)*DispZ(k,g)/(Sigma*tt*s‘4);

plot(DispZ(k,g),hh(k,g),'*b');

end

end
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Appendix C

Figures of stresses and displacements obtained using the Embedded Layer approach

in the Pagano’s solutions
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Figure C.l-Normalized transverse displacement along the height of laminate for different bonding

conditions obtained by varying the material properties of the embedded layers of a [0/1/90/1/0]

composite plate. [I-isotropic]
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Figure C.2-Normalized in-plane normal stress along the height of laminate for different bonding

conditions obtained by varying the material properties of the embedded layers of a [0/1/90/1/0]

composite plate. [I-isotropic]
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Figure C.3-Normalized in-plane normal stress along the height of laminate for different bonding

conditions obtained by varying the material properties of the embedded layers of a [0/1/90/1/0]

composite plate. [I-isotropic]
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conditions obtained by varying the material properties of the embedded layers of a [0/1/90/1/0]

composite plate. [I-isotropic]
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Appendix D

Matlab code for the analysis of imperfectly bonded composite laminate using the Slip

Approach

clc

clear all

hold on

N=3; %No. of Layer

point=10; %Calculate 10 points per Layer

toplayer = 1;

midlayer = 2;

botlayer = N;

tt=0;

sz = input('Enter the value of shear slip constant in x direction,

DSX=');

Dsy = input('Enter the value of shear slip constant in x direction,

Dsy= ');

K = input('Enter the value of shear slip constant in X direction, K

=');

t(l)=0.3;

t(2)=0.3;

t(3)=0.3;

% Shear Constants Values

for k = 1:N

tt = tt+t(k);

end

a=tt*4; %tt*(a/h)

P=Pi/a;

b=1*a; %rectangular proportion

Q=Pi/b;

Sigma=1;

x=a/2;

Y=b/2;

c=1(p‘2)+(q‘2))*o.s;

O=tt/2;

S=a/tt;

h(1)=O;

for k = 1:N

h(k+l)=h(k)-t(k);

end

for k = 1:N

E(l,l)=25€6;

E(1,2)=1€6;

E(1,3)=1e6;

G(l,1)=.5€6;

G(1,2)=.2e6;
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G(l,3)=.5e6;

V(1,l)=.25;

V(l,2)=.25;

V(l,3)=.25;

E(2,1)=1e6;

E(2,2)=25e6;

E(2,3)=1e6;

G(2,1)=.5e6;

G(2,2)=.5€6;

G(2,3)=.2€6;

v(2,1)=.01;

V(2,2)=.25;

V(2,3)=.25;

E(3,1)=25€6;

E(3,2)=1e6;

E(3,3)=le6;

G(3,l)=.5e6;

G(3,2)=.2e6;

G(3,3)=.Se6;

V(3,l)=.25;

V(3,2)=.25;

V(3,3)=.25;

Layer=k;

v(k,4) = v(k,1)*E(k,2)/E(k,1); %v21

v(k,5) = v(k,2)*E(k,3)/E(k,2); %v32

v(k,6) = v(k,3)*E(k,3)/E(k,l); %v31

delta(k) = (l-(v(k,l)*v(k,4))-(v(k,2)*v(k,5))-(V(k,3)*v(k,6))...

-(2*V(k,1)*V(k.2)*V(k.6)))/(E(k.1)*E(k.2)*E(k,3));

C(k,l) = (1-v(k,2)*v(k,5))/(E(k,2)*E(k,3)*delta(k)); %c11

C(k,2) = (l-v(k,3)*v(k,6))/(E(k,3)*E(k,l)*delta(k)); %c22

C(k,3) = (1-v(k,l)*v(k,4))/(E(k,l)*E(k,2)*delta(k)); %c33

C(k,4) = (v(k,4)+v(k,6)*v(k,2))/(E(k,2)*E(k,3)*delta(k)); %c12,c21

C(k,5) = (v(k,5)+v(k,6)*v(k,l))/(E(k,3)*E(k,1)*delta(k)); %c23,c32

C(k,6) = (v(k,6)+v(k,4)*v(k,5))/(E(k,2)*E(k,3)*delta(k)); %Cl3,C31

C(k,7) = G(k,2); %C44

C(k,8) = G(k,3); ecss

C(k,9) = G(k,1); %C66

A(k) = C(k,3)*C(k,7)*C(k,8);

B = (p‘2)*(C(k,7)*(C(k,1)*C(k,3)-(C(k,6))AZ)...

+C(k,8)*(C(k,3)*C(k,9)-2*C(k,6)*C(k,7)l)...

+(q‘2)*(C(k,8)*(C(k,2)*C(k,3)-(C(k,5))‘2)...

+C(k.7)*(C(k.3)*C(k.9)-2*C(k.5)*c(k,8)));

CC(k) = (-p‘4)*(C(k,9)*(C(k,1)*C(k,3)-(C(k,6))‘2l...

+C(k,8) * (C(k,1)*C(k,7) -2*C(k,6) *C(k,9) ) ) . . .

+(p‘2)*(q‘2)*(-C(k,1)*(C(k,2)*C(k,3)-(C(k,5))A2)...

-2*(C(k,4)+C(k,9))*(C(k,6)+C(k,8))*(C(k,5)+C(k,7))...

-2*C(k,7)*C(k,8)*C(k,9)+2*C(k,1)*C(k,5)*C(k,7)...

+C(k,4)*C(k,3)*(C(k,4)+2*C(k,9))...

+C(k,6)*C(k,2)*(C(k,6)+2*C(k,8)))-

(q‘4)*(C(k,9)*(C(k,2)*C(k,3)...

-(C(k,5))*2)+C(k,7)*(C(k,2)*c(k,8)-2*C(k,5)*c1k,9)));
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D(k)

(p‘6)*C(k.1)*C(k,8)*C(k.9)+(p‘4)*(q‘2)*(C(k.8)*(C(k,1)*C(k.2)...

-C(k,4))+C(k,9)*(C(k,1)*C(k,7)—2*C(k,4)*C(k,8))>...

+(p‘2)*(q‘4)*(C(k.7)*(C(k.1)*C(k.2)-C(k.4)‘2)...

+C(k.9)*(C(k.2)*C(k.8)-2*C(k.4)*C(k,7)))...

+(q‘6)*C(k,2)*C(k,7)*C(k,9);

d(k)

f(k)

27*A(k)‘3);

H(k)

if H(k)>0

'Error'

end

step

(3*CC(k)*A(k)+B(k)‘2)/(-3*A(k)‘2);

(2*(B(k))‘3+9*A(k)*B(k)*CC(k)+27*D(k)*(A(k))‘2)/(-

((f(k))‘2)/4+((d(k))‘3)/27;

(h(k)-h(k+1))/point;

% Whether the layer is isotropic or not

kind: input('Is this an isotropic layer? Enter 0 or 1(0-

isotropic/1-non-isotropic):

if kind ==l;

');

phi(k) = acos(-f(k)*sqrt(27)/(2*(—d(k))‘1.5));

for j = 1:3

gamma(k,j) = 2*sqrt(-d(k)/3)*cos(1/3*(phi(k)+2*(j-1)*pi));

m(k,j) = sqrt(abstgamma(k,j)+(B(k)/(3*A(k)))));

if (gamma(k,j)+(B(k)/(3*A(k))))>0

CU(k,j) = cosh(m(k,j)*h(k)); %Cj(z) at h/2

CM(k,j) = cosh(m(k,j)*(h(k)+h(k+1))/2); %Cj(z) at midlayer

CB(k,j) = cosh(m(k,j)*h(k+1)); %Cj(z) at —h/2

SU(k,j) = sinh(m(k,j)*h(k)); %Sj(z) at h/2

SM(k,j) = sinh(m(k,j)*(h(k)+h(k+1))/2); %Sj(z) at midlayer

SB(k,j) = sinh(m(k,j)*h(k+1)); %Cj(z) at —h/2

alfa(k,j) = l;

for g = 1:point+1

hh(k,g) = h(k)-(g-1)*step;

CZ(k,g,j) = cosh(m(k,j)*hh(k,g)).

SZ(k.g,j) = sinh(m(k,j)*hh(k,g));

end

elseif (gamma(k,j)+(B(k)/(3*A1k))))<0

CU(k,j) = cos(m(k,j)*h(k)); %Cj(z) at h/2

CM(k,j) = cos(m(k,j)*(h(k)+h(k+1))/2); %Cj(z) at midlayer

CB(k,j) = cos(m(k,j)*h(k+1)); %Cj(z) at —h/2

SU(k,j) = sin(m(k,j)*h(k)); %Sj(z) at h/2

SM(k,j) = sin(m(k,j)*(h(k)+h(k+l))/2); %Sj(z) at midlayer

SB(k,j) = sin(m(k,j)*h(k+l)); %Cj(z) at -h/2

alfa(k,j) = -1;

for g = 1:point+1

hh(k,g) = h(k)-(g-l)*step;

CZ(k,g,j) = cos(m(k,j)*hh(k,g));

SZ(k.9,j) = sin(m(k,j)*hh(k,g));

end
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else

'Error‘

end

J(k.j) = C(k,3)*c1k,7)*m(k,j)*4

+alfa(k,j)*(m(k,j)‘2)*(-(p‘2)*(C(k,7)*C(k,8)...

+C(k,3)*C(k,9))+q‘2*(C(k,5)‘2-C(k,2)*C(k,3)...

+2*C(k,5)*C(k,7)))+(C(k,9)*p‘2 ...

+C(k,2)*q‘2)*(C(k,8)*p‘2+C(k,7)*q*2);

L(k,j)=p*q/J(k,j)*(alfa(k,j)*(m(k,j)*2)*(C(k,3)*(C(k,4)+C(k,9))...

-(C(k.5)+C(k.7))*(C(k.6)+C(k.8)))...

-(C(k,4)+C(k,9))*(C(k,8)*p‘2+c(k,7)*q‘2));

R(k,j) =p*m(k,j)/J(k.j)*(alfa(k.j)*(m(k,j)A2)*C(k.7)*(C(k.6)...

+c(k,8))-(C(k,6)+c1k,8)1*(C(k,9)*p‘2+c(k,2)*q‘2)...

+1q‘2)*(c<k.5)+c<k.7))*(c<k.4)+C(k.9))>;

Mtk.j,l) = -p*C(k.1)-q*C(k.4)*L(k,j)+a1fa(k.j)*m(k.j)*R(k,j)*C(k,6);

M(k.j.2) = -p*C(k.4)-

q*C(k.2)*L(k.j)+alfa(k.j)*m(k.j)*R(k.j)*C(k.5);

M(kljl3) = 'P*C(kr6)‘

q*C(k,S)*L(k,j)+alfa(k,j)*m(k,j)*R(k,j)*C(k,3);

%V

v13(k.j)= CB(k,j)*L(k.j);

v23(k.j)= SB(k,j)*L(k.j);

V1U(k.j)= CU(k,j)*L(k.j);

V2U(k,j)= SU(k,j)*L(k,j):

%W

W1B(k,j)= alfa(k,j)*SB(k,j)*R(k,j)i

w23(k,j)= CB(k,j)*R(k.j);

W1U(k,j)= a1fa(k,j)*SU(k,j)*R(k,j);

w2U(k.j)= CU(k,j)*R(k.j);

%SigmaZ

SigmaZ1B(k,j)=CB(k,j)*M(k.j.3);

SigmaZ2B(k,j)=SB(k,j)*M(k.j.3)i

SigmaZ1U(k,j)=CU(k,j)*M(k,j,3);

Sigma22U(k,j)=SU(k,j)*M(k,j.3);

%TauXZ

TauXZlB(k.j)=C(k,8)*(alfa(k,j)*SB(k,j)*(m(k,j)+p*R(k,j)));

TauXZ2B(k,j)=C(k,8)*(CB(k,j)*(m(k,j)+p*R(k,j)l);

TauXZ1U(k.j)=C(k,8)*(alfa(k,j)*SU(k,j)*(m(k,j)+p*R(k,j)l);

TauxzzU(k,j)=C(k,8)*(CU(k,j)*(m(k,j)+p*R(k.j)));

%TauYZ

TauYZ1B(k,j)=C(k,7)*(alfa(k,j)*SB(k,j)*(m(k,j)*L(k,j)+q*R(k,jl))i

Tauyzzs(k,j)=C(k,7)*(CB(k,j)*(m(k.j)*L(k,j)+q*R(k.j)1);

TauYZ1U(k,j)=C(k,7)*(a1fa(k,j)*SU(k,j)*(m(k,j)*L(k,j)+q*R(k.j)));

TauYzzU(k,j)=C(k,7)*(CU(k,j)*(m(k,j)*L(k,j)+q*R(k.j)));
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for g = 1:point+1

hh(k,g) = h(k)-(g-1)*step;

Vlzlkrgrj)= CZ(krgrj)*L(krj)i

V2Z(k,g,j)= sz<k,g,j)*L(k,j);

W12(k,g,j)= alfa(k,j)*SZ(k,g,j)*R(k,j);

W22(k,g,j)= CZ(k,g,j)*R(k,j);

Sigma21z(k,g.j)=CZ<k.g.j)*M(k.j.3);

SigmaZ2Z(k,g,j)=SZ(k,g,j)*M(k,j,3);

TauXZlZ(k,g,j)=C(k,8)*(alfa(k,j)*SZ(k,g,j)*(m(k,j)+p*R(k,j)));

Tauxzzz(k,g,j)=C(k,8)*(CZ(k,g,j)*(m(k,j)+p*R(k.j)));

TauYZlZ(k,g,j)=C(k,7)*(alfa(k,j)*SZ(k,g,j)*(m(k,j)*L(k,j)+q*R(k,j))l;

TauYZ2Z(k,g,j)=C(k,7)*(CZ(k,g,j)*(m(k,j)*L(k,j)+q*R(k,j)));

TauXYlZ(k,g,j)=C(k,9)*(q+(p*L(k,j)))*cz(k,g,j);

TauXY2Z(k,g,j)=C(k,9)*(q+(p*L(k.j)))*SZ(k.g.j);

SigmaXlZ(k,g,j)=M(k,j,1)*CZ(k,g,j)I

Sigmax22(k.g.j)=M(k,j,1)*sz<k.g.j);

sigmaY1Z(k,g,j)=M(k,j,2)*CZ(k.g.j);

SigmaY2Z(k,g,j)=M(k,j,2)*SZ(k,g,j);

end

end

else

%Ratio and other constants

r=(C(k,1)—C(k,4))/(C(k,4)+C(k.1));

s=(C(k,4)-(3*C(k,l))l/(Ctk14)+C(k.1))i

t=C(kr 1) -C(kl4);

%U

CB(k,:)=[exp(c*h(k+1)),exp(-c*h(k+l)),exp(c*h(k+1))*h(k+1)];

SB(k,:)=[exp(-C*h(k+1))*h(k+l),0,0];

CU(k,:)=[exp(c*h(k)),exp(-c*h(k)),exp(c*h(k))*h(k)];

SU(k,:)=[exp(-c*h(k))*h(k).0,0lr

%V

VlB(k,:)=[0,0,((q*h(k+1)/p)*exp(c*h(k+1)))];

V2B(k,:)= [((q*h(k+l)/p)*exp(-c*h(k+1))),exp(c*h(k+1)),exp(-

c*h(k+1))];

V1U(k.:)= [0.0,((q*h(k)/p)*eXp(c*h(k)))];

V2U(k.:)= [((q*h(k)/p)*exp(-C*h(k)l),exp(c*h(k)).exp(-c*h(k))l;

o
‘
\
°

E

W1B(k.:)=[(p/c)*exp(c*h(k+1)).(-p/c)*exp(-

C*h(k+l)).((S/p)+(c*h(k+l)/p))*eXp(C*h(k+l))1;

w23(k,:)= [((s/p)+(-c*h(k+1)/p))*exp(-

c*h(k+1)).(q/C)*exp(c*h(k+1)).(-q/C)*exp(-c*h(k+1))l;

w1U(k.:)= [(p/C)*exP(c*h(k)).(-p/c)*eXp(-

c*h(k)),((s/p)+(c*h(k)/p))*exp(C*h(k))lr

134



w2U(k.:)= [((s/p)+(-C*h(k)/p))*exp(-

c*h(k)),(q/c)*exp(c*h(k)),(—q/c)*exp(-c*h(k))];

%SigmaZ

SigmaZlB(k,:)=[(C<k,1)-C(k,4))*p*exp(c*h(k+l)).(C(k,1)-

C(k.4))*p*exp(-c*h(k+1)).(C(k,1)-

C(k.4))*exp(c*h(k+1))*(C/p)*((h(k+1)*C)+(-2*C(k.1)/(C(k.l)+C(k,4))))];

SigmaZZB(k,:)=[(C(k,1)-C(k,4))*exp(-

c*h(k+1))*(c/p)*((h(k+l)*c)+(2*C(k,1)/(C(k,1)+C(k,4)))),q*exp(c*h(k+l))

*(C(k,1)-C(k,4)),q*exp(-C*h(k+1))*(C(k.1)-C(k,4))l;

SigmaZlU(k,:)= [(C(k,1)—C(k,4))*p*exp(c*h(k)),(C(k,1)-

C(k.4))*p*exp(-c*h(k)),(C(k,1)-C(k,4))*exp(c*h(k))*(C/p>*((hlk)*c)+(-

2*C(k,1)/(C(k.1)+C(k.4))))];

Sigmazzu(k,:)=[(C(k.1>—C(k.4))*exp(-

c*h(k))*(C/p)*((h(k)*c)+(2*C(k,ll/(C(k,l)+C(k,4)))).q*exp(c*h(k))*(C(k.

l)-C(k.4)).q*exp(-c*h(k))*(C(k.1)-C(k.4))l;

%TauYZ

TauYZ1B(k,:)=[(t/2)*(q*p/c)*exp(c*h(k+1)),(t/2)*(-q*p/c)*exp(-

c*h(k+1)),t*(q/p)*exp(c*h(k+1))*(-r+(c*h(k+1)))];

TauYZ2B(k,:)=[t*(q/p)*exp(-c*h(k+l))*(-r—

(c*h(k+1))).(t/2)*exp(c*h(k+1))*(((q‘2)/c)+c),(-t/2)*exp(-

c*h(k+l))*(((q‘2)/C)+c)];

TauYz1U(k.:)=[(t/2)*(q*p/c)*exp(C*h(k)).(t/2)*(-q*p/C)*exp(-

C*h(k)).t*(q/p)*exp(c*h(k))*(-r+(c*h(k)))];

TauYZ2U(k,:)=[t*(q/p)*exp(-c*h(k))*(-r-

(c*h(k))),(t/2)*exp(c*h(k))*(((q*2)/c)+c),(-t/2)*exp(-

C*h(k))*(((qA2)/C)+C)];

%TauXZ

TauXZlB(k,:)=[(t/2)*(((p‘2)/c)+c)*exp(c*h1k+1)),(-

t/2)*(((p‘2)/c)+c)*exp(-c*h(k+1)),t*exp(c*h(k+l))*(-r+(c*h(k+l)))];

TauXZ2B(k,:)=[t*exp(-c*h(k+1))*(-r-

(c*h(k+1))).(t/2)*eXp(c*h(k+l))*(q*p/C).(-t/2)*exp(-C*h(k+1))*(q*p/C)];

TauXZlU(k.:)=[(t/2)*(((p‘2)/c)+C)*exp(c*h(k)).(-

t/2)*(((p‘Zl/C)+C)*eXp(-C*h(k)).t*exp(C*h(k))*(-r+(c*h(k)))l;

TauXZZU(k,:)=[t*exp(-c*h(k))*(-r-

(C*h(k))),(t/2)*exp(C*h(k))*(q*p/C),(-t/2)*exp(-C*h(k))*(q*p/C)];

for g = 1:point+1

hh(k,g) = h(k)-(g-l)*step;

CZ(k,g,:)=[exp(c*hh(k,g)),exp(-

c*hh(k.g)),exp(c*hh(k,g))*hh(k,g)];

SZ(k,g,:)=[exp(-c*hh(k,g))*hh(k.g).010]i

V1Z(k,g,:)=[0,0,((q*hh(k,g)/p)*exp(c*hh(k,g)))lz

V2Z(k,g,:)= [((q*hh(k,g)/p)*exp(-

C*hh(k,g))),exp(c*hh(k.g)).exP(-C*hh(k.g))];

W1Z(k.g.:)=[(p/c)*exp(c*hh(k,g)),(-p/C)*exp(-

C*hh(k.g)),((s/p)+(c*hh(k.g)/p))*exp(c*hh(k.g))];

wzz(k,g, )= [((s/p)+(—c*hh<k.g>/p))*exp(-

c*hh(k,g)),(q/C)*exp(c*hh(k.g)),(-q/C)*exp(-c*hh(k,g))];

SigmaZ1Z(k,g,: =[(C(k,1)-

C(k,4))*p*exp(c*hh(k,g)).(C(k,1)-C(k,4))*p*exp(-c*hh(k,g)),(C(k,l)-
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C(k,4))*exp(c*hh(k.g))*(C/p)*((hh(k,g)*c)+(-

2*C(k.1)/(C(k.l)+C(k,4))))l;

Sigmazzz(k.g.:)=[(C(k,1)-C(k,4))*exp(-

c*hh(k,g))*(c/p)*((hh(k,g)*c)+(2*C(k,1)/(C(k,1)+C(k,4)))),q*exp(c*hh(k,

g))*(C(k,1)-C(k,4)),q*exp(-c*hh(k.g)1*(C(k,l)-C(k,4))l;

TauYZlZ(k.g.:)=[(t/2)*(q*p/c)*exp(c*hh(k.g)).(t/2)*(-

q*p/c)*exp(-c*hh(k,g)).t*(q/p)*exp(c*hh(k.g))*(-r+(c*hh(k.g)))l;

TauYZ2Z(k,g,:)=[t*(q/p)*exp(—c*hh(k,g))*(-r-

(c*hh(k,g))).(t/2)*exp(c*hh(k.g))*(((q‘2)/c)+C),(-t/2)*exp(-

C*hh(k.g))*(((q‘2l/C)+c)l;

TauXZlZ(k,g,:)=[(t/2)*(((p‘2)/c)+c)*exp(c*hh(k,g)),(-

t/2)*(((p‘2)/c)+C)*exp(-C*hh(k.g)).t*exP(C*hh(k.g))*(-r+(C*hh(k,g)))l;

TauXZ2Z(k,g,:)=[t*exp(-c*hh(k,g))*(-r-

(C*hh(k,g))),(t/2)*exP(C*hh(k.g))*(q*p/C).(-t/2)*exp(-

c*hh(k.g))*(q*p/C)];

TauXYlZ(k,g,:)=[((C(k,1)-

C(k.4))/2)*q*eXp(C*hh(k,g)),((C(k,1)—C(k.4))/2)*q*eXp(-

c*hh(k,g)),((C(k,1)-C(k,4))/2)*2*q*hh(k.g)*exp(c*hh(k,g))l;

Tauxrzz(k.g.:)=[((C(k.1)-C(k,4))/2)*2*q*hh(k.g)*exp(-

C*hh(k,g)),((C(k.l)-C(k.4))/2)*P*eXP(C*hh(k.9)), ((C(k,1)-

C(k.4))/2)*p*eXp(-C*hh(k.g))];

SigmaX1Z(k,g,:)=[-t*p*exp(c*hh(k,g)),-t*p*exp(-

c*hh(k,g)),exp(c*hh(k,g))*(((2*c*C(k,4)/p)*-r)+p*hh(k,g)*-t)];

SigmaX2Z(k,g,:)=[exp(-C*hh(k.g))*(((-2*c*C(k,4)/p)*-

r)+p*hh(k,g)*-t),0,0];

SigmaY1Z(k,g,:)=[0,0,(exp(c*hh(k,g))/p)*((2*c*C(k,4)*-

r)+(hh(k,g)*q‘2*-t))l;

SigmaY2Z(k.g.:)=[(exp(-C*hh(k,g))/p)*((-2*C*C(k.4)*-

r)+(hh(k.g)*q‘2*-t)).q*exP(c*hh(k.g)).q*exP(-c*hh(k,g))];

end

end

end

% Boundary conditions

for j = 1:3

Z(1.j)

Z(1,j+3)

Z(2,6*(N-l)+j)

Z(2,6*(N-1)+j+3)

z13.j)

Z(3,j+3)

Z(4,6* (N-1)+j)

Z(4,6*(N-1)+j+3)

Z(5,j)

Z(5.j+3)

Z(6,6*(N-1)+j)

Z(6,6*(N-l)+j+3)

end

M(1,j,3)*CU(1,j);

M(1,j,3)*SU(1,j);

M(N,j,3)*CB(N,j);

M(N,j,3)*SB(N,j);

(m(1.j)+p*R(1,j))*alfa(1.j)*SU(l.j);

(m(l.j)+p*R(1.j))*CU(1.j);

(m(N,j)+p*R(N,j))*alfa(N,j)*SB(N,j);

(m(N,j)+p*R(N.j))*CB(N,j);

(m(l.j)*L(l,j)+q*R(l,j))*alfa(1.j)*SU<l.j);

(m(1.j)*L(1,j)+q*R(1,j))*CU(1,j);

(m(N,j)*L(N,j)+q*R(N,j))*alfa(N,j)*SB(N,j);

(m(N.j)*L(N,j)+q*R(N.j))*CB(N.j);

%Interfacial conditions

for i = 1:(N-1)

%U

ii=6*i+1;

QQ=6*(i-l);

for j = 1:3
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Z(ii,qq+j)=CB(i,j)-sz*(TauXZlB(i.j))r

Z(ii,qq+j+3)=SB(i,j)-sz*(TauXZ2B(i.j))i

Z(ii,qq+j+6)=-CU(i+1,j);

Z(ii,qQ+j+9)=-SU(i+l,j);

end

%V

ii=6*i+2;

for j = 1:3

Z(ii,qq+j)=V1B(irj)-Dsy*(TauYZlB(i,j))i

Z(ii,qq+j+3)=VZB(i,j)-Dsy*(TauYZ2B(i,j));

Z(ii,qq+j+6)=-V1U(i+1,j);

Z(ii,qq+j+9)=-V2U(i+1,j);

end

%W

ii=6*i+3;

for j = 1:3

Z(ii,qq+j)=W1B(i,j)-K*SigmaZ1B(i,j)i

Z(ii,qq+j+3)=wza(i,j)-K*sigmazzs(i.j);

Z(ii,qq+j+6)=-W1U(i+l,j)i

Z(ii,qq+j+9)=-W2U(i+l,j);

end

%Sigma Z

ii=6*i+4;

for j = 1:3

Z(ii,qq+j)=SigmaZ1B(i,j);

Z(ii,qq+j+3)=sigma22B(i.j);

Z(ii,qq+j+6)=-SigmaZ1U(i+1,j);

Z(ii,qq+j+9)=-SigmaZZU(i+1,j);

end

%Tau XZ

ii=6*i+5;

for j = 1:3

Z(ii,qq+j)=TauXZlB(i,j);

Z(ii,qq+j+3)=Tauxzza(i,j);

Z(ii,qq+j+6)=-TauXZlU(i+1,j);

Z(ii,qq+j+9)=-TauxzzU(i+1,j);

end

%Tau YZ

ii=6*i+6;

for j = 1:3

Z(ii,qq+j)=TauYZ1B(i,j);

Z(ii,qq+j+3)=TauYZ2B(i,j);

Z(ii,qq+j+6)=-TauYZ1U(i+1,j);

Z(ii,qq+j+9)=-TauYZ2U(i+l,j);

end

end

for i = 1:6*N

Pti,1)=0;

end

P(1,1)=Sigma;

Z;

% P

FG = inv(Z)*P;

% FG

137



%'Sigmax at the top surface'

SigmaXtop=0;

n =toplayer-l;

for j = 1:3

SigmaXXtop(j) = M(1,j,1)*(FG(n*5+j)*CU(1,j)--;

+FG(n*6+3+j)*SU(l,j));

SigmaXtop = SigmaXtop + SigmaXXtop(j);

end

SigmaXtop=SigmaXtop/(Sigma*S‘2);

%'SigmaX at the bottom surface‘

SigmaXbot=0;

n =botlayer-1;

for j = 1:3

SigmaXXbot(j) = M13,j,1)*<FG(n*6+j)*CB(3.j)...

+FG(n*6+3+j)*SB(3,j));

SigmaXbot = SigmaXbot + SigmaXXbotlj);

end

SigmaXbot=SigmaXbot/(Sigma*S‘2);

%Sigmax Plot

for k = 1:N

n = k-l;

for g = 1:point+1

SigmaX(k,g)=0;

for j = 1:3

SigmaXX(k,g,j) = (FG(n*6+j)*SigmaX1Z(k,g,j)...

+FG(n*6+3+j)*Sigmaxzz(k,g.j));

SigmaX(k,g) = SigmaX(k,g) + SigmaXX(k,g,j);

end

Sigmax(k,g)=SigmaX(k,g)/(Sigma*s*2);

%plot(SigmaX(k,g),hh(k,g), '*k');

end

end

%SigmaY at the top of middle layer'

SigmaYtop=0;

n =mid1ayer—1;

for j = 1:3

SigmaYYtop(j) = M(2,j,2)*(FG(n*6+j)*CU(2,j)...

+FG(n*6+3+j)*SU(2,j));

SigmaYtop = SigmaYtop + SigmaYYtop(j);

end

SigmaYtop=SigmaYtop/(Sigma*S‘2);

%SigmaY at the bottom of mid layer'

SigmaYbot=0;

n =mid1ayer-1;

for j = 1:3

SigmaYYbot(j) = M(2,j,2)*(FG(n*6+j)*CB(2,j)...

+FG(n*6+3+j)*SB(2,j));

SigmaYbot = SigmaYbot + SigmaYYbot(j);

end

SigmaYbot=SigmaYbot/(Sigma*S‘2);

%SigmaY Plot

for k = 1:N

n = k-l;
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for g = 1:point+1

SigmaY(k,g)=O;

for j = 1:3

SigmaYY(k,g,j) = (FG(n*6+j)*SigmaYlZ(k,g,j)...

+FG(n*6+3+j)*SigmaY2Z(k,g,j))i

SigmaY(k,g) = SigmaY(k,g) + SigmaYYlk,g,j);

end

SigmaY(k,g)=SigmaY(k,g)/(Sigma*S‘2);

%plot(SigmaY(k,g),hh(k,g),'*b');

end

end

%SigmaZ Plot

for k = 1:N

n = k-l;

for g = 1:point+1

SigmaZ(k,g)=0;

for j = 1:3

%SigmaZZ(k,g,j) = Mlk,j,3)*(FG(n*6+j)*CZ(k,g.j)...

% +FG(n*6+3+j)*SZ(k,g,j));

SigmaZZ(k,g,j) =

(FG(n*6+j)*SigmaZ1Z(k,g,j)+FG(n*6+3+j)*SigmaZZZ(k,g,j));

SigmaZ(k,g) = Sigmaz(k,g) + SigmaZZ(k,g,j);

end

SigmaZ(k,g)=SigmaZ(k,g)/(Sigma);

%plot(SigmaZ(k,g),hh(k,g),‘*b');

end

end

%TauXZ at (0,b/2,0)'

TauXZmid=O;

n =midlayer-1;

for j = 1:3

TauXXZZmid(j) = C(2,8)*(m(2,j)+p*R(2,j))*(alfa(2,j)...

*(FG(n*6+j)*SM(2,j)+FG(n*6+3+j)*CM(2,j)));

TauXZmid = TauXZmid + TauXXZZmid(j);

end

TauXZmid=TauXZmid/(Sigma*S);

96TauXZ Plot

for k = 1:N

n = k-l;

for g = 1:point+1

TauXZ(k,g)=0;

for j = 1:3

Tauxxzz(k,g,j) = C(k,8)*(m(k,j)+p*R(k,j))*(alfa(k,j)...

*(FG(n*6+j)*SZ(k,g,j)+FG(n*6+3+j)*CZ(k,g,j)));

TauXXZZ(k,g,j) =

(FG(n*6+j)*TauXZlZ(k,g,j)+FG(n*6+3+j)*TauXZ2Z(k,g,j));

TauXZ(k,g) = TauXZ(k,g) + TauXXZZ(k,g,j);

end

TauXZ(k,g) = TauXZ(k,g)/(S);

% plot(TauXZ(k,g),hh(k,g),'*b');

end
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end

%TauYZ at (a/2,0,0)'

TauYZmid=O;

n =midlayer-1;

for j = 1:3

TauYYZZmid(j) = C(2,7)*(m(2,j)*L(2,j)+q*R(2,j))*(alfa(2,j)...

*(FG(n*6+j)*SM(2,j)+FG(n*6+3+j)*CM(2,j)));

TauYZmid = TauYZmid + TauYYZZmid(j);

end

TauYZmid=TauYZmid/(Sigma*S);

%TauYZ Plot

for k = 1:N

n = k-l;

for g = 1:point+1

TauYZ(k,g)=0;

for j = 1:3

TauYYZZ(k,g,j) =

(FG(n*6+j)*TauYZlZ(k,g,j)+FG(n*6+3+j)*TauYZ2Z(k,g,j));

TauYZ(k,g) = TauYZ(k,g) + TauYYZZ(k,g,j);

end

TauYZ(k,g) = TauYZ(k,g)/(Sigma*S);

% plot(TauYZ(k,g),hh(k,g),'*c');

end

end

%TauXY at the top surface'

TauXYtop=0;

n =top1ayer-1;

for j = 1:3

TauXXYYtop(j) = c<1,9)*(q+p*L(1,j))*(FG(n*6+j)*CU(1.j)...

+FG(n*6+3+j)*SU(1,j));

TauXYtop = TauXYtop + TauXXYYtop(j);

end

TauXYtop=TauXYtop/(Sigma*S‘2);

%TauXY at the bottom surface'

TauXYbotzo;

n =botlayer-1;

for j = 1:3

TauXXYYbot(j) = C(N,9)*((q+p*L(N,j))*(FG(n*6+j)*CB(N,j)...

+FG(n*6+3+j)*SB(N,j)));

TauXYbot = TauXYbot + TauXXYYbot(j);

end

TauXYbot=TauXYbot/(Sigma*s‘2);

for k = 1:N

n = k-l;

for g = 1:point+1

TauXY(k,g)=0;

for j = 1:3

TauXXYY(k,g,j) = (FG(n*6+j)*TauXYlZ(k,g,j)...

+FG(n*6+3+j)*TauXYZZ(k,g,j)li

TauXY(k,g) = TauXY(k,g) + TauXXYY(k,g,j);

end
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TauXY(k,g) = TauXY(k,g)/(Sigma*s‘2);

end

end

%X Displacement (U) Plot

for k = 1:N

n = k-l;

for g = 1:point+1

Dist(k,g)=0;

for j = 1:3

DistX(k,g,j) = (FG(n*6+j)*CZ(k,g,j)...

+FG(n*6+3+j)*SZ(k,g,j));

Dist(k,g) = Dist(k,g) + DistX(k,g,j);

end

Dist(k,g) = E(1,2)*Dist(k,g)/(Sigma*tt*s‘3);

end

end

% Y Displacement (V) Plot

for k = 1:N

n = k-l;

for g = 1:point+1

DispY(k,g):O;

for j = 1:3

DispYY(k,g,j) = (FG(n*6+j)*V1Z(k.g,j)...

+FG(n*6+3+j)*V2Z(k,g,j));

DispY(k,g) = DispY(k,g) + DispYY(k,g,j);

end

DispY(k,g) = E(l,2)*DispY(k,g)/(Sigma*tt*S‘3);

end

end

%Z Displacement at middle height(W) Plot

k = midlayer;

n = k-l;

DispZ=O;

for j = 1:3

DispZZ(k,g,j) = R(k,j)*(FG(n*6+3+j)*CM(k,j)...

+alfa(k,j)*FG(n*6+j)*SM(k,j));

Dispz = Dispz + DispZZ(j);

end

DispZ;

DispZ = 100*E(1,2)*DispZ/(Sigma*tt*SA4);

%X Displacement (W) Plot

for k = 1:N

n = k-l;

for g = 1:point+1

DispZ(k,g)=O;

for j = 1:3

DispZZ(k,g,j) = (FG(n*6+j)*W1Z(k,g,j)...

+FG(n*6+3+j)*W2Z(k,g,j));

DispZ(k,g) = DispZ(k,g) + DispZZ(k,g,j);

end

DispZ(k,g) = 100*E(1,2)*Dispz(k,g)/(Sigma*tt*s*4);

%plot(DispZ(k,g),hh(k,g),‘*b');

end

end
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Appendix E

Figures of stresses and displacements obtained using the linear shear slip theory and

linear normal separation theory in the Pagano’s solutions
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FigureE.l-Normalized in-plane normal stress distribution along the height of laminate by varying the

shear slip constants D“ and D3y and normal slip constant k of a [0/90/0] composite plate
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FigureE.2-Normalized in-plane normal stress distribution along the height of a [0/90/0] composite

plate by varying the shear slip constants D” and D”, and normal slip constant k
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FigureE.3-NormaliZed transverse normal stress distribution along the height of a [0/90/0] composite

plate by varying the shear slip constants D” and D:y and normal slip constant k
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Appendix F

Figures of stresses obtained by using the linear shear slip theory in ISSCT
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FigureF.l-Normalized in-plane normal stress distribution along the height of a [0/90/0] composite

laminate obtained by varying the shear slip constants sz and Dyy
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Appendix G

Figures of stresses and displacements obtained using the Embedded Layer approach
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FigureG.1-Normalized in-plane normal stress distribution along the height of a [0/1/90/1/0] composite

plate obtained by varying the material properties of the embedded layers. [1 — isotropic]
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Appendix H

Figures of stresses and displacements obtained by comparing ISSCT with Pagano

for imperfect bonding condition
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Figure [1.1-Comparison of normalized in-plane normal stress along the height of a delaminated

[0/90/0] plate between Lee and Pagano [sz=Dsy=0.1, k=0.0417, E=0.024 psi,G=0.01 psi]
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Appendix I

Figures of stresses obtained by comparing ISSCT-Shear Slip only with Pagano for

imperfect bonding conditions
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Figure 1.1 Comparison of normalized in plane normal stress along the height of a [0/90/0] composite

plate for two different bonding conditions
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