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ABSTRACT

ELECTROMAGNETIC MATERIAL CHARACTERIZATION OF A

PEC BACKED LOSSY SIMPLE MEDIA USING A RECTANGULAR

WAVEGUIDE RESONANT SLOT TECHNIQUE

By

Andrew Eric Bogle

Electromagnetic material cllaracterizz-ttion is the process of determining the com-

plex constitutive parameters of a certain media. The motivation here is the devel-

Opment of a non-(lestructive material characterization technique for a lossy, simple-

media (linear. homogeneous and isotropic) backed by a perfect electric conductor

(PEC). In order to extract both the permittivity and permeability of the media. two

independent experimental interrogations of the material are required. For a rectan-

gular waveguide the experimental interrogations take the form of either reflection or

transmission coefficients. The experimental data is then compared iteratively to the

formulation, resulting in the extraction of the complex crmstitutive [‘)ararrwte1‘s for

the I‘nedia.

This (,lissertation will demonstrate. through the use of a transverse slot cut in the

bottom wall of a rectangular waveguide, how waveguide scattering 1')arameters are

used to effectively extract both the permittivity and permeability of a lossy simple-

rnedia backed by a PEC. A two-dimensional Newton’s complex root search algorithm

is used to iteratively solve for the complex constitutive parameters. Results for a

magnetic radar absorbing material are compared to measurements using a partially-

filled rectangular waveguide technique to verify the formulation.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Electromagnetic (EM) material characterization is the process of determining the

constitutive parameters of a specific medium. The parameters typically sought are

the bulk permittivity and permeability, which are specific values that describe an EM

materials susceptibility to becoming polarized or magnetized when exposed to either

an impressed electric or magnetic field, respectively. For time-harmonic representa-

tions. both of these constitutive parameters can be complex values. where the real

parts are related tO the energy storage of the material, and the imaginary parts are

related to the loss mechanisms that convert incident electromagnetic radiation into

heat. As the number of applications for EM materials continues to grow, so does the

need to accurately characterize them.

A number of disciplines rely extensively on the characterization of EM materi-

als, including stealth, integrated circuits and agricultural technologies. For example,

stealth uses the permittivity and permeability to describe how effective a material is

at absorbing an incoming radar signal [1H3]. Whereas agricultural technologies uses

the conmlex constitutive I.)arameters to aid farmers in deciding when to harvest their

crops [4]. A (:tonn'non thread to all Of the ap1,)lications is the increasing demand for

better accuracy to achieve the desired results. This has lead to new challenges and

increased levels Of complexity for the material characterization field as a whole.

NO matter what the complexity level though, the desired result is still the consti—

tutive parameters. Two distinct evaluation methods, destructive and non-destructive,

exist for extracting the permittivity and permeability of a specific medium. The ma-

jor difference between the evaluation methods is how the sample is handled. For a

destructive evaluation the sample may be altered tO fit the desired testing device,



whereas for the non—destructive evaluation (NDE) the testing device must be built

around the existing operational environment Of the desired sample. Destructive eval-

uations are typically measured in a small scale laboratory setting, since this generally

keeps the cost low and the environmental control high, both Of which are desirable

traits when attempting to characterize any material. NDEs are generally not afforded

either of these luxuries, and must be done in the existing operational environment at

significant cost.

Still there is a need to perform NDEs Of EM materials. The same basic steps in

comparing the measured and theoretical data are usually used to find the permittiv-

ity and permeability in either the laboratory or oywratirmal setting. First. a material

sample or testing device is built in the machine shop to facilitate the desired evalu-

ation. Then the testing device is connected tO a vector network analyzer (VNA) in

order to Obtain experimentally measured data. Finally, numerical algorithms are used

to extract the complex constitutive parameters Of the sample from the experimental

data.

One Of the most widely used algorithms is the Nict.)lson-Ross-W’cir (NRW) tech-

nique, because it has the advantageous ability to directly solve for the material param-

eters in closed form [5HG]. However, for the NRVV technique to be properly applied,

the test samples must be linear, homogeneous and isotropic with coplanar front and

back surfaces [7]. Essmitially this means the testing device must not excite higher

order modes, wl'iich unfortunately is not always possible.

Several NDE techniques have been developed to allow full-characterization Of

coruiluctor-backed materials [8]-[11]. Three techniques, free-space, coaxial probe, and

rectangular waveguide probe, are the most prevalent characterization methods. The

free-space techniques have some unique advantages when compared to the other meth-

ods. For instance, the characterization may be done having no physical contact. with

the nutterial sample. They 1’1’1ay also be characterized as a function of incident angle or



vertical and/or horizontal polarization [12l-[15]. However, they are not very effective

outside the laboratory setting since significant errors are introduced when the nu-

merous assumptions associated with the technique cannot be met in the operational

environment.

Probe methods tend to have less restrictions associated with them, thus making

them better fits for the Operational environment characterization methods. To date,

the majority Of work investigated involves just. single probe methods. These maybe

grouped based on how they radiate electromagnetic fields: antenna probes; open-

ended coaxial line prol;)es; and open-ended waveguide probes. Antenna. probes are

essentially a combination of free-space and waveguide techniques, thus they still have

a number Of the drawbacks due to free—space component Of the measurement [16]—[17].

Coaxial line probe methods make good NDE techniques since they have a wider

measurement bandwidth and a higher accuracy than antenna probes [18l-[22]. The

major drawback associated with these methods is the lack of ruggedness the coaxial

lines have when used in an Operational environment. Also, it is very difficult to ensure

that no air-gaps are present between the center conductor of the open-ended portion

Of the coaxial line and the material sample.

Waveguide probe methods ultin‘iately Offer physical and EM advantages over coax-

ial probes. Physically, waveguides are more rugged than coaxial lines, making them

smart choices for tests performed in operational environments. Since the accuracy

between waveguide and coaxial probes is similar, the EM advantages of waveguide

probes are in characteristics such as; wave impedance, radiation and linear polar-

ization. Allowing for more accurate characterization of low permittivity materials,

deeper penetration in lossy materials, and measurement of anisotropy, respectively

[23l-[40].

The potential drawbacks of waveguide probes include their limited bandwidth and

bulky size at lower frequencies. The concern of bulk sized waveguides is negated by



using higher frequency waveguides. For instance, the VVR90 X-band waveguide has

dimensions 0.9” by 0.4”, which make it very practical for use as a hand-held device.

The concern of limited bandwidth has been investigated and solved by dielectrically

loading the waveguide, enabling Operation Of the given waveguide at lower frequency

ranges [10].

Recently, dual probe (collim'rar aperture) waveguide methods have been investi-

gated [41]. These techniques are able to obtain multiple independent interrogations

of the medium, without altering the experimental setup, which leads to the ability

to simultaneously extract both of the complex constitutive parameters. This ability

is especially significant in NDES where alternate experimental setups are extremely

difficult to develop. The dual probe techniques also help save time, reduce cost and

remove the error associated with multiple measurements. all by simplifying the overall

procedure necessary in the operational environment.

Slot apertures are another 1')ossibility for a collinear aperture waveguide method

[42l-[45]. Extensive investigation of antennas involving slot apertures in waveguide

walls has been done [46]—[56]. H(_)wever, no investigation has yet been done to extend

these antennas to a material characterization technique. This leads to the motivation

for this dissertation, develop a NDE technique to characterize an EM material per-

manently affixed to a perfectly electric conducting (PEC) s1.1rface. More specifically,

full characterization Of the complex constitutive parameters, permittivity and perme-

ability, for a lossy simple-medium (linear, homogeneous and isotropic) backed by a

PEC surface using a slot aperture cut in the bottom wall of a rectangular waveguide.

Cl'1a.1.)ter 2 presents the integral equation (IE) technique that finds the theoretical

scattering parameters for a rectamgular waveguide radiating through a. transverse slot,

with finite thickness, into a half-space (HS). This is a well known antenna problem

that will provide confidence in the waveguide (WC) and cavity (CV) portions of the

formulation presented in Chapter 4, that will ultimately be used for extracting the



complex constitutive parameters of the medium.

Chapter 3 develops the Green’s function, which will be used in Chapter 4, for

an EM field within a parallel-plate (PP) environment. Chapter 4 presents the IE

technique that finds the theoretical scattering parameters for a rectangular waveguide

radiating through a transverse slot, with finite thickness, into a lossy, homogeneous

and isotropic medium backed by a PEC surface. These scattering parameters are then

compared to experimental results in order to extract the desired results, permittivity

and permeability.

Chapter 5 shows results Of the complex constitutive parameter extraction for a

magnetic radar absorbing material (MagRAh-l). The extraction is done using a com-

plex two—dimensional Newtons root-searching algorithm, since the measurement tech-

nique developed violates the assumptions of the NRW technique. Chapter 6 presents

conclusions and recommendations for future work.



CHAPTER 2

RECTANGULAR WAVEGUIDE RADIATING THROUGH A

TRANSVERSE SLOT INTO A HALF-SPACE

2.1 Introduction

The formulation of a finite-thickness transverse slot centered in the broad wall Of a

rectangular waveguide, radiating into half-space, is considered in this chapter. Specif-

ically, the reflection and transmission coefficients for the rectangular waveguide are

sought. This is because they are ultimately used to perform the complex constitu-

tive 1_)arameter extraction in Chapter 5, where the half-space is replaced by the PEG

parallel~plate structure that. is analyzed in Chapter 3. Umlt—irstanding this well—struliecl

problem provides an important form of crmfidence since the problem has been pre-

viously studied, well known results are available for referencing with the formulation

presented here.

The first step in the formulation is to develop representations Of the fields in the

three (.liffercnt regions (VVG, CV, and HS). Next, a set of coupled IEs are developed

by satisfying the continuity Of the tangential fields at the two interfaces (boundary Sl

(BSI) and b(_)undary S2 (BS2)) between the three regions. The final step is tO solve

the coupled IEs using a method of moments (Mol\‘l) technique for the unknr.)wn slot

voltages. which in turn identify the scattered fields in the rectangular waveguide and

1.1ltimately the reflection and transmission coefficients desired.

2.2 Geometrical Configuration

Consider a rectangular waveguide, backed by an infinite ground plane, with a trans-

verse slot cut in the l(')wer broad—wall as shown in Figure 2.1. The waveguide has fixed

dimensions for width —a/2 < .1: < 0/2, height t < z < ()1 and length y] < y < yT,



where ()1 — t = b and the width (a) is in general greater than twice the height

(b). The slot, shown in Figure 2.2, has fixed dimensions for width —L < .1: < L,

height 0 < z < t and length —l‘l"' < y < ll", where the height (t) corresponds to

the wall thickness of the waveguide and infinite ground plane. BSI is located at

7’1 : (.171, yl, t) and is the interface between regions I and II. Similarly, B82 is located

at 7‘72 2 (.172, yg, 0) and is the interface between regions II and III.

 

 

  

AZ

2 = b] If A 1

Region I: Waveguide

PEC

y=y1 y=-W y=W y=yT

Z = t 1
. "

g 4—- Region II: CaV1ty<> y

z = 0 3 >
       

y = 0 Region III: Halfspace

Figure 2.1. Geometrical Configuration: Rectangular waveguide radiating through a

transverse slot into a half space

2.3 Field Representations

In order to develop the desired IEs, a representation of the fields in the three regions

is needed. However, to generate the appropriate set of field equations a knowledge of

the sources is necessary, thus the first section solves for the equivalent currents that.

maintain the fields in the three regions.



2.3.1 Equivalent Currents

To develop the equivalent currents for this formulation, a discussion of the excitation

of the geometrical configuration in Figure 2.1 is helpful. The system is excited by the

TE1’0 mode, which propagates down the guided-wave structure until it encounters the

transverse slot in the broad wall of the waveguide, disrupting the current along the

waveguide wall. An impressed field is then maintained in the slot aperture, inducing a

voltage across the slot. that subsecpiently maintains scattered waves in the rectangular

waveguide. Thus, it is the impressed slot-fields that lead to the equivalent currents

used to represent the fields in the three regions of this formulation.
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————>
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Figure 2.2. Geometrical Configuration: Top View of the transverse slot cut in broad

wall of rectangular waveguide

Noting that the dimensions of the slot are long and narrow (i.e. ratio of slot length

to slot width equals 1/20), then the electric-field in the slot is assumed to be strictly

longitudinal (y—directed), which in turn assumes that the magnetic current in the slot

is strictly transverse (x-directed). These assumptions mainly serve to simplify the

overall complexity of the formulation and have also been proven very accurate [47].

Under these assumptions, the use of Love’s equivalence principle [57] leads to the

following four equivalent magnetic currents as seen in Figure 2.3.



 

K;,2 (72' j 352

Figure 2.3. Equivalent currents for slot electric-fields at BSI and BS2

Kg, (71’) = —a x 131+ (11’) = — (2) x 19E; (fi’) = w; (71’) (2.1)

Kg, (71’) = —a x E,— (fi’) = — (—2) x 9E1— (fi’) = —i-Ey_1 (fi’) (2.2)

K722 (772’) = —a x E; (73’) = — (2) x 19532 (73’) = mg, (a’) (2.3)

Kg2 (73’) = —a x E; (172’) = - (—2) x 3913ng (13’) = ~5cEy‘2 (13’) (2.4)

Where (2.1) corresponds to the waveguide equivalent magnetic current, (2.2) and (2.3)

to the cavity equivalent magnetic currents at B81 and BS2 respectively, and (2.4) is

the half-space equivalent magnetic current. Note that all the equivalent currents have

only a :r-directed component.

2.3.2 General Field Relations

Since all the sources are equivalent magnetic currents, the general field relations

are those based on Maxwell’s equations due a magnetic source. These general field

relations in terms of magnetic-type (MT) Hertzian potentials (details in Appendix

A) are written as follows

flfl=fiwVXflm we

Hm=vweum+fiam we



where the MT Hertzian wave-equation is

_K (F)
M1 (2.7)(V2 +k2)7?hm——

and the solution to this wave—equation in terms of the MT Hertzian potential may be

written as

7?. (F)= (5,? (NF) - —’J——K"('l18’ (28)
JW.“

H I I 9 I

where G 1s the dyadic Green 8 function.

2.3.2.1 Total Fields in each Region

Using the knowledge that there are only sic-directed components of the sources, and

the principle of superposition [58], the magnetic field in equation (2.6) is now written

in terms of only the $-component as follows

Hz.(F)= (~82— +A)m... (F) (2.9)

where 7r,” is the .r-component of the MT Hertzian potential given as

K7711?"(T)

(13’ (2.10)

M
”hr (7:) Z ./S Gear. (Flf’)

a

with GE as the :r-component of the dyadic Green’s function and Km1. as the equivalent

magnetic current for each specific region.

This allows the total magnetic field in region 1 to be written as

HZ‘FQ’WFH)= H“ (F) + HXVGS (F) (2.11)

where Hg” is the incident wave in the rectangular waveguide, and H305 is the

waves scattered by the transverse slot in the rectangular waveguide. In a similar

10



manner, the total magnetic field in region 2 is

H§€J’°"2(F1:) HCV1(r7)+ HCV2(F.) ~~for 1:1,2 (2.12)

where HEVI is the waves scattered by the transverse slot at z = t in the cavity region,

and HCV2 is the waves scattered by the transverse slot at z—— 0. Finally, the total

magnetic field in region 3 is

H;FJF0’13(F2)= H”S(F2) (2.13)

where H55 is the waves scattered by the transverse slot into the half-space.

2.3.2.2 MT Hertzian Potentials in terms of Equivalent Currents

All that remains to fully represent the fields in each region is to define the MT

Hertzian potentials associated with the total fields in equations (2.11-2.13). This is

accomplished by substituting equations (2.1-2.4) into equation (2.10) and defining

the Green’s functions for each region, leading to

+ I

. a 1 l 1 l

”/1305 (7‘1) 2 GWFG(T‘1IT1I) y. I (2.14)

1 jtd/LO

E— (T‘i’)

7r , = —G V 7“ 71 —,—-—d3 (2.15

E+ 7‘3,

7r120/201)— GCL’(F1|F2')F———y-2()(152 (2-16)
2 ](;(J,U.()

E: (7’2 )
_. _. _. 2

Hi? ((2) = "GHS ("2|‘7‘2ll 3+,f‘152 (2.17)
i 52 J‘F‘FHU

11



where (2.15-2.16) are observed at either 881 or BS2. The Green’s function for the

rectangular waveguide due to a transverse slot is given by

_. _. E . .

GWG (I‘llrl/l : 21113 :7 771—3: s1n [ff-F”) (1'1 — (1/2)] s1n [km (511/1 — 0/2)]

_ . ‘, ... I

-e lellyl yll cos [1.337(31 — 1)] cos [kg7 (3’1 — t)] (2.18)

while, the Green’s function for the rectangular cavity is

6

 

7.:F’ _ “2

ch(rz|71)— T.......Zrk. m0. )
.:FL I zIHCC

-sin [AFT (.z-l — a(./2)] sin [1.6.7.1. (.152 -— (LC/2)]

[(2). (m — (M2)] [kp (u’ — (2.1/2)] (2'19)

cos [AT (:1 — Q] cos (19212;) for z) > 21’

cos (k. 2)) cos ]k~r(sl—'— c)] for :1 < 251’

and the well known half-space Green’s function is

 

 

G F F’ e—jkOR 2 20HS (7‘2IF2) — 27m ( - )

where the distance R is defined as

R— . ,2? 1‘2 ~ .../2 221— (.12 — .12) + ((12 — 112) + (..Q — s2) ( . )

12



The wavenumbers and the Neumann’s number [56] for both the rectangular waveguide

and cavity are given as

Ot( )71'

1.1%,) = WOW...) 2 1,2,3,

1.12”” = H.301) = 0, 1, 2,

kghwl“) : k8 _ [83(711") : kghf) + kghf) (2'22)

and

w) = 1 for (3......) z 0 (2.23)
2 for (3(u2g,cv) 71$ 0

respectively. Details of equations (2.18) and (2.19) are found in Appendix B. These

field representations for the three regions are now used to develop IEs in the next

section.

2.4 Development of the Coupled MFIES

In this section, a pair of coupled 1133 are developed (for unknown slot—voltages (V1, W)

at BSI and BS2 respectively) by invoking boundary conditions at the two interfaces.

The continuity of both the electric and magnetic fields ensures a unique solution for

the desired unknowns. The fact that. magnetic fields are used leads to the formulation

being called a MFIE.

2.4.1 Development of the MFIDES

Since the MT Hertzian potentials involve and integral over the slot apertures, the first.

integral equations developed are actually magnetic field integro-differential equations

(MFIDE). Standard techniques are then used to solve the resulting second-order

partial-differential equations, ultimately resulting in the desired MFIEs.

13



2.4.1.1 BS1

The MFIDE at 881 is developed by invoking the continuity of tangential magnetic

fields at the interface (2 = t) giving

nggionl (7,1) : H;egi.1n2 (fi) (224)

then, substituting equations (2.11) and (2.12) into equation (2.24) leads to

Hi“ (F1) + Hi“ (Fi) = H?W (F1) + H?” (F1) (225)

finally, substituting (2.10) into (2.9) and then (2.14-2.16) into the respective magnetic

field representation, leads to the first MFIDE result

(6.2 + kg) {/3 y ( )GWC(J‘1|"'1')dSi.. 1 WM)

E. F’ ,

‘f ———"’-2(72 chv ((1)72) dSé] = —Hi""’ (F1) (226)
52 JWHU

where

GWC (Tilt'i') = GWG (TilF‘i') + GCV (Filfi') (227)

Note that the continuity of the electric fields across the two interfaces is enforced

_ . _ .1. _

by makmg E51 = Ey1 and Egg 2 Ey2.

2.4.1.2 BS2

Similarly, the MFIDE at BS2 is developed by invoking the continuity of tangential

magnetic fields at the interface (2 = 0) giving

nggionZ (r72) : Hiegion3 (73) (2.28)

14



where substitution of equations (2.12) and (2.13) into equation (2.28) gives

H9102) + H9” (F2) = Hi” (r2) (2.29)

and finally, substituting (2.10) into (2.9) and then (2.15-2.17) into the respective

magnetic field representation, leads to the second MFIDE result

(92 2 E11(T‘_i’)
A, y Y ,;-+ ,.—v/ I

(0.132 + 0) {/51 10410 GCVWIH ”81

E ‘ .7!

— / Man) (I) (155] =0 (2.30)
32 JF‘J/IU

where

GCH ('J‘2I'F2') = GCV ('7‘2l7'2') + GHS WIT—2’) (2-31)

2.4.2 Solving the Second-Order Partial-Differential Equation

By inspection, it. is seen that the MFIDEs developed in the last section are integro—

differential ermations. These integro-differential equations are converted into purely

integral equations by superposing the homogeneous and inhomogeneous solutions

to the second-order partial—differeutial equations [56]. Thus, further simplifying the

complexity of the overall pr(;)l,)le111.

The solution of the homogeneous equation is solved using the method of unde-

termined coefficients [59], where sine and cosine functions are chosen as the comple-

mentary solutions. To solve the inhomogeneous equation, the forced response to the

inhomogeneous one-dimensional Helmholtz equation

I

\II (.1) = — /s (.r’) sin [1; (:1: — .r’)]d;r’ (2.32)

(l

is used as the particular solution [60]. The superposition of the complementary and



particular solutions leads to the strictly integral equations desired. These MFIEs are

complements of Hallen’s integral equation for a dipole antenna [56], given the fact

that the slots are assumed to lie in a PEC plane.

2.4.2.1 MFIE at BS1

The integro—differential equation (2.26) is written as

a? 2

(533 H170) F101) = A101)

where

_, E1 1“], _, 2

F101) 2/ wave (Tilrilldsi
51 quo

Ey2 (T2,) _. _./ /

— —,——G 7' 7‘ (15

/.S2 JWHO CV ( 1| 2 ) 2

is in the form of the MT Hertzian potential and

Al (T1) = —H§.flc (’3) = —A10 [(TF/a.)2 — A78] cos(7r:1'1/a)e_jky10'yl

is the forcing term based on the .r-component of the incident. magnetic field.

The solution to equation (233) is written as

a C _. p 4

F191) 2 F1 (7‘1)+ F1 (7‘1)

where the complementary solution is given as

F? (F1) = 01 (11) (Ha) + 01 ()1) sin (Ho-.221)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

and the particular solution, in terms of the forced response of equation (2.32) and the

16



x-component of the incident magnetic field from equation (2.35), is

A10 [(H/a)2 — 12(2)] e‘jkleyl $1

Ff) (17]) = — k0 sin [kg (:131 —— 571)] cos(7r:‘1‘1/a)dfl (2.38)

0

 

Solving the forced response integral, and performing some algebraic manipulation,

gives the. following form of the particular solution

F1P('r_i) = —Aloe_jk3’10y1 [cos (1:021) — cos (71.1'1/a)] (2.39)

Finally, substituting equations (2.34), (2.38), and (2.39) into equation (2.36) and

combining complementary solutions, leads to the MFIE at BSI

Bill (73’) a -.I / / Ey‘l (7:3,) .. -+/ I
—*,—-——G F , '7‘ I' (IS — ——,——-—G '1' 7‘ (IS

[51 MH) ”Cl 1| 1) l 32 quo CM ll 2) 2

= C1 (yl) cos (1.10.171) + D1 (111) sin (160.131) + Aloe—3715910y1 cos (7121/11.) (2.40)

2.4.2.2 MFIE at BS2

Similarly for BS2, the integro-differential equation (2.30) is written in the form

a? - -

(a5 + 19(2)) F2 (72) = A2 (7‘2) (2-41)

where

a E- 1 7’1, 3 3
F2 (7‘2) =/ —'l-/,—(—-)-GCV (T2l7'1’) (15]

51 leuo

E. r-F’

_/ Mam (722122) (18!. (242)
. 5.2 M110

and

A2 (r5) = 0 (2.43)

17



The forcing term A2 is equal to zero since there is no incident field at BS2, thus the

solution to equation (2.41) has only a complen'ientary portion given as

,C _. -

F2 (7‘2) = C2 (.112) COS (190172) + D2 (H2) 8111 “7012) (2-44)

Substituting equations (2.42) and (2.44) into equation (2.41), gives the MFIE at BS2

H.1(Fi’) - -, , / E12 (72’) 1 ,
—‘—,———G , z 711‘ (15 - -—'.——G . '7. 7 15

/SI jw/lo Cl ( )I 1) 1 S2 JWHO CH ('2l72)( 2

= C2 (312) COS (A7012) + D2 (.92) Bin (19012) (‘2-45)

2.5 MOM Technique

111 this section, a MOM tecl'mique is applied to solve the MFIEs developed in the last

section. The steps taken to apply the MOM technique, along with a summary of the

solution, is dis(‘russed here in.

2.5.1 Expansion of Fields In Terms of unknown Slot Voltages

In order to solve equations (2.40) and (2.45) using a MOM technique the slot electric—

fields are expanded in terms of the unknown slot voltages. Based on the discussion in

section 2.3.1, the slot. electric—field is assumed to have only a longitudinal component.

Using this assumption, it is appropriate to separately expand the slot electric-field

into longitudinal and transverse components as follows

Eyl (77) = V1(4171)f1 (.111) f0" 1 = 1:2 (2-46)

where the voltage rise across the slot width is interpreted as

41') w]

v.(..,~.)=_ / Emcee): / E.) (2)111) (247)

W1 —W1

18



The distribution fl is chosen to ensure the integral over the y—dependence is equal

to one. This is so the only contribution to the slot field, due to the expansion, is

from the unknown slot voltage. The following expansion of the slot electric field is

obtained

W1

Eli/10:2) = V1061) = V1081) / dyzf1(y1) (2-48) .

—Wl

where a constant distribution is chosen leading to the function

1

f1 (311) = 2,, [,1
 (2.49)

2.5.1.1 Expanded MFIE at BSl

Applying the slot. electric-field expansion in equation (2.48) to equation (2.40) leads

to the expanded version of the MFIE at BS1

L1
L2

/(mil/1(117/1)KWC(~’F1»3/1|$i)— fd$2V2($2)KCV2(1’1="JII$I2)

= Cl (it/1) COS (117011) + D1(y1)sin(k.():1:1)+ 1‘1106—jk3’10y1 COS (Ml/O) (2-50)

where the kernels at BSI are defined as

. fl (Ll/,1) _. _./

K 3, u», = / d;’—,-——-—'——G,r, I' 1‘ 2.51uc(li.y1l11) 111 JW/JO 11C( 1| 1) ( )

—-W1

W2 1 ( ')312 .. ../

K :13, a." = / d-’—2_-—G, 7‘ 1'2 2.52CV2(13/1| 2) W .112 3W0 cv(1| ) ( )

_ ’2
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2.5.1.2 Expanded MFIE at BS2

Similarly, substituting the same slot electric field expansion from equation (2.48) into

equation (2.45) leads to the expanded version of the MFIE at BS2

L1 I L2

/ dziV1(il7’1)KCV1($21y2l1’i) — / d$2V2 (17,2) KCH (152)92l17’2)

_L1 —L2

= C2 (LI/2) COS (160172) + D2 (.U2)Si)1 (1:022) (253)

where the kernels at BS2 are defined as

 

 

W1

. f1(y') . _.
ACV1 (TQsLUQIil’l) = / dy’ jaw; GCV (7‘2l7‘1’) (2.54)

—I'l'1

K .1? ,' 1', = f d, 2_ yg G 7"” *1” 2.55CH(2y2| 2) W 1123mm) CH(2|2) ( )

- 2

2.5.2 Application of the MoM Technique

The coupled MFIEs in equations (2.50) and (2.53) are classified as inhomogeneous

Fredholm IEs of the first kind, and are solved using a MOM technique. There are two

steps associtated with the Mob/I technique. They are the expansion of the unknowns

and the application of a testing operator, using an appropriate set of expansion and

testing functions, respectively.

The choice of these functions is usually strongly influenced by the pl'iysical and

mathematical characteristics of the IEs. From the physical point of view, the expan-

sion functions should closely model the behavior of the unknowns, so that a minimum

number of expansions is necessary to obtain accurate results. In addition, a prudent

choice of the'expansion and testing functions could allow the various integrals to be

computed in closed form. It is not necessary to obtain closed—form integrals; how-
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ever, they do significantly reduce the computational efforts. However, experience

with the moment method has indicated that simple basis functions, which expedite

the computation of the matrix elements, are usually a suitable choice [60].

The slot under analysis in this formulation was chosen to be resonant at the mid-

frequency of the rectangular waveguide. Using the knowledge that the slot is the

complementary problem of the strip dipole, a reasonable approximation for the be—

havior of the slot voltage is a sinusoidal distribution. Thus, it would seem a sinusoidal

expansion function is the best fit from a physical standpoint. However, based on the

discussion at the end of the last. paragraph a pulse function expansion is likely a more

convenient choice, and therefore is chosen in this formulation. Also for convenience

point matching at the center of each cell is used for the testing operator.

Applying the following point-matching testing operator

11', L)

/ / (111)1in (3F) —:1F.lml) 6 (yl) for ml 2 1,2, ..., N) (2.56)

—u)—Ll

(l = 1,2 depending on which interface the testing is taking place at) to equations

(2.49) and (2.52) res1.)ectively, leads to

L1 L2

I I . I I I 2 , ,j
/ (infill/1 (.171) RWC ($111211()l"f1) - f (1.172)?) (1'2) [icy/'2 (I177,1,0[.12)

FL1 FL2

: C1 (0) cos (A'U‘rlml) + D1 (0)sil1 (1.70.1'1ml) + A“) cos (7111",1 /a)

for ~1111=1,2,...,N1 (2.57)
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for BSI, and

L1 L2

~,,I / , I .. ,_I I I , , ,I
/ (1.11)} (~51)ACV1 (lganOIJq) — / d232V2 (372)1(CH (132",2,0]12)

_L1 . —L2

= Cg (0) cos (komgm2) + D2 (0) sin (koxgmg)

fO’r' m2 =1,2,...,N2 (2.58)

for BS2. These equations are then expanded in terms of the unknown slot-voltages,

using the pulse-function expansion shown in Figure 2.4 and given as

 

                         

5’

(N

"F” 1112 P. PN
y=W

IIIIIIIIIIIeA

x

y=-W

__ L =L

x— L Ax”?! x", x

M Art
XII/"T xn, 2

Figure 2.4. Pulse function expansion for the MOM technique

151(1)) = Z V1.2)... (ml) (2.59)

22



where the individual segment length and location respectively are

A1?) = QLZ/Nl ; 2:171) = —L1 '1' (711 — 1/2)A1’l (2.60)

and the pulse function is defined as

Ar A41?)

1 (LT-[“1 .. Tl) < 171 < ($1711 + T)

plnl ('rl) :

0 otherwise

(2.61)

Substituting the expression for the pulse—function expansion into equations (2.57) and

(2.58) respectively, gives

'1
I , I

Z V1,,1 / dxlkwc (1:1,m‘1,0|;171)

nlzl .

Ilnlfiégl

2 - .

,r ‘l r f _/

— Z I’QNQ / d'l‘ZBCl/Q (.I'IIHI,0[.I,2)

112:1 AI“)

1'2”? "T.

~

2 )1 (O) COS (kol‘lml) ‘l” DI (0) SH] (ICU-T141711) + A10 COS (71171.,n1/a)

for 7111 =1,2,...,N1 (2.62)
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for BSI, and

AJ‘

11‘ + —2—1

[\1 1711

Z ‘1”,/

111:1 £12.].

_,I , 1
(L1 ll‘CVl (.1 21722 . 0|.11)

AI

N2 I2112++72

_ 2 V2", / dlerCH ($27712 ’ Olly?)

A1?

1211.2 — ‘2—2

: C2 (0) COS (kOIQHIQ) ‘l‘ D2 (0) Sin (ICO'TQInQ)

for 711.2 2 1, 2, ..., N2 (2.63)

for BS2. These equations represent the MOM solution, for the unknown slot voltages

(V1,VQ). to the MFIEs of section 2.4. However. four constants (C1, 01, C2, Dg) still

remain unsolved. These constants get evaluated by invoking the bmmdary conditions

VlLleo for 1:12 (2.64)

which leads to the final expressions for the MOM solution

AI

N1—1I17’1+—2_l

_ _l r H ,l

:2 V1711 / fulfill/C ('111111’0lJ1)

"122AJ‘

[171.1 -71

+

.
.
[
P
3

N2—1 r2”?

, ,,I , , ”I
_ Z L2“? / d--’J2I\CV2 (1'1”,1 ,0[.1.2)

712:2 AT

12112 _‘2—2

= C1 (0) cos (19051717721) + Dl (0) sin (Aromlml) + A10 cos (715131",1/(1)

for 7711=1,2,...,N1 (2.65)

24



at BSI and

iAI]

A71_1 $1721+

1’ ’ , i,

Z V1111 / d4L1ACV1 (1227712,0l.l.1)

711:2 AI

1112.1_ 2

A12

[VG—1 IQI'IQ-i— 1..

r I . /
— 2: lg”? / (1121\(71 (.L'QmQflIJ‘Q)

Ar

I2n2_——T?2

= C2 (0) cos (A:0.I:2m2) + D2 (0) sin (190372",2)

for mg =1,2,...,N2 (2.66)

at BS‘Z.

2.5.3 MOM Solution in Matrix Form

Equations (2.65) and (2.66) are sumn’iarized in I'natrix form as

EV

Z a,,,.,.C,,,. = b,” for m = 1, 2, 3, N (2.67)

7221

where N 2: N1 + N2 and

Alocos 7r.r1 . (L for m=1,2,...,N1
b7” : ( 771/ ) (268)

0 for m=N1+1,N1+2,...,N

25



is the forcing vector due to the incident :1:-directed component of the magnetic field.

The unknown slot voltages and constants are defined as
b

Cm = i

 

f07'

f.»

for

for

for

for

m=1

m=N1+1

m=N1+2,N1+3,...,N-1

m = N

26
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and finally, a summary of the moment method admittance matrix elements

 

r

m =1,2,...,N1

— cos (1602:1771) for

n =1

. m = 1,2,...,N1

— s1n(k0.r1m) for

n = Nl

m = Nl+1,N1+ 2, N

— cos (k():1‘2m_1\. ) for

i l 72. 2 1V1 +1

. . m = r\’1+1,N1 + 2, ..., N

— sin (A'().I'2m_\, ) for

i l n 2 N

m =1,2,...,N1

O for

n = N1 + l, N

(VI-772,72 : i

m =N1+1,Nl +2,...,N

() for

n =1,N1

. m =1 2 N1
LT/C 3 i 7

l'rllJl. for

'n 22.3,...,1Nr1—1

m = 1 2.....N1
('1 ,. ’ ‘ "

_’m.n—N1 f0, ,

n :1’V’1+2,r\’1+3,...,1\’—1

m = N1+1.N1+ 2 ...,N

lm—N1.71 for

n =2,3,...,N1—1

_[CH for m =N1+1,N1+2,...,N

"m — N1 ,n- N1

n 2N1+2,N1+3,...,N—1

\

(2.70)

2.5.3.1 Matrix Element Definitions

The sohltions for the various admittance matrix elements (details in Appendix C)

are given here. For the first quat’lrant of matrix elements. the. combination of the
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waveguide and cavity self terms at BSI is

[H'C = [Vll’G + [CV11 (2.71)

"7111.771 'nllJll "11.721

where

WC _ 43' ‘7 .- ,. .- ,.

1w. -WZr:— (A... (Jim. - a/2)l [1... (m. - 0/2)].2

_.-. ; a =1,2,3,...

~sin(k.r7AI1/2) [8 “will — 1] for (2.72)

,6 = 0, 1,2,

and

("“11 = ————.j. ———‘1" {Air 2:; ‘2)"11M woLWZ A: Ar)..,./.-y1.r.-;P ‘1“\ ~-) 1/

-sin [161T (“ml — L)] sin [lg—BI. (“"1 — L)]

.6652 (1.3,,1. W) sin (kyl. W) cot (art) (2.73)

For the second quadrant of the matrix elements, the coupled cavity terms at BSI are

 

. j 61*

1g) :10 12 Z—2
1.712 ”11.122 W, , ,r '

VOLH ”2 I‘ kl“; 16W. A131. s1n (kzrt)

~sin (NJ-AIAJ'Q/Q) sin [1.er (Ilml — 1.)] sin [Al-"I” (1'2”2 — LN

.cos2 (kl/1‘ Vi") sin (Ad-UP 14/2) (2.74)
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For the third quadrant of the matrix elements, the coupled cavity terms at BS2 are

 

[C2 21C)21 _

[”2"1 m)"1 ’w’lloLW22k yI‘k’TF0631“rt)

-sin (IchAml/2) sin [kl’f‘($2m,2 — L)] Sin”[16:11 ($1711 — L)]

.6052 (163,1. W) sin (km.W) (275)

Finally, for the fourth quadrant of matrix elements, the combination of the cavity

and halfspace self terms at BS2 is given as

CH CV22 HS

[7712 712 _—lni2.n2 +lm2n2 (2'76)

 

where

“W22 _ j 2: er cos (kth)
7712772— .

wuoLWW2 F in.7 kyl. kzl. Sln (kzrt)

-sin (knew/2) sin [ls-$1. (mm? — L)] sin (er ($2,112 — L)]

.6052 (km. W) sin (163,1. W2) (2.77)

and

 

—'A7 ;I‘ —J“

W —jA.r2€ J 0‘ 2772.2 2722

1 ctr/10277

[HS ‘12,",2 _T2n2

”12,772: _ . AI . _1 2W,

( —"w2 lwlsmh (Kin)
. Am

+W smh_1( , )] or m =77.2 mg f 2 2

 f07" 771.2 yé 712

 (2.78)

2.6 Rectangular Waveguide Scattering Parameters

The objective of this section is to obtain expressions for the rectangular waveguide

scattering parameters Sill”! and 531121;. This is accomplished by comparing the ratio of

29



scattered to incident electric field intensities at specific interfaces in the rectangular

wax-reguide ['58]. The effect of various slot dimensions on the scattering parameters is

also discussed.

2.6.1 Reflection and Transmission Coefficients

A general formulation for computing the reflection and transmission coefficients in a

rectangular waveguide is as follows. First, the reflection and transmission coefficients

are defined as

r— 5”” ; T: 5”?” (2.79)

where the ratio of scattered field intensity to incident field intensity for the reflection

coefficient is given as

[‘=
E?— T’
41—3) (2.80)

7

E2710 (

‘ y=y1

and the ratio incident and scattered field intensities for the transmission coefficient

is given as

[El-”(7(7) )+ Es+ (7’)“

y=yT
T = .- _, (2.81)

Eénc( 7‘ )ly=y1

 

where the incident and scattered fields are added together because both fields are

measured at the transmissicm plane.

The incident field intensity is then given by the T5160 mode of the electric-field.

Based on the modal fields found in section B.2.2.1, this is defined as

inc —,> . . ~ )—j}r y

E; (I ): 431063.10 (1. ~) 1. 3110 (2.82)

The scattered field intensities, based on the mode expansion fields of section

B.3.1.1 are

E: (7’) = — z 137/43,763,), (.132) ejkyV'y y < —l’Vl (2.83)

7
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,

where B7 and C7. are the mode expansion coefficients.

Since the incident electric field is a known TE10 mode, along with the properties

of mode orthogonality and band-limited guided wave structures, the only mode of

interest in the scattered electric fields is also the TE10 mode. Thus, equations (2.83)

and (2.84) are written in terms of the TE10 mode as

EL: (7) = -310A:10€slo(1,2)ejky10y y < —W1 (2.85)

E§(7)=C'10Asmesm (2,2)e‘jk3110y y>W'1 (2.86)

where solving for the mode expansion coefficients B10 and C10 gives the desired

scattered field intensities. Substituting (2.82), (2.85), and (2.86) into (2.80) and

(2.81) respectively, leads to

r = —Bwej"’3/102yl (2.87)

and

T = e‘ikyloly'T”3/Il [1 + C10] (2.88)

the reflection and transmission coefficients in terms of mode expansion coefficients

B10 and C10 respectively.

Now the mode expansion coefficients, given in erpiations (B64) and (B55), are

solved by substituting the slot voltages (detern‘iined by the solution to the MOM

technique) into these equations and rearranging the solutions so that

 

Alf

A11 sin (Icy W1) 1

B10 2 C10 — If)? Z V1 (21,, )cos (19771055172. ) (2.89)

l/l/labujfloliylo ”1:1 1 1

where N1 is the number of slot partitions at BSI.
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Substitution of (2.89) into (2.87) and (2.88) gives respectively, the reflection coef-

 

ficient

r (2:, y) = 99102911 (:13) (2.90)

where N

Arlsin (kg. 1171) i 1

F'- =— ‘19 V(.?_ )(k .') 2.91

(I) l/lf'iabwll.0k.1‘i10 7212::1 1 “”1 COS 11011,,1 ( )

and the transmission coefficient

T (.13, y) = e“1ky1(>(yT’yI) [1 — r (s)] (2.92)

Note that the reflection coefficient in 2.90 is directly related to the slot voltage in

2.91, and the transmission coefficient in 2.92 is related by one minus the same slot

voltage. This has physical intuition, in that if the slot voltage goes to zero (ie. the

slot is filled with PEC), then the waveguide is restored and complete transmission of

"the signal is obtained.

2.6.2 Analysis of Slot Dimensions

The purpose of this section is to understand the effect of various slot dimensions

(length, width and height) on the rectangular waveguide scattering parameters.

2.6.2.1 Thickness of Slot

The thickness of a standard waveguide wall is approximately x\/ 15. Generally in

electromagneties distances of this magnitude have negligible effects on the system.

However, the slot thickness due to the waveguide wall thickness, even when the size is

small compared to the wavelength, exerts a noticeable effect on the slot admittance.

Since the admittance of the slot is significant at non—resonant frequencies, the effect of

the wall thickness is very noticeable on the scattering parameters over a given waveg—

uide band. Figure 2.5 shows the effect of various slot thicknesses on the rectangular

waveguide scattering parameters versus a frequency range of 8.2 - 12.4 GHz. Notice
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the upwards shift in resonance frequency and the decrease in bandwidth (increased

Q of slot (tax-ity) for the scattering parameters as the slot thickness increases. These

results mirror those found by Oliner [47].

2.6.2.2 Length of Slot

The length of a strip dipole is associated with its resonant frequency [55]-[56]. Since

the rectangular slot is the complementary problem of a strip dipole, the slot length

is therefore also associated with its resonant frequency. Figure 2.6 shows the effect

of various slot lengths on the rectangular waveguide scattering parameters versus a

frequemJy range of 8.2 - 12.4 GHZ. A constant slot length to width ratio of 1/20 and

a slot thickness of 3.25 mm were used to ensure only the effects of the slot length are

seen. Also. only 21 frequency points are used in both figures to save on computation

time, a little accuracy is lost, but the overall concept is shown very well. The four

slot lengths, 1.67 cm, 1.50 cm, 1.36 cm, and 1.25 cm, where chosen since they are

resonant at frequencies of 9,10,11, and 12 GHZ respectively. The results show the

resonances to be just slightly less than the desired value as expected [55], as well as

a slightly higher power loss as frequency increases.

2.6.2.3 Width of Slot

The dimensions of the slot are assumed to be long and narrow, with a ratio of one-

twentieth chosen as a safe value for a.}')1')li(‘°ation purposes. Here the effect of various

slot widths is studied by keeping the length of the slot fixed at 1.50 cm. Figure

2.7 shows the effect of various slot length to width ratios on rectangular waveguide

scattering parameters versus a frequency range of 8.2 - 12.4 GHZ. The four slot length

to width ratios (1 /25, 1/20, 1 / 15, 1 / 10) are chosen, and it is seen that as the slot

width grows, so does the coupling through the slot. However, it is also seen that

if the width becomes too great, the assumption of a strictly transverse directed slot

electric-field begins to break down. Hence, there is a trade-off between coupling and
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complexity at around a length to width ratio of 1/ 15.
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Magnitude of $11 81 521 for Various Slot Wall Thicknesses vs.

Frequency
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Figure 2.5. Effect of the slot wall thickness on the magnitude (dB) of the waveguide

scattering paranmters vs. frequency (GHz).
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Figure. 2.6. Effect of the slot length on the magnitude (dB) of the waveguide scattering

parameters vs. frequency (GHz).
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Magnitude of 311 8: 321 for Various Slot Length to Width Ratios vs. Frequency
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Figure 2.7. Effect of the slot width (using slot length to width ratios) on the magni-

tude (dB) of the waveguide scattering parameters vs. frequency (GHz).
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CHAPTER 3

GREEN’S FUNCTION FOR EM FIELD WITHIN A PEC

PARALLEL—PLATE ENVIRONMENT

3. 1 Introduction

In this chapter, the MT Hertzian potential dyadic Green’s function [61] is derived,

for a general 3D current. source in‘u'nersed within a PEC parallel-plate environment.

This analysis is utilized in Chapter 4, ultimately leading to the extraction of the

constitutive parameters for a lossy PEC backed homogeneous, isotropic media in

Chapter 5. Simple relationships are given to extend the MT Hertzian potential dyadic

Green’s function to electric and magnetic field forms.

3.2 Geometrical Configuration

Consider the PEC parallel-plate waveguide filled with a homogeneous, isotropic me—

dia, and excited by an impressed magnetic source as shown in Figure 3.1. The waveg-

uide has fixed dimensions for height —d < 2 < 0 and is infinite in extent in the

.r, y-plane. The origin is placed at the center of the z = O PEC plate.

3.3 EM Fields and Helmholtz Equation for MT Hertzian Potential

Various methods are used to identify the electric and magnetic field dyadic Green’s

functions Ce (7:177) and Ch (f‘lf’) [62]-[63]. One method involves identifying Ce

H —0 —9

and G h by directly solving the wave equations for E and H. This yields

v21? + HE = v x f... (3.1)

. s _. _. 1 _.

VZH + [12H :- jLUCJn), + ———V (V ' Jr”) (3.2)

jw‘fl.
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Figure 3.1. Geometrical Configuration: Parallel-plate waveguide filled with a simple

media

which have relatively complicated relationships between E, E and j.

A second method involves using the MT Hertzian potential 7?}, as an intermediate

step (see Appendix A for further details), which is advantageous since it produces

a simpler relationship between 7?}, and f This relationship is known as the MT

Hertzian potential wave equation and is given as

 (3.3)

(r—) (——) —o

where G e and C h are then identified by solving (3.3) for 77'), and then computing E

and If using

E = —jw,u.V x 7?), (3.4)

Another motivation for using the MT Hertzian potential is that 7?}, is less singular

than E or H. Thus, the MT Hertzian potential Green’s function is derived, and is

extended to E and 17 forms with equations (3.4) and (3.5) if desired.
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3.4 Spectral Representation of Principal and Scattered Waves

In order to identify the MT Hertzian potential Green’s function, a solution to the

differential equation (3.3) is needed. This is done using the method of superposition

where the solution is the addition of a complementary solution and a particular so-

lution. The particular solution represents the principal wave 7?}? emanating from the

magnetic source 7;), in unbounded space, and the complementary solution represents

the waves 77,“? scattered from boundaries at z = 0, —d in the absence of the source.

The total solution for 7?}, is therefore

7?), = If + n; (8.6)

where 77)]: and 7?}? satisfy the respective MT Hertzian potential wave equations

 

f
V277}? + k27ffpl_— —j(,:':1 (3.7)

V27172 + A2701: 0 (3.8)

and k2 = 0.12116.

Equations (3.7) and (3.8) are then decomposed into three separate scalar equations

each as follows

.1 7‘

V2 7’1... (C) +1127?)P“(7)— ———"l”(4) (3.9)

JWH

V775. (0+k2703. (0 =0 (3.10)

where a = :r,y, z. The solutions of these equations are found using the Fourier

transform domain method. It is apparent that the structure is invariant along the

:1: and y directions, thus prompting transformation of those variables using the 2D
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Fourier transform pair

b
e
)

 “(PA (3.11)

00 OO

1 / /<2702

--00 —OO

00 00

= / / \P(f)e_j’\'77dzrdy (3.12)

-oo—oc

where X = if + gr) (=> A2 = X . X = 52 +712). 7": 52:13 + gy + :32 and d2/\ = dgdn. No

transformation with respect to :5 is applied so boundary conditions may be enforced

later at :5 = 0. ——(1. Applying the Fourier transform differentiation theorem, equations

(3.9) and (3.10) become

82 ~ _. ~ _, jllla (X: Z)

$71111; (A, Z) — pQWfa (A, Z) = —_]T(,d—#—_ (3.13)

(92 s -' 2~S *

@7311. (M) _ p "ha (M) Z 0 (3'14)

800

71,]; (X2) : / /7r}Pa (F)ejXFdntdy (3.15)

‘—0C_ QC

7r}?w (F) e_jX'Fd;rdy (3.16)
(I

:
1
2

5
:
1
2

A

“
>
4

N

\
_
_
/

||

Jma (F) e_j)‘"dedy (3.17).1510 (X z) =

The general form of the solution to equations (3.13) and (3.14) is investigated in

é
\
8

3
\
8

|

8
l
\
8
8
\
8

sections 3.4.1 and 3.4.2.
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3.4.1 Principal Wave Representation

The spectral-domain representation of the principal wave is obtained by solving equa-

tion (3.13), as dictated by the method of superposition. Since there are no boundaries

present, the solution to this second-order partial differential equation is valid for all

unbounded space. The solution to equation (3.13) is well-known and the details may

be found in [7']. A quick (werview of the steps involved is presented here along with

the solution.

The first step involves the transformation of the last spatial variable 2: into the

spectral domain. Then, along with the aid of the remaining differentiation theorem,

solving for 71;; gives
(

71' = 3.18

1.. m (4? +122) ( )

-P (- J"... (A, c)
~ A, C)

Now, the inverse transform is taken to return to the complex A—plane, ensuring that

the z-variable is present. for implementing the boundary conditions. After solving the

complex C-plane analysis using Cauchy’s Integral Theorem [64], the desired result for

the representation for the principaI wave in the complex A-plane is

 71)]; (X25) 2 GP (Kg: 3’) jma.(;\.,z,)dz' (3.19)

In this, the spectral-domain principal wave MT Hertzian potential Green’s function

is given by

GP (Sink!) = E——2p—— (3.20)

~_7

v 11

  

with :5 as the field point, 2’ as the source point and p is the spectral-domain propa-

gation factor.
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3.4.2 Scattered Wave Representation

The spectral-domain representation for the scattered waves is obtained from equation

(3.14). The well—known solution of this second-order partial differential equation is

71-30 (X, 2) = n": (X) 8‘!” +11,- (X) (W (3.21)

where Wat, are the complex amplitude coefficients of the up and down traveling re-

flected waves.

3.4.3 Total Wave Representation

The spectral-domain representation of the total wave is obtained by superposing the

results from the previous two sections. This leads to the following result

 

 

I
—p 2—2 ~

.~ __ ~P ~S _ 8 Jma J 3+ —pz , ,r— )1): r

., I
"v

where functional dependence in the above equation has been dropped for notational

convenience. Noting that the distance in the exponential for z-dependance integral

has a sign change based on whether the observer location is greater or less than the

source location, given as

  

I z — 25’ . . . z > 3’

.3 — 2 = (3.23)

7’ — v 7 < 25’

allows equation (3.22) be written resrwrrtively as

71),“, = Lye—P: + 121/32?!” + 151*}:61): ...: > .~.’ (3.24)

2% = Va—epz + Wye—1’3 + Ware!” ...2 < z’ (3.25)
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where

 V; 2 V3: (X) = / eipzl Jma (5:13,) (13’ (3.26)

are associated with the up and down traveling waves launched by the source. This

also helps simplify the notation when implementing the boundary conditions. To

obtain a unique solution for the spectral-domain MT Hertzian potential, six boundary

conditions are enforced to solve the the six unknown spectral-domain coefficients.

These spectral coefficients are determined in the next section.

3.5 Computation of Spectral Coeflicients

To determine the spectral coefficients W3, boundary conditions are enforced on the

total wave representation of the spectral—domain MT Hertzian potential. Since the

boundaries of the parallel-plate structure are PECs, the well—known relationship that

the tangential electric field equals zero on the surface of the PEC [58] is used at the

boundaries 2: = 0, —d. Leading to the expansion of equation (3.4) in terms of the

tangentiaI components E.1: and By as

(97th~ 87mg fan}, (97th
“I“ — -— ' E :: —" l ‘1"

ay 32 ’ y 1““ L 82 8:1:

   

Now, using the educated conjecture that any Jma, for a = :13, y, 2, leads only to the

same 7‘12“) and enforcing the previously stated boundary conditions at a PEC inter—

face, the following set of boundary conditions on the spectral-domain MT Hertzian

potential are found

0.

A:

”ll: = 0 (3.29)
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where equation (3.28) is the tangential boundary conditions, and equation (3.29)

is the normal boundary condition. These boundary C(mditions are implemented in

sections 3.5.1 and 3.5.2.

3.5.1 Tangential Components (02 = :r,y)

Enforcing the first tangential boundary condition (at the z = 0 interface) by substi-

tuting (3.24) into (3.28) leads to the following expression

1)(—VO+ —W'(;L+IVC:) =0 ---a=x,y (3-30)

where solving (3.30) for W}: gives

11;,- = v;,+ +117; ma = .1: y (331)

Then, implementing the second tangential boundary condition (at the z = —d inter-

face) by substituting (3.25) into (3.28) results in

p (Va—e—Pd — l’lx’jepd + age-Pd) = 0 ---a = :r y (332)

where solving (3.32) for NHL gives
(1

w: = e—‘ZI" (V; +115) ---(.r = .1; y (333)

Now, the substitution of (3.31) into (3.33), combined with solving for W: , leads to

e—Pd V.’ + vt

W; = 9,51 36—de ) “e = I y (334)
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followed by substituting (3.34) into (3.31), and solving for W; , giving

r— — d 7+ ,')(1
Va. 6 p + Va (1

VII/a = epd __ e—pd

 --o' = 1%, 3) (3.35)

where the tangential spectral-domain coefficients W; are only in terms of known

coefficients Vai.

All that remains to find the tangential spectral-domain MT Hertzian potential is

to substitute (3.34) and (3.35) into (3.22) and manipulate the expression into its final

form, given as

0 ~ —0

~ _. I~t _, I Jma (A92) ,

7Tb“ (X2) = fdz G (A;z|z) We: (3.36)

-—d

where G" is the tangential spectral-domain Green‘s function

Q
.

A

9
4

L
:
N
‘

V

M Q
. r
:

A

>
4

;z|z’) + Gst (X;z|z’) (3.37)

  

(3P (X; zlz’) = ’—— (3.33)

I I I I

— ::—.: +a’) — )(:+: +(1) — )(—2+: +d) — ' (—:—~z —(1)

c p( + e I + e I + e p

2]) ((,.pd _ (0—H!)

ll C38? (X; :I:')

(3.39)

This form of the Green’s function is very convenient for obtaining physical insight

into its behavior (discussed in section 3.7), however, another form is presented in

section 3.6 that is more practical for use in Chapter 4.
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3.5.2 Normal Component (0 = 2:)

Enforcing the first normal boundary condition (at the z = 0 interface) by substituting

(3.24) into (3.29) and solving for It"; leads to

W; = —VZ+ — W; (3.40)

Then. implementing the second normal boundary condition (at the z = —d interface)

by substituting (3.25) into (3.2.9) and solving for If": this time gives

W: = —e“2Pd (v; + W;) (3.41)

Now, in the same manner as the tangential components, substitution of (3.40) into

(3.41), combined with solving for ”if, leads to

33—2"! (-11; + 2:)
 

 

.’+ _ '

H 3 —— de _ e—pd (3'42)

followed by substitution of (3.42) into (3.40), and solving for 1170—, giving

Vie—pd — V..+el"1

If"; 2 “ “ (3.43)
epd _ e—pd

where the normal spectral—domain coefficients WZi are only in terms of known coef-

ficients V}.

Again, similarly to the tangential components, all that remains to find the normal

spectral-domain MT Hertzian potential is to substitute (3.42) and (3.43) into (3.22)

and manipulate the expression into its finally form, given as

M

0 j (X )

.. - _. . "lg 3

23),, (X3) 2 (13’0” (X315) ————-—(13’ (3.4.4)
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where G” is the normal spectral-domain Green’s function

G" (X; zlz’) 2 GP (X;z|z’) + GS” (X: zlz’) (3.45)

which is split into principal GP and scattered C's" portions as follows

  

GP (X; zlz’) 2: e____ (3.46)

~S _. , €—p(:—z’+d> _ €—p(z+zl+d) + e—p(—z+z’+d) _ €—p(——z—z’—d)

G ”(A;2|2)= , ,, ’ 
2]) (epd _ e—pd)

(3.47)

3.6 Dyadic Green’s Function

The purpose of this section is to present. a more compact and practical version of

the MT Hertzian potential dyadic Green’s function for a PEC parallel—plate region.

The lack of pl’lysieal insight upon first looking at this form is the only consequence

of expressing it in this manner. Since, in practical use the MT Hertzian potential

is used in the space-domain, the dyadic Greens function presented is also in the

space-domain. The space-domain MT Hertzian potential is represented as

she“): /V dV’?(F|F)+1— (3.48)

(——) _

where G is the space-domain dyadic Green's functlon [63], and IS represented as

follows

E? (FIF) 2 7G0 (FIF) = .ifG” (FIF) .i' + 32G” (71F) ,1] + 500 (11F)? (3.49)

 

(2702

l

I

00 3C ._‘ d 4

Ga (Fifi) = 1 / f C?“ (X; :I:') (FA-(HT >(12A (3.50)

00—00
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and G“ is the spectral-domain Green’s function, given as

45—4,»,

A, 4.;

 

 
) :1: coshp (11+ 2 + 2’)

2p sinh (pd)
 

 

coshp d —

’) = ( (3.51)

where the :1: refers to the tangential (+) and normal (-) cases respectively.

It is noted that the dyad has only diagonal entries since no coupling between

sources occurs. This is because the boundary condition at a PEC requires only the

same potential component as the source component to satisfy the boundary condition.

3.7 Physical Observations

In this section, equations (3.37) and (3.45) are analyzed to gain physical insight into

the behavior of the waves in the PEC parallel-plate region. It is noted that the

exponentials in both (3.38),(3.39) and (3.46),(3.47) respectively, are the same, thus

only the independent terms are analyzed. Referencing the geometry in Figure 3.2,

consider first the wave that travels directly from the source point :5’ to the field point

2 while traversing a distance of z — 2’. Since this wave does not reflect off either of

the PEC walls it is associated with the principal wave in equations (3.38) and (3.46).

Next, the second wave reflects off both of the PEC walls while traveling a distance

of z — z' + 2d, thus, it. is associated with the first term of equations (3.39) and (3.47).

The third wave is associated with the second term of the same equations since it only

experiences one reflection and travels a distance of z + :5, + 2d. Similar discussions

show that the fourth and fifth waves are associated with the third and fourth terms

the same equations as waves 2 and 3. Note that since waves 2—5 scatter off the top

(2 = O) and/or bottom (2 = —d) plates they are associated with the scattered waves.
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Figure 3.2. Physical. observations of the waves within a parallel—plate waveguide
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CHAPTER 4

RECTANGULAR WAVEGUIDE RADIATING THROUGH A

TRANSVERSE SLOT INTO PARALLEL-PLATE WAVEGUIDE

FILLED WITH A SIMPLE MEDIA

4.1 Introduction

The formulation for a finite—thickness transverse slot centered in the broad wall of a

rectangular waveguide, radiating into a parallel-plate waveguide filled with a homo-

geneous, isotropic media, is considered in this chapter. Specfically, the reflection and

transmission coefficients for the rectangular waveguide are sought. This is because

they are ultimately used in Chapter 5 to perform the complex constitutive parameter

extraction on the media in the parallel-plate waveguide. A majority of the formula—

tion provided next mirrors the formulation provided in Chapter 2, thus not all details

are repeated herein.

The first step in the formulation is to develop representations of the fields in the

three different regions (W'G, CV, and PP). Next, IEs are developed by satisfying the

continutity of the tangential fields at the two interfaces (BSI and BS2) between the

three regions. The final step is to solve the coupled IEs using a MOM technique for the

unknown slot voltages, which in turn identify the scattered fields in the rectangular

waveguide and ultimately the desired reflection and transmission coefficients.

4.2 Geometrical Configuration

Consider a rectangular waveguide, on top of an infinite PEC parallel-plate waveguide

filled with a homogeneous, isotropic media, with a transverse slot cut in the bottom

wall as shown in Figure 4.1.
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Figure 4.1. Geometrical Configuration: Rectangular waveguide radiating through a

transverse slot into a parallel-plate waveguide filled with a simple media

4.3 Field Representations

In order to develop the desired IEs a representation of the fields in the three regions is

needed. To generate the appropriate set of field equations a knowledge of the sources

is necessary. The equivalent currents that maintain the fields in the three regions are

therefore needed.

4.3.1 Equivalent Currents

The equivalent currents necessary to represent the fields in the three regions for

this formulation, are exactly the same as those developed in Section 2.3.1 for the

formulation in Chapter 2, and are given as

K;IUY)=1E;(fi0 (4n

K7331 (III) —jEy_1 (III) (41-?)

3,3,, (72’) = 33;, (13’) <4 3)

.
_
_
_
_

 



 

3,7,, (12’) = -IE;3 (12’) (4.41

where (4.1) corresponds to the waveguide equivalent magnetic current, (4.2) and (4.3)

to the cavity equivalent magnetic currents at BSI and BS2 respectively, and (4.4) to

the parallel—plate equivalent magnetic current. Note that all the equivalent currents

have only an .r-directed component.

4.3.2 Total Fields in each Region

Using the general field relations from Chapter 2 (reference section 2.3.2), the principle

of superposition [58], and the knowledge that the equivalent currents have only an

r—directed component, the magnetic field is written in terms of only the :r-component

as follows

Hm: (Ta:,+12)11,,,(17) (4.5)

where 17),, is the I—component of the MT Hertzian potential given as

K111. (1")

juJ/l

(15"
(L11.111 = (1,, 03(11141 (4.61

with Gm as the :v-component of the dyadic Green’s function and Kmx as the equivalent

magnetic current for each specific region.

The total magnetic field in region 1 is then written as follows

H""”’“1 (11: Hi"C(1+ 1111051111 <4 71£17
.

where H5?“ is the incident. wave in the rectangular waveguide, and H1165 is the

waves scattered by the transverse slot in the rectangular waveguide. In a similar

manner, the total magnetic field in region 2 is

HE‘gim’W HEV1<111+H$7V2<111 for 1:1.2 (4.81
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where HgV1 is the waves scattered by the tranverse slot at z = t in the cavity region,

and Hg]? is the waves scattered by the transverse slot at z = 0. Finally, the total

magnetic field in region 3 is

H.1E’91"”'i3(«111 = Hf” (111 (4.91

HPP
where 1s the waves scattered by the transverse slot111 the parallelplate region

4.3.3 MT Hertzian Potentials in terms of Equivalent Currents

All that remains to fully represent the fields in each region, is to define the MT

Hertzian potentials associated with the total fields in equations (4.7-4.9). This is

accomplished by substituting equations (4.1-4.4) into equation (4.6) and defining the

Green’s functions for each region, leading to

EJr (11’)
11c, !_/__1 . IG [S 4.1077hr 712/51 llG( ’71,) —_(_jw'/1() l ( )

E— (17],)
C11 ~ 41 Ill__ 1’7r = —G I '1‘ 1'1 , db (4.11)

15+ (r'é')CV2 3 ~ ..1 ”U? '7r 1" = G V 1‘ 1‘2 , (15' (4.12)
11, ( 1) 52 C (1| ) leto 2

12*(1'1PP —. ~ ..1 y? 1,, ..., Z -1; 321-2 —-——_——ds’ (4.131

where (4.11—4.12) is observed at either BSI or BS2. The Green’s function for the

rectangular waveguide due to a transverse slot is given as

, _, _. 6"; . .

GWG (1‘1]1‘1’) = 2115 Z, W sm [1111.7 (11 —— 0/2)] sin [1411.7 (..1’1 — 0/2)]

- 1

 

,e_Jky’-\f
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The Green’s function for the rectangular cavity is given by

‘r

kgr Slil(k:F(T(-)

-sin [111.11 (I; — aC/2)] sin lkI'I“ (:17; - (IO/2)]

.008 [kW (311 — bc/2)] cos [kl/1‘ (y; — (Jo/2)] (4.15)

cos [1921‘ (21 -— 09)] cos (kzrzl) for :51 > zl’

cos (kgrzl) cos [kt-1T (z; — 00)] for :1 < 2;

001111111) = 7:1

and the Green’s function for the parallel-plate waveguide from Chapter 3 is

 

DC. DC (p ,0

Cm (1111) =/ f(12 2§)C‘)‘}‘(P"l (4.16)
x002])sinh (pd)

and the spectral 111/'21ver1111nl1er is

p2 = A2 — k2 = £2 + 772 —— k2 (4.17)

The Neurnann’s number for the waveguide and cavity regions respectively is

1 fO’I‘ [30119010 2 0 _

1(7),.” z (4.18)

2 for 1(9) 71 0

and the wavenumbers for both the 111-'aveguide and cavity regions respectively are

(1 1 . 7r ‘
(wng)

k’ = _1 , , , : 1’ 2, 3g 0.0

£1111“) “(my 1.1.») "*(ugm) ,

3
,1 (mg(31))7r

k7 1 — O, 1, 2, '0-

HhI): b(wg 1(1)) fi( 1119,00)

(”(1.1") 0 ”(1,1‘) “”(mF) ”(VI) ( )

C
5
1

C
3
1

 

 



Details of equations (4.14) and (4.15) are found in Appendix B. These field represen-

tations for the three regions are now used to develop IEs in the next section.

4.4 Development of the Coupled MFIEs

The MFIEs at BSI and BS2 are developed in a similar manner as those developed in

Chapter 2 (reference section 2.4).

4.4.1 Development of the MFIDEs

MFIDEs are developed first. followed by solving the second-order partial-differenital

equations, to arrive at the desired MFIEs.

4.4.1.1 BSI

The MFIDE at 1381 is developed by invoking the continutity of tangential magnetic

fields at the interface (3 = 1) giving

Hicg'ionl (73) : H;egion2 (r1) (4.20)

then, substituting equations (4.7) and (4.8) into equation (4.20) leads to

Hi71.('(r—11)+HWGS(T1:) HCV1(T1>+HCV2(T-i) (4.21)

finally, substituting (4.6) into (4.5) and then (4.10—4.12) into the respective magnetic

field representation. leads to the first MFIDE result

02+ ((L1311/ ,
— ———QG dS

(0:1.‘+2 13) (51 th0 11061171) 1

E. .

_ / ——’{?(T2)GCV (11111’1)ds§} ——— —H;;"C(r‘i) (4.22)
52 M1110

where

GWC (Tilti’) = GWG (Til'l‘i') + GOV (Til‘l‘i') (423)
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Note that the continuity of the electric fields across the two interfaces is enforced

by making E+yl =Ey1 and Eyl’g—— y2.

4.4.1.2 BSZ

Similarly, the MFIDE at BS2 is developed by invoking the continutity of the tangential

magnetic field at the interface (3 = ) giving

Hwy-17011.2 (7—1.2) : [Ir-(1910113 (T3) (424)

.T fl.

where substitution of equations (4.8) and (4.9) into equation (4.24) gives

HCV1(7‘2)+ HCV7‘72(2:) HPP(7"2) (4,25)

Substituting (4.6) into (4.5) and then (4.11-4.13) into the respective magnetic field

representation, leads to

632 -53—1 (61/) .. s

(07 +716) [5 ‘WGCV (72171,) (151

“ 1

02 E73 (12’) - ..

+ (j + 13)]S '—'U-,———GCV (r2172) 07-52

' 2

 

0.1 quo

09' , 1 E:2(’2)

= (61-2 + 7112) / —-‘-’.—-2-—GPP (T2172) (152 (426)
.1. $2 Jwfl

By adding and subtracting kg to equation (4.26) and doing some simple mathematical

manipulations, the MFIDE is written as

(22 E'fl11( ) I

+k —"/——1--G d3

(0132+ ) {/51 JWILO CV (film) 1

E
1 E ,_.

_ f8 y2j(72)GCP (T2172 ) (15%} :- kQL MGPP (rah-é!) (13% (4.27)

2
. w :2 ML
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where

k2 = k2 — kg (4.28)

and

  
2 2 ~G.’ 7777', G Ff"

GCP("‘2I7‘2’) = m :02 2) + PP (”2| 2) (4.29)

This form is useful when solving the partial-differential equations in the next section.

4.4.2 Solving the Second-Order Partial-Differential Equation

The technique used to solve the second-order partial—differential equations in this

section is also used in Chapter 2 (reference Section 2.4.2).

4.4.2.1 MFIE at BSI

The integro-differential equation (4.26) is written in the form

a? 2 2

(575 + ‘3) F101) = A101) (430)

where

2 E1 7'“, 2 2

F1.(7‘1)=/S MGM/F (7‘1IT‘1’) (155

1 ijO

E 7""

— f ——y?(2 7cm (fil'ré’) dsa (431)
52 Jud/1.0

is in the form of the MT Hertzian potential and

A1 ('71) = —H§i¥"'(" (7‘3) = —A10 [Ur/(1)2 - ‘12)] C05 (775151/(L)€’2_jky10y1 (4-32)

is the forcing term based on the i1‘1cident :r-direetd magnetic field. Solving this partial

differential equation in terms of a complementary and 1')articular solution (details in
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section 2.4.2.1) and then superposing the two solutions leads to the MFIE at BSI

E111 (743,) 2 I ’ / E3]? (73,) I I

————‘.G r r” (13 — —.G "”7 15[91 Jw/I'O HC( 1| 1) 1 32 quo CV (71l7‘2)( 2

= C1 ("g/1) cos (A0111) + D1 (yl) sin (A5011) + 241()e_j"'y1()y1 cos (nail/a) (4.33)

4.4.2.2 MFIE at BSZ

Similarly for BS2, the integro-differential equation (4.27) is written in the form

a? 2 2
(513 +1153) F2 (7‘2) 2 A2 (7‘2) (4.34)

where

E I”

F2 (722) = f ———————y}( 1 )ch (F217?) dsi
51 JWHO

E 2 7‘2’ 2 2
—/ -—-————y( )GCp (’rgl’rgl) (185 (4.35)

52 M

is in the form of the MT Hertzian potential and

Ey? (T2,)
Age-5) =1}:2 / ——G p raw-3’ (18’ (4.36)32 Jam P ( | l 2

is the forcing term that was generated by added and subtracted kg to equation (4.26)

The solution to equation (4.34) is written as

F. (a) = F? (a) + Ff <er) (4.37)

where the complementary solution is given as

F20 (7‘2) = C2 (3120) COS (1.1022) + D2 (3120) sin (760172) (4-38)
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and the particular solution, in terms of the forced response in (2.32) and the forcing

term in (4.36) is

.._‘ m x __

pf(z2)=i/éd5 EJ‘J72)] / (1)6 ”(61%””2002710777
kg 32 juJ/127r)2ps1nh(pd)

—00 '—OO

‘/mm [so (an — 5))st <4-39>

 

Solving the forced response integral, and performing some algebraic manipulation,

gives the following form of the particular solution

 

_ 00 oo - ,I ' _ 7

p g k2 2; Eu? ('2’) 2 (”TJE‘FQeflKyQ y2) cosh (pd)

F2 (7'2) 2 — (1282+— d A 2 .

' . (27r) ps111h(p(l)

 

. [jg sin (150.13) + k0 cos (from?) — 130(9ng (440)

£2 - A78

Substituting equations (4.35), (4.38) and (4.40) into equation (4.37) and combin-

ing the complementary sohitions as well as the similar integrands over .92, leads to

the MFIE at BS2

E r'/ E r :7,

/ Mamwm’yisi— / M00122 (6|???) {-75%
SI JW‘IU'U 52

= 62 (1)2 O)c()s(A012)+ D2(2,())sin(k0.r2) (4.41)

where

GCV (Tilt—2') + GPPN (TNT—2')

#0 H

 
 

GCP2 (IEI'IE') = (4.42)
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and the new parallel-plate Green’s function is given as

 

0° 0° (P2P2) ,h d 2 —k2)

G = (1211er cos 0’ J“ 4.4
PPN (WIT?) {1C [0 (271)ps1nh (pd) (52 kg) ( 3)

4.5 MoM Technique

In this section, a MOM technique is applied to solve the MFIES developed in the last

section. The steps taken to apply the the MOM technique along with a summary of

the solution is discussed herein.

4.5.1 Expansion of Unknown Slot Voltages

The expansion of the slot electric-field in terms of the unknown slot voltages mirrors

Chapter 2 (reference Section 2.5.1).

4.5.1.1 Expanded MFIE at BSI

Applying the slot electric-field expansion in equation (2.48) to equation (4.33) leads

to the expanded version of the MFIE at BSI

L1 L2

/ (tr/1V1 (1’1) KWC (.171, yllJ'fil) — / (1.142 V2 (LE/2) KCV‘z (.171, y1|.1’2)

—L1 —L2

2C1 (yl) cos (110.11) + Dl (yl) sin (111111) + Aloe—JkyIOyl cos (7121/0) (4.44)

where the kernels at BSI are defined as

W1

f1(y12 2
KWC (I1sy1lm’1) = [1673/i1].W0y1)GWC (7“ 1|7‘1') (4-45)

—l’l’1

and

W2 )

, f2 y 2 2
[\C(,'2(;If1.y1l;1f’2) = / dyIZ—gfiGCV (7.122,) (4.46)

-1122 Its/110
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4.5.1.2 Expanded MFIE at B82

Similarly, substituting the same slot electric-field expansion from equation (2.48) into

equation (4.41) leads to the expanded version of the MFIE at BS2

L1 ' 12

/ (1.1/1 V1 (.13) KCVQ (.112. y2l1'i) — / (1.112% (1%) KCpg (:172,y2|.1"2)

—11 —12

= 62 (.42. 0) (10.12) + D2 (42, 0) (14-0112)

where the kernels at BS2 are defined as

 

”"1

f1(3/i) 2 2,
K 11.1 ,l = /d,——G "‘CV2 (F2yzll‘1) 1J1 Jame CV (72l7‘1)

—W1

and

w2 f ( I)

. 2 .111 2 2

KCP2 (42.112115): / (ll/2 N2 GCP2(7‘2|7‘2’)

4122

4.5.2 Application of the MOM Technique

Applying the following poii1t—Inatching testing operator

W1 Ll

/ / dx)(iyl(5(;1‘l — 11ml) 6 (yl) for m) = 1,2, ..., N)

—W —L)

62

(4.47)

(4.48)

(4.49)

(4.50)

3
*
:
(
i
;

 

 



( = 1,2 depending on which interface the testing is taking place at) to equations

(4.44) and (4.47) respectively, leads to

L1 L2

I ,r

/ dill/1 (.1’1)AWC (11ml,OI.1TII) — / das’2V2 (1’2) KCV2 (3717n1,0|:r’2)

—L1 412

C1 (0) cos (190.117,,1) + D1 (0) sin (I‘ll-171ml) + A10 cos (715171,”1 /a)

for 711.1=I,2,...,N1 (4.51)

for BSI and

L1
L2

I I r I I I I

/ (Lily/1 (I1) I‘CV‘Z (:FQTnQ’OLTI) — / dLI/‘QVQ (IE2) KCP2 (11727712,0l$2)

_L1
—L2

= (:72 (0, 0) COS (1601‘2m2) + D2 (010) Sin (1503:2171?)

for 712.2 = 1,2, ...,N2 (4.52)

for BS2. These equations are then expanded in terms of the unknown slot voltages,

using the pulse-function expansion given as

where the individual segment length and location are respectively

A171 = 2L1/N) ; 117,] 2 —L1 + (n) — 1/2) Ar) (4.54)

and the pulse function is defined as

‘ AT) 1 Ar)

1 ($11,711 - T) < .Ll < (3.17” + T)

an(I0== ’

0 otherwzse
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Substituting the expression for the pulse-function expansion into equations (4.51) and

(4.52) respectively, gives

Ar]

Ar] . $1711 +

I I

Z V1711 / dleWC($1ml’0l$1)

”1:1 A17

551711—71

A212
+

N2 $2712

I I

... Z V2712 / dw2KCV2 ($17n110lx2)

"2:1 AI

$2112- 2

= ,1 (0) cos (19011qu + D1 (0) sin (kUl'lml) + A10 cos (”1'1qu fir)

for 1111=1,2,...,N1 (4.56)

for BSI and

‘ AI

NI Iln1+

I I

Z Vln1 / dCEIKCVQ ($2m2,0l1'1)

711:1 ‘ All?

11711—

A1?
1V2 1‘2”? +72

r
..I "

- 1 I
— l“2112 _/ (ill-12A CP2 ($27772 ’ 0'1?)

71-221 /_\.;1‘.

T2112 _72

: C2 (0, 0) cos (kUJ'QmQ) + D2 (01 0) sin (AU-172,722)

for 7712 = 1,2, ..., N2 (4.57)

for BS2. These equations represent the MOM solution, for the unknown slot volt-

ages (V1, V2), to the MFIEs of section 4.4. However, four constants (C1, D1, C72, D2)

still remain unsolved. These constants are evaluated by invoking the appropriate
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boundary conditions

VILNZZO. for l=1,2 (4.58)

to muations (4.56) and (4.57). which leads to the final einn'essions for the MOM

solution

AI

, +71

Nl—l $1111

I . I

Z V1711 / dIlKl’VC (£17111 1 Ol‘rl)

111:2 A1

$111.1—

A12
+

A2_1 2712

J , ,1

_ Z ‘61)? / d1‘2ACV2 ($1n1,13()l12)

712:2 AI.

r2122- '2

= 21 (0) cos (#0111711) + D1 (0) sin (.101th + A10 cos (mqml /a)

for 'r'n1=1,2,...,.’V1

at BSI and

A1?

. +7—1-
N1—1 11711

I r I

Z V1,,1 / dzrlhcvg (.rgm2,0|.r1)

"1:2 AI

1.111.1- 2

A1?

1‘ +72

N2 - 1 I 2'”?

/' ~ 7., ' . .I
_ 2 L2”? / (1.121\C‘P2 (12")? . 0'12)

112:2 A”,

‘1‘2112_“2_2

_ ~ . . / . . ‘ - . ,._ C2 (0, 0) cos (110.12,,12 + D2 (0. 0) 3111 (LO-12mg

for 1712 =1,2,...,N2

at BS2.

(4.60)

 

 



4.5.3 MOM Solution in Matrix Form

Equations (4.59) and (4.60) is summarized in matrix form as

N

Z 01771.71C7n : b777, f0?" m : 1, 2, 3, ..., N Where N = N1 "+— N2 (4.61)

11.21

where N = N1 + N2 and.

A cos 7Tfl' . a. 07' m = 1,2,...,N1

m: m ( m/) f mm)

0 for m=N1+1,N1+2,...,N

is the forcing vector due to the incident :r-directed component of the magnetic field.

The unknown slot voltages and constants are defined as

C1(0,t) for m. = 1

V1", for m. = 2, 3, ..., N1 — I.

D1 (0,1‘) for m : N1

Cm Z 4 (4.63)

C2 (0,0) for m. = NI + 1

f0?" 7n=Nl+‘2,N1+3,...,N—1

 (QWfl) firmzN

66

 

 



and finally, a summary of the moment method admittance matrix elements is given

bv
U

0711,12. 2 i

 

— cos (kurlm)

— sin (Ml-1’17")

— COS ([60172711—N1 )

— sm (k0.1:2m_N1)

[H’C’

111,11

_lCV1

171.,11—N1

CV2

111—N1 ,n

_ CPQ

'm—Nl ,n—fVl

m

77?,

71-

m

TL

m

n

171

TH

11 
4.5.3.1 Matrix Element Definitions

are given here.
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:12 .,N1

:1

=1,2,...,N1

=N1

=N1+1,N1+2,...

=M+1

=N1+1,N1+2,...

=N

:12 .,N1

:N1+1,N

=N1+1,Nl+2,...

:1,N1

=1,2,...,N1

=2,3,...,N1—1

=1,2,...,N1

=N1+2,N1+3,...

=N1+1,N1+2,...

=2,3,...,N1—1

: A71+131Vr1+ 2,

_—. N1+ 2, N1 + 3,

,N

(4.64)

,N—l

,N—l

The solutions for the various admittance matrix elements (details in Appendix C)

For the first quadrant of matrix elements, the combination of the

 
 



waveguide and cavity self terms at BSl are

[WC :lwo +lCV11 (4.65)
ml .72 1 m 1 ,nl ml .72 1

where

 
WC _ -2J' 6) ‘ . .-

lmynl — w/mabH/l ; “776732;?! 5m [1117 (1'17sz - a/2)] 5111 [kmy (5131711 — 0/2)]

a=1,2,3,...

-sin(k‘r7A;r1/2) [e—jkyV'Wl — 1] for (4.66)

B = 0, 1, 2,

and

, J
W

[m i1 : —— —"11 ~"l wlLOLt/v'g ; [€137 [€qu kZI‘

.6652 (kwW) sin (kyrw) cot (art) (4.67)

sin (£71,),A331/2)

For the second quadrant of the matrix elements, the coupled cavity terms at BSI are

 
.7 . V12 J 61“

[$1 77 2 [Si 12. 2 v v 2
l 2 l 2 witoLl/l" l’LQ F [€197 kyF kzl‘ sin (ert)

-sin (A‘WAIQ/Q) sin [£11.11 (“"71 —— LN sin [kl’I‘ (T2722 — L)]

.6652 (ker) sin (km. W2) (4.68)
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For the third quadrant of the matrix elements, the coupled cavity terms at B82 are

C9 CV‘21 _

11ch721 =lm2"1 —w—__p0LW2 Z
 

Fkkayf‘ kII. sinI‘(ICIFQ

sin (k1? Ar1/2) sin [kII. (2327,12— L)] sin [kIF (1‘1”1 — LN

~c032 (kyrw) sin (1cyr W) (4.69)

Finally, for the fourth quadrant of matrix elements, the combination of the cavity

and parallel—plate self terms at B82 are

 

   

 

C'H C' l/ '22 PP .

17712. 712 “:1le..122 +lm2"2 (4°70)

where

[CV22 _ J' (T COS (kth)
"l 7? r

2 2 w/xcoLW W2 I km kyrkzr sin (art)

.sin (kIWAzrg/Z) sin [kIr (1:21”? — LN sin [kIF (372,”? — L)]

-cos2(Ayrn) sin (kyrl'l’rg) (4.71)

and

P PP PP2 PP3

[7715. 712 211712,l22+ [7722 712 +l7712:112 (4‘72)

The three components of the parallel-plate self terms at B82 are

. '12 empl .r. )2

,psi ___ -i f: nova + (cs<ch I (4 73)
7722.712 w/14L’V2152 (£2 _ k2)d (‘78 sin (kid)

and

)2 “Iv : k1

(5:122: ‘j (Diff) for m :2 n (4.74)

«xx/1.2112195 sin (Aid)
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and

 

00 cos [5 ($27”? — 5132712)] sin ({Azg/Z) (£2 — k2) 6‘3’71/W2

.O/dg €(é2-kglnfi

Other definitions include

[e—jgl’A — e'jE'L'B] for m > n

(21")1 ,- .-

F1 I Z [e’J‘EI.s’A + 816L313] fOT' in), : n

[—eJ£L’A + ej‘sl’B] for m < n

and

[c—jkOA — c‘jkOB] for m > n

eIJQ -.

F11 = [e‘Jk0A+eJkOB] for 777271

[—ejk0A + cjkOB] for m < n.

where the terms A, B are. given as

A : Ax (m — 77, + 1/2)

B = A1:(m~—n— 1/2)

and the various spectral constants are

2 jm .

. 2 2 WW .

7/3 = Pu + 16-2 —€ ; pu = -—d ; m = -J - (773)

Egsz—kg ; 2?: Acts-3
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(4.78)

(4.77)

(4.78)

(4.79)

(4.80)

(4.81)



with the Neurnann number for the residues given as

1 for z/ = 0

61/ :- (4.82)

2 for 1/ 75 0

4.6 Rectangular Waveguide Scattering Parameters

The objective of this section is to obtain expressions for the rectangular waveguide

scattering parameters Siliy and Sylly. This is accomplished by comparing the ratio of

scattered to incident electric field intensities at specific interfaces in the rectangular

waveguide [58]. The effect of certain slot dimensions, parallel-plate dimensions and

EM materials are discussed utilizing the formulation.

4.6.1 Reflection and Transmission Coefficients

» _ g . g ‘ - - _ ’ thy . 1' 7th}! -

The rectangular waveguide scattering parameters S11 and 521 were developed in

Section 2.6, and are repeated here for convenience. The scattering parameters are

given in terms of the reflection and transmission coefficients as

r = si’fy ; T = sg’fy (4.83)

The reflection coefficient is given as

r (4:, y) = aka/102W r (.8) (4.84)

Where the (Ir-dependence with N1 as the number of slot partitions at. BSI is

 

AT

A.“ sin (kg W1) 1

F(.r) = — , 10 V1 (11, )cos (k 1‘1 ) (4.85)

l’l/labwuokgm n21 "‘1 I10 "'1
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and the transmission coefficient is

T (I, y) = €—)i:,,,0(yT—y,) [1 — r (1)] (4.86)

4.6.2 Analysis of Material Properities

The purpose of this section is to analyze how certain material properties (permittiv-

ity, permeability and material thickness) affect the rectangular waveguide scattering

parameters. Only the magnitude data is considered since the phase data, which essen-

tially represents only a phase shift in the waveguide, adds only consistent information.

4.6.2.1 Relative Permittivity and Permeability

The permittivity and permeability are the parameters of most interest, since they

are the ultimately the desired result from the extraction process in the next Chapter.

Therefore, an understanding of how each specific component of the complex variables

affects the waveguide scattering parameters is of significant importance. For this

analysis the slot dimensions are kept the same as those in Chapter 2, a material

thickness of 5 mm is used, and the material parameters not under analysis are those

of free-space.

Figure 4.2 shows the magnitude, in dB, of the reflection and transmission coeffi-

cients for various real components of relative permittivity versus a frequency range

of 8.2 - 12.4 GHz. As the real component of the relative permittivity increases, the

resonance is seen to shift lower in frequency and the strength of signal coupled to the

material is seen to decrease.

Figure 4.3 shows the magnitude, in dB, of the reflection and transmission coeffi-

cients for various imaginary components of relative permittivity versus a frequency

range of 8.2 - 12.4 GHz. As the imaginary component of the relative permittivity

is increased, the resonance of the signal is seen to shift higher in frequency and the

strength of signal coupled to the material decreases.
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Figure 4.4 shows the magnitude, in dB, of the reflection and transmission coefli—

cients for various real components of relative permeability versus a frequency range

of 8.2 - 12.4 GHz. As the real component of relative permeability increases, the reso-

nance is seen to shift lower in frequency, but not as quickly as with the real component

of relative permittivity. Also, there is no decrease in strength of signal coupled to the

material.

Figure 4.5 shows the magnitude, in dB, of the reflection and transmission coeffi-

cients for various imaginary components of relative permeability versus a frequency

range of 8.2 - 12.4 GHZ. As the imaginary component of relative permeability in-

creases, the resonance is seen to shift lower in frequency and a general trend of the

strength of signal coupled to the material decreasing holds till the last value. At

which point the strength of signal is seen to jump back up to a higher value. This

might be due to the material thickness and the possibility of a higher order mode

propagation.

4.6.2.2 Material Thickness

The last material parameter of interest for analysis is the thickness of the material.

As the material thickness changes, the distance the signal travels before it reflects off

the PEC boundary is changed. This leads to higher order modes being excited in the

parallel-plate region if the thickness is greater than half a. wavelength in the material.

For this analysis the slot dimensions are kept the same as those in Chapter 2.

Figure 4.6 shows the magnitude, in dB, of the reflection and transmission coeffi-

cients for various thicknesses of a loaded material (ep 2 2 - j1.d-3, mu 2 1 - j1.d-3)

versus a frequency range of 8.2 - 12.4 GHz. As the thickness of the loaded material

increases, the resonance shifts lower in frequency and the strength of signal coupled

to the material increases as the material nears a half wavelength (12 mm). When

the thickness increases above a half wavelength the resonance then shifts higher in

frequency and the strength of signal coupled to the material ('lecreases. The effect of
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higher order modes beginning to propagate is seen on the thicknesses above a half

wavelength.

Figure 4.7 shows the magnitude, in dB, of the reflection and transmission coeffi-

cients for various thicknesses of a loaded material (ep 2 2 - j1.dO, mu = 1 - j1.d-3)

versus a frequency range of 8.2 - 12.4 GHz. As the thickness of the loaded material in-

creases, the resonance shifts lower in frequency and the signal coupled to the material

is seen to decrease. As the imaginary component of relative permittivity is increased,

the signal is attenuated faster and thus does not affect the results as significantly.

Figure 4.8 shows the magnitude, in dB, of the reflection and transmission coeffi—

cients for various thicknesses of a loaded material (ep 2 1 - j1.d-3, mu 2 2 - j1.d-3)

versus a frequency range of 8.2 - 12.4 GHz. Figure 4.9 shows the magnitude, in dB, of

the reflection and transmission coefficients for various thicknesses of a loaded material

(ep 2 1 - j1.d-3, mu 2 2 - jldO) versus a frequency range of 8.2 - 12.4 GHz. As the

thickness increases for the magnetically loaded materials increases, similar properties

to the electrically loaded materials with a slightly tighter dispersion of the resonance

curves for the magnetically loaded cases.

4.6.3 Analysis of Slot Dimensions

The purpose of this section is to analyze how certain slot dimensions (thickness, length

and width) affect the rectangular waveguide scattering parameters. This analysis is

performed with the material properties mirroring those of FOR/1125, the available

sample for validation in the next Chapter. Only the magnitude data is considered

since the phase data, which essentially represents only a phase shift in the waveguide,

adds only consistth information for the analysis.

4.6.3.1 Thickness of Slot

Figure 4.10 shows the magnitude, in dB, of the reflection and transmission coefficients

for various slot wall thicknesses versus a. frequency range of 8.2 - 12.4 GHz. As the
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thickness of the slot increases the resonance is seen to shift slightly higher in frequency

and have a slightly larger coupling. However, at non-resonant “frequencies the coupling

is seen to drastically decrease as the thickness increases.

4.6.3.2 Length of Slot

Figure 4.11 shows the magnitude, in dB, of the reflection and transmission coefficients

for various slot lengths versus a frequency range of 8.2 - 12.4 GHz. As the length of

the slot. increases, the resonance is seen to shift. lower in frequency. This matches the

results of Chapter 2, except that a smaller slot length is needed to match the resonant

length of the wavelength in the material.

4.6.3.3 Width of Slot

Figure 4.12 shows the magnitude, in dB, of the reflection and transmission coefficients

for various slot widths versus a frequency range of 8.2 - 12.4 GHz. As the widtl‘l of the

slot increases, the coupling to the 111aterial is seen to increase. The most significant

change is seen at non—resonant frequencies, although at the largest width the resonant.

frequencies are also seen to have increased coupling.



Magnitude of $11 & $21 for Various Values of the Real Component

of Relative Permittivity vs. Frequency
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Figure 4.2. Effect of the real component of the relative permittivity 011 the magnitude

(dB) of the waveguide scattering parameters vs. frequency (GHz).
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Magnitude of 511 & 521 for Various Values of the Imaginary

Component of Relative Permittivity vs. Frequency
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Magnitude of 511 a 521 for Various Values of the Real Component

of Relative Permeability v5. Frequency
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Figure 4.4. Effect. of the real component of the relative permeability on the magnitude

(dB) of the waveguide scattering parameters vs. frequency (GHz).
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Magnitude of 511 & 521 for Various Values of the Imaginary

Component of Relative Permeability vs. Frequency

 
 

  

—~—511 - 1.d-2

 

8 +521 - 1.d-2

3 —«—-s11 - 1.d-1

3 ----sz1 - 1.d-1

93 s11 - 1.d0

g.
....--521-1.d0

g —----s11 - 1.d1

-----521 - 1.d1  

 

I

‘40 %'* 1 ‘ r 1 r *f’ r "f“ T‘——r r r—T’ r r—vr" T 1

8.20 8.62 9.04 9.46 9.88 10.30 10.72 11.14 11.56 11.9 12.40

Frequency (GHz)

Figure 4.5. Effect of the imaginary component of the relative permeability on the

magnitude (dB) of the waveguide scattering parameters vs. frequency (GHz).
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Magnitude of 511 & 521 for Various Thicknesses of a Loaded

(ep=(2.0-j1.d-3), mu=(1-j1.d-3)) Material vs. Frequency
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Figure 4.6. Effect of the material thickness of the real component of the relative per-

mittivity on the magnitude (dB) of the waveguide scattering parameters vs. frequency

(GHz).
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Magnitude of s11 & $21 for Various Thicknesses of a Loaded

(ep=(2.0-j1.d0), mu=(1-j1.d-3)) Material vs. Frequency
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Figure 4.7. Effect of the material thickness of the imaginary component of the rela-

tive permittivity on the magnitude (dB) of the waveguide scattering parameters vs.

frequency (GHz).
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Magnitude of 511 & 521 for Various Thicknesses of a Loaded

(ep=(1-j1.d-3), mu=(2.0-j1.d-3)) Material vs. Frequency
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Figure 4.8. Effect of the material thickness of the real component of the relative

permeability on the magnitude (dB) of the waveguide scattering parameters vs. fre-

quency (GHz).
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Magnitude of 511 a 521 for Various Thicknesses of a Loaded

(ep=(1-j1.d-3), mu=(2.0-j1.d0)) Material v5. Frequency
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Figure 4.9. Effect of the material thickness of the imaginary component of the rela-

tive permeability on the magnitude (dB) of the waveguide scattering parameters vs.

frequency (GHz).
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Magnitude of 511 81 521 for Various Slot Thicknesses (FGM125) vs.

Frequency
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Figure 4.10. Effect of the slot wall thickness, for a parallel-plate region loaded with

FGMl25, on the magnitude (dB) of the waveguide scattering parameters vs. fre-

quency (GHz).
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Magnitude of 511 & 521 for Various Slot Lengths

(FGM125) vs. Frequency
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Figure 4.11. Effect of the slot length, for a parallel-plate region loaded with FGMl25,

on the magnitude (dB) of the waveguide scattering parameters vs. frequency (GHz).



Magnitude of 511 a 521 for Various Slot Length to Width Ratios

(FGM125) vs. Frequency
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CHAPTER 5

RESULTS

To verify the MFIE techniques developed in both Chapter 2 and Chapter 4, several

measurements were taken in the X-band frequency range, 8.2-12.4 GHz. While this

technique is valid over any desired frequency range, the dimensions and availability

of X—band waveguide sections made this the easiest range for a proof of concept

demonstration. In this Chapter, the experimr-‘ntal setup is explained and verified, the

extraction process is investigated and verified, and experimental results are shown for

MagRAM.

5. 1 Experimental Setup

The experin‘iental setup used for this resonant antenna material characterization tech-

nique is shown in Figure 5.1 and Figure 5.2. The physical experiment gets connected

to a HP8510C Vector Network Analyzer (VNA) via coaxial cables, coax to WRQO

waveguide (where the WR stands for “waveguide rectangular” and 90 refers to the

inner waveguide width a = 0.90 inches) transitions, and WR90 waveguide sections.

The connection between the physical experiment and the WRQO waveguide sections

uses 1*)1‘ecision alignment pins and screws to help minimize the disctmtirmities across

the interfaces. Great care is also taken to ensure. that the coaxial cables are spa-

tially stabilized while calibrating the experimental setup and measuring samples. The

two-port experimental setup is calibrated using the thru-reflect-line (TRL) method

[65]-[67]. The full two-port TRL calibration method, including the development of

the calibration kit for the HP 8510C, is discussed in [68].

The physical experiment is built out of a single sheet of brass (Length = 5.5 inches,

Width 2 5 inches, and Height 2 1.625 inches) to help insure that there are no electrical

discontinuities, except at the flanges and the transverse slot. To build the device, the
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machine shop first conductively etched a VVRQO waveguide segment (Length = 5.5

inches, Width 2 0.9 inches. and Height 2 0.4 inches) into the length of the brass sheet.

Next, they milled away the excess material above the WR90 waveguide segment

to achieve the thinest waveguide wall thickness (0.04 inches) that was structurally

durable. Then the precision alignment pin and screw holes were drilled for the WR90

waveguide flanges. Finally, the transverse slot (Length = 0.45 inches and Width =

0.27 inches) is etched into the center of the upper WR90 waveguide wall.

5.1.1 Validation

Before measuring any test samples, a standard baseline is checked to initially validate

the experimental setup. After perfm‘ming the calibration, the two waveguide sections

are placed together and the magnitude and phase of the S-parameters is checked to

ensure that ngg = 140" and

 

Sifggl = 0. Next, the physical experiment, with

the slot covered by conductive tape, is connected to the VNA and the magnitude

and phase of the S-parameters is again checked to ensure that 3.31712 E 1100 and

erp

S11,22
  

E 0. The magnitude and phase are approximate in this case due to the slot

discontinuity in the waveguide wall.

5.1.1.1 Radiation into a Half-Space

To provide further confidence and validation of the experimental setup, a compari-

son of measured and formulated data. for radiation into a. lu—rlf—space. is considered.

Figure 5.3 shows the comparison of formulation results and experimental data for the

magnitude (in decibels (dB)) of the rectangular waveguide reflection and transmis-

sion coefficients versus a frequency range of 8.2 - 12.4 GHz. Figure 5.4 shows the

comparison of formulation results and experimental data for the phase (in degrees) of

the rectangular waveguide reflection and transmission coefficients versus a frequency

range of 8.2 - 12.4 GHz. The curves for both the magnitude and phase of the reflection

and transmission coefficients line up very well.
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The resonance of the slot antenna is seen at just slightly less than 13 GHz, which

is expected since the slot is the complement of a strip dipole antenna [55]. Also,

the dispersion of the formulated resonance is slightly tighter than the experimental

resonance. This is expected since the formulation assumes the brass waveguide is a

PEC, when in actuality it has a small amount of ohmic loss.

5.1.1.2 Signal Attenuation

In observing Figure 5.2 it is noticed that the experimental setup has a. finite parallel-

plate region, whereas the formulation assumed and infinite parallel—plate region. The

assumption of an infinite parallel-plate region was implemented for two reasons: it

greatly reduces the complexity of the formulation; the motivation of this problem

was the characterization of lossy EM materials. Since the signal in a lossy media

attenuates, no contribution is seen from fringing fields due to the finite boundaries

of the physical experiment. Thus making the assumption viable and allowing the

formulation to correctly model the experiment.

To understand how lossy the EM materials must be to ensure the assumption of

an infinite parallel-plate region is maintained, an analysis of the attenuation of signals

in the parallel-plate region is given. Figure 5.5 and Figure 5.6 show the attenuation

of a wave traveling 6 cm in a parallel-plate waveguide for various real components of

relative permittivity versus the imaginary component of relative permittivity for 8.2

and 12.4 GHz respectively. The signals are seen to decay rapidly as the imaginary

component increases. As the real component of permittivity increases, a higher imag-

inary component is required to achieve the same level of signal attenuation. There is

a tighter dispersion between the curves for the real component of permittivity as the

frequency increases.

The MagRAM sample that is used to validate the formulation is FGMI25 from

Cuming Microwave. Using its general material properties [41], a knowledge of the

general attenuation properties of the signal in the MagRAM is obtained. Figure 5.7
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shows the attenuation of a wave traveling in a parallel—plate waveguide loaded with

FGM125 for various frequencies versus distance. The signal is seen to attenuate to

-40 dB in less than 1 cm over the desired X-band bandwidth. Thus, showing that. no

fringing effects are seen when measuring the experimental data with the experimental

setup that has been built.

5.2 Complex Constitutive Parameter Extraction

The overall objective of this material measurement technique is to experimentally

obtain sample scattering parameters using a network analyzer and compare them

with their theoretical expressions. That is,

th,

Slly ((12,641) — Siip (w) = 0

t} ?'

S2113! (eta/1.) — 53111000) = 0

This pair of nonlinear equations with two unknowns has a solution which is seen to

decompose into two parts. First, analytical theory is needed to relate S[7111/ (w, e, ,u.) and

SE11)” (5.36.11) to the complex constitutive parameters (see. MFIE analysis in Chapter

4). Second, a technique is needed to accurately measure Sam (w) and 53:11:12 (w) (see

previous section). With the two necessary parts for the solution, equation 5.1 is

iteratively solved using a complex two-dimensional Newton root search method, giving

the desired results of the complex constitutive parameters [7].

5.2.1 Extraction Validation

The ultimate goal for this material measurement technique is to simultaneously ex-

tract both permittivity and permeability. The intention is to perform the extraction

using both the reflection and transmission coefficients from the rectangular waveguide,

while measuring only a single layer of the material. Unfortunately, simple validation

tests of the extraction process showed that this is not possible under the current for-
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mulation. Essentially, the two scattering parameters do not provide enough sensitivity

to perform the extraction.

In order to achieve the desired goal of simultaneous extraction of permittivity

and permeability, a second independent experimental measurement. is needed. The

simplest method to achieve this goal is to measure a second thickness of the desired

material. Then using one of the scattering parameters from each of the two different

material thickness measurements, solve the pair of nonlinear equations in 5.1.

To decipher how different. the two material thicknesses need be to perform the com-

plex constitutive parameter extraction, tests were performed using generated acrylic

data. Acrylic is used due "to its consistent material properties across the entire waveg-

uide bandwidth. Figure 5.8 shows the extracted permittivity and permeability values

for an acrylic material with a material thickness difference equal to 15 percent of the

material wavelength. The data is seen to be very good across most. of the bandwidth,

however, certain points are still not converging correctly.

Figure 5.9 shows the extracted permittivity and permeability values for an acrylic

material with a material thickness difference equal to 20 percent of the material

wavelength. The data is seen to be very good across the entire bandwidth, leading to

the conclusion that a 20 percent material wavelength thickness difference is sufficient

to properly extract the desired material characteristics.

5.2.2 Tested Samples

The general concept of this resonant antenna material characterization technique is

to non-destructively measure simple, lossy medias. Thus, the ultimate verification of

this technique is to measure a sample with those properties. MagRAM, in the form

of FGM125 from Cuming Microwave, is a convenient solution in that it exhibits the

desired properties, it is readily available, and comparison data is available using a

partially-filled waveguide technique [68].
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5.2.2.1 MagRAM

The results for permeability of the l\»’IagRAM using the resonant slot-antenna tech—

nique are compared to the results using a partially-filled rectangular waveguide tech-

nique in Figure 5.10. Using the results of the partially-filled rectangular waveguide

technique. as the baseline for the expected results for the resonant slot-antenna tech-

nique, the values of the permeability are seen to line up very well.

The results for permittivity of the MagRAM using the resonant. slot-antenna tech-

nique are compared to the results using a partially—filled rectangular waveguide tech-

nique in Figure 5.11. Again, using the results of the partially-filled rectangular waveg-

uide technique as the baseline for the expected results for the resonant slot—antenna

technique, the values of the permittivity are seen to not line up very well. The real

component. of the permittivity seems to have the general concept, but oscillates wildly

about the desired value. Whereas the imaginary component of the permittivity also

oscillates wildly, but not near the desired value.

These type of results have been noticed before, mostly in coaxial probe tech-

niques. and are due to air-gaps between the probe. flange and the material surface

[22],]40].[69]-[70]. Even a small air-gap between the sample and probe causes a signif-

icant discontinuity in the strong, normal electric-fields leading to large errors on the

predicted permittivity values. The permeability results however remain largely un-

changed as there EM boundary conditions are not significantly affected by the small

discontinuity.

However, for a couple of reason the issue is believed not to be due to an air—gap.

First, the real component of permittivity would be lower across the entire bandwidth

than the predicted value. which is not the case. Second, the electric field is actually

tangential and therefore continuous, which should not create such a large eflect on

results. Finally, an exceptionally heavy weight was placed 011 the experimental setup

ensuring a good contact. between the material and slot antenna. The alternatixv'e
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explanation offered is a poor electric field interrogation of the material.
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Figure 5.1. Experimental Setup: Rectangular waveguide radiating through a trans-

verse slot into a half space.
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Figure 5.2. Experimental Setup: Rectangular waveguide radiating through a trans-

verse slot into a finite parallel—plate region loaded with MagRAM.
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Comparison of Formulation and Experiment for the Magnitude of

511 a 521 vs. Frequency
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Figure 5.3. Comparison of the formulation results and experimental data, using the

magnitude (dB) of the waveguide scattering parameters, for the radiation of the signal

into a half-space vs. frequency (GHz).

96



Comparison of Formulation and Experiment for the Phase vs.

Frequency
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Figure 5.4. Comparison of the formulation results and experimental data, using the

phase (degrees) of the waveguide scattering parameters, for the radiation of the signal

into a half-space vs. frequency (GHz).
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Attenuation of a Wave Traveling 6 cm in Parallel-Plate Waveguide

at 8.2 GHz vs. Imaginary Component of Relative Permittivity
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Figure 5.5. The attenuation (dB) of a wave traveling 6 cm in a parallel-plate waveg-

uide, for various values of the real component of relative permittivity, at 8.2 GHz vs.

the imaginary conmonent of the relative permittivity.
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Attenuation of a Wave Traveling 6 cm in Parallel-Plate Waveguide

at 12.4 GHz vs. Imaginary Component of Relative permittivity
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Figure 5.6. The attenuation (dB) of a wave traveling 6 cm in a parallel-plate waveg-

uide, for various values of the real component of relative permittivity, at 12.4 GHz

vs. the imaginary component of the relative permittivity.
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Attenuation of a Wave Traveling in a Parallel-Plate Waveguide

Loaded with FGM125 vs. Distance
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Figure 5.7. The attenuation (dB) of a wave traveling in a parallel-plate waveguide,

at 8.2 and 12.4 GHz. loaded with FGMI25 vs. distance (cm).
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Relative permittivity & permeability extraction of generated acrylic

data (15% material thickness difference) vs. frequency
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Figure 5.8. Relative permittivity and permeability extracted using generated acrylic

data that has a 15 percent wavelength difference between the two material thicknesses.
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Relative permittivity 81 permeability extraction of generated acrylic

data (20% material thickness difference) vs frequency
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Comparison of Relative Permeability for FGM125 vs. Frequency
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Figure 5.10. Comparison of the relative permeability, for the MagRAM FGMl25,

using a partially-filled rectangular waveguide method and the resonant antenna tech-

nique vs. frequency (GHz).
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CHAPTER 6

CONCLUSIONS

This dissertation has provided a waveguide slot-antenna technique for the non-

destructive e 'aluation of a PEC backed lossy, simple media. The sample permittivity

and permeability were found by using an iterative complex two-dimensional Newton’s

root-searching algoritlnn to compare the theoretical S-parameters obtained using the

MFIE technique with the exlwrimentally measured S-parameters obtained form the

network analyzer.

The initial goal of this research was to extract both permittivity and permeability

simultaneously with only a single experimental setup. This was not possible under

the current formulation. thus a second material thickness was needed to perform

the sinmltaneous extraction. A couple of special case tests were done to show that

the extraction process, using the two separate thicknesses, was converging to the

correct complex constitutive parameters. Then the waveguide slot-anterma material

characterization technique was experimmtal1y verified, through the comparison of a

MagR.-‘-\l\l sample. with a partially-filled rectangular waveguide measurement. The

accuracy of the permittivity data. suffered, likely due to a poor electric field interro-

gation of the material. This comparison demonstrated a proof of concept, and thus

the validity of the technique.

6.1 Suggestions for Future Work

As this is initial research into the use of slot. antennas for material characterization,

many areas of future research are note worthy. First, looking into why the single

layer of material was unable to simultaneously perform a full cl'iaracterization of

the material. This should include looking into various extraction methods to see if

the 2—D Newton’s method used was not the appropriate choice. Next, a study into
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increasing the coupling though the slot. The most practical way to achieve this is to

relax the assumption of a long an narrow slot, and increase the size of the aperture.

Another area of interest is using multiple slots. This should also increase coupling

to the material, but could also help achieve the initial goal of using only a single

material thickness to fully characterize the material. Finally, looking into the ability

to extract the complex constitutive parameters for two—layers, which could be done

using a two-layer parallel-plate Green’s function.
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APPENDIX A

MAXWELL’S EQUATIONS AND HERTZIAN POTENTIALS

A. 1 Introduction

Appendix A provides an overview of lVIaxwell's Equations and Hertzian potentials

due to a magnetic source. A development of the wave equations, for both EM fields

and Hertzian potentials, is also included.

A.2 Maxwell’s Equations and the Wave Equation for E and If

l\-‘Iaxwell‘s equations, due to a magnetic source, for a simple medium (linear, homo-

geneous and isotropic) and the magnetic source continuity equation in the spectral-

domain point. form are

v X 13:70?) = —j;,. (F) — M717 (,0 (A.1)

v x 13(4):) = jweE(f’) (4.2)

v - 615(8) = (71.3)

V ’ H}? (777 = Pm (7:) (A4)

V ' jfn (7—7 2 “791.0771 (7—7 (A5)

—O

where J,,, is a. volume magnetic current density, pm is the density of the magnetic

charge. and 6 : € (1 — ja/tué) is the effective complex permittivity. The wave equation

for E is found by taking the curl of (A.1), substituting (A2) into the resulting relation,

then applying the vector identity V x V x E = V (V - E) — V219 and using equation

(A3). The result is

v21? + 1:25 = v x .17., (A.6)
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where 1172 = 1.021%. Similarly, the wave equation for If is determined by taking the

curl of (A2), substituting (A.1) into the resulting equation and then using the vector

identity V X V x E = V (V - E) —— VQE and also equations (A4) and (A5). The

result is

_. _. s 1 ..

VQH + NH = jweJm + .—v (v . .1..) (A.7)
301,11,

A.3 MT Hertzian Potential

The primary use of Hertzian potentials is as a simplifying intermediate step to deter-

mining electric and magnetic fields. The MT Hertzian potential may be identified by

observing that (A.3) implies that E is written as

E = —jan X 7?}, (A.8)

since V - V x 7?}, = 0 by vector identity. The magnetic field is then determined by

substituting (A.8) into (A2) and using the vector identity V X V<I> = 0. This leads

to

H = 1.25,, + W (A9)

The wave equation for 7?}, is identified by substituting (A8) and (A.9) into (A.1),

applying the identity V x V x 77;, = V (V ' 7Tb) — V277}, and then using the Lorentz

gauge condition (I) = V ~ 77),. The resulting Helmholtz wave equation is

J7n

jwu

 v25), + 1427?), : — (A.10)

Equation (A10) is decomposed into three scalar equations in Cartesian coordinates

(reducing mathematical complexity) as follows

—-0

J.

V271}... + (£2702... = * .m... (All)
Mt
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where a = :r, y, 2. Substituting (1) = V - 7?}, into (A.9) leads to

H = 127?), + v (v- 5),) (A.12)

Since (A.10) shows that 77,, is maintained by a magnetic current, it is called a MT

Hertzian potential (ET Hertzian potentials are also possible, but since they do not

occur in this problem they are not discussed here). A comparison of (All) with

(A6) or (A.7) demonstrates why Hertzian potentials are introduced in mathematical

analysis of EM problems. In equation (A.11), each component of 7?), is directly related

to each component of .12". The relationship between E, j in (A6) or If, f in (A.7) is

more complicated and thus a solution is generally strongly singular and more difficult

to obtain. Thus. it. is easier to solve for 77;, first then determine E and If using (A8)

and (A12).
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APPENDIX B

PROPERTIES OF RECTANGULAR WAVEGUIDES AND CAVITIES

B. 1 Introduction

An analysis of the guided wave structures used in Chapters 2 and 4 is needed to

ensure proper application in the formulations developed. Appendix B develops the

characteristic eigenmode fields of the rectangular waveguide, for both the y and z-

axial directions. These modal fields are then extended to Green’s functions for both

the rectangular waveguide and cavity respectively. Followed by the development of

the rectangular waveguide scattering parameters for the y-axial direction modal fields.

B.2 Waveguide Modes

In the interior of a rectangular waveguide, Maxwell’s equations (A.1-A.4) can be

divided into two basic sets of solutions or modes. For one set of modes no longitudinal

or axial magnetic field component exists, these modes are called transverse magnetic

(TM) modes. The other basic set of modes have an axial magnetic field but no axial

electric field component, this set is referred to as the transverse electric (TE) modes

[58]. The TE modes are used in the rectangular waveguides (with a > 0, see Figure

B1), because the TEM) mode is the dominant mode due to the fact is has the lowest

cutoff frequency.

The cutoff frequency of the TEmn mode is given by

 

ckc C\/m2b2 + 722a?

fc,mn : ET— : 20.0 (13.1)
 

where c is the speed of light in. free space, a. is the width of rectangular waveguide, b is

the height, and m and n are the modal values [58]. The cutoff frequency helps define

the bandwidth of the waveguide, where the first higher order mode to propagate
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defines the upper bound of the bandwidth, and the cutoff frequency defines [the lower

bound of the bandwidth.

B.2.1 Geometrical Configuration

Consider the cross-sectional view of a rectangular waveguide shown in Figure B1. The

origin is located in the center of the bottom plate and the waveguide has dimensions

of width —(1/2 3 :r S (1/2 and height 3) = b. The width (a) will in general be twice

the height (h).

I
N
)

 

   N II

0 V
a

,

 

x=—-—— x=0 x:—

Figure B.1. Geometrical Configuration: Rectangular waveguide (y—axially direction)

B.2.2 Modal Analysis (TEac Modes)

Generally when describing a set of TE modes, the direction of propagation has no

electric-field component. However, sometimes the geometry of the problem lends

itself to an alternative set of modes. In the case of the rectangular waveguide used

in the formulations of Cl’iapters 2 and 4, where the direction of propagation is the

y—direction, the TEJ- modes are the most complete set of modes. This is because the

transverse slot can only have an equivalent :c—directed magnetic current. This can
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alternatively be reasoned by noting that the slot causes higher order modes to be

scattered, thus a superposition of TEy and TMy modes would be needed to have a

complete set of modes. This superposition of TE, and TMy modes is seen to equal

the set of TE! modes, for propagation in the y-direction [60], thus the latter set of

modes is developed here.

8.2.2.1 y-axial direction

To develop the desired set of modes, the appropriate choice of the MT Hertzian

potential is necessary. To ensure that the x-directed component of the electric-field

is equal zero and the ar-directed component of the magnetic field is not equal to zero,

the appropriate choice of the MT Hertzian potential is

77}, = 23%,, (B.2)

Then, substituting (B.2) into (A8) and (A12) and carrying out the vector operations

gives respectively for the EM fields

E = jwnoi x Vanna}, (B3)

and

4 a . 2 a?
Hthffiflh+$(k0+53) 71'}, (13.4)

where the transverse Laplacin operator with respect to the .r-direction is

(9 8

V, =’f—-——+2— B.5
tr Jay 02 ( )

To solve the homogeneous Helmholtz equation

v2 .2 __ B

7% + 1‘07”). _ 0 ( 6)
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in terms of longitudinal and transverse components requires writing the MT Hertzian

potential as

7th = .4000}, (:17, @631“); (B7)

Then utilizing (B7) in (B6) along with the separation of variables technique leads

to

7th 2 740,3 [A cos (kyrr) + B sin (101.10] [C cos (kzz) + D sin (1023)] 64:17:; (B8)

where the cutoff wavenumber and propagation constant are respectively

13 = 1:3 + r2 = 13, +1.3 (B9)

The boundary conditions on the PEC waveguide walls are

Ell/~Z[:r=—a/2,a/2 : 0 _’ 77/1.l1t=—a/2,a/2 : 0 (13'1”

00h.

8::
 Eylz=t.bl : 0 _) 221,01 : 0 (B12)

where the partial derivative required for enforcing the boundary conditions is given

HS

.8579"; 2 flag/CZ [A cos (101.23) + Bsin (103733)] {—0 sin (1022) + Bees (1523)] (EI‘y (13.13)

2 .

leading to the generating eigenfunction for the 7th mode as

Why 2 AA, sin [101.7, (.1: — a/2)] cos [1837. (:5 — 1%)] eTjkf/V’y (RM)
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with the wavemunbers defined as

k1... = 91.021.23...

I (1

k3, = 4,710 = 0, 1, 2, where b =(01—t) (8.15)

.2 _ .2 __ .2 A ...2 .2
AC, _ 1,, 1y, _ 1,, + 1,,

Substituting (B14) into (B3) and (B4) and applying the mathematical operations,

the modal fields are sunnnarized as follows

$70 ,1

$0“): [424 <0+u4q,eq,m[ J W 0346)

177 (F) = [’77, (F) i 9494,7107 ("Ill €414,034 (317)

63, (F) = sin [1.3, (.1: — a./2)] cos [1:3, (2 — t)] ; A3, : capoky,A, (318)

ey, (F) = sin [k3, (r — a./2)] sin [k3., (z — t)] ; A3,, = jwnok3,A, (B19)

17,, (r) = .4:A,.,h,, (a + 3A3,h3, (7*) (13.20)

12,, (F) = sin [11,, (.L- — .../2)] cos [i:,,,, (z — 4)] ; .41., = (1:3 — 43.) A, (B21)

h3, (F) = cos [, (..r — (1/2) ] sin [A3, (2 — 1)] ; :l , = —k, Is 4, (B22)

h,, (a = cos [1,, (.1.- — (#2)] cos [1,, (z — 7)] ; A,, = —)1,1,,A (B23)

B.2.2.2 z-axial direction

Consider the cross-sectional view of a rectangular waveguide shown in Figure B.2.

The origin is located in the center of the waveguide having dimensions of width

—(1.C/2 S 2: S (LC/2 and height —-b(-/2 S y g lip/2.

Using the same steps as the previous section, the TEI, modes with propagation
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Figure B.2. Geometrical Configuration: Rectangular waveguide (Is-axially direction)

in the z-direction may be summarized as follows

—+ A . A
.163 2

E14 (1) = [44,121, (.4, y) :4 yAype-yp (4,1)] ,4] 1“ (B24)

—o —o A ~ 7k? ...

1114(7) = [1,1, (Ly) 4 4,431,113,, (:1:,y)] e?” ~rz (13.21))

0314 (.1', y) = sin [luff (.17 — (lg/2)] sin [kl/1“ (y — b(_-/2)] ; A31, 2 jw11.()kyFAp

(B26)

("yF (1.1)) = sin [11131, (11' — (1(./2)] cos [LY/F (y — bC/2)] ; AW 2 w11,()k'31,141~

(B27)

Hip (it: y) : iA$Fh1F($ay) _ Q/ayphyp (3:? y) (828)

I131, (1', y) = sin [113-F (.1: — (1.0/2)] cos [kg/F (y — bC/2)] ; ATP = (1:8 — k3.) AF

(B29)

h3F (:1:,y) = cos [A131, (:1 — 113/2)] cos [kyp (y — b(~/2)] ; AZI‘ = jk‘mrk3F/ip

(B30)
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1,141,) = cos [13,. (.1: — (1,2)] sin [1,F (y — bc/2)] ; A,r = 1-IF1WAF

(B.31)

kir : %,a 21,2,3,...

1,F = 123,3 = 0,1,2,... (B.3?)

2 _ 2 2 _ 2 213, _ 10 — 12F _ 1,1. +1,F

B.3 Green’s Functions

In this section the Green’s functions for the rectangular waveguide and cavity are

developed. The rectangular waveguide Green’s function is determined by using the

Lorentz reciprocity theorem, while the. rectangular cavity Green’s function is deter-

mined by using the method of scattering superposition [61].

B.3.1 Rectangular Waveguide

Consider the waveguide configuration given in Figure B.3. The slot is assumed to be

cut in the bottom waveguide wall between cross-sectional planes 051 at y = y1 and

CSg at y = 312. It also supports a field is that is excited by the incident TE;0 mode.

 

Figure B.3. Rectangular waveguide with slot discontinuity
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B.3.1.1 Slot Excited Modal Fields

The first step in the determination of the desired rectangular waveguide Green’s

function, is to express the scattered waveguide fields, excited by the slot, using a

modal expansion. These electric and magnetic field expressions are given as

12': ZB~,E7m= ZBvbi’Azmai‘1~)+J41n‘1/7(36)]kay (8.33)

1" "£11..

131— ZB,I§17, (F): ZB,[1,,(., 14—) 1.4y,hy,(a:,z)]eJ-Uiy (13.34)

and

E Z 2 C775: (F) : 2 CT [3342783, (:13, Z) + QAyveyv (33» 2)] e—jky,y (B35)

'7 '7

... _. _. 1 ~ —"k

H = ZCW’H: (Fl 2 EC? [hm ($13) + yAyvh'i/v (.r, 3)] 6 J my (B36)

'7' 7

for y < .111 and y > if; respectively.

8.3.1.2 Determination of Modal Expansion Coefficients

The next step is to determine the modal expansion coefficients by using the Lorentz

reciprocity theorem on a source-free, bounded region S. The closed boundary of this

source-free region 5 consists of the cross-sectional surfaces 051 and C82, and the

conducting waveguide surface SC, or

SZSC+081+CSQ (3.37)

The Lorentz reciprocity theorem applied to this source-free region is written as

f 13» (5“ x {Tb — E” X IT”) (IS = 0 (B38)

8
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where the fields

H U
mEia

(13.39)

H :
2
1

Ha

represent the EM fields (described in section B2.2.1) radiated into the bounded

waveguide region by the slot aperture field E; and

Eb : EB:

T (8.40)

"b “:t
H H,

are the waveguide modal field (described in equations (B33-B36)) traveling in the

iy-direction. Substituting the fields in (B39) and (B40) into (B38) gives the spe-

cialized form of the Lorentz reciprocity theorem

1 r “4 *4 7'
én-(Ex ,— ,xH)dS=O (B41)

where the supm‘position of the three boundaries set equal to zero determines the

modal expansion coefficients. Solving for the conducting surface SC by first using a

vector identity [:37] gives

[561(2er— 7,4). 7).15=/SC[(AXE).H$_(migaps

(13.42)

Application of the PEG boundary condition [58] results in the expression

/ TL'(EXg$—E$XH)dS=/ fi-(Esxfif)d8 (B43)

50.

where the only remaining contril‘mtion is due to the slot electric-field.

Solving the cross-sectional surface C51 next (where the outward normal is defined
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as —;1)) leads to

CS 4/ —;“- Ex "i—“ixfi as 3.44
1 C81y( *7 'y ) ( )

with the substitution of the scattered and modal field expressions from (B39) and

(B40) leading to

A A 4 ' k 4:}; _

C51: Z, B, fCS, _y. _ (2A3,ez,(;1:,z) x ht,(:1:,z))eJ( In 317)y1

 

0 (B45)

IF (2.3/13,133, (:r, z) x fit, (:13, 2)) e] ($k.y,+ky,)y1]

Then by defining the mode orthogonality relationship as

37671 = / (189 ' (at, (I, Z) X EtL (13.2)) (8.46)

CS

equation (B45) is simplified to

es, 4 3,,s,.ej“:“)kyvyl (141) (3.47)

where the $ is associated with forward and backward traveling waves respectively.

Similar steps are taken to solve the second cross-sectional surface 032 (where the

outward normal is defined as y) giving

033 4/ g. (E x if? — 3;? x H) as (B48)
082

Substitution of the scattered and modal field expressions from (B39) and (B40)

along with simplifying the expression using (B46), leads to

CS3 = C,S,ej(—1T1)k-’/7y2(lq: 1) (3.49)
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where the 2F is again associated with the forward and backward traveling waves

respectively.

Superposing the terms in (B43), (B47), and (B49) and setting them equal to

zero generates the expression for all values of 7 as

13787811ITllh/jvyl (1 :l: 1) + CVSAIEJT—ITIlkyw-KQ (1 $ 1)

(B50)

2 F “:1: _
+f5a11-(ES X H,)dS-—0

Solving this equation using either the upper or lower Sign and then rearranging the

terms leads to the modal expansion coefficients as

 

_1 . _. _.+ r

B, = E s. ’11- (ES x H, ) as (3.31)

and

. —1 _1 a 3-
c, _ 287/511- (E, x H, ) as (13.52)

res1_)e(.:tively. Substituting the appropriate fields into the mode orthogonality relation-

ship, the mode expansion constant is defined as

A314 ab , 1 or =0

=_L$7_ . 3,:' f B (8.53)S, ..

267 2 for [3%0

Finally, the modal expansion coefficients are determined as

6‘1
1 1' n , — ». . ... ,_jk' 'y’ r

B, : _.43,ab [90 dSEy (F) s1n [1.1, (.13, — (#2)] cos [1.3, (a, — t)]c, 9? (B04) 

(w
, . ,, ,, ,‘I ‘ 3 J jk..y’ r...

C', : —A3,a.b /Sa (ZSEy (F) sin [1.3, (.1. — (#2)] cos [113, (.1 — 15)]e 31/ (Boo) 
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B.3.1.3 Green’s Function due to a Transverse Slot

The Green’s function is now found by simply substituting the modal expansion coef—

ficieuts into equations (B34) and (B36) (repeated here for convenience)

=2 3.4454,14ze)J171*” y < 4’ (8.56)

1 ~ F _k . :7

H;4Z6,..43,13,(1:,z)e J 111" y > y’ (3.07)

and then manipulating the subsequent expressions into the form of equations (2.9)

and (2.10). The resulting 2.7—directed component of the magnetic field for all y and y’

is

01)) E's/(71,) .
HS A: + (IS—_—G 1' 7' B58=<2o 8132311 jwuo VI G (T l ( l

where the MT Hertzian potential is the dot product of the slot electric field and the

resulting rectangular waveguide Greens function, due. to a transverse slot cut in the

lower broad wall, which is given as

GWG (FIF)2“HE 2, TL s1n ] (:1: — a/2)] sin [A733, (:17, — a/2)]

~cos (kg, (2- t)] COS (A:,~ (1': — t)]e—jky7' y—yI 

B.3.2 Rectangular Cavity

The Green’s function for the rectangular cavity derived in this appendix follows the

development of Tai [61]. This approach involves starting with the functions already

available for a. rectangular waveguide of the same cross-sectional dimensions and then

applies the method of scattering superposition to find the desired function. The

method of scattering superposition is applied in two separate steps. The first step is

to generate the Green’s function for the semi-infinite waveguide, with a PEC plate

placed at the z 2 CC interface. The second step is to geneIate the Greens function
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for the rectangular cavity with a second PEC plate placed at the z 2 0 interface.

To solve for the Green’s functions by placing PEC plates at the interfaces 2 2 0,133,

the PEG boundary condition (tangential electric—fields equals zero) is applied to the

fields at these locations. Since only the y-directed component of the electric-field

is tangential at both interfaces, it is the only component of the electric-field that

is represented here. To develop the expression for the y—directed component of the

electric-field, the modal fields of section B222 are used to derive a rectangular

waveguide Green’s function using the derivation in section B.3.1. The y-directed

component of the electric-field, that is valid for all z and z', of an infinite rectangular

waveguide is thus represented as

8 Ey (F)
E = —w 10—/ GAS G ’ 7" Fl —,— 13.60)y J 1 5,2 5., WGH ) quo (

where the Green’s function is represented as

GWG (flF) 2 5:17; Z 72:? sin (A731. (:1: — etc/2)] sin [19331. (33’ — etc/2)]

" 2' F T (B61)

 

..[— '11:

-cos (1173/1. (y — 111/2)] cos (km. (y’ — bc/2)]e J 21“

Substituting this Green’s function into the field expression and rearranging terms so

only the z-(glependcnce is considered, leads to the following

I I 8 :ij~ 2' Ziljkz Z,

Ey 2 Ey(:17,y|:1,y) 07 e “T e P (B62)

Now that the necessary field is developed, the method of scattering superposition

may be applied to generate the first Green’s function for a semi-infinite rectangular

waveguide. This is accomplished by added a scattering term to the field expression

in (B62) that accounts for the waves scattered off the PEG interface at. z 2 1:3. The
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resulting field is

|
Q
.
)

-. I -.,, ,g, I

E4 = E. (4.1/144’) etikngfisz +4.1e3‘7-Pze’k717z (8.63)

Q
.
)

(
I

where applying the appropriate boundary condition determines the constant A31 as

2431 2 e_]k3‘/F2CC (B64)

Substitution of this constant back into (B63) and then applying mathematical ma-

nipulation to the field for the z > 2’ and z < 2’ cases respectively, leads to

.F (2: — c..)] 611., (3'7“)

ejkzflz—cc) cos [kzr (z, _ Cc)]

- k

E, 2 E, (:17, y].17’,y') —0—2 COS]82 (B60)

e.g. the representation of the y-directed component of the electric-field for a semi-

infinite rectangular waveguide. The second step is to generate the desired Green’s

function for the rectangular cavity. Just as before, this is accomplished by adding a

scattering term to the field expression in (B65) that. accounts for the waves scattered

off the PEG interface at .4 2 0. The resulting field for the 2: > 2’ and z < 3’ cases

respectively is

.I_ .,

cos (133,. (z — 03.)] 61/121. (" (.3)

ejk‘zl“(z_CC) cos (1:3,. (2." — 6(7)] (B66)

+As2 COS [kzF (z — 06)] cos [kzr (2’ _ Cc)]]

Ey 2 E, (:17, y|;1:’,y’) 58—2
2

where applying the appropriate boundary condition determines the constant A32 as

.' _ijI‘CC

A,2 2 _L__ (3.67)

sin (1:31.03)
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Then, substitution of this constant back into (B66) and then applying mathematical

manipulation to the field for thez37>1.and z < z’ cases respectively, leads to

a 2 cos (1.73,. (z — 03.)] cos (11731.5)

3] $111 [5.1%MP(] COS (A3112) COS [kgr ('l "‘ Cc)]

 Ey—— E3, (.17., y]:1‘ ,y’,—) (B68)

the representation of the y—directed component of the electric field for the rectangular

cavity. Expanding this field, which is valid for all z and 2’, to include the :1: and y-

dependencies and manipulating the expression to look like equation (B60) gives

Ey (F)

J'w/I'o

 

, 8

E!) 2 —]w,110$/S dS GCV (11F) (B69)

a

where the rectangular cavity Green’s function for the z > z’ and z < 2' cases respec-

tively is

 

0,, .,-.¢:—2 (L [H 2)] [AJTM

C1 (Fl! ) m A? 13r3m(1-r ) sin TF( —ac/) sin a(,/ )

-cos [kl/F; —b/2 cos [Ayfiy(’.—bC/2)

cos (A3,. (3 — 03)] cos (A3Pz')

1 cos (14731.2) cos (A731. (2' — 06)]

(B70)
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APPENDIX C

SOLUTIONS TO ADMITTANCE MATRIX ELEMENTS

Solutions to admittance matrix elen'ients developed in Chapters 2 and 4 are detailed

in Appendix C.

C.1 Waveguide Matrix Elements

The waveguide matrix elements only interact with one of the equivalent currents

defined in the formulations. Therefore, they have only self terms defined as

ALT

’T'lnl+

1"“; — dr’K , T 011’ (C 1)
1111.121— '-'1 WC “lmlv "1 '

A.‘

‘T1711——2I—l

where the kernel is represented as

111

. f1 (31 )
RWG (171ml,OI.1"1) 2 / (lg/1 (IT—#1 GIVG<171772110JI17111J1 t) (C2)

—W1

and the rectangular waveguide Green’s function, due to a transverse slot cut in the

bottom wall, from Appendix B is specialized as

 

1 f . _

GWG (5121112170 tI.11 y, t): {—1,} E, jA': sm IA‘I, (1'1",1 — (M2)]

.7

.sin Ik‘ET (:17'1— ace/2)]JAVA]-le (G3)
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Substitution of (C2) and (C3) into (C1) and rearranging the terms leads to

      

11',

110_ ._ _ ,1 p, —J'1.-y.,—y’1

2:1.11.1 1112)] 111.11.11.11 1 l
_I/VI

A;

$111, +—'2El

/ (1.17,, sin [1:117 (.17', — (#2)] (C4)

A.

x1111——?1:l

where solving the spatial integrals gives the solution to the waveguide matrix elements.

Solving the 17’1-dependent integral first. the addition theorem for sinusoidal functions

is used to split the single integral into two closed form integrals. This is given as

W,

we —1 ‘1 .- _ 1 1 ~jky~
1111.11, I ' I) Z k 5111 [111171, (Tim, — 61/12)] / dylfl (311) e I

u} 1.10 (1. , m.

7 ——W,

‘Tlnl 4A2“

' COS (Infill/2) / dill Sin (kII71$1)

A17

$1711 — Tl

mfié?

— sin (km (1/2) / (1.17,, cos (111177.111) (C5)

. Ar

I111, — Tl

 

I_yll

where substitution of the solution for these closed form integrals leads to

WC 1 6’7 (,1 I I ’jk'y l—y’lill. ___2:___ 111(1- (5,; ‘02)]/d' , e 17
111.11 (Ultoab kg,7 S I’Y 17711 / ‘4, yl f1 (gl)

'1

2 . .
.cos (Irma/2) E; 8111 (1937131711) 3111 (k;,¢./A.1Tl/2)

_sin(k-a/Q) :7 C05(L11T1121)1(kI1A11/2) (C6)
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Combining the similar sinusoidal terms and again using the addition theorem for sine

functions, the matrix elements are written in terms of the only the 111-dependency as

WC —2 61 . .
nun. 2m A), W blIl [kIey (1317711 — (M2)] 5111 [15,177 ($1111 '- (1/2>]

VVI

. — '1: 1 — '
-sm (15.,.A.L~1/2) / (1113f, (y’,)e J 311' ”II ((3.7)

_Wl

Now, to solve the yi-dependent integral, the 111-directed distribution of the slot electric

field from equation (2.49) is substituted, giving

llC_ . ,. .7 ..

[mn — 112/1111111111 2,——(1‘1. (1'11, Sill [All (1'11", _ (Ii/2)] hm [All (11"1 — (#2)]

 

VVl

. —"'k A, --- I

.sm (1.711711131/2) / 113/,6 J 3” yll (C8)

‘Wl

Analysis of the exponential integral (making sure to handle the absolute value cor-

rectly) leads to the final solution for the waveguide matrix elements as

11G__ 41' 6~ ‘ 1. ,

1,.~ -:1—1—11: :1.1.5.,[‘11 (11... - (12)] [‘11 ($111 - a/Qll

. -1715. 1.17 a =1,2,3,...

-s1n (A711,,A171/2) [e y“! 1 — 1] for (CQ)

1’3 2 0, 1, 2,

C.2 Cavity Matrix Elements

The cavity matrix elements interact with two of the equivalent currents developed in

the formulations of Chapters 2 and 4, thus having both self and coupled terms. The

matrix elements are solved (observed) at either BSl or BS2, where the self terms are

excited by the equivalent current at the same interface, and the coupled terms are
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excited by the equivalent current at the opposite interface.

C.2.1 BSl - Self Terms

The self term cavity matrix elements at BSI are defined as

$1711+AI1/2

CV11 CV11 ,1 1,!

[111.11 = [1111,11, : / (1.111(CV11 (LEImIsOll‘l) (C710)

171,11 —A1‘1/2

where the kernel is given as

l’l/l ( I)

, 1 /f1 y] ( / / )
r .I.

[I —— ' —
I.’ ‘ , , .t

0111\C»11(~11m110l11). / 111111 J. #0 GCV Tlmlaoilah 111. (C )

—l/V1

and the rectangular cavity Green’s function is specialized as

 

2 2 : 6
J I

F

GCV (1117711 ’ 0’ tlJ 11911, t) — 7

(1c C I" kzr SlII (kzFCC)

-sin [Al-"F (171,711 —— (LC/2)] sin [17er (1.", — (l.(./2)

-eos (k’JF b.1/2) cos [ll-‘11“ (11', — (151/2)

~cos (1.32,. (t — 00)] cos (117th (C12)

129



Substitution of (Cll) and ((3.12) into ((3.10) and rearranging the solution gives

 

(‘V11_ j? (P cos (kart) . ‘ ..[mm _ _7
cos Ayrb0/2

uJ/LOU'C C F kzl‘ Sin (kzpcc)

.sin [lamp ($17711 — ac/2)] cos [kzr (t — Cc)]

W1

- / dyifl (310608 [My (:11 - (M2)]

__.[171

Tlnl+AT1/2

/ (11"1 sin [1‘fo (:r’l — (LC/2)] (C.13)

.rlnl—Arrl/Q

‘fi . I . y o . . . .

bolvmg the .1'1-(l(.‘1‘,)endent integral first. 1t is noticed that the waveguide inatr1x ele-

‘ . ‘. . 1', . , . g ‘ a _. . 4 .‘

Inents had a similar .1.. -(.le.pendency, thus sunilar steps are taken to solve thls integral.

Therefore, the self cavity matrix elements at BSI are written in terms of the only the

y'l-dependency as

6 cos k» t)
[CV11 _ _14_ F ( “F
””‘n __w/zoabc — ‘ '' ' (, - F ATI7./fi'zr Sln (kZI‘CC

~sin (A'MAJ‘I/Q) sin [If-"1‘ (Ilml — (If/2)] sin [kl-F ($1711 — (1.0/2)]

llfl

/ dyifl (ya) cos [A.3/F (y; — b(./2)] (C14)

—-l«l'1

 

) cos [kzl‘ (t —- (36)] cos (A.3/P bc/Q)

Again, similar to the waveguide matrix elements, solving the y'l-dependent integral

involves the substitution of the yl-directed distribution of the slot electric field from
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equation (2.49) giving

 

. ros k~ t

lC‘Vll _ __L2_ GFC ( HF )"1,72. _
7.

-
WHOO'CbCWl l" [€137 kzr Sln (kZI‘CC

~sin (11717Aél‘1/2) sin [krl‘ (171ml — (1.0/2)] sin [lg/1.11 ($1711 — (LC/2)]

) cos V? (t — (4)] cos (kyFbp/Q)

W1

. / dy'l cos [kl/1‘ (y-Il — bc/2)](C.15)

_W'l

Then to solve the yi-dependent integral, the addition theorem for cosine is used to

split the single integral into two closed form integrals. This is written as

 

,. 6 CO‘ k7~ 1)
[C‘Vll _ ___Z_2____ F b( if7”,". _ ,1 ‘

j I f

c

W/Ula'cbcwl r lc,,..,,.A-r;F 8111(kerr

.sin (kt,r.7,A;ir1/2) sin [kTI‘ (1qu — (lg/2)] sin [A131, (1:1n1 — (LC/2)]

W1

.cos (kl/I“ bC/Q) / dy’l cos ('11in 91)

‘W1

W1

. — sin (AryFbC/2) / dy'l sin (kyry'l)(C.16)

—W1

) cos [1:31. (t — 0(3)] cos (kl/I“ bC/Q)

where it is seen by inspection that using the concept of even/odd integrals over

symmetric limits. leads to

6 cos k t)
[CV11 _ __fl— F ( 2Fm,n _ . 7

‘WHOQCbCW 1 I" kl") A3311 Sln (kZI‘CC

.sin (k1,:7 Al‘l/2) sin [kl'I‘ ($1,711 — (lo/2)] sin [kl’l‘ (111,1 — (LC/2)]

W71

. / dy’l cos (kg/F;y’1>C.17)

0

 ) cos VT (15 — Cd] cos2 (kyrbc/2)
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Solving this cosine integral leads to the final form of the self cavity matrix elements

at. 881, with unspecified dimensions

[ox/1.124;: . wept)
771,11.

wltoachWI

k k k
. k

I‘ 1.7 9F ZI‘ Sln zPCc

.sin (k137AIl/2) sin [le (mlml — aC/2)] sin [kip ($1721 —— (LC/2)]

-c082 (arm/2) sin (kw. W1) (C.18)

) cos [1:21. (t — Cd]

Applying the specific cavity dimensions used in the formulations of Chapters 2 and

4, given as

(LC 2 2L ; be = 2W” ; cc 2 t ; l'Vl = W (019)

the self (ax-'ity matrix elements at BSI are finally written as

7 f ‘ 6 , /

[(1.11 = ——J— ———I:—— s1n km Aug/2)

"2’1"” w#0LW2 21‘: kkayrkzr K 7

-sin [kIF (331ml -- L)] sin [k‘EI‘ ($1711 — L)]

-cos2 (kyI‘ W) sin (kl/1“ W) cot (kzrt) (C20)

C.2.2 BSl - Coupled Terms

The coupled term cavity matrix elements at BSI are defined as

1‘2"? +/_\..I?2/2

(ll/’12 CV12 J ’ .’

1m,” : [1121,112 : / d‘l'QACl/IQ ($11711 a 0'12) (C21)

12722 —A.'r.2/2

where the kernel is given as

 

”"2 ( I)

,, f .1 [f2 y2 , , I ll

ACV12 (r1,,.,»0|112) = / (1312 Mo GCV (.r1m1,0,t|.r2,y2,0) ((3.22)

—w2
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and the rectangular cavity Green’s function is specialized as

—2 6F

(chc 1" er Sill (kZI‘CC)

-sin [11151. (371ml — (LC/2)] sin [1931. (17,2 — tic/2)]

-cos (kyFbC/2) cos [kl/F (yé — bc/2)] cos [kzF (t — 60)] (C23)

 

I I

GCV (-T1,,,1.,0,t|;132,y2,0)
:

Substitution of (C22) and (C23) into (C21) and rearranging the solution gives

 

r 2

[$117112 2 _J___ 61‘ cos (kyf‘ (Dc/2)
, WHOGCbC I‘ kZI‘ sin (kzFCc)

.sin [k-Ir (371ml — etc/2)] cos [ALT (t — 6(2)]

”"2

. / (lyéfg (31(2) cos [kl/1‘ (y; — bC/2)]

_w2

272,712 +A1t2/2

/ das’2 sin [er (:c’z — Claw/2)] (C24)

12712 —Aa‘2/2

Solving the spatial integrals in a similar manner as the self terms at BSI and then

applying the following cavity dimensions

(z(.=2L ; b...—_2w ; cczt (C25)

the final solution for the coupled terms of the cavity matrix elements at BSI is

 

F k3,»), [Cy-F kzF Sin

.sin (It:1W Alp/2) sin [£th ($1,711 — LN sin [hr (:1ch2 —- LN

.cos? (kl/1‘ 1V) sin (kyI‘ 1V2) (C26)

[CV12 = __‘2—7—
CF

772.,”
WHOLW W2 Z

(kth)

133



C.2.3 B32 - Self Terms

Similarly, the self term cavity matrix elements at BS2 are defined as

12712 +A1‘2/2

CV22 CV22 . .l r ,J

122222 :17222222: / (112ACV22 (172171220112) (C27)

IQTIQ—AI2/2

where the kernelis given as

 

1'12

. .yf2('2)
[WW/22(1)‘2anN0|12)= /dy; jam CCV (3327,12, 00(2) 212 0) (C28)

—ll"2

and the rectangular cavity Green’s function is specialized as

—2 61“

a'CbC I‘ kzr Sin (kzFCC)

.sin [21’1“ (.1‘2,,,2—(z(/2)] sin [1:II‘ (r’2 —— (LC/2)]

.cos (Itgrin/2) cos [k”I“ (y(’2- b/2)] cos (kzrcc) (C29)

 ch (2:2,,,2,0,0|I’2.yf.,,o) =

Substitution of (C28) and (C29) into (C27) and rearranging the solution gives

 

.- epcos k2 cc

cvz2 J? ( F ) . ..

1,... ZW . (“0* W). C C F kZP Sln (kgln Cc)

.sin [k‘T’F (172",2 — (LC/2)]

W2

- j 22ng. (ya) [2.1. (y; — m]

_qu

227,2 +AJ‘2/2

/ (1.2752 sin (A?)F (17.3 a(/2)] (C30)

.22”? —A.r2 /2

134



where solving the spatial integrals in a similar manner as the self terms at BSI and

then applying the following cavity dimensions

ac : 2L ; be = 2w ; cc = t (031)

the final solution for the self terms of the cavity matrix elements at. BS2 is

 

[($22 _ j 61‘ cos (krgrt)

"'~” _ .21 mu 2 -

~sin (121,.qu172/2) sin [A1,], (123,772 — L)] sin [MP (172”? — L)]

.cos2 (kyFl/V) sin (kyF W2) (C32)

C.2.4 BSZ - Coupled Terms

Finally, the coupled term cavity matrix elements at BS2 are defined as

$1111 +AI1/2

CV21 CV21 (I r ‘ , I

[222.72 : [2222.121 2 f (1‘1 IRCV21 (3 27,12 2 0'11) ((133)

T1721 ~A1‘1/2

where the kernel is given as

W1

, f1 (31')

KCl/Ql (1.27722701111) = / dyi‘mGCV ($2771.22020137llayllat) (0'34)

_WI

and the rectangular cavity Green’s function is specialized as

—2 6p

(1ch P kZI‘ sin (kchp)

-sin [1.ng (172,712 — (1.0/2)] sin [[9er (2'1 — (zip/2)]

.cos (kl/Pb“/2) cos [2'91“ (y’l — 126/2)] cos [ksr (t — (1)] (C35)

 
I I

chr (1.2771210701121’.lj1?t>
:
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Substitution of (C34) and (C35) into (C33) and rearranging the solution gives

 

CV21 ~72 6F,.,, —fl: . (we/2)w/l'Oac C F kzF Sln (kZFCC)

.‘sin [Amp (.27ng - (LC/2)] cos [kzl‘ (t — cc)]

W1 crlnl+A11/2

. / dy’lfl (y'l) cos [Ayr (y'l — bC/2)] / dat'lsin [AlF (1"1—aC/2)](C.36)

—11'1 $1711 —A1?1_/2

Again, solving the spatial integrals in a similar manner as the self terms at BSI and

then applying the following cavity dimensions

(LC=2L ; bC=2W ; cczt ; W1=W (037)

the final solution for the coupled terms of the cavity matrix elements at BS2 is

 

[C121__

mn —WA10L-W2Zr: k1»,AyrAz:Fsin (kFt)

.sin (AgrvAml/2) sin [ACIF (:rgm2 - L)] sin [“1“ (mm —- LN

-cos2 (km,W) sin (kyr W) (0.38)

C.3 Halfspace Matrix Elements

The halfspace matrix elements only interact with the equivalent current defined at

BS2 in the formulation of Chapter 2. Therefore, they have only self terms defined as

. AI

$2122 +

17%;”? : / (LITIQKHS (1‘2,,,,2,0|;I"2) (C39)

A.

122722 — ‘22
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where the kernel is given as

W2

f2 31
KH5(192172201112) = / dy2’ ju/(w—LMHS (1),)",2 0 all“2 3,2 0) ((3.40)

412 A

and the halfspace Green's functirm is specialized as

2 2

—jA‘0 \/(‘r2m,2 —I2> + (_y2)

e

2

. I I 2

27r\/<12m2 - 1‘2) + ("Z/2)

Substitution of (C40) and (C41) into (C39) and rearranging the solution gives

 

 (C41) 

I I

GHS (127,12 ., 0, 01172, 312, 0) =

 

A1
2 2

+72
if

a

r2722 1'1'2 —Jk0 “(1.27722 _12) + (11,2)

8
[HS__ [A (11x, d" Im22 7,1104%”? 2 .92

2
2

433-1) “”2 \/(‘T2m‘2 — (II/2) + (3’2)

where (“lepending on whether or not mg equals 722, the solution of the spatial integrals

 ((3.42) 

mug-1*

are apl'n‘oximated differently, leading to the final solution for the halfspace matrix

elements.

C.3.1 7722 74 722

For the 7712 75 122 case, the source points are approximated as follows

2:52 ——> 272,,2; 3)]? —> 0 (043)

which is essentially a point excitation at the center of each partition, leading to the

distance between source and observer as

2

Rmyén : \/(-T2m2 — 172-722) :

 

372mg — 227,2 (CA4)
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This approximation is valid since the dimensions of the slot are long and narrow

relative to the wavelength, where by the distance between separate partitions will

vary insignificantly for any point in either partition. Substitution of (C44) into

(C42) and then rearranging the solution gives

A11?

12722 + —21 W2

/ Lia/2 / dyg ((3.45)

f

A1? —W 2

T2722 — 2

. —J"**0

[HS ___ _J 8

"”1 w22047TW’2

 

 

127712 _1‘2712

 

  
$22722 _ 33211.2

which, after solving the spatial integrals, leads to the final form of the halfspace

matrix elements for 7712 72$ 722 as

  
 

 

—jk0 1‘27” -—:l?2
,' _, .2 72.2

HS film-26 ,
[122,72 : 7 (C46)

wu027r l$2m2 — $2712

C.3.2 mg 2 72.2

For the mg 2 222 case, the source points are approximated as follows

. 2 A. . 2 . . _ . .

I2 _) 11222.2? y2 _) 0’ 12mg "” 12222 (CA7)

where, since the source and observer locations are at essentially the same point, the

distance l’)etween them is approximately

R1722=n2 EV: 0 ((3.48)
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Substitution of (C48) into (C42) leads to the following

 

 

, AI

I2722+ W2

HS ‘1 I 2 1
[771.71 =W / dtliQ / (1112 2 2 ((3.49)

A2 —W \/(.T2 , —- 1') + y’
1‘2712—72.

2 ”2 2 ( 2)

where the 1122222722 in the denominator is not substituted, since this would lead to an

indeterminate form of the equation, and thus a bad approximation. Instead, a change

of variables given as

'12,”? -— 17/2 : u; (1.271; = —du (C50)

is applied to (C49) to simplify the analysis of the spatial integrals, leading to

AJ‘

W2

, _ u (1 C51
222,22 w;l(-—)——47TLV2 / / 312——W ( )

_sz —w2 +312

Now the use of a change of variables (22. = .r') along with the concept of an even

function integrated over synnnetric limits gives the solution as

/_\;It

W2

_:_j
lHS—_ dx' / d’ 052
"1"" w———,LLO27rW@ y2—-———,2 ( )

AI 0 +312

The integral over the yé-dependent function was found in an integral table [71] as

{—1.2‘ 2(22.‘ + b ) 2

sinh —— ; R = a. + 12.1? + Cl? C53

VB =\/(_‘ 1< v4ac — bQ ( )

where

2 22
rzyz, (1:22; (2:0; c=1 (C54)
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specializes (C53) to the integral in (C52). Substituting the solution to (C53) into

(C52) leads to

A1

HS_ - -1 W2 ..
[mn —— w;_1—_—“—027rl12 (Ia/2511111 (E) (CO5)

—%2

where the simple trigonometric relationship

1

sinh—1(a) = csc h_1 (—) (C56)

IL‘

allows (C55) to be written as

1”‘9 ____—L_

’" " w21027rl'l’2

 

,2

(1.2.12 csc 12,—1 12 (C57)

”’2

“
(
£
3
\
.
[
3

The integral over the Ié—(lependent function was also found in an integral table [71]

fdxcsch‘1 (§)—- :ccsch 1 (Z) + asinh 1(—:—) (C58)

as

where

:2: 2 13,2; a 2 W2 (C59)

specializes (C58) to the. integral in (C57). Solving this integral, substituting the

solution back into (C57). and then using simple mathematical nlanipulations, the

final solution for the halfspace matrix elements when 2222 = 222 is

HS_ —j A172 . _1 2W2 A132

_ h W2 1 —— . 0

l'" 7" wMOWW2 [ 2 sm (A532) + Sin] (2W2)l (C6 )
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C.4 Parallel-plate Matrix Elements

The parallel-plate matrix elements only interact with the equivalent current defined

at BS2 in the formulation of Chapter 4. Therefore, they have only self terms defined

as

I2"? +AI2/‘2

) 3 7’ ,

2,1,5"? = / d.l‘,21\pp3 (22m2 , 012’?) (C61)

1221,12 —A122/2

where the kernel is given as

gl)

”2

Km (.21-2,,.,.0|;r’2) =/d.yf‘jé (“2app3(sc2,,,,.o 0115 222.0) (0.62)

422

 

and the parallel-mate Green’s function from Chapter 3 is specialized as

00 00 It: ($27222 I2) —j7l3/l 2 22 2 2 e e 2cosh(pd) (E — k)

GPP3 (272,,,2,0,0|;I.72,y2,0) = d A 2 - 2 2
_OC DO (27r) psmh (pd) (2f — k0)

 

(C63)

Substitution of (C62) and (C63) into (C61) and then rearranging the solution leads

to

  

PP3__ 00 00 2 ejérz’"? cosh (pd) (£2 — kg)

122222 _ 2 d A 3 2 2

w224j7r psmh (pd) (g — k0)

—00 —OO

”[2 1132712 +AJT2/2 I

. . / _. ,

- / dyéfz (ya) 6W2 / das’ge 3“? (0.64)

—l'l"2 $2722 —A.1‘2/2
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where the solution is in terms of both spatial and spectral integrals. Solving the

2.3-dependent spatial integral first leads to

 
 

oo 00 j£_(.22 —;2‘2 ‘ )

pp3 2 ( m? "2 sin (5A132/2) cosh (pd) (£2 — k2)

1222.22: ,_J22 d/\ . 2-2

up 7r Epsmh (pd) (5 k0)

—OO —00

W72

. 2

- / dy522(y§)e‘3"y2(c.65>

42/2

Next, the yé-dependent spatial integral is solved after substituting the yg-directed

distribution of the slot. electric field from equation 2.49, yielding

[PPB—_ _j

222. 22. W'I‘QWQ—W’IVQ

J'E (I2 ‘ -4l“ ) .

(12A sin I)“2)c "22 222.2 sin “Alp/2) cosh (pd) (£2 — k2)

nfp sinh (pd) (£2 — 13(2))

 (C66)

Z
the solution in terms of only spectral integrals.

S
\
8

C.4.1 Spectral Integral Analysis

The use of the Fourier transform domain method in Chapter 3, to solve for the parallel—

plate Green’s function, lead to the spectral integrals in equation (C63). Solving

the spatial integrals in equation (C64) has then given the solution to the parallel-

plate matrix elements in terms of only the spectral integrals in equation (C66).

Solving these spectral integrals will produce the desired solution for the parallel-plate

admittance matrix elements in Chapter 4.

Cauchy’s integral theorem, integral formula and residue theorem, are used to solve

the spectral integrals in equation (C66). Cauchy’s integral theorem states that if a

function f (:3) is analytic at all points interior to and on a simple closed contour C
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[64], then

fflzwz = 0 (C.67)

C

Cauchy’s integral formula states that if f (z) is analytic everywhere within and on a

simple closed contour C, then if 2:0 is any point interior to C

 

z—zo

f “3) dz = 21:272ij(20) (C68)

C

depending on whether C is oriented in the positive or negative direction. Cauchy’s

residue theorem states that if f (z) is analytic on the closed contour C, then the value

of the integral of f (3) around C is

f f(z) ..e: = 2:22) 2 Resz=zkf(:) (C69)

C
k=1

C.4.1.1 27 Analysis

Rearranging equation (C(56) so that all the ‘27 dependent terms are separated and

then re-writing the sinusoidal 2] conmonent in exponential form leads to the following

form of the solution

 

 

( )
2Pp3_ -1 7 56’ 2’”? 2”? enema/”(6242)222,22. —w;l.471’2l’V2

€(g2—k8)

00 (ej’IW2 — e‘j’7W2) 008110901)

.70

d" npsinhO—vd) (C )
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Since only the 27 spectral integral is of interest in this section, a separate g-dependent

function is defined as follows

00 (ejan2 _ e_jnW2) COSh (pd)

17(6): /d7) 77psinh (pd)

 (on)

—00

The parameter p z p (2}, g) is a function of 27, thus the solution written in terms of 27

 

is

ac (cj2/H’2 _ e_j.2}l1.v'2) COSll ( In? _ "8(1)

F (g) 2 / 212,
(0.72)

where

77(2) ___ p2 + k2 _ £2
((3.73)

Equation (C71) now reveals the singularities in the complex n—plane, where at first

glance there appears to be both simple poles (ie. 27 = 0) and branch cuts (ie.

p. sinh (pd) = 0). However, upon further evaluation the apparent branch cuts actu-

ally reduce to simple poles, the key to this important reduction is the small argument

approximation for the sine function (sin (I) E .2: for :2: << 1). This is because no

matter what. value of p makes sinh (pd) : 0, there is always ends up being a p2 in the

denominator which gives simple poles at 2] 2 i210.

By allowing '2] to be complex (ie. 27 = 27”). + jmm), the integrand in equation

(C71) becomes analytic in the entire complex n—plane, except at the simple pole

singularities stated earlier. This allows Cauchy’s integral theorem to be invoked by

deforming the integration contour off the real axis, where the specific closed contour C

iS chosen based on an examination of the integrand. More specifically, the exponential

terms eifllw? are considered since proper choice of the half-plane closure provides

GXponential decay and thus convergence of the integral. Splitting the integrand into
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two terms as follows

 
 

oo jnl’VQ oo jnW

‘ I — 2 ‘

F(€) / d' e cosh (pd) _ / d e cosh (pd)

.74

221) sinh (Pd) np sinh (pd) (C )

7‘00
—oo

allows the f—dependent function to be defined as

F“) = FUHPK) +FLHP(€) (075)

where UHP and LHP describe the half-plane closure used to ensure convergence of

the integrand.

Figure C .1 shows the closed contour for the integrand of FUHP (5), where applying

Canchy’s integral theorem leads to

FUHP (5) "if
CFUHP(€,72)dn=/ FUHP(€.72)d72

CR+CJ +(JgLO

= 27rj 2 Res,- (FUHP (5.27)) (C76)

The infinite contour integral is examined, via inspection, by letting 2} tend to

infinity. The hyperbolic sinusoidal terms are seen to cancel each other and the p term

tends to 2], giving

ej'TIWQ

FUHP 5,2 d =/ d2; _0 (3.77A; ( 2) 72 a; 222 ( )
 

where since 2) is complex and proper half-plane closure was chosen, the exponential

term decays, driving the value of the integral to zero.

The contour integral around the pole at '27 = 0 is examined using Cauchy’s residue

them‘em. The semi-circle arc has a negative orientation to ensure the desired integral

has the proper sign. Since the arc in only half a circle, the residue is only multiplied
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A Im {17}

 

 
 x22;

Figure C.1. Evaluation contour for UHP closure in the complex n-plane

by —77j instead of —27rj, leading to

L6. FUHP (an) d?) = -7rj [Res (FUHP (g,0))] (0.78)

where the residue is

  

Res (FUHP(§,0))
___ ngPW = 0) _ cosh (pod)

_ , e79

q'g’HP(n=0) posmh(pod) ( )

Substituting the results for (C77) and (C79) into (C76) and rearranging the

function to achieve the desired result in terms of the remaining residues, gives

 

UHP _ . CO811019060 ]

9140 F (5’ 22) (in _ m i290 sinh (pod)

Res (FUHP (g, 470)) + i Res (FUHP (g, —2,,,))] (C80)

1/=1

+27Tj

 

where the rmnaining residues have full circle arcs orientated in the positive direction,
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thus they are multiplied by 277j and are found as

UHP . -. .
. p- (72 = ~00) e—J'm”?

Res (FD HP (5» —770)> = [0323p : —2,_ (C81)

q -2,” (72 = —220) ’70“

 

 

and

, UHP , _ _ —" W2
,. p_ — 2 J 1722/ 2

q _2,,, (22 = -72:») "M1

respectively. Substituting (C81) and (C82) into (C80) yields the final desired result

as

 

, _ . ..‘l 7 ,—j27014"2 00 '—jr7VW'2

Fl” HP (6) = 7r" [ cos1(p()() e 26 (C83)

posmhad) 2,32 ,2, 723d

where the various spectral wavenumbers are given as

. . 71/77 ./

715:1)12/‘17I62—52 i [91/27 ; 778=I€2-€2 ; p()=] 132—f2 (0.84)

Figure C2 shows the closed contour for the integrand of F“IP (g), where applying

Cauchy’s integral theorem leads to

FLHPm = 7 FW’ (5.70210: / _ _ FLHPemMn
C CR+C0 +000

2 —277j 2 Res, (FLHP (g, 27)) (C85)

The infinite contour integral is evaluated in the same manner as the UHP, where 27

is allowed to tend to infinity. The hyperbolic sinusoidal terms are then seen to cancel

each other and the 7) term tends to 27, giving

LHP 873.77%
/ F (5.20m: / (in—=0 (0.86)
0.; C—

2
OO 27

where again since 27 is complex and the proper half-plane closure was chosen, the
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Figure C2. Evaluation contour for LHP closure in the complex 27-plane

exponential term decays, driving the value of the integral to zero.

The contour integral around the pole at 27 = 0 is again examined using Cauchy’s

residue theorem. The semi-circle are has a positive orientation for the LHP to ensure

the desired integral has the proper Sign. Since this are is also only half a circle, the

residue is only multiplied by 7rj instead of 27rj , leading to

fr FL”P (E, 72) dn = 7rj [Res (FLHP (g,0))] ((3.87)

where the residue is

  

. LHP( .—_ 0) cosh ( (I)
P». (FLHP 0 = p0 ’7 = — I L m C88
163 \ (6» )) (1,611}? (77 = 0) p0 sinh (pod) ( )

Substituting the results for (C85) and (C87) into (C84) and rearranging the
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function to achieve the desired result in terms of the remaining residues, gives

p0 sinh (pod)

f‘ FLHP (577)6122 Z 7rj [ cosh (720d) ]

C ,

Res (FLHP (5, 770)) + 2 Res (FLHP (e 725))—27rj

 

(0.89)

V21

where the remaining residues have full circle arcs orientated in the negative direction,

thus they are multiplied by —27rj and are found as

 

LHP _ _,-. w
p27 (7] ‘— 770) 6 J00 2

R98 (FLHPQJKD) = ,BHP . _. = ——§‘21— (C90)

(12,0 (22 720) 710 ‘

and

LHP , _. —«' ['V
. I — 1771/ 2

Res (FLHPk-Jh/U = P’nLVHPU 221) = _LW— (091)

q '01} (TI : 771/) UV

respectively. Substituting (C90) and (C91) into (C89) yields the final desired result

for the LHP as

FLHP (g)
, I: cosh (pod) e‘j’IOWQ

7"" _—

7)0 sinh (7)007.) 278 d

00 _ .. W
2 JUV 2

—e-————] ((3.92)
2

u=1 27,/d

Substituting (C84) and (C92) into (C75) and combining like terms gives the

following form of the E-dependent function

P0 sinh (290d)

—— C93

278 d V 273d ( )

, cosh (pod) e-j’70W2 00 2e—j7lVW2

F (o = 2m i ——

=1

A more compact form of the {-dependent function is found by noticing that the

middle term of (C93) is the 1/ = 0 term of the series in the last term of (C93). The

compact version of the {-dependent function is thus written as

700 sinh (pod)

.g‘l '7 '00 _jnL’W2-/

F(§) = 27rj[ COMP”) + -e—————“—] (0.94)
K)

/=0 77;; d
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where the Neumann number is defined as

1 for V = 0

61/ Z ((3.95)

2 for 1/ # 0

The f-dependent function in (C94) is then substituted back into (C70) giving

the parallel-plate admittance matrix elements in terms of only a 5 spectral integral.

Splitting the matrix elements into two separate terms gives

 

00 2f (1“ ., -I . )

pp3 _ —j / e 2 n? 222.2 sin (€Am2/2) (£2 -— k2) cosh (720d)

2 2. _ ‘ ' (If i

i

I tu/tZTl’l'l'g 6 (£2 - k3) 2208111110900

-—2‘ 0° °° ej€<22_x2712) sin (EAx2/2) (£2 — k?) 6‘4"”?._-_,26V / dg 2 2 2 ((3.96)
(2271,271'1/1/2 11:0 _ g (g — 190)an

 

Solving the 5 integrals in closed form would be the most advantageous computa-

tionally. However, if that is unfeasible to attain, then solving the integral numerically

is the only option. In the case of (C96) only the first term is able to be solved in

closed form, because the second term has a branch cut due to the multi-valued 27,,

term. The parallel-plate admittance matrix elements are thus redefined in terms of

two functions as

. —j 1 2 00
(PR; : —— —F — E F C97

where F1 corresponds to the first term in (C96) and is evaluated in the next sec-

tion. After expanding the sine function in terms of exponentials and simplifying the

function, F1 is given as

‘30 ((0,ng — 63.53) 790 cosh (pod)

n=fe .
g (£2 — k8) Slnh (pod)

 (C98)
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F2 corresponds to the second term in (C96) and is solved numerically, where noticing

that the function is even in g and is written as

 (0.99)

°C cos [é (mm, — 2:2,,2)] Sin (gags/2) (g2 — k2) e-inz/W2

FF/dg €(52—k8)223
0

thus simplifying the necessary compuatations. Other definitions include

jmr .

223=p3+k2-€2 ; pi): d ; po=2\/k2-€2 (0100)
 

and

A

B = (:17ng — 11:2"2 — Axg/2) = [3:172 (222 —- 22 —1/2) (C101)

(3.4.1.2 5 Analysis

The 6 spectral integral analysis of (C98) is carried out in almost exactly the same

manner as the 27 spectral integral analysis of the last section. Splitting the integrand

into two separate terms gives

  

Flz—Z[E Umpocosh pod _Z1€ eJEBmcosthd) (0102)

£(52 — kg) sinh((720(1) {(52 — k8) sinh (720(1)

where. depending on matrix element being filled, the upper or lower half-plane closure

is defined for the first term as

A = A1? (222. — n +1/2)

> 0 V m 2 n UHP Closure (0103)

< 0 \2’ m < 22. LHP Closzrre
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and for the second term as

B :2 Acr(m—n— 1/2)

> 0 V m > n UHP Closure ((3104)

< 0 V m S n LHP Closure

This leads to three different closure cases for the function F1 given as

F1(m > 22) = {{qu — FIUBHP (C105)

F1(221=22) = 139/4H1” — Ffif" (c.100)

F1(m < 22) = FILAHP — F112;”) (C107)

Both the first and second terms have the need for upper and lower half-plane closure.

Since they have the same integrand, except for the terms A and B, new functions in

terms of a dummy variable (DV) are defined as

 

 

OO

83'5””) cosh d
F913: fdg 2 p20 , (1)“) (0.108)
D _ {(5 -k0)31nh(p0d)

and

LHP 0C €j€(_DV)p0608h(P0d)

W ((e —ko)smh<pod>

for the upper and lower half-plane closure respectively. This is done so that the

complex plane analysis only has to be calculated once instead of multiple times. The

desired F1 functions are then created by substituting in the appropriate term for the

dummy variable.

Figure C3 shows the closed contour for the integrand of F1UD11/P , where applying

152



Cauchy’s integral theorem leads to

UHP _ UHP _ UHP

F119,, — 708210,, (e -— LR+CJ+0$ 210,, ((18

= 22rj ZResi (Ff/DIX}D (6)) (0.110)

7 “{5}

Co:

 ; x a

x _ 52:0 “{5}
El

  
Figure C.3. Evaluation contour for UHP closure in the complex f-plane

The infinite contour integral is examined, through inspection, by letting { tend

to infinity. The hyperbolic sinusoidal terms are seen to cancel each other and the 720

term tends to 5, giving

 

ejeDV)

2
[ch FFD$P(()dg=/C+ dg 5 =0 (0.111)

where since «S is complex and proper half—plane closure has been chosen, the exponen-

tial term decays, driving the value of the integral to zero.
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The contour integral around the pole at g = 0 is examined using Cauchy’s residue

theorem. The semi—circle arc has a negative orientation to ensure the desired integral

has the proper sign. Since the arc in only half a circle, the residue is only multiplied

by —2rj instead of —22rj, leading to

(,1 F15? (e e = —m’ [R(1.5(F1Lg{f)(0))] (0.112)

where the residue is

 Res (FUHP(0)) _ ”SHIP“ = 0) _ kcos(kd)_ _ ______ (0.113)
1DV q,(()]HP (é ___ 0) 15(2) sm (led)

Substituting the results for (C111) and (C113) into (C110) and rearranging the

function to achieve the desired result in terms of the remaining residues, gives

l 7,1 . . .
UHP - , (.08 (Ad) . [ _ ( UHP
F ——2r] ———-———— + 22r' Res F —k())

W l (3 sin (M) J IDV ( )

+ 2 Res (FIUDIi/P 0'60”] (C114)

where the remaining residues have full circle arcs orientated in the positive direction,

thus they are multiplied by 22rj and are found as

  R (FUHP( I; )) - p{1’52}; (6 _k0) _ e—jk°(DV)EC°S(%d) (C 115)
L, W ,0 — (1,71ng = —k0) " 2% sin (Ed) .

and UHP __

1)‘ (6 = <60) _e-WDVME,

Q’UHP (5—_ £1)—€;2 (€12; — 1‘0) d

respectively. Substituting (C115) and (C116) into (C114) yields the final desired

  12152.9(FijHVH—g,,,.-_-.)) (0.116)
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result as

UHP_ . ICCOS (kd) Bujk0(Dv)7C-COS (Ed)+ e'j5U(DV)p0U

A0 s1n (Id) (10 sm (kd) v: 1 €12, (EU- (€861)

   

where

E = k2 — 1:3 (0.118)
2 2 2
€8=pov+k ; 220.):—

Figure C4 shows the closed contour for the integrand of FLHP,where applying

Cauchy’s integral theorem leads to

LHP FLHP _ LHP

F10, =71 dEFW (e— /CR+CJ+C_ PM ((1 d€

 

= —22erResz(F1LgVP (5)) (C119)

_ a: “ Im{§}

X

_ + '5'
E-ko x ...

x ;

CR

  
Figure C4. Evaluation contour for LHP closure in the complex {-plane
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The infinite contour integral is examined, through inspection, by letting i tend

to infinity. The hyperbolic sinusoidal terms are seen to cancel each other and the 720

term tends to 6, giving

LHP _ €j€(—DV) _
/Cso 15‘le (€)d€ _ [638 (05—25—— _ 0 (0.120)

where since 6 is complex and proper half-plane closure has been chosen, the exponen-

tial term decays, driving the value of the integral to zero.

The contour integral around the pole at g = 0 is examined using Cauchy’s residue

theorem. The semi-circle are a positive orientation to ensure the desired integral has

the proper sign. Since the arc in only half a circle, the residue is only multiplied by

2rj instead of 22rj, leading to

 

LHP __ . LHP
/00‘ F1DV (5) dg _ m [Res(F1DV (0))] (0.121)

where the residue is

LHP
, = 0) [(7 cos (kd)

R2.) FLHP 0 2 po (6 =—— C122(S( 1DV (l) qlng(€: ) kgsinUcd) ( )

Substituting the results for (C120) and (C122) into (C119) and rearranging the

function to achieve the desired result in terms of the remaining residues, gives

, kcos(kd) ,LHP _ _ , _ __ LHP .,

F _ 7r] i kgsin(kd)i 27f] lReS(F10V (W)

+ 2 Res (#51; (5,9)] (0.123)

22:1

where the remaining residues have full circle arcs orientated in the negative direction,
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thus they are nmltiplied by —22rj and are found as

  

., LHP 21,2511)“: k0) _ ejk0(_Dvllt:cos (Ed)

R68 F1 (k0) LHP - 2 . — ((3.124)

DV —kq’k0 (6: k0) 2k0 Sin (led)

and

LHP ' —DV 2
p _ €22 J€21( ) .

RC?S(1LI§IVP (61)) IngPG ) = 82 2 501’ (0125)
q gv (5 = Ev) €22 (512 _ k5) d

respectively. Substituting (C124) and (C125) into (C123) yields the final desired

  

result as

  

101 + 2
l8 sin (led) kg sin (Ed) “___1 {'72, (£73 — leg) d

(C126)

FLHP—___W, [_ 28-03(02) arm—DWECOS (Ed) 00 26.18.,(—Dv)pgv

 

Substituting the results from (C117) and (C126), with the appropriate A, B term

replacing the dummy variable, into equations (C105-C107) respectively, leads to the

following set of three distinct groups of F1 functions

P30 [e—jévA _ (2888]

 

22r' 00

F1071 >71) = 7J2:

”(i=1

 

 

 

612' (€12) _' 1‘8)

Ecos (Ed) [e‘jkOA — e_Jl‘”OB]

+2rj 2 _ _ (C127)

leo sm (led)

52A 361
:2—7—Lj p31, [6-J ‘l' 6 B]

F1 (222—- 22) .

77,2. €3((£3 8)

’Fcos (Ed) [e‘jkOA + ejkOB] kcos (kd)

+7TJ — 27Tj--—— (C128)

k0 sin (kd) JkO sin (led)
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 F (m < n) 27Tj i pg” [_ejEUA + ejngl
1 I ‘ = _—

d w, 83(13 — 1g)

Ecos (Ed) [-ejk0A + elkOB]

k0 sin (kd)

 

+712 (0.129)

Substituting (C127-C129) into (C97) and rearranging the terms leads to the

final representation of the parallel-plate admittance matrix elements, given as

  

 

158583: 18188 8,8,8 + 1388818,) +1388” (0130)

where the first and second terms given as

ll _] i22pOUFC'lp1 + kcos (led)Fle‘Bp2 (C 131)

n‘pp T4182 ”:18; (5,2, _ 1.3) d 1,8888 (18) '

and

”k ‘ kl

1? — ’ “M ‘) for m. = 72 ((3.132)
m"PP 12112112180 sin (laid)

respectively, are associated with the F1 function and the third term, given as

1212 72 Z 61/

’ PP: wungdV

7 cos [g (12'2",2 — 172,,2)] sin (€Amg/2) (£2 — k2) 6‘37qu"?

- d5

0

 * , (C133)

6(52 — 126) n3

is associated with the F2 function. Other definitions include

[e‘jgl’A — e’lg‘fi] for m > n

Flax-[)1 : [€_jf’vA + (flat/88] f0]. 7” 2 n (C134)

{-63.61% + ejEL’B] for m < n
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and

[e—jkOA — e—ijB] for m > 72

FerpQ __

1 [efikoA + ejkOB] for m = 72

[—ejk0A+ejkOB] for m<72

where the terms A, B are given as

A=A17(m—n+1/2)

B = A2012 — n —1/2)

and the various spectral constants are

2 jmr .

6U : p31, + A32 1 p01) : T 1 6U : —] — (

jmr ,

713:1?12/‘l‘k2’52 i 1912:?“ ; 77u=—] —(7712/)

1:18—10, 1: 182—13

with the Neumann number given as

1 for 1/ = 0

61/ =

2 for 1/ 71$ 0

159

(C135)

((3.136)

(0.137)

(0.138)

((3.139)

(0.140)



A
]

 
 

 



BIBLIOGRAPHY

160



lll

BIBLIOGRAPHY

W’. Williams, and K. O’Malley, “A lightweight composite shielding material for

electromagnetic gun launchers,” Magnetics, IEEE Transactions 012, vol. 33, no.

1, pp. 625-629, Jan. 1997.»

D. C. Smith, C. Herring, and R. Haynes, “An improved method of characterizing

shielding materials,” Electromagnetic Compatibility, 1994. Symposium Record.

Compatibility in the Loop. IEEE International Symposium on, pp. 224-226, Aug.

1994.

P. F. Wilson, J. W. Adams, and M. T. Ma, “Measurement 0 the electromagnetic

shielding capabilities of materials,” Proceedings of the IEEE, vol. 74, no. 1, pp.

112—115, Jan. 1986.

S. 0. Nelson, S. Trabelsi, and S. J. Kays, “Correlating Dielectric Properties

of Melons with Quality,” 2006 APS International Symposium-URSI Meetings,

Albuquerque, NM, Session 564.6, Paper 4849, 2006.

A. M. Nicolson, and G. F. Ross, “Measurement of the Intrinsic Properties of

Materials by Time-Domain Techniques,” IEEE Trans. Instrum. Meas, v01. IM-

19, pp. 377-382, Nov. 1970.

W. B. Weir, “Automatic Measurement of Complex Dielectric Constant and Per—

meability at Microwave Frequencies,” Proc. IEEE, vol. 62, pp. 33-36, Jan. 1974.

M. J. Havrilla, Analytical and Experimental Techniques for the Electromagnetic

Characterization of Materials, Doctoral Dissertation, Michigan State University,

2001.

K. Vinoy, and R. Jha, Radar Absorbing lll'laterials: Fi'om Theory to Design and

Characterization, Norwell, MA: Kluwer Academic Publishers, 1996.

R. Zoughi, Microwave Non-Destructive Testing and Evaluation, The Nether-

lands: Kluwer Academic Publishers, 2000.

B. Clarke, ed., A Guide to the Characterization of Dielectric Materials at RF and

Microwave Frequencies, London: Institute of Measurement and Control, 2003.

L. Chen, C. Ong, C. Neo, and V. Varadan, eds., Microwave Electronics: Mea-

surement and Materials Characterization, Hoboken, NJ: John Wiley and Sons,

2004.

161



[12] C. Grosvenor, R. Johnk, D. Novotny, S. Canales, J. Baker-Jarvis, M. Janezic, J.

[13]

[14]

1151

[161

[17]

[18]

[19]

[20]

Drewniak, M. Koledintseva, J. Zhang, and P. Rawa, “Electrical material property

measurements using a free-field, ultra—wideband system,” 2004 Annual Report

Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), pp. 174-

177, Oct. 2004.

F. Smith, B. Chambers, and J. Bennet, “Methodology for accurate free-space

characterization of radar absorbing materials,” IEE Proceedings on Scientific

Measurement Technology, vol. 141, pp. 538-546, Nov. 1994.

R. G. Nitsche, J. Preifner, and E. M. Biebl, “A free space technique for measuring

the complex permittivity and permeability in the millimeter wave range,” IEEE

MTT—S Digest, pp. 1465-1468, 1994.

D. Ghodgaonkar, V. Varadan, and V. Varadan, “Free-space measurement of com-

plex permittivity and complex permeability of magnetic materials at microwave

frequencies,” IEEE Transactions on Instrumentation and Measurement, vol. 39,

pp. 387—394, Apr. 1990.

H. Alenkowicz, and B. Levitas, “Measurement of complex permittivity and com-

plex permeability of materials,” Microwaves and Radar, MIKON ’98., 12th In-

ternational Conference on vol. 2, pp. 668-672, May 1998.

H. Alenkowicz, and B. Levitas, “Time domain measurement of complex permit-

tivity and complex permeability of materials,” Microwaves, Radar and Wireless

Communications, MIKON ’02., 14th International Conference on vol. 1, pp. 302-

305, 2002.

C. L. Pournaropoulos, and D. Misra, “A study on the coaxial aperture elec-

tromagnetic sensor and its application in the material characterization,” IEEE

Transactions on Instrumentation and Measurement, vol. 43, no. 2, pp. 111—115,

1994.

NASA-95-TM110147, “Capabilities to measure the dielectric properities of ma-

terials,” Electromagnetic Properties Measurement Laboratory (EPML), 1995.

C. -L. Li, and K. -M. Chen, “Determination of electromagnetic properties of ma-

terials using flanged open—ended coaxial probe full-wave analysis,” IEEE Trans-

actions on Instrumentation and Measurement, vol. 44, pp. 19—27, Feb. 1995.

162



[21]

[22]

[27]

[28]

[30]

W. R. Scott Jr., “A new technique for measuring the constitutive parameters

of planar materials,” IEEE Transactions on Instrumentation and Measurement,

vol. 41, no. 5, pp. 639-645, 1992.

J. Baker—Jarvis, and M. D. Janezic, “Analysis of a two-port flanged coaxial holder

for shielding effectiveness and dielectric measurements of thin films and thin

materials,” IEEE Tiansactions on Electromagnetic Compatibility, vol. 38, pp.

67-70, Feb. 1996.

S. I. Ganchev, “Non-destructive microwave measurements of dielectric materi-

als,” Microwaves and Radar, 1998. MIKON ’98., 12th International Conference

on, vol. 3, pp. 687-691, May 1998.

O. Tantot, M. Chantart-Moulin, and P. Guillon, “Measurement of complex per-

mittivity and permeability and thickness of multilayered medium by an open-

ended waveguide method,” IEEE Transactions on Microwave Theory and Tech-

niques, vol. 46, pp. 519—522, Apr. 1997.

J. Villemazet, M. Chatard-Moulin, P. Guillon, and H. Jallageas, “Non-

destructive complex permittivity measurement of absorbing materials,” IEEE

Conference on Instrumentation and Measurement, Conference Record, pp. 232-

235, 1991.

M. C. Dccreton, and F. E. Gardiol, “Reflection. form a metallic or dielectric sheet

into an open-ended waveguide,” IEEE 'I’ransactions on Antennas and Propaga-

tion, pp. 362-365, Oct. 1976.

T. J. Park, and H. J. Eom, “Scattering and reception by a flanged parallel-plate

waveguide: TE-mode analysis,” IEEE Transactions on Microwave Theory and

Techniques, vol. 41, pp. 1458-1460, Aug. 1993.

S. I. Ganchev, S. Bakhtiari, and R. Zoughi, “A novel numerical technique for

dielectric measurement of general lossy dielectrics,” IEEE Transactions on In-

strumentation and Measurement, vol. 41, pp. 361-365, Jun. 1992.

S. Bakhtiari, S. I. Ganchev, and R. Zoughi, “Open-ended rectangular waveguide

for non-destructive thickness measurement and variation detection of lossy dielec-

tric slabs backed by a conducting plate,” IEEE Transactions on Instrumentation

and Measurement, vol. 42, pp. 19-24, Feb. 1993.

L. Cairo, and T. Kahan, eds., Variational Techniques in Electomagnetism, New

York: Gordon and Breach, 1965.

163



[31]

[32]

[33]

[34]

l35l

[37]

[38]

[39]

J. A. Encinar, and J. M. Rebollar, “Convergence of numerical solutions of open-

ended waveguide by modal analysis and hybrid modal-spectral techniques,” IEEE

Tranactions on Microwave Theory and Techniques, vol. 34, pp. 809-814, Jul.

1986.

Z. Shen, and R. H. MacPhie, “A simple method for calculating the reflection

coefficient of open-ended waveguides,” IEEE Tiansactions on Microwave Theory

and Techniques, vol. 45, pp. 546-548, Apr. 1997.

V. Tcodoridis, T. Sphicopoulos, and F. E. Gardiol, “The reflection from an open-

ended rectangular waveguide terminated by a layered dielectric medium,” IEEE

Transactions on ll'licrmvave Theory and Techniques, vol. 33, pp. 359—366, May

1985.

C. -W. Chang, K. -M. Chen, and J. Qian, “Non-destructive measurements of

complex tensor permittivity of anisotropic materials using a waveguide probe

system,” IEEE ’Iiansactions on A'Iicrowave Theory and Techniques, vol. 44, pp.

1081-1090, Jul. 1996.

C. NV. Chang, K. -M. Chen, and J. Qian, “Non-destructive determination of

electromagnetic parameters of dielectric materials at X-band frequencies using a

waveguide probe system,” IEEE Transactions on Instrumentation and Measure-

ment, vol. 46, pp. 1084-1092, Oct. 1997.

K. J. Bois, A. D. Ben-ally, and R. Zoughi, “l\lultiniode solution for the reflection

properties of an open-ended rectangular waveguide radiating into a dielectric

half-space: The forward and inverse problem,” IEEE Transactions on Instru-

mentation and Measurement, vol. 48, pp. 1131-1140, Dec. 1999.

G. Roussy, H. Chaabane, and H. Esteban, “Permittivity and permeability mea-

surement of microwave packaging materials,” IEEE Transactions on Microwave

Theory and Techniques, vol. 52, pp. 903-907, Mar. 2004.

J. Lai, D. Hughes, B. Gallaher, and R. Zoughi, “Determination of the thickness

and dielectric constant of a dielectric slab backed by free-space or a conductor

through inversion of the reflection coefficient of a rectangular waveguide probe,”

IMTC 2004 - Instrumentation and llIeasurement Technology Conference, pp.

56-60, May 2004.

S. W'ang, M. Niu, and d. Xu, “A frequency-varying method for simultaneous mea-

surement of complex permittivity and permeability with an open-ended coaxial

164



[401

[42]

[43]

[46]

[47]

[481

[49]

[50]

probe,” IEEE Tiansactions on Microwave Theory and Techniques, vol. 46, pp.

2145-2147, Dec. 1998.

J. Baker-Jarvis, M. D. Janezic, P. D. Domich, and R. G. Geyer, “Analysis of an

open-ended coaxial probe with lift-off for non-destructive testing,” IEEE Trans-

actions on Instrumentation and Measurement, vol. 43, pp. 711-718, Oct. 1994.

J. W. Stewart, Simultaneous Extraction of the Permittivity and Permeability of

Conductor-Backed Lossy Materials Using Open-Ended Waveguide Probes, Doc—

toral Dissertation, Air Force Institute of Technology, 2006.

R. J. Mailloux, “Radiation and near-field coupling between two collinear open—

ended waveguides,” IEEE Transactions on Antennas and Propagation, vol. 17,

pp. 476-481, Apr. 1999.

T. S. Bird, “Analysis of mutual coupling in finite arrays of different-sized rect-

angular waveguide,” IEEE Transactions on Antennas and Propagation, vol. 38,

pp. 166-172, Feb. 1990.

T. S. Bird, “Cross-coupling between open-ended coaxial radiators,” IEE Pro-

ceedings on Microwave, Antennas and Propagation, vol. 143, pp. 265-271, Aug.

1996.

T. S. Bird, “Mutual coupling in arrays of coaxial waveguides and horns,” IEEE

Transactions on Antennas and Propagation, vol. 52, pp. 821—829, Mar. 2004.

A. F. Stevenson, “Theory of slots in rectangular waveguides,” J. Appl. Phys.,

vol. 19, pp. 24-38, Jan. 1948.

A. A. Oliner, “The impedance properties of narrow radiating slots in the broad

face of rectangular waveguide, Part I - Theory, Part II - Comparison with Mea—

surement,” IRE Trans. Antennas Propagat., vol. AP-5, pp. 4-20, Jan. 1957.

L. Josefsson, “A waveguide transverse slot for array applications,” IEEE Trans.

Antennas Propagat, vol. AP-41, pp. 845-850, July 1993.

L. Josefsson, “Analysis of longitudinal slots in rectangular waveguides,” IEEE

Trans. Antennas Propagat, vol. 35, pp. 1351-1357, Dec. 1987.

J. Joubert and J. A. G. Malherbe, “Moment method calculation of the prop-

agation constant for leaky-wave modes in slotted rectangular waveguide,” IEE

Proceedings - Microwaves, Antennas and Propagation, vol. 146, pp. 411-415, Dec

1999.

165



[51] J. Jacobs, J. Joubert, and J. W. Odendaal, “Radiation efficiency of broadside

conductor-backed CPW-fed twin slot antennas on two-layer dielectric substrate,”

IEEE AFRICON - Africon Conference in Africa, vol. 2, pp. 531-533, Oct. 2002.

[52] J. Joubert, “A transverse slot in the broad wall of inhomogeneously loaded rect-

angular waveguide for array applications,” IEEE Microwave and Guided Wave

Letters, vol. 5, pp. 37-39, Feb. 1995.

[53] J. Joubert and D. A. McNamara, “Analysis of radiating slots in a rectangular

waveguide inhomogeneously loaded with a dielectric slab,” IEEE Transactions

on Antennas and Propagation, vol. 41, pp. 1212-1221, Sept. 1993.

[54] V. V. S. Prakash, S. Christopher and N. Balakrishnan, “lV‘Iethod-of-mornents

analysis of the narrow-wall slot array in a rectangular waveguide,” IEE Pro-

ceedings on l\«"Iicrowaves, Antennas and Propagation, vol. 147, pp. 242-246, June

2000.

[55] S. Silver, Microwave Antenna Theory and Design (MIT Rad. Lab. Series, vol.

12) New York: McGraw-Hill, 1949, p. 286-301

[56] R. S. Elliott, Antenna Theory and Design, Englewood Cliffs, NJ: 1981.

[57] E. J. Rothwell, and M. J. Cloud, Electromagnetics, Boca Raton, FL: 2001.

[58] R. F. Harrington, Time-Harmonic Electromagnetic Fields, New York: McGraw-

Hill, 1961.

[59] W. E. Boyce, and R. C. Diprima, Elementary Differential Equations, New York,

John Wiley and Sons, 1986.

[60] D. P. Nyquist, ECE92QB Advanced Topics in Electromagnetics; Antenna Theory,

Course Notes, Michigan State University, 1989.

[61] C. T. Tai, Dyadic Green’s Functions in Electromagnetic Theory, 2nd ed. Piscat-

away, NJ: IEEE Press, 1994.

[62] R. E. Collin, Field Theory of Guided Waves, 2nd ed. Piscataway, NJ: IEEE

Press, 1991.

[63] C. T. Tai; P. Rozenfeld, “Different Representations of Dyadic Green’s Func-

tions for a Rectangular Cavity,” IEEE Trans. Microwave Theory and Techniques,

Vol.24, Iss9, Sep 1976, Pages: 597- 601

166



[64]

[65]

[66]

[67]

Ml

[69]

[70]

[711

J. W. Brown, and R. V. Churchill, Complex Variables and Applications, 6th ed.

New York, McGraw-Hill, 1996.

G. F. Eugen, and C. A. Hoer, “Thru-Reflect-Line: An Improved Technique for

Calibrating the Dual Six-Port Automatic Network Analyzer,” IEEE Trans. Mi-

crowave Theory and Techniques, 1979.

M. Microwave, “TRL Calibration Defined,” vol. 2004: Maury Microwave.

A. Technologies, “Agilent Specifying Calibration Standards for the Agilent 8510

Network Analyzer,” March 1986.

A. E. Bogle, Electromagnetic Material Characterization using a Partially Filled

Rectangular waveguide, Masters Thesis, Michigan State University, 2004.

J. A. Berrie, Measurement of Electrical Parameters for Planar Materials, Disser-

tation, The Ohio State University, 1992.

P. De Langhe, K. Blomme, L. Martens, and D. De Zutter, “Measurement of low-

permittivity materials based on a spectral-domain analysis for the open-ended

coaxial probe,” IEEE Transactions on Instrumentation and Il/Ieasurement, vol.

42, no. 5, pp. 879—886, Oct 1993.

D. Zwillinger, CRC Standard A'Iathematical Tables and Formulae, Blst ed. New

York, Chapman and Hall/CRC, 2003.

167



 

  

\\[][[]]]]i]]

V

     

  

[[1111]]
56 117

RRRRR

[l]


