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ABSTRACT

Symplectic Structures, Lefschetz Fibrations

and Their Generalizations on Smooth Four-manifolds
By

Refik Inang Baykur

In this thesis, we study svinplectic structures. Lelschetz fibrations. and their var-
ious generalizations on smooth d-manifolds along with the associated (smooth) in-
variants. Our results will be presented in separate chapters as follows:

In Chapter 3. we outline a general construction scheme to obtain minimal svin-
plectic structures on simply-connected 4-manifolds with small Euler characteristics.

Using this scheme, we illustrate how to obtain minimal svmplectic 4-manifolds home-

omorphic to CP?#(2k + 1)CP? for k = 1.....4. or to 3CP2# (21 + 3)CP?. for
I =2....,6. Sccondly. for each of these homeomorphism tvpes with b = 1. we
show how to produce an infinite family of pairwise nondiffeomorphic nonsvimplectic
4-manifolds helonging to it. In particular, we prove that there are infinitely many
irreducible nonsvmplectic smooth structures on CP?#3CP2.

In Chapter -1, we study the d-manifolds with nontrivial Seiberg-Witten invariants
which are equipped with near-svmplectic broken Lefschetz fibrations. We first study
the topology of these fibrations and describe simple presentations of then. We then

provide several examples using handlebody diagrams. We define a near-svmplectic



operation that generalizes the symplectic fiber sum operation, together with its effect
on the Seiberg-Witten invariants and Perutz’s Lagrangian matching invariants. These
techniques are then used to obtain several results on near-symplectic manifolds with
non-trivial invariants.

In Chapter 5, we show that every closed oriented smooth 4-manifold can be de-
composed into two codimension zero submanifolds (one with reversed orientation) so
that both pieces are exact Kahler manifolds with strictly pseudoconvex boundaries
and that induced contact structures on the common boundary are isotopic. Mean-
while, matching pairs of Lefschetz fibrations with bounded fibers are offered as the
geometric counterpart of these structures. We also provide a simple topological proof
of the existence of folded symplectic forms on 4-manifolds. Finally in the Addendum,

we provide answers to two open questions stated by David Gay and Rob Kirby.
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CHAPTER 1

Introduction

The world of smooth 4-manifolds has been explored using both analytical and topo-
logical tools. Several special structures which are the subject of complex, Riemannian,
or symplectic geometries have been extensively used in this research, often in conjunc-
tion with the gauge theoretic smooth invariants of Donaldson to Seiberg-Witten. On
the other hand. Kirby calculus and various surgery techniques have become classical
tools to attack problems of 4-manifold topology. The last decade has witnessed a
novel advance due to the intense collobaration of these two forces. During this period
most attention has been given to svmplectic 4-manifolds. This was mostly due to
work of Taubes which related the Seiberg-Witten invariants (SW) to enumerative ge-
ometry [75]. Donaldson’s work which provided a description of svmplectic 4-manifolds
in terms of Lefschetz fibrations/pencils [17], and finally various surgeries introduced
by Fintushel and Stern, Gompf. and several others (for example [38, 27. 28]).

An elegant bridge in this story was established by the work of Donaldson and
Smith [19], who defined an invariant which, roughly speaking, associates a Gromov
count to sections of fiberwise symunetric products corresponding to nicely embedded
multisections of a given svinplectic Lefschetz pencil. This invariant was shown to be
equivalent to SW later by Usher. Remarkably, the most recent smooth d-manifold

invariant of all, Heegaard-Floer invariants of Ozsvath and Szabd were shown to com-



pute nontrivially on symplectic 4-manifolds by using cobordisms that arise from
underlying Lefschetz pencils/fibrations.

In a nutshell, this thesis work focuses on extending the territory of smooth 4-
manifolds that similar techniques can be employed in the alliance of these forces,
through generalizations of symplectic structures and Lefschetz fibrations. The major
problem we have in mind is determining the number of smooth structures on a given
4-manifold.

In the past few years a lot of interest has been gathered around constructing smooth
4-manifolds which are homeomorphic but not diffeomorphic to the projective plane
CP? blown-up at n points (n < 10) as well as to the connected sun of three copies
of CP? blown-up at m points (m < 20). These manifolds are “small” in the sense
that thev have small Euler characteristics. whereas the construction of exotic smooth
structures gets harder when the manifolds get smaller. The most recent history
can be split into two periods. The first period was opened by J. Park’s paper [60]
which used the rational blowdown technique of Fintushel and Stern [27). and several
constructions of small exotic manifolds relied on an artful use of rational blowdown
techniques combined with improved knot surgery tricks [71. 30. 62]. More recently.
Akhmedov's construction in 3] triggered the hope that using building blocks with
nontrivial fundamental groups could succeed in obtaining exotic smooth structures on
simply-connected 4-manifolds. These techniques were initially espoused by Fintushel
and Stern in [29] and later discussed in [70] and in [25]. The common theme in
the recent constructions ([3. 6. 10. 25]) is the manipulations to kill the fundamental
group. These constitute the content of Chapter 3. and appeared in a joint article of
the author with Akhmedov and Park [5].

Chapter 3 bhegins with an outline a general recipe to obtain small minimal svmplec-

tic d-manifolds and to fit all the recent construetions in [3. 6. 10] in this constrnetion



scheme (Section 3.2). In particular, we aim to show that seemingly different examples
are closely related through a sequence of Luttinger surgeries. The second goal is to cal-
culate the basic classes and the Seiberg-Witten invariants of these small 4-manifolds.
Using these calculations we show for instance how to obtain infinite families of pair-
wise nondiffeomorphic manifolds in the homeomorphism type of CP?#(2k + 1)CP?,
for k=1,...,4 or or to 3CP?# (2l + 3)CP?, for | = 2,...,6. (Sections 3.5 and 3.4).
We distinguish the diffeomorphism types of these 4-manifolds by comparing their SW
invariants. Each of our families has exactly one symplectic member.

Recent research suggests the next target beyond the realm of symplectic topology
to be the near-symplectic manifolds i.e. manifolds which admit a kind of singular
svmplectic form that is singular along an embedded 1-manifold. These are precisely
the closed oriented smooth 4-manifolds with b* > 0. Taubes' program [77, 78] aims
to obtain SW invariants as generalized Gromov invariants in this setting. It has mo-
tivated several parallel ideas. In [9]. Auroux. Donaldson, and Katzarkov defined a
genceralization of Lefschetz fibrations, which we here call *broken Lefschetz fibrations’,
and showed that thev are to near-svmplectic 4-manifolds what Lefschetz fibrations
are to svmplectic 4-manifolds. Perutz combined these approaches to define an invari-
ant [64. P2]. called Lagrangian matching invariant (LM). He conjectured that it is
equivalent to SW. This invariant generalizes the Donaldson-Smith construction [19)
to near-symplectic broken Lefschetz fibrations by considering pairs of sections over
a splitting base that ‘match’ by satisfving certain Lagrangian boundary conditions
which arise from the zero locus of the near-svmplectic form. The very nature of LM
invariants requires the study of broken Lefschetz fibrations. These topics constitute
the content of Chapter 4.

The point of view we take is to consider 4-manifolds with nontrivial Seiberg-Witten

invariants as an intermediate class that lies in between near-symplectic 4-manifolds



and the symplectic ones. (When the manifolds in consideration have b* = 1, we
always take the SW invariant computed in the Taubes’ chamber of a symplectic or
near-symplectic form.) Thus our work in Chapter 4 runs in two veins. We first
study the topology of near-symplectic broken Lefschetz fibrations, describe simplified
representations of them via Kirby diagrams and monodromies, and provide several
examples (Section 4.2). Importantly, all possible round handle cobordisms that arise
in this context are described in this section. Having the conjectural equivalence in
mind. we define new operations on near-symplectic broken Lefschetz fibrations, and
investigate their effect on both LM and SW invariants (Section 4.3). The broken
fiber sum operation introduced in this section generalizes the symplectic fiber sum
construction to the near-svmplectic setting (Theorem 4.3.1).

We use these techniques to obtain various results regarding near-symplectic 4-
manifolds with nontrivial Seiberg-Witten invariants (Section 4.4). Let (X.w) be a
near-svinplectic 4-manifold with zero locus Z. Taubes has proved that if X has
nonzero SW. then there is a .J-holomorphic curve (' in X with homological bound-
ary Z . where J is an alimost complex structure compatible with w in the complement
of Z [78]. In Theorem 4.4.1 we show that the converse of this statement cannot be
true. and that an analogous result holds for the LM invariants. This is natural and
expected. since it suggests that the moduli space that one would like to consider here
can be nonempty while the count is zero. Another question we address is the behavior
of near-svmplectic 4-manifolds with nontrivial SW invariants under the symplectic
fiber sum operation. Although the symplectic fiber sum operation preserves the class
of symplectic 4-manifolds. we show that it does not preserve the class of SW nontriv-
ial near-svinplectic 4-manifolds (Theorem 4.4.2). In a comparison with svmplectic
Lefschetz fibrations , we determine the constraints on the self-intersection of sections

of near-svymplectie broken Lefschet fibrations on manifolds with nontrivial SW invari-



ants (Theorem 4.4.4), and we describe the near-symplectic broken Lefschetz fibrations
on knot surgered E(n) (Proposition 4.4.5).

Further extension of these ideas takes us out of the usual range of SW invariants,
and requires a new setting. (For instance to work with S* or S! x % which have
b* = 0.) In Chapter 5 we search for ‘nice’ additional structures on general closed
simply-connected oriented 4-manifolds. The results of this chapter, except for the
Addendum, are contained in the article [11].

One possible strategy for understanding oriented smooth 4-manifolds is to break
them up into more tractable classes of manifolds in a controlled manner. Situated in
the intersection of complex, symplectic and Riemannian geometries, Kahler manifolds
are the best known candidates to be pieces of such a decomposition. The main
theorem of Chapter 5 (Theorem 5.4.2) shows that this can be achieved for any closed
oriented smooth 4-manifold X. We decompose X into two exact Kahler manifolds
with strictly pseudoconvex boundaries, up to orientation. such that contact structures
on the common boundary induced by the maximal complex distributions are isotopic.

This decomposition gives rise to a globally defined 2-form on X, which
we call a (nicely) folded-Kahler structure, and it belongs to a larger family of
2-forms: folded-symplectic structures. Cannas da Silva showed in [13] that any closed
smooth oriented 4-manifold can be equipped with a folded-symplectic form. by using
a version of the h-principle defined for folding maps by Eliashberg. In Section 5.2. we
introduce a way to construct some simple examples of folded-symplectic 4-manifolds.
Afterwards we reprove the existence fact by constructing a folded-symplectic form w
for a given handlebody decomposition of X . essentiallv by means of simple handle
calculus and contact topologv (Theorem 5.3.1). The main ingredient there is achiral
Lefschetz fibrations. and recent work of Etnyvre and Fuller [23] will play a key role in

our construction.



Next, we switch gears, and using several results on compact Stein surfaces and
Lefschetz fibrations with bounded fibers (mainly [44], [20]. {39], [50], [2]), we prove
the aforementioned decomposition theorem. In fact we obtain a stronger result, as the
pieces of this decomposition are actually Stein manifolds with strictly pseudoconvex
boundaries. It was first shown by Akbulut and Matveyev in [1] that any closed
oriented smooth 4-manifold X can be decomposed into Stein pieces, but there was
no particular information one could use to argue for matching the induced contact
structures on the separating hypersurface. Our proof follows an alternative way via
open book decompositions, and we conclude that the Stein structures can be chosen
to agree on the common contact boundary.

In Section 5.5. we introduce folded-Kéahler structures. and discuss some properties
they enjov, after showing that all closed oriented smooth 4-manifolds admit them
(Theorem 5.5.2). This improves the folded-svmplectic existence result, and indeed
both structures we construct are shown to be equivalent on the symplectic level.
The collection of these disenssions yield us to define folded Lefschetz fibrations which
are, roughly speaking. pairs of positive and negative Lefschetz fibrations over disks
with bounded fibers which agree on the common boundary through induced open
book decompositions. We prove that any nicely folded-Kéahler 4-manifold, possibly
after an orientation preserving dilfcomorphisn. admits compatible folded Lefschetz
fibrations (Proposition 5.5.6).

In [34]. David Gay and Rob Kirby proved that any closed smooth oriented 4-
manifold can be equipped with a broken achiral Lefschetz fibration. In the Addendwun
(Section 5.6) we nse our results in Chapters 4 and 5 to establish the corresponding
sviplectic generalization in this setting (Section 5.6.1). and show a way to avoid achi-
rality (Section 5.6.2) in such a construction. These provide answers to two questions

asked in [34].



CHAPTER 2

General background

In this preliminary chapter we review several definitions, notations and facts that are
used in the later chapters but not contained in the background material given there.
Thus this review is not intended to be complete. For the details or proofs of the

quoted facts. the reader can turn to [40] and [53].

2.0.1 Topology of smooth 4-manifolds

Let X be a closed smooth oriented 4-manifold. We denote the same 4-manifold
with the opposite orientation by —X | vet sometimes use the notation X for standard
manifolds such as CP?.

The intersection form on X is the svinmetrie bilinear form
Qx : 1y (X:Z)/Tor x [1,(X:Z)/Tor — Z

defined by (a.3) — aUB[X]. It is unimodular on such X . and is diagonalizable over
the rationals. The rank of the maximal positive eigenspace of Qx is denoted by bt
and that of the negative eigenspace by b~ . The signature of X is then understood to
be the signature of this nondegenerate form. namely a(X) = 0% =4 . Finally X is

said to be of even type if every diagonalization of Qy has even diagonal entries. and

-l



odd type otherwise. It turns out that these algebraic topological invariants completely

classify the homeomorphism type of such 4-manifolds:

Theorem 2.0.1 (Freedman [31]; Donaldson [15]) The homeomorphism type of
a simply-connected closed smooth oriented 4-manifold X is captured by Qx . which

in turn is determined by the Euler characteristic e(X), the signature o(X) and the

type.

On the other hand, there are infinitely many simply-connected 4-manifolds each
of which admits infinitely many distinct smooth structures (see for example [28]).
By contrast however, there are no complete invariants to classify the diffeomorphisim
types.

Herein the notation m.X;#n.X, is used to express the connected sum of m copies
of X, and n copies of X,. We say X is reducible if it can be written as a connected
sum X = X;#.X,. where neither X; is a homotopy 4-sphere. Otherwise. it is called
irreducible. ' We view the blow-up of X at a point ¥ € X as the result topological
operation described by taking out a 4-ball around » and gliing in the complement
of a regular neighborhood of the exceptional sphere in CP?, so to obtain X #CP?.
Converselv, if X' contains an exceptional sphere. ie. a smoothlv embedded sphere S
of self-intersection —1. then a tubular neighborhood of S can be replaced by a 4-ball
to obtain a new closed smooth oriented 4-manifold Y with X = Y#CP?. The latter
operation is called blowing-down. A 4-manifold X is called minimal if it does not
contain any exceptional spheres. Irreducibility or minimality are not aspects of the

underlving homeomorphisin type of X, but of its smooth type.

2.0.2 Symplectic structures

A symplectic structure on a smooth 2n-dimensional oriented manifold X is a closed

2-form w such that w™ > 0. The pair (X.&) is called a symplectic manifold. A

8



diffeomorphism ¢ : X, — X, is called a symplectomorphism between (X;,w;) and
(X2, wy) if ¢*(wq) = w;. Two symplectic forms w and «’ on a fixed manifold X
are said to be deformation equivalent if there exists a family of symplectic forms w;,
t €10.1], on X, with wp =w and w; =w/'.

The Euclidean space R?® with coordinates x,,yi,....T,.y, admits a canonical
symplectic form w, = dry Ady, + ... + dr, A dy,. Darboux’s theorem states that
every symplectic 2n-manifold (X.w) is locally symplectomorphic to (R**.w,) [53].
It follows that symplectic manifolds do not have local invariants.

Svmplectic structures are closely related to complex structures on the tangent
bundle. An almost compler structure on X is a smooth. fiberwise linear map J :
TX — TX covering idy such that J?2 = —idpy. The pair (X,J) is called an
almost complex manifold. An almost complex structure J is said to be compatible
with w if g(u.v) := w(u. Jv), u.v € TX, is a Riemannian metric on X. For any
Riemannian metric ¢ on (X.w) there exists a compatible almost complex structure
given by J(v) := V2| 'g 'w(r.:) for all non-zero ¢ € TX . Moreover the space of
compatible almost complex structures for a fixed w is contractible [53]. Thercfore.
there is a unique class ¢ (X w) associated to (X, w) by taking the first chern class
of any compatible alinost complex structure on the bundle TX . This class’ minus
Poincaré dual Ay = =P D(c(X.w) is called the canonical class.

A complex structure on X% induces an ahmost-complex structure given by
J: =iz. A symplectic manifold (X.w) together with a Riemannian metric g and a

“tg e is called Kahler if J avises in this way from a complex

o

compatible .J ;= V2

structure on X . Such w is called a Kdahler structure and g a Kdahler metric. Often
times we simply say (X.w) is a Killer manifold: where it is implicitly assumed that
there exist such compatible ¢ and .J on X',

Let us once again restrict our attention to closed smooth oriented 4-manifolds.
o

9



An orientable 4-manifold X admits an almost complext structures if and only if
there is a characteristic class h € H2(X) which satisfies h? = 30(X) + 2e(X). More
interestingly, if X is complex, then it is Kahler if and only if b,(X) is even. On the
other hand the existence of complex and symplectic structures on 4-manifolds are
much more involved and subtler problems to which algebraic topology can not fully
answer. Once again, these are aspects of the smooth structure on X . Also note that
no two of the families of closed 4-manifolds admitting complex, Kahler, symplectic
or almost complex structures coincide (cf. [40]).

There are three types of surfaces of great importance in symplectic 4-manifolds.
Let (X.w) be a symplectic 4-manifold, and let £ be an embedded surface in X.
Then X is called a symplectic surface in X if (2,w]y) is a symplectic manifold. On
the other extreme if w|y; = 0. then ¥ is called Lagrangian.

Similarly let (X,.J) be an almost complex 4-manifold, and £ be a possibly im-
mersed surface in X. Then T is called a J-holomorphic curve or a pseudoholomor-
phic curve in (X..J) provided (Z../]y) is almost complex. i.e. when .J is a bundle
endomorphism on TEUTX .

If w is a symplectic structure on .\ compatible with ./, then every pseudoholo-
morphic curve is svmplectic. Conversely. for every svmplectic submanifold of (X.w).
one can choose a compatible almost complex structure that makes it pseudoholomor-
phic 53] If £ is an embedded surface in ((X.w. J). the self-intersection and genus

of ¥ are related through the formulae:

() =[S + Ky - E(the adjunction equality),
when ¥ is svinplectic or psendoholomorphic: and

—\(Z) =[]

when ¥ is Lagrangian.

10



If X is the blow-up of a symplectic 4-manifold (Y,w) at a point y € Y, then
it can be equipped with a symplectic form «’ which agrees with w away from the
exceptional sphere E in X = Y#CP?. Furthermore, the total transform of any
symplectic surface containing y will also be symplectic in (X,w’). Conversely, if S is
an exceptional symplectic sphere in (X,w’), then it can be blown-down symplectically,
that is Y = X \ N(S)U D* = Y admits a symplectic form w which agrees with «’
on X \ N(S), where N(S) is a tubular neighborhood of S in X. Any symplectic
surface that intersects S in X will also descend to a symplectic surface in Y. ([53])

We finish with a classical theorem of Thurston which not only provides us with
a plethora of examples of closed svmplectic 4-manifolds. but also motivates several

other results proved and/or used in this work:

Theorem 2.0.2 (Thurston [80]) Let f: X — B be an F-bundle where the fiber
F is a closed Riemann surface and the base B is a compact Riemann surface. If F
is nonzero in 1,(X:R). then X can be equipped with a symplectic form w such that

all fibers are symplectic.

2.0.3 Lefschetz fibrations

A smooth Lefschetz fibration on an oriented 4-manifold X | possibly with boundary,
is a smooth map f: X' — X, where £ is a compact oriented surface, such that f
is a submersion evervwhere but at finitely many points ("= {p;....,p,} contained
in the interior of .X'. and conforming to local models: (i) f(z;.22) = z; around each
regular point. and (i) f(zy,22) = 2120 around ecach Lefschetz eritical point p, € 7,
both given by orientation preserving charts on X and . The preimage of a regular
value is a Riemaun surface F, called the regular fiber., whercas and the singular
fibers containing the Lefschetz critical points locally have the model of a complex

nodal singularity around those points. In a handlebody of X| these singularities are

11



obtained by attaching 2-handles to regular fibers with framing —1 with respect to
the framing induced by the fiber. The attaching circles of these 2-handles are called
vanishing cycles.

A Lefschetz pencil is a map [ : X \ {b1,....bn,} — 52, such that around any
base point b; it has a local model f(z.z29) = z1/z2, preserving the orientations, and
that f is a Lefschetz fibration clsewhere. By convention, B = {by,...,b,} is always
non-empty and called the base locus, and C = {p,....p,} is called the critical
locus. There is an obvious link between these two definitions. In a Lefschetz pencil,
the closures of the fibers of the map f cut the 4-manifold X into a family of closed
surfaces all passing through the b, —locally like complex lines through a point in
C?. Blowing up all the points in the bsae locus, the map f extends to the entire
manifold and we obtain a Lefschetz fibration f : X — $2. with each exceptional
sphere appearing as a section.

If F is a regular fiber of a Lefschetz fibration f : X — ¥, then F — X ERS>
induce an exact sequence m(F) — m(X) — m(X) — m(F) — 0. It follows that
if the base space is simply connected, then each fiber of f is connected and carries
m(X). If a fiber is not connected. then m(LY) maps to a finite-index subgroup
of 7(L). and passing to the corresponding finite cover & of £. we obtain a new
Lefschetz fibration f : X — X with connected fibers. Thus without loss of generality
we can assume that the fibers are connected, and in this case the genus of a generic
fiber will be called the genus of the Lefschetz pencil or fibration.

Given a compact oriented geuns ¢ surface F7 with m boundary components and
r marked points on it. the mapping class group of F is defined as the group of orien-
tation preserving self-diffeomorphisms of F fixing marked points and dF pointwise.
modulo isotopies of I fixing marked points and JF pointwise. It can be shown that

this group is generated by positive (right handed) and negative (left handed) Dehn



twists. Importantly, isotopy type of a surface bundle over S' with fiber closed ori-
ented surface F' is determined by the return map of a flow transverse to the fibers,
which can be identified with an element of a mapping class group F', called the
monodromy of this fibration.

Let f: X — D? be a Lefschetz fibration, where the regular fiber F is an oriented
genus g surface with m boundary components, and suppose all critical points of the
fibration lie on various fibers. Select a regular value O in the interior of D?, an
identification of f~!(0) = F, and a collection of arcs a;,--- ,a; in the interior of
D? with each a; connecting O to a distinct critical value, and all disjoint except at
O. We index the critical values as well, so that each arc a; is connected to a critical
value y; and that they appear in a counterclockwise order around the point O. Now
if we take a regular neighborhood of each arc away from remaining critical points and
consider the union of these. we obtain a disk V and an F-bundle over 9V = S!'. The
monodromy of this fibration is an element of the mapping class group of F, which is
called the global monodromy of the Lefschetz fibration f. We call the ordered set of
arcs {a,.--- .ay} a representation of the Lefschetz fibration f. It is well-known that
this data gives a handlebody desceription of X . and vice versa.

The next two theorems establish a beautiful connection between the main concepts

of the last two sections:

Theorem 2.0.3 (Donaldson [17]) If (N.«) is a closed symplectic 4-manifold with

w ntegral. then it admits a Lefschetz pened with symplectic veqular fibers.

Theorem 2.0.4 (Gompf; see [40]) If f: X\ — T is a Lefschetz fibration such that
the homology class of the regular fiber I is nonzero in Hy(X:R). then X admits a
deformation class of symplectic structures with respect to which the fibers are sym-
plectic. Moreover. such a symplectic form can be chosen so that any prescribed finite

set of sections are also symplectic.
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The proof of the latter theorem generalizes Thurston’s construction to Lefchetz fi-
brations, using the local models around singular points (see Proposition 5.2.2 for

complete details).

2.0.4 Seiberg-Witten invariants

We now review the basics of Seiberg-Witten invariant (cf. [85]). The Seiberg- Witten
invariant of a smooth closed oriented 4-manifold X is an integer valued function
which is defined on the set of Spin® structures on X . If we assume that H,(X;Z)
has no 2-torsion, then there is a one-to-one correspondence between the set of Spin®
structures on X and the set of characteristic elements of H?(X;Z) as follows: To
each Spin® structure s on X corresponds a bundle of positive spinors W over
X. Let c(s) = ¢;(1W}) € H¥X:Z). Then each ¢(s) is a characteristic element of
HYX:Z): ie. o (W}) reduces mod 2 to un(X).

" In this setup we can view the Seiberg- Witten invariant as an integer valued function
SWy : {hk € Hy(XN:Z) | PD(k) = wo(X) (mod 2)} — Z,

where PD(A) denotes the Poincaré dual of k. The Seiberg-Witten invariant SWy
is a diffeomorphism invariant when b3 (.X) > 1 or when b3 (X)) = 1 and b;(X) <9
(sce Remark 2.0.5 for the bt =1 case). Its overall sign depends on our choice of an
orientation of H'(X:R) < det H2(X:R) % det [I'(X:R).

If SWx(/3) # 0. then we call 8 (and its Poincaré dual PD(15) € 112(X:Z)) a
basic class of X . It was shown in [74] that the canonical class Ky = —¢;(X.w) of a
symplectic 4-manifold (X, w) is a basic class when b (X) > 1 with SWy(Ky) =1.

It can be shown that, if 3 is a basic class, then so is —3 with
SW (=) = (=1)CNHN DA Gy (),

where e(X) is the Euler characteristic and o(.X) is the signature of .X'. We sav that
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X is of simple type if every basic class § of X satisfies
3% = 2e(X) + 30(X).

It was shown in [75] that symplectic 4-manifolds with b > 1 are of simple type. Let
¥ C X be an embedded surface of genus g(X) > 0. If X is of simple type and 3 is

a basic class of X', we have the following (generalized) adjunction inequality (cf. text

N (E) - 29(8) 2> (S + |4 [E]]. (2.1)

Remark 2.0.5 When b*(X) = 1, the (small-perturbation) Seiberg- Witten invariant
SWx n(K) € Z is defined for every positively oriented element H € H2(X;R) and
every element A € C(X') such that A-11 # 0. We say that Il determines a chamber.
It is known that if SWy () # 0 for some H € H1(X:R), then d(A) > 0. The wall-
crossing formula preseribes the dependence of SW x iy (A) on the choice of the chamber
(that of H ): if H.H' € H2(X:R) and A € C(X) satisfy H-H' >0 and d(A) >0,

then

SWy (1) =SWy ()

0 if A< H and A- 11" have the same sign.

+ 9 (—l)%'l("” if A1 >0 and A-H' <0,

(- 1) F A <0 and A- 1> 0.

These facts imply that S\Wx () is independent of 11 in the case b= (X) <9 [73].

so we simply talk about the Sciberg-Witten invariant of X in this case.
The Seiberg-Witten invariant of X with b*(X) > 1 can be formulated as a map
SW: Spin‘(X) — A(N) = Z|U] =z \"HY(N:Z).
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where A(X) is the graded abelian group with deg(U) = 2, and SWx(s) is homo-
geneous of degree d(s). In this formulation, SWx(s) is the fundamental homology
class of the Seiberg-Witten moduli space in the ambient configuration space B ,,

under isomorphisms
H.(B%,:Z) = H.(BSx:Z) = A(X).

where Gy = Map(X, S') is the gauge group. Evaluating SWx on monomials % &
Ly A~ Al of degree d(s). we obtain a map to Z as above.

We finish with some important results regarding the SW invariants. According to
Taubes [75]. the SW invariant of a symplectic 4-manifold (X,w) can be computed
as a Gromov invariant (Gr) enumerating embedded pseudo-holomorphic curves and
their unramified coverings with respect to a generic J compatible with «. When
we have a svmplectic broken Lefschetz pencil (X. f) of high enough degree, there
is another invariant called the Donaldson-Smith invariant (DS) associated it, which
counts nicely embedded pseudoholomoprhic mutlisections within a chosen homology
class [19. 69]. In [82]. Usher proves that DS and Gr counts agree when the degree of
the pencil is high enough. Hence. under mild assumptions. Gr and DS invariants are
seen to be independent of the svmplectic structure or the Lefschetz pencil that are
chosen. vielding equivalent smooth invariants.

Last two results to add are as follows:

If X = X #X, with b*(X,) > 0.7 =1.2. then SWyx = 0. (SW vanishing theorem
for connected sums.)

If X = X#CP?, then every basic class 3 of X is of the form 3 = 3+ F. where

H2(X:Z) is identified with H2(X:Z) = H*(CTP%:Z). 3 is a basic class of X and E

is the class of the exceptional sphere generating H2(CP2Z). (The blow-up formula

for SW incariants.)
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CHAPTER 3

New symplectic 4-manifolds

3.1 Background

3.1.1 Generalized fiber sum

Assume that two 4-manifolds X} and X, each contain a closed embedded genus ¢
surface F; € X; such that the normal bundles vF, have opposite Euler numbers,
ie. [ = =[F)?. Then there exists a {iber-orientation reversing isomorphism
between the two normal bundles. If we canonically identify each v F; with a tubular
neighborhood N, of F,, then there exits an orientation reversing diffeomorphism
o: N1\ Fy — Ny \ Fy which turns each punctured normal disk inside out. Then we
can define the generalized fiber sum of (X, Fy) and (Xo. Fy) as X7\ Ny Uy Ao\ Vo
by identifving 0.V, via o. We denote this operation by X = X 1#,.X,.

Note that the diffcomorphism type of X is determined by the embeddings of F,
together with the choice of ¢ up to ‘fiber preserving isotopy”™ (of the corresponding
fiber bundle isomorphisms between vF,). When [Fi]? = [F)? = 0. the map o
can be taken as an orientation preserving self=diffcomorphisin of Ftimes a complex
conjugation on the punctured unit disk D?\ {0}. In this simpler case. the operation

is called fiber sum. Finally note that generalized fiber sum operation can be delined
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in higher dimensions as well (see for example [55] or [38]), but here we are solely
interested in the 4-dimensional case.

The characteristic classes of X can easily be expressed in terms of those of X;.
We have e(X) = e(X;) +e(X2) +e(IN,) —e(N;) — e(N,), where AN, = —INj is an
oriented 3-manifold and each N; deformation retracts to F; = £,. So e¢(dN,;) =0
and e(.Ny) = e(.V2) = ¢(X,). On the other hand, the signature of X can be computed

by using Novikov's additivity. So we have:

e(X)=e(X))+e(Xy)+4d9g-4. o(X)=0(X))+0(X3). (3.1)

In addition the tvpe is odd unless each F; is characteristic in X;, i = 1.2.
Importantly. this operation can be performed syvmplectically in the following set-

ting:

Theorem 1 (McCarthy and Wolfson [55], Gompf [38], also see Gromov [42] )
Let (X,,w,) be symplectic 4-manifolds and F, — X, be symplectically embedded
genus g > 0 surfaces. for i = 1.2, If [I]? = —[IL]*. then X = Xi#,Xy can
be equipped with a symplectic form «.  Morcover. given arbitrarily small collar

ncighborhoods N, of O(N,) in X,. we can choose w so that "“'l.\’.\:\"'l = w'1|l\-l\‘\=1 and

lypw, = el - where o is some constant.
The last part of the theorem is immediate if we construct the symplectic fiber sum

following Etnyre’s symplectic ent-and-paste technique [24].

3.1.2 Minimality

Recall that a d-manifold X is called minimal if it does not contain an embedded

2-sphere with self-intersection —1. Similarly a svmplectic J-manifold (X, w) is called



symplectically minimal if it does not contain such a symplectic sphere. In both smooth
and symplectic categories we aim to construct minimal 4-manifolds.

A family of minimal 4-manifolds is the products of non-rational Riemann surfaces.
Let ¥, denote a closed Riemann surface of genus ¢ > 0. Since the universal cover of
¥, is contractible, ¥, is acyclic. It follows from the long exact homotopy sequence
of a fibration that any ¥, bundle over X5, with g.h > 0 is acyclic. In particular,
m(Xy X X4) = 0 and hence £, x £, is minimal. So equipped with any symplectic
form, ¥y x ¥, is symplectically minimal.

One new ingredient in our constructions that will follow is the following theorem

of Michael Usher:
Theorem 2 (Usher [83]) Let X = Y#v_uY' be the symplectic sum. where the
genus g of ¥ and T' is strictly positive.

(i) If either Y\ or Y'\' ¥ contains an embedded symplectic sphere of square

—1. then X is not minimal.

(it) If one of the summands. say Y for definiteness, admits the structure of an S?-
bundle over a surface of genus g such that ' is a section of this S%-bundle,

then XN is minimal if and only if Y is minimal.
(itr) In all other cases, X is minimal.

One final comment is on the close relationship between minimality and irreducibil-

itv when dealing with symplectie 4-manifolds:

Theorem 3 (Hamilton and Kotschick [43]) Mmimal symplectic 4-manifolds

with residually finite fundamental groups are irreducible.

Thus simplv-connected minimal svinplectic 4-manifolds are alwavs irreducible: a

fact that we will use repeatedly in this chapter.
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3.1.3 Surgery along Lagrangian tori

Let A be a torus of self-intersetion zero inside a 4-manifold X. Choose a framing
of the tubular neighborhood vA of A in X, i.e. a diffeomorphism vA = T? x D?.
Given a simple loop A on A, let S} be a loop on the boundary 8(vA) = T3 that
is parallel to A under the chosen framing. Let py denote a meridian circle to A in
d(vA). By the p/q surgery on A with respect to A, or more simply by a (A, X, p/q)

surgery. we mean the closed 4-manifold
Xaa(p/g) = (X \vA) U, (T? x D?),

where the gluing diffcomorphisim ¢ : T2 x dD? — 9(X \ vA) satisifics
2 ([OD3) = plia] +q[S3) € HI((X \ vA): Z).

By Seifert-Van Kampen theorem, one easily concludes that

T (Xan(p/q)) = m(X \vA) /([aP[S)])7 = 1).

In the svmplectic case. we will be surgering Lagrangian tori. Luttinger surgery
is a special case of p/q surgery on a self-intersection zero torus A described in the
previous subsection. It was first studied in [51] and then in [8] in a more general
setting. Assume that (X.w) is a svmplectic 4-manifold. and that the torus A is a
Lagrangian submanifold of X . From the Weinstein tubular neighborhood theorem.
there is a canonical framing of vS = T? x D?, called the Lagrangian framing. such
that 72 x {x} corresponds to a Lagrangian submanifold of X for every r € D2,
Given a simple loop A on A. let S} be a simple loop on d(vA) that is parallel
to A under the Lagrangian framing. For any integer m. the (A, A.1/m) Luttinger
surgery on X will be Xy, (1/m), the 1/m surgery on A with respect to A and the
Lagrangian framing. Note that our notation is different from the one in [8] wherein

Xaa(1/m) is denoted by X (A . m).
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Theorem 4 (Auroux, Donaldson and Katzarkov [8]) Xj.(1/m) possesses a

symplectic form that restricts to the original symplectic form w on X \ vA.

In this thesis, we will only deal with Luttinger surgeries where m = £1 = 1/m,

so there should be no confusion in notation.

Remark 3.1.1 In Section 3.2.2 and Section 3.5. we will also be looking at non-
Luttinger (A, A\, —n) surgeries Xx(—n) for a Lagrangian torus A equipped with the

Lagrangian framing and a positive integer n > 2.

3.1.4 Surgeries and Seiberg-Witten invariants

In what follows, we will be frequently using the following theorem:
Theorem 5 (Fintushel, Park, Stern [25]) Let X be a closed oriented smooth 4-
manifold which contains a nullhomologous torus A with X a simple loop on A such

that Sy is nullhomologous in X \ vA. If Xxa(0) has nontrivial Seiberg- Witten

invariant. then the set
{Xaa(I/n) | n=1.23....} (3.2)

contains infinitcly many pairwise nondiffeomorphic 4-manifolds.  Furthermore, if
Xaa(0) has just one Seiberg-Witten basic class up to sign, then every pair of 4-

manifolds in (3.2) are nondiffeomorphic.

Here the Seiberg-Witten invariant is the small perturbation invariant whenever the

4-manifold has 0t = 1.

Remark 3.1.2 Note that X = X5 .(1/0). Let T be the core torus of the O surgery

Xaa(0). If ky is a characteristic element of Ha(Xy(0):Z) satisfying ko - [T] =
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0, then ko gives rise to unique characteristic elements k € Hy(X;Z) and k, €
Hy(Xax(1/n);Z). The product formula in [52] then gives

SWx a/mky) =SWx (k) + nZ SWx, 0 (ko + 2i[T]). (3.3)

€L

Let us now assume that X, A(0) has only one basic class up to sign and this basic
class is not a multiple of [T]. Under these assumptions, the infinite sum in (3.3) only
contains at most one nonzero summand. If we further assume that X and X, (0)
are both symplectic. then the adjunction inequality implies that the only basic class
of X and X,.A(0) is the canonical class up to sign. Under all these assumptions. it

follows that X x(1/n) also has only one basic class up to sign for every n > 1.

3.2 Constructing small exotic symplectic 4-

manifolds

3.2.1 The construction scheme for odd blow-ups of CP? and
3CP?

Here we outline a general coustruction scheme to construct simply-connected min-
imal sviplectic 4-manifolds with small Euler characteristics. This is an incidence
of the “reverse engineering™ ([70. 25]) idea applied to certain symplectic manifolds.
Any example nsing this scheme and homeomorphic to CP?#nCP? (for n > 0) and
mCP?#nCP? (for m > 0) can be distinguished from the latter standard manifolds
by comparing their svmplectic structures or their Seiberg-Witten invariants. respec-
tively. Recall that. CP?#nCP? (for n > 0) are nonminimal. and mCP*#nCF? (for
m > 0) all have vanishing Seiberg-Witten invariants, unlike the minimal svmplectice

4-manifolds that we produce. Our approach will allow us to argue easilv how all
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4-manifolds obtained earlier in {6, 10] arise from this construction scheme, and in
particular we show how seemingly different examples rely on the very same idea.

The only building blocks we need are the products of two Riemann surfaces. In
fact. it suffices to consider multiple copics of S? x T? and T? x T2, since all the other
product manifolds except for S? x S? (which we will not use here) can be obtained by
fiber sumining copies of these manifolds appropriately. Note that any such manifold
is a minimal symplectic manifold. Both S? x T? and T = T? x T? can be equipped
with product symplectic forms where each factor is a symplectic submanifold with
self-intersection zero. Denote the standard generators of m;(T*%) by a, b, ¢ and d,
so that Ho(T4.Z) = Z5 is generated by the homology classes of two symplectic tori
a x b and ¢ x d. and four Lagrangian tori a x ¢, a x d, bx ¢ and b x d with respect
to the product svmplectic form on T! that we have chosen. The intersection form
splits into three hyperbolic pairs: a x b and ¢ xd. a x ¢ and bx d, ax d and bx c.
Finally. note that all four Lagrangian tori can be pushed off to nearby Lagrangians
in their Weinstein neighborhoods so that they lie in the complement of small tubular
neighborhoods of the two chosen symplectic tori 72x {pt} and {pt} xT?. With a little
abuse of notation (\\'hi('h will be remembered in our later calculations of fundamental
groups). we will still denote these parallel Lagrangian tori with the same letters.

In order to produce an exotic copy of a target manifold Z, we first perform blow-
ups and svmplectic fiber sums to obtain an intermediate manifold X’. Whenever a
piece is blown-up. we make sure to fiber sun that piece along a svmplectic surface that
intersects each exceptional sphere positively at one point. This allows us to employ
Theorem 2 to conclude that X’ is minimal. We want this intermediate manifold to

satisfy the following two properties:
(I) X’ should have the same signature and Euler characteristic as Z.

(IT) If = is the rank of the maximal subspace of I1,(X':Z) generated by homo-
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logically essential Lagrangian tori, then we should have r > s = 2b)(X’') =

by(X') — b2(Z).

Moreover, we generally desire to have m,(X’) = H,(X';Z) for the reasons that will
become apparent below. However, surprisingly one can also handle some examples
where 7;(X’) is not abelian. (See for example the construction of a minimal sym-
plectic 3CP2#5CP? in [6].)

Finally, we carefully perform 3 Luttinger surgeries to kill m(X’) and obtain a
simply-connected symplectic 4-manifold X. Since signatures of simply-connected
spin 4-manifolds are always divisible by 16, all of our target manifolds among
CP?#nCP? (for n > 0) and mCP?*#nCP? (for m > 0) are of odd type. Observ-
ing that Luttinger surgeries do not change neither the Euler characteristics nor the
signature, one concludes that X is homeomorphic to the target manifold.

Note that these surgeries can easilv be chosen to obtain a manifold with b, = 0.
However, deterinining the correct choice of Luttinger surgeries in this last step to kill
the fundamental group completely is a much more subtle problem. This last part is
certainly the hardest part of our approach, at least for the 'smaller’ constructions.
The reader might want to compare below the complexity of our fundamental group
calculations for CP?#(2k + 1)CP?. for k = 1.....4 as k gets smaller.

In order to compute and effectively kill the fundamental group of the resulting
manifold X. we will do the Luttinger surgeries in our building blocks as opposed
to doing them in X’. This is doable, since the Lagrangian tori along which we
perform Luttinger surgeries lie away from the svimplectic surfaces that are used in
any sviplectic sum constructions. as well as the blow-up regions. In other words,
one can change the order of these operations while payving extra attention to the m;
identifications. Having the mp calenlations of the pieces in hand. we can use Seifert-

,

Van Kampen theorem repeatedly to caleulate the fundamental group of our exotic
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candidate X .

Below, we will work out some concrete examples, where we construct minimal
symplectic 4-manifolds homeomorphic to CP?#(2k + 1)CP?, for k = 1....,4, and
3CP?# (21 + 3)CP?, for L = 2,...,6 (See [5] for I = 1 case). We hope that the reader
will have a better understanding of the recipe we have given here by looking at these
examples. Another essential observation that is repeatedly used in our arguments
below is the interpretation of some manifold pieces used in [3. 6] as coming from
Luttinger surgeries on T4, together with the description of their fundamental groups.
This is proved in the Section 3.2.2. A concise history of earlier constructions will be

given at the beginning of each subsection.

Remark 3.2.1 The building blocks we used in the construction scheme described here
do not suffice to get modcls for even number of blow-ups of CP? or 3CP?. By the
timne of wriling. finding appropriate models for these manifolds has not been completely

accomplished.

3.2.2 Twist knots and Luttinger surgeries

Let T'=axbxcxd=(cxd)x (axbh), where we have switched the order of the
svmplectic T2 components a X b and ¢ x d just to have a comparable notation with
earlier m, calculations (say in [6}). Let K, be an n-twist knot (¢f. Figure 3.3). Let
My, denote the result of performing 0 Dehn surgery on S? along I, . Our goal here
is to show that the J-manifold S! x M. is obtained from T = (¢ x d) x (a« x D) =
cx (dxaxb) = S'x T3 by first performing a Luttinger surgery (¢ x a, @. —1) followed
by a surgery (¢ x b.b.—n). Here. the tori ¢ x @ and ¢ x b are Lagrangian and the
second tilde circle factors in T are as pictured in Figure 3.2. We use the Lagrangian
framing to trivialize their tubular neighiborhoods, so when n =1 the second surgery

is also a Luttinger surgery.

[
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Figure 3.1: The 4-torus ¢ x (d x a x b). The neighborhood of a fiber chosen in the 3-torus
dxaxbat c=0.5 is given by fat slices parallel to a x b face, which get thinner while
¢ gets closer to 0.5 + ¢ and disappear when 0 < ¢ < 0.5 — 2¢ or 0.5+ 2¢ < ¢ < 1. The
neighborhood of the torus section is given by a cylindrical neighborhood in the direction
of d lying in the 3-torus times c. Neighborhoods of the tori ¢ x @ and ¢ x b are drawn
similarly.

Figure 3.2: The 3-torus d x a x b at ¢ = 0.5
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The figures should be self-explanatory. We view the 4-torus as the product ¢x (d x
axb), and excise the tubular neighborhoods of the tori ¢x @, ¢x b and ¢x d as shown
in the Figure 3.1. The tubular neighborhood of the torus a x b appears as a slice in
the 3-torus d x a x b while we get closer to ¢ = 0.5, and we have the thickest slice
precisely when ¢ = 0.5. Note that the normal disks of each Lagrangian tori in their
Weinstein neighborhoods lie completely in 7% and are disjoint. Thus topologically,
the result of these surgeries can be seen as the product of the first S! factor with
the result of Dehn surgeries along @ and b in T3. Therefore we can restrict our
attention to the effect of these Dehn surgeries in 72 since the diffeomorphisms of the
3-manifolds induce diffeomorphisms between the product 4-manifolds.

The Kirby calculus diagrams in Figure 3.3 show that the result of these Dehn
surgeries is the manifold My, . where K, is (the mirror of) the n-twist knot. In

particular, note that for n = 1 we get the trefoil knot K. Thus the effect of (¢ x

b.b. —n) surgery with n > 1 as opposed to the Luttinger surgery (c x b, b. —1) is
equivalent to using the non-symplectic 4-manifold S' x Ay, instead of symplectic
St x Mg in our svmplectic sum constructions.

Next we deseribe the effect of these surgeries on . First it is useful to view
T3 = d x (a x b) as a T? bundle over S' with fibers given by {pt} x (¢ x b) and
sections given by d x {pt}. The complement of a fiber union a scection in T2 is the
complement of 3-dimensional shaded regions in Figure 3.1.

It is not too hard to see that the Lagrangian framings give the following product

decompositions of two boundary 3-tori (compare with [10, 25]):
ANv(exa) = c¢x (dad™b) x [d.b71, (3.4)
Aw(exb) = exbxla'.d]. (3.5)

The Lagrangian pushoff of b is represented by b. as a homotopy to b is given by

the “diagonal”™ path (dotted lines emanating from the horizontal boundary cyvlinder
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Figure 3.3: The first diagramn depicts the three loops a, b, d that generate the m;(T?). The
curves @ = dad™! and b are freely homotopic to the two extra curves given in the second
diagram. The third diagram is obtained from the second via two slam-dunk operations;
wheras the last diagram is obtained after Rolfsen twists.

d(vb) in Figure 3.2). For decomposition (3.5), it is helpful to view the base point
as the front lower right corner of the cube represented by a dot in Figure 3.2. It is
comparatively more difficult to see that the Lagrangian pushoff of a is represented by
dad™!. The Lagrangian pushoff of a is represented by the dotted circle in Figure 3.4
and is seen to be homotopic to the composition a[a™!,d] = a(a~'dad™!) = dad~!. For
decomposition (3.4), it is helpful to view the base point as the front upper left corner

of the cube represented by a dot in Figure 3.2. The new relations in m; introduced
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Figure 3.4: The face of cube where we can see the Lagrangian pushoff of @

by the two surgeries are

dad™ = [d,b7") = db"'d™'b, b=[a~),d]* = (a " dad™")". (3.6)

From now on, let us assume that n = 1. Then the second relation in (3.6) gives
ab = dad™". (3.7)

Combining (3.7) with the first relation in (3.6) gives ab = dad~' = db='d~'b, which

can be simplified to a = db~'d~"'. Thus we have

a ' =dbd". (3.8)

Hence we see that (3.7) and (3.8) give the standard representation of the monodromy
of the T? = a x b bundle over S' = d that is the 0-surgery on S* along the trefoil

K =K,.
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3.3 Minimal symplectic 4-manifolds with bt =1

3.3.1 A new description of a minimal symplectic E(1)

The first example of an exotic smooth structure on the elliptic surface E(1) =
CP?#9CP?, and in fact the first exotic smooth structure on any closed topologi-
cal 4-manifold, was constructed by Donaldson in [16]. Donaldson’s example was the
Dolgachev surface E(1),3. Later on, Friedman showed that {E£(1),, | ged(p,q) = 1}
contains infinitely many nondiffeomorphic 4-manifolds (cf. [32]). In [28] Fintushel and
Stern have shown that knot surgered manifolds F (1) give infinitely many irreducible
smooth structures on F(1) = CP*#9CP?.

Consider S? x T? = 5% x (S! x S') equipped with its product symplectic form.
and denote the last two circle factors by x and y. One can take the union of three
svinplectic surfaces ({s1} x T2 U (S? x {{}) U ({s2} x T?) in S? x T2, and resolve
the two double points svinplectically. This yields a genus two symplectic surface in
S?x T? with sclf-intersection four. Svmplectically blowing up $%x T? along these four
intersection points and taking the proper transform. we obtain a svmplectic genus two
surface £ in ¥ = (5% x TH#ACP?. Note that the inclusion induced homomorphism
from 7 (¥) = (a.b.c.d | [aD)[c.d] = 1) into m(Y) = (r.y | [r.y] = 1) maps the

generators as follows:

v by et des

Let ns run the same steps in a sccond copy of 8% x T2 and label every object with
a prime symbol at the end. That is. Y7 = (S2x T?)#ICP?, &' is the same symplectic
genus two surface desceribed above with 7 generators o', 0. ¢’ d", and finally let 27,y
denote the generators of the 7, (Y”’). Let X be the svmplectic fiber stun of Y and

Y along ¥ and ¥’ via a diffcomorphism that extends the orientation-preserving
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diffeomorphism ¢ : & — ¥’, described by:
a—a't, b () e d. d—d.

The Euler characteristic of X can be computed as ¢(X) =4+4-2(2-2-2) =12,
and the Novikov additivity gives the signature o(X) = —4 + (—4) = —8, which are
exactly the Euler characteristic and the signature of Z = CP?#9CP?. We claim that
X is already simply-connected and thus no Luttinger surgery is needed. Note that
m (Y \ v¥) = m(Y) since a meridian circle of ¥ bounds a punctured exceptional
sphere from one of the four blowups. Using Seifert-Van Kampen theorem, we see

that

m(X) = (r.y. 0 Y| [ry=[y]=1

r=xy. y=0) " =)y = ()Y,

We conchude that r =", y =y, y=r""'. Thus r = 1’y implies y = 1, and in
turn = 1. So m(X) = 1. Hence by Theorem 2.0.1, X is homeomorphic to F(1).
However. X is irreducible by Theorem 3. and therefore X is not diffeomorphic to
E(1). The 4-manifold X we obtained here can be shown to be the knot surgered
manifold E(1)x. where the knot A is the trefoil (cf. [29]).

Alternatively we could construct the above manifold in the following way. First
we svinplectically sum two copies of (5% x TH#ICP? along ¥ and ¥ via a map
that directly identifies the generators a.b. ¢, d with o’.¥. . d" in that order. Call this
svimplectic 4-manifold X’ and observe that while the characteristic numbers e and
o are the same as above. this manifold has 7 (.X') = H (X2 Z) = Z? and Hy(X":Z)
has four additional classes that do not occur in X. These classes are as follows.

Inside ((52 x T?)#4CP?) \ vZ, there are evlinders (Y, and (7, with

JCq = aUc. JC,=0bUd.
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Similiarly we obtain cylinders C, and Cj in the second copy of ((S? x T?)#4CP?) \

a

vE'. Thus we can form the following internal sums in X':
Yo = CaUC;, 2b=CbUCl:-

These are all tori of self-intersection zero. Let p denote a meridian of £, and let
R, =ax pu, and Ry = b x yt be the ‘rim tori’, where @ and b are suitable parallel
copies of the generators a and b. Note that [R,]? = [R)? = [£.)? = [£4)* = 0, and
[Ra] - [Eb] = 1 = [1%] - [Ea].

Observe that these rim tori are in fact Lagrangian. One can show that the effect
of two Luttinger surgeries (R,,a.-1) and (Ii’b.i), —1) is the same as changing the
gliuing map that we have used in the symplectic sumn to the gluing map ¢ in the first
construction. This second viewpoint is the one that will fit in with our construction

of an infinite family of pairwise nondiffeomorphic smooth structures in Section 3.5.

3.3.2 A new construction of a minimal symplectic CP?# 7CP?

The first example of an exotic CP?#7CP? was constructed by J. Park in [60] by
using rational blowdown (cf. [27]). and the Seiberg-Witten invariant calculation in [59]
shows that it is irreducible. Infinitely many exotic examples were later constructed
by Fintushel and Stern in [30]. All of their constructions use the rational blowdown
technique. Here we construct another irreducible svmplectic 4-manifold homemorphic
but not diffeomorphic to CP*#7CF? using onr scheme, and thus without using any
rational blowdown.

We equip T4 = T2 x T2 and 8% x T? with their product svmplectic forms. The two
orthogonal symplectic tori in T can be used to obtain a symplectic surface of genus
two with self-intersection two. Svimnplectically blowing-up at these sclf-intersection

points we obtain a new svmplectic surface ¥ of genus two with trivial normal bundle



in Y = T1#2CP?. The generators of 7 (T*#2CP?) are the circles a.b,c,d, and the

inclusion induced homomorphism from (%) to
m(Y) = (a.b.c.d|[a,b] = [a,¢] = [a,d] = [b,¢] = [b.d] = [e,d] = 1)

is surjective. Indeed the four generators of 7 (X) are mapped onto a,b,¢,d in m (Y),
respectively.

On the other hand, as in Subsection 3.3.1, we can start with 5% x T? and get a
svmplectic genus two surface £’ in Y’ = (S?xT?)#4CP2. Once again m,(Y') = (z.y |
[r,y] = 1) and the generators o', ¥, ¢',d’ of m(¥') are identified with r.y. r= 1. y= !,
respectively.

We take the symplectic st of Y and Y’ along £ and ¥’ given by a diffeomor-
phism that extends the identity map sending a v a’.b+— b'.c+-> . d — d’ to obtain
an intermediate 4-manifold X’. The Euler characteristic can be computed as e(X') =
2+ 444 = 10. and the Novikov additivity gives a(X’) = =2 4+ (—=4) = —6. which
are the characteristic numbers of CP?#7CP?. Since exceptional spheres intersect ¥
and L' transversally once. we have 7 (Y \ vE) = 7 (Y) and 7, (Y'\ r¥’) = 7 (Y").

Using Seifert-Van Kampen theorem. we compute that

(X)) = (abedry]ab =lac)=ad =bc]=[bd=][cd=1,

[ry=lLa=arb=y. c=0r ' d=y").

Thus m(X') = (eoy | [r.y) = 1) = Z2. and it follows that by(X’) = 12 from our Euler
characteristic calculation above. The four homologically essential Lagrangian tori in
T are also contained in X', and thus one can see that condition (I1) is satisfied.
The two Luttinger surgeries we choose are —1 surgery on @ x ¢ along a and
another —1 surgery on bx ¢ along b. Here. @ and b are suitable parallel copies of the
generators a and b. respectively. We claim that the manifold X we obtain after these

two Luttinger surgeries is simply-connected. To prove our elaim. we observe that these

33



two Luttinger surgeries could be first made in the T* piece that we had at the very
beginning. This is because both Lagrangian tori a x ¢ and bx ¢ lie in the complement
of . By our observation in Section 3.2.2, the result of these two Luttinger surgeries
in T4 is diffeomorphic to S! x Mg. Observe that m;((S* x My)#2CP? \ vE) =
7 (S x M), which is (cf. [6] and (3.6)-(3.8) in Section 3.2.2)

(a.b,c.d | [a,b] = [c,a] = [¢,b] = [c,d] = 1, dad™ = [d,b7!]. b= [a"'.d]).

As before, m(((82 x T?)#4CP?) \ vY) = 7 (S? x T?) = (x,y | [r,y] = 1). Therefore

by Seifert-Van Kampen theorem,

m(X) = (a.bedzxy]|lab=lca =][cb=][cd=1
dad™ = [d.b7"). b= [a” ' d), [r.y] = 1,

a=ur, [): Y. (‘:_1‘-1. {[: y—1>A

Thus r and y generate the whole group. and by direct substitution we see that

ylry =y ty 'l =1and y = [+ L.y ']. The former gives r = 1, and the

latter then vields y = 1. Hence 7(X) = 1. Therefore by Theorem 2.0.1, X is

homeomorphic to CP?#7CP?. Since the latter is not irreducible, X is an exotic copy

of it.

3.3.3 A new construction of a minimal symplectic CP?#5CP?

The first example of an exotic CP?#5CP? was obtained by J. Park. Stipsicz and
Szabd in 62]. combining the double node neighborhood surgery technique discovered
by Fintushel and Stern (cf. [30]) with rational blowdown. Fintushel and Stern also
constructed similar examples using the same techniques in [30]. The first exotic
symplectic CP?#5CP? was constructed in [3]. Here, we present another construction

with a much simpler 7, calculation, using our construction scheme.
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As in Subsection 3.3.2, we construct a symplectic surface ¥ of genus two with
trivial normal bundle in Y = T4#2CP?. Let us use the same notation for the
fundamental groups as above. Take another copy Y’ = T*#2CP?, and denote the
same genus two surface by ¥', while using the prime notation for all corresponding
fundamental group elements.

We obtain a new manifold X’ by taking the symplectic sum of Y and Y’ along

¥ and ¥’ determined by the map ¢ : ¥ — ¥’ that satisfies:
ar—d b d c—d, de b, (3.9)

By Scifert-Van Kampen theorem, one can easily verify that m(X’) & Z* generated
by, say a.b,a’.b’. The characteristic numbers we get are: e(X') =2+2+4 =8
and ¢(X') = =2 + (=2) = —4, the characteristic numbers of CP?#5CP?. Finally
the homologically essential Lagrangian tori in the initial 7 copies can be seen to
be contained in X’ with the same properties. Thus r > 8 = 20;(X') = by(X') —
by (CP2#5CP?). so our condition (1) is satisficd.

We perform the following four Luttinger surgeries on pairwise disjoint Lagrangian

tori:
(@xca—-1). (hxeb =1). (@ xd.d.=1). (V' x.V.=1).

It is quite simple to see that the resulting svinplectic 4-manifold X satisties
H{(X:Z) = 0. Using the observation in Section 3.2.2 again. after changing the
order of operations and assuming that we have done the Luttinger surgeries at the
very beginning. we can view X as the fiber sum of two copies of (S' x M, )#2CP?
along the identical genus two surface £ where the gliing map switches the symplectic

bases for ¥ as in (3.9). Thus, using Seifert-Van Kampen's theorem as above, we can

(V)
(52}



see that

m(X) = (a.b.cd.d b, d|[a.b]=][c.a] =][c.b] =]c.d] =1,
dad™' = [d.b7'), b= [a7},d], [d. V] =[c,d] = [ V] =[d.d] =1,
dd (@) =[d, V)Y =[(«")h ),

a=cd,b=d,c=d,d=1V).

Now &' = [(a’)7!.d'] can be rewritten as d = [c™!,b]. Since b and ¢ commute, d = 1.
The relations dad™! = [d.b7!] and b = [a~'.d] then quickly implies that « = 1 and
b = 1. respectively. Lastly, d’’(d)™! = [d',(¥)7}] is beb™! = [b.d7'],s0 ¢ =1 as
well. Since a.b.c.d generate m;(X). we see that X is simply-connected. By similar
arguments as before. X is an irreducible symplectic 4-manifold that is homeomorphic

but not diffeomorphic to CP?#5CP2.

3.3.4 A minimal symplectic CP’#3CP? in terms of Luttinger
surgeries

The first irreducible symplectic smooth structures on CP?#3CP? were constructed
independently by Akhmedov and D. Park in [6] and by Baldridge and Kirk in [10].
Shortly after. a more elegant construction appeared in [25].

Let us demonstrate how the construction of an exotic synplectic CP?#3CP? in
[0] fits into our recipe. We will use three copies of the d-torus. T, T} and Ty
Syvmmplectically fiber sum the first two along the 2-tori a; x by and ay x by of self-
intersection zero, with a gluing map that identifies ¢y with a, and by with by. Clearly
we get 12x Xy, where the symplectic genus 2 surface £, is obtained by gluing toget her
the orthogonal punctured syvmplectic tori (¢ x dy) \ D? in T} and (¢ x da) \ D? in
7). Here, m(T? x £3) has six generators ay = ay. by = by, ¢y, co. dy and dy with

relations [ay. 0] = 1. [e1.dy][e2.dy] = 1 and moreover ay and by commute with all
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¢, and d,. The two symplectic tori az x b3 and c3 X d3 in T:;‘ intersect at one point,
which can be smoothened to get a symplectic surface of genus two. Blowing up T3
twice at the self-intersection points of this surface as before, we obtain a symplectic
ecnus two surface ¥ of self-intersection zero.

Next we take the symplectic fiber sum of Y = T? x £, and Y’ = T #2CP? along
the surfaces ¥y and ¥/, determined by a map that sends the circles ¢, dy.ca,ds to
as. by, c3.d3 in the same order. By Seifert-Van Kampen theorem, the fundamental
group of the resulting manifold X’ can be seen to be generated by a,by,¢1,d), c2
and dy, which all commute with each other. Thus m,(X’) is isomorphic to Z5. It
is easy to check that e(X’) = 6 and o(X’) = —2. which are also the characteristic
numbers of CP*#3CP?.

Now we perform six Luttinger surgeries on pairwise disjoint Lagrangian tori:

(ay x ¢y.¢1,—1). (a) x (Zl.(il,—l). () X ¢9,ay.—1),

(i)] x ('-_3.[)1. —1) (l'l X (‘-'2.(72. —1) ((‘l X (ig.lig, —1)

Afterwards we obtain a sviuplectic 4-manifold X with 7 (X) generated by ay. by.

. dy. oo dy with relations:

by di' = bieybyt [enh by = dy. [dy b7V = doayds
1 1 1 1 2

[, " do] = by, [di dy'] = dyead, Lo eyt dy] = ds.

and all other commutators are equal to the identity. Since [by.ey] = [ ey = 1.
dy = [ff'A(},} also commutes with ¢y, Thus dy = 1. implving a; = b, = 1. The last
identity implies ¢; = d; = 1. which in turn implies ¢, = 1.

Hence X is simply-connected and since these surgeries do not change the charac-
teristic numbers. we have it homeomorphic to CP2#3CP2. Since Y is minimal and

the exceptional spheres in Y intersect &7 Theorem 2 guarantees that .\ is minimal.



It follows from Theorem 3 that X is an irreducible symplectic 4-manifold which is

not diffeomorphic to CP?#3CP?.

3.4 Minimal symplectic 4-manifolds with ™ > 1

Symplectic fiber sum operation can be effectively used to obtain several other new
minimal symplectic 4-manifolds with bigger Euler characteristics from small minimal

svmplectic 4-manifolds. Here we will provide a sample result in this direction.

Theorem 6 Let X be a simply-connected minimal symplectic 4-manifold which is
not a sphere bundle over a Riemann surface and such that X contains a genus two
symplectic surface of self-intersection zero. Then X can be used to construct simply-

connected irreducible symplectic 4-manifolds Z' and Z" satisfying:
I {

WF(Z2).0,(Z))) = (bF(X)+2.by (X) +4).

(BE(Z7). by (Z7)) = (bF(X)+2.55(X) +6).

Proof: Let us denote the genus two symplectic surface of self-intersection 0 in X by
¥y, By our assumptions. the complement X \ vE, does not contain any exceptional
spheres. Take T' = T? x T? equipped with a product symplectic form, with the genus
two svmplectic surface that is obtained from the two orthogonal symplectic tori after
resolving their singularities. After symplectically blowing up 7 at two points on this
surface. we get a svimplectic genus two surface T, of self-intersection 0 in T'#2CP?,
and it is clear that (T"#2CP?)\ v¥) does not contain any exceptional spheres either.
Since we also assumed that X' was not a sphere bundle over a Riemann surface, it
follows from Theorems 2 and 3 that the 4-manifold Z' obtained as the sviplectic
sum of X with T'#2CP? along £, and ¥} is minimal and hence irreducible.

Next we take S? x T? with its product symplectic form, and as before consider the

genus two symplectic surface obtained from two parallel copies of the symplectic torus
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component and a symplectic sphere component, after symplectically resolving their
intersections. Symplectically blowing up S? x T? on four points on this surface, we
get a new symplectic genus 2 surface £j with self-intersection 0 in (S? x T?)#4CP2.
Although this second piece (5% x T?)#4CP? is an S? bundle over a Riemann sur-
face, the surface £ cannot be a section of this bundle. Moreover, it is clear that
((8? x T?)#4CP?) \ vZ) does not contain any exceptional spheres. Hence, applying
Theorems 2 and 3 again, we see that the 4-manifold Z” obtained as the symplectic
sum of X with (S? x T?)#4CP? along £, and £¥ is minimal and irreducible.

It is a straightforward calculation to see that (e(Z').0(Z')) = (e(X)+6.0(X) —2)
and (e(Z").0(2")) = (¢(X) + 8.0(X) —4). Note that the new meridian in X \ v¥,
dies after the fiber sum since the meridian of £ in T9#2CP? can be killed along
any one of the two exceptional spheres. The same argument works for the fiber sun
with (82 x T?)#4CP?. Hence Seifert-Van Kampen's theorem implies that m,(Z') =

m(Z") = 1. Our claims about b and b; follow immediately. O

Corollary 3.4.1 There are exotic 3CP2#(21 + 3)CP?. for | = 2....,6. which are

all irreducible and symplectic,

Proof: We observe that each one of the irreducible svimplectic CP?#(2k + 1)CP?
(h=1..... 4) we obtained above contains at least one sviplectic genus two surface
of self-intersection zero. (Also sce Section 3.5 for more detailed description of these
surfaces.) To be precise, let us consider the genus two surface £ which is a parallel
copy of the genns two surface used in the last symplectic sum in any one of our
constructions. Since these exotic 4-manifolds are all minimal. they cannot be the
total space of a sphere bundle over a Riemann surface with any blow-ups in the fibers.
Also thev cannot be homeomorphic to either F x S§% or FxS? for some Riemann

surface F. because of their intersection forms. Therefore we sce that asswunptions of
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Theorem 6 hold. It quickly follows from Theorem 6 that we can obtain irreducible

symplectic 4-manifolds homeomorphic to 3CP?# (2l + 3)CP?, for [ = 2,...,6. O

Remark 3.4.2 Using the generic torus fiber and a sphere section of self-intersection
—1 in an elliptic fibration on E(1) = CP?#9CP?, one can form a smooth symplectic
torus Ty of self-intersection +1 in E(1). As each one of our exotic CP?#(2k+1)CP?
for k=1,....4 contains at least one symplectic torus of self-intersection —1 (these
tori are explicitly described in Section 3.5). we can symplectically fiber sum cach
exotic CP?#(2k + 1)CP? with E(1) along a chosen torus of self-intersection —1
and Ty to obtain irreducible symplectic 4-manifolds that are homeomorphic but not

diffeomorphic to 3CP*#(2k + 11)CP? for k=1,....4.

The crux of the above construction is that one can use simple minimal svmplec-
tic 4-manifold blocks. possibly with nontrivial fundamental groups. to produce new
simply-connected minimal symplectic d-manifolds. In a joint work with A. Akhme-
dov, S. Baldridge. B. D. Park and P. Kirk. we exploited this basic idea to fill in a
large region of the geography plane [41. Let us finish this section by quoting the main

theorem from this work:

Theorem 3.4.3 (Akhmedov, Baldridge, Baykur, Kirk, Park [4]) Let ¢ and
e denote integers satisfying 2¢ + 30 > 0. and ¢ + 0 = 0 (mod 4). If. in addition.
o < =2, then there exists a simply connected minimal symplectic 4-manifold with
signature o and Euler characteristic € and odd intersection form, cxcept possibly for
(0.€¢) ecqual to (=3.7). (=3.11). (=5.13). or (=7.15). Morcover. for each integer
k> 49, there erists a simply connected minimal symplectic 4-manifold Xop_y o with
(e.0) = (Hk + 1, =1). and for cach integer k > 15. there exists a simply connected

minimal symplectic d-manifold Xog oy onyy with (c.o) = 4k +41.0).
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3.5 Infinite families of nonsymplectic irreducible
smooth structures

In this section we will show how to construct an infinite family of pairwise nondiffeo-
morphic 4-manifolds that are homeomorphic to CP?#3CP?. The very same idea will
apply to the others, as we will discuss briefly. We begin by describing these families
of 4-manifolds, showing that they all have the same homeomorphism type, and after-
wards we will use the Seiberg-Witten invariants to distinguish their diffcomorphism
tvpes. The SW invariants will be distinguished via Theorem 5.

We first need to choose a null-homologous torus and peform 1/n surgery on it as
in Subsection 3.1.4. We then prove that m; = 1 for the resulting infinite family of
4-manifolds. To apply Theorem 5 in its full strength, i.e. to obtain a family that
consists of pairwise nondiffeomorphic 4-manifolds. we will show that we have exactly
one basic class for X 4(0). up to sign. for each exotic X that we have constructed.
We will do this check by straightforward calculations using adjunction inequalities.

In all the constructions in Section 3.3, we observe that there is a copy of V =
(S' x Mp)\ (FUS) embedded in the exotic X we constructed. where F is the fiber
and S is the section of S x My . viewed as a torus bundle over a torus. As shown
in the Section 3.2.2. S' x My is obtained from T after two Luttinger surgeries,
which are performed in the complement of FUS. So we can think of S* x Al as
being obtained in two steps. Let Vg be the complement of F'U S in the intermediate
4-manifold which is obtained from 79 after the first Luttinger surgery. The next
Luttinger surgery. say (L,~.—1), produces V from V{,. (In the Section 3.2.2, L = exb
and ~ = i)) This second surgery on L in 1§ gives rise to a nullhomologous torus A
in V. There is a loop A on A so that the 0 surgery on A with respect to A gives

Vo back. As the framing for this surgery must be the nullhomologous framing. we
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call it the ‘O-framing’. Note that performing a 1/n surgery on A with respect to A
and this 0-framing in V' is the same as performing an (L,v. —(n + 1)) surgery in V,
with respect to the Lagrangian framing. We denote the result of such a surgery by
V(n) = VyA(1/n). In this notation, V(co) = V, and we see that V(0) = V.

We know that performing a —n surgery on L with respect to v and the Lagrangian
framing, we obtain V(n — 1) = (S! x Mg, )\ (F U S), where K, is the n-twist
knot. It should now be clear that replacing a copy of V' in X with V(n—-1) =
(S' x Mg, )\ (FUS) (i.e. ‘using the n-twist knot’) has the same effect as performing
a 1/(n —1) surgery in the O-framing on A in V C X. We denote the result of such
a surgery by X, = Xa.(1/(n —1)). Clearly, X; = X. We claim that the family
{Xn | n=123....} are all homeomorphic to X but have pairwise inequivalent

Seiberg-Witten invariants. The first claim is proved in the following lemma.

Lemma 7 Let X, be the infinite family corresponding to a fired erotic copy of

CP2#3CP? that we have constructed above. Then X, are all homeomorphic to X .

Proof: For a fixed exotic X. = (.\},) only differs from 7,(.X') by replacing a single
relation of the form b = [a™!.d] by b = [a7!,d]" in the presentation of m(X) we
have used. Thus one only needs to chieck that raising the power of the commutator in
one such relation does not effect our caleulation of 7 (X) = 1. This is easily verified
in all of our examples. Hence all the fundamental group calculations follow the same
lines and result in the trivial group.

Since X, s differ from X only by surgeries on a nullhomologous torus, the charac-
teristic numbers remain the same. On the other hand. since none have new homology
classes. the parity should be the same. By Theorem 2.0.1 again, theyv all should be

homeomorphic to each other. O

Below. let X be a d-manifold obtained by fiber summing 4-manifolds Y and Y’

along submanifolds ¥ C Y and ¥ C Y'. Let A C Y and B" C Y’ be surfaces
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transversely intersecting £ and ¥’ positively at one point, respectively. Then we
can form the internal connected sum A#DB’ inside the fiber sum X, which is the
closed surface that is the union of punctured surfaces (A\ (ANvX)) C (X \vE) and
(B'\(B'nvY)) c (Y'\vXZ). It is not hard to see that the intersection number
between A#B’ and ¥ = ¥’ in X is one, and thus they are both homologically
essential. If all these manifolds and submanifolds are symplectic and the fiber sum
is done symplectically, then A# B’ can be made a symplectic submanifold of X as
well. Also note that, if either A or B’ has self-intersection zero, then their parallel
-copies in their tubular neighborhoods can also be used to produce such internal sums

in X.

3.5.1 An infinite family of irreducible smooth structures on
CP?#3CP?

Let X be the exotic CP2#3CP? that we have described in Subsection 3.3.4. We
begin by describing the surfaces that generate [{,(X:Z). There is a symplectic torus
T = T?% x {pt} of self-intersection zero in ¥ = T2 x &, intersecting ¥ = {pt} x L,
positively at one point. On the other side. in Y’ = T*#2CP?. there is a symplectic
torus 7] of sclf-intersection zero, and two exceptional spheres £} and Ej. each of
which intersects ¥’ positivelv at one point. (There is actually another symplectic
torus Ty in Y’ satisfving [X'] = [TV] + (T3] — [EY] — [E3) in Hy(Y':Z). but we will
be able to express the homology class that T induces in X in terms of the four
homology classes below.)

Hence we have four homologically essential svimplectic surfaces: two genus two
surfaces £ = £/, G = T#T|. and two tori R, = T#LE!. i = 1.2. Cleatly [Z]2 =
[C]? = 0, and [I})]? = [2)* = —1. It is a straightforward argument to see that

these span H,(X:Z). and the corresponding intersection form is isomorphic to that
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of CP?#3CP?. (Note that [T#T)) = [£3] — [G] + [Ri] + [R2].)

The 0-surgery on A with respect to A results in a 4-manifold X, = X, ,(0) satis-
fving H\(Xo:Z) = Z and Hy(X¢:Z) = Hy(X:Z) = Z?, where the new 2-dimensional
homology classes are represented by two Lagrangian tori L, and L;. Both L; have
self-intersection zero. They intersect each other positively at one point, and they do
not intersect with any other class. Thus the adjunction inequality forces this pair to
not appear in any basic class of X. Denoting the homology classes in Xy that come
from X by the same symbols. let 8 = a[Z] + b[G] + Y, 7i[Ri] be a basic class of Xj.
Since it is a characteristic element, a and b should be even, and r; and r, should
be odd.

Since b3 (.Xo) > 1. applying the (generalized) adjunction inequality for Seiberg-

Witten basic classes (¢f. [58]) to all these surfaces, we conclude the following.
(1) 2>0413-[G). implving 2 > |al.
(i) 2>0+(3-[Z]]. implving 2> b+ > ..

(ili) 0> =1+ [R]]. implving 1 > |a — r,] for 7 =1.2.

On the other hand. since Xy is svmplectic and bi_f(,\'g) > 1. Xy is of simple type so

we have 32 = 2¢(.Xy) + 30(Xy) = 2¢(X) + 30(X) =26+ 3(=2) = 6. implying:
(iv) 6=2ab+3,r) -3, 1.

From (i). we see that « can only be 0 or £2. However. (iv) implies that a # 0. Let

us take @ = 2. Then by (iv) aud (i1) we have

‘6+Zl';‘) 1)+ZI',‘ < 8.

which implies that 3,12 < 2. Therefore by (iii) we see that both r, have to be 1.

=1

Finally by (iv) again. b = 0.
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Similarly, if we take a = —2, we must have r;, = 7o = —1 and b = 0. Hence
the only basic classes of X, are £(2[Z] + > ,[Ri]) = £Kx,, where Kx, denotes
the canonical class of X,. By Theorem 5, all X,, = X (1/(n — 1)) are pairwise
nondiffeomorphic.

Moreover, by Remark 3.1.2 we see that X = X also has one basic class up to sign.
It is easy to see that this is the canonical class Kx = 2[X]+ [Ry]+ [R2]. Therefore the
square of the difference of the two basic classes is 4K% = 24 # —4, implying that X
is irreducible (and hence minimal) by a direct application of Seiberg-Witten theory
(cf. [26]). Furthermore, the basic class 3, of X, corresponding to the canonical class

K x, satisfies
SWx. (3,) = SWx(Kx)+ (n—1)SWy,(Ky,) (3.10)
= 14+(n-1)=n.

Thus every X, with n > 2 is nonsymplectic. In conclusion, we have proved the

following.

Theorem 8 There is an infinite family of pairwise nondiffeomorphic 4-manifolds
which are all homceomorphic to CP*#3CP?. All of these manifolds are irreducible. and

they possess exactly one basic class, up to sign. All except for one are nonsymplectic.

3.5.2 Infinite families of irreducible CP’# (2k + 1)CP? for k =
2,3,4

For exotic CP*#5CP?'s. the second homology of X, will be generated by the following

surfaces: two genus two surface of self-intersection zero, ¥ = ¥ and G = T#T’. four

tori of self-intersection —1. R, = I#T" (i = 1.2) and S; = T#FE, (j = 1.2),

and two Lagrangian tori L, and L, as before. A basic class of Xy is of the form



B = a[Z] + b[G] + X, . [R] + 3, 54[S,], where a and b are even and r; and s; are

odd. The inequalities are:
(i) 2>0+|3-[G]|, implying 2 > |a|.
(i) 2>04|3-[Z]|, implying 2 > [b+ 37,1 + 355
(i) 0> —1+|3-(R)]|. implying 1> |a —r;| for i =1,2.
(iv) 0> —1+|3-[S;]|, implying 1 > |a — s;| for j =1.2.

(V) 4=2a(b+3 i+ 32585) — (22 i3, s3).

By (i), a can only take the values 0, +2, where 0 is ruled out by looking at (v). If
a = 2, then by (iii) and (iv) r; and s, are either 1 or 3. However, using (ii) and (v)
as before. we see that none of these can be 3. It follows that +, = s; = 1 for all 4
and j, and b= —2. The case when a = —2 is similar, and we see that X, has only
two basic classes £(2[X] = 2[G] + 37 [R.] + 32 [S)]).

For exotic CP*#7CP?’s, the classes are similar except now we have four tori of
the form 5,. For a basic class 3 = a[X] + b[G] + 2, ri[R] + ijl 5,15;] of Xo. we
see that the cocfficients have the same parity as above. The first four inequalities are
the same (with (iv) holding for j = 1,...,4). whereas the last equality (v) coming

from X being of simple type becomes:

(V') 2=2a(b+ 32 1 + 2‘)‘:1 §) = (5 7+ ij, s2).

Once again, (i) implies that @ is 0 or £2. but by (v') it cannot be 0. If a = 2. then
by exactly the same argument as before we see that r; = s; =1 for all ¢ and j. and
thus b = —4. The case a = —2 is similar. Therefore the only two basic classes of X
are +£(2[5) ~ 1G] + X2, [R]+ T, 15).

For exotic CP?#9CP?’s. the only difference is that the number of tori in total is

eight. Let us denote two of the additional tori as Ky and Ry corresponding to say
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R, and ¥, where the other two will be denoted by S; and S; corresponding to R,
and X, as described in Subsection 3.3.1.

For a basic class 8 = a[Z] + b[G] + S°_, r.[R] + Z;:l s;1S,], once again a,b
are even and r;.s; are odd. The inequalities (i)-(iv) remain the same. Finally (v')

becomes:

(v") 0=2a(b+ Z:=1 T+ Zj‘:l sj) = (ZL[ 2+ Zj:l 33 .

As before, a cannot be 0. If @ = 2, then by the same argument we see that r; =
s; =1 for all ¢ and j. Thus b = —6, and we get a basic class § = 2[E] — 6[G] +
SR+ ijl[ﬂ]]. For a = —2 it is easy to check that we get the negative of this
class.

Hence in all three examples X has only two basic classes. and therefore by The-
orem 5. all three families {X,} consist of pairwise nondiffeomorphic 4-manifolds
homeomorphic to CP2#5CP?. CP?4#7CP2. or CP?#9CP?. Furthermore, as in the
previous subscction. we sce that each family {.X,,} consists of 4-manifolds with only
one basic class. up to sign. In each family. all but one member are nonsymplectic
as the only nonzero values of the Seiberg-Witten invariant of X, are +n. Finally.
each exotic X, can be seen to be irreducible by a direct Seiberg-Witten argument as

before (cf. [26]).



CHAPTER 4

Near-symplectic 4-manifolds

4.1 Background

4.1.1 Near-symplectic structures

Let w be a closed 2-form on an oriented smooth 4-manifold X such that w? > 0,
and Z, be the set of points where w degenerates. Then w is called a near-symplectic
structure on X if it satisfies the following transversality condition at every point
r in Z,: if we use local coordinates on a neighborhood U of r to identify the
map w : U — A*(I"U) as a smooth map « : R* — R®, then the linearization
Dw, : RY = R® at r should have rank three —which is in fact independent of the
chosen charts [9]. In particnlar. Z = Z,, is a smoothly embedded 1-manifold in X, if
not empty. We then call (X.&) a near-svmplectic 4-manifold, and Z the zero locus
of w.

If a given 4-manifold X admits a near-symplectic structure. then it is easy to
see that b¥(X) > 0. One of the motivations for studyving near-svinplectic structures
has been the converse observation. Namely. any closed smooth oriented 4-manifold
X with b*(X) > 0 can be equipped with a near-symplectic form. which was known

to gauge theory afficianados since early 1980s and a written proof of which was first
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given by Honda through the analysis of self-dual harmonic 2-forms ([46], also see
[9]). Thus the near-symplectic family is much broader than the symplectic family of
4-manifolds. For instance, connected sums of symplectic 4-manifolds can never be
symplectic, due to the work of Taubes and the vanishing theorem for SW invariants.

However these manifolds would still have bt > 0 and therefore are near-symplectic.

Example 4.1.1 Let M3 be a closed 3-manifold and f: M — S! be a circle valuded
Morse function with only index 1 and 2 critical points. Then the 4-manifold X =
S! x M can be equipped with a near-symplectic structure. To see this, first note
that due to a theorem of Calabi there exists a metric g on M which makes df
harmonic. Parametrize the first S' component by ¢. and consider the form w =
dt Adf + *(dt A df). where the Hodge star operation is defined with respect to the
product of the standard metric on S' and g on M. It is a straightforward check to
verifv that w? > 0 and that w vanishes precisely on Z = S x Crif(f). Finally using
local charts one can see that w vanishes transversally at every point on Z (also see
the next subsection).

The attentive reader will realize that some of the svmplectic building blocks ex-
tensively used in the previous chapter are in fact specific examples of this type.
For consider a 3-manifold My obtained from S* after a 0-surgery on an arbitrary
knot A, which comes with a circle valued Morse function as before. (Note that
Z=HY (Mg Z) = [Mg.S'.) Then w defined as above vields a symplectic form on
X = S'x My ifand only if A is fibered so that f can be assumed to have no critical

points: i.e when Z = 0.

4.1.2 Local models

Using a generalized Moser type of argument for harmonic self-dual 2-forms. Honda

showed in [17] that there are exactly two local models around each connected com-
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ponent of Z,. To make this statement precise, let us consider the following lo-
cal model: Take R? with coordinates (t,r;,x5,73) and consider the 2-form Q =
dtAdQ+x (dtAdQ). where Q(x). 1. 73) = x}—3(z3+22) and * is the standard Hodge
star operator on A?R*. Restrict 2 to R times the unit 3-ball. Define two orienta-
tion preserving affine automorphisms of R* by o, (t.x,.79,73) = (¢t + 27, 7). 1. 73)
and o_(t,z;,x9.73) = (t + 27, —x), T2. —x3). Since both maps preserve 2, they in-
duce near-symplectic forms wy on the quotient spaces Ny = R x D3/0y. Honda
shows that given any near-symplectic (X,w) with zero locus Z,, there is a Lipschitz
self-homeomorphism ¢ on X which is identity on Z,, smooth outside of Z_, and
supported in an arbitrarily small neighborhood of Z_, such that around each cir-
cle in Z,,, the form o*(w) agrees with one of the two local near-symplectic models
_ (Vi,wy). For our purposes, we can always feplace the near-symplectic form w with
such a form ¢*(w). Herein the zero circles which admit neighborhoods (\Vy.w,) are
Ci‘llled of even type, and the others of odd type.

On each local model Ny = S' x D3 one can consider fibration-like maps:

Fy: No — S' x [ defined by

| —

Fi(l..'l'l.,l'z..l';_;) = (/(2('1 .I'g..l';g)) = (/lf - (,’l':‘zZ + l:i)) (41)

(8]

In either case. for a fixed £, we observe that on the complement of S x 0 we have
fibrations with fibers composed of two disjoint disks in )% for the preimages of points
with @ > 0, whereas the fibers are annuli for @ < 0. In the preimages of (£.0) we
have conical singularities which amounts to attaching a 1-handle with feet on the
two separate disks so to obtain the annulus on the other side. Dually it is a 2-handle
attachment in the opposite direction which separates the annulus into two disks. Now
if we let t € S vary. this amounts to doing this handle attachment fiberwise as we
pass the middle circle ST x 0 in S* x [. The difference between the two local models

N, and N_ manifests itself here. The model is even if and only if for a fixed @ > 0
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the two disks are switched after one travel in the t direction, and odd otherwise.

Example 4.1.2 Once again let X = S! x My for nonfibered K. For simplicity,
assume that f : Mg — S! in Example 4.1.1 is injective on its critical points. Then
the preimage of any regular value of f is a Seifert surface of K capped off with a disk,
i.e a closed orientable surface. While passing an index k critical point (k¥ = 1.2),
a k-handle is attached to get one Seifert surface from another. It follows that F :
My — S! is a fibration-like map, where the genera of fibers are increased or decreased
by one at every critical point, depending on k& = 1 or k = 2, respectively. When
crossed with S!, this yiclds a fibration-like map F :id x f : X — T?. The base torus
T? = S' x S! can be parametrized by (f.s) where ¢ traces the outer circle factor and
s traces the base circle of f. Thus the monodromy of this fibration is trivial in the
t direction and is prescribed by the knot monodromy in the s direction. Choosing
local charts on a tubular neighborhood S! x D3 of each component of St x Crit(f)
and on the image S' x I, one can see that F is locallv the same as F; map we have
defined above. This implies that all circles of Z,.. where w is the near-symplectic

structure on X described in Example 4.1.2, are even.

4.1.3 Broken Lefschetz fibrations

In [9]. Auvorux, Donaldson. and Katzarkov defined a generalization of Lefschetz fi-
brations called “singular Lefschetz fibrations™, where they allowed the maps to have
singularities along embedded circles (“indefinite quadratic singularities™ [9]) which
are subject to the two local models described in the previous subsection (Equation
4.1) in addition to the usual nodal singularities on the complement of these. Here
we refer to these fibrations as broken Lefschetz fibrations as in [64, 65]. and the new
type of singularities as odd or even round singularitics depending on whether the

local model around the singular circle is odd or even. A broken Lefschetz pencil is de-

51



fined similarly, where we allow round singularities in the complement of the Lefschetz
critical points and the base locus.
Tha main theorem of [9] states that broken Lefschetz fibrations are to near-

svplectic 4-manifolds what Lefschetz fibrations are to symplectic 4-manifolds:

Theorem 4.1.3 (Auroux, Donaldson, Katzarkov [9]) Suppose T' is a smooth
1 -dimensional submanifold of a compact oriented 4-manifold X . Then the following

two conditions are equivalent:
e There is a near-symplectic form « on X, with Z, =T,

o There is a broken Lefschetz pencil f on X which has round singularities along
I, with the property that there is a class h € H*(X) such that (L) > 0 for

cvery fiber component ¥ of f.

Morcover, the implications in each direction can be obtained in a compatible way.
That s, given a near-symplectic form w. a corresponding broken Lefschetz pencil
(BLP) can be obtamed so that all the fibers are symplectic on the complement of the
stngular locus. Conversely. from a broken Lefschetz pencil (BLF) satisfying the indi-
cated cohomological condition. one constructs a uniqe deformation class of w which

is symplectic on the fibers. away from the singularitics.

As in the Lefschetz fibration case, blowing-up the base locus of a broken Lefschetz
pencil results in a Lefschetz fibration.  When the BLP supports a near-svmplectic
structure, these blow-ups/downs are understood to be made sviplecticallv. If we
have in hand a broken Lefschetz fibration over a Riemann surface B (which we
will mostly take as B = S?) that satisfies the same cohomological condition in the
statemment of the theorem., then we can construct compatible near-symplectic forms
with respect to which a chosen set of sections are symplectic [9]. From now on we will

refer to such a fibration f on X as a near-symplectic broken Le fschetz fibration. and
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say that the pair (X, f) is near-symplectic. Implicit in this notation is that the near-
symplectic form on X is chosen from the unique deformation class of near-symplectic
forms compatible with f obtained via Theorem 4.1.3.

Clearly one can define broken Lefschetz fibrations over any Riemann surface. The
Example 4.1.2 gives such an example of a broken fibration (with no Lefschetz singu-
larities) over T%. In general, a broken Lefschetz fibrations over a Riemann surface
can be split into Lefschetz fibrations over surfaces with boundaries, and fibered cobor-
disms between them relating the surface fibrations over the boundary circles. Round
singularities of a broken Lefschetz fibration are contained in these cobordisms. We
study these cobordisms more rigorously in the next subsection, but a brief discussion
of their use beforehand might be helpful. For now, the reader is invited to convince
himself/herself that our discussion of the local models around each round singular
circle in the previous subsection implies that these cobordisms are given by fiberwise
handle attachments, all with the same index (either 1 or 2).

If we fiberwise attach 1-handles to a fibered 3-manifold Y, to obtain a new fibered
3-manifold Yj. the attaching region is necessarilly a bisection so that the handle
attachment is compatible with the monodromy of the fibration on Yy. That is, such
a cobordism 117 is given by a fiberwise 1-handle attachment at the two intersection
points of this bisection with the fibers of Y. The fibrations on the two ends of W
uniquely extend to a broken fibration over S' x . with only one ronnd singularity
given by the centers of the cores of I-handles attached to the fibers of Y. Similarly.
we can fiberwise attach 2-handles to a fibered Y, to describe a cobordism to a new
surface fibration Y} over a circle. This is obtained by a fiberwise 2-handle attachment
along a curve 4, on each fiber F,. where s parametrizes the base 1/{0 ~ 1} = S' of
the fibration on Y. Once again we obtain a broken fibration from this cobordism W

to S' x I. with a single round singularity corresponding to the centers of the cores
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of the 2-handles attached fiberwise.

The diffeomorphism types of the fiber components of the fibrations on the two ends
of such cobordisms can easily be deduced from each other by looking at whether the
bisection intersects with only one fiber component or two, or in the other direction to
whether v, is a separating curve or not (for one s and all). Relating the monodromies
of these fibrations is a more clusive issue which we will address later in Subsections
4.2.1 and 4.2.2. However, the types of singular circles that arise from these round
handle attachements is determined easily. In such a cobordism with 1-handles, the
type is even if the attachings trace out an oriented link with two components and odd
if they trace out an oriented knot. On the other hand, a cobordism with 2-handles
gives rise to an even circle if the monodromy of the fibration on Yy maps v to v

with the same orientation. and is odd otherwise.

Remark 4.1.4 Roughly speaking., such cobordisims with 1-handle attachments in-
crease the genus of a fiber component. or connect two different fiber components,
whereas cobordisms with 2-handle attachments either decrease the genus or discon-
nect a fiber component. In /9] it was shown that for any given near-symplectic form
w on X. a compatible broken Lefschetz fibration f : X#bCP? — S?. where b is
the number of base points. can in fact be arranged in the following way: The base
S? breaks into three pieces DyU AU Dy, . where A is an annular neighborhood of the
cquator of the base S* which does not contain the image of any Lefschetz critical
point. Dy and D, are disks. so that (i) On X; = f~YD)) and X;, = f~1(Dy) we
have genwine Lefschetz fibrations: and (ii) The cobordism W = f~1(A) is given by
only fiberwise 1-handle attachments if one travels from the X, side to X, side. We
call these kind of broken Lefschetz fibrations/pencils directed. X; the lower side and

X, the higher side.



4.1.4 Lagrangian matching invariants

We will now discuss an invariant due to Perutz [63, 64, 65] associated to any given
(X, f) where X is a closed smooth oriented 4-manifold and f : X — B is an injec-
tive near-svmplectic broken Lefschetz fibration. The injectivity condition is needed
to guarantee that f maps components of the round singular locus to disjoint circles
on B, which can be achieved by perturbing any given broken Lefschetz fibration.
Perutz’s work generalizes the Donaldson-Smith construction [19] to near-symplectic
broken Lefschetz fibrations. It relies on a count of pseudo-holomorphic sections of
the associated families of symmetric products over a splitting base that ‘match’ by
satisfying certain ‘Lagrangian boundary conditions’ [64, 65]. This aspect of the con-
struction suggests the name Lagrangian matching invariants for these invariants. The
construction of Lagrangian matching invariants (LM) are quite tedious. and the reader
is asked to turn to [64. 65] for the details which will be ignored below.

LM invariants are designed to be comparable to SW invariants of the underly-
ing 4-manifold. and were conjectured by Perutz [64] to be equal to SW. When the
round locus is empty. the equality of the Donaldson-Smith and Seiberg-Witten in-
variants for symplectic Lefschetz fibrations of high degree was proved by Usher [82]
throngh Taubes™ work on the correspondence between Gr invariants and SW invari-
ants on svinplectic d-manifolds. More evidence in this direction were gathered in
[65]. incInding the equality of LN and SWinvariants on the near-svmplectic family of
d-manifolds S' x M. for any knot A", described in Example 4.1.2. The conjecture
in particular proposes the LM invariants to be independent of the choice of fibra-
tions (possibly after imposing some constraints). even though the calculations make
use of the fibration structure. Hence the nature of the invariant requires the study
of near-svmplectic broken Lefschetz fibrations, which will be the main theme of the

next section, whereas the aforementioned conjecture motivates us to look at SW and
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LM invariants simulatenously in the rest of this chapter.
Let f : X — 5% be a near-symplectic broken Lefschetz fibration. Let Spin‘(X)
denote the H?(X;Z)-torsor of isomorphism classes of Spin®-structures on X, and

F € Hy(X:Z) be the class of a regular fiber of f. Then
Spin“(X )k = {s € Spin°(X) | (c1(s), F) = 2k, (x)}.

where (*) is the condition that for any connected component ¥ of a regular fiber,

one has (¢,(s),[Z]) > x(%).

Definition 4.1.5 k € Z is admissible for (X. f) if either (i) the fibers are all con-
nected and k > 0. or (ii) x(X;)/2 < k < —x(X,)/2 for all reqular values s. A

Spin®-structure s is admissible if s € Spin“(X )y with k admissible.
Then the Lagrangian matching invariant is a map

U Spin(X)e = A(X). s LA ix)(s).

A adimssible
where A(X) is the graded abelian group Z[U] =z A*/HIY(X:Z). deg(l") = 2. The

clement LMy ) (s) is homogeneous of degree

ALy py(s)) = i(r.(s)'-’ ~30(.X) = 20(X)) (4.2)

and derived from a moduli space [64, 65], whose construction in turn uses the broken
Lefschetz fibration [ on X' as well as several auxiliary choices. It is invariant under
isotopies of f through fibrations of the same type. and cquivariant under automor-

phisms of (X, f).

Remark 4.1.6 The above definition can be generalized to any base surface B. after

replacing A(X) by A(X.[) = Z[U] x= N"Hom(N . Z) . where

K, =ker(m.: 1L(X:Z) — I1,(B:Z)) C H,(N).



In the level of homology, the Spin®-structures that the Lagrangian matching invari-
ants are parametrized over correspond to multisections of a near-symplectic broken
Lefchetz fibration (X, f) which have (homological) boundaries equal to the round
locus. (This is analogous to the tautological correspondence between the multisec-
tions (called ‘standard surfaces’) of a symplectic Lefschetz fibration and the sections
of the Hilbert schemes in the construction of Donaldson-Smith invariants [69].) What
follows is a brief review of this:

The ‘Taubes map’ 75 is a bijection (as proved in [77])
Spin“(X) — 6~ 1([Z)) € Hy(X.Z:Z),

where : Hy(X,Z:Z) — H(Z:.Z) is the boundary homomorphism, and Z is oriented
by a vector field ¢ such that 7 f,(¢) points into the higher side of [(Z) C I3. The map
Ty arises from the canonical Spin®-structure s.,, on the almost complex manifold

X\ Z. It is characterized by
Tv(s) =13 if s|(X\Z)=PD(3) - scan- (4.3)

That is ¢;1(s) = 1 (5can) + 2P D(3). Thus a multisection in question is obtained by
3=r1¢(s) € I1:(X.Z:Z).

To finish with we would like to note another aspect of LN invariants established
by Perntz: that they fit in a fibered field theoryv’. This is achieved by assigning
svimplectic Floer homology groups to 3-manifolds fibered over cireles, and relative
invariants assiencd to 4-manifolds fibered over Riemann surfaces with boundaries. A
chosen multisection of a near-sviplectic broken Lefschetz fibration of (X, f) restricts
to multisections of these fibrations. which in turn is used to compute these Floer
homologies.  To simplify onr discussion here. assmme that the base B = S? splits
as B = BiU...UB,. where By and B,, are disks and the rest are annuli. with

each one containing the image of the singular locus of f in their interiors only. Let
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X;= f~YBi) so that X = X, U, ---Uy X,,. Then we get a map
L;\[,\"f = Lt‘[;lvﬂ,\'l OLAI«\'le,\-zo' . 'OLAII\'n‘ﬂ.\‘n : Spillc(X)adm,'ss;b(c — A(X)

where Spin“(XX)agmissiste = Uk admissiie SPIN(X)x and LAY is a dual map. (See
(64, 65].) Then this map is evaluated on monomials U® @ [; A --- Al, of degree d(s)

to obtain a map into Z as in the SW setting.

4.2 Topology of broken Lefschetz fibrations

Handlebody diagrams of Lefschetz fibrations over S? are well-understood and proved
to be useful in the study of topology of siooth 4-manifolds. The reader is advised to
turn to [10] for the details of this by now classical theory and its several applications.
In this section. we would like to extend these techniques to the study of broken
Lefschetz fibrations. For this purpose, we will describe and study round handles that
arise naturally in the context of 4-dimensional broken Lefschetz fibrations thoroughly.

An n-dimensional round k-handle is topologically S x D¥ x Dn='=%  The
first comprehiensive study of round handles is due to Asimov [7], and more on 4-
dimensional round 1-handles can be found in [34]. However. both articles assume
a restriction on the way these handles are attached. Namelv, these round handles
Stx DFx DrbkE are attached along ST x S5 1 pnb ko Ag the work of [9]
implicitly suggests. we shall also consider a different tvpe of attachment. To keep
the following discussion siple. let us define this other way of gluing in the case of
4-dimensional round 1— and 2— handles only, the ones which interest us in this
work.

Take a 3-disk bundle over St with total space ST x D? and look at the splitting
of this bundle into two subbundles of rank 1 and 2. These splittings are classified by

homotopy classes of mappings from St into REF?. Since m(RP?) = Z, there are two
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possible splittings up to isotopy. These two splittings can be realized by the ones given
in Subsection 4.1.2. Namely, these are determined by the two orientation preserving
self-diffeomorphisms of R3, where one is the identity map, and the other one is given
by (i, r9,23) — (=71, 22, —x3). Our second type of round handle attachment arises
from the latter model. To distinguish the two type of round handles, let us denote this
new one by S'X D3 just to emphasize the splitting we consider. Clearly, S'xD? is
diffeomorphic to S x D3. We call the round handles attached in the usual way (as in
[7]) even round handles, whereas the others are called odd round handles —apparently
corresponding to the even and odd local models in Subsection 4.1.2.

Let us describe the attachments in the odd case more explicitly. The attachment
of an odd round 1-handle S'x(D' x D?) is made along S'x(S° x D?), which is
topologically the D? neighborhood of a circle (= S'x(S? x 0)). If we restrict our
attention to the rank 1-bundle (parametrized by r;) over S', both even and odd
round 1-handles can be seen to have attaching regions given by the restriction of this
bundle to its boundary (which gives a bisection of the rank 1-bundle) times the rank
2 bundle. Then the odd and even cases correspond to this bisection having one or
two components. respectively. Similarly. an odd round 2-handle S'x(D? x D') is
attached along S'x(S! x D). This is topologically a collar neighborhood of a Klein
Bottle, whereas in the even case we would be gliuing along a collar neighborhood of a

torus.

4.2.1 Round 1-handles

Expressing the circle factor of an even round 1-handle S' x D' x D? as the union
of a 0-handle To = D" x D' and a 1-handle /; = D' x D", we can express an even
round 1-handle as the nnion (JyU L) x D' x D? = (D" x D'UD' x D") x D' x D? =

(D° x DY) x (D' x D?)u (D' x D) x (D' x D?) = (D" x D') x (D' x D*)u (D' x
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Figure 4.1: A general odd round 1-handle (left), and an even round 2-handle attachment
to a genus two Lefschetz fibration over a disk (right). Red handles make up the round
1-handle.

D')x (D°x D?) = D'x D*UD?x D?, a 4-dimensional 1-handle H; and a 2-handle
H,. Note that we exchange and rewrite the factors simultaneously. It is not too hard
to see that Hy goes over Hy geometrically twice but algebraically zero times.

In the same way, we can realize an odd round 1-handle as the union of a 1-handle
H, and a 2-handle H,. However this time the underlying splitting implies that Hj
goes over Hy both geometrically and algebraically twice.

We are ready to discuss the corresponding Kirby diagrams. Recall that our aim
is to study the round handle attachments to Lefschetz fibrations. Let F' denote the
2-handle corresponding to the regular fiber. Both in even and odd cases, the 2-
handle H, of the round 1-handle links F' geometrically and algebraically twice and
can attain any framing k. Both ‘ends’ of the H, are allowed to go through any one of
the 1-handles of the fiber before completely wrapping once around F. In addition,
these two ends might twist around each other as in Figure 4.2.1. (Caution! The
“twisting” discussed in [9] is not this one; what corresponds to it is the framing k.)
The difference between even and odd cases only show-up in the way H, goes through

H,. In Figure 4.2.1 we depict both types of handle attachments.
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4.2.2 Round 2-handles

The handle decomposition of round 2-handles is analogous to that of round 1-handles.
Expressing the circle factor of an even round 2-handle S* x D? x D! as the union of
a 0-handle Iy = D° x D' and a 1-handle I; = D! x D°, this time we can express an
even round 2-handle as the union (lyUI)) x D? x D' = D? x D2U D3 x D', a 4-
dimensional 2-handle H; and a 3-handle Hj through a similar rewrite as before. For
an odd round 1-handle we get a similar decomposition. However the splittings once
again imply the difference: the 3-handle goes over the 2-handle geometrically twice
and algebraically zero times in the even case, and both geometrically and algebraically
twice in the odd case. One can also conclude this from the previous subsection since
a round 2-handle is dual to a round 1-handle. |

We are now ready to discuss the corresponding Kirby diagrams for attaching round
2-handles to Lefschetz fibered 4-manifolds with boundary. Recall that the round 2-
handle attachment to a swrface fibration Y, over a circle that bounds a Lefschetz
fibration is realized as a fiberwise 2-handle attachment. The attaching circle of the
2-handle 11 of a round 2-handle is then a simple closed curve v on a regular fiber,
which is preserved under the monodromy of this fibration up to isotopy. Since this
attachment comes from a fiberwise handle attachment. H} should have framing zero
with respect to the fiber. As usual. we do not draw the 3-handle Hj of the round
2-handle. which is forced to be attached in a way that it completes the fiberwise
2-handle attachment. The difference between the even and odd cases is then some-
what implicit; it is distinguished by the two possible wavs that the curve 5 might
be mapped onto itself by a self-diffcomorphism of the fiber determined by the mon-
odromy. If v is mapped onto itself with the same orientation, we have an even round
2-handle. and an odd round 2-handle if the orientation of ~ is reversed. The reader

can also refer to the relevant monodromy discussion after the proof of Theorem 4.2.3.
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Figure 4.2: Left: an even round 2-handle attachment to D? x T2, Right: an odd round
2-handle attachment to an elliptic Lefschetz fibration over a disk with two Lefschetz singu-
larities. Red handles make up the round 2-handle.

The upshot of using round 2-handles is that one can depict any Lefschetz fibration
over a disk together with a round 2-handle attachment via Kirby diagrams explicitly
as in the Lefschetz case [40]. One first draws the Lefschetz 2-handles following the
monodromy data on a regular diagram of D? x £, (where g is the genus of the
fibration) with fiber framings —1, then attaches H; with fiber framing 0 and includes
an extra 3-handle. We draw the Kirby diagramn with standard 1-handles so to match
the fiber framings with the blackboard framings, which can then carefully be changed
to the dotted notation if needed. Importantly, it suffices to study only these type
of diagrams when dealing with broken Lefschetz fibrations on near-symplectic 4-
manifolds, as we will prove in the next section.

To illustrate what we have stated above, let us look at the following two simple
examples in Figure 4.2. Since the first round 2-handle is attached to a trivial fibration,
« is certainly mapped onto itself with the same orientation, and therefore it is an even

round 2-handle. For the second one, we express the self-diffeomorphism of the 2-torus
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fiber induced by the monodromy g by the matrix:

and the curve y by the matrix [1 0]7. Thus y maps v to —<, and this yields an

odd round 2-handle attachment. Both of these examples will be revisited later.

4.2.3 Simplified broken Lefschetz fibrations

The complexity of the topology of broken Lefschetz fibrations lies in round cobor-
disms. Our goal is to establish an existence result of much simpler broken fibrations,

which can be associated to any near-symplectic 4-manifold.

Definition 4.2.1 A simplified broken Lefschetz fibration on a closed 4-manifold X
is a broken Lefschetz fibration over S? with only one round singularity and with all

critical points on the higher side.

Since the total space of the fibration is connected, the “higher side™ always consists
of connected fibers. The fibers on the higher side have higher genus whenever all the
fibers are connected. while in general the term refers to the direction of the fibration.

We shall need the following lemma:

Lemma 4.2.2 Let N admit a directed broken Lefschetz fibration f: X — S2, then
there erists a new broken Lefschetz fibration on f': X — S?%. where all the Lefschetz

singularities are contained in the higher side.

Proof: To begin with, we can perturb the directed fibration so to guarantee that
it is injective on the circles of the round locus. Thus the fibration can be split into

a Lefschetz fibration over a disk (the lower side), to which we consccutively attach
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round 1-handles, and then we close the fibration by another Lefschetz fibration over
a disk (the higher side).

To simplify our discussion. for the time being assume that the fibers are all con-
nected, so there is the lower genus side X; with regular fiber F;, the round handle
cobordism W, and the higher genus side X, with regular fiber F;,. Let the genus of
the regular fibers in the lower side be g. The standard handlebody decomposition of
X, consists of a 0-handle, 2¢g 1-handles and some 2-handles one of which corresponds
to the fiber, and the rest to the Lefschetz handles in X; [40]. By our assumption,
W is composed of ordered round 1-handle cobordisms W, UW,U---U W, where k
is the number of circle components in the round locus. Let us denote the lower side
boundary of W, bv d_W; and the higher side by d,W;.

Consider X;UW7 . which is obtained by adding a round 1-handle R, composed of a
1-handle [} and a 2-handle H,. The (X, UW,) = 0, W) = J_W), is the total space
of a genus g + 1 surface bundle over a cirele. We can make sure that the vanishing
cvcles of the Lefschetz 2-handles in X, sit on the fibers of the genus ¢ fibration on
0.X;. Moreover. we can assume that the bisection which is the attaching region of R,
misses these vanishing eveles. This means that 1) and Hy do not link with any one of
the Lefschetz 2-handles in .X; but only with the 2-handle corresponding to the fiber
and possibly with some of the 1-handles corresponding to the genera of the fiber.
We can rearrange the handlebody prescribed by the broken Lefschetz fibration on
X, U by another one where first |y and I, are attached to the standard diagram
of D? x F;. and the Lefschetz 2-handles are attached afterwards. Having modified
the diagram this way. now we can assume that the Lefschetz 2-handles are attached
to J(.X;UW,). which can be pulled to d_115 via the fiber preserving diffeomorphism
between o, 117 and @ Wy, The fiber framings of these 2-handles remain the same,

and therefore they are still Lefschetz,
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Inductively, one slides the Lefschetz 2-handles so to have them attached to 9(X,;U
WiyuWouU---UW,) =90(X,UW) = —-0X,. Higher side X} together with these 2-
handles is equipped with a new Lefschetz fibration of genus g+k (which is the same as
the genus of F},) over a disk. Hence we obtain a new handlebody decomposition which
describes a new broken Lefschetz fibration on X, with all the Lefschetz singularities
contained in the new higher side. It is left to the reader as an excercise to verify that
a similar line of arguments work when X; has disconnected fibers. O

Given a near-symplectic form on a closed 4-manifold X, Perutz [66] and Taubes
[79] independently showed that one can obtain a new near-symplectic form on X in
the same cohomology class but with connected round locus. The meat of the next

theorem is this observation and the Theorem 4.1.3.

Theorem 4.2.3 On any closed near-symplectic 4-manifold (X,w), possibly after re-
placing w with a near-symplectic form W' within the same cohomology class, one
can find a near-symplectic broken Lefschetz pencil. which yields a simplified near-

symplectic broken Le fschetz fibration on a blow-up (X.2") of (X.w').

Proof: Replace w with a near-svmplectic &’ with connected Z_.. Theorem 4.1.3
shows that there is a broken Lefschetz pencil compatible with this near-symplectic
form. so it should have ouly one round handle singularity. Symplectically blow-up the
base points to obtain a near-symplectic broken Lefschetz fibration [ on the blow-up
X of X. Apply the above lemma to get a simplified Letschetz fibration on X, which
also supports the near-svmplectic structure sinee the fibers are unchanged and still
svmplectic under the modification described in the proof of Lemma 4.2.2.

The exceptional spheres appear as 2-handles linked to the higher genus fiber com-
ponent, all with framing —1. and not linking to each other or to any other handle.
The modification in Lemma 4.2.2 is performed without involving these handles. so

their linkings and framings remain the same. Since these represent the exceptional
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spheres, we can symplectically blow them down to obtain a new Lefschetz pencil on
X, with the desired properties. O

The simplified broken Lefschetz fibrations now can be represented by using the
handlebody diagrams described in Subsection 4.2.2. Examples are given in the next
subsection.

It is no surprise that the monodromy representations of these fibrations are also
simpler than usual. Here we include a brief digression on this topic: Let Map, (F})
be the subgroup of Map(F,) that consists of elements that fix an embedded curve
~. up to isotopy. Then there is a natural homomorphism: o, from AMap,(F,) to
Map(F,_1) or to Map(Fy,) x Map(F,,) depending on whether v is nonseperating
or separating Fy into two closed oriented surfaces of genera g, and g,. Define S,
to be the set of pairs (ye.~) such that p € Map,(F,) and g € Ker(¢,). Recall
that when the fiber genus is at least two, the gluing map that preserves the fibers is
determined uniquely upto isotopy. Hence. given any tuple (y1,~) € S = U,,;:;Syv we
can construct a unique simplificd broken Lefschetz fibration nnless + is separating
and there is a g, < 1. Otherwise. one needs to include the data regarding the gluing
of the low genus picces carrving genus 0 or genus 1 fibrations.

If the fibers are connected. the map o, @ Map(F,) — Map(F,_;) above factors as
vy s Map(Fy) — Map(F,\ N) and oy @ Map(Fy \ N) — Map(l,-1). where N is an
open tubular neighborhood of ~ away from the other vanishing eveles. (The middle
group does not need to fix the bonndaries.) The map o+ has kernel isomorphic to
Z —the framing of the 2-handle of a round 1-handle. When we have a simplified
BLF, the kernel of ¢ is isomorphic to the braid group on F, | with 2-strands, by
definition.  This gives an idea about the cardinality of S. and in turn about the

cardinality of the family of broken Lefschetz fibrations on smooth 4-manifolds.
Remark 4.2.4 If one has more than one round 2-handle involved in a broken Lef-
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schetz fibration, we may or may not be able to draw the Kirby diagrams as above. This
is due to the fact that after each round cobordism, we obtain a new fiber, which does
not need to simply ‘sit on the blackboard’. If one draws the diagram from the lower
side; the 2-handle of a round 1-handle might link with the 1— and 2— handles of
other round 1-handles. To have a complete diagram, one would also need to pull the
Lefschetz handles from the higher side to this diagram, but framings of both 2 -handles
of round 2-handles and those of the Lefschetz handles coming from the higher side

all together are harder to determine.

4.2.4 Examples

In this subscction we provide examples of simplified broken Lefschetz fibrations. The
examples are chosen to span various tvpes of fibrations: with even round locus, odd
round locus. connected fibers. disconnected fibers (on the lower side). and finally those
which do not support any near-symplectic structure. The near-symplectic examples

we present here are used in later sections.

Example 4.2.5 The Figure 1.3 describes a near-svimplectic hroken Lefschetz fibra-
tion on S? x ¥, #5! x 5%, with lower side genus equal to g and higher side genus
increased by one via an even round 1-handle cobordism. We call this fibration the
step fibration for genus g. To identify the total space. first use the O-framed 2-
handle of the round 2-handle to separate the 2-handle corresponding to the fiber.
Then eliminate the obvious canceling pair. and note that the remaining 1-handle
together with the 3-handle of the round 2-handle describes an S' x 5% summand.
As the rest of the diagram gives S x £, we sce that the total space is as claimed.

In several aspects. the round handle cobordism W in the step fibration is the
simplest possible cobordism. Here not only dg W are products of Riemann surfaces

T, and T, with S'.but also 17 itself is the product of ST with a 3-dimensional
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Figure 4.3: The step fibration on S? x £, #S5! x S3.

cobordism from ¥, to Xy, given by only one handle attachment. We refer to
these type of cobordisms as elementary cobordisms. The round handle cobordisms in
Example 4.1.2 are all elementary.

When g = 0 we can obtain a more general family as in Figure 4.4. These describe
broken Lefschetz fibrations obtained from a trivial torus fibration and a trivial sphere
fibration over disks and an elementary round handle cobordism between them. The
fibrations we get are precisely the near-symplectic examples of [9], and historically the
first examples of near-symplectic broken Lefschetz fibrations over S%. After simple
handle slides and cancellations, one ends up getting a diagram of the connected sum
of an S? bundle over $? with Euler class k and an S x S3. Thus for even k we get

52 x S24#5S! x S3 and S?XxS?#5S! x S? for odd k.

Example 4.2.6 In Figure 4.5 we describe a family of simplified broken Lefschetz
fibrations with odd round singularity. We claim that for even k the total space is
S? x S? and for odd k it is CP?#CP?. In order to verify this we prefer to use

the diagram with dotted notation on the right of the Figure 4.5. Let H, be the
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Figure 4.4: A family of near-symlectic BLFs over S? (left), and the diagram after the
handle slides and cancelations (right).
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2-handle of the round 2-handle, given in red and with fiber framing 0. Using H,,
first unlink all the 2-handles froin the top 1-handle, and cancel this 1-handle against
H,. Then slide the +1-framed 2-handle over the —1-framed 2-handle to obtain the
third diagram in the Figure 4.6, and cancel the surviving 1-handle against the (—1)-
framed 2-handle. Finally cancel the remaining unlinked 0-framed 2-handle against
the 3-handle. The result follows.

For k = 0 this is Perutz’s button example in [64]. Moreover, when k = —1 the
blow-down of this exceptional sphere vields a near-symplectic broken Lefschetz pencil

on CP2.

All the examples we discussed so far had nonseparating round 2-handles; in other
words, in all examples all the fibers were connected. However separating round 2-
handles arise quite naturally when studying broken fibrations on connected sums of

near-symplectic 4-manifolds, as illustrated in the next example.

Example 4.2.7 Since b*(2CP?) = 2. there exists a near-symplectic form on this
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Figure 4.5: A near-symplectic BLF for an S? bundle over S? with Euler class k. On the
right: 1-handles are replaced by dotted circles.

non-symplectic 4-manifold. We will construct a near-symplectic structure which re-
stricts to a symplectic structure on each CP? summand away from the connected sum
region, through broken Lefschetz fibrations. Take the rational fibrations f;, i = 1,2
on two copies of CP2#CP?, with —1 sections. Consider a fibration f = fiU f, on the
disjoint union of these two, by simply imagining them ‘on top of each other’. Now in a
regular neigborhood of a fiber of f, introduce a round 1-handle so to connect the dis-
joint sphere fibers. The result is a broken Lefschetz fibration f': 2CP?#2CP? — S?
with two exceptional spheres. Let h be the Poincaré dual of the sum of —1 sections.
Then h evaluates positively on each fiber component of this fibration, so there exists
a near-symplectic structure compatible with f’ with respect to which the two —1 sec-
tions are symplectic. Blowing-down these two sections we obtain a near-symplectic
broken Lefschetz fibration on 2CP? with the proposed properties. A diagram of this

fibration is given in Figure 4.7.

Remark 4.2.8 The very same idea can be applied to connected sums of any two near-
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Figure 4.6: Identifving the total space of the BLF in Figure 4.5.
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symplectic broken Lefschetz fibrations over the same base, say by connect summing
in the higher genus sides (also see [65]). For the diagrams of such fibrations over
S?, abstractly, first slde a 2-handle F, corresponding to a fiber component over the
2-handle F, corresponding to the other fiber component. Then regard Fy as the 2-
handle of a round 2-handle, and add an extra 3-handle to the union of two fibration
diagrams. This way we obtain a connected sum model for our (broken) Lefschetz

fibration diagrams.

Using similar techniques, we can also depict diagrams of broken Lefschetz fibrations
which do not necessarilly support near-symplectic structures. We finish with a few

examples of this sort:

Example 4.2.9 As discussed in [9], a modification of g = 0 case in Example 4.2.5,
yields a broken Lefschetz fibration on S*. This can be realized by gluing the round
cobordism W to the higher side fibration over D? by twisting the fibration on 9, W =
T? by a loop of diffeomorphisms of the T? fiber corresponding to a unit translation

in the direction transverse to the vanishing cycle y of the round 2-handle [9]. As a
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Figure 4.7: A near-symplectic BLF on 2CP?#2CP?. The round 2-handle separates the
sphere fiber on the higher side into two spheres on the lower side.
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Figure 4.8: A broken Lefschetz fibration on S4.

result of this, the 2-handle corresponding to the S? fiber of the lower side is pulled
to the blue curve in Figure 4.8. The diagram then can be simplified as before: Use
the 2-handle of the round 2-handle to separate the 2-handle corresponding to the
fiber, and then proceed with the obvious handle cancelations.

It would also be interesting to note the existence of a broken Lefschetz fibration
on #,S! x 83 for any n > 1, which do not admit achiral Lefschetz fibrations for

n > 2 [40]. Taking the product of the Hopf fibration S* — S? with S!, we get a
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Figure 4.9: A broken Lefschetz fibration on S' x §3# S x §3.

fibration S' x S* — S? with inessential torus fibers. Then the connected sum model
discussed in the previous example allows us to construct a fibration on any number

of connected sums of S! x S%s. In Figure 4.9 we give a diagram for the n = 2 case.

4.3 Some near-symplectic operations

‘We move on to presenting some surgical operations that give new near-symplectic
broken Lefschetz fibrations from old. The first one generalizes the symplectic fiber
sum operation Theorem 1 to the near-symplectic case, which can be set as a fibered
operation. The second operation relies on an idea of Perutz [64], who modifies the
near-symplectic broken Lefschetz fibration on the same 4-manifold. Both can be
performed in general as near-symplectic operations, without any mention of broken

fibrations.



4.3.1 Broken fiber sum

Let (X;, f;) be broken Lefschetz fibrations, and F; be chosen regular fibers of genus
gi > 0, i = 1.2. Choose regular neighborhoods N; = f;'(D;) of F;, and without
loss of generality, assume ¢; — g = k is a non-negative integer. Then we can obtain
a new 4-manifold X = X; \ My UW U X, \ N2, where W is a composition of k
elementary round 2-handle cobordisms. These cobordisms being elementary implies
that the 2-handles of the round 2-handles can all be pushed onto a regular fiber Fj.
The resulting manifold is uniquely determined by an unordered tuple of attaching
circles (71, -+ ,7) of the round 2-handles involved in W, together with the gluing
maps ¢ : 0.X, — 04W and ¢, : 90Xy — J_W preserving the fibrations. (Recall
that these gluings are unique up to isotopy when the fiber genus is at least two.)
Hence we obtain a new broken Lefschetz fibration (X, f) that extends the fibrations
(X.' \ N.. filxa~,) by standard broken fibrations over the elementary cobordisms.
We say (X, [f) is the broken fiber sum of (X, fi) and (X, f2) along F} and Fy,

determined by ~y. .-+ v and 6. 0,.

Theorem 4.3.1 [f (X,.f)) are near-symplectic broken Lefschetz fibrations, then
(X. f) is a ncar-symplectic broken Lefschetz fibration.  Moreover, given arbitrarily
small collar neighborhoods N, of (N}) in X;. we can choose w so that w| PRV

wil ypx, and wly v, = cwaly,\ 5, . where ¢ is some constant.

Proof: Let k& be as above. Take step fibrations on S? x ¥, #S! x S? described
in Example 4.2.6 with ¢ = go. g0+ 1,....g90 + k = g;. Take the fiber sum S? x
g, #S! x S% along a high genus fiber with 52 x £, #5! x 3 along a low genus
fiber. Then take the fiber s of this new broken fibration along a high genus fiber
with S2x L, 10 #5! x 5% along a low genus fiber. and so on. until g = g» + k. Denote

this manifold by 11", Since the broken Lefschetz fibration on W admits a section,

it can be equipped with a near-svinplectic structure. Hence the broken fiber sum
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of (X1, f1) and (Xs. f2) along F} and F; is obtained by fiber summing the former
along F, with W along a lower side fiber, and the latter along F, with W along
a higher side fiber. Using Theorem 1, we can make these fiber sums symplectically,
after possibly rescaling one of the near-symplectic forms w;, i = 1,2. It is clear that

when k = 0 this is the usual symplectic fiber sum. O

Remark 4.3.2 If (X,,f,) for i = 1,2 are Lefschetz fibrations over S?, then one
can depict the Kirby diagram of the broken fiber sum (X, f) in terms of these two
by using Lemma 4.2.2. Since the round cobordism in the broken fiber sum consists of
elemenatry cobordisms. all the 2-handles of the round 2-handles and the Lefschetz

handles of the lower genus fibration can be draun on the higher genus fiber directly.

Remark 4.3.3 Forgetting the fibrations, we can describe the above construction for
any near-symplectic (X;.w,) containing symplectically embedded surfaces F; with
F?2 = F} = 0. Moreover it is possible to form a cobordism similar to W in gen-

eral when F2= —F2#0 to handle the most general situation.
1 2 g

Topological invariants of X are easily determined. For example if X, are simply-
connected and at least one of them admits a section, then using Seifert-Van Kampen
theorem we conclude that X s also simplv-connected. The Euler characteristic and

signature of X can be expressed in terms of those of X and X, as:
e(X)=e(N)+e(\)+2+g2) -1 . a(X)=0(X))+a(Xy). (44)

where g, is the genus of F, . for i = 1.2. Therefore the holomorphic Euler characteris-
tic x4 (X)) = (X)) v (X2) = L= (g1 +42) /2. Tt follows that if X, and X, are almost
complex manifolds. then X obtained as their broken fiber sum along Fy and Fy is
almost complex if and ouly if & = g, + ¢» = 0 (nod 2). Lastly note that the broken

fiber sum operation might introduce second homology classes in X that do not come

=~
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Figure 4.10: Vanishing cycles in the Matsumoto fibration.

from X, in addition to the usual Rim tori. This phenomenon occurs for instance when
some 7y, match with relative disks in X, \ N to form an immersed sphere S;. Then
the torus 7,. which corresponds to a submanifold a, x S* C (X, \ Ny) = Fy x St

where a, is the dual circle to ~, on F,. intersects with S, at one point.

Example 4.3.4 Take X| = 82 x T?#4CP? with the Matsumoto fibration f; : Xy —
S?. and X, = S? x S? with the trivial rational fibration f5 : Xy — S2. The former
is a genus two fibration and has the global monodromy: (3;3,.33:3;)? = 1. where the
curves Jy. 3y, 3 and 3y are as shown in Figure 4.10.

If we denote the standard generators of the fundamental group of the regular
fiber 3y as ;. by ay. by then the curves 3, are base point homotopic to: 3; = bb,.

Gy = arybra; 07 = wobsay T 3y = boasby ey 3y = Doasay by .

Hence m(Xy) = m(2,) / (31, 32 33, 3y) is isomorphic to
TN = (aybyoag b | biby = [ay. b)) = [ag. ba] = baasby ay = 1).

Now take the broken fiber sum of (X, f;) and (X,. f2) along regular fibers F
and F,. where ~; = ay. 79 = by. The gluing map o; is unique. and we take @,

as the identity. Thus we get a new d-manifold X and a near-svmplectic broken
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Lefschetz fibration f : X — S? with two even round singular circles. Note that
m(XG\N(F)) = m (X)), and m(X2\ N(Fy)) = 1, since there are spheres orthogonal
to each fiber F; in X;. From Seifert-Van Kampen’s theorem and from the choice of

~; in the broken sum, we see that
TI'l(X) = ((l],bl,(lg.bg [ blbz = [(ll,bl] = [(12,b2] = bgagbg_lﬂ] =a = b2 =

Thus 7;(X) = 1. On the other hand, e(X) = e(X)) +e(Xs) +2(91 +92) —4 = 8, and
a(X) = a(X1)+0(X2) = —4. Hence. X is homeomorphic to CP?#5CP? by Theorem
2.0.1. Moreover we obtain four distinct symplectic sections of self-intersection —1 in
(X.[) which arise from the internal connected sum of four parallel copies of the self-
intersection zero section of $2 x S2U ™ and the four —1-sections in the Matsumoto
fibration in the broken fiber sum. Symplectically blowing-down these sections, we
get a near-symplectic structure with two even round cireles on a homotopy S? x §2,
together with a broken Lefschetz pencil supporting it.

Different choices of oy would simply change the self-intersection of these sections in
X . but the homemorphism type of X would not change. (Alternatively we could take
(X2, f2) as arvational fibration on a Hirzebruch surface with seetion of self-intersection

k and fix the gliing ¢, as the identity.)

What makes the broken fiber swn operation interesting is that, apriori, gluing

formulae can be given for the invariants.

Proposition 4.3.5 Let (X, f) be the broken fiber sum of (X1, f1) and (Xa. fa) along
Fy and Fy with gy — gs = k > 0. determined by the tuple (31.-++ ,7%) of circles on
Fy. for j=1..... k. Denote the j-th clementary cobordism corresponding to ~; by

W

. and Poincaré-Lefschetz duals of ~, on Fy by ¢,. Then we have

L_\[{\'./ = L“/-(l'\-\‘l-fx’,\', N o] Ll ©--+0 Lk l¢] [‘;\/,\'2\4\:_,‘/_,‘_\,_, o

|
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where L; corresponds to wedging with c; under the Piunikhin-Salamon-Schwarz iso-
morphism (defined for a given admissible Spin® ) between Floer homologies and sin-

gular homology.

Proof: The broken Lefschetz fibration (X, f) can be decomposed as

(X, f) = (Xi\ N1, filxpw) U(Wp)U- - U (Wi, pi) U (X2 \ N2, falx\wv,)-

where each W, is equipped with the elementary broken fibration p;. In [65] Perutz
shows that on each (1V;, f;), the LM invariant acts as described in the statement of
the proposition. Thus the above formula follows from the fact that LM invariants fit
in a fibered field theory. O
It should be possible to formulate a similar statement for the Seiberg-Witten invari-
ants of X, using Seiberg-Witten monopole Floer homology [49].

For what follows we will be interested in a particular case where the result of a

broken fiber sum (X. f) (resp. X) has trivial LM invariants (resp. SW invariants):

Proposition 4.3.6 Let (X, f) be the result of a broken fiber sum of (X, fi) and
(X2 f2) along Fy and F, with genera g, > go. If any round 2-handle introduced in
the broken sum is attached to a nonseparating curve on Fy which is also a vanishing
cycle for a Lefschetz handle in fy. then LM invariants of (X, f) are all zero. If

bt(X) > 1. then the SW invariants of X are also trivial.

Proof: The fibration f; is isotopic to identity on X\ \}. The assumption, provides
an essential sphere S obtained from the 2-handle of the round 2-handle and the
Lefschetz handle mentioned in the statement. The “equator’ ~ is an essential curve
on Fy, so there is a dual circle o that intersects it positively at one point. Since
the monodromy is trivial. this a sweeps out a torus in F} x ST = d(X; \ V7). which

has self-intersection zero. If we blow-down S. downstairs we get an embedded torus

=1
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with self-intersection +1, violating the adjunction inequality for Seiberg-Witten. It
follows from the blow-up formula that SWx = 0. For the LM invariants of (X. f),
obseve that the map on the elementary cobordism is equivalent to contracting along
7, but the continuity (from < to the nodal point) argument for quantum cap product
[63] shows that this map is trivial —as the sections of the Hilbert scheme miss the
nodal points. O

However, there are examples when the result of a broken fiber sum has nontrivial

LM and SW invariants:

Example 4.3.7 Let X, = S?2 x £, and X, = S% x ¥, with projections f; on
the S? components. The broken fiber suin (X. f) of (X;.f,) and (X,. f2) along
the fibers ¥,1 and ¥, is the same as 5? x £, #5! x S equipped with the step
fibration. Adapting the Example 5.1.3 from [65]. we see that (X, f) has nontrivial
LM invariants. It also has nontrivial SW invariants (cf. [58]). calculated in the Taubes
chamber of a compatible near-svmplectic form. (Since both S? x pt and pt x ¥y are
svinplectic with respect to these near-svimplectic structures. the near-symplectic forms
can be chosen so that they are homologous to the product symplectic form. Therefore

SW invariants are computed nontrivially in the same chamber.)

Remark 4.3.8 A similar argument can be used to calculate SW nontrivially. in gen-
eral for the broken fiber sum of any symplectic Lefschetz fibration (Y. f) of genus ¢
and b*(Y) > 1 with the trivial fibration on S* x S,41. The same type of handle cal-
culus shows that the resulting manifold is Y #S5' < S3. Since Y has nontrivial SW, so
does Y #S' x S* [58]. Moreover in [58]. the authors shows that the dimension of the
moduli space for such a nontrivial solution increases to one. thus Y#S' x 53 is not of
simple type. Hence. it is an intriguing question to determine whether the broken fiber

sum of two simply-connected 4-manifolds can result in a 4-manifold with nontrivial
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Seiberg- Witten invariants, which is likely to be of non-simple type. We currently do

not have such an example or a proof that shows this can not happen.

4.3.2 Button addition

In [64] Perutz discusses a local modification. called button addition, around a regular
fiber of a broken fibration which locally increases the genus by one, while introducing
two new Lefschetz singularities and an odd round handle singularity, and resulting in
a homology equivalent 4-manifold with the same fundamental group. We will first
show that this modification can be made indeed without changing the underlying
smooth 4-manifold X .

The construction makes usce of the fibration described in terms of Kirby diagrams
in Example 4.2.6 with £ = 0. Taking out a regular neighborhood of a sphere fiber
from the lower side, we are left with a broken Lefschetz fibration over D?. which
precisely has the diagram given in Figure 4.2 on the right. Let us denote this piece
by B, and call it the button. Now given anyv broken Lefschetz fibration [ on X. take
a regular neighborhood N of any regular fiber F| fibered trivially over D?. Locally
there exist self-intersection zero disk sections both in ¥ and in B. We simply take
the section sum of these two fibrations so to obtain the obvious broken Lefschetz
fibration N II B — D?, which can be glued back in X \ N to obtain a new broken
Lefschetz fibration f” over $2. Furthermore. if X has a section of self-intersection s,
we can choose the local section in N as the restriction of this one so [ also admits a
section with self-intersection s. Using our handlebody diagrams and analyzing this

operation a bit carefully. for a general X' we sce that:

Theorem 4.3.9 Let [ : X — S? be a broken Lefschetz fibration compatible with
a near-symplectic structure w, and I° be a chosen fiber around which we attach a

button. The button addition docs not change the diffeomorphism type of X . and the
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resulting fibration f' : X — S? supports a near-symplectic form ' which restricts
to the original near-symplectic structure w away from F. Conversely, if there is a
button in a simplified near-symplectic broken Lefschetz fibration, one can recover a

genuine symplectic structure on X .

Proof: In Example 4.2.6 we have shown that the total space of the button fibration
is S? x S?, where k = 0. When we take out a regular neighborhood of an S? fiber
and a regular neighborhood of the section, the remaining piece B can easily be seen
to be D*. The button addition amounts to taking out the local disk section and
gluing in B. Trivializing NV as D? x £,, where g is the genus of F', we express the
gluing region as the union 9D? x D?U D? x §D? = S3. The horizontal gluing along
D? x 9D? is determined uniquely by the self-intersection of the section, whereas the
vertical gluing is determined by the fact that the monodromies of both fibrations are
isotopic to the identity on @02 x £,. These certainly agree on the corners. so the
operation boils down to taking out a D' in the original manifold X . and putting it
back in by a diffeomorphism of D' = S3 which we have argned to be isotopic to the
identity. This extends over the D' to give back X .

Alternatively. take S* x £, with the projection map onto the first component. We
can then take the section sun of this fibration with the button fibration $? x 82 — 2
along self-intersection zero sections.  The handlebody diagram of the resulting 4-
manifold and the broken Lefschetz fibration on it is similar to the one given in Figure
4.5 before, except that the higher side fiber now has genus g + 1. The same calculus
as in Example 4.2.6 verilies that the total space is diffcomorphic to $? x £4. Since
there is a section, this fibration admits a compatible near-symplectic structure. The
button addition is equivalent to fiber summing this broken Lefschets fibration along a
regular fiber in the lower side (which has genus ¢ ) with the broken Lefschetz fibration

f on X along F. Since the fibers are symplectic, we can alter the near-symplectic
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structure on S? x £, so that the fiber sum can be made symplectically (see Theorem
1). Hence we obtain a new near-symplectic form ' supporting the new broken
Lefschetz fibration f’: X — S2, and restricting to w on the complement of a chosen
neighborhood of F'.

The last assertion follows from the definition of a simplified near-symplectic broken
Lefschetz fibration. O

Using consecutive button additions one can locally increase the genus of any fiber
of a given broken Lefschetz fibration without changing the ambient 4-manifold. This
allows us to define another interesting way to generalize the symplectic fiber sum
operation as follows: Let f; : X; — X;, F; and k be as in the previous subsection.
We repeatedly introduce k buttons in a regular neighborhood N, of F,, such that the
images of round handle singularities are arranged as a nest of ovals. Take a regular
fiber F; of genus g, + A with a small enough regular neighborhood 7 contained in
the very center of these ovals. and take the symplectic fiber sum of X, and X, along
Iy and I to form X = X\ VUXL\ N, = X))\ NfUW U X, \ NV, Then we obtain
a broken fibration f : X — £,#Y, which restricts to the fibrations f, : X; \ N, —
¥, \ D,. but now on W it is the trivial fibration on Fy x D) extended by ‘button
fibrations” - introducing & new round handle singularities and 2k new Lefschetz
singularities. Call (X, f) the buttoned fiber swm of (Xy. fi) and (X,. f5) along F)
and Fy. which is uniquely determined by the choice of gluings oy : (X \\V}) — 9, W
and oz : I(Xa \ No) — 01V preserving the fibrations as in the broken fiber sum.

Thus if (.X,, f;) are svimplectic Lefschetz fibrations with regular fiber genus ¢ # ¢
then buttoned fiber sum allows us to still take the fiber sum, after replacing one
of the symplectic forms by a near-svmplectic form. Similar vanishing results as in
Proposition 4.3.6 works in this case as well. but we do not know if the resulting

4-manifold would always have trivial LM or SW invariants.
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4.4 Applications to near-symplectic 4-manifolds
with non-trivial invariants

We now turn our attention to near-symplectic 4-manifolds with nontrivial SW in-
variants (resp. LM invariants whenever fibrations are present). Let us refer to these
as nontrivial near-symplectic 4-manifolds for a shorthand, even though we do not
claim that the SW calculation makes use of the near-symplectic forms. However
when 0% =1 we always consider the SW invariant computed in the chamber of the
near-symplectic form.

Let (X.w) be a near-symplectic 4-manifold with zero locus Z. One of the key
observations that Taubes made in his programme is that if SW of X is nontrivial,
then there is a finite energy J-holomorphic curve C in X \ Z which homologically
bounds Z (more precisely, C' has the intersection number one with every linking
2-sphere of Z), where J is an almost complex structure compatible with w in the
complement of Z [78]. We call this Taubes’ curve. Below we show that the converse

to this theorem is not true. together with an analogous result for LM invariants:

Theorem 4.4.1 There are infinitely many pairwise nonhomeomorphic closed ori-
ented near-symplectic 4-manifolds (Xpm,wm). m > 0. equipped with broken Lefschetz

fibrations f,, : X — S?% that induce w,, . such that:

(i) Each (Xm.wm) admits a Taubes™ curve. but SWx, = 0.

m

(ii) For each (X,,. f..) there is an admissible Spin® structure s such that the as-
sociated moduli space of Lagrangian matching invariants has non-empty moduli

with non-neqative dimension. but LM, ;. = 0.

Proof: Take S?#Y,. ¢ > 1 with the step fibration. Then use the connected sumn

model in Remark 4.2.8 to equip X, = #2(5?#X,) with a near-svmplectic broken
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Lefschetz fibration f, : X, — S?. Let F, = ¥, be the higher genus side of this
fibration. Take a regular neighborhood D? x F}, of F},, where the fibration restrics as
projection pry : D? x F), — D? on the first component. Let v, , for s € D?* = S! be
the attaching circles of the fiberwise attached 2-handles, and Z be the corresponding
round singularity. One can find a parallel disk section D of (D? x Fy,, pry), so that
0D intersects v at one point for all s. One can extend each D to a disk section
D into the round cobordism from the higher side, so that 8D = Z. If necessary, we
can perturb the near-symplectic form on X to make D symplectic on X \ Z, and
therefore it is J-holomorphic with respect to a compatible almost complex structure
in X\ Z. Clearly D is a finite energy curve, and the way we constructed it implies
that each C intersects with every linking sphere of Z at one point. Setting C = D,
we obtain the desired curve. However for any g > 1, by the connected sum theorem
for SW invariants. SWy, = 0.

To show the second part. let us label the fiber components of the lower side regular
fiber I and the two distinet self-intersection zero sections of f, on X, = #2(S?#5,)
by F; and S, (j = 1.2), respectively. Then a straightforward calculation shows that

the canonical Spin” structure associated to the fibration on X'\ Z has
A(N\NZ)=2I"1+2F-(29-2)51 —(29-2)5, —2D.

Then the Spin” structure associated to the class 3 = =y = Fo+(g—-1)5+(9—1)S2+ D
has ¢1(s) = i (X \ Z)+2PD(3) = 0. So for everv fiber component £ (i.e. Fy, Fy or
Fi.). we have (c(s). ) > (). Morcover ’i(z:—) < (3.8) < —% is satisficd when
g > 1. Therefore s is an admissible Spin® structure. However LMy, ;, = 0 as shown
in [65). Lastly, d(LMx, s,)(sg)) = 1(c1(5)* =30 (X) =2¢e(X)) = 1(0-0—-2(6-8g)) =
19-3>0.

Setting m = g + 1, we get the infinite families bv varving ¢ > 0. O

In general any Gromov tvpe of invariant might vanish even if the associated moduli
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space is nonempty. Thus the above result should be regarded as an explicit demon-

stration of this phenomenon.

One might wonder if the class of nontrivial near-smplectic 4-manifolds is closed
under the symplectic fiber sum operation, as it is the case for both near-symplectic

and symplectic classes. We show that this is too much to hope:

Theorem 4.4.2 There are infinitely many topologically distinct pairs of closed near-
symplectic 4-manifolds with nontrivial SW invariants whose symplectic fiber sum re-

sults in trivial near-symplectic 4 -manifolds. The same holds for LM invariants.

Proof: As discussed in Example 4.3.7 and the succeeding paragraph, if Y has non-
trivial SW, then so does Y# S x S3. Take E(n) (say with n > 1) with an elliptic
fibration, and equip it with a symplectic form making the regular torus fiber T' sym-
plectic. Also take S? x £, with the product symplectic form. Look at the broken
fiber sum of E(n) with n > 2 along a regular torus fiber T with $? x ¥, along a
genus two surface {pr} x Xy, where boundary gluings @, and ¢9 are chosen to be
identity, and ~ is chosen to be some fixed standard generator of ¥5. The result is
the nontrivial near-svmplectic 4-manifold X,, = E(n)# S! x S3.

We can then take the symplectic fiber sum of such X,, and X, along the higher
side genus two fibers to get X, ,,,. There are families of disks with their boundaries on
X\ V(E2)) and 9(X,,\ NV (Z2)). coming from the broken fiber sum construction in
each piece. Matching pairs of these disks give spheres S, with zero self-intersection,
where s is parametrizeed by the base S' in the gluing region S' x £, of the fiber
sum. Denote the equator of S, sitting on the fiber sum region by ~,. and consider a
dual circle a, on the same fiber. Varving s along S! we obtain a Lagrangian torus
T, which intersects each S, at one point. Thus Sy is an essential sphere in X, ,,.
Since b* (X, .m) > 1. the existence of such a sphere implies that SWy, = 0. Infinite

families are obtained by varving n.m > 1. For the second part of the statement, let us
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use Yy = S?x I, # S'x S3 equipped with the step fibration f, over S?. Then (Y. f,)
has nontrivial LM invarints. Taking the fiber sum of two copies of (Y, f,) along higher
genus regular fibers, we obtain a near-symplectic broken Lefschetz fibration (X, f;).

Observe that
Ll\[\{’]’; = L“[g{zxsg\o,\‘(sg)-fgl o L“’H’.prl o L"‘I.S'ZX.‘_:Q\N(‘_:_,,),IQI

where W is a cobordism that consists of an elementary round 1-handle cobor-
dismm W followed by an elementary round 2-handle cobordism Wj,. So LAy, =
LM, pry 0o LMy, pr, . However. under Piunikhin-Salamon-Schwarz isomorphism.
LMy, pr, corresponds to wedging with the Poincaré-Lefschetz dual of v, the attach-
ing circle of the 2-handle of the round 2-handle. Since the round 1-handle cobordism
17} is constructed in the same way, this v can be contracted along 1. and therefore
Ly, pr, ds trivial. It follows that L.\[_\-:r,; = 0. Taking g = 0.1.2.... we obtain

the desired infinite family. O

Remark 4.4.3 For the same eramples in the proof of Theorem 4.4.2 if one indeed
takes the fiber swm along lower genus fibers. the result is E(n+m)#2S' x S, which
aqgain has nontrivial SW. Thus the choice of the fibers in a near-symplectic fiber sumn
affects the outcome drastically. A natural question that follows is:

Question: If X, are nontrivial near-symplectic 4-manifolds and I, are symplecti-
cally embedded surfaces in F, with minimal genus, is the (symplectic) fiber sum X of

X1 and Xy dlong Fy and Fy nontrivial?

It is known that Lefschetz fibrations over S? do not admit sections of nonnegative
self-intersections. and the self-intersection can be zero only when the fibration is
trivial. In general near-svmplectic broken Lefschetz fibrations are not subject to this
constraint. Even when we restrict our attention to near-svinplectic broken Lefschetz

fibrations on nontrivial 4-manifolds. there appears a difference:
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Theorem 4.4.4 There are closed simply-connected 4 -manifolds which admit near-
symplectic broken Lefschetz fibrations over S? with sections of any self-intersection.
More precisely, for any integer k and positive integer n, there is a near-symplectic
(Xnk» Jax) fibered over S%, with a section of self-intersection k and with b* (X, x) =
n. If f: X — 5% is a nontrivial broken Lefschetz fibration over a nontrivial near-
symplectic 4-manifold X with b*(X) > 1, then any section S of f has negative
self-intersection. There are simply-connected eramples with sections of any self-

intersection when bt =1.

Proof: In Example 4.2.6 we have constructed near-symplectic broken Lefschetz fi-
brations over S? which admit sections of any self-intersection k. As the total space
of these fibrations are cither S2 x $? or CP?#CP?, the SW invariants are nontrivial.
(Since the near-svmplectic forms can be chosen so that they determine the same cham-
ber with the usual symplectic structures, and therefore SW invariants are computed
nontrivially in the chamber of the near-symplectic forms.) These provide examples
for the very last part of the theorem. As described in the Example 4.2.7. we can
obtain a near-symplectic broken Lefschetz fibration on connected sums of these fibra-
tions. Using n such copies, we obtain a 4-manifold with b* = n, which proves the
first statement. For the remaining assertion, we simply employ the SW adjunction
incquality as in the Lefschetz fibration case (see for instance [72]). O

There are various examples of nonsvimplectic 4-manifolds which have nontrivial
SW invariants. All these examples have bt > 0. which means that they admit near-
svimplectic broken Lefschetz pencils but not svmplectic Lefschetz fibrations or pencils.
This can be made explicit in Fintushel-Stern’s knot surgered E(n) examples [28, 29].
The below result gives near-symplectic broken Letschetz fibrations on an infinite fam-
ily of pairwise nondiffeomorphic closed simply-connected smooth 4-manifolds which

can not be equipped with Lefschetz fibrations or pencils.
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Proposition 4.4.5 For any knot K, E(n)x admits a near-symplectic broken Lef-

schetz fibration over S2.

Proof: Think of E(n) as the branched double cover of S? x S? with branch set
composed of four disjoint parallel copies of S x {pt} and 2n disjoint parallel copies
of {pt} x S2, equipped with the locally holomorphic ‘horizontal fibration’ [29]. The
regular torus fiber F' of the usual vertical fibration is a bisection with respect to
this fibration. We have exactly four singular fibers each with multiplicity two. On
the other hand, if Ay is obtained by a O-surgery on a nonfibered knot K in S3,
then there is a broken fibration (no Lefschetz singularities) from S x My to T? as
discussed in Example 4.1.2. One can compose this map with a degree two branched
covering map from the base T? to S?%, such that the branching points are not on
the images of the round handle singularities. What we get is a broken fibration
with four multiple fibers of multiplicity two. which are obtained from collapsing two
components from all directions. An original torus section T of S x My — T? is now
a bisection of this fibration. intersecting each fiber component at one point. Both F
and T have self-intersection zero. and thus we can take the symplectic fiber sum of
E(n) and S' x My along them to get E(n)x. The multiplicity two singular fibers
can be matched so to have a locally holomorphie broken fibration with four singular
fibers of multiplicity two. This fibration can be perturbed to be Lefschetz as argued

in [29]. When A is fibered, we obtain gennine Lefschetz fibrations. O
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CHAPTER 5

Folded-symplectic 4-manifolds

5.1 Background

5.1.1 Achiral Lefschetz fibrations and PALFs

An achiral Lefschetz fibration is defined in the same wayv a Lefschetz fibration is
defined. except that the given charts around critical points are allowed to reverse
orientation. In other words, the 2-handles can be glued with framing +1 with respect
to fiber framing. too. Also recall that a Lefschetz pencilisamap f: X\{b;,....b} —
S2. such that around any base point b, it has a local model f(z.2) = 21/ .
preserving the orientations. and that f is a Lefschetz fibration elsewhere. An achiral
Lefschetz pencil is then defined by allowing orientation reversing charts around the
base points as well. Critical points or base points with orientation reversing charts
are called negative critical points or negative base points. whereas the other critical
points or base points are positive. For a detailed treatment of this topic and proofs
of some facts quoted below. the reader is advised to turn to [H0).

A Lefschetz fibration is said to be allowable if all its vanishing cveles are homolog-
icallv nontrivial in the fiber. Particularly, we will be interested in allowable Lefschetz

fibrations over D? with bounded fibers. In the literature. this tvpe of Lefschetz fibra-
N
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tion having only positive critical points is called a PALF. Similarly, when the critical
points are instead all negative, we will call the fibration a NALF. Lastly note that
the monodromy representation for an achiral Lefschetz fibration can be described in
the exact same way as in Section 2.0.3; so we can talk about the global monodromy
and representations of any given achiral Lefschetz fibration f: X — D?.

Next is a standard fact which was first observed by Harer:

Theorem 5.1.1 (Harer [44]) Let X be a 4-manifold with boundary. Then X ad-
mits an achiral Lefschetz fibration over D? with bounded fibers if and only if it admits

a handlebody decomposition with no handle of index greater than two.

5.1.2 Open book decompositions

An open book decomposition of a 3-manifold Al is a pair (B.f) where B is an
oriented link in M, called the binding. and f: M\ B — S! is a fibration such that
/Y1) is the interior of a compact oriented surface Fy C M and OF, = 3 for all
t € S'. The surface F = F,, for any ¢, is called the page of the open book. The
monodromy of an open book is given by the return map of a flow transverse to the
pages and meridional near the binding. which is an element y € T’ ., where g is the
genus of the page F. and m is the number of components of B = 0F.

Suppose we have an achiral Lefschetz fibration f: X — D? with bounded regular
fiber F. and let p be a regular value in the interior of the base D?. Composing f
with the radial projection D?\ {p} — 9D? we obtain an open book decomposition
on dX with binding df~'(p). Identifving f~(p) = F. we can write X = (JF x
D?)u f Y(9D?). Thus we view OF x D? as the tubular neighborhood of the binding
B = dfY(p). and the fibers over 9D? as its truncated pages. The monodromy of
this open book is preseribed by that of the achiral fibration [44]. In this case. we say

the open book (B. flaxyg) bounds or s induced by the achiral Lefschetz fibration
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f: X — D?. Recalling that any closed oriented 3-manifold can be bounded by a
4-manifold with only 0-, 1- and 2- handles, it is fairly easy to see that any open
book decomposition bounds such an achiral Lefschetz fibration over a disk.

We would like to describe an elementary modification of these structures: Let
f: X — D? be an achiral Lefschetz fibration with bounded regular fiber F. Attach
a 1-handle to OF to obtain F’, and then attach a positive (resp. negative) Lefschetz
2-handle along an embedded loop in F’ that goes over the new 1-handle exactly
once. This is called a positive stabilization (resp. negative stabilization) of f. A
positive (resp. negative) Lefschetz handle is attached with framing —1 (resp. +1)
with respect to the fiber. and thus it introduces a positive (resp. negative) Dehn
twist on F’. If the focus is on the 3-manifold, one can totally forget the bounding
4-manifold and view all the handle attachments in the 3-manifold. Either way.
stabilizations correspond to adding canceling handle pairs, so diffeomorphism types
of the underlying manifolds do not change. whereas the achiral Lefschetz fibration
and the open book decomposition change in the obvious way. It turns out that

stabilizations preserve more than the underlyving topology, as we will discuss shortly.

5.1.3 Contact structures and compatibility

A l-form a € QY(M) on a (2n — 1)-dimensional oriented manifold M is called a
contact form if it satisfies a A (da)" ¥ # 0. An oriented contact structure on M is
then a hvperplane field € which can be globally written as kernel of a contact 1-form
«r. In dimension three. this is equivalent to asking that da be nondegenerate on the
plane field €.

A contact structure € on a 3-manifold A/ is said to be supported by an open book
(B. f) if € is isotopic to a contact structure given by a 1-form o satisfying a > 0 on

positively oriented tangents to I3 and da is a positive volume form on every page.
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When this holds, we say that the open book (B, f) is compatible with the contact
structure £ on M.

Improving results of Thurston and Winkelnkemper [81], Giroux proved the fol-
lowing groundbreaking theorem regarding compatibilty of open books and contact

structures:

Theorem 5.1.2 (Giroux [36]) Let A be a closed oriented 3-manifold. Then there
s a one-to-one correspondence between oriented contact structures on M up to iso-

topy and open book decompositions of M up to positive stabilizations and isotopy.

Considering contact 3-manifolds as boundaries of certain 4-manifolds together
with some compatibility conditions is a current focus of research in low dimensional
topology. From the contact topology point of view, it is the study of different tyvpes of
fillings of a fixed contact manifold. In dimension four. there are essentially two con-
siderations. vet we formulate them for all dimensions: Let (X?".w) be a symplectic
manifold with cooriented nonempty boundary A = 9X . If there exists a Liouville
vector field (aka symplectic dilation) v defined on a neighborhood of dX pointing
out along dX . then we obtain a positive contact structure £ on d.X, which can be
written as the kernel of contact 1-form a = ,«]py. When this holds. we say (1. €)
is the w-conver boundary or strongly conver boundary of (X.w). For the sake of
entirety. note when 1 points inside, we obtain a negative contact structure instead.
and in this case we sav (M. €) is the w-concave boundary of (X, «).

Now if (X*",.J) is almost-complex, then the complex tangencies on A/ = dX
give a uniquely defined oriented hyperplane field. It follows that there is a
1-form a on M such that & = Kera. We define the Levi form on M as dag(-. J-).
If this form is positive definite then (M. €) is said to be strictly J -conver boundary of
(X.J). and if it is J-convex for an unspecified J (for instance when J is tamed by a

given svmplectic form). we say (. &) is strictly pscudoconver boundary. 1f (X.w. J)



is an almost-Kahler manifold, i.e. a manifold equipped with a symplectic form w and
a compatible almost-complex structure .J, then it can be shown that strict pseudo-
convexity of the boundary is equivalent to the condition that w|£ > 0 in dimenson
2n = 4. We would like to remark that all these definitions can be formulated in more
generality for hypersurfaces in X?", not necessarily for X only.

For detailed and comparative discussions of these concepts, as well as proofs of
some facts mentioned in the next subsection, the reader can turn to [22] and [24].
Also for further basic notions from contact topology of 3-manifolds such as Legendrian
knots, Thurston-Bennequin framing, or convex surfaces, which we will occasionally

use in this paper, see for example [56].

5.1.4 Stein manifolds

A smooth function v: X — R on a complex manifold X of real dimension 2n is
called strictly plurisubharmonic if ¢+ is strictly subharmome on every holomorphic
curve in X. We call a complex manifold X Stein. if it admits a proper strictly
plurisubharmonic function v: X — [0.o¢) (after Grauert [41]). Thus a compact
manifold X with bonndary which is equipped with a complex structure in its interior
is called compact Stein if it admits a proper strictly plurisubharmonic funetion which
is constant on the boundary.

Given a function *: X — R on a Stein manifold. we can define a 2-form w,. =
—dJ*dy . It turns out that v is a strictly plurisubharmonic function if and only if the
symmetric form g.(-.-) = wy(-,.J-) is positive definite. So every Stein manifold X
admits a Kdhler structure w,.. for any strictly plurisubharmonic function v: X —
[0.00). It is easy to see that the restriction of w,. to each level set ' (/) gives a Levi
form on ¢1(1). implving that all nonsingular level sets of v are strictly pseudoconvex

hypersurfaces. Thus in this article, we cquivalently call a Stein manifold a strictly
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pseudoconver manifold. Moreover, it was observed in [22] that the gradient vector
field of ¢ defines a (global) Liouville vector ficld v = V,,, making all nonsingular
level sets w,.-convex. Hence. Stein manifolds exhibit strongest filling properties for a
contact manifold which can be realized as their boundary.

In this article, we are mainly interested in compact Stein surfaces. Another char-
acterization of these manifolds, which might be called “the topologist’s fundamental
theorem of compact Stein surfaces™, is due to Eliashberg, and was made explicit by

Gompf in dimension four:

Theorem 5.1.3 (Eliashberg [20]; Gompf [39]) A smooth oriented compact
4 -manifold with boundary is a Stein surfa.ce.A up to orientation preserving diffeomor-
phisms. if and only if it has a handle decomposition Xy U hy U ..U hy,, where X
consists of 0- and 1-handles and each h,. 1 < i < m, is a 2-handle attached to

X, =XoUhU...Ubh, along a Legendrian cirele L, with framing th(L;) — 1.
All structures we have introduced so far meet in the following theorem:

Theorem 5.1.4 (Loi and Piergallini [50], also see [2]) An oriented compact
1 -manifold with boundary is a Stein surface. up to orientation preserving diffeomor-

phisms, if and only if it admits a PALF.

Throughout the article. we give ourselves the freedom of using the prefix "anti” as a
shorthand. whenever an oriented manifold X admits a structure when the orientation
on X is reversed: like anti-svmplectic. anti-Kahler, or anti-Stein. For Lefschetz fibra-
tions and open books though. we nse “positive” and ‘negative’ adjectives to distinguish

two possible cases.
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5.2 Simple folded-symplectic structures

The definition of symplectic (or anti-symplectic) structures can be enlarged as follows
in order to cover a larger family of manifolds, which was shown in [13] to contain entire

family of closed oriented smooth 4-manifolds:

Definition 5.2.1 A folded-symplectic form on a smooth 2n-dimensional manifold
X is a closed 2-form w such that «™ is transverse to the 0-section of A**T* X, and

n-—-1

whenever this intersection is nonempty, w does not vanish on the hypersurface

I1'= (")~ 10), called the fold.

For an oriented X', the kernel of w on [ integrates to a foliation called null-
foliation. Martinet's singular form x;dx; A dy, + dry Adys + ... + dx, A dy, on R?"
defines the standard folded-svimplectic structure, as every folded-symplectic form can
be expressed in this way in an appropriate Darboux coordinate svstem around any
point on the fold. There is also a simple folded-structure that every even dimensional
sphere carries: We think of 2" sitting in R?"*1 then pull back the standard sym-
plectic form day Ady, + ...+ dr, Ady, on the unit disk bounded by the equator in R*"
to S by the projection maps along the last coordinate, and finally glue them along
the fold S?" ' to obtain wy. This is equivalent to doubling the unit disk equipped
with its standard svmplectic form (by reversing the orientation on one of the disks).
We call this form the standard folded-symplectic form on S

For more on folded-svmplectic structures. the reader is referred to [14]. [13]. Here
we only consider these forms on Riemann surfaces and compact 4-manifolds. possibly
with boundaries. For the former class. folded-symplectic forms form an open and
dense set in the space of 2-forms. whereas in dimension four openness remains but
the nonvanishing condition implies that thev are nongeneric. We sav an embedded
surface ¥ C X1 is a folded-symplectic submanifold of (X, ) if w|x is a folded-

svmplectic form on X, Observe that S? equipped with the standard form obtained
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by pulling back dz; A dy; embeds as a folded-symplectic submanifold of S* with the
standard folded-symplectic form defined as the pullback of diry A dy; + duy A dy, as
above.

The following proposition provides several examples of folded-symplectic

4-manifolds:

Proposition 5.2.2 Let X be a closed oriented smooth 4 -manifold and ¥ be a closed
oriented surface. If f: X — X2 is an achiral Lefschetz fibration such that the reqular
fiber is a closed oriented surfuce F which is nonzero in Ho( X R), then X admits
a folded-symplectic structure w such that fibers are symplectic and the fold H is an
F -bundle over S'. The fold H splits X into pieces X4 and X_, and f induces
symplectic Lefschetz fibrations on (X4, w|x,) and on (=X_,w|x_). respectively. Fur-
thermore, any finite sct of sections can be made folded-symplectic for an appropriate
choice of w. This form is canonical up to deformation equivalence of folded-symplectic

forms.

We will call this type of folded-symplectic structures simple (after Thurston [80]).
Base spaces of the fibrations defined on X, and —.X_ are determined by an arbitrary
splitting £ = ¥, UX_. Here we take ©_ = D? for simplicity. Observe that the

fibration induces an exact sequence
m(F) - m(X) » 7 (E) = m(F) — 0

It follows that fibers are connected if the base is simplv-connected. Otherwise we can
define a new achiral Lefschetz fibration from X to the finite cover of £ corresponding
to the tinite-index subgroup fg(m (X)) in 7;(2). which has connected fibers. Finally,
one can perturb f to get a fibration which has at most one critical point on each fiber.
Hence, without loss of generality, we will assume that the fibers of f are connected

and critical values are distinct.
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Proof: [Proof of Proposition 5.2.2] Start by connecting all negative critical points in
the base by an embedded arc in the complement of positive critical points, and cover
it by the images of orientation reversing charts so that we get a closed neighborhood
£_ = 2 of this arc away from the positive critical points. This can be done because
around the regular points we have freedom to take charts of either orientation. After
we reverse the orientation on f~'(Z_), themap f: f~}(X_) — Z_ defincs a negative
Lefschetz fibration. Set £, = Z\E_, C=Z.NT_, X, = f1Y(Z,), X_ = f}(Z),
and H = f~!}(C). If there are no negative critical points, we can choose ¥_ as a
small disk around a regular value which does not contain any critical values. Now let
3 be a folded-symplectic form on ¥ which folds over (7, such that it is a positive area
form on X, and a negative area form on Y _. These forms always exist: For example
take S? with its standard folded form wy, and suppose £ has genus g, . Symplectic
counect sum the upper-hemisphere of S? with a closed genus g, surface equipped
with a positive sviuplectic form, and the lower-hiemisphere with a closed genus ¢
surface equipped with a negative svinplectic form. This yields a folded-symplectic
form on ¥, folded along C.

We will construct a folded-sviuplectic form on X by mimicking Gompf's proof
which generalizes Thurston’s result for symplectic fibrations to symplectic Lefschetz
fibrations ([80] , [10]). Let ¢ be a closed 2-form on X which evaluates positively on
any closed surface contained in a fiber with the induced orientation. (We have not
made any assumptions on the type of vanishing cycles, so one might have more than
one closed surface on a fiber if there are separating vanishing cveles.) First we wish
to define a closed 2-form 7 on all over X' which is symplectic on each F, = f~!(y).
for all y € &.

Let A be a tubular neighborhood of ¢ in ¥ which does not contain anv criti-

cal values. Choose disjoint open balls [/, , around each positive and V_; around
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each negative critical point so that these sets do not intersect f~!(A4) in X and
that in appropriate charts the fibration map can be written as f(z), 22) = 2;2, and

f(z1.22) = Z1z9, respectively. Take the standard forms
1 ]
Wik = dl‘l A (Iy] + dl‘f_) A dy2 = —'5(121 /\([31 - 5(132 A dsg

on Uy, and

&
|

( 1
= —(I.l'l A ([!/1 + (1;172 A ([]/2 = 5(]31 A ([E[ - '5(122 A (1:2_2

on V_; for all k1. Forany y € f[(Usx), Fy NUsk is a Jy,-holomorphic curve,
where J, x is an almost-complex structure compatible with w, x. Similarly for any
y e f(Voy), F,nV_; is J_;-holomorphic curve, where J_; is an almost-complex
structure compatible with w_ ;. Having expressed w,  and w_, in terms of Kahler
forms, we can take these almost-complex structures as (i, i) and (—i, i), respectively.
It follows that w, x| F,NU. , is symplectic, so we can extend it to a symplectic form
w, on the entire fiber and get w, defined for all points in each f(U4 k) this way. Do
the same for all points in f(V_ ;). for every j. Finally. for all remaining y € ¥ take
any syiplectic forin w, on the fiber, and rescale every w, we have defined away from
all U4 and V_,; so that they are in the same cohomology class as the restriction
of ¢ to each F,. Next. cover ¥ with finitely many balls B, containing at most one
critical value, and whenever they do contain a critical value, assine they are centered
at that point. Reindex U, and V_,, and shrink them if necessary to make sure
they lie in f~!(B,) for some s. Define 75 on each f~1(B,) as the pullback of w, s,
w_s. or wy by r,. where r, is the retraction of f~'(B,) to the fiber F, over the
center of By, or the union of F, either with closure of U4 s or with closure of V_ g,
whenever By contains a positive or negative critical value, respectively. Now we can
glue these forms to construct the 2-forin 7 we wanted, by using a partition of unity

and that each 1, is cohomologous to (| -1,y as in [40].
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We claim that w, = kn+f*(3) is a folded-symplectic form on X, where x is a small
enough positive real number. w, is clearly closed and symplectic in the fiber direction.
It follows that for any noncritical point = € F,, T.X = T, F, & (T, F,)*". Here
/*(13) is nondegenerate over (7T,F,)*" for all x ¢ H, implying that for sufficiently
small kK, w, is nondegenerate on X \ (H |J,(Usys U V_5s)). On the other hand
wilv, ¢ = kwys + f(F) and wilv. ¢ = kw_ g + f*(3). Therefore for any

nonzero v € TU, s, we have
w(t, Jesv) = wg(v.v)d g+ B(f.(v) i fu(v)) >0,

where g(—, —)+.¢ is the metric induced from w, ¢ and J, . Likewise, for any nonzero

v € TV_ g, we will have
(v Josv) = nrg(v,v)? g+ B(fu(v). —ifi(v)) > 0.

g(—, =)_.¢ being the metric induced from w_ g and J_ 5. (Recall that i3 is negative
on £_.) Hence w, is svinplectic everywhere on X except I, where it vanishes
transversely. Moreover, f*(J) is a folded-symplectic form on any section. so taking
& even smaller. we can as well assume that any finite collection of sections of f are
folded-syiplectic. It is easy to check that the folded-symplectic forin we get satisfies
all the other declared properties. (Also see Remark 5.2.3). O

The homological assmption in the theorem is a very mild one. If S is the set of
critical points of the achiral fibration f: X — I, then the tangencies of the fibers
define a complex line bundle L = Ker(df) on X \ S, which extends uniquely over
X. It follows that unless we have a torus fibration. the regular fiber F is essential,
since < ¢ (L). FF >= \(F). Also if the fibration is obtained from a pencil by blowing
up the base points, the exceptional spheres will become sections of the fibration,

guarantecing that the fibers are essential in the homology.
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Remark 5.2.3 Alternatively, the folded-symplectic form in Proposition 5.2.2 can be
constructed by using the folding operation described in [14]. Restrictions of 3 on T,
and on ¥_ give well-defined area forms 3, and 3_, respectively. Gompf’'s method
can be used to define a symplectic form kin + [*(3;+) on X4, where 1 is a 2-
form on X that restricts to the fibers as a (positive) symplectic form and k. is a
small enough positive real number. The orientation on the base together with the
orientation on the reqular fiber determines the orientation of the total space, and thus
by taking the opposite orientation on X_ but keeping the orientation on F', one orients
—X_. Let f: — X_ — X_ be the fibration defined by taking orientation-preserving
charts for f: X_ — Y_, then we can define a symplectic form s_n+ f (=B_) on
—=X_ (as —3_ is the area form on L_ ) by following the same construction method.
Observe that [ (=3 ) = f*(3.). Hence. setting k = min{xy,K_}. we obtain two
symplectic manifolds (Xi.wy) and (=X_.w_). where wy = s+ f*(34). Let 14
be the inclusions of boundaries into £Xy. then (wy) = kn = " (w_) and the
orientations of both null-foliations agree. Thus we can glue these picces to obtain a
folded-symplectic: structure on X, U X2 = X . which agrees with w, and w_ in the
complement of a tubular neighborhood of the fold )Xy = H = —0X_. (See [1}] for
details.) This form is deformation equivalent to the form kn + f*(13) in Proposition

5.2.2.

5.3 Existence of folded-symplectic structures on

closed oriented 4-manifolds

Here we show that any closed oriented smooth J-manifold X can be equipped with

a folded-symplectic form. For the sake of completeness. we start by outlining Etnyre
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and Fuller’s proof that every 4-manifold admits an achiral Lefschetz fibration after
a surgery along a framed circle [23] : Take a handlebody decomposition of X with
one 0— and one 4-handle, let X; denote the union of the 0-handle, 1-handles and
2-handles, and X3 denote the union of the 3-handles and the 4-handle. By Theorem
5.1.1 there exist achiral Lefschetz fibrations f;: X; — D?, which necessarily have
bounded fibers, and stabilizing both fibrations we may as well assume the fibers
have connected boundaries. After a possible slight modification of the handlebody
decomposition, Etnyre and Fuller manipulate the contact structures on the boundaries
so that they are both overtwisted and homotopic as plance ficlds. Then it follows from
results of Eliashberg and Giroux that we have isotopic contact structures, and thus
the induced open books are the same, possibly after some stabilizations and isotopies.
Denoting the final manifolds and fibrations with X; and f, again, we may therefore
assume that the open book decompositions induced by these fibrations on the common
boundary H = 0X, = —0X, are the same, so we can glue both pieces of X back

along the truncated pages, and obtain an achiral Lefschetz fibration

U for W U X, — S2.
f,"u)l)'—’): [y HOD?)

To recover X we need to glue S x D? to S x D3, where
Stx D =0X,\ f, "(0D?).
Filling the boundary of 1V with an S' x D3 gives the same result. so we can view

W oas X\ NV where .V is a neighborhood of an embedded curve vy C X. Now, if we

instead add on a D? x S? so that each dD? x {pt} is identified with S!' x {pt}, we
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can extend the fibration on W™ by the projection on the S? component of D? x S2.
Hence, we obtain an achiral Lefschetz fibration over S? on the resulting manifold Y,
where the section S of this fibration discussed in [23] can be taken as 0 x S? coming
from the glued in D? x S2, implying S has trivial normal bundle in Y.

We will refer the following as the standard model : Consider S* with the standard
folded-symplectic structure wy described before, and take S* N {r4 = 0} vertical to
the fold Hy = S*N{z5 = 0}. Take Sy = S*N{ry =0 = 13} = S? which intersects
the fold along the circle Co = {r? + 12 = 1|z3 = 24 = x5 = 0}. It is easy to see that
wo restricts to this Sy as the standard folded-symplectic form on S?2, folded along
(., and symplectic on the normal disks to Sp. Fix a disk neighborhood My of Sy so
that wy evaluates as 1 on each normal disk. That is, each normal disk projects onto
unit disk {r2+ 12 < 1|x; = 1y = r5 = 0} symplectomorphically. By restricting wy,
we get two folded-symplectic manifolds My = S% x D2 and Ny = S*\ M, = D3 x S!,
with folds S' x D? and D? x S!, respectively.

The existence of the section s: S% — & C X gnarantees that the fiber of the
achiral Lefschetz fibration f: ¥ — 92 is homologically essential and therefore there
exists a folded-svinplectic form w as described in Proposition 5.2.2. This restricts
to Y\ M, where M = S? x D? is a neighborhood of S. We may assume w is
constructed such that M is identificd with My in the standard model above as
follows: Let ¢: M — Ay be an orientation preserving diffeomorphism such that ¢
is orientation preserving on the spheres (and on the normal directions as well), and
that it maps the upper-hemisphere of Sy (where wy is positive) to the positive part
of §. Then one can start the construction in the proof of Proposition 5.2.2 with the
folded-svmplectic form s*o*(wy) on the base sphere, which naturally restricts to an

awrea form on each hemisphere. We can also modify the symplectic form xn on the

fibers so that it is symplectomorphic to ¢*(wo) on the normal disks to S, each of
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which lies on a fiber.

Hence we obtain a folded-symplectic form « on X such that (M, w|y) is folded
symplectomorphic to (Mp,wolrr,). This allows us to trade M for N = S! x D3
and extend the folded-symplectic structure to (Y \ M)U N = X . The effect of this
surgery on the fold of Y is to turn the surface fibration over S! into an open book
decomposition on the resulting fold. The core curve of N sits in the 3-manifold as
the binding of this open book aund therefore it carries a canonical framing. We have

proved:

Theorem 5.3.1 Every closed oriented smooth 4-manifold X admits a folded-
symplectic structure. Furthermore, there erist folded-symplectic forms on X with
connected folds. such that a surgery along a framed curve which lies in the fold results

in a simple folded-symplectic manifold.

Remark 5.3.2 Away from the framed curve v in X, the folded-symplectic model
we have constructed is the restriction of the simple model discussed in the previous
section, and as we will see shortly. the pieces are Stein and anti-Stein. So for any sort
of pseudo-holomorphic curve counting with respect to this folded-symplectic structure,
the focus would be understanding the limit behaviors around ~ of the curves in the
moduli space. where we do have a standard model. namely (Ny.woly,) above. (For a
digression on this topic. see [84].) We would like to point out that both the knot type
of v in the fold and its framing depend on the achiral Lefschetz fibrations we use in
the construction, so does the simple model we get. The following example illustrates

this phenomenon.

Example 5.3.3 If we construct S* following the recipe given in the proof of Theo-
rem 5.3.1. we get W = D x D*Jpy 2 D? x D* = 5% x D? which can be identified

with M. and the simple folded-symplectic form on Y = 52 x S = My Uq2xapz Mo
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can be constructed so that its restriction to each copy of My is indeed the stan-
dard form wy. Note that here both open books already agree, so we do not need
to alter the contact structures and change the initial fibrations. Now if we undo the
surgery, that is if we trade N = Ny and M in the proof, what we get is the standard

folded-symplectic form wy on S%.

0 0
()
U 0
U a 4-handle
5% x 2

Figure 5.1: On the left: 0-surgery along the binding vields a trivial S? fibration over D?
on each piece, which make up S$% x §%2. On the right: 0-surgery along the new binding
vields a cusp neighborhood on both sides.

It is a standard fact that surgery along a framed curve in a simply-connected 4-
manifold will result in connect summing with either S? x $2 or $?x 5?2, depending
on the framing. which can be thonght as an element of 7;(SO(3)) = Z,. In [23] (also
see [44]) it is described how one can homotope the framed knot in the 3-manifold
to another framed knot. which is isotopic in the ambient 4-manifold to the original
one, so that their framings differ by one and that surgering the new curve yields an
achiral Lefschetz fibration on the resulting manifold as well. Applying this trick to our
example, we can instead pass to an achiral Lefschetz fibration on 52x S? = CP*#CP?,
which is a torus fibration with two cusp fibers of opposite signs (Figures 5.1 and 5.2).
The monodromy of this achiral fibration is ¢, { ;' t7', and the corresponding Kirby

diagram is depicted in Figure 5.2 (sce [37]). To verify that this manifold is CP?#CP?,

104



0

J two 3-handles and a 4-handle

Q

~ (O

0 +1
U a 4-handle

CP2#CP"

U two 3-handles and a 4-handle

Figure 5.2: The achiral Lefschetz fibration on the second associated model. The total space
is shown to be CP?#CP?.

we first slide one of the vertical 2-handles over the other one, and then separate this
pair from the rest of the diagram by sliding over the 0 framed 2-handle. Now the
rest of the diagram can be shown to be S* after obvious handle cancelations. It is
possible to see that our construction method will give a folded-symplectic structure
on S? equivalent to the standard one again. Note that the first simple model above
is obtained by surgering the unknot, whereas the second comes from surgering the

right trefoil in S*. Surgery framings on them differ by one in S7.
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5.4 Kahler decompostion theorem

While we shift our attention to Stein structures, we would like to have only non-
separating vanishing cycles in our constructions, as it is suggested by the correspon-
dence between PALFs and compact Stein surfaces established in [50] and [2]. We

start with the following lemma:

Lemma 5.4.1 Let X be a closed oriented 4-manifold. Then it can be decomposed
into two handlebodies, each of which admits an allowable achiral Lefschetz fibration
over D% such that the fibers have connected boundaries and that the induced open

books are the same.

Proof: We follow the construction of Etnyvre and Fuller with more care given to
having fibrations allowable. Take a handlebody decomposition of X with one 0—
and one 4-handle, let Xy be the union of the 0-handle, 1-handles and 2-handles.
and Xy be the union of 3-handles and the 4-handle. As it was implicitly present in
[44]. and was also observed in [2]. one can always build an achiral Lefschetz fibration on
a given 2-handlebody so that all vanishing cvcles are non-separating. Therefore, we
can start with allowable fibrations and then proceed with stabilizations as described
in [23] to match the induced open books. A stabilization is given by gluing a positive
or a negative Lefschetz 2-handle along a new 1-handle added to a regunlar fiber.
and in order to keep the binding connected. we alwavs introduce another adjacent
stabilization. Therefore. all vanishing cyeles introdnced during stabilizations are also

nonseparating. Induction concludes the proof. O

Theorem 5.4.2 Let X be a closed oriented smooth 4-manifold. Then X admits a
decomposition into two codimension zero submanifolds X4 and X_. such that X,
and —X_ are both compact Stein manifolds with strictly pseudoconver boundaries.

These Stein structures can be chosen so that the induced contact structures €, on
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0X; and €. on —0X_ are isotopic. Furthermore, there are PALFs on each piece
such that the open book decompositions they induce on X, and —0X_ are compatible
with &, and &_, respectively, and they coincide. In short, all data match on the

hypersurface H = 0X, = -0X_.

Proof: The lemma above gives us a decomposition of X into two pieces X, and
X, with allowable achiral Lefschetz fibrations f; and f> on them, such that induced
open books on the boundaries match. As in the proof of Theorem 5.3.1, we glue these
two pieces along the truncated pages to get:

Ww=X, U X,.
7N eD)=f, 1(3D?)

Next we glue in S% x D? to cap off the fibers and establish an achiral Lefschetz
fibration f Y — S? with closed fibers.

We wish to split the base of this fibration into two disks D, and D_ so that all
the positive critical values lie in the interior of D, and all the negative ones lie in
the interior of D_. As discussed earlier, restrictions of f give a positive Lefschetz
fibration on X4 = f~1(D,) and a negative Lefschetz fibration on X_ = f~1(D_),
respectively. It also prescribes a surface bundle over S' = 9D, = —dD_ on the
hypersurface separating Y, and Y_. This time we would like to describe the splitting
more carefully by taking into consideration how the global monodromies of the new
fibrations are related to the original ones.

Let 1y be the monodromy of the achiral Lefschetz fibration fi on X, and e, be
the monodromy of the fibration f on X3, Fix a representation of yi; by using arcs
Spyce ,.sLl and a representation of pip by using ares s?,- - sfz Corresponding criti-
cal values are denoted by y! and yf Monodromies of the open book decompositions
bounding each fibration are given by gy and gy as well. and they coincide under
an orientation reversing diffeomorphism, so g, = (p2)~'. Let V' be a small neigh-

horhood of a regular value in the base S?. We obtain an achiral Lefschetz fibration
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Figure 5.3: New monodromies from old ones. On the left: p; is given by solid arcs, and
2 by dotted ones. On the right: Solid arcs are the positive arcs representing i . whereas
conjugated dotted arcs are negative, providing a representation of i after closing the base
back to $%.

f: W\ f7Y(V) — D = S*\ V., which closes up to a fibration over S?. If g is the
genus of the page, then this fibration is determined by the relation 2 = 1 in Tyy
and is mapped under the maps I,; — [} — T, to the relation that describes the
achiral Lefschetz fibration f: ¥\ f~'(V) — D. Since this map factors through T}
the achiral Lefschetz fibration f comes naturally with a section S of self-intersection
zero. We denote images of the elements in Iy under this map with the same el-
ements, so pyy = 1 is the global monodromy of the achiral Lefschetz fibration on

Y\ /7' (V). Note that we can use the same arcs s! and s7 to represent the global

monodromy of this fibration. Now, if we move counterclockwise and choose only the
arcs that run through positive Dehn twists, we establish a monodromy j, . Call

these arcs positive. Next, we choose a nearby base point, and move counterclockwise

by running through the negative Dehn twists only, while avoiding intersecting any

positive arc. This way, we obtain a monodromy . The new set of arcs involved in
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this monodromy will be referred as negative arcs. Observe that each negative arc is

1 2
; and sj

obtained by traveling around some old arcs s in order to avoid intersecting
positive arcs, then going around the aimed negative critical point once, and finally
going all the way back on the same detour (Figure 3). That is, each negative arc
corresponds to a conjugate of a negative Dehn twist in 'y, which defines a negative
Dehn twist, too. By taking regular neighborhoods of these arcs such that positive and
negative arcs stay apart, we get a disk enclosing only positive critical points, and an
annulus containing only negative critical points. Closing the fibration to a fibration
over S§%, the latter becomes a disk as well. Now we can enlarge any one of these disks
so both disks share the same boundary, and call the one containing positive values
D, . and the other one D_. So we have a new factorization of the global monodromy
of f. given by the relation pryp_ = 1. The section S prescribes how to lift the new
elements 4 of I'y to I‘; uniquely.

We proceed with taking out the tubular neighborhood S? x D? of the section
from Y = Y, UY_. and we get an inherited splitting X, U X_. The discussion
above shows that py defines a positive Lefschetz fibration on X, and u. defines a
negative fibration on X_. To recover the original 4-manifold X we need to put back
in S'x D?, which has the same effect as gluing each other the tubular neighhborhoods
Stx D2 and S' x D? of the bindings of open books on dX; and dX_, respectively.
Therefore we can think of X as decomposing into X, and X_. We claim that this
decomposition possesses the desired properties.

When we take out a tubular neighborhood of S from Y. we turn the positive
and negative Lefschetz fibrations on Y4 and Y. into a PALF on X and a NALF
on X_, respectively. In the meantime the surgery converts the surface fibration

that separates Y, and Y. to an open book decomposition on the common boundary

Il =dX, = —dX_. The binding of this open book is the identified bindings of J.X
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and —0X_, the page F is the bounded closed surface obtained by cutting off a disk
from the regular fiber of f , and the monodromy is induced from the fibration on
either side. Noting that the NALF on X_ becomes a PALF on —X_, we see that
both PALFs induce the same open book decomposition on their boundaries.

By Theorem 5.1.4, both X, and —X_ admit Stein structures. We will construct
these Stein structures using Eliashberg's characterization so that they match on the
common boundary. The technique we are going to use is the same as the one which
was presented in [2]: The PALF on X, is obtained by attaching positive Lefschetz
handles h; - - - h,, to X, = F x D?, which has the obvious PALF defined by projection
onto D? component. The same is true for the PALF on —X_. F x D? has a natural
Stein structure by Theorem 5.1.3. We can assume all vanishing cycles (coming from
either side) sit in various pages of the open book on H. Read backwards. we can think
of the fibrations as being constructed by attaching positive and negative Lefschetz
handles to H on either side in a sequence following the monodromy of the open
book. Thus we can induct on the number of handles. Assume that the PALF on
Ny = XoUhUu..Uh_; (i < m) induces an open book decomposition on its
boundary. and it carries a Stein structure such that the contact structure induced on
the houndary is compatible with this open book. Let € be the vanishing cyele of
the positive Lefschetz handle h, Iving on a page F of ON;_;. We open up the open
book decomposition and choose a page against I and glue them together along the
binding B to form a smooth closed convex surface ¥ in the 3-manifold 9X,_,. As
(" is non-separating. £\ (" is connected and it contains the dividing set. namely B.
So we can use the Legendrian realization principle ([33], [45]) to isotope £ throngh
convex surfaces to make ' Legendrian. Note that this is done by a small O™ isotopy
of the contact structure supported in a neighborhood of £, which fixes the binding

pointwise. Hence the framing of (7 relative to the fiber F is the same as its contact
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framing, implying that the Lefschetz handle h; is attached along a Legendrian curve
with framing th — 1. By Theorem 5.1.3 the Stein structure extends over this handle,
and as shown by Gay in [33], the new open book on dX; will be compatible with the
new induced contact structure on J.X;. This completes the induction. Repeating the
same argument dually for —X_, we see that the compatible open books on X, and
d(—X_) are isotopic, and therefore the induced contact structures €, on 0X; and
& on O(—X_) = —-0X_ areisotopic as well. So we fulfill all the matching conditions

listed in the statement of the theorem. O

Remark 5.4.3 In [1] it was asked if one could decompose a given closed oriented
smooth 4-manifold into Stein pieces so that the induced contact structures on the sepa-
rating 3-manifold coincide. Our theorem gives an affirmative answer to this question.
In the same article authors remark that it is possible to alter their Stein decomposition
to make the induced contact plane distributions homotopic. but the tightness of the
contact structure precludes the use of Eliashberg’s celebrated theorem on overtwisted
contact structures to conclude more. Considering the underlying PALFs and isotopies

of open books qives a way around this difficulty. thanks to Girour’s Theorem.

Remark 5.4.4 In  [08]. Quinn studied  so-called  dual  decompositions  of
d-manifolds:  descriptions of 4-manifolds as a union of two 2-handlebodics.
The author formulates the same question as in [1] in terms of necessary se-
quence of Kirby moves to relate a possibly nonmatching Stein  decomposition.
Theorem: 5.4.2 provides an implicit answer to this question. and we would like
to take this as an opportunity to summarize the handle calculus behind our con-
struction:  An arbitrary Stein decomposition X = Xy U Xy comes with some
PALF pair.  Using the stabilization moves of Etnyre and Fuller. we first change
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this PALF pair with a matching pair. This corresponds to adding canceling
1— and 2— handles to each X,, or in other words, we add canceling handle pairs
of indez 1—, 2— and 3— in the orginal handlebody decomposition of X . In the
nert step, we pass to a cobordant 4-manifold Y so that we can split the positive and
negative Lefschetz handles. Then we ‘undo’ the surgery and get the decomposition
X = X, U X_ with Stein structures on each piece that coincide on the common
boundary. Having the simply-connected case in mind, this intermediate step can
be seen as a stabilization. Let W = X \ S! x D3 be the complement of a reqular .

neighborhood of the framed knot ~ in X, then the first surgery defincs a cobordism

[OQ]XH U ([(). l]XSlxD3)le51x52 ([1.2])([)2)(52)),
[().2])(5')(52

which as identity on the first component. We trade 2-handles of X, and Xo mn Y
by making use of the two ertra handles of index 2. Finally, the composition of two
cobordisms that gives back X can be seen as the double of the cobordism above, and

thus it deformation retracts to

w U (ST Upeege SY).
Stxs?

This cobordism is built by attaching cells to W = S'x S? ., where D? x S is attached
uniquely and the framing of v indicates in which one of the two ways we shall glue
the other two S' x D3 pieces. Although here we started with a (nonmatching) Stein
decomposition. it is clear that the same discussion can be carried out in our main
construction as well. Therefore we have a well-defined process, during which we first
inflate the number of handles in a given decomposition of X . and then trade some of

the 2-handles through a cobordism to achicve the desired decomposition at the end.
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5.5 Folded-Kahler structures and folded Lefschetz
fibrations

Unlike symplectic structures, random folded-symplectic structures do not need to bear
any information about the geometry or topology of the manifold they are defined on.
In order to specify more meaningful members of this family, one first of all needs
to impose some boundary conditions on the folding hypersurface. We would like to
acknowledge a result of Kronheimer and Mrowka: In [48], the authors prove that
a compact symplectic 4-manifold (Y.w) with strictly pseudoconvex boundary has
SWy(K) = 1, where K is the canonical class of w. This motivates us to see such
manifolds as building blocks of 4-manifolds, and yields a good boundary constraint
for folded-svmplectic structures. at least in this dimension. Henceforth. we assume
that the fold /1 = (")~1(0) of a given folded-svmplectic manifold (X*". w) is always
connected and nonempty. We will generalize the notion of a Kaller structure on a
smooth 2n-manifold by considering a distinguished subset of the family of folded-

svimplectic structures. and we then present some properties of these structures:

Definition 5.5.1 A folded-symplectic form w on an oriented 2n -dimensional man-
ifold X is called a folded-Kahler structure, if there is a tubular neighborhood N of

H such that:

1. The closure of cach component of X \ N is a compact Kdhler manifold

(X4 .w|ex.) with strictly pseudoconver boundary.

2. (N.wly) s folded symplectomorphic to ([=1, 1) x H. d(({*+1) 7" () ). where

is a contact 1-form on the fold H . and 7 is the projection ©: [-1.1] x H — H.

In addition. if cach (£ Xi.wlsx.) is strictly pseudoconver. we say w is a nicely
FERVS P [ . \

folded-Kahler structure on X .
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In the definition above, nice folding can be reformulated as folding Stein mani-
folds along matching strictly pseudoconvex boundaries. Recall that if ¢ is a proper
strictly plurisubharmonic function on a complex manifold S, then the associated 2-
form wy = —d.J*dy is Kahler, and importantly, the symplectic class of (X,w,,) is
independent of the choice of v [22]. Therefore, to complete our alternative formula-
tion, we ask that each piece & X4 should admit some proper strictly plurisubharmonic
function vy, so that w|yx, = w,, . In short, it is built in the definition that a nicely
folded-Kihler manifold is folded-Kéhler. Finally note that, due to a theorem of Bo-
gomolov [12]. any compact folded-Kéhler manifold X can be made nicely folded after
deforming the complex structure and blowing down any exceptional curves. Even
though these definitions narrow the family of folded-symplectic structures quite a lot,
it is important to note, at least in dimension four, that we still have an adequately

large family in the light of the following result:

Theorem 5.5.2 Any closed oriented 4-manifold X admats a mcely folded-Kdhler

structure.

Proof: By Theorem 5.4.2. X' can be decomposed iuto two compact Stein manifolds
X, and = X_ with strictly psendoconvex boundaries such that both induce the same
contact structure ou the common boundary H = dX,; = —0.X_. We begin with
adding collars £/, to (£Xs.wy). and extending the syvmplectic structures to W’y
on £\} = £(N; Ul'y) so that new boundaries d(£.X") are still convex and con-
tactomorphic. Let £ be the induced contact structures on d(£X5) and v be a
contactomorphism between them. Using the symplectic cut-and-paste argument of
Etuyre [24]. we can add a syvmplectic collar to (J.X}.w’) so that the new bound-
ary is not only contactomorphic to —=dX’ but also the induced contact forms agree
up to a multiple & € R*. For the sake of brevity, let us assume that {7, above

contains this collar part as well. So after rescaling &' (and w_) by A if necessary.
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we see that restrictions of symplectic forms W/, ax", and kw' |_sx agree via v, and
orientations of null-foliations (which correspond to Reeb directions) are the same.
Therefore, once again we can apply the folding technique of [14] to obtain a folded-
symplectic structure « on X, UX’ such that w agrees with w) on the complement

of a small tubular neighborhood of the fold H. We enlarge this neighborhood to
include U, and U_ and call it N. It follows that X = X, UNUX_ = X, U X_,

and w|x, = w4, whereas w|x_ = kw_. Also note that, the folding operation provides
us with the desired local model on N, that is, (N,w|n) is folded symplectomorphic
to ([—1,+1] x H, d((t* + 1) n*(a) ) by construction [14].

Lastly, suppose v4: + X3y — [0,0c) are proper strictly plurisbuharmonic
functions such that +9X; correspond to the maximum points of vy, and wy =
-—=dJ*dy, , respectively. If k # 1, we can replace 1~ with kv~ and obtain kw .

above as a Kihler form of a strictly pseudoconvex manifold. Equipped with these

properties, w is a nicely folded-Kahler form on X. O

Remark 5.5.3 [t is clear that Theoremn 5.5.2 is a refinement of Theorem 5.3.1. Since
the folded forms we have constructed in both proofs are obtained through similiar steps.
one exrpects that these structures are actually equivalent. Next, we verify this fact.
and this way we get an insight of how folded-Kdihler forms are “supported’ (precise
definition is green below) by Le fschetz fibrations as was illustrated in Proposition 5.2.2:

Take the PALF on X, in the proof of Theorem 5.3.1. and attach a symplectic
2-handle along the binding of the induced open book on OX, as described by Eliash-
berg in [21]. This yields a symplectic Lefschetz fibration over D2 . Dually the same
arqument for the NALF on X_ gives an anti-symplectic Lefschetz fibration over D?
and these handle attachments can be done so thal two fibrations agree on the com-
mon boundary. Moreover, we can assume that thesc fibrations have genus at least

two. so the fibrations can be matched as symplectic surface fibrations over a circle,
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as it was pointed out in [21]. At the end we get a simple folded-symplectic mani-
fold Y obtained from X after a surgery along a framed curve v. However, any two
simple folded-symplectic forms compatible with a fized achiral Lefschetz fibration are
deformation equivalent by Proposition 5.2.2. Moreover, we can normalize both forms
on the disks which are parallel copies of cocores of new 2-handles that were used
to cap off the fibers. Hence, these two folded forms are deformation equivalent on
Y\ S? x D%. As the folded-symplectic structure on D3 x S' which is glued back in to
recover X 1s standard, the folded-symplectic form constructed in the proof of Theorem
5.3.1 and the folded-Kdhler form obtained in Theorem 5.5.2 are indeed equivalent as

folded-svmplectic structures. O

Motivated by symplectic and near-symplectic cases ([17], [9]), we can conclude our

discussion above by defining the Lefschetz fibration analogue for our structures:

Definition 5.5.4 Let X be a closed oriented 4-manifold. and decompose S? as the
union of the upper-hemisphere D, and the lower-hemisphere D_ which are glued
along the equator C' = 9D, = —dD_. Then a smooth map f: X — S?% is said to
be a folded Lefschetz fibration on X', if it restricts to a PALF over Dy, to a NALF

over D_ . and to an open book over CC bounding both fibrations.

Definition 5.5.5 Let X be a closed oriented 4-manifold equipped with a nicely
folded-Kdhler form w. Then a folded Lefschetz fibration f: X — S? is said to be
compatible with w if cach Stein picce Xy corresponds to {1 (D). and if the contact
structure they induce on Il = [~Y((") s compatible with the open book decomposi-
tion coming from the fibration f. In this case. we also say that nicely folded-Kdahler

manifold (X,w) is supported by the folded Lefschetz fibration f.

The compatibility in the above definition is completely on the symplectic level.

This becomes more visible if once again we recall that surgering the binding + of
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the open book flm,: H\ v — S', we pass to a simple model where the folded
Lefschetz fibration can be extended to a folded symplectic achiral Lefschetz fibration
f with closed fibers. Also note that, since Stein manifolds harbor less topological
obstructions in complex dimensions > 2, it is very likely that they admit higher
dimensional analogues of PALFs with similar topological correspondences. If that
is established, last two dcfinitions, as well as several results in this paper, can be
generalized to all 2n-dimensions.

The complete statement of Theorem 5.4.2 combined with Theorem 5.5.2 shows
that. given a closed oriented 4-manifold X, one can always find a nicely folded-Kahler
structure w on X together with a compatible folded Lefschetz fibration. Next, we

prove that this property in fact holds for any nicely folded-Kahler structure:

Proposition 5.5.6 Any nicely folded-Kdhler structure w on X, up to orientation

preserving diffeomorphism, admits a compatible folded Lefschetz fibration.

Proof: Each Stein piece X, and —X_ admits a PALF by Theorem 5.1.4. If we
construct these fibrations following the algorithm of [2] and keep track of the associ-
ated open books. the work of Plamenevskaya [67] shows that we can establish PALF's
[+ £.X4 — D? with the property that the open book decomposition on the bound-
aries are compatible with the contact structures induced from the Stein structures
on .., respectively. As the contact structures are assumed to be the same, The-
orem 5.1.2 tells us that we can match these open books after positive stabilizations.

Conscquently. we get a compatible folded Lefschetz fibration. O

Remark 5.5.7 A folded Lefschetz fibration that supports a given folded-Kahler struc-
ture fails to be unique. In fact, one can find infinitely many pairwise inequivalent such
fibrations. This can be seen for example from the construction of [2]. by using dif-
ferent (p.q) torus knots in theu algorithm which we adopt for buwilding our achiral

Lefschetz fibrations.



Example 5.5.8 The easiest examples are doubles. If Y4 is a compact Kihler man-
ifold with strictly pseudoconvex boundary, then X = Y U -Y is equipped with a
folded-Kahler structure. When Y is indeed Stein, we get a nicely folded structure.
The first folded structure constructed in Example 5.3.3 is the double of standard
D* c C?, whereas the latter is a ‘monodromy double’ of a cusp neighborhood minus
a section. Here by ‘monodromy double’ we mean that the pieces are first glued along
the pages of the open books, and if the monodromy of the folded Lefschetz fibration

on one piece is p. then the monodromy on the other one is u=*.

Example 5.5.9 There is a construction which also allows us to see the nicely folded-
Kahler structure together with a compatible folded Lefschetz fibration. Take a contact
3-manifold (,£), and fix a positive open book decomposition (B. f) compatible with
€. Different PALF's bounding this open book describe (possibly) different Stein fillings
of (H.£). Indeed there are examples of infinitely many pairwise non-diffeomorphic
contact 3-manifolds each of which adnit infinitely manv pairwise non-diffeomorphic
Stein fillings constructed this way [57]. Thus for every pair of PALFs X, and X,
that fill the same open book, we can construct a nicely folded-Kihler forin on X =

X U =X, as designated in the proof of Theorem 5.5.2.

Example 5.5.10 The main steps of our construction are depicted in the follow-
ing simple. albeit instructive example:  Start with classical handlebody  decom-
position of X = #s5% x S? with one 0-handle. sixteen 2-handles, and a 4-

handle.  Let X} be the union of 0-. 2- handles. and Xy be the 4-handle.

Each piece admits a D? fibration over D?. However we wish to construct al-
lowable fibrations. so we introduce two 1— and 2— canceling handle pairs and
two 2- and 3- canceling handle pairs in the original handlebody decomposi-
tion of X. We start building the fibrations from the scratch:  Add the 1-

handles to the O-handle and 3-handles to the 4-handle. Attach the two canceling
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2-handles with framing —1 to the union of the 0- handle and 1- handles. Attach
the other two the same way to the handlebody X, which is the union of 3- handles
and the 4- handle. To simplify our description, we will label the 1-handles of the
first handlebody as a and b, which generate m; of the torus fiber with one boundary
component, and we do the same for the 1-handles of X, under the obvious identifi-
cation. So we obtain two achiral Lefschetz fibrations over disks with bounded torus
fibers; one with monodromy t;'t,!, and one with t,t,. One can verify by Kirby
calculus that each time we insert a pair of Lefschetz handles prescribed by t,t;! or
tbt,,'l, we introduce an S? x S%. (See Figure 5.2, and observe that here we slide off
the 2-handle pair over a +1 framed 2-handle instead.) Doing this consecutively,
we attach all the remaining 2-handles to the first handlebody, and obtain an achiral

Lefschetz fibration on X'}, with monodromy

= 0 L b Lt L
whereas X, still has the monodromy

po = tyte = (170117

Both open books that bound these fibrations contain negative Dehn twists (recall
that on —9X,. the monodromy is y;'), and therefore the contact structures they
support are overtwisted. As we have already manipulated the monodromy that way.
contact structures and open books are isotopic. so we can glie X; and X, along
the truncated pages. Putting in S? x D? we pass to a torus fibration f: Y — 52
with global monodromy ) - yia. (Applying the handle slides given in Example 5.3.3
repeatedly. and proceeding with the same handle cancelations. one can indeed check
that Y = #452 x S?#CP?#CP?.) Now the monodromy splits easily as explained in
the proof of Theorem 5.4.2. and we get py = (#,4,)° and g = (1714;1)%. It is not

hard to see that when we take out the section now, we get picces X, and X_, which
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are diffeomorphic to —Fg and FEjg, respectively. So X decomposes into a Stein piece
—FEg and an anti-Stein piece Fg. This defines a nicely folded-Kéahler structure w on
X, folded along the Poincaré homology sphere ¥(2,3.5), and it is supported by a
folded Lefschetz fibration which is the monodromy double of a torus fibration over

D? minus a section.

5.6 Addendum: Interactions between the two gen-
eralizations

From the very definitions of the two different symplectic generalizations we know that
folded-svmplectic structures and near-symplectic structures on smooth 4-manifolds
can not be generalized from each other. It is also apparent that achiral Lefschetz
fibrations and broken Lefschetz fibrations are not generalizations of each other either.
However, one can consider a simultaneous generalization of symplectic structures so

to deal with both of them as follows:

Definition 5.6.1 Let w be a closed 2-form on a smooth 4-manifold X such that
there exists a smooth embedded 1-manifold Z in X, and such that «? intersects the
0-section of AIT*X transversally at every point on X \ Z and w = 0 at cvery point
on Z. We then call w a general svmplectic structure on X provided that at each
point x € Z, if we use local coordinates on a neighborhood U of x to identify the
map w: U — AX(T*U) as a smooth map w : R' — R®, then its lincarization at r,
Dw, : RY — R® has rank 3. We call H = «*(0)\ Z the fold singularity and Z the
round singular loci. When H = 0. (X,w) is a near-symplectic manifold if w? > 0
and an anti-near-svmplectic manifold if w* < 0. If Z = O and H # 0, then we
obtain a folded-symplectic manifold. Lastly, when H U Z = (0 we have a symplectic

4-manifold if w? >0 and an anti-symplectic 4-manifold if w* < 0.
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Note that around every component of Z, we either have w? > 0 or «? < 0, so for
an appropriate choice of metric g, the map w : U — A?(T*U) above is either onto
the subspace of self-dual 2-forms, or onto the subspace of anti-self-dual 2-forms with
respect to ¢ —both of which have rank 3. (Compare [9])

In a similar manner, we define a general Lefschetz fibration to be a fibration where
we allow both achiral Lefschetz singularities and round singularities. In fact, what
motivates us to introduce the above notion of general symplectic structures is the
study of these fibrations by David Gay and Rob Kirby in [34] (under the name

“broken achiral Lefschetz fibration™), where the authors proved:

Theorem 5.6.2 (Gay-Kirby [34]) Let X be an arbitrary closed oriented 4-
manifold and let F be a closed surface in X with F-F = 0. Then there erists

a general Lefschetz fibration from X to S? with F as a fiber.

This theorem suggests an alternative way to study general 4-manifolds through

generalizations of Lefschetz fibrations.

5.6.1 General symplectic structures on broken achiral

Lefchetz fibrations

An open question stated in [34] was to give a meaningful formulation of a cohomolog-
ical condition that would allow one to obtain a 2-form « on a given general Lefschetz
fibration. as in Theorem 2.0.4 and Theorem 4.1.3. The fibrations constructed in [34]
can alwayvs be arranged so that the round handle singularities all project to the tropics
of Cancer and Capricorn. with their high genus sides towards the equator and with
all Lefschetz and negative Lefschetz singularities over the equator. For what follows.
it would be convenient to introduce vet another name to refer to general fibrations ar-
ranged in this peculiar way. Let us call these “simplified general Lefschetz fibrations™

for this purpose.
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Proposition 5.6.3 Let X be a closed oriented smooth 4-manifold and f: X — S?
be a simplified general Lefschetz fibration such that the reqular fiber is a closed ori-
ented surface F which is nonzero in Hy(X;R), then X admits a general symplectic
structure w such that fibers arc symplectic away from the critical points, the fold If
is an F -bundle over S*, and the round singular locus Z, coincides with the round
singular locus of f. The fold H splits X into piecces Xy and X_, and [ induces
near-symplectic Lefschetz fibrations on (X4, w|x,) and on (—X_,w|x ), respectively.
Furthermore, any finite set of sections can be made folded-symplectic for an appro-
priate choice of w. This form is canonical up to deformation equivalence of general

symplectic forms.

Proof: We can perturb the equator circle of the base S? to an arc which passes
from the south of the image of each Lefschetz singularity. and from the north of each
negative Lefschetz singnlarity. Let this are ¢ be the new equator of the base S2. It
is easy to see that ' splits off a disk D, from S? that contains only the images of
positive Lefschetz singularities. the complement of which in S? is another disk 1
that contains only the images of negative Lefschetz singularities. Both might contain
images of round handle singularities.

The rest of the proof is very much the same as the proof of Proposition 5.2.2 except
on the pieces Xy = f71(D,) and X_ = f~1(D_) one now also needs to deal with
the round singularities. However this can be done as in the proof of Theorem 4.1.3,
where the authors generalize Gompf's construction to the case of broken Lefschetz
fibrations [9). O
It is casy to generalize the above proposition to any (not necessarilly simplificd)
ecneral Lefschetz fibration f: X — ¥. For that though, one will need to prefer
one splitting of the base over another. since in general there is no canouical way of

separating the images of negative and positive Lefschetz singularities in X,
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5.6.2 From achiral to broken Lefschetz fibrations

In [34], another question that the authors ask is whether one can avoid achirality in
their construction. In this subsection we will show that this can be achieved after
blowing-up the ambient manifold sufficiently many times. Note that blow-ups do not
kill standard smooth 4-manifold invariants and in fact their effect on the invariants
is well-understood. Therefore, as far as the smooth invariants are concerned, this
modification is very welcome.

To get rid of the negative Lefschetz singularities. we will consider a local mod-
ification around the image of an isolated negative singularity to obtain a new gen-
eral Lefschetz fibration where this negative Lefschetz singularity is traded with an
additional round singularity. We then show that this amounts to blowing-up the
4-manifold at that critical point. Owr modification can be seen to be equivalent to
performing the local operation described in the third example of [9]. page 113, but
in orientation reversing charts. For the convenience of the reader, we briefly describe
this modification below.

Consider an isolated negative Lefschetz eritical point of a general fibration f on X,
with vanishing evcle a loop ~ in the nearby generice fiber. We remove a neighbourhood
of this singular fiber and insert in its place a configuration where ~ is now taken as
the vanishing evele of a round 2-handle cobordism. The critical values form a simple
closed loop . The inner most part of this round handle cobordism is a trivial fibration
with a fiber of one less genus. or otherwise with two fiber components. depending on
whether ~ is nonseparating or separating. This way we add a new component to the
round locus. See the Figure 5.6.2 which is taken from [9] after a slight modification
for our case.

This modification yiclds a new general fibration /. Let 0 be the new round

singular circle. The fibers outside ¢ are obtained from those inside by attaching a
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Figure 5.4: Replacing a negative Lefschetz singularity by a round singularity: f (left) and
f' (right)

handle joining two points ¢,q" as shown in the Figure 5.6.2. Along § the points ¢.q"
describe a trivial braid, but the relative framing differs from the trivial one by —1,
so that on the outer side the monodromy around 4 consists of a single negative Dehn
twist along . which compensates for the loss of the isolated singular fiber.

Next we would like to understand the total space X’ that f’ is defined on. The
local model for f is simply a 4-ball. On the other hand, the total space of the new
local model for /" contains a smoothly embedded sphere S, obtained by considering
the two points ¢ and ¢ in each of the fibers inside § together with the equator 4.
Since the monodromy around 4 is a negative Dehn twist along ~. we deduce that
S has self-intersection —1. Also observe that the preimage of the interior region
V is the disjoint union of two D? x D?’s. giving a disk bundle over SN f'~'(V).
The preimage of the outer region is again a disk bundle over a neighbourhood of the
equator in S, and it is diffeomorphic to S' x D*. Hence, the total space of f' is
a disk bundle over the sphere S with self-intersection —1. Therefore our operation
locally (and thus globally) amounts to blowing-up X . That is, X’ = X#CP*.

We can also depict this operation in terms of handle diagrams. For simplicity,
assume that 5 is a nonseparating curve. Clearly the vanishing cycle 4 can be very
complicated in general. However, there exists a self-diffeomorphism of the fiber which
takes v to any nonseparating curve. This self-diffeomorphism can be extended to an

124



orientation preserving self-diffeomorphism ¢ of the piece df~'(V). So it suffices

to study our modification in the local model in Figure 5.5, and glue the new piece

back via the same diffeomorphism ¢ on the b dary, which hes the b dary

monodromies as indicated by the negative Dehn twist along the original 5.
5 TS o
g £ +1
| |

Figure 5.5: Neighborhood of a negative nodal fiber which has a simple nonseparating
vanishing cycle.

After blowing-up in this piece, one can obtain a new diagram with no Lefschetz
singularity but with a new round handle as shown in Figures 5.6 and 5.7. In Figure
5.6, we first slide the +1-framed 2-handle over the —1-framed 2-handle so that its
framing becomes 0. Then the two strands of the 0-framed 2-handle can be slid off the
1-handle using the new 0-framed 2-handle, and now they go through the —1 framed
2-handle as shown in the third diagram. The new 0-framed 2-handle and the 1-

handle becomes a canceling pair, which we remove from the diagram to get to Figure

5.7. The last step is just an isotopy which puts the diagram in the standard form of
a trivial fibration with a fiber of one less genus, and a round 1-handle attached to it.

Observe that the framing of the 2-handle of the round 1-handle is —1, compensating
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Figure 5.7: After an isotopy, we obtain a Kirby diagram of a round 1-handle attachment
to a product neighborhood of a fiber with one less genus.

for the loss of the singular fiber on the boundary monodromy.

Since the modification is made locally around a critical point, it works for any
general fibration containing negative Lefschetz singularities. In particular our folded
Lefschetz fibrations in Section 5.5 can be replaced with folded fibrations with only
broken and positive Lefschetz singularites on blow-ups of the given manifold. The
same argument applies to any achiral Lefschetz fibration as well; for instance to those

that Etnyre and Fuller obtained in [23].
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5.6.3 Comments on describing invariants on general 4-

manifolds

A question that remains unanswered is if one can define smooth invariants in the
most general setups discussed in this chapter. We finish with a few rather speculative
comments regarding this issue.

One might hope a Kahler decomposition for a given 4-manifold to be what a Hee-
gaard decomposition is for a given 3-manifold. For this to work, one needs to relate
any given two Kihler decompositions by a finite set of ‘moves’, i.e. some relative cal-
culus which would take us from one decomposition to another. To reveal the difficulty
in this task we shall point out that our ‘construction’ of a Kahler decomposition on
a given 4-manifold is far from being explicit. This is due to the two results we have
utilized: Eliashberg’'s theorem on the existence of some isotopy between homotopic
overtwisted contact structures. as well as Giroux’s theorem on the existence of com-
mon stabilizations of two open books supporting isotopic contact structures. Neither
one of these theorems provide us with explicit algorithms.

On the other hand. it is a curious question to determine whether one can define an
invariant for a fired Kahler decomposition. The difficulty lies in the fact that gauge
theoretic invariants are very sensitive to the orientation change. Even though the
invariants (Seiberg-Witten or Heegaard-Floer) of compact Stein manifolds are well-
known. it is unclear how one can make use of this information on the piece with the
reversed orientation. A possible approach of course is to go hevond the gauge theory
setting. as one can not avoid for example while dealing with S*. The work of Jens
von Bergmann in [84] runs in this vein. but varions technical details prevent us from
adapting the same arguments for our case in any straightforward way. Nevertheless,
if this task together with the previos one can be accomplished in a compatible way.

then one can derive a (hopefully nontrivial) invariant of general 4-manifolds.
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In a different direction, and motivated by the Theorem 5.6.2 of Gay and Kirby,
we might start with a generalized fibration compatible with a generalized symplectic
structure on a given closed smooth oriented 4-manifold. By homological reasons,
these exist precisely on 4-manifolds with nontrivial second homology. One can then
try to generalize Perutz’s invariant to this setting. The crucial step is to describe a
meaningful Lagrangian matching condition along the fold. Since the fold is away from
the round singularities, it would suffice to define a Lagrangian matching condition for
achiral fibrations, which then can be used to define an invariant of general symplectic

fibrations through Perutz's work.
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