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Abstract

Transient Behavior of Centrifugal Pendulum Vibration Absorbers with

Tautochronlc Epicycloidal Paths

By

Mark Orlowski

The purpose of this study is to develop a better understanding of transient

oscillations in centrifugal pendulum vibration absorbers (CPVAs). A CPVA is a

passive device that is used to reduce engine-order torsional vibrations in rotors; it

generally consists of a mass that moves along a prescribed path relative to the

rotor. The application currently being explored is to decrease torsional vibrations

of crankshafts in multi-displacement automobile engines, and determine how

CPVAs behave as loading conditions change. The system is modeled as an

ideal rotor to which a set of tautochronic, that is, isochronous, CPVAs are

attached. Relatively simple and accurate approximate expressions for the

maximum transient amplitude of the absorber and the rotor vibration are obtained

by considering the linearized system response, and by the method of averaging

applied to a weakly nonlinear model. The results are confirmed by simulations of

the full system model. The effects of absorber damping, absorber inertia, and

absorber tuning on peak transient responses are investigated. It is shown that

trade-offs must be considered when selecting these system parameters for

optimal transient performance.



To My Mom and Dad

iii



Acknowledgements

First, I’d like to thank Dr. Shaw for giving me this opportunity and for

always being there for me when I needed guidance. Also, I’d like to thank Dr.

Haddow for his time and patience. Dr. Bruce Geist has also been very

supportive in my efforts to find a solution. In addition, generous support for this

work has been provided by DaimlerChrysler (2006 Challenge Fund) and the

National Science Foundation (Grant No. CMMI-0408866). Finally, I’d like to

thank the other students in my lab, Jeffrey Rhoads, Umar Farooq, and Nicholas

Miller, who have always offered to lend an extra hand. I count myself extremely

lucky to have had this experience and I hope that the final product is of a level of

excellence to which you all will be proud.

iv



Table of Contents

List of Tables vi

List of Figures vii

1 Introduction 1

1.1 Motivation ........................................................................................ 2

1.2 Background of CPVAs ..................................................................... 2

1.3 Outline of the Thesis ........................................................................ 4

2 Mathematical Model 6

2.1 Assumptions.................................................................................... 6

2.2 Equations of Motion......................................................................... 7

2.3 Transformation to Dimensionless Form .......................................... 10

2.4 Linearized Equations ...................................................................... 12

2.5 Solution for a Single Absorber ........................................................ 13

2.6 Solution to the Rotor Equation ........................................................ 18

3 Linear Analysis 21

3.1 Envelope Equations ........................................................................ 21

3.2 Decay Functions ............................................................................. 25

3.3 Influence of Parameter Values ....................................................... 26

3.4 Changing the Engine Order ............................................................ 31

4 Averaging Analysis 35

4.1 Averaged Equations ....................................................................... 35

4.2 Influence of Parameter Values ....................................................... 44

5 Conclusions and Directions for Future Work 47

5.1 Summary of Results ........................................................................ 47

5.2 Possible Areas of Future Study ....................................................... 49

References 53



Llst of Tables

2-1 List of system parameter values for figure 2-2. ...................................... 14

3-1 List of system parameter values for figure 3-4. .................................... 27

3-2 List of system parameter values for figure 3-5. .................................... 28

3-3 List of system parameter values for figure 3-6. .................................... 29

3-4 List of system parameter values for figure 3-7. .................................... 30

3-5 List of system parameter values for figure 3-8. .................................... 32

4-1 List of system parameter values for figure 4-1. .................................... 39

4-2 List of system parameter values for figure 4-2. .................................... 41

vi



Llst of Figures

2-1 ldealized model for a rotor fitted with a system of absorbers. ........................7

2-2 Absorber arc length versus rotor angle, simulated using the linearized model.

............................................................................................................................. 15

2-3 Phase plane of the steady-state absorber response from the linearized

model; arc-length velocity versus arc-length ........................................................ 17

2-4 Rotor velocity versus crank angle calculated using the linearized model.....20

3-1 Plot of the envelope for the absorber, along with the absorber response,

calculated from the linearized model...................................................................23

3—2 Plot of the envelope for the rotor velocity, along with the rotor velocity,

calculated using the linearized model.................................................................24

3-3 Plot of the decay functions, the absorber envelope, and the absorber

response, all calculated using the linearized model. ..........................................26

3-4 The effect of the absorber damping on the maximum transient absorber

amplitude, calculated using the maximum value of the absorber envelope from

the linear model. .................................................................................................27

3-5 The effect of the inertia ratio on the maximum transient absorber amplitude,

calculated using the maximum value of the absorber envelope from the linear

model. .................................................................................................................28

3-6 The effect of the fluctuating torque amplitude on the maximum transient

absorber amplitude, calculated using the maximum value of the absorber

envelope from the linear model ...............................................................29

3-7 The effect of the absorber linear tuning on the maximum transient absorber

amplitude, calculated using the maximum value of the absorber envelope from

the linear model...................................................................................................30

3-8 Simulation of the absorber response when the excitation is switched away

from resonance, calculated using the original nonlinear model. .. ......................32

3-9 Simulation of the absorber response when the excitation is switched towards

resonance, calculated using the original nonlinear model ...................................33

vii



3-10 The influence of absorber damping on the maximum transient absorber

amplitude when the excitation is switched toward resonance, from the absorber

envelope equation, using different starting phases from the n=3 steady-

state .....................................................................................................................34

4-1 Simulation of the absorber response using the original nonlinear equations

and an envelope calculated using averaging. .....................................................39

4-2 Comparison of the maximum transient absorber arc length found using

simulations of the full nonlinear equations, linear theory, and averaging for

different fluctuating torque values; with trend-lines added for clarity. ..............41

43 Comparison of the envelope from averaging, the absorber response ‘

calculated using the linearized model, and simulations of the full nonlinear

equations; transition to resonance.......................................................................42

4-4 Transient responses in the phase plane of the absorber response, calculated

by simulating the full nonlinear equations, the averaged equations, and from the

linearized model. .................................................................................................43

4-5a The effect of the inertia ratio on the maximum transient absorber arc length,

calculated using the maximum value of the absorber envelope from linear theory

and from averaging.............................................................................................45

4-5b The effect of absorber linear tuning order on the maximum transient

absorber response, calculated using the maximum value of the absorber

envelope from linear theory and from averaging.................................................46

5-1 Photograph of a prototype bifilar CPVA. .......................................................50

5-2 Photograph of the prototype testingsetup52

viii



Chapter 1

Introduction

The automotive industry is very interested in developing and optimizing a

device that minimizes the torsional oscillations of the crankshaft in their engines,

especially those that operate with differing numbers of cylinders under various

load and speed conditions. If these torsional vibrations can be minimized, then

the vehicles will be allowed to remain in reduced-cylinder mode, known as MDS

at DaimlerChrysler, for a wider range of operating conditions. This would

. improve the fuel economy of these automobiles, since fewer cylinders would be

firing over more of their operating range. This wider envelope also has benefits

for reducing emissions.

One device well-suited to this purpose is a centrifugal pendulum vibration

absorber, which is often abbreviated as CPVA. A CPVA is a mechanism

composed of a mass that swings like a pendulum along a prescribed path when it

is attached to a spinning rotor. This swinging motion creates a fluctuating

counter-torque that can virtually eliminate the torsional vibrations of the rotor,

which are from oscillating torque loads. CPVA’s have the added benefits of

being relatively cheap to manufacture and/or offer better performance when

compared to some of the other competing solutions, such as active engine

mounts, dampeners, or flywheels. However, a major area of concern is the



possible undesirable transient behavior that may be exhibited by these absorbers

as they approach steady state operating conditions.

1.1 Motivation

The motivation of this study is to better understand and predict the

transient behavior for systems of centrifugal pendulum vibration absorbers. The

first step toward this end is to develop the equations of motion for an idealized

model of the system of absorbers and the rotor to which they are attached.

Simplification of these equations can then be achieved through the use of

linearization, which is valid for small vibration amplitudes, and averaging, which

offers an improved approximate solution for the weakly nonlinear model. A

comparison will be made of the effectiveness of these mathematical tools by

contrasting their results with that of a simulation of the full nonlinear equations of

motion. The final motivation is to establish some conclusions that describe ways

to adjust the parameters of these devices in order to influence the transient

behavior toward a more desirable result.

1.2 Background on Centrifugal Pendulum Vlbratlon Absorbers

The first recorded patent of a centrifugal pendulum vibration absorber was

in the 1929 in Britain [2]. Their most common uses currently have been in

helicopter rotors, light aircraft engines, diesel engine camshafts, and in radial



aircraft engines in World War Two [3]. The most significant distinction between

these absorbers and the more familiar frequency tuned absorbers is that

centrifugal pendulum vibration absorbers are tuned to a given order of rotation,

and thus function continuously over virtually all rotor speeds. Another important

feature of these vibration absorbers is that they are passive devices whose

motion is completely driven by the dynamics of the rotor.

The path of the center of mass of the absorber dictates the linear tuning

order of the path of the absorber, as well as the nonlinear behavior of the

absorbers. This path can have many variations, but three predominant forms

exist: circular, cycloidal, and tautochronic epicycloidal [1]. Simple circular paths

have a deficiency in that they exhibit a strong softening nonlinearity, that is, the

absorber frequency becomes smaller as its amplitude is increased [14]. A

cycloidal path has the absorbers travel along the curve defined by the locus of a

point on the rim of a circle as it rolls along a straight line [4]. A cycloidal path has

an inherent slight hardening nonlinearity. The tautochronic epicycloidal path is

the one considered in this study; it is formed by the curve defined by the locus of

a point on the rim of a circle rolling along a second circle [5]. A tautochronic

epicycloidal path is neither hardening nor softening, by definition, since the

frequency of motion is independent of amplitude, up to the cusp encountered as

the trace point touches the base circle [14]. it is this property of remaining linear

as the amplitude increases that makes a tautochronic epicycloidal path so

desirable for CPVA paths.
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1.3 Outline of the Thesis

In the next chapter, a mathematical model is developed to describe the

dynamics of the rotor and absorbers. The equations are first scaled to become

non-dimensional, and then linearization is used to reduce their complexity and

yield a form amenable to linear vibration analysis. The resulting linear equations

are solved for the absorber dynamics, in terms of the arc length traveled by the

absorber center of mass, and for the rotor dynamics.

The third chapter lays out how the solution to the linear equations of the

system can be manipulated using trigonometric identities, so that the maximum

transient amplitude of the absorber movement and of the rotor velocity may be

obtained relatively easily. In addition, the manner in which the solution of the

linear absorber equation decays to steady-state is considered. Finally, the

influences of certain system parameters on the transient behavior of the CPVA

are considered, in order to assist with design of absorbers.

In the fourth chapter, the method of averaging is used to obtain

approximate solutions of the full nonlinear equations of motion. The averaged

equations are solved numerically using a Matlab simulation. The results of these

simulations are compared with the results of the linear theory and against

simulations of the full nonlinear equations. Finally, the trends observed in the

previous chapter are reconsidered for this nonlinear model.

The final chapter establishes conclusions gathered through the use of the

methodologies established in the previous chapters. It is found that the linear



theory offers a reasonably good approximation for transient dynamic amplitudes,

and that the corrections offered by the averaging applied to the weakly nonlinear

model are not sufficient to warrant the more complicated analysis. In addition,

the final chapter provides a discussion of possible future areas of study which

relate to centrifugal pendulum vibration absorbers but are beyond the scope of

this thesis.



Chapter 2

Mathematical Model

To properly analyze the dynamics of the rotor and vibration absorber

system, a mathematical model must be developed based upon the physical

parameters of the system. From this model, possible solutions of the motion of

the absorber(s) and rotor may be derived and plotted, as needed for design.

2.1 Assumptions

A few assumptions are made when creating a mathematical model for the

absorbers and rotor system. First, the rotor is considered rigid, therefore it

cannot bend or deform as a result of the torques applied on it. The rotor is also

assumed to rotate about a fixed axis. Also, it is assumed that the absorbers do

not make contact with the stops that limit their motion. In addition, all damping

sources in the rotor and the absorbers are assumed to be viscous in nature.

Finally, the absorbers are taken to be identical and are modeled as point masses

moving along specified paths relative to the rotor. This latter assumption is valid

for the commonly-used bifilar suspension of these absorbers [1].



2.2 Equations of Motion

The idealized model for a system of absorbers moving along prescribed

arcs relative to the rotor is depicted in figure 2-1. The equations of motion are

presented and described below.

Absorbers a  

T=To+TgSIn[n9]

Figure 2-1: ldealized model for a rotor fitted with a system of absorbers.

For a system with N absorbers attached to the rotor, the general equation of

motion for the i‘" absorber is given by [6],



dX .
,5,- +G,é—l—92: —ca,S,-, i=1,...,N (2.1)

2dS,-

while the equation of motion for the rotor is,

Jé+2m53H'S0+X6+GS+::S]

l

(2.2)

aniéisi — C09 + TO + TgSin[n6]. l: l,..., N

The two dynamic variables in the equations of motion for this system are S;, the

arc length position variable for the ith absorber, and 6, the angular orientation of

rotor. The system parameters are defined as follows: mi is the mass of the ith

absorber, ca,- is the damping value of the ith absorber, J represents the moment of

inertia of the rotor, c0 is the damping value of the rotor, To represents the mean

torque acting on the rotor, To is the amplitude of the fluctuating torque, and n is

the engine order excitation (which is half the number of cylinders for a four-stroke

engine). The function X.- is the square of the function R,-, which is the distance

from the rotor center to the position at S,- on the absorber path; this function

characterizes the absorber path, as shown in Figure 2.1. The function 6,- also

relates to the path; it and X,- are described in more detail below. For one

tautochronic epicycloidal path absorber, X is given by,
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where h, referred to as the linear tuning order of the path [6], is

,7 = 50.172 (2.4)

.00

In equation 2.3, pg stands for the radius of curvature at the vertex for the

absorber and R0 represents the distance from the rotation center to the vertex for

the absorber. Thus, the effective length of an equivalent simple point mass

pendulum absorber is pa. The function 5 is defined in terms of X as follows,

 

6(S)=JX—1(dx )2 (2.5)



Finally, ‘% and 62—: are simply the derivatives with respect to S of the

expressions given in equations 2.3 and 2.5, respectively. Another important

function of the linear tuning order of the path and the distance from the rotation

center to the vertex for the absorber is the absorber arc length at which it hits the

cusp where the stops are. This cusp point is at,

(2.6)

Note that Equation 2.2 shows that the absorbers are not directly coupled

to each other, but only indirectly through the rotor. Also, the rotor is driven by the

absorbers through the terms in the summation. It is worth noting that the rotor

does not react specifically to any individual absorber, but only to the sum of the

effects of all absorbers.

2.3 Transformation to Non-dimensional Form

If is possible through a rescaling process and a change of variables to

alter equations 2.1 and 2.2 to put them in a non-dimensional form in which the

applied torque becomes a periodic excitation, rather than a nonlinearity. First,

the independent variables, S,- andé, are transformed to s,- and v, which both vary

dynamically with the angular orientation of rotor [6], by the scaling,

10



(2.7)

2
:

O

b
l
s
b
-

The term (2 represents the average rotor angular velocity. The independent

variable has now changed from time to the angular orientation of rotor. Also, the

parameter values are adjusted to their non-dimensional forms,

2

miROi Cai C0
8. = —_s ' = —$ = —9r J ”at min #0 JD (2 8)

r0 = —T02 , 1‘9 = —T02

J!) JR

With these new variables and parameters, the equations of motion for the

absorbers and rotor become,

I I ~ I 1 dx I -

”1' + [S'- + g,]v -§ELV = 'flaisi, l =1,...,N (2.9)

Si

N dx- d”-

Zei[—' sfv?’ +x,-vv'+ gisfvv'+ gisfvz +—g'sgzvz] +vv'

d
i=1 i Si

N
(2.10)

= Zeipaigisfvguov + F0 + FgSin[n61, i =1,...,N

i=1
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Similar to X, g, 5, and 519-, x, Egg, and flare all functions of s. The

(15 dS ds ds

values of x, Q? , g , and Editor 3 tautochronic epicycloidal path simplify to,

S S

x(s) = l- (fis)2

 

 

%:-(s)=-27izs

§(s)= \[l—(fis)2 —%(— 2r'izs)2 (2'11)

~ ~2 ~4

fig“) —n s— 3

d3 Jl_’7232_fi432

2.4 Linearized Equations

Linearization can be utilized to simplify the non-dimensional equations of

motion. The equations of motion are linearized by assuming 3 = e- p,

v =1+£-w, and v'= e - w' , wheres is considered small. The resulting equations

are as follows,

pi"+/1api'+h'2pi = -W

(2.12)

, 1 . e .. .W: 1:; [gamma—figm- warm)

1'
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Equation 2.12 introduces the parameter k, which has either the value one or two,

motivated by the MDS engine application. During MDS operation, k will switch

between values of one and two as cylinders activate and deactivate, causing the

absorber to switch in and out of resonance operation. Additionally, the

parameter 1,, is introduced which describes how the fluctuating torque changes

due to the effects of entering and existing MDS operation. By substituting for the

rotor velocity, w', it is possible to derive an equation that isolates the absorber

from the rotor dynamics, as follows for a single absorber (the multi-absorber case

goes through similarly),

Of

p"+2pa)n p'+a)n2 p = —l"Sin[ax9] (2.13)

In equation 2.13, the natural frequency is (on: (1+v)fiz, the excitation

fla (1 + 2V)
frequency is w = kn , the damping ratio is p =

2J(1+ v)ii 2

, and F is the fluctuating

torque.

l3



2.5 Solution for a Single Absorber

Equation 2.12 can be solved analytically or numerically through the use of

a Matlab simulation. The analytical solution of the equation 2.12 for the scaled

absorber response p with P0 = p(0) and V0 = p'(0) is as follows,

p=e-9Wnci21cos[a 1—p2wn]+e‘”p“’"0lusm[6 l-pzwn]+

I‘(2pros[0(0]wn + Sin[6(0sz — 0),, 2 ))

(04 + ZEPZ -1)wz€0n2 + (0,,4

 

(— I‘a)(a)2 + (2,02 —1)m,,2)+ (V0 + Popwn )(w4 + 2(2p2 —1L)2w,,2 + (0,,4»

C[1] = ( 1_p20)n (604 +2(2,02 _1)wzwn2 +5424»

— ”0.001% + PQ(w4 + 2(2102 ‘1)”wa + “514)

(o4 + 2(2p2 -l)a)2co,,2 + (0,,4

 (12} = (2.14)

Figure 2-2 shows an example of the plot of the linearized absorber motion versus

the angular orientation of the rotor using the solution stated in equation 2.13 with

the parameter values set to be those presented in table 2-1. Note that the

envelope varies relatively slowly, due to the small damping and nearly resonant

forcing.

14



 

1' system parameter values for figure 2-2
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Transient part:



Steady State part:

I‘(2pa)Cos[l9(0]a)n + 51%lele - (0,, 2 »

(04 +2(2p2 _1L,2wn2 ”0,14

 

As long as there is damping present, the transient will decay over time while the

steady state portion is constant. The transient is still very important, however,

because if the maximum transient value is too large, then the absorber will

impact stops, which will affect the absorber’s effectiveness and create noise. In

fact, it might induce steady-state impacting responses [11].

If the excitation undergoes changes, it is possible to derive how this will

affect the transients of the system. An important example for MDS applications

is that of going from one steady-state condition to another. This occurs as

cylinders activate and deactivate. The most important of these transitions is the

one in which the absorbers are initially essentially inactive, and then begin to

work when cylinders are taken off-line. For the more general case, the following

steps are taken to determine the transient response: First, consider the steady-

state response of p for the initial set of forcing parameters. This steady state will

provide the set of initial conditions for the ensuing transient response. A nice

way to view this is with p and p’ in a phase plane plot, such as shown in Figure 2-

3.

16



 

  
Figure 2-3: Phase plane of the steady-state absorber response from the linearized model; arc-length

velocity versus arc-length.

At some instant in time the forcing conditions change, and the initial condition for

equation 2.13 is simply the corresponding point on the steady-state ellipse.

Different points on the curve will yield different transient solutions since each set

of conditions on the curve represents a different phase of the applied torque at

which when the change in excitation occurs. The resulting transient takes the

response from a starting point on this ellipse and is asymptotic to the steady-

state ellipse for the new forcing conditions. Of particular interest is the peak

amplitude seen by the absorber and the peak rotor torsional vibration during this

transient. This is considered below. Also, note that in MDS engine applications,

the starting ellipse is very small, since the excitation amplitude is small and the

excitation order is about twice the resonance order. Therefore, a useful and

17



sufficiently accurate approximation can be obtained by assuming zero initial

conditions.

2.6 Solution to the Rotor Equation

Once the analytical solution to the linearized absorber equation is

developed, its first and second derivatives with respect to 9 can be substituted

into equation 2.12 to obtain an expression for the linearized rotor response.

These derivatives are,

p: cme‘gpa’n 1— p2 wnCos[l9 1- p2 can] — C[2]e“9/""n pwnCos[6 1— p2 can] —

due-99‘0" pwnSinI:t9 1— p2 (on ] — C[2]e—9pw" 1— p2 can Sin[l9 1- p2 can] +

Fa)((a)2 — 60,,2 0s[wl9]— 2pm,,Sinlafiv

(o4 + 2(2p2 -1)m2a),,2 + (0,,4

 

pu= -6—6pw. wn2(2p,/1— poll] + cm — 2p2c:[2]]c0s[o 1- p2 w" ] -

6-620er wn2C[1]sm[6 1— p2 (0,, ] + 2e'6pw"p2wn2CillSin[9 1 — p2 (0.] +

259”" mil -— p2 (0,,2C[2]Sin[l9 1— p2 can] +

- Fw4Sin[l9a)] —- 21130)" (03Cos[l9a)] + 1‘9(0,,sz Sin[0(0]

(04 + 2(2p2 — 110260,} + 0),,4

 

(2.15)

With the substitution of these derivatives and some simplification, the linearized

rotor response equation becomes,
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(I‘v przwn «gram-L a)" )(a)+ (0,, )k‘oskufi] +

(o4 + 2(2p2 —1)r02(o,,2 +wn4

F((1+ V)a)4 + (0,,4 + (02(1),, (— 24an —12 + v — 4p2 )wn ))§in[w0] +

(o4 +2(2p2 —l)wza),,2 + (0,,4

e‘pa’" 6110),,CosHp2 —1w,,6i]*

 

e‘pa’" ova)"Sin[J;2:wn6] *

K(Cilia). - p(/1a + 2pm,. )) - GEN/97:101.. + 2pm.. )) 
The rotor velocity, solved for using integration, is,

,—

FCOs[(06]

——+

(0

e'pw"9v(\/lj,o—2—wnC[1]— ,uaC[2]- pwnC[2])Cos[ 1— ,02 (on 9] +

I‘v (02 fa)" (2114p + a)" )k'oskofi] +
 

(o4 + 2(2p2 —1)m2w,,2 + 0),,4

i‘v(— prza)" + ,ua (— (02 + wnflbinkfl] _

(o4 + 2(2p2 —l)n)2a),,2 + (0,,4

[paler/(J1- pzwnC[2]+ ,uaC[1]+ pwnC[l])Sin|: 1— ,02 wnfl] _

[fla(\/EC[1]— pC[2]) + wn(2p\/EC[1]+ C[2]— 2pzclzjjj +

 

 

(2.16)

(2.17)

Figure 2-4 shows a plot of the rotor response versus 6 obtained using equation

2.17 with the parameter values set to be those listed in table 2-1. Again, note

19



that the response has a relatively slowly varying envelope that settles onto the

steady-state.

1.0015 i,

If l
1.001 ‘3][l1

9 Ml”.llllnlljlllllllllllll‘llllllllllllllllllllllllllllllHIllll'llllllllllll

ill“!HM“”'“ll'|lll'll’ll'il'Wll'll’lll‘ll"'l|‘l“'””|lll")lll’lllll"|"*°

' if
0.9985 l‘r

1(X) 2(X) 3(X) 4(X) 5(X)

Figure 2-4: Rotor velocity versus crank angle calculated using the linearized model.
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Chapter 3

Linear Analysis

Based on the solution developed in the previous chapter, a better

understanding of the transient behavior of the absorbers and the rotor can be

developed. Specifically, an expression for the envelopes of the absorber and

rotor responses can be derived and used to predict the maximum value of the

transient behavior. Using this envelope equation, it is relatively simple to study

the influence of system parameters on the maximum transient amplitudes. Also,

the analysis of the envelope equation yields important information about the

decay rate of the transient responses, and how this depends on system

parameters.

3.1 Envelope Equation

An envelope equation for the absorber motion can be derived based on

the beating phenomenon [7]. By the use of trig identities one can show that,

aSin[w16+¢l]+bSin[w26+¢2]=

a2 +b2 +2abCos[¢l —¢2 —((02 —(0, )019in[a)ll9+‘l’]

 (3.1)
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where the amplitude of the term on the right hand side of the equality in equation

3.1 represents the envelope amplitude, and the phase is not of interest here.

Typically, and in the present situation, the two frequencies are relatively close to

one another, and the response can be viewed as an oscillation with a slowly

varying amplitude and phase. The following additional trigonometric identities

are utilized to transform equation 2.14 into a form that matches the left hand side

of equation 3.1 [7]:

   

aS‘in[fl9]+ ,BCos[2'6] = ([052 + ,BZSin 2'6 + ArcTan g ] for a > 0

: I ‘ (3.2)
T

aSin[z'6]+ flCoslzfl] = \/a2 + ,62 Sin 119 + ArcTan £6— + II] for a < 0

-a’_

This identity must be used twice, once for the transient portion of p and a second

time for the steady-state portion. For the transient portion, set a(0) equal to

C[1]-e'9/""~, 3(6) equal to cure-910w", and 1 equal to 1—p2wn, which is the

damped natural frequency of the absorber. Therefore, a(6) in equation 3.1 is

 

Cm], and w. is equal to

CU]

 equal to (“cm-59W» )2 +(C[1]-..7‘9P”’~)2 , p, is ArcTan[

((1- p2 a)”. For the steady-state portion, set a equal to

1“(a)2 — 0),,2) Zl‘pqxon

(o4 + 2(2))2 —1)m2ca,,2 + (0,,“ (o4 +2(2p2 —l)r02w,,2 +wn4

 , ,8 equal to , and r 

equal to (0. Therefore, b in equation 3.1 is equal to
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  ”pm" 2 + F9? “‘22) 2 ¢2is
w4+2(2p2—1)w2w,,2+w,,4 04+2l2p2-1lwzwnz+wn4 .

2 an) .

ArcTan '0 " , and (02 IS equal to w.
w2_ "2

This resulting envelope amplitude, when plotted against 6, appears as an

exponentially decaying, oscillation, which connects the local peak values of the

absorber response. When the solution reaches steady state the envelope

amplitude becomes constant, as one would expect. Figure 3-1 is an example of

a plot of the analytical solution and the envelope equation with the parameter

ll lllllllll

values set to be those listed in table 2-1.

0 N

  
 

0
IIIIIII[W[I “I: IIIIII

-0 . 4

50 100 150 200 250 300 350

Figure 3-1: Plot of the envelope for the absorber, along with the absorber response, calculated from

the linearized model.
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This envelope equation is a useful design tool because it allows for easy

identification of the maximum value of the transient oscillations and the maximum

steady state value. The values are calculated by taking the derivative with

respect to 00f the envelope equation, setting that derivative equal to zero,

solving for 0, and plugging this value back into the envelope equation.

The same process can also be utilized on equation 2.17 to find the

envelope for the linearized rotor velocity. This allows for identification of any

problematic transient issues that could arise in the rotor as a result of the

counter-torque being supplied by the absorber during transient operation. Figure

3-2 is a plot that shows the linearized rotor velocity encased by its envelope

amplitude.
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Figure 3-2 Plot of the envelope for the rotor velocity, along with the rotor velocity, calculated using

the linearized model.
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3.2 Decay Functions

A set of functions that conveniently describes the decay of the transients

can be derived directly from the envelope equations. These functions (a(6)+b)

and (b-a(6)), where the values of a(6l) and b are the same as given in equation

(3.1) of the preceding section [7]. These functions are described as decay

functions because they both are purely decaying exponentials, that is, they have

no oscillating components. The function (a(6)+b) only contacts the amplitude

function when it is at a maximum and (b-a(6)) only contacts the amplitude

function when it is at a minimum. Figure 3-3 shows an example of how the

decay functions appear relative to the envelope and the full absorber response,

p. These decay functions lead to the insight that the decay rate of the envelope

equation and the analytical solution for p is e‘Pwn". Thus, the envelope has a time

 constant of Of course, these results are also valid for the decay of the

n

rotor transient.
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Figure 3-3: Plot of the decay functions, the absorber envelope, and the absorber response. all

calculated using the linearized model.

3.3 Influence of Parameter Values

The peak value of the envelope equation can be used to determine trends

that arise when properties such as the damping, the inertia ratio, and the order of

the path are varied. This allows for more effective design practices and saves

time and money that othenrvise would be wasted on building and testing

prototypes, or running detailed simulations.

In general, the worst case scenario for transients is to start the system

with zero Initial conditions for the absorbers. In this section we consider two such

cases, motivated by MDS engine applications. The first case is when the

excitation order is close to that of the absorber, that is, the absorber sees the

excitation for which it is tuned. The other case is when the excitation order is
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about twice that of the absorbers, that is, the absorbers are relatively inactive. In

the present study these excitation orders are taken to be w=1.5 and co=3.0.
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Figure 3-4: The effect of the absorber damping on the maximum transient absorber amplitude,

calculated using the maximum value of the absorber envelope from the linear model.

 

Table 3-1: List of system parameter values for figure 3-4

Figure 3-4 is based on using the values of table 3-1 in the envelope

equation and varying the non-dimensional damping value of the absorber, pa. It
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is seen that for 02:30 the absorber amplitude is very small and therefore the

damping has little affect on the peak transient. However, when the excitation is

w=1.5, the transient absorber response is large and there is a sizable decrease

in maximum transient absorber amplitude as the damping of the absorber
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Figure 3-5: The effect of the inertia ratio on the maximum transient absorber amplitude, calculated

using the maximum value of the absorber envelope from the linear model.

 

Table 3-2: List of system parameter values for figure 3-5
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Figure 3-5 is a plot showing the dependence of the peak absorber

transient amplitude and on the ratio of the absorber inertia to the rotor inertia

using the values of table 3-2 for the other parameters. Figure 3-5 shows a

similar decrease to that of figure 3-4 in maximum transient absorber value for the

w=1.5 case, and very little effect for the w=3.0 case.

 

0.4

 

0.35 I
 

0.3
 

 
0.25

 

I Excitation Order of 1.5

 

   

 

 

M
a
x
i
m
u
m
T
r
a
n
s
i
e
n
t
A
b
s
o
r
b
e
r
A
m
p
l
i
t
u
d
e

 

   

02 . Excitation Order of 3

. — Cusp Arc Length Value

0.15

I

0.1

I

0.05

o 2 f f . f 2

O 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Fluctuating Torque

Figure 3-6: The effect of the fluctuating torque amplitude on the maximum transient absorber

amplitude, calculated using the maximum value of the absorber envelope from the linear model.
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Table 3-3: List of system parameter values for figure 3-6
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Figure 3-6 shows the effect of the fluctuating torque on the peak transient

absorber amplitude. Since the system is linear, these results are linear, but it is

seen that the w=1.5 case is much more sensitive than the w=3.0 case, as

expected. Parameters for this plot are listed in Table 3-3.
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Figure 3-7: The effect of the absorber linear tuning on the maximum transient absorber amplitude,

calculated using the maximum value of the absorber envelope from the linear model.
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Table 3-4: List of system parameter values for figure 3-7
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Figure 3-7 shows the influence of the absorber tuning order on the peak

transient absorber amplitude. Again, for w=3.0 the effect is negligible. For

w=1.5, note that large transients are observed if the system is undertuned, but

that increasing the level of overtuning reduces the transient peak amplitude. This

is not surprising, but the result gives a quantitative measure to the expected

trend. This curve may be particularly helpful in selecting the absorber tuning

order. Figure 3-7 was developed by using the values given in Table 3-4.

3.4 Changing the Excitation

Here we consider the case of interest for activation and deactivation of

cylinders in an MDS engine. Recall that the excitation order is equal to one-half

the number active cylinders, and this switches back and forth between NTC (k=2)

and % (k=1) for a four stroke engine, where NC is the number of engine

cylinders. The absorber response appears as depicted in figure 3-8 when k

switches from a value of 1 to 2.
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Figure 3-8: Simulation of the absorber response when the excitation switched away from

resonance, calculated using the original nonlinear model.

 

Table 3-5: List of system parameter values for figure 3-8.

Note that the case k=1 is close to the absorber resonant order, whereas

k=2 is nearly twice the absorber resonant order. Figure 3-9 shows the case

where k switches from a value of 2 to 1.
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Figure 3-9: Simulation of the absorber response when the excitation is switched towards resonance,

calculated using the original nonlinear model. The other system parameters are in table 3-5.

In figure 3-9, after the transition point, there is an over-shoot while the absorber

moves to a new steady-state. This differs from the exponential decay seen after

the transition point in figure 3-8.

Figure 3-10 shows a comparison of the effects of this changing excitation

on the peak transient absorber amplitude, along with the steady state amplitudes,

for different levels of absorber damping. For the k=2 to k=1 transition, several

points are shown in the Figure, each of which represents a different starting

phase from the k=2 response, that is, from different points on the ellipse shown in

Figure 2-4.
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Figure 3-10: The influence of absorber damping on the maximum transient absorber amplitude

when the excitation is switched toward resonance, from the absorber envelope equation, using

different starting phases from the n=3 steady-state. Calculated using the values of table 3-1.

In figure 3-10, note that for the k=2 to k=1 transition, the maximum absorber

transient value varies by some amount depending on the switching phase. This

is represented by the scatter of maximum transient absorber amplitudes in this

case. The largest of these values is the case of most importance, since it is the

largest of the possible maximums. The details of this variability should be

considered in the context of the actual application, which will dictate the switching

phase.
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Chapter 4

Averaging Analysis

Averaging is a method in which solutions of a certain class of nonlinear

differential equations may be approximated. The method was developed initially

by Krylov and Bogoliubov [8].

4.1 Averaged Equations

The method of averaging is applicable to systems in the following form [8],

x=£f(x,t,£), erQSR“, OSe<<l (4.1)

where f is T-periodic in r. The associated autonomous averaged system is as

defined,

df
T e _

, =8;— If(y.t.0)dt = any) (42)
0

Note that in the present application, the time variable is actually the rotor angle,

(9. The equations are 2—” periodic in 6, and the averaging will be carried out

n
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accordingly. Before the non-dimensional equations of motion can be averaged,

some scaling must be done to put these equations into the form of equation 4.1.

First, the inertia ratio, a, is considered to be small. This makes the coupling

between the rotor and absorber relatively weak, and allows the uncoupling of the

absorber equation from that of the rotor. Also new parameters are established in

equation 4.3 [10], in order to reflect small damping and small excitation:

ya = 8/70, yo = 8%, F0 = 5120, lk 1‘9 = El} (4.3)

The first order approximations of the absorber equations are [9],

Sr +fizsi =£,f,.(sl,...,sN,si',...,s;,J ,6)+0(€2). lSiSN

where

fi(.1r,,...,s,‘,,s,',...,s'N ,6): (4.4)

~

N d . ~

—fias: +[s: +§,-]L-I:I—ZL- 25251-33. —I72§,~Sj + d? 532J_r9Si"[k"9]L

Fl 1'

 

The forcing is considered to be near resonant. A detuning parameter is

introduced to account for the differences between the excitation order and the

linear tuning order of path of the absorber, which is defined as,

~2 _ 2 2

A=£_f_n_ (4.5)
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A transformation to slowly varying amplitude and phase variables is carried out

as follows,

3 = rC0s[¢— knl9], s' = kaninlg/J- knfi] (4.6)

Using this transformation in the equation of motion, in the standard approach [9]

the resulting averaged equations for a single absorber are,

.2-{gmwgaswlaj+422)
n

and

 

a ‘fQSinl¢lF2(r) (2)

<07; .%”(3.4.2.0 1.24.2 .3)- 4)-? ”’8 ”'7’

where

1 27:

(r)=2— Sin 2[)c}\/l—(i‘i2+574L'2C032[x]dx

0

i=3;-$2214.42mam
 

In equation 4.7, the amplitude r describes the slowly varying envelope as

described in Chapter 3, and it can therefore be used to find the maximum

transient value of the absorber motion. The integrals in F1 and F2 are not
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generally available in closed form; however, a Taylor expansion allows one to

obtain series expansion solutions, as follows, out to fourth order in r,

‘23 (4.8)

Using equations 4.7 and 4.8, a numerical simulation can be created

whose purpose is to numerically solve for r and (0 and plot the slowly varying

absorber amplitude r versus the angular orientation of the rotor. The numerical

simulation was constructed in Matlab. Figure 4-1 shows a composite plot where

the non-dimensional absorber arc length solved through a simulation of the full

nonlinear equations is depicted in blue and the absorber amplitude envelope

solved by a simulation of the averaged equations is depicted in green. This for a

case when the excitation goes from resonant (n=3) to resonant (n=1.5).
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Figure 4-1: Simulation of the absorber response using the original nonlinear equations and an

envelope calculated using averaging.

 

Table 4-1: List of system parameter values for figure 4-1

Using these results and those found in chapter 3, a comparison can be

drawn as to the effectiveness of averaging and linear theory for approximating

the solution of the largest transient absorber vibration amplitude. The test of the

effectiveness of these methods is how close their results are to that of a
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numerical simulation of full nonlinear equations of motion. The plot of this

comparison is shown for different values of non-dimensional fluctuating torque in

figure 4-2. Each value of fluctuating torque is used to solve for a different steady

state solution. Maximum transient absorber amplitudes are plotted against the

ratio of each steady state solution relative to the cusp value. As shown in the

figure, averaging is slightly closer to the values from simulation of the full

nonlinear equations than the results of linear theory. Also, note that the

deviations occur only at relatively large amplitudes, that is, at large torque levels.

Additionally, the results for large steady-state amplitudes, near the cusp value,

from averaging and linear theory slightly exceed the cusp value. This is, of

course, not possible, but the data provides a useful upper bound. The plot also

shows that the two analytical methods can be considered conservative

estimates, since each value over-estimates the actual value produced by the

nonlinear simulation. The parameter values are set to those of table 4-2.
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Figure 4-2: Comparison of the maximum transient absorber arc length found using simulations of

the full nonlinear equations, linear theory, and averaging for different fluctuating torque values;

 

 

 

 

with trend-lines added for clarity.

pa 0.05

a 0.05

w 3->1.5

ii 1.55   
 

Table 4-2: List of system parameter values for figure 4-2

An alternative view of this comparison is in figure 4-3, which shows the non-

dimensional absorber arc length solved through a simulation of the linearized

equations, depicted in red, which is overlaid on top of the plot shown in figure 4-

1.
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Figure 4-3: Comparison of the envelope from averaging, the absorber response calculated using the

linearized model, and simulations of the full nonlinear equations; transition to resonance.

Calculated using the values of table 4-1

The comparison can also be depicted in a third form in the phase plane as shown

in figure 4-4. In the plot, the response based on linear theory is in red, based on

averaging is in green, and based on the full nonlinear equations in blue. The

averaging results were calculated using the transformation in equation 4.6. In

the center of the phase plane plot, there is an area of tight swirling; this is when

the absorber is settling down to a small amplitude steady-state, far from

resonance. When the plot breaks out into a much larger swirling pattern, it is

because the excitation has been changed and the absorber is being driven close
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to resonance. Note that the response overshoots and the amplitude oscillates as

it settles towards the new, large amplitude steady state.

Steady—state value when absorber

is near resonance

0.4 

   

    

  

_. Nonlinear Simulation

» Averaging

0.3 -__ Linear Theory

0.2 -

0.1-

d
s
/
d
O

C.
’

  
 

43:34 I -0.2 o 0.2 0.4

Maximum transient S

absorber response Steady-state value

when absorber is far

from resonance

Figure 4-4: Transient responses in the phase plane of the absorber response, calculated by simulating

the full nonlinear equations, the averaged equations, and from the linearized model. Calculated

using the values of table 4-1

43



4.2 Influence of Parameters

Since it has been determined that the averaging approach is an accurate

method, the effects of the damping, inertia, and order of the path of the absorber

influence transient behavior from chapter 3 may now be revisited. Figures 4-5 a

and b show that the trends that are seen using linear theory are also observed

using averaging. These figures were created using the same parameter values

as those used in chapter 3.
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Figure 4-5 a: The effect of the inertia ratio on the maximum transient absorber arc length, calculated

using the maximum value of the absorber envelope from linear theory and from averaging. Solved

for using the values in table 3-2.
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Chapter 5

Conclusions and Directions for

Future Work

The purpose of this study was to develop a better understanding of

transient vibrations for centrifugal pendulum vibration absorbers with tautochronic

epicycloidal paths, and to develop tools to predict the behavior of the absorber

and rotor during transient response. Of particular interest are the peak

amplitudes of the absorber motions and the rotor torsional vibrations, as these

must be minimized in practice. Also, the study investigated the influence of

certain parameters on these transient vibrations. This investigation was

successful in accomplishing these goals, and it demonstrated that the simple

linearized theory is quite good for predicting the transient vibrations of a CPVA

for a wide range of operating conditions. This information sets the stage for

further work on transient motions, including experimental work, more detailed

simulations studies, and testing in automotive engines.

5.1 Summary of Results

The first methodology developed in this study for predicting the transient

behavior of centrifugal pendulum vibration absorbers is to analyze the linearized
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equations of motion for the system. Their solution yields expressions for the

motion of the vibration absorber and the rotor velocity. The most important

facets of the behavior, the maximum values of the absorber amplitude and rotor

velocity, are found by utilizing trigonometric identities to develop equations that

govern the slowly-varying amplitude envelope of these responses. Additionally,

decay functions can also be derived from these results, which provide useful

information about how the transient behavior decays.

The second methodology utilizes averaging. This involves a particular

scaling of the system parameters and a transformation to absorber amplitude

and phase coordinates, so that averaging can be applied. The resulting

averaged equations, which also predict the slow-time envelope behavior, are

studied via numerical simulations, from which one can determine the largest

amplitude values.

A comparison of these two methodologies against simulations of the full

equations of motion suggests that both are useful for approximating the solution

of the nonlinear equations. In addition, the methods require much less

computing power and time than simulating the full nonlinear equations outright.

While averaging at times resulted in a better approximation to the actual solution,

linear theory is simpler and nearly quite as accurate.

The study established the influences of the absorber damping, the

absorber tuning, and the absorber inertia on the maximum transient amplitude of

the absorber. As expected, it is seen that increasing the absorber damping, the

absorber order (if overtuned), and the absorber inertia, all have the effect of

47



reducing the peak transient amplitude. The main advantage of this study is that

the results allow one to quantify such effects. Also, these parameter

relationships are not linear, and, therefore, as the parameter values get larger, a

point of diminishing returns arises. In addition, higher damping lowers the

effectiveness of the absorbers, since they eventually become just extra mass

attached to the rotor, so a trade-off must be considered when influencing the

damping. Similarly, as one overtunes the absorber, its effectiveness is

diminished. Also, there is a limit to the amount of absorber mass one can use in

a given application. So, tradeoffs must be made in the selection of these

parameters when considering transient response. In addition, of course, one

must keep in mind their effect on the steady-state performance of the absorbers.

5.2 Possible Areas of Future Study

The primary area for future study is generally in conducting experiments.

Prototypes of these absorbers have already been manufactured by the

DiamlerChrysler Corporation, one of which is depicted in figure 5-1. Figure 5-2

depicts the MSU testing setup with two of these prototypes attached to the rotor.
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Figure 5-1: Photograph of a prototype bifilar CPVA.

The prototypes are called bifilar absorbers because they have two suspension

points, via rollers that move along paths dictated by the shapes of holes

machined in the surfaces of the absorber and the support flange fixed to the

rotor. This absorber system, fitted on the MSU test rig, will be used in future

studies of the transient response. The work described in this thesis provides the

analytical background for these investigations.

The first test would be to run the rotor with an absorber attached and

measure the largest transient amplitude value of the absorber. With these

results a comparison may be made with the theoretical results produced in this

study. The next test would be to implement multiple absorbers which are nearly

identical. The reason to conduct such a test is to determine whether or not non-
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synchronous transient responses can occur. It is known that non-synchronous

steady-state responses can occur, as the result of dynamic instabilities [13], and

that the effects of production inaccuracies exaggerate these effects [12]. Such

behavior would diminish the effectiveness of the absorbers and, in a worst case

scenario, can even turn the absorbers into vibration amplifiers.

Another area that has been yet to be studied is how long term use will

affect these absorbers. If the absorber paths become worn over time, this can

influence the parameter values, which will affect the transient and steady-state

behavior, as shown in chapters 3 and 4. These absorbers have been used for

many years in aerospace applications, where rotor speeds are nearly constant,

and the issue of wear in the more transient automotive environment remains an

outstanding question.
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Figure 5-2: Photograph of the prototype tasting setup.
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