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ABSTRACT

DEFECT PROFILING IN STEAM GENERATOR TUBES USING
MULTI-FREQUENCY EDDY CURRENT INSPECTION

By

Uduebho Oseghale Olumese

Multi-frequency eddy current technique is one of the widely used Non-destructive
evaluation techniques for steam generator tube inspection in nuclear power industry. The
multi-frequency technique for depth profiling is essentially a multi-dimensional data
fusion scheme which tends to mitigate the effect of error-prone single-dimension eddy
current features due to noise and improves defect identification, classification and
characterization of the eddy current data. In this research, the performance of traditional
defect characterization algorithms are investigated alongside a novel defect depth
profiling procedure using a radial basis function neural network by employing the
following two step approach

o The length of the defect is estimated by setting an adaptive threshold on the
magnitude distribution in the region of interest engulfing potential defects.
e The inversion of the signal features in the defect region to predict a depth profile.

The vehicle for this inversion is the radial basis function neural network.

The thesis also discusses noise removal in eddy current data and their limitations when

deployed for depth profiling purposes.
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CHAPTER 1 Introduction to Nondestructive Evaluation

1.1 INTRODUCTION

Non-Destructive Testing (NDT) is defined as the structural assessment of an
object, material or system without damaging its future utility. In other words, NDT is
carried out in such a way as to preserve the specimen’s structural integrity. In a general
NDT system, an energy source is used to probe the test object with an aim to measure the
interaction of the energy with the test object using a receiving transducer [3]. The
measured signal contains information about structural flaws in the object. The signal thus
collected undergoes a series of signal processing stages that boost the signal to noise ratio
for accurate flaw detection while minimizing false alarm. Subsequently, classification

algorithms are employed for flaw characterization purposes.

| Excitation Location,shape,size
Source of defect
I 't Signal lnversion'i
Input Transducer

A

/

Structural
Mechanics

Sample with
Defects/corrosion

Model

)
; .| Signal / Image | 1
Processing

Figure 1.1 Non-Destructive Evaluation System




1.2 Typical Methods for Nondestructive Testing

The National Materials Advisory Board (NMAB) Ad Hoc Committee on

Nondestructive Evaluation adopted a system [1, 2] that classifies nondestructive methods

into six major categories: visual, penetrating radiation, magnetic-electrical, mechanical

vibration, thermal and chemical-electrochemical. A version of the taxonomy of

inspection methods is presented in Table 1.1, with additional categories included to cover

new methods [13].
Table 1.1 NDE Classification System

Basic Categories Objectives

Mechanical and optical color, cracks, dimensions, film thickness, reflectivity, strain
distribution and magnitude, surface finish, surface flaws,
through-cracks

Penetrating radiation cracks, density and chemistry variations, elemental distribution,
foreign objects, inclusions, micro-porosity, misalignment,
missing parts, segregation, service degradation, shrinkage,
thickness, voids

Electromagnetic and | alloy content, anisotropy, cavities, cold work, local strain,

electronic hardness, composition, contamination, corrosion, cracks, crack

depth, crystal structure, electrical and thermal conductivities,
flakes, heat treatment, hot tears, inclusions, ion concentrations,
laps, lattice strain, layer thickness, moisture content,
polarization, seams, segregation, shrinkage, state of cure, tensile
strength, thickness, disbands

Sonic and ultrasonic

crack initiation and propagation, cracks, voids, damping factor,
degree of cure, degree of impregnation, degree of sintering,
delaminations, density, dimensions, elastic moduli, grain size,
inclusions, mechanical degradation, misalignment, porosity,
radiation degradation, structure of composites, surface stress,
tensile, shear and compressive strength, disbonds, wear

Thermal and infrared bonding, composition, emissivity, heat contours, plating
thickness, porosity, reflectivity, stress, thermal conductivity,
thickness, voids

Chemical and analytical alloy identification, composition, cracks, elemental analysis and

distribution, grain size, inclusions, macrostructure, porosity,
segregation, surface anomalies




Table 1.1 continued

Auxiliary Categories Objectives

Image generation dimensional  variations, dynamic performance, anomaly
characterization and definition, anomaly distribution, anomaly
propagation, magnetic field configurations

Signal image analysis data selection, processing and display, anomaly mapping,
correlation and identification, image enhancement, separation of
multiple variables, signature analysis

The first six categories involve basic physical processes that require transfer of
energy to the object being tested. The auxillary category includes processes that provide
for transfer and accumulation of information, and evaluation of the raw signals and
images common to nondestructive testing methods. Commonly used methods include
ultrasonic, magnetic flux leakage, radiographic, penetrant and eddy current techniques. A

brief introduction to some of these methods follows.

1.2.1 Ultrasonic NDT

Based on the principle that solid materials are good conductors of sound waves
and that waves are reflected by interfaces or internal material dislocations, beams of high-
frequency sound waves are introduced into the test object for detection of subsurface
flaws in the material. The transducer used in ultrasonic NDE is usually a piezoelectric
element excited by an extremely short electrical discharge, to generate an ultrasonic
pulse. Conversely, an electrical signal is generated when it receives an ultrasonic signal.
In general, the probe is coupled to the test material via air, gel or water to minimize
signal attenuation and back scattering at the probe-material interface. As sound energy
propagates through the material, a fraction of the energy is reflected back when

discontinuities are encountered in the wave path. These reflected waves due to




discontinuities in the object are used for detection of the flaw. The reflected beam is

subsequently analyzed to define the presence and location of flaws or discontinuities.

The most commonly used ultrasonic testing technique is in the pulse-echo mode,
wherein sound is introduced into a test object and reflections (echoes) are returned to a

receiver from internal imperfections or from the part's geometrical surfaces.

The merits of ultrasonic inspection include sensitivity to both surface and
subsurface discontinuities, superior depth of penetration when compared to other
methods, higher accuracy in determining the position, size, and shape of defect and
minimal test object preparation. However, ultrasonic inspection also has its drawbacks.
Defects oriented parallel to the sound beam may be undetected. Accessibility of the
surface for inspection is also an issue. Finally, the skills and training required for
ultrasonic inspection is more extensive compared to other methods. Applications include
inspections for voids, cracks, and laminations, inspections of welds and thickness

measurements [3].

1.2.2 Radiographic NDE

This technique involves the use of penetrating gamma or X-radiation to examine
parts and products for imperfections. An X-ray machine or radioactive isotope is used as
a source of radiation. Energy from the source propagates through a test specimen and the
radiation is directed through a part and onto film in order to project an image on the

receiver (X-ray film) or recording plane on the opposite side. Significant differences in



the received signal intensity can be interpreted in terms of defects and anomalies in the
test object. Any imperfection in the test object is indicated as density changes in the film
in the same manner as how medical X-ray shows fractured bones [3]. All abnormalities in
the test object are viewed on the recording plane as light or dark spots compared to the

rest of the material depending on the properties of the material and anomaly.

Radiographic applications fall into two distinct categories, namely, evaluation of
material properties and evaluation of manufacturing and assembly properties. Material
property evaluation includes the determination of composition, density, uniformity, and
cell or particle size. Manufacturing and assembly property evaluation is normally
concerned with dimensions, flaws (voids, inclusions, and cracks), bond integrity (welds,

brazes, etc.), and verification of proper assembly of component pieces.

1.2.3 Electromagnetic NDT

In electromagnetic NDT methods, the energy source is electric and magnetic
fields. Some of the popular electromagnetic methods are potential drop, magneto-static
leakage field, and eddy current methods. The magnetic leakage field technique uses direct
current as the excitation source, while the eddy current method uses an alternating
current. In this thesis work, the particular area of interest in electromagnetic NDT
techniques is the eddy current testing method. The eddy current induced in the test
specimen are affected by the variation of one or more properties such as magnetic

permeability, electric permittivity or electric conductivity of the test specimen.



Consequently the measured signal carries information about the shape, size and location
of defects in conducting materials.

1.3 Eddy Current Inspections of Heat Exch Tubes in Nuclear Power Plants

Eddy current testing methods are widely used for inspecting heat — exchange
tubes in steam generators in nuclear power plants. Figure 1.1 shows the typical layout of
the heat transfer system in nuclear power plants. Nuclear fission in the reactor generates
heat energy which is conveyed via the primary coolant circulating within the nuclear
vessel. The primary coolant dissipates the heat energy into a water-steam mixture as it is
circulated through a set of tubes in the steam generator. The high-pressure vapor is forced
through the secondary loop and is used to drive the steam turbines. While in primary

loop, the coolant is radioactive, the coolant in the dary loop is not radioactive. It is

critical to keep the radioactive coolant from contaminating the non-radioactive coolant

water [5]. Frequent inspection of the steam tubes is thereft datory in
order to keep the whole system free from radioactive leakage.

Secondary Loop

Pressurizer

Circulating
Pump

Primary Loop

Figure 1.2 Heat transfer system in nuclear power plants [5]



During the tube inspection, an eddy current probe is inserted at one end of the heat
exchange tube after which it translates at constant velocity towards the other tube end. As
the eddy current probe describes a raster scan within the tube, its impedance is measured
as a function of time (or location in the tube). The data obtained in the inspection process
must be calibrated and compensated for the variation in probe characteristics and
instrument configuration settings. The signal is then analyzed and interpreted in terms of
location, shape and size of defect in tube wall. This thesis describes the development and

evaluation of procedures for profiling defects in the steam generator tube wall.

1.2 Scope of Thesis

This thesis addresses the problem of defect characterization using neural network
interpolation techniques. The radial basis function neural network is the framework in
which features from eddy current data are analyzed for defect characterization purposes.
A radial basis function (RBF) is a real-valued function whose value depends only on the
distance from its center, referred to as the basis center. These functions are used in
function approximation, time series prediction, and control. A weighted combination of
radial basis functions can be used to interpolate any continuous function with arbitrary
accuracy on a compact interval. In this thesis they are used for approximating the depth
profile of a defect.

This thesis is organized as follows:

e Chapter 2 introduces the principles of eddy current testing techniques and gives a

brief description of the theory of the eddy current method. This chapter also

includes the description of the measurement system used to inspect the steam



generator tubes in nuclear power plants. In addition, a description of data analysis
system including data preprocessing and signal enhancement is included.

Chapter 3 gives an overview of conventional defect profiling methods. The merits
and demerits of these techniques are discussed in this chapter. The radial basis
function theory is described alongside the implementation of the concept for the
purpose of defect profiling.

Chapter 4 describes the neural network and the radial basis function neural
network in particular. The method of implementation of the radial basis function
neural network for steam generator tube depth profiling is explained.

Chapter 5 first provides a description, comparison and conclusion of the
experimental results obtained using conventional defect profiling methods and the
radial basis function interpolation approach. The effect of noise and eddy current

data filtering on the defect profiling method is also demonstrated.



CHAPTER 2

2.1 Principles of Eddy Current Testing and Its Application in Steam Generator
Tube Inspection [14]

The basic principle underlying eddy current inspection methods can be illustrated
with a simple arrangement shown in Figure 2.1. When a coil carrying an alternating
current is brought in close proximity to an electrically conducting, non-ferromagnetic test
specimen, an alternating magnetic field is established. This field causes currents to be
induced in the conducting test specimen in accordance with Faraday’s law of
electromagnetic induction. The induced currents are called eddy currents since they
follow closed circulatory patterns that are similar to eddies found in water bodies. The
alternating eddy current, in turn, establishes a field whose direction is opposite to that of
the original or primary field. Consequently, the net flux linkages associated with the coil
decreases. Since the inductance of a coil is defined as the number of flux linkages per
ampere, the effective inductance of the coil decreases relative to its value if it were to be
suspended in air. The presence of eddy currents in the test specimen also results in a
resistive power loss. The effect of this power loss manifests itself as a small increase in
the effective resistance of the coil. An exaggerated view of the changes in the terminal
characteristics of the coil is shown in Figure 2.2 where the variation in resistance and
inductance is plotted in the impedance plane. When a flaw whose conductivity differs
from that of the host specimen is present, the current distribution is altered.
Consequently, the impedance of the coil changes relative to its value obtained with an

unflawed specimen, as shown in Figure 2.2. Systems that are capable of monitoring the



changes in impedance can, therefore, be used to detect flaws in a specimen that is

scanned by a coil.

Conducting
Material

Figure 2.1 Principles of Eddy Current Testing [3]

X A. Coil in the air.

B. Coil over a nonferromagnetic specimen
with a flaw or defect.

C. Coil over a nonferromagnetic specimen
without a flaw or defect.

R

Figure 2.2 Impedance plane trajectory of a coil over a non-ferromagnetic specimen [3]



2.2 Eddy Current Transducers

Eddy current transducers may be categorized according to coil configuration into
absolute and differential eddy current transducers [5]. Absolute eddy current transducers,
usually consisting of a single coil, directly measures the absolute coil impedance rather
than its differential value and can detect both gradual and sharp changes. However a
disadvantage in using absolute transducers is that small changes of the impedance due to
a flaw are often superimposed on the large value [5]. The obvious limitation of this form
of inspection is that no difference in cross-section occurs if a defect is continuous for the
whole length of the material [7].

Furthermore, lift — off and probe wobble can mask the small changes of coil
impedance due to defects thereby making signal analysis difficult.
In contrast, differential eddy current transducers consist of a pair of coils with a
configuration such that the net value of the impedance is the vector difference of the
individual coil impedances. Undesirable effects due to lift — off and probe wobble is
eliminated because they generally have the same impact on both coils [5]. In general,
differential eddy current transducers more sensitive to impedance change than absolute

eddy current transducers.
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Figure 2.3 Differential and absolute outputs [7]

2.3 Multi-frequency Eddy Current Signals
2.3.1 Skin Effect

The skin effect is the tendency of an alternating electric current (AC) to distribute
itself within a conductor so that the current density near the surface of the conductor is
greater than that at its core. That is, the electric current tends to flow at the "skin" of the
conductor. The skin effect causes the effective resistance of the conductor to increase
with the frequency of the current [14].

Mathematically, the current density J in an infinitely thick plane conductor

decreases exponentially with depth J from the surface, as follows:
J= .]s e"s/d

where d is a constant called the skin depth. This is defined as the depth below the surface
of the conductor at which the current density decays to 1/e (about 0.37) of the current

density at the surface (Js). It can be calculated as follows:

12



where

p = resistivity of conductor

o = angular frequency of current = 2t x frequency

p = absolute magnetic permeability of conductor and is equivalent to the product
of o and p,, where p is the permeability of free space and p, is the relative
permeabilty of the conductor.

Due to skin effect in test specimen, single frequency eddy current testing does not
provide an exhaustive evaluation of steam generator tubes at all tube depths. However,
multi-frequency eddy current testing circumvents this limitation by providing extra
characteristic information at various portions of the tube depth. This is because lower
frequencies have larger skin depths and hence detect strong indications of support
structures that are located outside of the tube such as support plates. On the other hand,
higher frequencies have shallower skin depths and detect strong indications of flaws
located closer to the surface. Multi-frequency eddy current testing involves measuring
coil impedance simultaneously using several excitation frequencies in one probe pull [6].
The availability of multi-frequency data also allows for the suppression of undesired

discontinuities and enhances flaw classification and characterization results.

2.3.2 Eddy Current Testing Probes
Three types of multi-frequency probes are used in practice namely the bobbin coil

probe, rotating probe coil and array probe. The bobbin coil probe consists of two

13



nominally identical coils connected in a differential mode and excited at multiple
frequencies. Due to the relatively low resolution in raster scan, the bobbin coil probe is
mainly used for the initial detection of possible degradation to quickly determine those
areas of the tube requiring additional inspection with other types of probe that have

improved ability to size and characterize degradation, such as rotating probes [6].

The array probe is a relatively newer probe type and is designed to provide higher
resolution coverage of the tube with inspection speeds approaching that of bobbin coil
inspection. However, the resolution of the probe, especially along the circumferential

direction, is poor [6].

From a resolution measurement perspective, the rotating probe coil (RPC) is the
most superior eddy current probe. The eddy current data used for the implementation of
the depth profiling methods described in subsequent chapters were obtained using the
rotating probe coil. This is large due to the relatively high resolution offered by the
system. Figure 2.5 shows a probe consisting of a low frequency pancake coil, plus-point
coil and high-frequency pancake coil rotating and translating inside a tube. Typical
signals generated by a multi-frequency-rotating probe testing system are shown in Figure
2.6 where the trigger signal marks the probe circumferential position and is used to
transform the one-dimensional signal to form a two-dimensional image. The low
frequency channel is usually designed to locate external structures such as tube support

plates (TSP) and tube sheets (TS).
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Figure 2.5 Typical trigger channel signal alongside signals from pancake and plus point
coils. [6]

The next chapter introduces the eddy current signal pre-preprocessing stage and the

sequence of step taken to identify regions of interest. Conventional depth profiling

methods is also explained.



CHAPTER 3 Eddy Current Probe Data Analysis

3.1 Introduction

Several issues in the eddy current inspection system pose difficulty in the
characterization of flaws. These include poor resolution of the probe raster scan relative
to the physical dimensions of the flaw, the variation of probe axial velocity about the
nominal value and the quantization errors introduced when the analog eddy current signal
is sampled and digitized. Furthermore, additive noise generated due to corrosion deposits,
shot and thermal noise introduce errors in signal measurement. These factors act in

combination to make flaw characterization a challenging task for the signal analyst.

In order to extract meaningful information from the raw eddy current data, various
techniques and data manipulating operations are employed which include - in sequential
order - signal preprocessing, flaw signal detection, classification and characterization.
Figure 3.1 shows a schematic of the approach for eddy current data analysis for steam

generator tube evaluation

. 3.1. 1 Signal Preprocessing

This stage of the data analysis includes signal processing algorithms that perform signal
synchronization and calibration. The rotating probe coil system comprises three different
probe types, namely pancake, axial and circumferential plus point coil probes. Signals
from each of these coils can be resolved into a vertical and horizontal channel. The axial

and circumferential plus point coils are sensitive to axial and circumferential flaws,
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respectively, whereas pancake coils are sensitive to both types of flaws. Each of these
coils is excited at multiple frequencies (typically 300 kHz, 200 kHz and 100 kHz) giving
rise to about 28 — 32 channels altogether in the rotating probe coil system although some
channels are redundant during the data acquisition process. The responses due to changes

in coil impedance are sampled and saved in digital format for subsequent analysis.

An alternative configuration for the rotating probe uses two pancake and one plus-
point coil probes. The plus point coil consists of two coils that are oriented orthogonal to
each other [6]. The probe configurations, along with the excitation frequencies, are given
in Table 3.1. Type A and B also possess axial encoder and trigger channels. Since each
frequency component can be resolved into horizontal and vertical channels, there are 10 x
2 =20 channels and 9 x 2 = 18 channels for type A and B respectively. In addition, two
axial encoder channels and two trigger channels bring the effective number of active

channels for type A and B to 24 and 22 channels respectively.

Table 3.1 Rotating probe confi ions and inspection freq ies [6]
Probe Axial ‘ Circumferential | Pancake HF Pancake(0.080” Plus
types (kHz) (0.115” diameter) diameter) Point
Type A | Excitation | 400,300,200 | 400,300,200 | 400,300, 200,
Frequencil 20
Type B (kHz) 300, 200, 100, 600,300 300,
10 200,
100
** Type A and B possess trigger and axial encoder ch 1s which are not included in
table.
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Figure 3.1 Schematic of Eddy Current Data Analysis

3.1.1.1 Synchronization

During tube inspection, the angular velocity of the RPC deviates minimally from
its nominal value which, in turn, varies the number of samples per pitch as the probe
translates along the length of the tube along a spiral path. In order to provide accurate
synchronization points for each probe rotation, a trigger signal is generated
simultaneously during probe operation. The trigger signal consists of four local
synchronization pulses generated at 72°, 144°, 216° and 288° and a main synchronization
pulse which occurs at 360° as shown in Figure 3.2. Figure 3.3 shows the wrapping of a

one-dimensional eddy current signal into a two-dimensional representation.
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3.1.1.2 Calibration

For proper signal classification, it is imperative to determine properties such as
voltage or phase of the test specimen signal, by measurement or comparison with signals
from standard or reference specimen for which such signal properties are known. The
reference specimen must possess similar metallurgical properties and physical
dimensions as the material being inspected. Notches of known depths are introduced into
the reference specimen in order to set a standard voltage and phase (by scaling and
rotation respectively) for the reference notch signal, and in turn, the test specimen signal.
This is essential in order that actual defects may be properly classified relative to the

reference defects.

Proper classification and characterization of tube degradations is significantly dependent,
among others, on signal phase. Phase lag of EC signals provides a reasonable estimate of
the flaw depth and by setting a suitable phase interval in which the phase lag of
characteristic flaw signals are contained, noise-discrimination algorithms may be used to
reduce or eliminate false calls from pseudo-flaw sources such as support-plates and

corrosive deposits.
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Figure 3.4 Impedance plane representation showing phase characteristics of 100% TW
and 80% TW notch depth [6]

q

Figure 3.4 shows the imp

plane rep ion of a signal from a tube
support plate, a 100% through wall (TW) flaw and an 80% inner diameter flaw [6]. The
three signals have distinctive phase characteristics and this discriminating property can be
used to determine the signal class and estimate depth of a flaw. In order to correct for
possible phase offset due to differing probe responses and instrumentation setup, a phase
calibration process is applied in industrial practice. As standard practice in industry, the
phase corresponding to the 100% TW notch signal from the calibrating tube is rotated by
a calibration phase factor P so that the resultant phase is 35° measured anti-clockwise
from the negative x-axis. All test data from this calibration group undergoes the same
extent of phase rotation given by P. This process is done independently for each

frequency channel and coil type data.

21



In voltage scaling, the magnitude of the signal corresponding to a through-wall
hole is first scaled to a fixed value giving a magnitude calibration factor M. The
magnitude calibration factors, one for each frequency, are obtained by normalizing the
maximum magnitude of the data from a 100% through-wall defect to a fixed value
(usually 20 volts). The raw test data is then scaled by this same factor M, channel-by-
channel. These magnitude scaling factors are computed for each coil at its primary
frequency, typically the highest frequency (300 kHz) of coil excitation — and applied to
the corresponding data in each channel [6]. In other words, the magnitude scaling factor
obtained by calibrating the 300 kHz channel data (axial, circumferential and pancake) is

applied to the 200 kHz and 100 kHz frequency channels.

3.1.1.3 Tube Support Segmentation

Since flaws are more likely to develop in the vicinity of support plates and other
support structures, a low frequency measurement is first used to identify the location of
such regions. Figure 3.5 shows a typical image obtained after segmentation. In practical
eddy current testing, low frequency signals (usually at 10 kHz or 20 kHz) are used to
locate external support structures such as tube support plates (TSP) or top of tube sheet
signals (TTS). The data from the tube is then segmented into smaller regions around each
support structure, which are analyzed separately with defect positions reported relative to

these support structures.

As shown in Figure 3.5, an edge enhancement operation using a Sobel edge detector is

employed to identify the edges of the TSP. The source image is represented by f (x, y)

where (x, y) denote the pixel locations of the image. The Sobel edge magnitude image
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[Vf(x, ) is given by

Vf ()| = \] (@T +( %JZ

= (res)+(rer) o)

where s is the vertical edge detection filter, and ¢ is a horizontal edge detection filter

given below:

s = 2 1@y 2 t= xy)

(3-2)

The magnitude of Vf (x, y) is then compared with a threshold T to determine

candidate boundary points. Assuming x = 1,..., Mand y =1, ..., N; where M and N
represent the number of columns and rows respectively in the two dimensional

representation of the eddy current signal, then the threshold T is set at [23]

T=yB +0?) e

where [ is a constant, x4 is the mean, and o is the variance of the image defined by

] & M N 2
y=M—NZZf(x,y),a=ﬁ‘/22(f(x,y)—ﬂ) »

x=1 y=1 x=1 y=1
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Figure 3.5 TSP Segmentation: (a) Low Frequency Signal, (b) Binary Image after Sobel
edge detection, (c) Segmented Signal

The location of the TSP is then marked as the segment start point. Since the width of the
TSP is fixed, it is also used as an axial scale standard to convert distance measures in

image pixels to true distance (inches or millimeters).

3.1.1.4 Tube Support Suppression

Once support regions have been identified, signals from these structures need to
be suppressed to enhance flaw signals (see figure 3.6). This suppression consists of two
steps. The first step removes signals from structural discontinuities, such as tube support
plates or tube sheets, by removing the median value in each circumferential revolution.
Here, the median value is treated as the defect-free reference signal. The second step is to

remove low frequency noise. The median value along the axial direction is subtracted to
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accomplish this objective. Let s, be the signal from the i element along the column
(circumference) or row (axial) directions and let N represent the total number of columns

and rows in the image. If m, is the median of the signal from the i column or row, then

the d signal is exp as

i=12,-,N. (3-5)
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Figure 3.6 TSP Suppression: (a) vertical component of raw eddy current data at 300 kHz
(b) data after TSP suppression
3.2 Band-Pass Filtering, Adaptive Thresholding and ROI Detection
Band-pass filtering is used to remove undesired artifacts and noise signal
indications in the eddy current data. First, consider a low-pass filter that attenuates high

frequency components of the signal that exists beyond a specified frequency denoted by
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distance Do from the origin of the centered transform. This two-dimensional ideal low-

pass filter has the transfer function

j 1 D(u,v)< Do
lO D(u,v) > Do

S(u,v)=

oac~=—035»
o o o o
N s O o

=]

0

Frequency

(u axis) 1 Frequency

(v axis)

Figure 3.7a Ideal Band Pass Filter

where D, is a specified non-negative quantity and D(u,v) is the distance from point (u,v)
to the origin in the frequency domain . Assuming the synchronized two-dimensional eddy
current data is of size M x N, then the centered transform which is also of the same
dimension has its origin at (u,v) = (M/2,N/2). As a result, the distance from any point

(u,v) to the center (origin) of the Fourier transform is defined as [31]
D(u,v)=[(u-M/2)* +(v-N/2)*1"? ... (3.72)

A band-pass filter removes or attenuates a band of frequencies about the origin of the

Fourier transform. An ideal band-pass filter is given by the expression
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0, D(u,v) < (Do - %)
S(u,v) =11, (Do-%) < D(u,v) < (Do + %)

0, D(u,v)>(Do+%)

where W is the width of the pass-band and D, is its radial center [31]. Figure 3.7a shows
a surface plot of an ideal band pass filter and figure 3.7b shows the performance of band

pass filtering on the raw data.
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Figure 3.7b Band pass filtering in the two-dimensional frequency domain. (a) vertical
component of raw eddy current data at 300 kHz (b) data after band-pass filtering
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Following filtering, a region detection algorithm is used to identify potential
locations of flaw signal indications, called the Regions of Interest (ROI). The ROI is
obtained using adaptive thresholding. Eddy current data collected from different locations
in the tube possess different signal characteristics and hence thresholding schemes have
to be adaptive based on the quality of data at hand. One method involves setting an
absolute threshold for magnitude and an interval threshold for phase values. In magnitude
thresholding procedure, signals whose magnitude is less than the threshold level are
treated as noise and set to zero. In phase thresholding or phase gating, signals with phase
angles outside a specified interval (flaw plane) are eliminated. In an alternate ROI
detection procedure an adaptive thresholding scheme is used to optimally vary the
threshold value for different regions in the tube. This scheme computes the histogram of

voltage values in a local segment of image. The threshold is then computed as:
t = p+ K[max(V, ) - min(V, )] (3.8)
where, u = Median of the voltage values in a local (segmented) region of the image

V. = Set of voltage values that lie in three bins around the median value in the

voltage histogram of the local (segmented) region of the image

K = Constant, chosen based on the magnitude of the 20% axial ID defect in the

corresponding calibration file

t = Threshold chosen for the local region

A single threshold computed using mean p and standard deviation ¢ of the data

collected from more than one tube region often yields sub-optimal performance during
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flaw detection. The variant of the adaptive thresholding scheme computes individual
thresholds for data from different tube sections based on their local statistics. The ROI

detection scheme can be represented mathematically as follows:

_[fam 1% 127,

r

noise, | x; | <7, 69

where T, =T]. per centile (X r) is threshold for sample X% in 1™ tube region
and 7 is a scalar ranging from 0 to 100. The binary images obtained by thresholding the
filtered data is fused by performing a logical intersection of the binary images across
frequencies channels. Such data fusion results in high detection rates along with low false
call rates. Figure 3.8 and 3.9 shows the performance of band pass filtering on sample

data, and ROI detection using adaptive thresholding.

)
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Figure 3.8 TTS suppression using band pass tiltering for a tube containing a
circumferential defect along the edge of the TTS (a) Original +Pt Circumferential 300
kHz (b) Filtered +Pt Circumferential300 kHz
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3.3 Classification

After the regions of interest (ROIs) are identified, a classification algorithm is
applied to classify each ROI into one of several classes. Figure 3.10a shows the image of
vertical component of the thresholded eddy current RPC data with potential defect
indications identified after filtering. Each of these indications is processed individually by

the classification routines.

The classification module consists of two steps, namely, feature extraction and
classification. A feature extraction algorithm is used to extract features from the
preprocessed data in the ROI. Features such as maximum magnitude in the ROI and its
corresponding phase value are samples of features. The extracted features are subjected
to a classification algorithm or rules for discriminating between actual defects and noise.
The rule base contains a set of heuristically obtained rules that are that are formed by
using predicate logic [6], and are applied sequentially to eliminate false calls, and retain
true flaw indications. For example, let the maximum magnitude (vertical 300 kHz axial
channel) in a region of interest be denoted as M. Furthermore, let the corresponding
phase values across 300 kHz, 200 kHz and 100 kHz axial channel be denoted as Ps, P,

and P, respectively. Then the following rules apply for calibrated flaw data:

1. Outer diameter (OD) axial flaw:
e P3>35 P,>35,P;>35 (defines flaw plane for OD defects)
e P3<180, P; <180, Py <180 (defines flaw plane for OD defects)

e P3;> P, > P, (defines order in flaw plane)
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2. Inner diameter (ID) axial flaw:
e P30, P, >0, Py >0 (defines flaw plane for ID defects)
e P3 <35 Py<35 Py <35 (defines flaw plane for ID defects)
e P3>P; > P, (defines order in flaw plane)
3. Maximum magnitude in RO, m > M
Figure 3.10b shows an illustration of ROI classification using the rule bases. M is
typically obtained by identifying a conservative lower bound above which the

magnitudes of flaw signal indications in the training data are greater.

Calbrated Data Binary Image after thresholding Classified ROI's
200 f 7 200 200
400 Noise 400 400
600 600
800 800
1000 1000

Axial flaw
1200 indications 1200
140 NN 1400

=

1600 1600 Y
1800 1800

20 40 e 8 n an A A e @ 60 LY

Figure 3.10b ROI classification for axial flaw indications and noise using rule-bases.
The magenta and black rectangles in (c) correspond to classified axial flaws and noise
respectively

3.4 Defect Characterization

Defect characterization is the estimation of the depth profile of the detected defect

ROIs. Several factors contribute to distortion of the measured eddy current signal. One

example is the limitation of the resolution of inspection system relative to the flaw length.

In other words, the resolution of the horizontal eddy current scans in a two-dimensional
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ROI must be significantly larger than the length of the crack in order to obtain a depth
profile at each horizontal slice. Another factor is that the probe speed changes during the
inspection process which introduces errors in the collected data. Additive noise generated
during the scan due to the presence of contaminants and surface roughness can also
introduce noise. Furthermore, when an analog signal is sampled to generate a digital
signal, quantization errors are introduced. This can lead to additional distortion of the
signal. All these issues make defect characterization in steam generator tubes a very
challenging task. The different contemporary characterization algorithms implemented

for defect profiling are explained in this section [24].

3.4.1 Calibration Curve

In current industry practice, simple characterization schemes are used to estimate
the flaw length and depth profile for each flaw indication in the processed signal. One of
the most widely used approaches for sizing defects is the calibration method. In this
procedure, a calibration curve relating flaw depth to corresponding signal phase (or
magnitude) is obtained from the calibration specimen of similar metallographic properties
and physical dimension as the test specimen. For a given defect signal, its equivalent
depth is predicted using simple interpolation methods. For example, we assume that the
calibration curve f is piece-wise linear between each of the known mapping points. The
phase and magnitude computed from flaws in the calibration standard tube are used to
construct the function f Figure 3.11 and 3.12 shows typical phase and magnitude

calibration curves respectively.
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During inspection, for a given defect signal, the relationship used to predict the defect

depth when the signal phase is b is given by [3.10]:
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Figure 3.11(a) Phase calibration curves
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Figure 3.12 (b) Magnitude calibration curves

The defects impressed on the calibrating specimen are man-made and have
dimension that are untypical of cracks due to corrosion or inter granular attack that occur
naturally in the tube during the normal operation of the steam generator. Artificial flaws
created for the purpose of calibration usually give a higher signal response as compared
to naturally occurring cracks having the same maximum depth. This is because naturally
occurring cracks are thinner and finer in width than calibrating notches. As a result, the
thinner a 100% TW crack as compared to the 100% TW calibration notch, the more it
falls short of the 20V magnitude and 35° phase standards after calibration. It is therefore
common to see 100% TW cracks with a phase between 50° - 66° and magnitudes of
about 4V. For this reason, the calibration method is inherently flawed and cannot

accurately characterize flaws.
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3.4.2 Enhanced Calibration Curve

An alternative approach which may yield better characterization results is to fit a
curve to the data of magnitude and corresponding maximum depth values obtained from
training flaws. The magnitude and maximum depth coordinates are plotted and the curve
is fitted in a least square sense to the scatter plot. This curve can be represented by the

general expression:

log, (flaw,,,,) = ay + a,log, (flaw,,,gminae) @11

The coefficients a and a, are empirically determined from the available data set. Figure
3.13 shows a magnitude calibration curve constructed using the logarithmic mapping.

The resultant curve again serves as the calibration curve.
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Fig 3.13 Magnitude calibration curve using equation (5)

36



3.4.3 Model Based Profiling

Another approach for defect profiling is the use of numerical models [33] in an
iterative framework. An application of this method lies in the use of a computational
model, such as the finite element model [34]. The underlying idea of this approach is
illustrated in the schematic diagram shown in figure 3.14. It starts with an initial estimate
of the defect profile parameters and solves the corresponding forward problem to
determine the corresponding signal. The error between the estimated and measured
signals, F, is minimized by updating the defect profile iteratively. However, this method

tends to be computationally expensive as it requires execution of a 3D FE model in each

iteration to achieve the desired profile. Experimental
Input Setup
Initial Defect
Profile Forward Model
Yes
Forward Model
No
Update Defect Desired Defect
~ Profile ¢ Profile

Figure 3.14 Iterative inversion method for solving inverse problems

This thesis aims to investigate a more sophisticated approach for flaw
characterization which employs the use of a trained radial basis function for mapping
magnitude and phase values utilizing data at all available frequency obtained from the
plus-point coil onto an estimated depth value. Mathematically, this approach provides a
nonlinear mapping from an input vector (signal feature) space on to an output vector

(defect depth profile) space. The next chapter introduces the underlying concepts of the
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radial basis function neural network (RBFNN). A proposed flaw length estimation

technique is also explained.

CHAPTER 4 Artificial Neural Networks

4.1 A Little Biology

The human brain consists of a specialized network of billions of highly
interconnected cells called neurons (see figure 4.1). Each cell receives electrical signals
from as many as 10,000 other cells and transmits or inhibits an output signal based upon
the input signal pattern [10]. Although modern science may not have an exhaustive
knowledge about the mechanism and functionality of the human brain, it is possible to

mimic some of its abilities such as learning, pattern recognition and generalization.

The biological neuron consists of four main parts: the body, the incoming channels,
the outgoing channel(s), and the connection points between neurons, which are called
synapses. In other words, the synapses are the gateway for neuron-to-neuron signal
transmission. A neuron receives many signals from other neurons at the synapses in
which some processing occurs before the signals are sent down the incoming channel to
the neuron body. This signal processing is basically achieved by weighing each incoming
signal with the result that each of these signals has a different excitation effect on the
neuron. As such, the synapse is traditionally an amplifier or attenuator of input signals,
which in turn have a stronger or weaker effect on the receiving neuron. A highly excited

neuron sends out an output signal while an inhibited one does not (see figure 4.2).
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Figure 4.2 Synaptic connections with a neuron [17]

The primary function of the neuron body is to combine all the incoming signals and
determine if the total is enough to send out a signal. In other words, a comparison with an
activation threshold is the decisive criterion for transmitting or inhibiting an output
signal. Learning occurs in the brain in the form of changes to the synaptic weights [10].
There are a few theories which have been developed to explain how the learning process

works. The general opinion is that synapses change over time as signals are received, and
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this constitutes learning. Knowledge is captured in bits and pieces by the weights
synapses attach to the incoming signals. As a result, knowledge is spread out across many

neural connections.

4.2 Artificial Neural Network

An artificial neural network (ANN) is a densely interconnected group of
computational nodes or neurons that uses a mathematical model for processing
information. ANN is a massively parallel, distributed processor with the capability to
store and retrieve experiential knowledge [8]. The characteristics of the network are
determined by the nature of the processing elements, and strengths of the
interconnections, known as synaptic weights, which are used to store the knowledge. The
network acquires knowledge by a learning process, which modifies the synaptic weights
in an orderly fashion to achieve a desired objective. The basic neuron model is the single
layer perceptron which accepts an n-dimensional vector and performs a weighted sum,
adds a bias and passes the result through a nonlinear function to yield an output. The
primary use of a perceptron is in pattern classification. Patterns are distinct features that
are derived from signals of different classes. The single layer perceptron can discriminate
between two classes by separating them with a linear decision boundary in the feature
space. The perceptron model cannot generate nonlinear decision boundaries and as a
result cannot be used in most real world pattern recognition problems, wherein classes are
not linearly separable [8]. A multilayer perceptron network overcomes this limitation

and can generate highly nonlinear decision boundaries for classification problems.
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4.3 Neurons

Biological and artificial neural networks alike contain neurons which are
interconnected in order to transfer information from a source to a destination. The
knowledge of a network does not reside solely in a specific part of the network but is
distributed across the interconnections between the neurons. Every neuron computes its
own output by finding a weighted combination of the input signals, generating an
activation level and transmitting that to an output or a transfer function. The collection of

weights arranged in rows and columns is called the weight matrix.

Hidden

Figure 4.3 A simple neural network showing connected nodes [18]
4.4 Layers
A neural network consists of neurons connected to each other in layers. The
configuration of the layer structure plays an important role when building a neural
network to achieve a desired goal. Some of these neurons are in direct contact with the
outside world and are usually responsible for directly receiving external stimuli from a
source or delivering directly to a final destination point. However, some neurons

communicate with other neurons are called the hidden neurons.
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The architectural layout of the basic neural network, as shown in figure 4.3, contains
the input layer, the hidden layer and the output layer. External stimuli from the outside
world, such as a continuous or digital electrical signal, temperature, pressure or light
energy, are fed into the network by the input layers. The received information is sent to
the hidden layer neurons which lie between the input and output layers. The hidden layer
forms a complex network of neural components that project the neural network’s solution
to the problem. The output neurons further process information obtained from the hidden
neurons. The output information at this point is the neural network’s response to the input
information [10]. A variety of neural network architectures and learning algorithms have
been developed to address a variety of applications, which mainly differ from each other

in the network architecture and definition of the function computed at each node.

4.5 Radial Basis Functions
Radial basis functions are radially symmetric functions for which the response
decreases monotonically with distance from a central reference point. A special class of

radial functions is the Gaussian which is defined mathematically by

o) = o~ 229)

r

where x is the input vector, ¢ is the position vector of the basis centre in the multi-

dimensional space and r is its standard deviation (see figure 4.4).
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4.6 Radial Basis Function Neural Networks

A radial basis function (RBF) is a powerful tool for interpolation in multi-
dimensional space. The architecture of RBF networks, in its most basic form, involves
three layers as shown in Figure 4.3: an input layer of source nodes, a single hidden layer
which operates as a kernel node, and an output layer. The nodes in the hidden layer are
characterized by a set of basis functions, typically a Gaussian basis function. The centers
of the basis functions are determined from a scatter plot of variables by using a clustering
algorithm. The spread (standard deviation) of the basis functions are proportional to the
cluster size. The objective of the network is to determine an input-output mapping
function using the training data. The mapping function determined by the output
interconnection weights is determined by a matrix inversion step (assuming matrix is
invertible). The mapping estimated provides the best fit to the data in a statistical sense.
The mapping is accomplished in two stages. First, a nonlinear transformation connecting
the input layer to the hidden layer is defined by a set of radial basis functions. A linear
transformation is then performed between the hidden layer and output layer.
Subsequently, an interpolation is performed during a generalization process with

unknown data [20]. In contrast to statistical analysis where approximations are performed
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on complete data sets, RBF’s use a subset of data with the aim of estimating the

characteristics of data outside the subset by interpolation techniques.

Suppose we want to approximate a real valued function f(x) by s(x) given the set of
values f = (f1, .... , fo) corresponding to the real-valued input points x = {;, ...... s Xnts
then an expression for s(x) using RBF’s is given in equation (4.2) where p(x) is a

polynomial,

s(x) = p(x) + Z/I,.(D(I x=x) 4.2)

4; is a real-valued weight, | * | represents the Euclidean norm, ¢ is the basis function and
¢ — x;] is a measure of the distance between x and the basis center x;. Proper training of
the network requires optimization of the weight parameters which is critical to reducing
the error between f(x) and s(x). A simple training algorithm to achieve this stems from

the gradient descent approach. Gradient descent is based on the observation that if the

real-valued objective function H(W) is defined and differentiable in a neighborhood of a
point a, then H(W) decreases fastest if one goes from a in the direction of the negative

gradient of H(W) at a (i.e. along ~AH(W)) [19]. It follows that, if

b=a-y[-AHW)] 4.3)



for y > 0 a small enough number, then H(a) > H(b). With this observation in mind, one
starts with a guess W, for a local minimum of H(W), and considers the sequence W, ,

Wi, W> ...such that
9

w(t +1) = w(t) — y[-AH (w)]

We then have H(w,) = H(w;) = H(W;) . . .. and the sequence W; converges to the
desired local minimum. In particular, gradient descent training requires that the weights

be adjusted at each time step by moving them in a direction opposite from the gradient of

the objective function [19].

4.7 Depth Profiling Using RBFNN

In the proposed depth profiling algorithm using RBFNN, there are two major steps. The
first step is to estimate the length of the defect and the second step is depth profile along
the length of the defect. Length is typically defined along the axial direction for axial

cracks and along the circumferential direction for circumferential cracks.

4.7.1 Length Estimation

The ROI selected by an analyst typically contains a region around the defect.
Due to the presence of additive white and colored noise in the eddy current data, it is
essential to accurately discriminate between noise and true defect indications in the
measured signal for the purpose of depth profiling. Setting a magnitude threshold and/ or

a phase interval are two possible strategies towards this goal. However, the efficacy of
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this approach is compromised when eddy current data of low signal to noise ratio is
analyzed. From empirical studies, the magnitude thresholding and phase windowing
method produces satisfactory flaw length estimates when the signal to noise ratio is high
and defect depth value is over 30% TW. Flaw length estimation techniques employed in
this research relies on an adaptive threshold scheme based on the statistical properties of

the hronized calit d two-di ional eddy current signal in the region on interest

(ROI).

Peak Voltage

7 y 2

Baseline Voltage

Figure 4.5 Calibrated flaw magnitude distribution (in volts) showing base-line and peak
voltage inside region of interest

In order to define the parameters required for the proposed flaw length estimation

technique, consider the surface plot of the ROI in figure 4.5. The ratio, y, of the

maximum signal itude and the base-li itude inside the ROI (see figure 4.5)

follows an empirical relationship with the opti itude (n) threshold given by
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n=aexp{-Aly-y,1}% ..o, 4.5

where the constants a, A and yo are determined empirically from the available profiling
data such as shown in figure 4.6. The curve in figure 4.6 was obtained by finding the
coefficients of a piece-wise polynomial that fits the scatter plot in a least-squares sense as

given in equation (4.6). From the piece-wise curve fit, a, A and Y can be determined.

10%exp [-0.0151%(y - 1)], v <152

Threshold = {
1.0, otherwise

(4.6)
12 . r v - -
Threshold (V) :
- L
*»
L .
- T ir‘ - +
2 I
0 50 100 150 200 250 300

Ratio of maximum magnitude in ROI to baseline

Figure 4.6 Empirical relationships between optimum thresholds and ratio of peak to base
line voltages in ROI

The flaw length is estimated by multiplying the number of horizontal slices that contain
magnitudes greater than the threshold with the axial scale (length units per horizontal

slice) to yield the flaw length in inches. A sample flaw length estimation process is
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shown in figure 4.7. The number of horizontal slices having magnitudes greater than the

computed threshold is averaged across frequency channels.

A A
X X
i i
a a
1 1
d d
i j Circumferential direction
r T Circumferenis drection sinels)
e e
c c
t it
i i
o o
n n

Circumferential direction
2 PRIRVRL]
Circumferential direction (pixels)

Circumferential direction

Circumferential direction (pixels)

Figure 4.7 Length estimation scheme. Left: vertical component of raw eddy current data
at 300 kHz with ROI indicated. Top right: Magnitude distribution in ROI with 29
horizontal slices. Bottom right: Binary image of thresholded ROl Axial span of the
effective ROI (corresponding to white pixels) ranges from the 8® to the 22" horizontal
slice making a total of 15 slices. Estimated length of defect equals 15 multiplied by the
axial scale (length units per horizontal line scan)

Current thresholding schemes employ statistical variance of data within the region
of interest for threshold computation. Typical threshold levels are set at 2 or 3 times the
standard deviation. However, this scheme becomes flawed if the dimension of region of
interest is not fixed. In the event that the ROI is selected manually in a semi-automated
length estimation scheme, the standard deviation of the signal magnitude within the ROI

t d dent on the sel d ROI size and, in turn, affects the flaw length estimate.

This process poses a poor repeatability strategy. On the other hand, the proposed method
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offers better repeatability as the maximum magnitude in the ROl is a constant. The base-
line voltage, however, can be made independent of ROI size by applying a two
dimensional median filtering operation in the signal pre-processing stage. Therefore, the
computation for y in equation 4.5 is a constant irrespective of the ROI size and, in turn,
yields a constant threshold. Figure 4.8 and 4.9 shows the effect of varying the size of the
ROI engulfing a defect signal indication using the conventional and proposed methods
respectively. In the proposed length estimation procedure, the number of horizontal slices
having magnitudes greater than the computed threshold is 13 in all four ROI’s selected.
In contrast, the lengths estimated by choosing the magnitude threshold to be twice the
standard deviation in the different ROIs are 11, 12, 12 and 13 in the order of increasing

ROI size.

5 10 15 20 25 10 20 30

4.8 Effect of varying ROI size on length estimation using twice the standard
deviation in ROI as threshold



10 2 2 0 2 2
4.9 Effect of varying ROI size on length estimation using proposed length
estimation scheme

4.7.2 Depth Profiling

The second step in defect characterization is depth profiling. After length estimation
process is completed, eddy current signals lying within the defect are used for defect
depth profiling. Each horizontal slice of the eddy current data in the 2D ROI is mapped to

a single depth value using a trained RBF neural network.

4.8 Training the Network
In order to optimize network performance, the network is trained using eddy current
data from laboratory-simulated flaws with the corresponding metallographic depth

profiles (MET). The training data provides i and correspond

between the measured magnitude or phase values and the depth values obtained from
metallographic examination. The regions of interests in the synchronized and calibrated

eddy current data are broken down into horizontal slices as shown in figure 4.8.
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% Xi= [M300 Moo Mioo Paoo P2oo Proo]

Figure 4.10 ROI showing arbitrary feature vector structure

From each horizontal slice, the maximum absolute magnitude and its corresponding
phase value is computed across all available frequencies in the Plus-Point axial channel.
This feature vector arrangement is depicted in figure 4.8 where feature vector at slice i

Xi = [M300 M20o Mioo P300 P200 P10o] “4.7)

where M3g, Mago and Mo represent the maximum magnitude per horizontal slice across
300 kHz, 200 kHz and 100 kHz respectively; Psoo, P20 and Py represent the
corresponding phase value across 300 kHz, 200 kHz and 100 kHz respectively. The
phase in this context refers to the difference between 180° and the arctangent of the ratio
of the vertical amplitude to the horizontal amplitude both corresponding to the location of
the maximum magnitude in the horizontal slice in question. In other words, if a pair of
corresponding horizontal slices — N elements in length — in the vertical and horizontal

channels are denoted V and H, then the magnitude vector, M, is computed as

M=W+H* ... (4.8)
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Assuming the maximum absolute value in M, denoted as m, corresponds to the o
element in the slice, then the phase, P, is computed as

Vix]

P =180° —arctan(
H[x]

DE it (4.9)

In this research work three magnitude and three phase values obtained at 300 kHz, 200

kHz and 100 kHz make up the feature vector for training.

The corresponding MET result for each region of interest is sampled or interpolated so as
to make the number of sample points consistent with the number of horizontal slices in

the region of interest in question. Figure 4.9 shows a sample MET result and the resized

Original MET result Resized MET Result
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Length units in axial direction Length units in axial direction

Figure 4.11 Original and modified MET result
version to be used for training the network. This resizing procedure can be defined
mathematically by the following procedure
e Let the number of sample points in the original MET be X and let the number of

horizontal slices for flaw length estimation (obtain by thresholding the ROI) be Y.
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Then the length units for the modified MET will be sample points with ascending
values 0, (Y/X), 2 x (Y/X), 3 x (Y/X)... Y.

e Assuming ND, OD, NL and OL are the modified depth vector, original depth
vector, modified length vector and old length vector respectively The

corresponding depth values for the modified MET result is given by

[(OD(round (2 * (i +1)) - OD(round (25 *i) * (NL(i) - OL(round (25 * )]
ND(i) = Y Y Y

X X —OD(round (i) *i)
OL(round (—;_—) *(i+1)- 0L(round(7) *i) Y

(4.10)
i=1,2...Y-1;

where “round (—;‘;) " rounds the ratio of X to Y to the nearest integer. Furthermore, if the

number of horizontal slices available for training is M, then the input feature matrix is an

M x 6 matrix that is mapped onto a 1 x M MET result array.

4.9 Training Parameters of RBFNN

The RBF neural network can be defined mathematically as [22]

i=P
y=Ywflx-tl,o)+w, (4.92)
i=1

where x is the input vector in R" and y is the output vector in R¥. The hidden layer of

RBFNN consists of P centers of radial basis functions denoted as t;, i=1,..., P. fis a
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scalar valued radial basis function and the scalar quantity o is the spread or radius of the

i" center, t;. w; is the weight vector corresponding to the i™ center.

The training of the RBFNN involves estimating the parameters w;, t; and o; (collectively

denoted as ®) from the available training data. © is defined as
Q= {(Wnti’ai) | I= lr'-’n} ...4.9b
The mapping of RBFNN can be compactly represented using the notation,

¥i = f(%i,©) The objective of training is to minimize the squared error between the

predicted values and true values of y;'s and can be denoted as [22],
el 2
©:min {ll »i— f(x,0) ("} @10
A

The minimization problem is typically highly ill conditioned and the solution is
regularized for each parameter separately using suitable constraints. Following sections

review training algorithms for estimating each parameter.

4.9.1 Selection of Centers of Basis Functions (t;) [22]

This involves the optimal computation of centers in training data clusters. Since the class
information is unknown prior to training the RBFNN, unsupervised clustering approaches
are used. The unsupervised clustering can be performed using number of approaches but
the K-means clustering approach is deployed in this research. K-means clustering is
extremely intuitive and simple algorithm and produces near optimal results in most cases.
However, it is sensitive to the starting point of the operation and incorrect selection of

starting point may result into bad clustering performance [22]. An Iterative Self-
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Organizing Data Analysis Techniques (ISODATA) clustering process as described in

[22] is an enhanced version of K-means clustering.

4.9.2 Selection of Spreads or Radii of the Centers (o) [22]
The determination of spread of each center can be done using the Iterative Self-
Organizing Data Analysis Techniques (ISODATA) algorithm described in [22]. This
algorithm computes the two critical properties that are useful in determining the spread,
which are: (1) Inter-cluster distances (y;'s) and (2) Intra-cluster distances (s;'s).
The y/'s and s,'s are defined as [22],

y,=min{||t, —¢, ||, j=1..,P;j#i},i=1..,P

s, = max {| X; —t, I, j=ip.,Pyi=1.,P e

yi's give information about the distance of the nearest neighboring cluster. When the
spread of a center is based on this parameter, the basis function covers the entire space
between all the neighboring clusters thereby providing a complete mapping of the input

space covered by the training data.

4.9.3 Computation of Weights (w;) [22]

In order to estimate the weights, the input feature matrix and the output MET results must
be known. Let the number of training samples be M. The input training data can be
represented in the form of a matrix X of dimensions M x 6 and output data can be
represented by a matrix Y of dimensions M x 1. As described in [22], using the input
data, a radial power basis function, centers and their spreads the matrix of basis function

can be computed as,
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1

F,=(x,—¢t;I’+1) “,i=lL.,nj=1L..,P @3

F has dimensions 6 x P. The RBFNN equation in matrix form can then be written as,
FW=Y (4.14)

The weight matrix W of dimensions P x M can be computed using the pseudo inverse of
matrix F and output matrix Y. However, direct use of pseudo inverse in an ill conditioned
problem results in an impractical solution. Hence there is need for using a regularization
procedure. The solution of equation 4.14 can be regularized using Landweber-Fridman
[27] type iterative algorithm. The details of this regularization scheme can be found in
[22]. This method is computationally quite efficient and also provides good
regularization performance. This scheme is used throughout this thesis. The next chapter
describes the experimental analysis and results for depth profiling using the calibration

curves and the RBF neural network.

56



CHAPTER 5 Experimental Analysis and Results

5.1 Introduction

In this chapter, two variants of depth profiling schemes using the RBF neural
network are described. The first, referred to a RBF1, is implemented by mapping a six-
dimensional feature vector comprising three magnitude and three phase values (as
described in chapter 4) onto its corresponding a scalar depth value determined from
metallographic analysis. The second variant of the RBF approach, referred to RBF2,
maps the six dimensional feature vector onto a three dimensional output vector consisting
of a consecutive sequence of 3 depth values obtained from metallographic results. The
rationale for RBF2 is that knowledge of the depth information in the neighborhood of an
arbitrary horizontal slice may contribute to improve the depth estimation corresponding
to the same arbitrary slice. The performance of both methods is compared alongside the
results obtained from calibration curves. Figure 5.1 shows a schematic of the overall

implementation of the depth profiling procedure using the RBFNN.

Calibrated ROI (training data) and
associated MET

Flaw Length Estimation

|

Feature Matrix Computation

L

Test Data — Flaw Length Neural Network
Estimation l

Predicted Depth Profile

Figure 5.1 Schematic of the overall approach using RBFNN
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5.2 Experimental Methodology

Using the length estimation procedure described in Chapter 4, a subset of the total
number of horizontal slices in the ROI is first obtained. This subset corresponds to the
horizontal slices vectors for which the maximum magnitude along its individual length
are equal or above the predetermined voltage threshold given by equation (4.5). By
multiplying the number of horizontal slices in this subset with the axial scale — given in

length units per slice — length of the flaw in inches is determined.

The peak magnitude and phase at multiple frequencies for each horizontal slice is
computed and entered in a feature matrix for training the network alongside the
corresponding MET depths values. A general mathematical representation for the RBF1
framework is given as

D(j) = RBF1[X())] (.1
for X= [M3p0 Mago Mioo P30 Paoo Pioo] as defined in section 4.8, j is the current
observation; F and D denotes the feature vector and corresponding depth estimate
respectively; Moo, Moo, and M;q are the magnitude values computed at 100 kHz, 200
kHz and 300 kHz respectively; Poo P20o P300 are the phase values computed at 100 kHz,
200 kHz and 300 kHz respectively. For the RBF2 network, the general representation

using similar notation is given as

D(j)=RBF2[F(j-1),F(j),F(j+1)] (52)
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Figures 5.2 — 5.7 show the scatter plot of features magnitude and phase values obtained
from the training data at 300 kHz, 200 kHz and 100 kHz against the corresponding depth
from metallographic result. From inspection of Figs. 5.2, 5.4 and 5.6 it is apparent that
there exist some correlation between magnitude values and flaw depth. Similarly, by
inspection of Figs. 5.3, 5.5 and 5.7 it is evident that there exists some correlation between
phase values approximately ranging between 35 and 180 degrees and flaw depth at all
frequencies. This relationship is expected as the flaws analyzed in this research work are

outer diameter axial flaws.
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Figure 5.2 Scatter plot of magnitude vs. depth for training sample at 300 kHz
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Figure 5.3 Scatter plot of phase vs. depth for training sample at 300 kHz
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Figure 5.4 Scatter plot of magnitude vs. depth for training sample at 200 kHz
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Figure 5.5 Scatter plot of phase vs. depth for training sample at 200 kHz
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Figure 5.6 Scatter plot of magnitude vs. depth for training sample at 100 kHz
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Figure 5.7 Scatter plot of phase vs. depth for training sample at 100 kHz

After defect length estimation, horizontal slices that contain magnitudes greater than
the threshold are used to compute the feature matrix and applied to train the RBFNN as
described in previous section [22]. The centers of the basis function are computed using
the Iterative Self-Organizing Data Analysis Techniques (ISODATA) algorithm, the radii
are computed using intra-cluster distance and the weights are computed using the method
of regularization described in Chapter 4. A power basis function is used in the hidden

layer nodes. The power function is defined in equation (5.3)

-1
frllx=tD,0) = x=¢, 17 +D7 3

The overall training data is randomly divided into training set and test set. Roughly 70%

of the data is used for training and the remaining 30% is used for testing. Figure 5.8(a)-
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(c) shows the profiling results obtained for three flaws — whose depth profiles have been
predetermined using metallographic techniques — using the classical magnitude
calibration curve approach (CC), log magnitude curve and the two RBF neural networks,
RBF1 (one feature vector per depth) and RBF2 (three feature vector per depth). These

flaws were randomly selected from a database of similar flaws whose depth profiles have

been experimentally determined by metallographic analysis. This database is generally

referred to as the Examination Technique Specification Sheet (ETSS).
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Figure 5.8(a - f) Comparison of metallographic flaw profiles with profiles
generated by different algorithms.

The RBF1 and EBF2 networks are seen to consistently outperform the traditional
approaches. In order to compare the effective lengths and depths of defect profiles

generated using various techniques alongside the metallographic depth profile, the

Electric Power Research Institute has developed two standard indices namely
e Burst Effective Length which provides an estimate of the effective length of a
defect.

Burst Effective Depth which refers to the effective defect depth.
Figures 5.9-5.11 shows the comparison of the burst effective depth and length for sample

profiles obtained using the RBF neural network and the corresponding metallographic
profiles.
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Figure 5.9 Top Left: two-di ional repr ion of calibrated eddy current data
signal with arrow pointing to sample training flaw indication. Top Right: Metallographic
(MET) results plotted against neural network estimated depth profile. Bottom Left:
Structural Profiler showing Burst Effective Length and Depth of MET (in red). Bottom
Right: Structural Profiler showing Burst Effective Length and Depth of Estimated profile
(in red)
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Figure 5.10 Top Left: two-dimensional representation of calibrated eddy current data
signal with arrow pointing to sample training flaw indication. Top Right: Metallographic
(MET) results plotted against neural network estimated depth profile. Bottom Left:
Structural Profiler showing Burst Effective Length and Depth of MET (in red). Bottom
Right: Structural Profiler showing Burst Effective Length and Depth of Estimated profile
(in red)
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Figure 5.11 Top Left: two-dimensional representation of calibrated eddy current data
signal with arrow pointing to sample training flaw indication. Top Right: Metallographic
(MET) results plotted against neural network estimated depth profile. Bottom Left:
Structural Profiler showing Burst Effective Length and Depth of MET (in red). Bottom
Right: Structural Profiler showing Burst Effective Length and Depth of Estimated profile
(in red)
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Figure 5.12(a) MET- Estimated Burst Effective Depth Correlation Statistics
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Figure 5.12(b) MET- Estimated Burst Ettective Length Correlation Statistics
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From figures 5.12(a) and 5.12(b), the slope of the linear fit between the pool of
metallographic and estimated burst effective lengths and depths are approximately 0.93
and 0.94 respectively. This is an indication of a sufficiently trained neural network and an
efficient length estimation procedure. The result in figures 5.13(a) and 5.13(b)
respectively show the burst effective depth and length statistics for depth profile of test
flaws generated using the radial basis function neural network (RBF1) and the enhanced

magnitude calibration curve method.
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Figure 5.13(a) Performance statistics of RBF results on test data
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Figure 5.13(b) Performance statistics of enhanced magnitude calibration
curve results on test data
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The neural network outperforms the magnitude profiling procedure as the correlation
of the burst effective length and depth between MET and estimated neural network depth

profile are closer to unity as compared to magnitude generated results.

5.3 Uncorrelated Noise Removal in Eddy Current Data

The signal to noise ratio in eddy current data is a major factor that determines the
accuracy of a predicted flaw depth profile. As it would be expected, accurate depth
measurements are obtained when the signal to noise ratio of the test data is comparable to
the training data. This prompted a study of the relationship between estimated depth
measurements obtained from denoised eddy current data and estimates from
metallographic techniques. In this approach, the eigenvalues corresponding to the
covariance matrix of the ROI are determined and only significant eigenvalues are used to
reconstruct a relatively noise free data set. Using the Karhunen-Loeve transformation, the
eigenvectors corresponding to the two most significant eigenvalues of the ROI
covariance matrix was used to reconstruct a cleaner version of the noisy eddy current
data. Figures 5.14(a)-(d) and 5.14(e)-(f) show the surface plot of the absolute voltage
values for two samples of eddy current data collected using the plus point coil probe at
300 kHz and 200 kHz and the corresponding filtered version.

From experimental analysis, selecting the eigenvectors belonging to the two most

significant eigenvalues eliminates most of the uncorrelated signal within the ROL.
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Filtered 300 kHz channel
Noisy 300 kHz channel Bt

Figure 5.14(a) Magnitude values for noisy ROI in 300 kHz channel. (b) Filtered version.
Noisy 200 kHz channel

Figure 5.14(c) Magnitude values for noisy ROI in 300 kHz channel. (f) Filtered version
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Noisy 200 kHz channel

Filtered 200 kHz channel

Figure 5.14 (g) Magnitude values for noisy ROI in 200 kHz channel. (h) Filtered version

Although, the filtered eddy current data may appear better suited to do depth
profiling analysis, this is not necessarily the case. This is because the minimum and
maximum magnitude values (and therefore the corresponding phase) per line scan is
sometimes significantly altered in the denoising process and information about true depth
is lost as a result. The depth profiles generated by the trained RBF neural network for

q

both noisy and relatively noiseless data (which was obtained using the

prop

algorithm) for those shown above are shown in figures 5.15(a) and 5.15(b).
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Figure 5.15(a) Top Left: Noisy ROI, Top Right: Corresponding depth profile vs. MET
Bottom Left: Filtered ROI, Bottom Right: Estimated depth profile versus MET.
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Figure 5.15(b) Top Left: Noisy ROI, Top Right: Corresponding depth profile vs. MET
Bottom Left: Filtered ROI, Bottom Right: Estimated depth profile versus MET.

In order to further investigate the impact of noise on feature computation, a
simulation of typical eddy current data was generated by injecting zero mean
uncorrelated noise into a sample with high signal to noise ratio. Features (magnitude and
phase) for each line scan in the 300 kHz channel was computed (see figures 5.17 and
5.18) and figure 5.16 shows a simulated magnitude distribution for different noise

variances.
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Figure 5.16 shows calibrated magnitude distribution in ROI’s corrupted
with zero mean noise having different levels of standard deviations (STD).
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Figure 5.17 Plot of magnitude values for each circumferential line
scan in ROI for various noise standard deviations.
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Figure 5.18 Plot of phase values for each circumferential line
scan in ROI for various noise standard deviations.

The efficiency of the proposed noise elimination method was investigated on the
test specimen. By introducing random uncorrelated noise with zero mean and different
variance levels into the ROI and the performing the denoising operation, the depth profile
for each of the resulting ROI was generated and compared with the MET profile. The
depth profiles for the uncorrupted ROI and the ROI’s in which random noise of known
variance is introduced are plotted in figure 5.19 alongside the MET ground truth data. By
inspection, it is observed that filtering the noisy ROI does not improve depth profiling

results using the RBF neural network.
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Figure 5.19 Depth profiles of MET against estimated profile generated after introducing
noise of known variance and after filtering
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CHAPTER 6 Conclusions and Summary

The objective of this thesis is to develop a novel steam generator tube defect
characterization scheme by multi-dimensional interpolation of features from eddy current
data. The vehicle deployed in the interpolation process is a radial basis function neural
network whjéh is trained by mapping signal magnitude and phase at different frequencies
and contiguous slices in a two-dimensional ROI onto a predetermined metallographic
depth profile (MET). Automation of depth profiling algorithms precipitated the
requirement for an accurate flaw length estimation procedure which has also been

developed in this project.

The performance of the defect depth profile and length estimation using the
enhanced magnitude calibration curve and the radial basis function neural network was
evaluated on 36 blind test data for which metallographic ground truth were available.
From a linear regression perspective, the burst effective depth (BED) and length (BEL)
obtained using the RBF network was more accurately correlated with the BED and BEL
of the MET - having a Pearson's co-efficient of regression of 0.8632 and 0.5808
respectively. On the other hand, the Pearson's co-efficient of regression for BED and
BEL using the enhanced magnitude calibration curve was 0.7914 and 0.5317
respectively. This demonstrates that the defect depth estimation procedure using neural
networks in conjunction with the length estimation scheme offer a more accurate

evaluation technique.
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The corruption of eddy current data by noise, however, degrades the performance
of the RBF network. This is largely due to the fact that the signal magnitude and phase
computed as input features to the network are significantly deviant from those computed
in training the network. Furthermore, the features values become more deviant from the
training pattern as the signal to noise ratio increases. Filtering noisy signals is not an
effective method for signal restoration since the feature information may be lost in the
process. However, at low noise levels fairly consistent defect depth profiles and lengths
are obtained when the novel defect characterization procedure is used. RBF1 generally
performed better than RBF2 due to the significantly lower error achieved when
minimizing the squared error between the predicted depth values and true depth values
during the training stage (as described in equation 4.10) of RBF1 as compared to RBF2.
This is expected when training with flaw signal indications with low signal to noise ratio
as is typical for flaw signal indications whose corresponding maximum depth is below
40% TW. Generally, the lower the signal to noise ratio, the lesser is the absolute
correlation between the signal vector and the corresponding depth value. Furthermore, it
is a possibility that the contribution of depth information from neighboring horizontal
slices in the ROI becomes less reliable as the signal to noise ratio decreases. This would,

in turn, yield more training error in RBF2 as compared to RBF1.

Possible future work in this direction may include increasing the dimensionality
of the input feature vector space for depth prediction by using flaw signal indication with
significantly high signal to noise ratio and mapping four or more contiguous horizontal

slices in the ROI to a depth value. In addition, training the RBF1 and RBF2 neural
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network with a larger database of flaw signal indications may yield more accurate depth
profile estimates for a wider range of degradation types. Another potential application of
the RBF neural network in depth profile estimation is to assist in the examination of
cracks in other components of the steam generator such as the reactor vessels and their
internal core shrouds as there have been several instances of cracking in these
components [32]. Furthermore, training the RBF neural network for estimating depth
profiles for other flaw types and degradations such as pitting, inter-granular attack and

dents are directions worth exploring.
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