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ABSTRACT

DEFECT PROFILING IN STEAM GENERATOR TUBES USING

MULTI-FREQUENCY EDDY CURRENT INSPECTION

By

Uduebho Oseghale Olumese

Multi-frequency eddy current technique is one of the widely used Non-destructive

evaluation techniques for steam generator tube inspection in nuclear power industry. The

multi-frequency technique for depth profiling is essentially a multi-dimensional data

fusion scheme which tends to mitigate the effect of error-prone single-dimension eddy

current features due to noise and improves defect identification, classification and

characterization of the eddy current data. In this research, the performance of traditional

defect characterization algorithms are investigated alongside a novel defect depth

profiling procedure using a radial basis function neural network by employing the

following two step approach

0 The length of the defect is estimated by setting an adaptive threshold on the

magnitude distribution in the region of interest engulfing potential defects.

0 The inversion of the signal features in the defect region to predict a depth profile.

The vehicle for this inversion is the radial basis function neural network.

The thesis also discusses noise removal in eddy current data and their limitations when

deployed for depth profiling purposes.
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CHAPTER 1 Introduction to Nondestructive Evaluation

1.1 INTRODUCTION

Non-Destructive Testing (NDT) is defined as the structural assessment of an

object, material or system without damaging its future utility. In other words, NDT is

carried out in such a way as to preserve the specimen’s structural integrity. In a general

NDT system, an energy source is used to probe the test object with an aim to measure the

interaction of the energy with the test object using a receiving transducer [3]. The

measured signal contains information about structural flaws in the object. The sigma] thus

collected undergoes a series of sigral processing stages that boost the sigial to noise ratio

for accurate flaw detection while minimizing false alarm. Subsequently, classification

algorithms are employed for flaw characterization purposes.
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1.2 Typical Methods for Nondestructive Testing

The National Materials Advisory Board (NMAB) Ad Hoc Committee on

Nondestructive Evaluation adopted a system [1, 2] that classifies nondestructive methods

into six major categories: visual, penetrating radiation, magretic-electrical, mechanical

vibration, thermal and chemical-electrochemical. A version of the taxonomy of

inspection methods is presented in Table 1.1, with additional categories included to cover

new methods [13].

Table 1.1 NDE Classification System

 

Basic cmggoria Objectives
 

Mechanical and optical color, cracks, dimensions, film thickness, reflectivity, strain

distribution and magritude, surface finish, surface flaws,

through-cracks

 

Penetrating radiation cracks, density and chemistry variations, elemental distribution,

foreign objects, inclusions, micro-porosity, misalignment,

missing parts, segregation, service degadation, shrinkage,

thickness, voids
 

Electromagretic

electronic

and alloy content, anisotropy, cavities, cold work, local strain,

hardness, composition, contamination, corrosion, cracks, crack

depth, crystal structure, electrical and thermal conductivities,

flakes, heat treatment, hot tears, inclusions, ion concentrations,

laps, lattice strain, layer thickness, moisture content,

polarization, seams, segregation, shrinkage, state of cure, tensile

strength, thickness, disbands

 

Sonic and ultrasonic crack initiation and propagation, cracks, voids, damping factor,

degree of cure, deg'ee of impregration, degree of sintering,

delarninations, density, dimensions, elastic moduli, grain size,

inclusions, mechanical degradation, misalignment, porosity,

radiation degradation, structure of composites, surface stress,

tensile, shear and compressive strength, disbonds, wear

 

Thermal and infrared bonding, composition, emissivity, heat contours, plating

thickness, porosity, reflectivity, stress, thermal conductivity,

thickness, voids
  Chemical and analytical  alloy identification, composition, cracks, elemental analysis and

distribution, grain size, inclusions, macrostructure, porosity,

segregation, surface anomalies

 
 



Table 1.1 continued

 

Auxiliary Categories Objectives
 

Image generation dimensional variations, dynamic performance, anomaly

characterization and definition, anomaly distribution, anomaly

propagation, magetic field configurations
 

 
Signal image analysis data selection, processing and display, anomaly mapping,

correlation and identification, image enhancement, separation of

multiple variables, signature analysis  

The first six categories involve basic physical processes that require transfer of

energy to the object being tested. The auxillary category includes processes that provide

for transfer and accumulation of information, and evaluation of the raw sigrals and

images cormnon to nondestructive testing methods. Commonly used methods include

ultrasonic, magietic flux leakage, radiogaphic, penetrant and eddy current techniques. A

brief introduction to some ofthese methods follows.

1.2.1 Ultrasonic NDT

Based on the principle that solid materials are good conductors of sound waves

and that waves are reflected by interfaces or internal material dislocations, beams ofhigh-

frequency sound waves are introduced into the test object for detection of subsurface

flaws in the material. The transducer used in ultrasonic NDE is usually a piezoelectric

element excited by an extremely short electrical discharge, to generate an ultrasonic

pulse. Conversely, an electrical sigral is generated when it receives an ultrasonic sigial.

In general, the probe is coupled to the test material via air, gel or water to minimize

sigral attenuation and back scattering at the probe-material interface. As sound energy

propagates through the material, a fiaction of the energy is reflected back when

discontinuities are encountered in the wave path. These reflected waves due to

 



discontinuities in the object are used for detection of the flaw. The reflected beam is

subsequently analyzed to define the presence and location of flaws or discontinuities.

The most commonly used ultrasonic testing technique is in the pulse-echo mode,

wherein sound is introduced into a test object and reflections (echoes) are returned to a

receiver from internal imperfections or from the part’s geometrical surfaces.

The merits of ultrasonic inspection include sensitivity to both surface and

subsurface discontinuities, superior depth of penetration when compared to other

methods, higher accuracy in determining the position, size, and shape of defect and

minimal test object preparation. However, ultrasonic inspection also has its drawbacks.

Defects oriented parallel to the sound beam may be undetected. Accessibility of the

surface for inspection is also an issue. Finally, the skills and training required for

ultrasonic inspection is more extensive compared to other methods. Applications include

inspections for voids, cracks, and laminations, inspections of welds and thickness

measurements [3].

1.2.2 Radiographic NDE

This technique involves the use of penetrating gamma or X-radiation to examine

parts and products for imperfections. An X-ray machine or radioactive isotope is used as

a source of radiation. Energy from the source propagates through a test specimen and the

radiation is directed through a part and onto film in order to project an image on the

receiver (X-ray film) or recording plane on the opposite side. Significant differences in



the received sigral intensity can be interpreted in terms of defects and anomalies in the

test object. Any imperfection in the test object is indicated as density changes in the film

in the same manner as how medical X-ray shows fractured bones [3]. All abnormalities in

the test object are viewed on the recording plane as light or dark spots compared to the

rest ofthe material depending on the properties ofthe material and anomaly.

Radiogaphic applications fall into two distinct categories, namely, evaluation of

material properties and evaluation of manufacturing and assembly properties. Material

property evaluation includes the determination of composition, density, uniformity, and

cell or particle size. Manufacturing and assembly property evaluation is normally

concerned with dimensions, flaws (voids, inclusions, and cracks), bond integity (welds,

brazes, etc.), and verification ofproper assembly ofcomponent pieces.

1.2.3 Electromagnetic NDT

In electromagretic NDT methods, the energy source is electric and magretic

fields. Some of the popular electromagnetic methods are potential drop, magreto-static

leakage field, and eddy current methods. The magnetic leakage field technique uses direct

current as the excitation source, while the eddy current method uses an alternating

current. In this thesis work, the particular area of interest in electromagnetic NDT

techniques is the eddy current testing method. The eddy current induced in the test

specimen are affected by the variation of one or more properties such as magietic

permeability, electric permittivity or electric conductivity of the test specimen.



Consequently the measured signal carries information about the shape, size and location

of defects in conducting materials.

1.3 Eddy Current Inspections of Heat Exchange Tubes in Nuclear Power Plants

Eddy current testing methods are widely used for inspecting heat — exchange

tubes in steam generators in nuclear power plants. Figure 1.1 shows the typical layout of

the heat transfer system in nuclear power plants. Nuclear fission in the reactor generates

heat energy which is conveyed via the primary coolant circulating within the nuclear

vessel. The primary coolant dissipates the heat energy into a water-steam mixture as it is

circulated through a set of tubes in the steam generator. The high-pressure vapor is forced

through the secondary loop and is used to drive the steam turbines. While in primary

loop, the coolant is radioactive, the coolant in the secondary loop is not radioactive. It is

critical to keep the radioactive coolant from contaminating the non-radioactive coolant

water [5]. Frequent inspection of the steam generator tubes is therefore mandatory in

order to keep the whole system free from radioactive leakage.

Secondary Loop

   

  

Pressurizer

n-”www.-

I': Circulating

- Pump

 

Primary Loop

Figure 1.2 Heat transfer system in nuclear power plants [5]



During the tube inspection, an eddy current probe is inserted at one end of the heat

exchange tube after which it translates at constant velocity towards the other tube end. As

the eddy current probe describes a raster scan within the tube, its impedance is measured

as a function of time (or location in the tube). The data obtained in the inspection process

must be calibrated and compensated for the variation in probe characteristics and

instrument configuration settings. The sigral is then analyzed and interpreted in terms of

location, shape and size of defect in tube wall. This thesis describes the development and

evaluation ofprocedures for profiling defects in the steam generator tube wall.

1.2 Scope of Thesis

This thesis addresses the problem of defect characterization using neural network

interpolation techniques. The radial basis function neural network is the fiamework in

which features fi'om eddy current data are analyzed for defect characterization purposes.

A radial basis function (RBF) is a real-valued function whose value depends only on the

distance from its center, referred to as the basis center. These functions are used in

function approximation, time series prediction, and control. A weighted combination of

radial basis firnctions can be used to interpolate any continuous function with arbitrary

accuracy on a compact interval. In this thesis they are used for approximating the depth

profile of a defect.

This thesis is organized as follows:

0 Chapter 2 introduces the principles of eddy current testing techniques and gives a

brief description of the theory of the eddy current method. This chapter also

includes the description of the measurement system used to inspect the steam



generator tubes in nuclear power plants. In addition, a description of data analysis

system including data preprocessing and sigral enhancement is included.

Chapter 3 gives an overview of conventional defect profiling methods. The merits

and demerits of these techniques are discussed in this chapter. The radial basis

function theory is described alongside the implementation of the concept for the

purpose of defect profiling.

Chapter 4 describes the neural network and the radial basis function neural

network in particular. The method of implementation of the radial basis function

neural network for steam generator tube depth profiling is explained.

Chapter 5 first provides a description, comparison and conclusion of the

experimental results obtained using conventional defect profiling methods and the

radial basis function interpolation approach. The effect of noise and eddy current

data filtering on the defect profiling method is also demonstrated.



CHAPTER 2

2.1 Principles of Eddy Current Testing and Its Application in Steam Generator

Tube Inspection [14]

The basic principle underlying eddy current inspection methods can be illustrated

with a simple arrangement shown in Figure 2.1. When a coil carrying an alternating

current is brought in close proximity to an electrically conducting, non-ferromagnetic test

specimen, an alternating magnetic field is established. This field causes currents to be

induced in the conducting test specimen in accordance with Faraday’s law of

electromagretic induction. The induced currents are called eddy currents since they

follow closed circulatory patterns that are similar to eddies found in water bodies. The

alternating eddy current, in turn, establishes a field whose direction is opposite to that of

the original or primary field. Consequently, the net flux linkages associated with the coil

decreases. Since the inductance of a coil is defined as the number of flux linkages per

ampere, the effective inductance of the coil decreases relative to its value if it were to be

suspended in air. The presence of eddy currents in the test specimen also results in a

resistive power loss. The effect of this power loss manifests itself as a small increase in

the effective resistance of the coil. An exaggerated view of the changes in the terminal

characteristics of the coil is shown in Figure 2.2 where the variation in resistance and

inductance is plotted in the impedance plane. When a flaw whose conductivity differs

from that of the host specimen is present, the current distribution is altered.

Consequently, the impedance of the coil changes relative to its value obtained with an

unflawed specimen, as shown in Figure 2.2. Systems that are capable of monitoring the



changes in impedance can, therefore, be used to detect flaws in a specimen that is

scanned by a coil.

    
    

Conducting

Material

Figure 2.1 Principles of Eddy Current Testing [3]

X A. Coil in the air.

B. Coil over a nonferromagietic specimen

A with a flaw or defect.

C. Coil over a nonferromagretic specimen

without a flaw or defect.

 
 = R

Figure 2.2 Impedance plane trajectory of a coil over a non-ferromagretic specimen [3]



2.2 Eddy Current Transducers

Eddy current transducers may be categorized according to coil configuration into

absolute and differential eddy current transducers [5]. Absolute eddy current transducers,

usually consisting of a single coil, directly measures the absolute coil impedance rather

than its differential value and can detect both gadual and sharp changes. However a

disadvantage in using absolute transducers is that small changes of the impedance due to

a flaw are often superimposed on the large value [5]. The obvious limitation of this form

of inspection is that no difference in cross-section occurs if a defect is continuous for the

whole length of the material [7].

Furthermore, lift — off and probe wobble can mask the small changes of coil

impedance due to defects thereby making sigral analysis difficult.

In contrast, differential eddy current transducers consist of a pair of coils with a

configuration such that the net value of the impedance is the vector difference of the

individual coil irnpedances. Undesirable effects due to lift — off and probe wobble is

eliminated because they generally have the same impact on both coils [5]. In general,

differential eddy current transducers more sensitive to impedance change than absolute

eddy current transducers.

11
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Figure 2.3 Differential and absolute outputs [7]

2.3 Multi-frequency Eddy Current Signals

2.3.1 Skin Effect

The skin effect is the tendency of an alternating electric current (AC) to distribute

itself within a conductor so that the current density near the surface of the conductor is

greater than that at its core. That is, the electric current tends to flow at the "skin" of the

conductor. The skin effect causes the effective resistance of the conductor to increase

with the frequency ofthe current [14].

Mathematically, the current density J in an infinitely thick plane conductor

decreases exponentially with depth 6 from the surface, as follows:

J = J "5“
Se ................ (2)

where d is a constant called the skin depth. This is defined as the depth below the surface

ofthe conductor at which the current density decays to l/e (about 0.37) of the current

density at the surface (J5). It can be calculated as follows:

12



................... (3)

where

p = resistivity of conductor

co = angular frequency of current = 2n X fi'equency

u = absolute magretic permeability of conductor and is equivalent to the product

of 110 and [1,, where no is the permeability of fiee space and u, is the relative

permeabilty ofthe conductor.

Due to skin effect in test specimen, single frequency eddy current testing does not

provide an exhaustive evaluation of steam generator tubes at all tube depths. However,

multi-frequency eddy current testing circumvents this limitation by providing extra

characteristic information at various portions of the tube depth. This is because lower

fiequencies have larger skin depths and hence detect strong indications of support

structures that are located outside of the tube such as support plates. On the other hand,

higher fiequencies have shallower skin depths and detect strong indications of flaws

located closer to the surface. Multi-frequency eddy current testing involves measuring

coil impedance simultaneously using several excitation frequencies in one probe pull [6].

The availability of multi-frequency data also allows for the suppression of undesired

discontinuities and enhances flaw classification and characterization results.

2.3.2 Eddy Current Testing Probes

Three types ofmulti-frequency probes are used in practice namely the bobbin coil

probe, rotating probe coil and array probe. The bobbin coil probe consists of two

13



nominally identical coils connected in a differential mode and excited at multiple

frequencies. Due to the relatively low resolution in raster scan, the bobbin coil probe is

mainly used for the initial detection of possible degradation to quickly determine those

areas of the tube requiring additional inspection with other types of probe that have

improved ability to size and characterize degadation, such as rotating probes [6].

The array probe is a relatively newer probe type and is desigred to provide higher

resolution coverage of the tube with inspection speeds approaching that of bobbin coil

inspection. However, the resolution of the probe, especially along the circumferential

direction, is poor [6].

From a resolution measurement perspective, the rotating probe coil (RPC) is the

most superior eddy current probe. The eddy current data used for the implementation of

the depth profiling methods described in subsequent chapters were obtained using the

rotating probe coil. This is large due to the relatively high resolution offered by the

system. Figure 2.5 shows a probe consisting of a low frequency pancake coil, plus-point

coil and high-frequency pancake coil rotating and translating inside a tube. Typical

sigrals generated by a multi-frequency-rotating probe testing system are shown in Figure

2.6 where the trigger sigral marks the probe circumferential position and is used to

transform the one-dirnensional sigral to form a two—dimensional image. The low

frequency channel is usually desigred to locate external structures such as tube support

plates (TSP) and tube sheets (TS).

l4
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Figure 2.5 Typical trigger channel sigral alongside signals from pancake and plus point

coils. [6]

The next chapter introduces the eddy current sigral pre-preprocessing stage and the

sequence of step taken to identify regions of interest. Conventional depth profiling

methods is also explained.



CHAPTER 3 Eddy Current Probe Data Analysis

3.1 Introduction

Several issues in the eddy current inspection system pose difficulty in the

characterization of flaws. These include poor resolution of the probe raster scan relative

to the physical dimensions of the flaw, the variation of probe axial velocity about the

nominal value and the quantization errors introduced when the analog eddy current sigral

is sampled and digitized. Furthermore, additive noise generated due to corrosion deposits,

shot and thermal noise introduce errors in sigral measurement. These factors act in

combination to make flaw characterization a challenging task for the sigral analyst.

In order to extract meaningful information fiom the raw eddy current data, various

techniques and data manipulating operations are employed which include - in sequential

order - sigral preprocessing, flaw sigral detection, classification and characterization.

Figure 3.1 shows a schematic of the approach for eddy current data analysis for steam

generator tube evaluation

. 3.1. 1 Signal Preprocessing

This stage of the data analysis includes sigral processing algorithms that perform sigral

synchronization and calibration. The rotating probe coil system comprises three different

probe types, namely pancake, axial and circumferential plus point coil probes. Sigrals

from each of these coils can be resolved into a vertical and horizontal channel. The axial

and circumferential plus point coils are sensitive to axial and circumferential flaws,
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respectively, whereas pancake coils are sensitive to both types of flaws. Each of these

coils is excited at multiple frequencies (typically 300 kHz, 200 kHz and 100 kHz) giving

rise to about 28 - 32 channels altogether in the rotating probe coil system although some

channels are redundant during the data acquisition process. The responses due to changes

in coil impedance are sampled and saved in digital format for subsequent analysis.

An alternative configuration for the rotating probe uses two pancake and one plus-

point coil probes. The plus point coil consists of two coils that are oriented orthogonal to

each other [6]. The probe configurations, along with the excitation frequencies, are given

in Table 3.1. Type A and B also possess axial encoder and trigger channels. Since each

frequency component can be resolved into horizontal and vertical channels, there are 10 x

2 = 20 channels and 9 x 2 = 18 channels for type A and B respectively. In addition, two

axial encoder channels and two trigger channels bring the effective number of active

channels for type A and B to 24 and 22 channels respectively.

Table 3.1 Rotating probe configurations and inspection frequencies [6]

 

Probe Axial Circumferential Pancake HF Pancake(0.080” Plus

types (kHz) (0. l 15” diameter) diameter) Point

 

TypeA Excitation 400,300,200 400,300,200 400,300,200,

20
 

 

       
 

Frequencies

Type B (kHz) 300, 200, 100, 600, 300 300,

10 200,

100

** Type A and B possess trigger and axial encoder channels which are not included in

table.
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Figure 3.1 Schematic of Eddy Current Data Analysis

3.1.1.1 Synchronization

During tube inspection, the angular velocity of the RPC deviates minimally from

its nominal value which, in turn, varies the number of samples per pitch as the probe

translates along the length of the tube along a spiral path. In order to provide accurate

synchronization points for each probe rotation, a trigger sigral is generated

simultaneously during probe operation. The trigger sigral consists of four local

synchronization pulses generated at 72°, 144°, 216° and 288° and a main synchronization

pulse which occurs at 360° as shown in Figure 3.2. Figure 3.3 shows the wrapping of a

one-dimensional eddy current sigral into a two-dimensional representation.
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3.1.1.2 Calibration

For proper sigral classification, it is imperative to determine properties such as

voltage or phase of the test specimen sigral, by measurement or comparison with sigrals

fi'om standard or reference specimen for which such sigral properties are known. The

reference specimen must possess similar metallurgical properties and physical

dimensions as the material being inspected. Notches ofknown depths are introduced into

the reference specimen in order to set a standard voltage and phase (by sealing and

rotation respectively) for the reference notch sigral, and in turn, the test specimen signal.

This is essential in order that actual defects may be properly classified relative to the

reference defects.

Proper classification and characterization of tube degradations is significantly dependent,

among others, on sigral phase. Phase lag of EC sigrals provides a reasonable estimate of

the flaw depth and by setting a suitable phase interval in which the phase lag of

characteristic flaw sigrals are contained, noise-discrirrrination algorithms may be used to

reduce or eliminate false calls from pseudo-flaw sources such as support-plates and

corrosive deposits.
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Figure 3.4 Impedance plane representation showing phase characteristics of 100% TW

and 80% TW notch depth [6]

Figure 3.4 shows the impedance plane representation of a signal from a tube

support plate, a 100% through wall (TW) flaw and an 80% inner diameter flaw [6]. The

three sigrals have distinctive phase characteristics and this discriminating property can be

used to determine the sigral class and estimate depth of a flaw. In order to correct for

possible phase offset due to differing probe responses and instrumentation setup, a phase

calibration process is applied in industrial practice. As standard practice in industry, the

phase corresponding to the 100% TW notch sigral from the calibrating tube is rotated by

a calibration phase factor P so that the resultant phase is 35° measured anti-clockwise

from the negative x-axis. All test data from this calibration group undergoes the same

extent of phase rotation given by P. This process is done independently for each

frequency channel and coil type data.
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In voltage scaling, the magritude of the sigral corresponding to a through-wall

hole is first scaled to a fixed value giving a magritude calibration factor M. The

magritude calibration factors, one for each frequency, are obtained by normalizing the

maximum magritude of the data fi'om a 100% through-wall defect to a fixed value

(usually 20 volts). The raw test data is then sealed by this same factor M, channel-by-

channel. These magritude scaling factors are computed for each coil at its primary

frequency, typically the highest frequency (300 kHz) of coil excitation — and applied to

the corresponding data in each channel [6]. In other words, the magritude scaling factor

obtained by calibrating the 300 kHz channel data (axial, circumferential and pancake) is

applied to the 200 kHz and 100 kHz fi'equency channels.

3.1.1.3 Tube Support Segmentation

Since flaws are more likely to develop in the vicinity of support plates and other

support structures, a low fiequency measurement is first used to identify the location of

such regions. Figure 3.5 shows a typical image obtained after segmentation. In practical

eddy current testing, low frequency sigrals (usually at 10 kHz or 20 kHz) are used to

locate external support structures such as tube support plates (TSP) or top of tube sheet

sigrals (TTS). The data from the tube is then segnented into smaller regions around each

support structure, which are analyzed separately with defect positions reported relative to

these support structures.

As shown in Figure 3.5, an edge enhancement operation using a Sobel edge detector is

employed to identify the edges of the TSP. The source image is represented by f(x, y)

where (x, y) denote the pixel locations of the image. The Sobel edge magritude image
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|Vf(x, y] is given by

 

lVf(x.y)
| = «9

1;;l
e +[185

1)]2

=Jvoe+e®r a,

where s is the vertical edge detection filter, and t is a horizontal edge detection filter

 

given below:

  

  

S :: -2 (Jay) 2 t= (Icy)

 

 

        

  
(3-2)

The magritude of Vf(x, y) is then compared with a threshold T to determine

candidate boundary points. Assuming x = l,..., M and y = 1, ..., N; where M and N

represent the number of columns and rows respectively in the two dimensional

representation of the eddy current signal, then the threshold T is set at [23]

 

T=rffllflz+azl (3-3)

where ,B is a constant, p is the mean, and 0‘ is the variance of the image defined by

1 M N M N 2

PEN-22m»,fifi/zgwsw) (34)
x=1 y=1 x=1 1
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Figure 3.5 TSP Segmentation: (a) Low Frequency Signal, (b) Binary Image after Sobel

edge detection, (c) Segmented Signal

The location ofthe TSP is then marked as the segment start point. Since the width ofthe

TSP is fixed, it is also used as an axial scale standard to convert distance measures in

image pixels to true distance (inches or millimeters).

3.1.1.4 Tube Support Suppression

Once support regions have been identified, sigrals from these structures need to

be suppressed to enhance flaw signals (see figure 3.6). This suppression consists of two

steps. The first step removes signals from structural discontinuities, such as tube support

plates or tube sheets, by removing the median value in each circumferential revolution.

Here, the median value is treated as the defect-free reference sigral. The second step is to

remove low frequency noise. The median value along the axial direction is subtracted to
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accomplish this objective. Let 5,. be the signal from the ith element along the column

(circumference) or row (axial) directions and let N represent the total number of columns

and rows in the image. If m, is the median of the sigral from the 1"“ column or row, then

the suppressed signal is expressed as

s.=s.—m., i=1,2,~--,N. (3-5)
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Figure 3.6 TSP Suppression: (a) vertical component ofraw eddy current data at 300 kHz

(b) data after TSP suppression

3.2 Band-Pass Filtering, Adaptive Thresholding and ROI Detection

Band-pass filtering is used to remove undesired artifacts and noise signal

indications in the eddy current data. First, consider a low-pass filter that attenuates high

frequency components of the signal that exists beyond a specified frequency denoted by
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distance Do from the origin of the centered transform. This two-dimensional ideal low—

pass filter has the transfer function

S( )_ l D(u,v)SDo (36)

u,v — 0 D(u,v)>Do .......... .
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Figure 3.7a Ideal Band Pass Filter

where D0 is a specified non-negative quantity and D(u,v) is the distance from point (u,v)

to the origin in the frequency domain . Assuming the synchronized two-dimensional eddy

current data is of size M x N, then the centered transform which is also of the same

dimension has its origin at (u,v) = (M/2,N/2). As a result, the distance from any point

(u,v) to the center (origin) of the Fourier transform is defined as [31]

D(u,v)=[(u—M/2)2 +(v‘—N/2)2]“2 ....... (3.7a)

A band-pass filter removes or attenuates a band of frequencies about the origin of the

Fourier transform. An ideal band-pass filter is given by the expression
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0, D(u,v) < (Do ~ %)

S(u,v) = 1, (Do —-P::) S D(u,v) S (Do + g)

0, D(u,v) > (D0 + g)

..................... (3.7b)

where W is the width of the pass-band and D0 is its radial center [31]. Figure 3.7a shows

a surface plot of an ideal band pass filter and figure 3.7b shows the performance of band

pass filtering on the raw data.
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Following filtering, a region detection algorithm is used to identify potential

locations of flaw signal indications, called the Regions of Interest (ROI). The R01 is

obtained using adaptive thresholding. Eddy current data collected from different locations

in the tube possess different signal characteristics and hence thresholding schemes have

to be adaptive based on the quality of data at hand. One method involves setting an

absolute threshold for magritude and an interval threshold for phase values. In magnitude

thresholding procedure, signals whose magnitude is less than the threshold level are

treated as noise and set to zero. In phase thresholding or phase gating, signals with phase

angles outside a specified interval (flaw plane) are eliminated. In an alternate ROI

detection procedure an adaptive thresholding scheme is used to optimally vary the

threshold value for different regions in the tube. This scheme computes the histogarn of

voltage values in a local segnent of image. The threshold is then computed as:

t = ,u + K[max(VL ) — min(VL )] (3.8)

where, p. = Median of the voltage values in a local (segnented) region of the image

V1, = Set of voltage values that lie in three bins around the median value in the

voltage histogram of the local (segnented) region of the image

K = Constant, chosen based on the magritude of the 20% axial ID defect in the

corresponding calibration file

t = Threshold chosen for the local region

A single threshold computed using mean u and standard deviation 0 of the data

collected from more than one tube region often yields sub-optimal performance during
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flaw detection. The variant of the adaptive thresholding scheme computes individual

thresholds for data from different tube sections based on their local statistics. The ROI

detection scheme can be represented mathematically as follows:

r = flaw, ixii2r.

noise, Ix; |< 2', (39)

where Tr = 77percentile (Xr) is threshold for sample xk in rth tube region

and n is a scalar ranging from 0 to 100. The binary images obtained by thresholding the

filtered data is fused by performing a logical intersection of the binary images across

frequencies channels. Such data fusion results in high detection rates along with low false

call rates. Figure 3.8 and 3.9 shows the performance of band pass filtering on sample

data, and ROI detection using adaptive thresholding.

.--'.'   . _ Axial 1!

direction a E Circumferential direction direction 0 Circumferential direction

Figure 3.8 TTS suppression using band pass filtering for a tube containing a

circumferential defect along the edge of the TTS (a) Original +Pt Circumferential 300

kHz (b) Filtered +Pt Circumferential300 kHz
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3.3 Classification

After the regions of interest (ROIs) are identified, a classification algorithm is

applied to classify each ROI into one of several classes. Figure 3.103 shows the image of

vertical component of the thresholded eddy current RPC data with potential defect

indications identified after filtering. Each of these indications is processed individually by

the classification routines.

The classification module consists of two steps, namely, feature extraction and

classification. A feature extraction algorithm is used to extract features fi'om the

preprocessed data in the ROI. Features such as maximum magritude in the ROI and its

corresponding phase value are samples of features. The extracted features are subjected

to a classification algorithm or rules for discriminating between actual defects and noise.

The rule base contains a set of heuristically obtained rules that are that are formed by

using predicate logic [6], and are applied sequentially to eliminate false calls, and retain

true flaw indications. For example, let the maximum magritude (vertical 300 kHz axial

channel) in a region of interest be denoted as M. Furthermore, let the corresponding

phase values across 300 kHz, 200 kHz and 100 kHz axial channel be denoted as P3, P2

and P1 respectively. Then the following rules apply for calibrated flaw data:

1. Outer diameter (OD) axial flaw:

0 P3 235, P2 235, P1 235 (defines flaw plane for OD defects)

0 P35 180, P2 5 180, P; S 180 (defines flaw plane for OD defects)

0 P3 2 P2 2 P1 (defines order in flaw plane)
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2. Inner diameter (ID) axial flaw:

0 P320, P; 20, P120 (defines flaw plane for ID defects)

0 P3 < 35, P; < 35, P. < 35 (defines flaw plane for ID defects)

0 P3 2 P2 2 P. (defines order in flaw plane)

3. Maximum magnitude in ROI, m 2 M

Figure 3.1% shows an illustration of ROI classification using the rule bases. M is

typically obtained by identifying a conservative lower bound above which the

magnitudes of flaw sigral indications in the training data are greater.
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18C[  
Figure 3.10b ROI classification for axial flaw indications and noise using rule—bases.

The magenta and black rectangles in (c) correspond to classified axial flaws and noise

respectively

3.4 Defect Characterization

Defect characterization is the estimation of the depth profile of the detected defect

ROIs. Several factors contribute to distortion of the measured eddy current sigral. One

example is the limitation of the resolution of inspection system relative to the flaw length.

In other words, the resolution of the horizontal eddy current scans in a two-dimensional
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ROI must be sigrificantly larger than the length of the crack in order to obtain a depth

profile at each horizontal slice. Another factor is that the probe speed changes during the

inspection process which introduces errors in the collected data. Additive noise generated

during the scan due to the presence of contaminants and surface roughness can also

introduce noise. Furthermore, when an analog signal is sampled to generate a digital

signal, quantization errors are introduced. This can lead to additional distortion of the

signal. All these issues make defect characterization in steam generator tubes a very

challenging task. The different contemporary characterization algorithms implemented

for defect profiling are explained in this section [24].

3.4.1 Calibration Curve

In current industry practice, simple characterization schemes are used to estimate

the flaw length and depth profile for each flaw indication in the processed sigral. One of

the most widely used approaches for sizing defects is the calibration method. In this

procedure, a calibration curve relating flaw depth to corresponding signal phase (or

magnitude) is obtained from the calibration specimen of similar metallographic properties

and physical dimension as the test specimen. For a given defect sigral, its equivalent

depth is predicted using simple interpolation methods. For example, we assume that the

calibration curvef is piece-wise linear between each of the known mapping points. The

phase and magritude computed from flaws in the calibration standard tube are used to

construct the function f. Figure 3.11 and 3.12 shows typical phase and magritude

calibration curves respectively.
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During inspection, for a given defect sigral, the relationship used to predict the defect

depth when the signal phase is b is given by [3.10]:

 

 

  

 

 

  

b—

f(b)= f(a)+ c—: [f(c)-f(a)] ................... (3.10)
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Figure 3.11(a) Phase calibration curves
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Figure 3.12 (b) Magnitude calibration curves

The defects impressed on the calibrating specimen are man-made and have

dimension that are untypical of cracks due to corrosion or inter granular attack that occur

naturally in the tube during the normal operation of the steam generator. Artificial flaws

created for the purpose of calibration usually give a higher signal response as compared

to naturally occurring cracks having the same maximum depth. This is because naturally

occurring cracks are thinner and finer in width than calibrating notches. As a result, the

thinner a 100% TW crack as compared to the 100% TW calibration notch, the more it

falls short of the 20V magritude and 35° phase standards after calibration. It is therefore

common to see 100% TW cracks with a phase between 50° - 66° and magnitudes of

about 4V. For this reason, the calibration method is inherently flawed and cannot

accurately characterize flaws.
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3.4.2 Enhanced Calibration Curve

An alternative approach which may yield better characterization results is to fit a

curve to the data of magnitude and corresponding maximum depth values obtained from

training flaws. The magnitude and maximum depth coordinates are plotted and the curve

is fitted in a least square sense to the scatter plot. This curve can be represented by the

general expression:

10g.(flaw.....) = a0 + a1 log.(flaw,.....-....) ................ (3.11)

The coefficients a0 and al are empirically determined from the available data set. Figure

3.13 shows a magritude calibration curve constructed using the logarithmic mapping.

The resultant curve again serves as the calibration curve.
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3.4.3 Model Based Profiling

Another approach for defect profiling is the use of numerical models [33] in an

iterative framework. An application of this method lies in the use of a computational

model, such as the finite element model [34]. The underlying idea of this approach is

illustrated in the schematic diagram shown in figure 3.14. It starts with an initial estimate

of the defect profile parameters and solves the corresponding forward problem to

determine the corresponding signal. The error between the estimated and measured

sigrals, F, is minimized by updating the defect profile iteratively. However, this method

tends to be computationally expensive as it requires execution of a 3D FE model in each
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Figure 3.14 Iterative inversion method for solving inverse problems

This thesis aims to investigate a more sophisticated approach for flaw

characterization which employs the use of a trained radial basis function for mapping

magritude and phase values utilizing data at all available frequency obtained from the

plus-point coil onto an estimated depth value. Mathematically, this approach provides a

nonlinear mapping from an input vector (signal feature) space on to an output vector

(defect depth profile) space. The next chapter introduces the underlying concepts of the
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radial basis function neural network (RBFNN). A proposed flaw length estimation

technique is also explained.

CHAPTER 4 Artificial Neural Networks

4.1 A Little Biology

The human brain consists of a specialized network of billions of highly

interconnected cells called neurons (see figure 4.1). Each cell receives electrical signals

from as many as 10,000 other cells and transmits or inhibits an output signal based upon

the input signal pattern [10]. Although modern science may not have an exhaustive

knowledge about the mechanism and functionality of the human brain, it is possible to

mimic some of its abilities such as learning, pattern recogrition and generalization.

The biological neuron consists of four main parts: the body, the incoming channels,

the outgoing channel(s), and the connection points between neurons, which are called

synapses. In other words, the synapses are the gateway for neuron-to-neuron sigral

transmission. A neuron receives many sigrals from other neurons at the synapses in

which some processing occurs before the sigrals are sent down the incoming channel to

the neuron body. This sigral processing is basically achieved by weighing each incoming

signal with the result that each of these sigrals has a different excitation effect on the

neuron. As such, the synapse is traditionally an amplifier or attenuator of input sigrals,

which in turn have a stronger or weaker effect on the receiving neuron. A highly excited

neuron sends out an output sigral while an inhibited one does not (see figure 4.2).
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Figure 4.2 Synaptic connections with a neuron [17]

The primary fimction of the neuron body is to combine all the incoming signals and

determine if the total is enough to send out a signal. In other words, a comparison with an

activation threshold is the decisive criterion for transmitting or inhibiting an output

sigral. Learning occurs in the brain in the form of changes to the synaptic weights [10].

There are a few theories which have been developed to explain how the learning process

works. The general opinion is that synapses change over time as sigrals are received, and

39



this constitutes learning. Knowledge is captured in bits and pieces by the weights

synapses attach to the incoming sigrals. As a result, knowledge is spread out across many

neural connections.

4.2 Artificial Neural Network

An artificial neural network (ANN) is a densely interconnected group of

computational nodes or neurons that uses a mathematical model for processing

information. ANN is a massively parallel, distributed processor with the capability to

store and retrieve experiential knowledge [8]. The characteristics of the network are

determined by the nature of the processing elements, and strengths of the

interconnections, known as synaptic weights, which are used to store the knowledge. The

network acquires knowledge by a learning process, which modifies the synaptic weights

in an orderly fashion to achieve a desired objective. The basic neuron model is the single

layer perceptron which accepts an n-dimensional vector and performs a weighted sum,

adds a bias and passes the result through a nonlinear function to yield an output. The

primary use of a perceptron is in pattern classification. Patterns are distinct features that

are derived from sigrals of different classes. The single layer perceptron can discriminate

between two classes by separating them with a linear decision boundary in the feature

space. The perceptron model cannot generate nonlinear decision boundaries and as a

result cannot be used in most real world pattern recogrition problems, wherein classes are

not linearly separable [8]. A multilayer perceptron network overcomes this limitation

and can generate highly nonlinear decision boundaries for classification problems.
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4.3 Neurons

Biological and artificial neural networks alike contain neurons which are

interconnected in order to transfer information from a source to a destination. The

knowledge of a network does not reside solely in a specific part of the network but is

distributed across the interconnections between the neurons. Every neuron computes its

own output by finding a weighted combination of the input signals, generating an

activation level and transmitting that to an output or a transfer function. The collection of

weights arranged in rows and columns is called the weight matrix.

 

Figure 4.3 A simple neural network showing connected nodes [18]

4.4 Layers

A neural network consists of neurons connected to each other in layers. The

configuration of the layer structure plays an important role when building a neural

network to achieve a desired goal. Some of these neurons are in direct contact with the

outside world and are usually responsible for directly receiving external stimuli from a

source or delivering directly to a final destination point. However, some neurons

communicate with other neurons are called the hidden neurons.
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The architectural layout of the basic neural network, as shown in figure 4.3, contains

the input layer, the hidden layer and the output layer. External stimuli from the outside

world, such as a continuous or digital electrical sigral, temperature, pressure or light

energy, are fed into the network by the input layers. The received information is sent to

the hidden layer neurons which lie between the input and output layers. The hidden layer

forms a complex network ofneural components that project the neural network’s solution

to the problem. The output neurons further process information obtained from the hidden

neurons. The output information at this point is the neural network’s response to the input

information [10]. A variety of neural network architectures and learning algorithms have

been developed to address a variety of applications, which mainly differ from each other

in the network architecture and definition of the function computed at each node.

4.5 Radial Basis Functions

Radial basis functions are radially symmetric functions for which the response

decreases monotonically with distance fiom a central reference point. A special class of

radial functions is the Gaussian which is defined mathematically by

h(:c) = exp (— (M " CM)
r2

 

................... (4. 1 )

where x is the input vector, c is the position vector of the basis centre in the multi-

dimensional space and r is its standard deviation (see figure 4.4).
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4.6 Radial Basis Function Neural Networks

A radial basis function (RBF) is a powerful tool for interpolation in multi-

dimensional space. The architecture of RBF networks, in its most basic form, involves

three layers as shown in Figure 4.3: an input layer of source nodes, 3 single hidden layer

which operates as a kernel node, and an output layer. The nodes in the hidden layer are

characterized by a set of basis functions, typically a Gaussian basis function. The centers

of the basis functions are determined from a scatter plot of variables by using a clustering

algorithm. The spread (standard deviation) of the basis functions are proportional to the

cluster size. The objective of the network is to determine an input-output mapping

function using the training data. The mapping function determined by the output

interconnection weights is determined by a matrix inversion step (assuming matrix is

invertible). The mapping estimated provides the best fit to the data in a statistical sense.

The mapping is accomplished in two stages. First, a nonlinear transformation connecting

the input layer to the hidden layer is defined by a set of radial basis functions. A linear

transformation is then performed between the hidden layer and output layer.

Subsequently, an interpolation is performed during a generalization process with

unknown data [20]. In contrast to statistical analysis where approximations are performed
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on complete data sets, RBF’s use a subset of data with the aim of estimating the

characteristics of data outside the subset by interpolation techniques.

Suppose we want to approximate a real valued function f(x) by s(x) given the set of

values f = (fl, ..... , fl.) corresponding to the real-valued input points x = {x}, ......, xn},

then an expression for s(x) using RBF’s is given in equation (4.2) where p(x) is a

polynomial,

s(x) = p(x) + 24.430 x — xi I) ............... (4.2)

.1,- is a real-valued weight, I * | represents the Euclidean norm, 4) is the basis function and

Ix — xil is a measure of the distance between x and the basis center xi. Proper training of

the network requires optimization of the weight parameters which is critical to reducing

the error between f(x) and s(x). A simple training algorithm to achieve this stems from

the gradient descent approach. Gradient descent is based on the observation that if the

real-valued objective function H(w) is defined and differentiable in a neighborhood of a

point a, then H(w) decreases fastest if one goes from a in the direction of the negative

gradient ofH(w) at a (i.e. along -AH(W)) [19]. It follows that, if

b = a — 7 [-AH (w)] ................ (4.3)
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for y > 0 a small enough number, then H(a) Z H(b). With this observation in mind, one

starts with a guess W0 for a local minimum of H(w), and considers the sequence Wo ,

WI, W2 ...such that

WU + 1) = WU) " J’i—AH(W)] ..................... (4.4)

We then have H(Wo) Z H(Wl) _>_ H(Wz) . . .. and the sequence Wt converges to the

desired local minimum. In particular, gradient descent training requires that the weights

be adjusted at each time step by moving them in a direction opposite from the gradient of

the objective function [19].

4.7 Depth Profiling Using RBFNN

In the proposed depth profiling algorithm using RBFNN, there are two major steps. The

first step is to estimate the length of the defect and the second step is depth profile along

the length of the defect. Length is typically defined along the axial direction for axial

cracks and along the circumferential direction for circumferential cracks.

4.7.1 Length Estimation

The ROI selected by an analyst typically contains a region around the defect.

Due to the presence of additive white and colored noise in the eddy current data, it is

essential to accurately discriminate between noise and true defect indications in the

measured signal for the purpose of depth profiling. Setting a magritude threshold and/ or

a phase interval are two possible strategies towards this goal. However, the efficacy of
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this approach is compromised when eddy current data of low sigral to noise ratio is

analyzed. From empirical studies, the magritude thresholding and phase windowing

method produces satisfactory flaw length estimates when the signal to noise ratio is high

and defect depth value is over 30% TW. Flaw length estimation techniques employed in

this research relies on an adaptive threshold scheme based on the statistical properties of

the synchronized calibrated two-dimensional eddy current signal in the region on interest

(ROI).

Peak Voltage

   Baseline Voltage . '°

Figure 4.5 Calibrated flaw magritude distribution (in volts) showing base-line and peak

voltage inside region of interest

In order to define the parameters required for the proposed flaw length estimation

technique, consider the surface plot of the ROI in figure 4.5. The ratio, 7, of the

maximum sigral magritude and the base-line magnitude inside the ROI (see figure 4.5)

follows an empirical relationship with the optimum magritude (11) threshold given by
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77 =aexp{—/l[y—yo]}% ................... (4.5)

where the constants 0., A. and yo are determined empirically from the available profiling

data such as shown in figure 4.6. The curve in figure 4.6 was obtained by finding the

coefficients of a piece-wise polynomial that fits the scatter plot in a least-squares sense as

given in equation (4.6). From the piece-wise curve fit, a, A. and 70 can be determined.

10*exp [-0.0151*(7- 1)], “y S 152

Threshold = {

1.0, otherwise

 

  
  
 

(4.6)

12 F f T

‘* ¢ 1"
«p-

‘O' * *-

*+ ‘i *i‘ * ‘i *

-2 1

U 50 100 150 2(1) 250 3(1)

Ratio ofmaximum magnitude in R01 to baseline

Figure 4.6 Empirical relationships between optimum thresholds and ratio ofpeak to base

line voltages in ROI

The flaw length is estimated by multiplying the number of horizontal slices that contain

magritudes greater than the threshold with the axial scale (length units per horizontal

slice) to yield the flaw length in inches. A sample flaw length estimation process is
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shown in figure 4.7. The number of horizontal slices having magnitudes greater than the

computed threshold is averaged across frequency channels.
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Figure 4.7 Length estimation scheme. Left: vertical component of raw eddy current data

at 300 kHz with R01 indicated. Top right: Magnitude distribution in ROI with 29

horizontal slices. Bottom right: Binary image of thresholded ROI. Axial s an of the

effective ROI (corresponding to white pixels) ranges from the 8m to the 22n horizontal

slice making a total of 15 slices. Estimated length of defect equals 15 multiplied by the

axial scale (length units per horizontal line scan)

Current thresholding schemes employ statistical variance of data within the region

of interest for threshold computation. Typical threshold levels are set at 2 or 3 times the

standard deviation. However, this scheme becomes flawed if the dimension of region of

interest is not fixed. In the event that the ROI is selected manually in a semi-automated

length estimation scheme, the standard deviation of the signal magritude within the ROI

becomes dependent on the selected ROI size and, in turn, affects the flaw length estimate.

This process poses a poor repeatability strategy. On the other hand, the proposed method
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offers better repeatability as the maximum magnitude in the R01 is a constant. The base-

line voltage, however, can be made independent of ROI size by applying a two

dimensional median filtering operation in the signal pre-processing stage. Therefore, the

computation for y in equation 4.5 is a constant irrespective of the ROI size and, in turn,

yields a constant threshold. Figure 4.8 and 4.9 shows the effect of varying the size of the

ROI engulfing a defect signal indication using the conventional and proposed methods

respectively. In the proposed length estimation procedure, the number of horizontal slices

having magnitudes greater than the computed threshold is 13 in all four ROI’s selected.

In contrast, the lengths estimated by choosing the magnitude threshold to be twice the

standard deviation in the different ROIs are 11, 12, 12 and 13 in the order of increasing

ROI size.

 

510152025 10 2D 30

4.8 Effect of varying ROI size on length estimation using twice the standard

deviation in ROI as threshold



 

10 20 30 1o 20 an

4.9 Effect of varying ROI size on length estimation using proposed length

estimation scheme

4.7.2 Depth Profiling

The second step in defect characterization is depth profiling. After length estimation

process is completed, eddy current signals lying within the defect are used for defect

depth profiling. Each horizontal slice of the eddy current data in the 2D R01 is mapped to

a single depth value using a trained RBF neural network.

4.8 Training the Network

In order to optimize network performance, the network is trained using eddy current

data from laboratory-simulated flaws with the corresponding metallographic depth

profiles (MET). The training data provides consistent and accurate correspondence

between the measured magnitude or phase values and the depth values obtained from

metallographic examination. The regions of interests in the synchronized and calibrated

eddy current data are broken down into horizontal slices as shown in figure 4.8.
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Xi: [M300 M200 M100 P303 P200 P100]

   2‘:

. iii

Figure 4.10 ROI showing arbitrary feature vector structure

From each horizontal slice, the maximum absolute magnitude and its corresponding

phase value is computed across all available frequencies in the Plus-Point axial channel.

This feature vector arrangement is depicted in figure 4.8 where feature vector at slice i

Xi = [M300 M200 M100 P300 P200 P100] (4-7)

where M300, M200 and M100 represent the maximum magnitude per horizontal slice across

300 kHz, 200 kHz and 100 kHz respectively; P300, P200 and P100 represent the

corresponding phase value across 300 kHz, 200 kHz and 100 kHz respectively. The

phase in this context refers to the difference between 180° and the arctangent of the ratio

of the vertical amplitude to the horizontal amplitude both corresponding to the location of

the maximum magnitude in the horizontal slice in question. In other words, if a pair of

corresponding horizontal slices — N elements in length — in the vertical and horizontal

channels are denoted V and H, then the magnitude vector, M, is computed as

M =JV2 +17!2 .......... (4.8)
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Assuming the maximum absolute value in M, denoted as m, corresponds to the xth

element in the slice, then the phase, P, is computed as

P =180° - arctan(—;[[—:]]) ........... (4.9)

In this research work three magnitude and three phase values obtained at 300 kHz, 200

kHz and 100 kHz make up the feature vector for training.

The corresponding MET result for each region of interest is sampled or interpolated so as

to make the number of sample points consistent with the number of horizontal slices in

the region of interest in question. Figure 4.9 shows a sample MET result and the resized
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Figure 4.11 Original and modified MET result

version to be used for training the network. This resizing procedure can be defined

mathematically by the following procedure

0 Let the number of sample points in the original MET be X and let the number of

horizontal slices for flaw length estimation (obtain by thresholding the ROI) be Y.
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Then the length units for the modified MET will be sample points with ascending

values 0, (Y/X), 2 x (Y/X), 3 x (Y/X)... Y.

0 Assuming ND, 0D, NL and UL are the modified depth vector, original depth

vector, modified length vector and old length vector respectively The

corresponding depth values for the modified MET result is given by

[(0D(round(£)*(i+1))—0D(round(£)*i)*(NL(i)-0L(round(£)*i)]

ND(i) = Y Y Y X X —0D(round(£) * i)

0L(round(-;,—)*(i+1))-0L(round(—Y-)“i) Y

(4.10)

i= 1, 2 ....Y-l;

where “round(3;) ” rounds the ratio of X to Y to the nearest integer. Furthermore, if the

number of horizontal slices available for training is M, then the input feature matrix is an

M x 6 matrix that is mapped onto a l x M MET result array.

4.9 Training Parameters of RBFNN

The RBF neural network can be defined mathematically as [22]

i=P

y = sz‘fql x_ ti ”’07) + W0 ....... (4.9a)

i=1

where x is the input vector in R” and y is the output vector in R”. The hidden layer of

RBFNN consists of P centers of radial basis functions denoted as t,- , i = 1, P. f is a
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scalar valued radial basis function and the scalar quantity 0 is the spread or radius of the

ith center, t,-. w,- is the weight vector corresponding to the ith center.

The training of the RBFNN involves estimating the parameters wi, ti and oi (collectively

denoted as 9) from the available training data. 6) is defined as

G) = {(wiatiaai) I i =1,...,n} ...4.9b

The mapping of RBFNN can be compactly represented using the notation,

5" = f(x.-, 6).The objective of training is to minimize the squared error between the

predicted values and true values of y.-'s and can be denoted as [22],

. - 2

9 -m1n {H y.- - f(x; , 9) || } (4.10)
A

The minimization problem is typically highly ill conditioned and the solution is

regularized for each parameter separately using suitable constraints. Following sections

review training algorithms for estimating each parameter.

4.9.1 Selection of Centers of Basis Functions (ti) [22]

This involves the optimal computation of centers in training data clusters. Since the class

information is unknown prior to training the RBFNN, unsupervised clustering approaches

are used. The unsupervised clustering can be performed using number of approaches but

the K-means clustering approach is deployed in this research. K—means clustering is

extremely intuitive and simple algorithm and produces near optimal results in most cases.

However, it is sensitive to the starting point of the operation and incorrect selection of

starting point may result into bad clustering performance [22]. An Iterative Self-
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Organizing Data Analysis Techniques (ISODATA) clustering process as described in

[22] is an enhanced version ofK-means clustering.

4.9.2 Selection of Spreads or Radii of the Centers (03-) [22]

The determination of spread of each center can be done using the Iterative Self-

Organizing Data Analysis Techniques (ISODATA) algorithm described in [22]. This

algorithm computes the two critical properties that are useful in determining the spread,

which are: (1) Inter-cluster distances (yi's) and (2) Intra-cluster distances (si's).

The yi's and si's are defined as [22],

7,. = min{|| t, —tj ||,j =1,...,P;j at i},i =1,...,P

..........(4.12)
s, = max{|| x, —t,. 1|, j = i,...,P},z’ =1,...,P

yi's give information about the distance of the nearest neighboring cluster. When the

spread of a center is based on this parameter, the basis function covers the entire space

between all the neighboring clusters thereby providing a complete mapping of the input

space covered by the training data.

4.9.3 Computation of Weights (wi) [22]

In order to estimate the weights, the input feature matrix and the output MET results must

be known. Let the number of training samples be M. The input training data can be

represented in the form of a matrix X of dimensions M x 6 and output data can be

represented by a matrix Y of dimensions M x I. As described in [22], using the input

data, a radial power basis function, centers and their spreads the matrix of basis function

can be computed as,
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1

17031) = (II x, ‘1; H2 +1) 0’ ,l' = 19°": 11;} =1,---, P (4.13)

F has dimensions 6 x P. The RBFNN equation in matrix form can then be written as,

FW = Y (4.14)

The weight matrix W of dimensions P x M can be computed using the pseudo inverse of

matrix F and output matrix Y. However, direct use of pseudo inverse in an ill conditioned

problem results in an impractical solution. Hence there is need for using a regularization

procedure. The solution of equation 4.14 can be regularized using Landweber-Fridman

[27] type iterative algorithm. The details of this regularization scheme can be found in

[22]. This method is computationally quite efficient and also provides good

regularization performance. This scheme is used throughout this thesis. The next chapter

describes the experimental analysis and results for depth profiling using the calibration

curves and the RBF neural network.
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CHAPTER 5 Experimental Analysis and Results

5.1 Introduction

In this chapter, two variants of depth profiling schemes using the RBF neural

network are described. The first, referred to a RBFl, is implemented by mapping a six-

dimensional feature vector comprising three magnitude and three phase values (as

described in chapter 4) onto its corresponding a scalar depth value determined fiom

metallographic analysis. The second variant of the RBF approach, referred to RBF2,

maps the six dimensional feature vector onto a three dimensional output vector consisting

of a consecutive sequence of 3 depth values obtained fiom metallographic results. The

rationale for RBF2 is that knowledge of the depth information in the neighborhood of an

arbitrary horizontal slice may contribute to improve the depth estimation corresponding

to the same arbitrary slice. The performance of both methods is compared alongside the

results obtained from calibration curves. Figure 5 .1 shows a schematic of the overall

implementation of the depth profiling procedure using the RBFNN.

Calibrated ROI (training data) and

associated MET

 

Flaw Length Estimation

L

Feature Matrix Computation

l

Test Data —-} “3“? Length Neural Network

Estimation l

Predicted Depth Profile

   

 

   

 

 

 

   

   

Figure 5.1 Schematic of the overall approach using RBFNN
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5.2 Experimental Methodology

Using the length estimation procedure described in Chapter 4, a subset of the total

number of horizontal slices in the R01 is first obtained. This subset corresponds to the

horizontal slices vectors for which the maximum magnitude along its individual length

are equal or above the predetermined voltage threshold given by equation (4.5). By

multiplying the number of horizontal slices in this subset with the axial scale — given in

length units per slice — length of the flaw in inches is determined.

The peak magnitude and phase at multiple frequencies for each horizontal slice is

computed and entered in a feature matrix for training the network alongside the

corresponding MET depths values. A general mathematical representation for the RBFl

framework is given as

0(1) = R131"”1[X(j)] (5-1)

for X= [M300 M200 M100 P300 P200 P100] as defined in section 4.8, j is the current

observation; F and D denotes the feature vector and corresponding depth estimate

respectively; M100, M200, and M300 are the magnitude values computed at 100 kHz, 200

kHz and 300 kHz respectively; P100 P200 P300 are the phase values computed at 100 kHz,

200 kHz and 300 kHz respectively. For the RBF2 network, the general representation

using similar notation is given as

13(1) = RBFZIFU - 1), 17(1), F(J' +1)] (52)
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Figures 5.2 — 5.7 show the scatter plot of features magnitude and phase values obtained

from the training data at 300 kHz, 200 kHz and 100 kHz against the corresponding depth

from metallographic result. From inspection of Figs. 5.2, 5.4 and 5.6 it is apparent that

there exist some correlation between magnitude values and flaw depth. Similarly, by

inspection of Figs. 5.3, 5.5 and 5.7 it is evident that there exists some correlation between

phase values approximately ranging between 35 and 180 degrees and flaw depth at all

frequencies. This relationship is expected as the flaws analyzed in this research work are

outer diameter axial flaws.
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Figure 5.5 Scatter plot ofphase vs. depth for training sample at 200 kHz
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layer nodes. The power function is defined in equation (5.3)
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After defect length estimation, horizontal slices that contain magnitudes greater than

the threshold are used to compute the feature matrix and applied to train the RBFNN as

described in previous section [22]. The centers of the basis function are computed using

the Iterative Self-Organizing Data Analysis Techniques (ISODATA) algorithm, the radii

are computed using intra-cluster distance and the weights are computed using the method

of regularization described in Chapter 4. A power basis function is used in the hidden

—1

of the data is used for training and the remaining 30% is used for testing. Figure 5.8(a)-

 



(c) shows the profiling results obtained for three flaws — whose depth profiles have been

predetermined using metallographic techniques — using the classical magnitude

calibration curve approach (CC), log magnitude curve and the two RBF neural networks,

RBFl (one feature vector per depth) and RBF2 (three feature vector per depth). These

flaws were randomly selected from a database of similar flaws whose depth profiles have

been experimentally determined by metallographic analysis. This database is generally

referred to as the Examination Technique Specification Sheet (ETSS).
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Figure 5.8(a - 1) Comparison of metallographic flaw profiles with profiles

generated by different algorithms.

The RBF] and EBF2 networks are seen to consistently outperform the traditional

approaches. In order to compare the effective lengths and depths of defect profiles

generated using various techniques alongside the metallographic depth profile, the

Electric Power Research Institute has developed two standard indices namely

Burst Effective Length which provides an estimate of the effective length of a

defect.

Burst Effective Depth which refers to the effective defect depth.

Figures 5.9-5.11 shows the comparison of the burst effective depth and length for sample

profiles obtained using the RBF neural network and the corresponding metallographic

profiles.
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Figure 5.9 Top Lefi: two-dimensional representation of calibrated eddy current data

signal with arrow pointing to sample training flaw indication. Top Right: Metallographic

(MET) results plotted against neural network estimated depth profile. Bottom Left:

Structural Profiler showing Burst Effective Length and Depth of MET (in red). Bottom

Right: Structural Profiler showing Burst Effective Length and Depth of Estimated profile

(in red)
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Figure 5.10 Top Left: two-dimensional representation of calibrated eddy current data

signal with arrow pointing to sample training flaw indication. Top Right: Metallographic

(MET) results plotted against neural network estimated depth profile. Bottom Left:

Structural Profiler showing Burst Effective Length and Depth of MET (in red). Bottom

Right: Structural Profiler showing Burst Effective Length and Depth of Estimated profile

(in red)
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Figure 5.11 Top Left: two-dimensional representation of calibrated eddy current data

signal with arrow pointing to sample training flaw indication. Top Right: Metallographic

(MET) results plotted against neural network estimated depth profile. Bottom Left:

Structural Profiler showing Burst Effective Length and Depth of MET (in red). Bottom

Right: Structural Profiler showing Burst Effective Length and Depth of Estimated profile

(in red)
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Linear Regression Straight Line Fit

Slope=0.809, intercept = 16.886
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Figure 5.12(a) MET- Estimated Burst Effective Depth Correlation Statistics

Linear Regression Straight Line Fit

Slope=0.888, intercept = 3.837
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Figure 5.12(b) MET- Estimated Burst Effective Length Correlation Statistics
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From figures 5.12(a) and 5.12(b), the slope of the linear fit between the pool of

metallographic and estimated burst effective lengths and depths are approximately 0.93

and 0.94 respectively. This is an indication of a sufficiently trained neural network and an

efficient length estimation procedure. The result in figures 5.13(a) and 5.13(b)

respectively show the burst effective depth and length statistics for depth profile of test

flaws generated using the radial basis function neural network (RBFl) and the enhanced

magnitude calibration curve method.

 MET

BED,

  
   

y=0.8321x+l7.057

R2 = 0.8632
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R2 = 0.5808
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Figure 5.13(a) Performance statistics of RBF results on test data

y=0.4884x+0.166
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R2 = 0.7914       
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Figure 5.13(b) Performance statistics of enhanced magnitude calibration

curve results on test data
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The neural network outperforms the magnitude profiling procedure as the correlation

of the burst effective length and depth between MET and estimated neural network depth

profile are closer to unity as compared to magnitude generated results.

5.3 Uncorrelated Noise Removal in Eddy Current Data

The signal to noise ratio in eddy current data is a major factor that determines the

accuracy of a predicted flaw depth profile. As it would be expected, accurate depth

measurements are obtained when the signal to noise ratio of the test data is comparable to

the training data. This prompted a study of the relationship between estimated depth

measurements obtained from denoised eddy current data and estimates from

metallographic techniques. In this approach, the eigenvalues corresponding to the

covariance matrix of the R01 are determined and only significant eigenvalues are used to

reconstruct a relatively noise free data set. Using the Karhunen-Loeve transformation, the

eigenvectors corresponding to the two most significant eigenvalues of the ROI

covariance matrix was used to reconstruct a cleaner version of the noisy eddy current

data. Figures 5.14(a)-(d) and 5.14(e)-(f) show the surface plot of the absolute voltage

values for two samples of eddy current data collected using the plus point coil probe at

300 kHz and 200 kHz and the corresponding filtered version.

From experimental analysis, selecting the eigenvectors belonging to the two most

significant eigenvalues eliminates most of the uncorrelated signal within the R01.
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Figure 5.14(a) Magnitude values for noisy ROI in 300 kHz channel. (b) Filtered version.
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Figure 5.14(e) Magnitude values for noisy ROI in 300 kHz channel. (f) Filtered version
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Noisy 200 kHz channel
Filtered 200 kHz channel

 

Figure 5.14 (g) Magnitude values for noisy ROI in 200 kHz channel. (h) Filtered version

Although, the filtered eddy current data may appear better suited to do depth

profiling analysis, this is not necessarily the case. This is because the minimum and

maximum magnitude values (and therefore the corresponding phase) per line scan is

sometimes significantly altered in the denoising process and information about true depth

is lost as a result. The depth profiles generated by the trained RBF neural network for

both noisy and relatively noiseless data (which was obtained using the proposed

algorithm) for those shown above are shown in figures 5.15(a) and 5.15(b).
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Figure 5.15(a) Top Lefi: Noisy ROI, Top Right: Corresponding depth profile vs. MET

Bottom Lefl: Filtered ROI, Bottom Right: Estimated depth profile versus MET.
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Bottom Lefi: Filtered ROI, Bottom Right: Estimated depth profile versus MET.

In order to further investigate the impact of noise on feature computation, a

simulation of typical eddy current data was generated by injecting zero mean

uncorrelated noise into a sample with high signal to noise ratio. Features (magnitude and

phase) for each line scan in the 300 kHz channel was computed (see figures 5.17 and

5.18) and figure 5.16 shows a simulated magnitude distribution for different noise

variances.
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Figure 5.16 shows calibrated magnitude distribution in ROI’s corrupted

with zero mean noise having different levels of standard deviations (STD).
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Figure 5.17 Plot of magnitude values for each circumferential line

scan in ROI for various noise standard deviations.
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Corresponding Phase measured in Axial Direction versus Noise SD
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Figure 5.18 Plot of phase values for each circumferential line

scan in ROI for various noise standard deviations.

The efficiency of the proposed noise elimination method was investigated on the

test specimen. By introducing random uncorrelated noise with zero mean and different

variance levels into the ROI and the performing the denoising operation, the depth profile

for each of the resulting ROI was generated and compared with the MET profile. The

depth profiles for the uncorrupted ROI and the ROI’s in which random noise of lmown

variance is introduced are plotted in figure 5.19 alongside the MET ground truth data. By

inspection, it is observed that filtering the noisy ROI does not improve depth profiling

results using the RBF neural network.
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CHAPTER 6 Conclusions and Summary

The objective of this thesis is to develop a novel steam generator tube defect

characterization scheme by multi-dimensional interpolation of features from eddy current

data. The vehicle deployed in the interpolation process is a radial basis function neural

network which is trained by mapping signal magnitude and phase at different frequencies

and contiguous slices in a two-dimensional ROI onto a predetermined metallographic

depth profile (MET). Automation of depth profiling algorithms precipitated the

requirement for an accurate flaw length estimation procedure which has also been

developed in this project.

The performance of the defect depth profile and length estimation using the

enhanced magnitude calibration curve and the radial basis function neural network was

evaluated on 36 blind test data for which metallographic ground truth were available.

From a linear regression perspective, the burst effective depth (BED) and length (BEL)

obtained using the RBF network was more accurately correlated with the BED and BEL

of the MET — having a Pearson's co-efficient of regression of 0.8632 and 0.5808

respectively. On the other hand, the Pearson's co-efficient of regression for BED and

BEL using the enhanced magnitude calibration curve was 0.7914 and 0.5317

respectively. This demonstrates that the defect depth estimation procedure using neural

networks in conjunction with the length estimation scheme offer a more accurate

evaluation technique.
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The corruption of eddy current data by noise, however, degrades the performance

of the RBF network. This is largely due to the fact that the signal magnitude and phase

computed as input features to the network are significantly deviant from those computed

in training the network. Furthermore, the features values become more deviant from the

training pattern as the signal to noise ratio increases. Filtering noisy signals is not an

effective method for signal restoration since the feature information may be lost in the

process. However, at low noise levels fairly consistent defect depth profiles and lengths

are obtained when the novel defect characterization procedure is used. RBF] generally

performed better than RBF2 due to the significantly lower error achieved when

minimizing the squared error between the predicted depth values and true depth values

during the training stage (as described in equation 4.10) of RBFl as compared to RBF2.

This is expected when training with flaw signal indications with low signal to noise ratio

as is typical for flaw signal indications whose corresponding maximum depth is below

40% TW. Generally, the lower the signal to noise ratio, the lesser is the absolute

correlation between the signal vector and the corresponding depth value. Furthermore, it

is a possibility that the contribution of depth information from neighboring horizontal

slices in the ROI becomes less reliable as the signal to noise ratio decreases. This would,

in turn, yield more training error in RBF2 as compared to RBF].

Possible future work in this direction may include increasing the dimensionality

of the input feature vector space for depth prediction by using flaw signal indication with

significantly high signal to noise ratio and mapping four or more contiguous horizontal

slices in the R01 to a depth value. In addition, training the RBF] and RBF2 neural
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network with a larger database of flaw signal indications may yield more accurate depth

profile estimates for a wider range of degradation types. Another potential application of

the RBF neural network in depth profile estimation is to assist in the examination of

cracks in other components of the steam generator such as the reactor vessels and their

internal core shrouds as there have been several instances of cracking in these

components [32]. Furthermore, training the RBF neural network for estimating depth

profiles for other flaw types and degradations such as pitting, inter-granular attack and

dents are directions worth exploring.
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