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ABSTRACT

MODELING AND CONTROL OF ATOMIC FORCE MICROSCOPE FOR IMAGING

USING HIGH ORDER HARMONIC MODES

By

Chinwe Pamela Nyenke

This research assesses the imaging of specimen surface features using higher flexural

modes associated with the oscillation of the atomic force microscope (AFM) cantilever.

A computer simulation based on the Euler—Bemoulli Beam Equation is designed to

measure variations in the oscillation amplitude due to variations in the specimen surface.

The results are then compared to those of an experiment employing a real AFM and lock-

in amplifier. Both simulation and experimental results demonstrate that examining

higher modes yields more accurate information about a specimen surface property —

particularly elasticity and t0pography — which is consistent with previous studies. More

importantly, this research achieves improved sensitivity to surface information in lower

modes when exciting the cantilever at a higher resonance frequency. The latter finding

eliminates the need to extract and enhance the amplitude of higher modes, which are

magnitudes smaller and consequently more difficult to measure and analyze.
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1. INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

The atomic force microscope (AFM) is an instrument used to characterize a specimen on

the scale of a few nanometers. It consists of a cantilever-tip ensemble which moves

across the specimen surface while responding to attractive and repulsive forces

underneath the tip (see Figure 1). As the cantilever bends in reaction to these forces, its

deflection is measured by means of a laser beam reflected from the top of its free end

onto a photodetector. This measured deflection is then used to adjust the height of the

piezotube scanner and thus move the specimen closer to (or further from) the cantilever

in order to maintain a constant desired force between the tip and surface. In some cases,

piezoresistive cantilevers are used, as opposed to lasers and photodetectors; the

piezoresistive element acts as a strain gage to detect the cantilever deflection.

  

   

   

. photodetector

cantilever

specimen

piezotube "

scanner

Figure 1. Illustration of cantilever-tip ensemble, photodetector, laser, specimen and

piezotube.



The AFM is operated in one of three modes — contact, non-contact, and tapping —

depending on the type of specimen being examined. In the contact mode, the cantilever

tip is dragged across the surface such that only repulsive forces are present between the

tip and specimen. The non-contact mode operation requires the cantilever to be oscillated

at or near its resonance frequency while the oscillation amplitude is modified by

attractive forces. (In this latter operation, a soft specimen can be scanned without

dragging the tip across the surface and potentially damaging the specimen or tip.) The

tapping mode combines the benefits of both contact and non-contact by allowing for

high-resolution scanning and manipulation of soft specimen with minimal damage,

respectively. Because of its advantages, this last operation is commonly used when

investigating material properties.

The cantilever’s oscillation during the tapping mode has typically been modeled as a

point-mass system, which only considers the first harmonic. However, because it is

actually a superposition of multiple flexural modes, researchers have questioned whether

ignoring the contribution of higher harmonics results in a loss of valuable information

about a specimen surface [1]-[2]. One of the current research areas in atomic force

microscopy is to obtain more accurate information about the surface properties of a

specimen using these higher modes, which may in turn improve imaging.

1.2 BRIEF OVERVIEW OF PREVIOUS WORK

Several studies have already demonstrated advantages to analyzing the higher harmonics,

including increased image contrast and improved sensitivity to certain surface features,



such as the elastic modulus and height variation [1]-[8]. One common setback among

these studies is that the amplitudes of these harmonics are magnitudes smaller than that of

the first mode and, thus, require enhancement [1], [3] or implementing another method to

improve measurability. Little has been done with exciting these higher modes such that

the lower modes, which have larger magnitudes, can be used for analysis instead [4].

1.3 BRIEF SUMMARY OF PROPOSED PROJECT

Like previous studies, this one assesses the effect of using higher harmonics to image a

specimen surface. More importantly, this study investigates the effect of exciting these

higher modes such that lower ones may be used for detection of these properties as well.

Any significant improvements in imaging that may be achieved when examining the

higher modes can have serious implications for the analysis of DNA strands, protein

peptides, polymer films, carbon nanotubes, and other structures in nanotechnology-

related fields. Should the lower harmonics present comparable improvements, the

finding would be vital in reducing the need to extract and enhance the small amplitudes

ofhigher harmonics.

The objective of this project is to use a computer simulation to measure and compare the

sensitivity of multiple modes to specimen surface information. An actual AFM is then

employed to verify the results of the computer simulation study. The approach is to

model the cantilever as an elastic beam, record changes in the oscillation amplitude using

various harmonics, and assess the level of sensitivity to specimen properties via these

changes.



1.4 ORGANIZATION OF THE THESIS

This paper presents a review of literature on previous research in Section 2; an

explanation of the tapping mode and infinite dimensions of the cantilever motion in

Section 3; a description of the AFM computer simulation, including results and

discussion, in Section 4; a description of the experiment performed with an actual AFM,

including results and discussion, in Section 5; a conclusion of the project and ideas for

future work in Section 6; an appendix of simulation code and further results in Section 7;

and a list of references used for this research in Section 8.



2. LITERATURE REVIEW

There has been speculation that modeling the cantilever as a point mass, or a system with

only one vibration mode, potentially limits the accuracy of information obtained about a

given specimen surface. Thus, researchers are beginning to consider the higher

harmonics that contribute to the cantilever motion during the tapping mode. By

understanding that this motion is a ‘superposition of several eigenmode vibrations’ [1]-

[2], such properties as surface stiffness and topography may be detected more accurately.

Recent work by several researchers demonstrates that analyzing the higher modes of the

cantilever motion may improve sensitivity to certain specimen properties that might

otherwise go unnoticed when analyzing the first mode alone.

Hillenbrand, M. Stark, R. W. Stark, and Heck] have all investigated the use of higher

modes to increase image contrast. Hillenbrand and M. Stark collaborated to evaluate the

detection of tip-specimen interaction variations on an etched silicon wafer. Their results

demonstrated that higher harmonics, particularly the 13th, are more sensitive to

deviations in the time and strength of tip-specimen interaction and, thus, to deviations on

the wafer surface [5]. A few years later, R. W. Stark refined the findings of this previous

study by determining that variations in specimen topography and elasticity are accurately

detected by the 8th and 13th mode, respectively [6]. One minor shortcoming in both

references is that the experimental data is mainly qualitative; visual comparisons of

distinctions in image results are used to assess the sensitivity of each harmonic to

specimen properties. R. W. Stark attributes the lack of quantitative data in his work to

the low bandwidth of the lock-in amplifier equipment which limited the ability to



measure the small amplitudes of the higher harmonics. Nevertheless, both references

show increased image contrast when looking beyond the first vibration mode.

Higher harmonics have yielded improvements in areas beyond image contrast as

demonstrated in studies by Sahin, Rodriguez, and Garcia. Sabin reveals that hard and

soft samples can be investigated more accurately with the 24th and 8th harmonic,

respectively [1]. Unlike R.W. Stark, he obtains more quantitative results and examines

the detection of elasticity (rather than the detection of variations in elasticity) for a given

specimen. However, in order to accomplish this task, Sahin implements a method of

using specially-designed cantilevers to enhance the small amplitude signals of higher

modes. Meanwhile, Rodriguez and Garcia show that the second harmonic can detect

very small force variations such that they are then able to sense changes in the atom and

molecule composition of the specimen [7]. This work seems inconsistent with that of

R.W. Stark, Hillenbrand, and Sahin, who all suggest that modes below the 8th omit

valuable information about material properties. However, Rodriguez and Garcia present

thorough quantitative data demonstrating that the second mode is sufficient, at least in

detecting the atom and molecule composition by determining the Hamaker constant.

Additionally, the two researchers avoid implementing a method to measure higher mode

amplitudes since they only examine the first two harmonics.

The general results of the literature demonstrate advantages in exploiting the higher

modes but also reveal a challenge in measuring the small amplitudes (or high frequency)

of these modes. For this reason, this research involves the investigation of using lower



modes to detect specimen properties when exciting the cantilever at a higher resonance

frequency. It is believed that these lower modes, which have larger amplitudes, can then

be used for analysis. The advantages of examining higher modes are also investigated

further in this research. Similar to Rodriguez and Garcia, few harmonics are used and

shown to be sufficient. Unlike previous works, this project provides more experimental

results.



3. MODELING OF AFM TAPPING MODE

3.1 INTRODUCTION TO TAPPING MODE

 
Figure 2. AFM image of an electrode during the tapping mode.

During the tapping mode, the cantilever is oscillated at or close to its fundamental

resonance frequency, causing the tip to touch the specimen surface intermittently. The

oscillation amplitude is used as feedback and compared to a desired constant amplitude

set by the operator. Any error between the actual and desired amplitudes results in an

adjustment of the piezotube scanner height and thus an adjustment in the tip-specimen

separation. The error may be induced by a bulge or depression in the specimen surface

which causes the oscillation amplitude of the cantilever to change in size. Figure 2 shows

a tapping mode image obtained while scanning an electrode in this project.



During the tapping mode, the tip-specimen interaction force enters two attractive and

repulsive regimes. In the attractive regime, the tip is far enough from the specimen

surface that van der Waals’ forces dominate while, in the repulsive regime, the tip is

close enough to the surface such that Pauli and ionic repulsive forces dominate. On the

nanometer scale, a small layer of condensed water vapor is present on the specimen

surface and allows for capillary forces to also exist.

3.2 INFINITE DIMENSION MODEL

 
 

 

 

 
\ 

Figure 3. The cantilever dimensions: A = area = WH.

The cantilever was modeled as a long, slender linearly elastic beam with a uniform cross-

section and small deformations (see Figure 3). Because of these and other modeling

assumptions, the Euler-Bemoulli Beam Equation was appropriately applied to calculate

the deflection w of the cantilever. The equation which describes the deflection is



2 2

9—[51—6WOW] = p, (1)

6x2 6x2

where E is the Young’s modulus of the cantilever, I is the area moment of inertia, and p is

the'end load. Assuming that E and I are constant along the length of the cantilever, the

above equation simplifies to

4

516 wow) z p
a 4 (2)
x

Since the end load p (e.g., tip-specimen interaction force) causes the cantilever to vibrate,

it can be expressed using the Newton-Euler equation

2

p =—pAa—W(—:’-Q, (3)
6x

where the area A and linear mass density p, are assumed to be constant along the length

of the cantilever. Combining Equations (2) and (3) produces the following

4 2
E16 w(x,t)+pAd w(x,t) :

0 (4)

6x4 6x2

The initial conditions for the cantilever are

10



6w(x,t)
M/(x,t):0|t:0, Tlt=0=0 (5)

Additionally, the fixed end of the cantilever must have zero deflection and velocity at all

times. The free end should not have a bending moment or shearing force. Thus, the

boundary conditions are

_ 3W(x,t) _

w(xat)Ix:O-' 0’ Tlx=0_ 0: (6a)

62w(x t) 531905 3)
EI——2—’—| _L=0, EI—3—’——| _L=0 (6b)

6x x— 6x x—

To solve Equation (4), the separation of variables method is used. We first guess that

w(x,t) can be separated into two independent variables as follows

W(x, t) = ¢(x)q(t), (7)

where one depends on space and the other on time. Plugging this solution into Equation

(4) yields

4 2

E, a (¢(x)q(t» +m a woman z 0

6x4 0x2

(8)9

Consequently, the general solution for ¢(x) is (6):

11



¢(x) = A sin(kx) + B cos(kx) + C sinh(kx) + D cosh(kx), (9)

where k = pA /(E1)a)2 . While using the boundary conditions to find the coefficients A,

B, C, and D, the following frequency equation is obtained

cos(kL) cosh(kL) = —1, (10)

There are an infinite number of k values that satisfy Equation (10) such that

a). = k.2 IE, 1': l,2,3,...,oo, (11)
I l pA

where (0,- is the eigenfrequency of the ith mode. For each value ki, there exists a (15,-, and

thus a characteristic vibration w,-

wl.(x. t) = ¢,.(x)q,.(t). (12)

The general solution to Equation (4) is a sum of the infinite number of characteristic

vibrations

awkzgmma (m
i=1

12



Thus, by Euler-Bernoulli Beam Equation it is shown that the cantilever vibrates at infinite

resonant frequencies simultaneously, rather than at a single frequency. During the

tapping mode, the forces (driving and tip-specimen interaction) that act on the cantilever

tip require a modification of Equation (4) to

62w(x,t) _64w(x,t)

+ 2 ‘ drivinax g

E]

6x4

cos (or + F(t)pA (14)
tip — specimen”

The tip-specimen forces are primarily attractive and repulsive, as described in Section

3.1. When the tip-specimen instantaneous separation d is larger than the intermolecular

distance a0, attractive forces are present and modeled as

F(O,d)ts = ——HR (‘5)

6(d2)’

where H is the Hamaker constant and R is the radius of the tip. When d is smaller than

a0, or when the tip is relatively close to the specimen surface, the attractive forces are

now modeled as

HR

6(a02)

 F(O,d)ts = - (16)
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using the Derjaguin—Mfiller-Toporov (DMT) model [9]. In this region, repulsive forces

are also present and represented with the following equation

HR

6( 2)

 _ 4 . _ 3/2
F(0,d)tS—- +§EJR(aO d) (17)

“0

using DMT. The repulsive forces become dominant when d is smaller than a0

The solution to Equation (14) is still a superposition of infinite vibrations but the forces

are now factors of q(t). The cantilever dimensions in this experiment are: H = 4um, W =

35um, L = 120 um, and E = l3OGPa. The tip radius R is 20nm and its height is

negligible.

3.3 MODE VERIFICATION

An accurate measurement of the cantilever’s fundamental resonance frequency is

necessary for correct determination of the specimen properties during the tapping mode

operation. The manufacturer typically attaches a nominal fundamental frequency f1 to

each AFM cantilever which may be a few percentages off the actual value. As a result, f1

must be calibrated.

l4



For this project, the Nanoscope 111 Tuning Software was used to calibrate fI (SOkHz) for

the cantilever in the AFM experiment. The cantilever was driven at a range of

frequencies close to fI and the frequency response was recorded with the software. The

frequency that yielded a response with the largest amplitude was then assumed to be the

actual fundamental resonance frequency. For this project, that value was 51 .6kHz. The

same procedure was applied to the nominal second resonance frequency, which was

210kHz; the actual value was approximately 208.8kHz.

15



4. COMPUTER SIMULATION STUDIES

4.1 SIMULATION PACKAGE

A simulation package (Veeco Company) of the atomic force microscope during the

tapping mode was used. The simulation code, which originally modeled the cantilever

motion as a point-mass, was modified to account for infinite flexural modes. Tests were

performed in Simulink, a platform developed by Mathworks for the simulation of

dynamic systems. All tests were run on a personal computer.

Figure 4 shows a diagram of the AFM control-loop model that was run in Simulink; the

cantilever block contains the software that calculates the multiple modes based on the

Infinite Dimension Model in Section 3.2. (See Appendix for code.) The setpoint

amplitude is a constant amplitude set by the user during a closed loop simulation of the

tapping mode. The error signal between this setpoint amplitude and the actual oscillation

amplitude of the cantilever is amplified by a gain and ultimately used to adjust the height

of the holder position. The results in this project were obtained while running open-loop

simulations of the tapping mode; the actual cantilever oscillation amplitude was

monitored while the holder position remained unadjusted.

l6
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Figure 4. Control loop model of the AFM tapping mode system in Simulink

4.2 SIMULATION RESULTS

Results were obtained and compared for a point-mass and elastic-beam simulation of the

cantilever motion. For the point-mass model, the simulated cantilever was driven at the

first resonance frequency and only the first harmonic was analyzed. During the elastic-

bearn simulation, the first three harmonics were analyzed while the cantilever was first

driven at the first resonance frequency and then at the second resonance frequency.

Thus, three total simulations were actually performed: point-mass, elastic-beam while

excited at the first resonance frequency, and elastic-beam while excited at the second

resonance frequency. The accuracy of the point-mass and two elastic-beam models was

investigated by running three simulation scenarios: 1) a variation in sample stiffness, 2) a

17



variation in sample topography, and 3) multiple variations in sample topography. One

variable, the cantilever oscillation amplitude, was measured during each simulation. The

resulting measurements were used to evaluate sensitivity to changes in specimen stiffness

and topography as well as determine imaging accuracy.

4.2.2. Response to Change in Sample Stiffness

A 2-millisecond single-line scan simulation of the cantilever was performed on a

computer-generated specimen having a Young’s modulus of 7OGPa, or constant stiffness.

The same simulation was then performed as the Young’s modulus was adjusted to 20GPa

after 0.8 milliseconds of scanning and reset to 7OGPa after 1.2 milliseconds to replicate a

momentary change in sample stiffness. The same procedure was lastly performed for an

adjustment to 2Pa to replicate a more significant change in sample stiffness. Figure 5

illustrates these changes in Young’s modulus. In all cases, the fixed end of the cantilever

(holder position) was set to Onm while the specimen was simulated as flat surface with a

constant height of -4nm, or 4nm below the holder position.

18



Figure 5. Variations in the Young’s modulus of a specimen
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Figure 5 continued.

During the point-mass simulation, the sinusoidal driving force amplitude was set to 95nm

which yielded a maximum oscillation amplitude of 8nm such that the cantilever would

barely tap the flat specimen surface. This was done so that the height of the specimen

would not interfere with the results of this simulation. The results of the point-mass

simulation in Figure 6 demonstrate that there is no change in the oscillation amplitude as

the Young’s modulus remains constant, which is expected. In Figures 7 and 8, the

cantilever’s oscillation amplitude again remains unchanged while the stiffness decreases

in the center of the specimen. Thus, the variations in sample stiffness were not detected

using the first mode alone.
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Figure 6. Point-mass model: tip displacement while scanning a sample of constant

stiffness (7OGPa).
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Figure 7. Point-mass model: tip displacement while scanning a sample of varying

stiffnessg(20-70GPa).
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Figure 8. Point-mass model: tip displacement while scanning a sample of varying

stiffiiess (2Pa-7OGPa).
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In order to evaluate the elastic-beam model, the first three flexural modes were extracted.

The tip response was first recorded while driving the cantilever at the first resonance

frequency for each of the three Young’s modulus values. The driving force amplitude

remained set at 95mm. The results in Figure 9 show that the amplitudes of each of the

modes remain steady as the stiffness of the specimen remains constant, which is

expected. In Figures 10 and 11, while the stiffness decreases in the center of the

specimen, the mode amplitudes again remain unchanged. Despite the fact that three

modes are now analyzed instead of one, the variations in surface stiffness continue to go

undetected. (Note how in Figures 9-11, the first mode amplitudes for each of the three

Young’s modulus values are identical to those of the point-mass model, as expected.)

24



Figure 9. Elastic-beam model, cantilever driven at the lst mode: tip displacement while

scanning a sample of constant stiffness (7OGPa).
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Figure 9 continued.
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Figure 10. Elastic-beam model, cantilever driven at the lst mode: tip displacement while

scanning a sample of varying stiffness (20-7OGPa).
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Figure 10 continued.
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Figure 11. Elastic-beam model, cantilever driven at the lst mode: tip displacement while

scanning a sample of varying stiffness (2Pa-7OGPa).
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Figure l 1 continued.

In the second simulation for evaluating the elastic-beam model, the cantilever was driven

at the second resonance frequency for each of the three Young’s modulus values. The

driving force amplitude was increased to 660nm to achieve the same oscillation

amplitude of 8nm for the driven mode as in the previous simulations. While the Young’s

modulus remains a constant 7OGPa during scanning, all three mode amplitudes in Figure

12 remain steady. However, when the specimen stiffness decreases momentarily to

ZOGPa, there is a visible change in the first mode amplitude (see Figure 13). When the

Young’s modulus decreases to 2 Pa, this amplitude change becomes more significant and

a slight amplitude variation begins to appear in third mode (see Figure 14).
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Figure 12. Elastic-beam model, cantilever driven at the 2nd mode: tip displacement

while scanning a sample of constant stiffness (7OGPa).
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Figure 12 continued.
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(0) third mode
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Figure 13. Elastic-beam model, cantilever driven at the 2nd mode: tip displacement while

scanning a sample of varying stiffness (20-7OGPa).
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Figure 13 continued.
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Figure 14. Elastic-beam model, cantilever driven at the 2nd mode: tip displacement

while scanning a sample of varying stiffness (2Pa-7OGPa).
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Figure 14 continued.

4.2.2. Response to Change in Sample Topography

For this scenario, a 2-millisecond single-line scan simulation was performed on a

computer-generated flat specimen surface with a constant height of -22.7nm (i.e., 22.7nm

below the holder position). The height was chosen to give the cantilever ample room to

move and reach its maximum oscillation amplitude of 8nm. A simulation was then

performed on a specimen surface that was adjusted to -4.5nm afler 0.7 milliseconds of

scanning and reset to -22.7nm after 1.4 milliseconds to replicate a momentary change in

specimen height. The procedure was repeated for surface height adjustments to -4nm and

42



Onm. Figure 15 illustrates these four computer-generated specimen surfaces. All

simulations were run using a sample of constant stiffiiess (7OGPa) and a cantilever holder

fixed at Onm.
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Figure 15. Variations in sample topography.
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Figure 15 continued.
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In order to evaluate the point-mass model, a simulation was performed on the four

samples shown in Figure 15 while extracting only the first mode of vibration. The results

in Figure 16 show a steady oscillation amplitude as the specimen surface remains flat,

which is expected. In Figure 17, the amplitude remains fairly constant despite the

presence of a slight bulge on the specimen surface. It is only when the bulge is large

enough to restrict the tip displacement that the oscillation amplitude decreases (see Figure

18); this occurs when the separation between the bulge and the cantilever’s rest position

is 4nm. As the bulge on the specimen surface increases in height, the first mode

oscillation amplitude changes more significantly. When the bulge height is Onm, or at the

same height as the cantilever’s rest position, the amplitude is approximately zero because

the cantilever is entirely obstructed and unable to vibrate (see Figure 18).
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Figure 16. Point-mass model: tip displacement while scanning a flat sample surface

(height of -22.7nm).
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Figure 18. Point-mass model: tip displacement while scanning a varying sample surface

height (-22.7nm to -4nm).
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In order to evaluate the elastic-beam model, the first three flexural modes were extracted.

In the first simulation, the cantilever was driven at the first resonance frequency and the

oscillation amplitude was recorded for each mode during each variation in surface height.

In Figure 20, the results show steady mode amplitudes when scanning a flat sample

surface as expected. However, the second and third mode amplitudes become

increasingly sensitive to changes in surface height starting at -4.5nm (see Figures 20-23).

The first mode amplitude is only affected when the tip starts to impede the surface at 4nm

below the holder position, as in the case of the point-mass simulation. Amplitude

changes in all three modes are most significant when the surface is at the same height as

52



the cantilever holder. (Note that the amplitudes of the undriven modes — second and

third — are magnitudes smaller than that ofthe driven, or first, mode).
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Figure 20. Elastic-beam model driven at lst mode: tip displacement while scanning a flat

sample surface (-22.7nm).
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Figure 20 continued.
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Figure 21. Elastic-beam model driven at lst mode: tip displacement while scanning a

varying sample surface height (-22.7nm to -4nm).
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Figure 21 continued.
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Figure 22. Elastic-beam model driven at lst mode: tip displacement while scanning a

varying sample surface height (-22.7nm to -4.5nm).

60

 



a
m
p
l
i
t
u
d
e
(
m
)

 

x 10'9

5
j

11111111W 111111

O

1.11 

 

:111111111 111111111111111111,111111111111

 

- 0 0.2 0.40.6 0.8 1 1.2 1.4 1.6 1.8 2

 

 

 

 
 

.
a
m
p
l
i
t
u
d
e
(
m
)

  
 

time (s) x 10-3

(a) first mode

x 10‘“

" 1 1 1 1 1 l- 1 1 1

2- 1

0

2 __

1 l 1 1 1 1 1 l 1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time (s) x 10-3

(b) second mode

61



x 10"2
 

‘1

111

1111111111111 11 1‘ 11 11 1 111 11 '1 1111111111111‘ 11‘ “1‘11‘ 1‘ 11|1 11 1111 11111111111111 11111111111111

   
a
m
p
l
i
t
u
d
e
(
m
)

0

‘1 l1‘1~ ‘1‘ 111‘ ‘1 1‘ l1l1 11‘1111;;1 1 l11 11111111 121111

 

l l l l l 1 l l l-4
 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

(c) third mode

Figure 22 continued.
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Figure 23. Elastic-beam model driven at lst mode: tip displacement while scanning a

varying sample surface height (-22.7nm to Onm).
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Figure 23 continued.

In a second simulation for evaluating the elastic-beam model, the cantilever was driven at

the second resonance frequency during each of the four sample height variations. When

the sample surface is flat, the amplitude of each the three modes remains steady as

expected (see Figure 24). However, the first and third mode amplitudes show an

increasing sensitivity to changes in surface height (see Figures 24-27). In Figure 25, the

first mode is able to detect the surface height adjustment of 4.5nm below the holder

position. Amplitude changes are significant in both the first and third modes and barely

visible in the second mode when the surface height is adjusted closer to the cantilever at 4

mm below the holder position (see Figure 26). In Figure 27, amplitude changes in all
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three modes are most significant when the surface is at the same height as the cantilever

holder. During each sample height variation, the amplitudes of the undriven modes (first

and third) are again magnitudes smaller than that of the driven mode (second).
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Figure 24. Elastic-beam model driven at 2nd mode: tip displacement while scanning a

flat sample surface (-22.7nm).
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Figure 24 continued.
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Figure 25. Elastic-beam model driven at 2nd mode: tip displacement while scanning a

varying sample surface height (-22.7nm to -4.5nm).
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Figure 25 continued.
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Figure 26. Elastic-beam model driven at 2nd mode: tip displacement while scanning a

varying sample surface height (-22.7nm to -4nm).
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Figure 26 continued.

75



Figure 27. Elastic-beam model driven at 2nd mode: tip displacement while scanning a

varying sample surface height (-22.7nm to Onm).
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Figure 27 continued.

4.2.3. Multiple Changes in Sample Topography

For the following simulation, the mode amplitude that was most sensitive to variations in

specimen topography for each model was recorded. A 2-millisecond single-line scan

simulation was performed on a computer-generated sample surface consisting of a bulge

and depression in the topography. The specimen height was adjusted to -4nm midway

through scanning, which was the point at which the tip tapped the surface in previous

simulations. The sample was then heightened to ~2nm to replicate a bulge and lowered to

-6nm to replicate a depression in the surface (see Figure 28).
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For the point—mass simulation, the cantilever was driven at the first resonance frequency

while the first mode amplitude was recorded. The results in Figure 28 illustrate that the

depression at -6nm is barely detectable. The amplitude change at the bulge is

approximately -57% while that at the depression is approximately 29%.
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Figure 28. Point-mass model: bulge and depression in sample surface.
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The cantilever was then driven at the first resonance frequency while the second mode

amplitude was recorded. As seen in Figure 29, the second mode is more sensitive to

variations in sample topography. The amplitude during the bulge is more than 20 times

the original amplitude; however, it quickly decays to a negligible size. Meanwhile, the

amplitude during the depression is half the size of the original amplitude but is barely

detectable.
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Figure 29. Elastic-beam model driven at lst mode: bulge and depression in sample

surface and 2nd mode amplitude.
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A second elastic-beam simulation was performed in which the cantilever was driven at

the second resonance frequency while the first mode amplitude was recorded. The results

in Figure 30 show that the first mode is even more sensitive to multiple variations in

sample topography. The amplitude change during the bulge is well more than 75 times

the original amplitude initially; it then quickly decays to a steady 30 times. The

amplitude change during the depression is barely noticeable since the cantilever is still

recovering after having left the bulge.
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Figure 30. Elastic-beam model driven at 2nd mode: bulge and depression in sample

surface and lst mode amplitude.
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4.3 DISCUSSION

4.3.]. Response to a Change in Sample Stiffiiess

The point-mass simulation, which considers the first mode alone, is unable to detect the

changes in surface stiffness. For the elastic-beam simulation in which the cantilever is

driven at the first resonance frequency, the first three modes are all also unable to detect

such changes. Both simulation results are consistent with studies in which the 8th

harmonic, at a minimum, is necessary to sense surface stiffiiess variations.

The elastic-beam simulation in which the cantilever is driven at the second resonance

frequency, on the other hand, detects the variations in surface stiffness. The first mode is

significantly more sensitive to these variations than the third mode. This latter result may

be due to the fact that the cantilever is more flexible, and thus easier for surface forces to

excite, at lower harmonics. The second mode, however, is unable to detect any of the

changes in surface stiffness. Since the cantilever is driven at the second resonance

frequency, the amplitude of the second mode is dominated by the driving force

amplitude.

4.3.2. Response to a Change in Sample Topography

When the cantilever is driven at the first resonance frequency, the second and third

modes of the elastic-beam simulation are more able to detect changes in sample

topography than the point-mass model. This result is consistent with theoretical and

experimental studies demonstrating that certain sample surface information may be
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omitted when examining the first mode alone. Additionally, the second mode of the

elastic-beam simulation is more sensitive than the third. This observation is again

consistent with the cantilever being more flexible and, thus, easier to excite at lower

harmonics.

Meanwhile, for the elastic-beam simulation in which the cantilever is driven at the second

resonance frequency, the second harmonic is least sensitive to sample topography

variation. This result is due to the fact that the oscillation amplitude of the second mode

is dominated by the driving force amplitude, as was the case in sample stiffness variation.

The first and third modes are more able to identify the surface topography changes. The

first mode, however, is more sensitive to these changes since the cantilever is more

flexible at lower harmonics.

4.3.3. Multiple Changes in Sample Topography

The point-mass simulation is again least sensitive to the variations in sample topography.

Though the elastic-beam simulation was more sensitive to these variations, when the

cantilever was driven at the fundamental resonance frequency, the amplitude change of

the higher (second) mode was difficult to distinguish over the depression in the specimen

surface. When the cantilever was driven at the second resonance frequency, the first

mode sensitivity was magnitudes greater than the second mode in the previous run. This

result is consistent with the theory that lower modes are more responsive to changes in

the sample surface since the cantilever is more flexible, and thus easier to excite, at these

lower modes.
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5. EXPERIMENT IMPLEMENTATION AND TESTING

5.1 DESCRIPTION OF EXPERIMENT IMPLEMENTATION

An atomic force microscope with a DMASP active probe (Veeco Instruments) was used

to verify the sample topography results obtained in the computer simulations. The

specimen in this experiment was an electrode on a silicon substrate and its height was

approximately 30nm. The first mode amplitude of the cantilever was measured by a DSP

lock-in amplifier (Stanford Research Systems, l02 kHz bandwidth). Nanoscope (Veeco),

which is a program that records images of the sample height and second mode amplitude,

was modified to also generate an image of the first mode amplitude. The cantilever

(probe) holder was fixed at a height of approximately 4nm above the specimen surface.

5.2 EXPERIMENTAL RESULTS

The cantilever was driven at the first and second resonance frequencies. Images of the

specimen height, first mode amplitude, and second mode amplitude were generated while

the second mode was used as a feedback signal. (The AFM was designed by Veeco to

use the second mode vibration as feedback.) The results show that when the cantilever is

driven at the first resonance frequency, the first and second mode amplitudes are almost

indistinguishable (see Figure 31). However, when the cantilever is driven at the second

resonance frequency (see Figure 32), the specimen surface features are more visible in

the first mode amplitude than the second mode. Moreover, a comparison of the first

mode amplitudes in Figure 31b and in Figure 32b reveals that the first mode displays
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more features via the dark spots when driving the cantilever at the second resonance

frequency (see Figure 32b).

 

(a) (b) (C)

Figure 31. Image results while exciting the cantilever at the 1st mode. (a) height

information, (b) first mode amplitude, (0) second mode amplitude.

 

(a) (b) (C)

Figure 32. Image results while exciting the cantilever at the 2nd mode. (a) height

information, (b) first mode amplitude, (c) second mode amplitude.
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5.3 DISCUSSION

The first harmonic is more sensitive to specimen features when the cantilever is driven at

the second frequency as opposed to the first. This result confirms the computer

simulation study results in Section 4.2.2; when the cantilever is driven at a higher mode

resonance frequency, the lower modes (in this case, the first mode) become sensitive to

changes in the surface topography. However, it is difficult to tell whether driving the

cantilever at the second resonance yields significantly better results as determined in

Section 4.2.3 given the nature of the image results.
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6. CONCLUSION AND FUTURE WORK

6.] CONCLUSION

Simulation results demonstrate that examining higher modes yields more accurate

information about a specimen surface — particularly elasticity and topography — which is

consistent with previous studies. More importantly, this research achieves improved

sensitivity to surface information in lower modes when exciting the cantilever at a higher

resonance frequency.

The latter finding presents a potential alternative to extracting and enhancing the

amplitudes of higher modes, which are magnitudes smaller and consequently more

difficult to measure and analyze. By investigating lower modes instead, accurate

specimen surface information can still be obtained while avoiding the implementation of

amplitude enhancement. The findings of this research suggest improved imaging of

specimen with varying surfaces, which is beneficial in the analysis of polymer films,

DNA strands, semiconductor materials, and other samples in nanotechnology-related

research.

6.2 FUTURE WORK

Future studies may investigate a wide range of topographically varying specimen while

driving the cantilever at the first and second resonance frequencies. Image comparisons

may then reveal more concrete experimental evidence as to the benefit of examining

lower mode amplitudes while driving the cantilever at a higher mode frequency. Also,
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development of a high bandwidth lock-in amplifier may be explored to better detect

higher mode amplitudes for imaging.

Additionally, studies may investigate changes in the harmonic phase signals while

exciting the cantilever at a higher resonance frequency. It is already common practice in

atomic force microscopy to examine the phase (in addition to the amplitude) for sample

surface information when driving the cantilever at the fundamental resonance frequency

alone [3].
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7. APPENDIX: COMPUTER SIMULATION CODE

The following two pieces of code were written to implement the elastic-beam model into

the Veeco AFM tapping mode simulation package. The following code calls numerous

other modules which are not included in this Appendix.

 

RunMeZSimulate.m — Code run before each simulation.

Declares and initializes cantilever and tip-specimen force parameters; Euler-

Bernoulli Beam Equation variables; other important parameters.

clear;

clear global;

global idx;

global index;

global tspan;

tspan = zeros(l,40002);

global w_L2

global w_L2dot

global Tip_Pos_Min

global Tip_Pos_Max

global Amplitude

///////// //////

global a0 o
\
°

the DMT model

constant,

global R % the tip radius,

global gamma % in DMT model

used in the DMT model

used in the DMT model

interatomic distance,

global Estar % the effective contact stiffness,

used in the DMT model

used in

global L % Length of the cantilever

global m

global rho

global A

global E

global I

o
\
°

o
\
°

o
\
°

o
\
°

o
\
°

global omega

global L1

global L2

acting point

o
\
°

o
\
°
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density of the cantilever

area of the cross section of the cantilever

Young's modules of the cantilever

Inertia of the cantilever

Eigenfreguency of the cantilver

Position of the drive force acting point

Position of the tip—sample interaction



global

global

global

global

omega(i)

global

global

global

global

global

global

global

global

global

global

global

global

global

global

global

global

global

global

global

global

global

global

global

Pgain

Dgain

Number_of_Modes

Inderive

2004)

%

%

Some parameters are from Physical Review B 69,

O
/

Number_of_Modes 0 Number of the modes

TipPos %Tip position

zeta % the damping coefficient of each mode

KL % Used to calculate the eigenfrequencies,

= KL(i)“2/(L“2) * sgrt( E*I/(rho*A) );

phi_Ll % modeshapes of the cantilever at Ll

phi_L2 % modeshapes of the cantilever at L2

CurrentSamplePos % current Sample Position

Drive_omega

%Drive_Force_Amp Amplitude of the driving force

IntegralOfModeShapes

d_on

d_off

gamma_l

h_l

IsMeniscusPresent

ResidueMode

Fcap

Fts

HolderPos

Inderive

Et

nuet

Es

nues

V_l

r_l

W

l;

l;

—

.n— %2;1;

085412

by Robert W Stark

Use non-normalized mode shapes to avoid numerical

difficulty.

0
/

0 Since normalized mode shapes would be very large and they

have unit
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% of 1/sgrt(kg) , and modal coordinates would be very small

and they have

0

6 unit of m*sgrt(kg).

R = 208-009; %m % nm

Et = (1.3ell); %*(1e—15)*(1000); % mN/(nm)“2 % the

elastic moduli of tip, in DMT

nuet = 0.3; % no unit % the poisson rations

of tip, in DMT

L = (125e-6); %/(1e- 9); % nm

W= (35e—6); %/(le- 9); % nm

rho = (2.33e3); % *(1e-9) 3; % kg/(nm)“3 density of

silicon

A = (4e— 6)*(35e-6); %/( (1e—9)“2 ); % (nm)A %4e—6 * 250e-

6;

m = rho*A; % kg/nm

E = (1.31ell); 6*(le-15)*(1OOO); % mN/(nm)“2

I = (1/12) * (35e-6) * ( (4e—6)“3 ); % / ((1e-9)“4) %

(nm) %(1/12)*(250e-6)*(4e-6)“3;

%Sample parameters

Es = 7e10; %*(1e-15)*(lOOO); % mN/(nm)“2 % the

elastic moduli of sample, in DMT

nues = 0.3; % no unit % the poisson rations

of sample, in DMT

gamma = (31e-3); %* (1e- 6); % (pJ)/(nm)“2

H = (6.4e—20); %/(l e- 2); % pJ

a0 = (1.65474e-10); %/(le-9); % nm % sgrt(

H/(24*pi*gamma) );

Estar = 1/( (1-nuet“2)/Et + (l-nues“2)/Es ); %*(1000); %

mN/(nm)“2

%Capillary force parameters

h_l=2e-lO; % / (le-9); %[nm] %Water film thickness

gamma_l=0.072; %*(1e-6); %[pJ/nmAZ] %liquid-vapor

interfaccial energy for water

r_l:(3*pi*gamma*R“2/Estar)A(1/3);

V_l=4*pi*R*h_l“2 + 4/3*pi*h_l“3 + 2*pi*r_l“2*h_l;

d_on=2*h_l; %Tip-sample distance to form the water

meniscus

d_off=V_l“(1/3)—1/(5*R)*V_l“(2/3); %Tip—sample distance

to break the water meniscus
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IsMeniscusPresent 0;

L1 = (1/10)*L; % nm

L2 = L;% (0.999999)*L; % nm

[omega,KL] =

GetEigenFrequencies(Number_of_Modes,L,E,I,rho,A);

IntegralOfModeShapes = testInteg(KL,L);

Drive_omega = omega(Inderive);

phi_Ll = getModeShape(L1,KL,L);

phi_L2 getModeShape(L2,KL,L);

zeta(1:Number_of_Modes+1)=1/200;

//’////////’////’/’/ //

%totalSteps = 300000;

totalSteps = 40002; %100000;

%%%%%%%%%%%%

%Phase_of Tip = zeros(1, totalSteps);

Amplitude = zeros(1, totalSteps);

Tip_Pos_Max = zeros(1, totalSteps);

Tip_Pos_Min = zeros(1, totalSteps);

w_L2 = zeros(1, totalSteps);

w_L2dot = zeros(1, totalSteps);
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Section 4).

sfcn_AFM(t,x,u,flag)

— S-function (“cantilever” block

[sys,x0,str,ts]

Simulates the cantilever as it oscillates in response to driving and tip-sample forces

and scans a simulated sample surface.
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function [sys,x0,str,ts]=mdlInitializeSizes();

O

6 New globals

global w_L2;

global w_L2dot;

global wl_L2;

global wl_L2dot;

global Tip_Pos_Min;

global Tip_Pos_Max;

global HolderPos;

global Drive_omega

global Amplitude;

global tspan

global Number_of_Modes;

global idx;

idx = 1;

tspan(l) = 0;

q = 0*ones(1,Number_of_Modes);

qdot = 0*ones(1, Number_of_Modes);

Tip positionw_L2(1) = 0' %

0; %Tip velocityw_L2dot(1) =

wl_L2(l) = 0;

wl_L2dot(l) = O;

Tip_Pos_Max(l) = 0;

Tip_Pos_Min(1) = 0;

HolderPos = 0; %22.7e-9; %0; %5e-9;

Amplitude(l) = 0; %2e-11;

fai = O;

%%% Calculate the phase angle

fai = atan2(Drive_omega*(w_L2(l)-

(

%lOe—9; %22.7e-9;

Tip_Pos_Max(1)+Tip_Pos_Min(1))/2), w_L2dot(1))—

Drive_omega*tspan(l);
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fai = fai- floor(fai/(2*pi))*2*pi;

if (fai>pi)

fai = fai-2*pi;

end

fai = fai- pi/2.0;

Phase_of_Tip(l) = fai;

sizes = simsizes; %l

sizes.NumContStates = O;

sizes.NumDiscStates = Number_of_Modes*2+5+3;

sizes.NumOutputs - 8; %4; %4; %Number_of_Modes*2+2+l;

sizes.NumInputs = 3;

sizes.DirFeedthrough = 0;

sizes.NumSampleTimes = l;

sys = simsizes(sizes); %1x7

for k = 1:5

w_L(k) = 0;

end

x0 = [transpose([q, qdot]); transpose(w_L); w_L2dot(1);

Phase_of_Tip(l); Amplitude(1)];

str = l];

ts = [Se-8 O];

o
\
°

end mdlInitializeSizes

’_—————’——_————————————__-——_———_—————————m

_——¢—_————#———_—_———

———_————¢_—_———_——_——

% mdlUpdate

% Handle discrete state updates, sample time hits, and

major time step

0

6 requirements.

/

I
-
h

o
\
°

unction sys = mdlUpdate(t,x,u);

global TipPos %Tip position

global phi_L2 % modeshapes of the cantilever at L2

global CurrentSamplePos % current Sample Position

global Drive_omega

global Drive_Force_Amp % Amplitude of the driving force
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global IntegralOfModeShapes

global HolderPos

% New globals

global w_L2

global w_L2dot

global wl_L2

global wl_L2dot

global Tip_Pos_Min

global Tip_Pos_Max

global Amplitude

global idx

global tspan

global Number_of_Modes

Drive_Force_Amp = u(l);

HolderPos = u(2);

CurrentSamplePos = u(3);

q = transpose(x(1:Number_of_ModeS))i % 1x2

qdot = transpose(x(Number_of_Modes+l:Number_of_Modes*2));

% 1x2

idx = idx+1;

tspan(idx) = t;

[q, qdot] = rk4(2, tspan(idx-l),

tspan(idx),q,qdot,Number_of_Modes,0); %sys =

transpose(RK4(1,idx-1,idx+l,q,qdot,Number_of_Modes,O)); %

DOESN'T WORK

%InteractionForce = Fts;

%CapillaryForce = Fcap;

TipPos = O;

w_L2dot(idx) = 0;

for j = l:Number_of_Modes

TipPos = TipPos + phi_L2(j)*q(j);

w_L2(idx) = TipPos;

w_L2dot(idx) = w_L2dot(idx) + phi_L2(j)*qdot(j);
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6%666 Calculate the contour of the vibration

if w_L2dot(idx-1)<=0 && w_L2dot(idx)>0

Tip_Pos_Min(idx—l) = w_L2(idx—1);

end

if w_L2dot(idx—1)>=0 && w_L2dot(idx)<0

Tip_Pos_Max(idx-1) = w_L2(idx-1);

end

Tip_Pos_Min(idx) = Tip_Pos_Min(idx-l);

Tip_Pos_Max(idx) = Tip_Pos_Max(idx-1);

Amplitude(idx) = Tip_Pos_Max(idx) - Tip_Pos_Min(idx);

%1.15e—8;

%%% Calculate the phase angle

fai = atan2(Drive_omega*(w_L2(idx)-

(Tip_Pos_Max(idx)+Tip_Pos_Min(idx)1/2), w_L2dot(idx))—

Drive_omega*tspan(idx);

fai = fai- floor(fai/(2*pi))*2*pi;

if (fai>pi)

fai = fai-2*pi;

end

fai = fai- pi/2.0;

Phase_of_Tip(idx) = fai;

o
\
°

% o
\
°

for k = 1:2 %1:Number_of_Modes

w_L(k) = phi_L2(k+5)*q(k+5);

end

for k = 3:5

w_L(k) = 0,

end

sys = [transpose([q, qdot]); transpose(w_L); w_L2dot(idx);

Phase_of_Tip(idx); Amplitude(idx)];

I

—————o—————————————_——-

__.—_—————-—o-—o_—._——_————_—.

9 mleutputs
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% Return the output vector for the S—function

function sys = mleutputs(t,x,u)

global Number_of_Modes;

global idx;

global HolderPos;

M1 = zeros(8, 2*Number_of_Modes);

M2 eye(8,8); %[l 0 O O; 0 1 0 O; 0 O 1 O; O 0 0 1];

sys = [M1, M2]*x;

% end mleutputs
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