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ABSTRACT

A TOPCOLOR MODEL WITH FLAVOR—UNIVERSAL

HYPERCHARGE SECTOR

By

Felix Braam

The standard model of the electroweak interactions, including electroweak symmetry

breaking and the fermion masses, is in good agreement with most of the current data.

Nevertheless its key ingredient, the “Higgs”-particle, is not completely satisfactory.

Technicolor models have been able to give an alternative explanation of the symmetry

breaking pattern. In order to explain the origin of fermion masses technicolor has

been embedded in a larger model, called “extended” technicolor. The large mass

of the top quark further suggests the existence of new dynamics called “topcolor”

associated with the third generation of fermions.

The subject of this thesis is a topcolor model that by assuming an additional strong

gauge interaction coupling only to the third quark generation explains the large top

mass. Unlike previously discussed topcolor models, this model does not distinguish

between the third and the first, and second generation of fermions in the hypercharge

sector. Implications from current experimental data are discussed.
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Chapter 1

Introduction

The standard model provides a theory which is able to explain the currently ob-

served physics, including the heavy gauge boson and fermion masses, very accurately.

Nevertheless, there are several indications (“fine-tuning”, etc.), associated with the

Higgs-particle which drives the electroweak symmetry breaking, that suggest that the

standard model should be regarded as effective theory up to the TeV-scale. Techni-

color models [10] can give an alternative, dynamical, explanation of the symmetry

breaking pattern, yielding correct predictions for the heavy gauge boson masses. In

order to explain the origin of the fermion masses technicolor has been embedded

into a larger model, called “extended” technicolor [10]. The discovery of the large

top mass led to complications that could not be compensated within extended tech—

nicolor. Topcolor models [11] associate new dynamics with the third generation of

fermions in order to create the large top mass.

The subject of this thesis is a topcolor model with a flavor universal hypercharge

sector.

In order to give a picture of the framework in which this model has to be seen and

to establish the necessary terminology, we shall briefly review the relevant parts of

modern field theory:



Goldstone’s theorem and chiral symmetry breaking. Then we review the standard

model and the dynamical alternatives, technicolor, extended techninicolor, and top—

color.

1.1 The Goldstone Theorem

In a classical field theory [9] the action of a field (bl-(:13), is defined as

Il¢i(x)l = / d4z£ei<x>a¢i<x>> (1.1)

The fields that extrernize the action, obey the equation of motion

8E 85 -

u a O a l‘z,
1.2

an “mama "11 ( )

where in the last step the canonical conjugate momentum H’“ has been introduced.

A continuous transformation a : ¢i(:r) +——+ ¢i(z, a), where ¢i(:z:, 0) E gb‘fr) is called

a symmetry, if the variation of the Lagrangian can be written as a four divergence of

an arbitrary function F(:1:):

(SE = 8"Ffl, where (if E % . (1.3)

(1:0

It can be straightforwardly shown that, if the above holds, the action is invariant

under the (infinitesimal) transformation (1.

According to Noether’s Theorem, the four-divergence of the current

j“ 2 Hyatt — F" (1.4)

vanishes, which yields the conserved charge Q E f d3cr 30.

In a quantum field theory, following the approach through canonical quantization, gbi



and II,- E 1'1? are promoted to operators which obey

Mil-’13., t), Hj(37, t)] = 26;: 63(53’ -—- 37),

[¢"(a‘=‘.t).¢"(at)] = 0

and [n,-(a,t),r1,(g,t)] = o (1.5)

Starting with a symmetry group G, with elements exp(z’aaTa), where Ta are the

generators of G', we can write an infinitesimal transformation of the field (bi under G

as

¢i —> ((527 + zang) (bl, so that (Saabi = zTéijj. (1.6)

In analogy to the case of a classical field theory one can define a current and its

corresponding charge (whether conserved or not) as

at = .nmw => Qa(t) = . f c132: me, t)T§j¢j(f. t). (1.7)

Using the equal time commutation relations from eq.(1.5), one can show that any

local operator 0(t) built out of the fields (iii and the momenta II,- obeys

[Qa(t), C(15)] = —z 6a0(t). (1.8)

In particular, if the Hamiltonian of the theory commutes with the charge associated

with the generator of the transformation, Q, is conserved (time-independent) and

thus generates a symmetry according to eq.(1.8).

In a quantum field theory, one postulates a state of lowest energy, the vacuum [0), as

a normalizable eigenstate of the momentum operator with

13,, p) = 0. (1.9)



A field theory with a symmetry, in the sense of the above definition, is said to expe-

rience a spontaneous symmetry break down1 if and only if

(0| 6a My) I0) 7f 0 (1.10)

for any field ’l/J(y). This means that the vacuum expectation value of the field is not

invariant under the symmetry transformation, even though the Hamiltonian is.

The Goldstone Theorem says that if a quantum field theory experiences a sponta-

neous symmetry break down, there is massless particle associated with each broken

generator Ta in the spectrum.

Following [9] closely, we show that if for a quantum field theory with a conserved cur-

rent ja every state but the vacuum has p“p,,> e for some 6 > 0, then (0|61/1(y)|0) = 0

for all fields w(y).

Proof:

(Oljalx =2 (OIja.(x)In) (WW)|0>

Z<<0|eszJa<'0“)
e—szIn>(nlethw

(O)C-2Pylo)

=2 (OIJa(O())In
(nIt/J(0)I0)61

Pn(y—z)

= /d4kZ 54(k—pn)(0|jg(o)ln)
<nl¢(00)I0)ezk((—yx)

2 /d4k kupa(k2)ezk(y—x) (1.11)

In the second last line, the sum over n does not give a contribution for n = 0, since

(Oljg(0)I0) must be zero. By assumption, there is some 6 > 0 such that for k2 < 6,

there is no other state with 13,2, < c. This yields for k2 < e : p(k2) = 0.

 

1For a more intuitive introduction to spontaneous symmetry breaking in quantum field theories

see for example [18].



Since the four divergence of j: vanishes, we can see from the last line k2p(k2) = 0,

which yields p(k2) for k2 > 0. Thus

(0|jé‘(:r)2/)(y)l0) = 0 (It analogously follows that (0|w(y)jg($)l0) = 0) (1.12)

This yields

/ c132: (Olljt‘(w),w(y)ll0> = amen) = o. qed (1.13)

Inverting the statement of the proof tells us that if we have a spontaneous break

down of a symmetry (0] 60 7r0,(p) [0) 7f 0, there has to be a massless state in the

spectrum. This state is called Goldstone boson and will be denoted as 7ra. It has to

couple to the conserved current, since if it did not, the above steps of the proof of

the Goldstone theorem would yield eq.(1.13) in contradiction to the assumption of a

symmetry break down. From the Lorenz structure of the current and the fact that

its four divergence vanishes, we obtain

(Olaf (113)7Tb(P)|0> = zf1rID“<5ab 62px, (1-14)

where the so—called pton decay constant f1; has been introduced as the strength of the

coupling of the Goldstone boson to the conserved current.

1.2 Chiral Symmetry Breaking in massless QCD

In massless quantum chromodynamics2 with the two quark-flavors u and d, if one

neglects the electroweak interactions, the Lagrangian reads [9]

1

L = (702prqu — EtrIF’wa/I, (1.15)

 

2The typical energy scale of phenomena determined by QCD, AQCD is of order of a few hundred

MeV. It is therefore a reasonable approximation to assume mu and md to be zero.



where q = (u, d) and foI denotes the SU(3)-color gauge-covariant derivative

cc’(1

In terms of the matrix valued fields A” E Afig‘QE, the field strength tensor reads

Flt” = 6,114,, -— 8W4” + zg3IAfl, AV]. (1.17)

The Lagrangian from eq.(1.15) is invariant under local 5'U(3) transformations by

construction3. Additionally, there is a global symmetry of the theory. In order to

demonstrate this, we introduce the chiral projectors PR/L = % (1 i 75) which satisfy

PR+ PL =1 and PR PL = 0. Defining qL/R = (“L/RadL/R) E PL/R(u,d) and using

{’75, 7,1} = O, we can rewrite eq.(1.15) as

L = C-I-LZIIDCIL ‘I‘ (IRZEQR — cgauge- (1-18)

This Lagrangian is manifestly invariant under global unitary transformations of the

fermion fields UL x U3 6 U(2)L X U(2)R independently:

qL —* ULqL, (IR “t URCIR- (1-19)

It is generally believed that QCD dynamics induce a non-zero vacuum expectation

value for the operator ciq = q’LqL + fiRqR. Since the formation of this condensate is

assumed to occur because the non-Abelian color interactions become strong at AQCD,

there is no mathematical proof, because at this point the perturbative calculational

tools break down. But assuming that this is what happens leads to impressive pre-

dictions, as we shall see in the following.

From

(qLQL + clean) at 0, (1.20)

3For a detailed discussion of gauge theories, see e.g. chapter 15 in [15].

 



we see that the vacuum expectation value is no longer invariant under separate U(2)L

and U(2)R transformations. However, it remains invariant under U(2)V (“vector”-)

transformations:

a

UV = UL = UR = exp[zflv] eXpIzaIl/T7], (1.21)

where a = 1, 2, 3 and r“ are the usual Pauli-matrices.

We write the original symmetry group as a direct product according to

U(2)L X {1(2)}? = U(1)V X U(1)A X SU(2)V X “Sf/(2)14”, (1.22)

where the subscript A stands for axial vector transformations, which are generated

by

eprzHAry5] = eprzBAIPR + epr—zOAIPL for U(1)A

Ta Ta Ta.

exp[zt9A—2-ry5] = exp[zaf}4?]PR + epr—zafi—Z—IPL for “SU(2)A”. (1.23)

Note that SU(2)A does actually not form a proper subgroup, because the algebra of

its generators €175 does not close. But since we only need the infinitesimal transfor-

mations, regardless of whether they form a group or not, this is not important.

Even though eq.(1.22) is the symmetry group of the Lagrangian from eq.(1.18), quan-

tum effects actually spoil the invariance of the theory under U(1)A right away.4 So

only “SU(2)A” is broken by the appearance of the non-trivial vacuum expectation

value in eq.(1.20). Therefore we expect three massless Goldstone bosons in the spec-

trum which couple to the currents associated with the spontaneously broken genera-

tors of the symmetry “5U(2)A”

. _ T“

J?“ = ““5aq = q7“75-2—q (1-24)

 

4For details see chapter 19 in [15].



according to

(Oljé‘“(0)lrb(q)> = 2f1rCI“<5“b- (1.25)

Since the current 3'?“ transforms as axial—vector under parity transformations and on

the right-hand side of the equation stands a Lorenz vector, we can conclude that the

Goldstone bosons have to transform as pseudo-scalars under parity.

The behavior of the Goldstone bosons under the (unbroken) symmetry transforma-

tions can be determined by looking at the commutator of the unbroken charges with

jg“. One obtains that they form a triplet under SU(2)V (“isospin”) and have charge

zero under U(1)V (“baryon number”). This isotriplet of Goldstone bosons is taken to

be the triplet of the lightest experimentally observed hadrons, the pions whose masses

are not exactly zero, albeit small compared to AQCD- The pion decay constant is

found to be f1r m 93 MeV.

In reality, the quarks have masses, which explicitly breaks the axial symmetries and

if mu and md are not degenerate, also breaks SU(2)V. Since the masses and their

difference are small, one assumes the symmetry group from eq.(1.22) to be an “ap-

proximate symmetry” of the Lagrangian in eq.(1.18). This leads to a pion mass

proportional to its constituent masses (see [9]).

1.3 The Standard Model

The Glashow-Weinberg-Salam theory [18] of the weak interactions, which is generally

referred to as the “standard model” starts from a Lagrangian that is gauge-invariant

under the gauge group S'U(2)L x U(1)y, where the subscript Y denotes the so-

called hypercharge. For simplicity we shall sketch the model only for one family5

 

5In reality there have been observed three generations of fermions. The other two generations

can be seen, within the standard model, as replicates of the first generations with heavier masses.



of fermions e, V, a, d,. The left handed fermions (fL E PLf , where PL denotes

the chiral projector as defined in the previous section) transform as doublets un-

der SU(2)L, EL = (VL,€L)Y=_1/2 for leptons and QL = (“LadL)Y=1/6- The right

handed fermions are singlets with respect to SU(2)L and their hypercharge assign-

ments are chosen to be equal to their electric charge, for reasons, that will become

obvious later.

The Lagrangian describing the interactions of fermions with the gauge fields and

among the gauge bosons themselves reads

— 1 1

£fermions = Z zlflfDH-f _ ZF/WF/JV - 106”“!sz (126)

f

with

D” = 8,, + zg'BfiY + ngawg. (1.27)

The sum runs over all left— and right-handed fermions.6 B" denotes the gauge field

associated with U(1)y and WI} represents the triplet of the SU(2)L gauge fields. The

r“ E a“/2, where 0“ denote the Pauli matrices, are the generators of SU(2)L- The

last two terms in eq.(1.26) represent the kinetic Lagrangian for the gauge bosons.

A key ingredient to the standard model is a complex doublet scalar field, qt E

(¢+’¢0)Y=1/2- As we shall see in the following it drives the symmetry breaking

creating the masses of the heavy gauge bosons. It is also responsible for the genera-

tion of fermion masses in this model. Its dynamics are described by

‘Cscalar = (DM¢)T(D#¢) — V(¢1l¢)? (128)

with the covariant derivative from eq.(1.27) and a potential of the form

WW») 2 #2 (chic/6) + IAI ((12%)? . (1.29)

6Note, that since the right handed fermions are singlets under SU(2)L they are eigenvectors of

the SU(2) L generators 7“ corresponding to the eigenvalue zero.

 



Additionally, we are free to add an interaction term via Yukawa couplings of the

scalar doublet to the fermions

LYukawa = —Ge EL¢6R - Gu QLg/MtR - Gd CabQLa (15;; (13 + h.c. (1.30)

This term is gauge-invariant under SU(2)L x U(1)y. The mass of the neutrinos in this

simple version of the model is assumed to be zero, which is equivalent to excluding

right- handed neutrinos from the beginning.

If we let the parameter p in eq.(1.29) be negative, the potential has a continuous set

of non-trivial degenerate minima, implicitly given by I¢minl2 = (—,u2/2|A|) E v2/2.

We choose the vacuum expectation value of the scalar field to be

<asmmm=(i). am)
V2

which obviously breaks the generators of the gauge groups SU(2)]; x U(1)y, except

from the linear combination

(T3 + Y) (<15) 5 Q ((1)). (132)

which is identified with the electric charge Q. Unlike in QCD where a global symmetry

broke down, no Goldstone bosons appear in the spectrum, but they become the

longitudinal polarizations of the formerly massless gauge bosons associated with the

broken generators. One can see this by expanding the scalar field around its vacuum

a a 0

¢ = exp 2“ “”7 (that . (1.33)
21) V2

which is gauge—equivalent to

expectation value:

 

0

(15 —’ I = (IhIzI+vI)- (1'34)

«2

10



Inserting this into eq.( 1.28), we find

(ww+ 1— (92 (wt)? (wi)2+ (—gw2+g'2u)2)

+ “interaction terms” . (1.35)

The term proportional to v2 has the form of a mass term for three massive vector

bosons. Defining the weak mixing angle via

9
c036 E —— (1.36)

92 + 9/2

allows us to denote them as follows:7

W; = 53 (W; IF 2W3) with mass mW = g; ; (1.37)

Z2 = (cos 6W3 — sin BB”) with mass m2 = g 92 + 9’2 . (1.38)

The fourth vector field, orthogonal to 20, remains massless and is identified with the

photon

A], = (sin 6W3 + cos OB”) . (1.39)

In order to obtain the couplings of the mass eigenstates it is useful to replace the

canonical gauge fields in the covariant derivative from eq.(1.27) by the appropriate

linear combinations of the mass eigenstates:

DM = Bfl—i—g— (Wlfr+ + WII'F) — 2le (g cosO’r3 - g’sinGY)
fl

—i-——g—’g——Ap (7'3 + Y) , (1.40)

where Ti = 1/2(o1 :l: 202). In order to complete the association of the residual U ( 1)

gauge symmetry with electrodynamics, we define

I

e = —9—’1-—. (1.41)
1/92_I_912

7Comparison to low-energy measurements where the weak interactions appear as effective four

fermion interactions, allows us to relate the vacuum expectation value of the scalar condensate to

the Fermi-constant according to v = (flGp)(‘1/2) z 264 GeV.

 

11



The first two terms in eq.(1.35) describe the physical “Higgs”-particle with mass

mH = —\/§/J. > 0.

The Yukawa-coupling of the fermions to the scalar field in eq.(1.30) gives rise to

fermion masses and fermion-Higgs interactions:

+12 -— - v
£Yukawa = _ 2 Gf ’0 (foR + fRfL) z) mf = G'f_‘- (1-42)

f fl \/§

One can picture the fermions acquiring mass as an effect of their motion through an

 

“ether” consisting of the condensates of the scalar field:

(425} I

fL

fR

fL

1.4 Technicolor

The standard model as described in the previous section has proven to be extremely

successful describing what has been measured in experiments so far. Nevertheless,

the existence of a fundamental scalar field gives rise to conclusions of unsatisfactory

character:

0 The bare existence of a fundamental scalar field has no observed analogy in

12



experiments so far.

0 Loop corrections lead to a quadratically divergent mass correction to the tree-

level mass of the physical Higgs-field h.(:r:) as derived in the previous section. If

one wants the theory to be valid up to high energy scales, this leads to a severe

fine-tuning problem [19].

0 Beyond the requirement of gauge invariance, there are no further constraints on

the self-coupling of the Higgs field or on its Yukawa—couplings to the fermions.

Hence, we are left with a large number of free parameters.

Technicolor addresses mainly the first two statements. In this theory there is no

fundamental scalar particle. The electroweak symmetry breaking is achieved by em-

ploying an analogy to QCD [10] as described in section 1.2.

In a massless two—flavor version of QCD the Lagrangian is invariant under global

SU(2)L x SU(2)R x U(1)V, (1.43)

transformations. Further we assume the existence of a gauged subgroup of eq.(1.43)

SU(2)L x U(1)y. (1.44)

So we have four massless gauge fields of the unbroken standard model Wi, W2, Bl“

in addition to the discussion in section 1.2. At AQCD the chiral symmetry breaks

down to SU(2)V x U(1)V, which would make three massless Goldstone bosons appear

in the spectrum, if not for the presence of the gauge fields in this case. The interaction

of the massless gauge bosons with the pions shifts the propagator of the W: according

to

giw—q"<1"/q2 gull-(1"QV/(:2

M" = _)

(12 6120+ I1012))

 
 (1.45)

13



where II(q2) denotes the vacuum polarization. The process is schematically shown in

the diagram below.

 

Figure 1.1. Coupling of the Wi bosons to the pions.

Since the pion is massless, its propagator has a pole at q2 —-> 0. The current 3'15

couples to 7r; with strength f”, which yields a contribution to II(q2) according to

 (1.46)

This shifts the pole in the propagator in eq.(1.45) to 21-ng1%, so the W; gauge field

has acquired a mass of mW = %gf7r. An analogous, albeit more complicated, calcu-

lation yields a massless photon— and a ZB-analog with the mass from eq.(1.38), with

f7, instead of 12.

So the chiral symmetry breaking in QCD breaks the standard model gauge group

SU(2)L x U(1)y down to U(1)Q and the pions become the longitudinal components

of the electroweak gauge bosons. Unfortunately, the masses of the gauge bosons are

too light (by a factor of z 2600).

The idea of Technicolor is now to introduce a new type of fermion, the technifermions,

which have a new strong gauge interaction, but where the chiral symmetry breaking

occurs at a higher scale8 ATC >> AQC’D: such that the technipion decay constant

F7r can be numerically equal to the vacuum expectation value of the standard model

scalar field 11. From the above calculation we see that this yields the correct masses

 

8This suggests that the technifermions have an SU(N)Tc gauge interaction whose coupling be-

comes strong at a higher scale Arc.
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for the weak bosons.

Various models involving different sets of technifermions have been studied (see

e.g.[10],[12]). The simplest model, providing the correct symmetry breaking pattern,

consists of only one 5U(2)L doublet of technifermions

TL = (2L) , (AR)Y=1/22 (BR)Y=—1/2 - (1-47)

L Y=0

The technifermions are color-singlets, but transform as a non-trivial representation of

technicolor SU(N)T0- In this model there are only three exact Goldstone bosons, the

technipions.9 So the techni-hadronic spectrum consists of the analogs to the hadrons

in massless two-flavor QCD. Their masses are estimated by scaling up the masses

of their QCD-analogs by ATC/AQCD (see again the references given above). The

existence of the technihadrons also plays an important role in the unitarization of

W—scattering.

More realistic scenarios provide, besides the three technipions as exact Goldstone-

bosons, a rich spectrum of “Pseudo-Goldstone-Bosons” which acquire mass due to

their non-trivial transformation behavior under the standard model gauge groups

[10].

1.5 Extended Technicolor

Although technicolor models can explain the mechanism of electroweak symmetry

breaking, they do not provide a complete theory that could replace the standard

model, since they cannot give an explanation for the generation of fermion masses.

 

9The “eaten” and the physical pions are actually linear combinations of the technipions and the

QCD-pions, but since the decay constants appear as weights in the linear combination and F,r >> f,”

the physical pions consist in good approximation only of the QCD-pions and the eaten pions are

mainly technipions.
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Extended technicolor (ETC) ([12] and references therein), as the name indicates, is a

model which preserves the technicolor-scheme for the electroweak symmetry breaking

and adds a mechanism creating the masses of the fermions.

The idea is to embed the technicolor gauge group SU(N)TC’ and possibly parts of

the full gauge group

SU(N)TC X SU(3)C X SU(2)L X U(1)y (1.48)

into a larger gauge group gETC- At a high scale AETC >> ATC the ETC gauge

group g breaks down, giving masses to the ETC gauge bosons which mediate interac-

tions among technifermions and ordinary fermions. This can be seen in the following

example [10]:

Suppose having a technicolor gauge group SU(N)TC and some tech-

nifermions in its fundamental representation (N-dim). Now embed

the technifermions in SU(N + 1)ETC, which somehow breaks down to

SU(N)TC- This leaves us with an N-tuple of technifermions and a sin-

glet under technicolor, an ordinary fermion. The broken generators are

exactly those 2N + 1 generators of SU(N + 1)ETC which had. “mixed”

the N technifermions with the additional component of the N + 1-dim

fundamental representation of SU(N + 1)ETC-

The fermion masses are assumed to be generated by the following mechanism, which

is sketched in Figure 1.2:

The interactions of massive ETC gauge bosons (mETC 3 AETC) with the fermions

can be, at energies well below AETC: described as an effective four fermion interaction

 

2

L oc (Xi/‘2‘; ) (107127“anfryflTaF) (1.49)
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where F denotes the technifermions, f the ordinary fermions and T“ are the broken

generators of gETC- A Fierz-rearrangement of this Lagrangian contains a term of

the form

2

_ (7’92) [(FLFR)(foR) + h.c. +...] (1.50)
ETC

such that at energies below ATC B 0.5 — 1.0 TeV, Where the technifermions condense

(FF)
(FF) 75 0, this takes the form of a mass term with mf a: gETC’ A .

ETC
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QETC QETC

AETC >> E 2 Arc

 

AT0>E

 

V V

f f

Figure 1.2. The generation of the fermion masses in extended technicolor. In the last

step, the technicolor interaction becomes strong and closes the external technifermion lines

to a loop.

The extended technicolor gauge bosons cause flavor changing neutral currents, which

forces the scale AETC to be very large, in order not to disagree with the experimental

results from for e.g. the measurement of the keen mass-splitting. At this very high

scale, the coupling constant of the ETC-group is very small. This makes it difficult

18



to generate fermion masses of the appropriate size.10 A possible solution may be

a so—called “walking” of the technicolor coupling constant [13] up to AETC- It is

generally believed that this can explain masses up to the bottom quark mass.

1.6 Topcolor

The extremely high mass of the top-quark suggests that there are extra dynamics

associated with the top-sector that single out the top-quark. The idea of topcolor

[11] is to introduce a strong interaction, that makes the top-quark form a condensate

and thus dynamically creates the top-mass via the coupling of the top—quark to its

condensate, in analogy to the mass generation for the light fermions in extended

technicolor models.

Various ansatze have been discussed in the past [12]. The subject of our work is

a topcolor model with a flavor universal hypercharge sector and how its parameter

space is constrained by existing data from experiments.

 

1The ratios of the different fermion masses can be adjusted, but the problem is to create the right

absolute size. Even the charm quark mass can barely be realized.
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Chapter 2

Topcolor with a Flavor-Universal

Hypercharge Sector

We start from the gauge group

SU(3)1 X SU(3)2 X SU(2) X U(1)1 X U(1)2, (2.1)

where the corresponding couplings are chosen such that 93(1) > 93(2). Quarks and

leptons transform only under the stronger U(1) group and in the color sector the

third generation of quarks transforms under the stronger SU(3), whereas the light

quarks transform under the weaker SU(3) group.

 

[gen [I SU(3)1 I SW33 | SUQII U(1)1 ITJUIzl
 

 

 

I’ll 1 “SM” “SM” “SM” 0

111 ‘(SM” 1 “SM” “SM” 0

- _L

(DA 3 3 5% 21/6

451-20 1 2 0 %

(pt 1 1 2 —% 0         
Table 2.1. The transformation behavior of the fermion generations and the composite

scalars under the gauge group from eq.(2.1). “SM” means that the fermions transform

under the respective group as they would under the corresponding standard model gauge

group.
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At the scale A

AETC > A > Aweak: (2-2)

a condensate ((1)A) = FA (Sufi, that transforms under the initial gauge group in eq.(2. 1)

according to Table 2.1 forms, which breaks the color sector and the hypercharge

groups into their diagonal subgroupslz

SU(3)1 x SU(3)2 —» SU(3)C. U(1)1 x U(1)2 —» U(1),» (2.3)

This symmetry breaking also triggers the condensation of top quarks (got) at a much

lower scale. The discussion of this mechanism shall be postponed to section 2.3.

The remaining standard model electroweak gauge group is then broken by the tech-

nifermion and the top condensate

0 0

((151m) = (gm). tot) = ( f ) (2.4)

«5 7'5

according to

SU(3)C X SU(2)L X U(1)Y —> U(1)Q. (2.5)

2.1 Symmetry Breaking at the Scale A

The relevant part of the Lagrangian (i.e. omitting the SU(2) gauge fields for this

discussion) is given by

£=11121D11+tr(0<1>)l0#<1> +£ 26
It A A Gauge: ( - )

with

Du = 3p + wan/111,17"? + mum/13,17"? + z91(1)Bl)uY1 + Z91(2)132;1Y2 (2-7)

 

1Within this thesis we will not specify the nature of this particle any further. We will just

investigate the implications of this model for low-energy physics.
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where T“ = A; are the generators of S'U (3). All,“ and A23,“ are the SU(3) gauge fields

and B}, and 3,2,, the fields associated with the respective U(1) gauge groups. £Gauge

denotes the gauge kinetic terms for all four gauge fields.

According to the Goldstone theorem (see section 1.1), there appears one massless

particle associated with each generator of a broken global symmetry. In this case, a

local symmetry is broken, which triggers the Higgs-mechanism and makes the Gold-

stone bosons become the longitudinal components of the gauge fields, belonging to

the broken generators. In other words, these gauge bosons acquire mass as the mass-

less Goldstone bosons vanish from the spectrum.

To demonstrate this, we look at the zeroth order term of the expansion of the field

(I)A around its vacuum expectation value ((1)A). The covariant derivative from eq.(2.7)

acting on ((13A) gives2

0,, (m) = 3p ((1)11) +ZQ3(1)Afp (3;) (“I’Al — z93(2)A(2zu (CPA) (A2?)

+zgl(1)Ble1 ((DA) + 291(2)82#Y2 ((1)11)

= 2A (2‘2") (93(1)A‘1‘u ‘ gum/‘5?)

+ZA§‘% (91(1)Blp ‘ 91(2)82p)

2The minus sign in the first line of eq.(2.8) accounts for the condensate transforming, according

to Table 2.1, under the conjugate representation of SU(3)2.
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Inserting this in the kinetic term of (I)A in eq.(2.6) yields

91091. <9) W02 <9) )1

M M
b ”=~n<-.>(91<)<>

  

h—NP—d

:%5ab

2
p 1

+ $91-21 (*291(1)31p + z91(2)}5'2p) (291(1)Bll — 291(2)B’2)I

=3

A?“ I 93(1) ‘93(1)93(2) 0 0 ) Al“

:93 g“ -93(1)93(2) 93(2) 20 2 0 A21“

2 81,. 0 0 (If; gfu) (5’) 921(1)91(2) BI:

3211 I 0 0 -(E) 91(1)91(2) (5) 9f(2) / 32

(2.9)

The upper block of the matrix appearing in the last step can be diagonalized, by

rotating to the basis of the mass eigenstates:

 
 

 
 

0““ = 93(2)”? + 93(1)A(2m, (2.10)

793(1) + 93(2)

a. . 93(1)Ai“ — gun/“21“
0’: 2 2 , an)

793(1) + 93(2)

where the first octet of fields belongs to the eigenvalue zero and is thus identified with

the massless gluon and the second octet is the so called top gluon, with mass

An analogous diagonalization can be performed with the lower block of the matrix in

eq.(2.9), yielding the massless BI, and the massive field Z’

 
 

 
 

B“ + B“

szmm;-gf)K an)

\/91(1) + 91(2)

B“ —- B”

791(1) + 91(2)
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The mass of the Z’ boson is then given by

2

M2" = 24' A2 (gin) + giml (2°15)

The gauge covariant derivative from eq.(2.7) can then be expressed in terms of the

mass eigenstates:

D), = (9,) + 293(1) (cosw Cf] + sinw 0):) T1“ + zg3(2) (— sinw Cf: + cosw Gfi) T;

+ 291(1) (cos (j) Z], + sin (b BL)Y1+ 291(2) (— sin (I) Z], + cos d) BL) Y2, (2.16)

where the notation

93(1) 93(2)
  

  

  

  

cosw = 2 2 , sinw = 2 2 (2.17)

793(1) + 93(2) 793(1) +9242)

_ 91(1) - _ 91(2)
cos (b — 2 + 2 , Sln¢ — 2 + 2 (2.18)

\/91(1) 91(2) \/91(1) 91(2)

has been used.

The interactions of fermions with the massive vector bosons, arising from the fermionic

kinetic term in the Lagrangian in eq.(2.6), then have the form

_ ,\a . _ A“

LintC = 93(1)COSW WII ’7” (“2'“) 10111 - 93(2)smw $1,117“ (7) z/JIJII Cf],

(2.19)

LintZ’ = 91(1)COS¢ U)“ f) Yf 2,,“ (2.20)

where W,- denotes the quark fields of the i—th generation and f any fermion field. This

suggests that we define the coupling of the Z' to the fermions and the coupling of the

top gluon to the third quark generation as

gin) 93(1)
E , [£3 E ,

7%) + 9i<2> 793(1) + 93(2)

  

  “1 (2.21)
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respectively. The analogous expressions to eq.(2.19) and (2.20) describing the inter-

actions of the massless vector bosons are given by

A“ A“

£intG= [93(1) Sinw 117111 '1“ (—) 19111 + 93(2) 0089! 1/11,II 7“ (—2 ) 1121,11] Gil

= 930939; [11;u (A2“) 11:] of], (2.22)

93(1)+93(2)

£9992 =91(1) sincb (W f) Y’ BL =

 
 

91(1)91(2)

79in) + gitz)

The respective couplings of the bosons associated with the unbroken gauge groups

 

 (Hi f) Yf B,’,. (2.23)

are defined as

 
 

 

 

— g3(l)g3(2) and a =93

_\/92 +92 S_47r

3(1) 3(2)

’= 91(1)91(2) and a —g,2 (224)
_ 2 2 3“: 47r '

\/91(1) + 91(2)

Rewriting eqns.(2.19) and (2.20) in terms of 193, aS and n1, ay yields

A“ A“

5mm:m [flit/2111 7" (—) 111111 - 7:11-21,II 7“ (—2 ) 191,11] 03 (225)

£int Z’ = Isl (Ir-’7’“ f) Yf Z; (2.26)

These Lagrangians give rise to processes as sketched below.

C 2’

Figure 2.1. Interaction of fermions via Topgluon and Z’-boson exchange.

Since the gauge boson masses are presumably at least of order of a few TeV, one

can, for processes with a momentum transfer well below this energy, integrate out the

intermediate vector bosons. The effective four fermion interactions
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1 1
cc —2' oc —-s-.

MC MZ,

Figure 2.2. Topgluon and Z’ exchange as effective four fermion interaction.

can be described by effective Lagrangians

a a.

2 - A .. ,\ 2

£0 = _A_4% [fl #2111 7;» (7) 30m - 3% WU 7,2 (7) Wu] (2-27)

 

27r - 2

£21: — 2 In (f'y“Yf) (2.28)

MZ’

Note, that with the couplings as defined in eqns.(2.21) and (2.24), we can express the

masses of the heavy gauge bosons in terms of p, A, (:1 and 53:

(K3 + as)2

53

N1 + ay)2

ME. = 471'A2 , Mg, = 7r (131))2 ( (2.29)

“1

2.2 Symmetry Breaking in the Electroweak Sector

In the previous section, we analyzed the symmetry breaking at the scale A and ob-

tained in the U(1)-sector a massless field B1, coupling via the hypercharge Y 2 Y1 +Y2

as in the case of the unbroken standard model gauge group U(1y). Additionally there

is a massive vector field ZL. Electroweak symmetry breaking is driven by two com-

posite scalar fields ¢TC and (pt, with the non-trivial vacuum expectation values of

eq.(2.4).The effects of the extra ingredients on the breaking of the standard model

gauge symmetry will be subject to the following analysis.

The Lagrangian describing the electroweak sector is given by

L = @1sz + tr [(DpaTCfl Wm] + tr [(Dmotfl Dim] + Lemme, (2.30)
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with

. 2'

D” = 8,) ‘l' nglzl'gQ—l + ZQIYBL + 2 (91(1) COS ¢ Y1 — 91(2) Sin ¢ Y2) Z11. (2.31)

Rewriting this in terms of the familiar fields, the photon An, coupling via the con-

served electric charge Q = T3 + Y and the Z boson, by rotating the W3 and the BL

fields by the weak mixing angle 6, gives

 

+ ._

DH: ,2 _g_w+0__ .2. ~i_ Au LT3_ '29le
('3 +z\/.2_ 2 +z\/.2_W 2 +zeQ +zsin6c030( Qsm )

e - 2 I
Y —Y Z” 2. 2

+zcos05in¢cos¢( 1 sm (1)) ’ ( 3 )

where we have expressed the couplings in terms of the electric charge (2 and the

rotation angles:

9’ e I 9, e
__=_..____ =———=————— 2.

cosqb cosOcosgb’ 91 sinqb cosGsingb (33)
g=-.——, gé=

Evaluating the kinetic terms of the condensates in eq.(2.30), we find that the Z and

Z’ are no longer the appropriate superpositions of canonical gauge fields to represent

mass eigenstates.

In order to have a more convenient notation at hand, we define Y’ E Y1 — sin2 (bY

and introduce the short handed notation

<0a0b> s Z<¢i>léiéb<¢a (2.34)

i

where the sum runs over all condensates and O can denote any operator.

The proper mass eigenstates are obtained by diagonalizing the following mass matrix

[4]
' 6

Z _ SiDQCOSG . sinB (T3Y’) sin2 6 (ylyl> ' ( ' )

sm $ cos 3 sin ¢ cos ¢
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Evaluating the entries of the mass matrix gives for the upper diagonal entry:

<T3T3> = <¢Tc>*T§T3<¢TC> + <¢t>TT§T3<¢t> + can"; T3<<I>>

=0

_ Err: -1 __1_ £613.11 1 .1._ft_

= %(F%C+f?) E v; (236)

ft denotes the decay constant of the top-condensate (in analogy to f,“ the pion decay

constant in QCD). For the off-diagonal entries, we obtain

(T3Y'> = (T3Y1) — sin2 ¢<T3Y) = (T3Y1) + sin2 ¢<T3T3), (2-37)

where in the last step the conservation of electric charge has been employed: Y =

Q - T3 with Q = 0 => Y = —T3. Then we can calculate

2

T Y = TTIY TTJY ft YtL— YltR _f__t _ _.fL

< 3 1) (¢TC) 3 1(2‘0) +(¢t> 1(¢t)= “242“ 1 )fl_ 8

- —3

(2.38)

and conclude

I 1 - 2 2 2
(T3Y ) = g (sm 45v — ft). (2.39)

Finally, the lower diagonal entry gives

<Y’Y’> -—- <(Y1 — sin2 «bl/)2) = «Y1 + sin2 323)?)

= (Ylyl) + 2 Sin2 $(T3Y1) + Sin4 ¢(T3T3)

2 2

= ((1))lY1lY1(<I>) + (affix/1(a)) — 2sin2 (3%— + sin4 ((38—

1

-p§(p2A2 + ft2 + sin4 (151)2——2sin2 (bf?) . (2.40)

Factoring out

6 2 2 _ 2

(2sin0cosé’) v _ MZISM’ (2'41)

28



the mass matrix (eq.2.35) then takes the form

1a2_ 2
MZ—MZ|SM( )

023

where a and :c are given by

 

  

= sin 0 (T3Y’)_ sin 0 __ IL

a _ sin (b cos ()5 (T3T3)— sin45cos (b '02

a: = sin2 0 (Y'Y’) sin2 0Sinz¢pv(A)2

_ sin2 45 cos2 d) (T373) zsinz (1) cos2 (b

From diagonalizing the mass matrix, we obtain the eigenvalues

1 40:2
M2 _ M2 _

a2

2 X 1 — 7c-

ZISM ,
IE

 

 

to first order in 1/23.

 

2
2 2 2 2

e v v f

4:) M2 = l — —— sin2 — i

Z 4 sin2 0 cos2 6 p2A2 ( ()5 122)

M2 — €2P2A2 .

Z 4cos2 6 sin2 (b cos2 d)

 

The corresponding eigenvectors take the form

2;:w=Z“——Z’“

1:

I

nléw—— —Zu + 2’”.

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

Horn here on, we shall denote the new mass eigenstates simply as Zl‘ and Z’I‘. The

couplings of the new states to fermions can be read off directly from eq.(2.47) and

29



eq.(2.48)

 

 

 
 

 

2 2

__€__ _ . 2 _ ”U - 2 _ _f_t_ _ - 2
92 _sin 6cos 6 T3 Qsm 6 p2A2 (Sln 6) v2) (Y1 Ysm (b)

_ =Ycos2¢

’ 2 2
_ 6 ’U 2 , 2 - .fL

—sin6cos6 T3 (1+ 122A2 COS d) (mm o 122))

v2 f2

— Q sin2 6 + p2A2 cos2 (2 sin2 (b — i (2.49)

6 2 8

= = —Y t 2.50

gZ’ cos6sin¢cos¢ OS ()5 cos6 C0 ¢’ ( )

where we have used the fact, that all fermions transform only under U(1)1. 3

One should notice, that the mixing angle 6 in the gauge couplings deviates from the

weak mixing angle that appears in the standard model couplings. There are now

several ways to define a weak mixing angle at tree-level. One of them is to define the

mixing angle in terms of the three most precisely measured electroweak quantities a,

CF and MZ

7m

—, (2.51)
fiGFMg

sin2 62 cos2 62 E

corrections in sin 6 arise from the shift in the Z-mass (since the other constants remain

the same as in the standard model). Plugging in the results from eq.(2.45) yields

  

2 ° 2 2 2

. 2 _ , 2 1) sm 6003 6 FTC 2

sm 6g — sm 6+ p2A2 cosz6—sin26 ( v2 — cos qfi , (2.52)

’U

to second order in K' In this model the above definition deviates from the weak

mixing angle defined by the ratio of the masses of the W and the Z bosons:

2 2 2 2
2 _ MW 2 v FTC 2
6 = = 6 1 — —— -— . 2.53cos W ( M2) cos + (73A) ( 02 cos (b) ( )

3Working to this order, we obtain exactly the same result for the Z' mass and its coupling to the

fermions as in the previous section.
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Therefore, we have to be very careful, when calculating observables by shifting the

couplings of the Z boson and the weak mixing angle in the standard model predictions,

about the definition of the weak mixing angle.

2.3 The Nambu—Jona—Lasinio model

Let us now address the question how in the topcolor model the large top mass is

created. The idea can be understood in terms of a useful toy—model, the NJL—model.

We have a strong interaction SU(3)1 which couples more strongly to the third gener-

ation of quarks than to the others. When SU(3)1 x SU(3)2 breaks at the scale A, the

top gluons acquire mass, according to eq.(2.12). At lower energies their interaction

with fermions can be viewed as effective four fermion interaction (see Figure 2.1). As

in the extended technicolor model in section 1.5, we notice that the Lagrangian from

eq.(2.27) contains after a Fierz—rearrangement [3] terms of the form

8WK3

2
MC

 

£NJL = [(1% Hz) (t-L 11112) + h-C-l - (2-54)

We will refer to this as the NJL—Lagrangian. The NJL—model now assumes that the

self-interaction of the top quarks is strong enough for a top-condensation, which leads

to a mass creation as sketched in Figure 2.3. Self-consistently, one finds that the mass

has to obey the following relation4

__ 87rn3 d4]: 2 1 5
—zm—‘M—(2} Wtr[(m)§(l+7)]ch

(2.55)

 

4Here one makes the rather strong dynamical assumption that the terms in eq.(2.54) are the only

ones that contribute to the mass creation. We will therefore use the results that we obtain from the

NJL-model only use for a qualitative analysis.
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The trace gives a contribution of 4m, since the trace of an odd number of "y-matrices

vanishes. To carry out the integration, we rotate into Euclidean space

 
2m

2

_ 167rNcn3m /M0 1 2422;, (mg.

0

 

Mg (2704 4,2,: — m2

= 2 MB m (1 —- fl710g <—q—22—)) . (2.56)

7r MC m

From here we can see that we get constraints on K3 and A in order to make eq.(2.56)

give us a finite positive solution for a top—mass (which will be treated as being equiv-

alent to the formation of a top—condensate) according to

1r m2 Mg

= ln —§',

m

_ _ __ 2.57

where we have used that MC >> m. Eq.(2.57) is the so—called gap-equation for a

dynamical fermion mass.

 

317(1)) m) : ppm—m

Figure 2.3. The process of dynamical mass creation as viewed in the NJL-model.

The above calculation lacks an explanation for the non-appearance of a bottom-quark

condensation, since the top-gluons do not distinguish between top and bottom quarks.

But we did not take into account the four fermion interaction due to exchange of a

heavy Z’ boson yet. Taking this interaction into account, we expect a constraint on

141, the effective coupling of the Z’ to fermions. The process can then be understood

as follows:
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The coupling of the top-gluon 143 to t and b quarks has to be strong and very close

to its critical value at which a top- and bottom-quark condensation occurs. Then

the self-interaction due to Z’-exchange, which depends on the hyperpercharge Y and

hence distinguishes between t0p- and bottom-quarks, tilts the total self-interaction

to be either strong enough to create a condensate or not.

The calculation taking the 2’ into account is analogous to the steps shown above,

albeit more complicated, and we modified the results from [17] to our model. The

resulting gap-equation for our model is:

2 2 2

_ mez' mf Mz’
mf — 01 871'2 [1 (HZ—I) 1n ( ]  

 

 

 

2

mi

3me3. mf 2 Mg.
G’ 1— — l —— 2.

+ 3 842 l (MC) n m} l ( 58)

where

87f f f -
G1 = 2 [ill/L YR for all fermions, (2.59)

. MZ! '

G3 = 0 for leptons, (2.60)

4 2

= ”203 for quark gen. 1,11, (2.61)

M06313

47r

= —2—K.3 for quark gen. III. (2.62)

MC

This model does not take into account the unbroken gauge interactions, which can

contribute to the condensation as well. Including the appropriate correction terms

yields according to [17] the gauged gap equation

2 6 mM2 m 2 M2

mf(1‘;aS‘;Y5YfaY)=GI gn22'[1-(.M_;)1n( le

3meg. mf 2

+ G3 87:2 [1- (M5) 1n
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A positive solution for a fermion mass to the gap—equation is taken to be equivalent

to the occurrence of a condensation of the respective fermion. We will choose the

couplings such that we obtain a top-, but no bottom-condensate.

The top-condensate (ft) 74 O breaks chiral symmetry which makes three top-pions

appear in the spectrum.5 Their decay constant can be estimated using the Pagels-

Stokar relation [12] to be

 

f3 2 NC 42

 

5Since there is no reliable estimation of their masses, we just have to assume that they are heavy

enough not to give rise to potentially dangerous effects [12].
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Chapter 3

Theoretical Constraints

In this chapter we shall investigate how the parameters have to be chosen, so that the

model can provide the required generation of the top mass. We will also briefly discuss

the Landau-pole of the U(1)1 group and how the parameter space gets constrained

by the requirement that we want the theory to be valid up to high scales.

3.1 Constraints From the Gap Equation

Inserting the masses of the heavy gauge bosons from eq.(2.29) into the gap equation

and assuming A > mf, yields

2 6 f f _ mi 2 2

In order to obtain a non trivial, positive solution for mf in eq.(2.63), i.e. a fermion

condensate (ff) # O,

1 2 6

must hold.

Since we only want top-condensation to occur, we have to make sure that there is a
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solution for the top quark-mass, but none for the other fermions.1 The three strongest

bounds come from the following set of inequalitieszz

2 27r 4 4

(it) 75 0, if K33 + 2—'7K.1 Z —3— — gas — gay

— 1 2 4 2

<bb> = 0, If K3 — 577-51 S —37: — 5045' + 'Q—CIY

(fr) =2 0, if rel g 27r — Gay, (3.3)

which are plotted in Figure 3.1.

 

 

 

  
Figure 3.1. The triangle of allowed values for ml and 53.

Above the line (i) is the area, where (it) 74 0; (iii) is the upper limit, for non-

appearance of T condensation and (ii) the lower bound from (5b) = 0.

Note, that curves (ii) and (iii) remain the valid limits for the (6b) = ($7) = 0 re-

gardless of the size of the scale A. Since we do not want to have any mass being

created by condensation of b-quarks or T’s, the approximation that leads to eq.(3.1)

 

1We do not know the exact value of the part of the top mass that has to be generated via this

mechanism, since we also expect a small contribution of a few GeV from the Extended Technicolor

sector. But fortunately our analysis turns out not to be sensitive to small deviations in the top mass

that comes from top—condensation.

2Even though the last inequality follows from eq.(3.2), the formation of a T-condensate does not

fit into our picture of the mass generation, since the leptons do not couple to the strongly interacting

sector. During our following analysis it will turn out that this region of the parameter space will

not be of interst.
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is always valid for mf —-> 0 + c. On the other hand the limit for top-condensation

becomes a single line in the K3 — 191 plane, if we assume the condensation to happen

at a particular scale. In Figure 3.2 the lines that represent the allowed parameter

space for top-condensation at a particular choice for A are plotted for different values

of A, assuming the hypercharge p of the condensate that forms at that scale to be

one.

 

  
  1.85

K3

Figure 3.2. The curves (i) and (ii) show the allowed parameter space in the K3 — 521 plane

for a scale A = 500 GeV, 1000 GeV respectively. The solid lines represent the tip of the gap

triangle in Figure 3.1.

Of course the values for A are always within a certain interval, but on can see that if

the scale is forced to be higher than 1 TeV, the parameter space will be very narrow.3

3.2 The Landau-Pole

In loop calculations in gauge theories one generally encounters infinities that force us

to think about the meaning of the coupling constants and masses appearing in the

Lagrangian. The procedure of redefining the constants in a sensible way, such that

 

3The line that would belong to A = 10 TeV is already so close to the line from top condensation

at an infinite scale that the resolution of the plots was not high enough to separate them.
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those infinities cancel, is called renormalization. According to the standard literature

(e. g. [15]), the coupling constants become dependent on the momentum transfer in the

loops (“running couplings”). For Abelian gauge theories like QED, the strength of

the coupling increases with energy, whereas in non-Abelian gauge theories like QCD

the coupling constant is strong at low energies and converges to a small value at high

energies (“asymptotic freedom”). The Landau-Pole denotes the scale at which the

running coupling constant of an Abelian theory becomes infinitely strong, i.e. the

physics at this energy cannot be described by that theory any more.

In the model, that we are investigating, we expect the coupling of the U(1)1 group

4
to exhibit such a running behavior.

In analogy to QED, the running of the coupling constant

 
 

 

gin)
(11/1 5 —47r— = Ozy + [$1 (3.4)

is given by

ayl

AH 1 — ayl 3% ln (#)

A 

where C denotes the sum over the squared U(1)1-charges of all particles contributing

to the self-energy of the U(1)1 gauge boson. Taking all standard model fermions in a

chiral representation into account, we obtain 0' = 5. Inserting eq.(3.4) into (3.5) and

assuming that ay(A) it: ay(MZ) = a(MZ)/cos 6, we obtain the ratio of AH/A as a

function of R1.

 

4Since there are no fermions transforming under the second U(1) group, there are no interactions

that could cause a running behavior.
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0 0.5 1 1.5 2

K1

Figure 3.3. ln(AH/A) as a function of K4.

As one can see from Figure 3.3, ml has to be very small, if we want our theory to be

valid up to a very high scale.
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Chapter 4

First Constraints from Existing Data

Our model shifts the predictions of the standard model for well measured observables.

We shall investigate in this and the following chapter how the parameters of our model

are constraint by the requirement that our predictions for observables are in agreement

with current experimental data.

4.1 Flavor Changing Neutral Currents (FCNC)

The fermion ficlds appearing in the effective Lagrangian eq.(2.27) are in their gauge

eigenstates. As the top-gluons single out the third quark generation, there can occur

a further unknown mixing among the mass eigenstates of up- and down-type quarks

respectively.

For a first estimation of how this mixing limits the free parameters of our model,

we assume that only the left handed down-type quarks mix, according to the CKM—

mechanism from the electroweak theory. This yields FCNC at tree-level according

4O



to:

 

27r T — A“ 2 0132 f — A“ 2

= — M02 [‘3((V3ivj3) Bi'YME'Bj) + — (VjiVik) Bflfl—Z-Bk

t - A“ t -. A“ .

where the primed fields denote the gauge eigenstates and the unprimed, the mass

eigenstates, which are obtained by rotating the gauge eigenstates with V. Further, I

used the abbreviations D = (d, s)T and B = (d, s, b)T.

In order to find the constraints on the free parameters of our model, we compare the

FCNC arising from top gluon exchange to the standard model prediction.

4.1.1 FCNC in R0 — K0 systems

In the standard model, FCNC arise at loop-level from interactions as displayed in the

box diagrams in Figure 4.1.

d W 8 d U,C,t s
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Figure 4.1. Box diagrams of W bosons causing FCNC in the K0 — K0 system.

This interaction can be described in terms of an effective Lagrangian of the form [3]

Leff SM = —95M(JL7"SL)2, (42)
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where

 

_G’F a

:= V V-* . 4.3
sst —T 167T(MWISII1 0w)22 22217717, ( )

The corresponding physical observable would be the K0 — K0 mass splitting, but for

our purposes it is sufficient to just compare the factors (I in the Lagrangian. The

Lagrangian yielding the AS = 2 neutral currents at tree-level in our model reads:1

 £0 = — 5:2(n3(V113V32)+a—';22-l-[(V111V12) (mgr/”)2 + 2 (V1I1V12V112V22)]

—20zs [(V1I1V12V113V32 + V1:2V22V1I3V32)]) (JL7/‘-/\2—GSL)2 .

as

In order to compare the factors in the Lagrangians, we have to bring the currents in

eq.(4.4) to the form of the current of the effective standard model Lagrangian eq.(4.2).

We sum over the indices of the Cell-Mann matrices A“ and employ the relation

A“ [\a 1 1

— — =— 5 a —-6 6 4.

2(2)afl(2)76 2(01613’7 30376) (5)
a

This yields a term of the shape

— - — 2
(dLa’7“SL{3) (dLfi'l’uSLa) = (-)(—)(dL7”8L) , (4-6)

where the first minus sign comes from a Fierz—rearrangement and the second one

from interchanging Grassmann valued fermion fields. Plugging this in the Lagrangian

 

1Note, that for gauge bosons that couple equally to all fermion generations, the couplings could

be factored out and the sum over the matrix elements would give 1, since the mixing matrix has to

be unitary. In that case there is no residual flavor changing neutral current.
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eq.(4.4) and comparing the factors, demanding

2“ ’r 2 es2 1‘ 2 t 2 ’r 1‘
“SM > —W (K3 (V13V32) + 7c? [(V11V12) + (V12V22) + 2 (V11V12V12V22)

(4.7)

yields the constraints for 523 and MC shown in Figure (4.2).
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Figure 4.2. Lower bound for (n3, MC) from FCNC in R0 — K0 systems

4.1.2 FCNC in BO — BO systems

The same procedure can be repeated for BO -— B0 systems, where we obtain similar

constraints from the mass shift in B3 or B2 mesons. The corresponding graph is

shown in Figure(4.3).

43



 8000 . - . . .

7000l__ifl__flflg_gfl,,_....—————-""”’”'F

6000» .

5000»

__. 4000 '

U 3000 ’

2000*

1000L
G
e
V
]

M

  
1.6 1.8 2 2.2 2.4

K3

 

Figure 4.3. Lower bound for MC as a function in 53 from FCNC in BEE-Meson systems

One can see directly from Figure 4.3 that this constraint is stronger than the one

from the kaon sector. From the gap triangle in Figure 3.1, we have 533 z 2, which

yields a lower bound on the top gluon mass of approximately 6 TeV.

4.2 Constraints on effective four-fermion couplings

Data from LEP2 puts upper limits on the coupling in effective four fermion contact

interactions. The data is presented in the following form:

If the Lagrangian has the form

2

 

ceff = i (TL’YMPL) (15137“0;.) , (4.8)
:l: 2

ALL

2

with £7 E 1, then LEP2 data gives lower limits for AfL or upper limits for the overall

coefficient in the Lagrangian.

This becomes interesting for us, if we look at the effective four-fermion interaction,

due to Z’ exchange:
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LIZ; = _M27r2m (ffWYfi) (37“ij) . (4.9)

2!

 

Even though one might expect the most restrictive constraint for K1 and MZ’ to

follow from leptonic contact interactions (eeee) or (eepp), it arises from the contact

interaction (eeuu), for which the factor A:L = 23.3 TeV is the largest. 2

The graph in Figure 4.4 shows the lower limit for the allowed region for (al, MZ’)'

 
2 S T v v v *1 fi—‘r

M
z

[
T
C
V
]

  
  

Figure 4.4. Lower limits for 101 and Mz' from comparison with LEP2 data.

In order to keep MZ’ on the order of a few TeV, K1 is restricted to be smaller than 1.

 

2Notice, that, even though our Lagrangian had initially an overall minus sign, we have to use the

value for A according to an overall positive Lagrangian, as the hypercharge eigenvalues for electrons

and quarks have opposite signs.
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Chapter 5

Constraints from electroweak precision

data

In this chapter we will investigate the bounds on our parameter space from elec-

troweak precision measurements. At first we present our fit to the LEPl data given

in [7]. In the second section we compare our results to the fit by Barbieri et al [2] to

data from LEP1-, LEP2-, low energy-experiments.

5.1 A Fit to LEPl data

In order to find constraints on the parameter space of the model, we have to derive

expressions for the observables. These can be obtained at tree level by shifting the

coupling of the Z boson and the weak mixing angle in the standard model observ-

ables according to eqns.(2.49) and (2.52). The observables are then functions of the

very well measured quantities MZ, a and G’F as well as the free parameters in the

electroweak sector cos gb and pA. Note that ft and hence FTC are already determined

in terms of these parameters according to eqns.(2.64) and (2.36).

‘U
Since we expect pA >> 11 z 246 GeV, we expand to second order in 57? Every
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observable then takes the form

v2

0' = 0.19M +60z(cos¢) x W, (5.1)

where 60i(cos 06) is a polynomial in cos 05. From this we see, that in the limit A -—> 00

and cosgb ——> O, we approach the standard model. 03.9.1” represents the tree-level

standard model value for the observable written in terms of sin 6Z-

In order to get bounds on the free parameters, we have to compare our expression for

of to the experimental value Gimp :

2
o o c . v

0:31:19 i 0023:}, 2 0.23M + 602((303 Q6) X W (5.2)

We expect that the new effects coming from our model are of the same order as

one-loop corrections to the standard model. To make sure that we do not mistake

standard model one-loop corrections for new physics, we replace 0%M in eq.(5.2)

by the best-fit standard model one-loop value for the corresponding observable. We

obtain those values using the program ZFITTER [1]. We used the sample program

given in [1] and updated the subroutine which is in charge of the initialization. The

values we used as input parameters are listed in Table 5.1.

The one—loop correction to the standard model involves a Higgs particle loop, which

strongly depends on the Higgs mass. The particle in our model corresponding to

the Higgs would be the particle that unitarizes the W scattering, which is in this

class of models assumed to be the Technicolor-analog to the QCD-p. Its mass can be

estimated by upscaling the QCD-p mass to be of the order of a TeV.

In order to see how the mass of the particle that plays the role of the Higgs in

the loop-calculations affects our results, we performed the fit for two different input

parameters mH = 800 geV and mH = 1.5 TeV.
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MZ [GeV] a_1(Mz) 015 mt [GeV] mH [Gav]

 

 

91.1876 128.887 0.117 174.2 800/1500

          
Table 5.1. The input parameters we used in ZFITTER.

To combine the constraints from measurements of several observables, one has to

perform a least-squares fit, i.e. the best fit values are obtained by minimizing

2 . - o v 2

x (cos ¢,pA) = Z 023,, — 0.29M — 60'(cos 03) x (17/?)

233'

. . , v 2

x (apafijl (Gimp — OJSM -— (503 (cos 05) X (1]) ) , (5.3)

where ,0 denotes the correlation matrix of the observables and a is the diagonal matrix

containing their standard deviations. The allowed parameter space is obtained, by

2
requiring that Ax2 = X2 — Xmin does not exceed a certain value, associated with the

confidence level and the number of fit parameters. We will work at a 20 confidence

level and have two fit parameters pA and cos (b, which yields according to [8] 6.17 2

AXZ.

Since we obtained the first bounds on our parameter space from the gap equation

1
(3.2), we want in the end to translate our constraints back into the 103-101 plane.

Comparing eq.(2.18) and eq.(2.21) yields

’"31
cos2 90 = —.

K1 +ay

(5.4)

In order to impose limits on :03, we use the gauged gap equation for the desired top

 

1The results of this part of the analysis have a rather qualitative character, since one should not

assume that the self-consistent ansatz of the NJL—approximation holds to such high accuracy.
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2 2 1
_ _ _ _ = __Yt yt

1 97raS 37raY 471‘ L Rm

  

2 M2

110104 0]le mt

3 mt 2 Mg;

+ 57; n3 [1 (V0) log (m? (5.5)

Inserting the relation for the heavy gauge boson masses from eq.(2.29), one can see

 

that eq.(5.5) depends only on the free parameters A, K1, R3 and p

2 2 1 m2 r01 47r(pA)2(n1 + Oty)2

1— — — — = —— 1 - t 1

97raS 37raY 36W"$1 ] (47r(pA)2(n1 + (ll/)2) 0g ( mg [$1

+ 3 1 _ p2 m? K3 1 47r(p/\)2(K3 + as)2

2— "3 4 A 2 2 03 2 2 °
W 7T0) ) (“33+OS) P mm

(5.0)

  

  

In order to eliminate pA we solve eq.(5.2) for pA and obtain pA as a function of K1.

Inserting this into eq.(5.6) enables us to translate the constraint into the 53 — n1

plane, with a dependency on the parameter p.

Recall that p denotes the absolute value of hypercharge assigned to the condensate

that drives the first symmetry breaking. It is assumed that p is of the order of one,

but we shall demonstrate how different choices of p affect our results.

According to eq.(2.53), the shift in the W mass is given by

'U 2 F2 2

M3], zit/1% cos2 0 1 + (—A) TC — cos2 0)

p

 

v2

 M2 20 +M2 ( v )2 (203462 ch 20 2 (57)= cos — —— — cos , .

HLPZ/ Z 19A 00326Z — sin2 9Z 112

MeVISM * v 4

v 2 2

=(5r) WW

where in the last step we have used eq.(2.52) to express cos2 0 in terms of cos2 0Z and

 

expanded to second order in v/pA. As outlined in the previous section, we replace
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M2
W]SM by the best-fit one-loop value, obtained by running ZFITTER (see Table 5.2).

The partial decay width of the Z boson into a fermion-antifermion pair (ff)

is given by (see e.g. [3]):

NZ ff)= gig—20;, +9”) (5.8)

Using the expression for the new Z-coupling from eq.(2.49), one obtains

62

2477 sin2 6 cos2 6

2 2 2
2 f - 2 v 2 . 2 f

x (Tchos 6—YL (SID 6+ W608 (b (sm gb— v—tz)))

’02 f2 2

+(Yf (sin2 6 + p2A2 cos2 ()5 (sin2 (b — 0%))) (5.9)

Rewriting this in terms of 6Z using the result from eq.(2.52) and expanding to second

 

(Z->ff)=

 

order in p7”; yields an expression of the form of eq.(5.1)

212

r(z —+ ff) = NZ —> fflsmtree level + mg —5 ff) x r727 (5.10)

Neglecting the small contribution from the Z decaying into other gauge bosons and

hadronic states we can write the decay width into hadrons as

PZ—5had = Z NcI‘(Z —> if), (5.11)

f=u,d,s,c,b

where NC = 3 is the color factor.2 Fzfiinv is given by summing eq.(5.10) over all

neutrinos. The total Z—boson decay width was calculated by summing all partial

decay-widths into fermion-antifermion pairs (excluding the top quark ).

 

2The decay into a if pair is kinematically impossible at the Z pole, since the top mass exceeds

the center of mass energy by far.
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The experimental results in [7] further include values for the pseudo-observables as

defined in the following: The hadronic cross section of the Z boson ”had is given by

 a = (5.12)

had Mg I‘Z tot

The branching ratios into quarks and leptons are defined as

I‘ _, — I‘

I‘Z-ahad I‘z—ui'

Futher, the left-right and forward-backward asymmetry parameters are introduced as

 

f f f f

Af a 0L _UR 1 , Af E (11711, (5.14)

LR 0£+01f2 (lPel) FB 0£+UB

where in the first expression (lPel) denotes the polarization of the initial state elec-

trons. Important for us is that in the standard model they can be conveniently

rewritten in terms of another asymmetry parameter, which is only a function of the

coupling of the Z boson to fermions

2 2

9 L ‘ 9 R
Af E H. (5.15)

gfL + ng

With the above definition we obtain

f _ f _ 3

In order to calculate the predictions for the pseudo-observables in our model, we

again replace the Z-coupling by the shifted expression from eq.(2.49) and further

express sin 6 by sin 6Z according to eq.(2.52). We expand to second order in a”; and

replace the zeroth order term by the standard model prediction at one—loop level

from ZFITTER[1] listed in Table 5.2. In order to obtain values for the asymmetry

parameters, the ZFITTER-based program Smatasi [14] was used.3

 

3 At this point, the author would like to thank his fellow student Michael FloBdorf who was

responsible for the complicated but in the end successful installation of this program, which enabled

us to perform this improved fit.
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Since in our model the hypercharge sector is flavor-universal, we used the values from

[7] which were calculated under the assumption of lepton-universality. The ZFITTER

values for the flavor-universal observables 0’ were calculated by averaging over the

values for 06, O“, and 0". In the fitting procedure we minimized the Xz—function in

eq.(5.3) under the conditions pA, rel > 0. The experimental values and their errors

are displayed together with the results of our fit (for mH = 800 GeV) in Figure 5.1.

The correlation matrices for the observables can be found in Table 5.3 at the end of

this section. In the “Fit”-column the predictions of our model for the observables

using the best-fit values for the fit parameters pA and 1621 are listed. The “Pulls”

quantify how much the prediction of our model deviates from the experimental value

in units of its standard deviation.

 

Experimental Value Fit Pull

Fl: (2.4952i0.0023) GeV 2.4978 GeV

chad: (41.54lzt0.037) nb 41.485 nb ‘

 

R1: 2076740025 20.733

A'FB= 00171100010 0.0161

P.= 014653600033 0.1465

AlLR(SLD)= 0.1513i0.0021 0.1465

Rb: O.21629i0.00066 0.2160

 RC: 01721400030 0.1723

Aha: 00992300016 0.1027

14°53: 00707¢00035 0.0733

Ab“: 0923:0020 0.935

Ac”: 067010.027 0.668

MW: (8040310029) GeV 80.402 GeV    
0 1 2 3

26266515772 at <pA>=4038 rev,(x, )=0

 

 

Figure 5.1. The first column shows experimental values from [7] for the set of observables

we used to fit the predictions of our model to. In the second column the best-fit results

for our model are listed and the graph on the right-hand side shows the pulls for each

observable. In the last line the XEm-n-value and the best fit values for our fit-parameters are

g1ven.
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For the fit where we assume a heavier Higgs-like particle, the Xw2m'n value improves

slightly compared to the one in Figure 5.1 to

x3... = 14.1726 at (pA) = 3.785 TeV, and (151) = 0 (5.17)

The allowed parameter space on 95% confidence-level for the fits with mH = 800

GeV and mH = 1.5 TeV is shown in Figure 5.2.

 

1.24 ' ' r *

1 l

0.8 7

0.6- ' (i)

0.4- . 1

(ID

0.2»

0 1

1
0
7
3
1
6

  
 

3.25 3.5 3.75 4 4.25 4.5 4.75

pAlTeV]

Figure 5.2. The plot shows the allowed region on 95% confidence-level after fitting to

the data listed in Figure 5.1. Curve (i) and (ii) enclose the allowed parameter space for

my = 800 GeV and mg 2 1.5 TeV respectively.

From Figure 5.2 we can see that the results do not depend significantly 011 the mass of

the Higgs-like particle. Therefore we will assume in the following analysis the Higgs-

like particle to have a mass of 800 GeV.

The value for x7271," being only slightly larger than the number of degrees of freedom

(= 13 — 2) tells us that the predictions of our model fit the experimental data well4:

anm/dor. = 1.434.

According to Pearson’s XZ-statistic the probability to find x2-values greater than this

is approximately 15%.

 

4For the standard model with a Higgs mass larger than 800GeV, we estimated sznin z 100.
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The fit gives a lower bound on pA of about 3.5 TeV and restricts 181 to be less

than 0.0012. Using the relation from eq.(2.29), we can translate the bounds on the

parameter space from Figure 5.2 into the MZ’ — 141 plane.
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Figure 5.3. The allowed parameter space for Mz' and 161.

The plot tells us that we can exclude the Z’ to be lighter than 2 TeV on 95%

confidence-level. In fact, since the best fit value for 151 is zero, it is likely that the Z’

is very heavy.

In order to find an estimate for the top-gluon mass, we translate this constraint back

into the K3 — 1521 plane, where we encounter a dependence on the hypercharge p of the

condensate driving the first symmetry breaking. Since we expect p to be of order one

(by comparison with the hypercharges of the familiar particles), the constraints are

plotted for p = %, 1, 2 below, in order to demonstrate how the choice of p affects the

evaluation.
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Figure 5.4. The dashed curve encloses the allowed parameter space in the 193-161 plane for

different values of p. The bold lines represent the tip of the gap triangle (see Fig.3.1).

For small values of p the parameter space becomes extremely narrow and approaches
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the line that represents the limit of top-condensation occuring at an infinite scale A.

This is because small p corresponds to a large top gluon mass. On the other end,

large values for p drive the allowed parameter space into a region where, according to

the NJL—approximation, b-condensation can occur. Regardless of the exact choice of

p, as long as it is of the order of one, we obtain [63 z 1.96. Inserting this in eq.(2.29),

we find, that the top gluon mass is limited by

15 TeV 3 MC 3 26 TeV. (5.18)

Even though the estimation of 163 requires the NJL-approximation to hold to a

(perhaps unreasonably) high accuracy, the general statement that 153 (a) has to be

large compared to aS in order to insure top—condensation and is (b) on the other

hand restricted not to exceed a certain value to avoid (50) 75 0 has to hold, in order

to satisfy the general ansatz of our model. Together with the claim of p z 1, this

always yields upper and lower bounds on MC in analogy to eq.(5.18).
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Table 5.2. shows the best-fit one-loop predictions of the standard model for the set of

observables that we used to perform our fit to calculated by ZFITTER for different Higgs

masses.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

oi Zfit (mH = 800GeV) Zfit (mH = 1500GeV)

rZ [GeV] 2.488069 2.485958

chad [nb] 41.4881 41.4887

Re 20.715 20.7118

13,, 20.715 20.7121

3,, 20.715 20.7589

in, 0.01444 0.01411

4%,; 0.01444 0.0144

g3 0.01444 0.0144

ER 0.1388 0.1372

AgR 0.1388 0.1372

212 0.1388 0.1372

Rb 0.2158 0.2159

1?.C 0.1722 0.1722

A13 0.9340 0.9340

1R 0.6642 0.6635

MW [GeV] 80.23222 80.20047   
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I‘Z chad R) A323

 

 

PZ 1.000

“had -0.297 1.000

R, 0.004 0.183 1.000

I
AFB 0.003 0.006 -0.056 1.000         
 

 

b b
Rb RC AFB 153 ALR A212
 

 

Rb 1.00

RC 018 1.00

bAFB -010 0.04 1.00

A353 0.07 —0.06 0.15 1.00

b
ALR -0.08 0.04 0.06 —0.02 1.00

AER 0.04 -0.06 0.01 0.04 0.11 1.00         
Table 5.3. Correlation matrices from [7] for the experimental values in Figure 5.1 .
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5.2 A fit to a larger set of observables

Barbieri et al. [2] have performed a fit to high energy precision data from the LEPl

and LEP2 experiments as well as low energy precision data, like atomic parity viola-

tion in Cs atoms.

In the following we use their results to impose bounds on our parameter space and

compare it to our results from the previous section. In order to do so, we first have

to find a translation for our parametrization into their language.

5.2.1 Definition of electroweak parameters

The standard model predictions at tree—level fit the electroweak precision measure-

ments already very well, so that one expects the effects from beyond the standard

model physics to be maximally of the order of the standard model one-loop predic-

tions.

Both the corrections to the standard model one-loop contributions due to new physics

(new fermions loops, for example), as well as the deviations from the standard model

predictions arising from a whole class of “universal” models at tree-level, can be

parametrized in terms of four parameters. Universal, in this context, denotes theories

in which the corrections to the standard model predictions can be expressed solely by

modifications to the two-point correlation functions of electroweak gauge currents of

fermions. Using the parametrization given in [5], the matrix element for the neutral
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weak current is given by

(T3 - 82G?) (T:3 - 8262’)

2 2 S 1

(87:76— _ T577) + 472016 (1— aT+ 43%?)

+ x/EGF-S—Z‘gfrflg + 4¢20F (Ap — 6:!) (Q — T3) (62’ — Té) (5.19)

2Q_Qf
p2

 

"MNC = e +

and the matrix element of the charged current reads

(T+TL + T_Tjr) /2
  

(16 (T+TL + T.T_,+_)

 

_M = 2G

CC (52_S)P2+ 1 (1+ a6)+\/_ Fszcz 2

22 T67? 4&0F 43252

(5.20)

P2 denotes the Euclidean four-momentum transfer, P2 = —q2, where q is the usual

Minkowski momentum. Ap corresponds to the deviation from unity of the ratio of the

strengths of isotriplet weak neutral current and charged current scattering at zero mo-

mentum transfer (P = 0). The factors a6 and (Ap — aT) correspond to the strength

of effective contact interactions via extra heavy gauge bosons (from additional SU(2)

or U(1) gauge groups). 3 and T are the parameters from the STU-formalism [16]

introduced by Peskin and Takeuchi to characterize the so called “oblige” corrections,

i.e. the corrections at one-loop level to the self energies of the standard model gauge

bosons due to new physics. 32 denotes the weak mixing angle as defined by the on-

shell Z coupling to the fermions.5

The parametrization is chosen such that for the standard model all parameters are

zero. Since the standard model predictions are in good agreement with current ex-

periments, one can assume the values of the parameters to be very small compared

to one.

In order to find the expressions for the electroweak parameters in our model, we com-

 

5It is, besides eq.(2.51) and(2.53) a fourth possibility to define a weak mixing angle, such that in

the standard model at tree level: .92 = sin 6w = sin 62 = sin 6.
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pare eq.(5.19) and(5.20) to the respective matrix elements, that we obtain from our

model at tree level

2

_ 82_Q___Q' 92 92’

"MN0 — p2 + 52274} + 17;

2
2 v2 2

__ e2—Q——Q, e - 2 ft
_ P_2— +_sin26cos26 [1+pv2—A—2 cos205 (Sln ¢_fi>]

2
2

(T3 — Q [sin2 6 — 5% cos2 6cos2 4) (£3 - sin2 ¢)])

 

 

 

  

x

2 2 2 . f2
2 e v __ v 2 _

P + 4cosg6sin26 (1 122112 (8m ¢ 5%))

82 2
—'2'5C0t d)

+ “’3 .212 (Q — T3) (62’ — T5)

4cos2 6sin2 (boos2 d)

2 f2 2
QQ’ (T3 — Q [sin2 6 — fix? cos2 600$2 05 (35 — sin2 (0])

:82 2 + 2 '
P sin26c0526 2 112 2 f ' 2 132 M* 2
T 1+ Wcosqfi fi—smqfi +( Z)

4

+ p2A2 “034 ¢ (Q — T3) (Q, — T8), (5'21)

where the contribution of the heavy Z’ appears as a contact interaction, assuming

(P2 < MZ’)' The factor in the second line has been pulled out in order to give the

numerator the shape of the corresponding term in eq.(5.19). In the next step, its

inverse appears to second order in v/A in the denominator. (M2)2 is given by

2 2 F4

:1: 2 _ ’U 2) TC 4
(M2) — I |:].— W ('72— — COS (6)] . (5.22)

Analogously, we obtain for the charged current

1 (T+T’_T4117.)

sin2 6 P2 _ e2122

82 4 sin2 6

 — MCC = (5.23)

From here, we can straightforwardly derive the electroweak parameters in terms of

the free parameters of our model [6], by comparing the coefficients in eq.(5.19) and
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eq.(5.20) with those from eq.(5.21) and eq.(5.23). At first we express .52 in terms of

our parametrization

v 2 f2

.52 = sin2 6 + — sin2 (I) — —t2 cos2 05 cos2 6. (5.24)

[311 ’0

Then, we find

016 _
m — 0 , (5.25)

   

since there is no contact interaction term in eq.(5.21) proportional to T3714. Further

1 v2 02 ’02 Ffo 4

fill—0T): “—0570: [1"p2A2(v2 —COS¢

 

 

  

¢=> aT = fi’%2(féQ-cos4¢). (5.26)

 

Here we have used 1/2GF % l/vz. Comparing the term in the propagators of the

standard model gauge bosons proportional to P2 yields

 

2

023 = 4% cos2 6 cos2 qb (sin2 45 — 155) . (5.27)

   

From the Z’-term, we obtain

 

2

(Ap — aT) = EEK? cos4 (1) . (5.28)

   

Ap is defined by the ratio of the couplings of the T3Té terms in eq.(5.19) to that

of the (T+T'_ + TLT_)/2 term in eq.(5.20). Of course it can also be obtained, by

combining eqns.(5.26) and (5.28). Either way yields

 

v2
F4

Ap = W‘zfic' (5.29)

   

The top-gluon sector also shifts the p parameter. The main contribution arises from

single top gluon exchange across the top and bottom quark loops of W and Z vacuum
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polarization diagrams. According to [17] this contribution is given by6

2

167rza f2

A (01% Y t , 5.30p 3sin2 6w (MCMZ n3 ( )
 

where MC denotes the top gluon mass and sin 6w denotes some weak mixing angle,

which we set equal to sin 6Z7. In Figure 5.5, the ratio of the two contributions to Ap

from eq.(5.29) and (5.30) are plotted over the relevant energy regime.

 

0.06 ' ' 7

0.05 .

0.04 5

0.03 -

0.02 r

0.01 -

O u 1 - . .

0 5 10 15 20

pA[TeV]

U

32

f7’
N

  
 

Figure 5.5. The ratio of the two contributions to the p-parameter arising from the top

gluon and the electroweak sector.

Evidently, the contributions from the top—gluon sector are very small and can be

safely neglected in the following.

5.2.2 Constraints from the global fit

At first, I shall briefly outline what the results from [2] that we used to constrain our

parameter Space correspond to.

The first step of the general fitting procedure closely follows the steps outlined in the

 

6The model [17] has a flavor-universal top gluon-sector, but the couplings of the top gluon to the

third generation of fermions are the same in both models.

7Ap is already at the order of (v/pA)2. Since we are working only to that order in general, the

different expressions for the weak mixing angle are equal to each other.
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beginning of Chapter 5: For a fit with 1‘ parameters to 'n observables, one first ex-

presses all observables in terms of the chosen parametrization 6 = (61, ..., 6r), yielding

terms of the form of eq.(5.1). Since all the parameters are expected to be close to

zero, the expressions for the observables are expanded to linear order in 6. Then, the

standard model tree-level predictions are replaced by the best fit one-loop prediction

of the standard model, which depends on the Higgs mass. This ensures that our

parametrization just describes the effect of the new physics.

In the next step, a least-square fit is performed, by minimizing

x209) = Z (02.... — 0:06)) OH)” (0%.... — 0:},(0) . (5.31)
2,]:

where Vij = oikpklolj, with the correlation matrix p of the observables and their

error matrix 0. Since all 01(6) are linear in 6, Ax2(6) = X2(6) — anin is a quadratic

form in 6 which can be rewritten as

r ..

2138(9) = Z ((9‘) — 9") (11—1)” ((93) — 91'), (5.32)

i,j=1

with U = opo denoting the covariance matrix of the best-fit values. This is the

desired expression, containing the best-fit value (6), the standard deviation 0 and

correlation p for the fit parameters.8

In order to use the constraints on the electroweak parameters from the global fit

performed by Barbieri et al [2], we have to express the parameters they used in terms

 

8The division of U = opo is unique, since the correlation matrix p is defined to have diagonal

entries of 1.
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of our parametrization. According to [5], the Barbieri parameters read in our basis

 

 

 

 

. _ 1 2 016 v2 02 F7230 2

S : E (015 '1' 4C (Ap — OT)) ‘1' 27 = p2A2 ?7 COS (25 (5.33)

2 F2
. v

5 5p = p2A2 {2Q (5.34)

2 2 2
_ C _ 'U C 4

025

W E 452c2 = 0 (5.36)

The constraints 011 those parameters obtained from the fit are listed in Table 5.4.

 

 

mH[G'eV] 103 (5) 103 (2“) 103 (Y) 103 (W)

 

 

800 —0.9 :1: 1.3 2.0 :l: 1.0 0.0 :1: 1.2 —0.2 :l: 0.8

          
 

Table 5.4. The values for the electroweak parameters obtained from a global fit to LEPl

and LEP2 data, according to [2].

The corresponding correlation matrix, regardless of the Higgs mass, given in [2] is

1 0.68 0.65 —0.12

0.68 1 0.11 0.19
p =

(5.37)

0.65 0.11 1 —0.59

-—0.12 0.19 —0.59 1

Since we only have two free parameters in our model Ax2 is not zero for the best-fit

values of our parameters. The allowed parameter space at 95% (20)-Confidence level

is obtained by requring

<9) _ 9 T (5") _ 9

2 (T) - T —1 (T) — T
6.17 + Ax ((1019451)) .>. (y) _ Y (Up 0) (y) _ Y 1 (538)

(W) — W (W) — W

with o = diag (05, 0T, 01’, 0W). Inserting eqns.(5.33)-(5.36) and the values from

Table 5.4, yields the bounds on the parameter space shown in Figure 5.6:
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Figure 5.6. The constraints on the parameter space of our model from a fit to LEPl and

LEP2 data [2] under the assumption of a Higgs mass of 800 GeV. The dashed line shows

the result from our fit in the previous section for comparison.

Surprisingly the parameter space becomes wider if one takes more data into account.

In [2] there is unfortunately neither a xgm.” value nor the pulls for the observables

given which limits our possibilities to understand this. There has to be a tendency

among the extra observables to pull the best fit value for pA toward larger values.

The lower limit on pA remains the same, so that the lower bound on MZ’ does not

shift.
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Chapter 6

Summary and Conclusions

6.1 Summary of the Results

Based on the fits to electroweak precision data, we can exclude 011 95% confidence-

level Z’ masses below 2 TeV. With the upper bound on its coupling to fermions

(r91 _<_ 0.0015), this tells us that our model does not get in conflict with the bounds

on effective four-fermion interactions from the LEP2 measurements (see section 4.2).

The strong upper bound on 151 also ensures that, in the sense of our results from the

calculation of the Landau-pole (section 3.2), our theory can (technically) be valid up

to scales beyond the Planck-scale.

Given the analysis in section 4.1 and the estimation of the topgluon mass in eq.(5.18),

we do not expect our model to give rise to flavor changing neutral currents in a

detectable range.

For further investigation of this model it may be useful to express our results

in terms of the universal parameters S, T, and Ap from eq.(5.26) through (5.29):

Ap = air = 2.9 x 10-3 and as = 0. (6.1)
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From here we see that we are basically left with one free parameter, because K1 —+ 0.

Looking back at eq.(3.3), we find that the “tilting” that makes the top quark form

a condensate but not the bottom quark is dominated by the unbroken electroweak

gauge interactions. The exchange of a heavy Z’ boson hardly affects the tilting process

(5:1 << ay). This forces [$3 to be “fine-tuned” in the sense that it has to be very close

to the critical coupling at which a condensation of third generation quarks occurs.

This corresponds to the very narrow parameter space in the 753 — 751 plane as shown

in Figure 5.4.1

This leaves us with a “sterile” Z' boson which in a good approximation does not

couple to fermions at all. Nonetheless it is a key ingredient in the model, since the

goodness of our fit relies on its contribution to the shift in the coupling of the ordinary

Z boson to fermions:

2 2 2 ° 2
, f _ _ . 2 12 _IL cos 6Zs1n 6Z

l1mOgZ — (T3 Sln 6g) + (p—A) (1 ) Q (6.2) 

51—» 122 cos2 6g — sin2 62 .

6.2 Expectations on Future Experiments

The most exciting experiment (not only regarding our model) will evidently be the

search for the Higgs-boson at the LHC. If a Higgs-particle with standard model-like

couplings to the other particles will be detected, our model, and nearly the entire

class of Technicolor models, becomes obsolete.

Apart from this, it is hard to make predictions from our model for possible observa-

tions at LHC or ILC, since the masses of the heavy gauge bosons are already, by the

current electroweak precision data, forced beyond the reach of those colliders. The Z’

is not necessarily very heavy but its coupling to fermions as well as its mixing with

 

1The graphs were obtained using the NJL-approximation, but the statement about the “fine-

tuned” parameter 153 holds for any possible model describing this pattern of symmetry breaking.
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the standard model Z is very small which makes direct searches unrealistic.

From ILC one can expect upper bounds on effective four-quark interactions2 similar

to the LEP2 data that we used in section 4.2. In contrast to the analysis of the 2'-

exchange, where 151 —> 0 can compensate for arbitrarily small masses of the Z’ boson,

163 has to be large compared to aS in order to provide the desired top-condensation.

A strong lower bound on the mass of the top-gluon MC may, according to eq.(2.29),

drive the scale A out of the region allowed by electroweak precision data.3 The general

ansatz of explaining the large top-mass via extra dynamics singling out the third gen-

erations of fermions, leads to potentially detectable decays of for example top-pions

into 05, but predictions for such processes exceed, unfortunately, the subject of this

thesis.

 

2The author would like to thank his advisor Prof. Elizabeth Simmons for pointing this out.

3At least under the assumption that the hypercharge of the condensate driving the first symmetry

breaking is of order 1.
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APPENDIX A

A.1 Constraints from Electroweak Precision Data on Models

with a Flavor Non-Universal Hypercharge Sector

Flavor non-universal topcolor models (as in [17]) usually assume that the third gener-

ation of fermions transforms under the U(1)1 group and first and second generations

under the U(1)2 group (see Table 2.1). Therefore, the Z boson couples differently to

the third than to the other fermion generations. This can be seen by looking back at

eq.(2.49), where we have used that, in the flavor-universal model, the operator

Y1 — (Y1 + Y2) sin26 = Y c0826, (Al)

for all fermions. This relation has to be modified in the flavor non-universal case. For

the third generation of fermions the Z boson coupling stays the same as in eq.(2.49),

but for the first two generations the coupling takes the form

2 2

12 e ’U . 2 .2 ft
1 =__ T 1___ __

gZ sin6cos6 [ 3( 132A2 sm (“(8111 lb 12 ))
2

2 2

— Q (sin2 6 —— gag/l2 sin2 (25 (sin2 05 -— i—g)>[ (A2)

The fitting procedure from the last section can be easily applied to this class of models

 

as well. While calculating the values for observables as predicted by these models,

one has to keep track of the couplings of the Z boson. As set of experimental values
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we used the same as in the previous section, with the exception that the values for

observables depending on the coupling of the Z boson t0 leptons have to be replaced

by those which are given in [7] for the flavor non—universal case.

We have only performed this fit assuming a Higgs-like particle of mass mH = 800

GeV. The result of our fit and the experimental values are given in Figure A1 The

additional correlation matrices to Table 5.3 are given in Table Al and A2.

 

Experimental Value Fit Pull

F2: (2.4952100023) GeV 2.4892 GeV

0m: (41.54110037) nb 41.4598 nb

 

Re: 20.80410050 20.7428

Ry: 20.78510033 20.7431

RT: 2076410045 20.7515

A°FB= 0.0145100025 0.01682

A”FB= 00169100013 0.01682

Arm: 0.0188100017 0.0160

ATLR= 01465100033 0.1417

AeLR(SLD)= 01516100021 0.1493

A”LR(SLD)= 014210.015 0.1493

ATLR(SLD)= 0.13610015 0.1417

R1,: 0.216291000066 0.2160

= 01721100030 0.1722

A pg: 00992100016 0.1046

A°FB= 00707100035 0.07454

  AbLR= 0.92310020 0.9342

ACLR= 0.67010027 0.6688

Mw= (8040310029) GeV 80.2970 GeV

0 1 2 3

sz,,,=49.9627 at (pA)=6.629TeV,(K1)=0
 

 

Figure A.1. The first column shows experimental values from [7] for the set of observables

we used to fit the predictions of our model to. In the second column the best—fit results

for our model are listed and the graph on the right-hand side shows the pulls for each

observable. In the last line the Xgnin-value and the best fit values for our fit—parameters are

given.

The Xgm-n-value in this case is large which makes the it unlikely that a model like this

fits the data well. Comparing the pulls in this case to Figure 5.1, one can see that

the agreement of the predicted values with the experimental data is not as good as
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for the flavor-universal model.

From the analysis of the flavor universal case, we have seen that 191 = ay cot2 05

has to be very small in order to fit the data well. In the flavor non-universal model

this corresponds to make the shift compared to the standard model coupling in the

Z coupling to third generation small. At the same time this shift becomes large in

the coupling to the first two fermion generations which spoils the fit. Therefore one

might expect the best fit value for 191 to be positive which is not the case. One has

to take into account that the coupling of the Z boson contains a flavor-independent

dependency on [$1 due to the shift in the weak mixing angle in eq.(2.52). Obviously,

this contribution primarily has to be zero in order to fit the data.1 The “allowed”

parameter space is shown in Figure A.2, but since the xgm-n-value is so large the

meaning of this becomes ambiguous.

 Swr—V' 4

D
J

1
0
_
3
K
1

N

  
 

4 5 6 7 8

9A [TeV]

Figure A.2. The plot shows the allowed parameter space on 95% confidence-level for a

flavor non-universal model after fitting to electroweak precision data [7].

Generally speaking, one can conclude that model with a flavor non-universal hyper-

charge sector are disfavored by the current electroweak precision data.

 

1I double-checked this by interchanging the couplings of the third generation with the couplings

of the first two fermion generations to the Z boson.
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Table A.1. The correlation matrix of the experimental values for the flavor non-universal

case.

Table A.2. The submatrix for the correlations of the lepton left-right asymmetries.

 

 

 

 

  

I“z Uhad Re Ru 37 A333 Alia 199

1‘2 1.000

”had -0.297 1.000

Re 0.011 0.105 1.000

H), 0.008 0.131 0.069 1.000

R, 0.006 0.092 0.046 0.069 1.000

35.3 0.003 0.001 -0371 0.001 0.003 1.000

AgB 0.002 0.003 0.020 0.012 0.001 -0024 1.000

;.3 0.001 0.002 0.013 -0.003 0.009 -0.020 0.046 1.000   
 

 

 

6

LR

)2

ALB

T

ALR
 

 

  

8

ALB

p

ALR

e
AFB   

1.000

0.038

0.033

1.000

0.007 1.000    
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