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Abstract

A MODIFIED TOPCOLOR MODEL

By

Michael Flossdorf

In this thesis we will consider a Topcolor assisted Technicolor model with a flavor uni-

versal hypercharge sector. However, before we discuss the details of this model, we will in

the first sections give an introduction to basic concepts of spontaneously symmetry break-

ing and show where they occur in the Standard Model of particle physics. In particular, we

will in some detail explain spontaneously symmetry breaking in QCD, since it is considered

to be the prototype of dynamical spontaneously symmetry breaking. We will then compare

it to the symmetry breaking pattern induced by the Higgs sector and use this to motivate the

Technicolor approach to go beyond the Standard Model. Then we will address the prob-

lems of Technicolor to generate the large top mass and introduce our Topcolor model as a

possible solution to this.

After discussing the symmetry breaking pattern and calculating the electroweak pa-

rameters in our Topcolor model, we will then look at various experimental and theoretical

constraints. We will find that our model is able to sufficiently suppress flavor changing neu-

tral currents and that the largest constraints on our parameter space are due to electroweak

precision measurements. We will do a combined fit to all available data at Z pole energies

and find that our goodness of fit is comparable to the Standard Model.

Finally, we will also look at Topcolor assisted Technicolor models, which have a flavor

non-universal hypercharge sector, like the model proposed by Simmons and Popovic [14] or

Hill [IO]. In this case we will find that these models are not able to fit the data satisfactorily.
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Chapter 1

Introduction

In this thesis we are considering a modification of a Topcolor assisted Technicolor model

which was proposed by Simmons and Popovic [14]. We will introduce a Topcolor model

which is flavor universal in the hypercharge sector, but not in the SU(3) (Coloron) sector.

Before we begin to discuss the details of this model, we will give a short introduction to

the basic concepts of spontaneously symmetry breaking. We will then apply these concepts

to the Standard Model Higgs sector. Afterwards we will discuss in detail the prototype

of dynamical spontaneously symmetry breaking: chiral symmetry breaking in QCD. We

will then use this to motivate Technicolor models. The lack of a fermion mass generation

process will then lead us to Extended Technicolor.

Hereafter we will motivate why Extended Technicolor has a problem with the large top

mass and then introduce Topcolor assisted Technicolor models as a possible solution to

this problem. In particular we then introduce our modified Topcolor model and its gauge

groups and symmetry breaking structure. In the subsequent sections we use the Nambu-

Jona-Lasinio approximation to model how the top quark could acquire a mass near its

experimental value due to the Topcolor interactions.

One of the main problems of Extended Technicolor is large flavor changing neutral cur-

rents. We will therefore start our analysis of the experimental constraints on our Topcolor

model by showing that it is possible to sufliciently suppress them in this model. Rather, the

most important constraints will be due to electroweak precision tests. Calculating various



observables within the framework of our model will then enable us to do a combined fit to

all available LEP (Large Electron Positron Collider) Z pole data to find that our model is

able to provide a fit to the data comparable to the Standard Model. We will also calculate

the electroweak parameters which sufficiently parameterize universal models beyond the

Standard Model and use them to put strong constraints on our parameter space. This anal-

ysis will afterwards enable us to place bounds on the masses of the gauge bosons of our

model.

Finally we will take a closer look at the Simmons and Popovic Topcolor model [14]

and find that due to the flavor non-universality of the hypercharge sector, this model is not

able to fit the electroweak data well. The same is true for a Topcolor assisted Technicolor

model proposed by Christopher Hill [10], which is flavor non-universal in the hypercharge

and in the Coloron sector.

1.1 Symmetries in Field Theory and Quantum Mechanics

Before we start discussing symmetries of the Standard Model (SM), in this section we will

derive some technical basic tools which we will need later. In most parts we here follow

the excellent lecture given by Edward Farhi [7], but we will also use ref. [15], where a more

rigorous treatment is given.

In classical field theory we can have a Lagrangian C = £(¢i, 8w?) which is a function

of a set of space- and time-dependent fields 05%“) and its derivatives auditr”), where

x” = ( t, i"). The dynamics of the system are then described by the Euler-Lagrange equa-

tions of motion:

(9C BL

——. — 8 ———.— = 0 1.1

082 “a (8,9) ’ ( )

which extremize the action

SW] = / d4.z:£(¢i,a,,q>i). (1.2)



We can now consider the following global transformation (i.e. a transformation which has

the same form on every point in space-time), which is supposed to be continuous in the

parameter a and equal to the identity for a = 0:

r)" (:r”) -—> ¢i(:c",a). (1.3)

Infinitesimally (meaning a small), this transformation will look like

w —+ ¢i + (16¢? (1.4)

All transformations we will need will be linear and therefore have the general form

609 = z'TiJ'ai, (1.5)

where T is supposed to be hermitean and we have put in the imaginary unit 2' for conven—

tional reasons. Note that if we know the infinitesimal transformation to be (1.5), we can

always construct the corresponding finite transformation by writing

afii —-> [exp (iaT)]ij abj. (1.6)

A transformation like (1.4) is now called a symmetry, if the transformed fields obey the

same equation of motion as the untransformed. The latter condition is equivalent to have

an unchanged action S after the transformation:

SM] 2 SW + aéai] . (1.7)

This in turn means that the Lagrangian is only allowed to change by a surface term (which

may be zero):

51: = 0,21“. (1.8)

If this equation holds (meaning our continuous transformation is indeed a symmetry), we

find that the famous Noether current

8L -
w : __ I _ uj 8 (8116/5064) A (1.9)



is a conserved quantity, meaning

aflj/I = . (1.10)

This also tells us that

Q E [113$ )0 (1.11)

is a constant of motion: (13? = 0. This constant of motion is sometimes called charge.

To be able to generalize some of the above results to quantum field theory, we also

define the canonical momentum field

7r” 2 __8_£_ (1.12)

‘9 (811W) .

Then the conserved current in the case of a linear transformation will take the form

ft = iwfi‘Tiij,
(1.13)

if the surface term vanishes identically: 6L 2 0. All symmetry transformations we consider

will be of the form of eqn. (1.13).

According to the procedure of canonical quantization, we can now promote the fields

(Di and 7ri to operators and impose the following commutation relations:

[aim/9 , me] = 93.5%; — 27) .

[Mr/1) Wye] 0. (H4)

[Tri(.r:/’) ,7rj(y‘”)] = 0.

Inspired by eqn. (1.11), we may define the charge operator for the case of a linear

transformation

62(1) 2 i / d3x 7r,(.z;/‘)'1‘U¢>7'(.yl‘) . (1.15)

Using the commutation relations (1.14), we find

[(20) vim] = Wale") = —i6o“(y")and (1.16)

[00) midi/”)1 = 4mm“) = minty“).



Since the Hamiltonian H can only be dependent on powers of (Di and H, we also conclude

[Q(t) , H] 2 —i611. (1.17)

Now we can read off the desired result: If the transformation induced by T27 is a symmetry

of the Hamiltonian, we have 6H = O, which means that in this case Q commutes with the

Hamiltonian and we found the quantum field theory analogue to eqn. (1.1 1):

51% = 0. (1.18)

We summarize: Let G be a (symmetry) group of continuous transformations, (id) =

iaTijoj, where T27 is the matrix representation of the group generator T fulfilling

exp (—aT) E G. If the action S is invariant under the transformations in G, then the charge

operator Q defined in (1.15) is conserved (i.e. time independent) and generates group trans-

formations in the sense of eqn. (1.16), which we can readily identify with the infinitesimal

form of the finite transformation

(95(14‘) —-» eiaQoCr“) e—mQ. (1.19)

Note that we can easily generalize our result to n dimensional symmetry groups, which

have n generators Ta and are continuous in the n parameters a“: exp (—ia“T“) E G.

In quantum field theory, the vacuum I0) is defined to be the state with the lowest energy.

If we set this energy to zero, we have

P“ IO) = 0. (1.20)

where P‘1 is the momentum operator.

If we let G be the symmetry of the action, we can now ask how the vacuum state IO)

transforms under G and distinguish two types of realizations of this symmetry.

In the Wigner realization of the symmetry, the vacuum possesses the same symmetry

as the action, i.e.

10) .9 e—i""Q“ IO) = |0), (1.21)



which is equivalent to

Q“ IO) = 0, (1.22)

for all (1. Then we also have

(0| 59 IO) = (0| [1762“, (1)] IO) = 0, (1.23)

for all fields (1) in the action. Note that here and in the following we omit the superscript i.

We will also later often use the short form ((1)) instead of (0| ab ID).

The more interesting case for us in this thesis will be the Nambu-Goldstone realization,

where there exists some field (1) with

(0| 59 I0) 75 0, (1.24)

which means that the vacuum [0) does not respect the same symmetry as the action:

62010) 74 0, (1.25)

for at least one generator Q“. In this case we say that the symmetry is spontaneously broken

and all Q“ for which eqn. (1.25) is true, are referred to as being broken generators.

So in the latter case we can have a formally conserved current and a conserved charge

from Noether’s theorem at the Lagrangian level, but the vacuum does not respect the sym-

metry of the action and therefore all the other states in the Fock space built from the vacuum

state will not either. Thus there will be no apparent conservation of the charge which cor-

responds to the broken generator.

Since spontaneous symmetry breaking occurs only if (0| do |()) 5A 0, we will call

(0| (5gb l0) an elementary order parameter. We can also have composite order parame-

ters, 6 (0| (p1 . . .(bn IO), signalizing the spontaneous break down of a symmetry. This will

become important when we consider spontaneous symmetry breaking in Quantum Chromo

Dynamics (QCD) in section 1.3.

We will now show that the existence of a non-zero order parameter alone will lead to

the occurrence of massless particles in the spectrum, called Nambu-Goldstone bosons. The



theorem which states the existence of those particles is called the Goldstone theorem. We

will here follow [7] and prove the following version of this theorem:

Let the action of a quantum field theory be invariant under a continuous

symmetry which is associated with a conserved current 3’“. If except for the

vacuum, every state has Mp), 2 e for some 6 > 0, then (0| 6(0(y) |0) = 0 for

all fields 05(3)).

Proof. We will look at the matrix element (0| j#(;r:) 06(1)) I0) and use eqn. (1.20) after we

insert a complete set of physical states:

<01jp<sc> 0(9) 10> = 210121100 1n> 02100) 10>

= Z <01e1’P'W0> e-W 1n> <n1ei"%(0>e-“"y 10>

” . (1.26)

= 23011110) 1n> <n1¢<0> 10> e”) ' (W?)

2 /“Z640: — pn> <01 1110) 1n> <er (.610) 10621119”).

We will now assume that j), is a Lorentz vector and that (.0 is a Lorentz scalar.1 This

enables us to define a function p(k2) by

17.41?) a Z 640: — p...) (011.1012) <n1es<0>10> 0.27)

in this sum we cannot get a contribution from the vacuum, since (0| j),(0) |0) must vanish

(also due to Lorentz invariance). By assumption, there is no other state with pn 'Pn < c for

pn < 6 so from eqn. (1.27) we see that p(k2) = 0 for k2 < 6..

Using (1.27) we may write:

(0112(0) 0(0) IO) = [0410 1910(9) e”: ' (H). (1.28)

 

1Note that we might run into a problem here, if we consider local gauge theories, where depending on the

gauge we choose, we might loose manifest Lorentz invariance (for example in Coulomb gauge in QED). This

exception will be important in understanding the Higgs mechanism, as we describe later.



Due to current conservation we have a),jf‘(:1:) = 0 and thus k2p(k2) = 0. If k2 > 0 this

implies p(k2) = 0.

Since we already found p(k2) = 0 for k2 < e, we infer p(k2) = 0 for all k2, which

enables us to write

(0| 3110?) (0(9) IO) = 0- (129)

And by the same arguments,

<01¢<y>j1<x>10> = 0. (1.30)

Combining the last two equations yields

[013$ <01 1100:) 00>] IO) = 0 (1.31)

or

<010¢1y>10> = 0. (1.32)

1:]

From the contraposition, we thereby prove the existence of a state with pyp" = 0

if the order parameter (0| 6¢(0) I0) does not vanish. This state is the Goldstone boson

which we denote 7r (not to be confused with the canonical momentum). If we now had

(0| j#(:1:) [7r(p)) = 0, we could separate the Goldstone boson state from the sum over the

rest of the physical states in (1.26) and by the same arguments show that (0| 6¢(0) l0) = 0,

contradicting to what we just proved. We thus also know (0| j,)(:r:) |7r(p)) 79 0.

Analyzing the Lorentz structure of this term, we find that it must be proportional to pp,

since a 2:), term would imply a vanishing coupling of the Goldstone boson for :13), -.-.~ 0. By

the same argument we cannot have a term proportional to 2:2. The only scalar left we can

construct with p” and :13" is :1: - p. Also wanting to have a vanishing four—divergence we

may thus parameterize the coupling of the Goldstone boson to the broken current in the

following way:

(01 MI) I710)» = ifppeip'x, (1.33)



where f denotes the strength of the coupling. In the case of more than one broken generator

of the symmetry group G’ of the action, we will get one Goldstone boson for each broken

generator.

1.2 Spontaneous Symmetry Breaking in the Standard Model Higgs

Sector

We will in this section discuss the Higgs sector of the Standard Model (SM) Lagrangian

and thereby give an introduction to linear and non-linear sigma models, which we will need

later. Apart from this, it is worthwhile discussing the Higgs sector in some detail, because

we will later find that more general models like Technicolor have a low energy effective

Lagrangian with exactly the same structure, but need not have an elementary Higgs boson.

A much more detailed treatment of sigma fields can be found in ref. [7] and [11], which we

are partly following here.

Let us start by introducing a complex scalar field (13, which transforms as a doublet under

SU(2)L and to which we also assign the (hyper-) charge (by = 1 /2 under a U(1)Y group.

We now write down the following Lagrangian, which is invariant under the global transfor-

mation SU(2)L 69 U(1)Y:

1‘2 2

c = aflaiafla — x (alas -— %) , (1.34)

where we introduced the famous mexican hat potential

112 2

W0) = (($11), — 3) . 0.35)

The vacuum corresponds to the lowest energy state, which in this case means that the

vacuum expectation value (vev) of (p is non-vanishing:

(01011»: (ffi ) , 0.36)

where the a“ are arbitrary real parameters and Ta E a“ /2 with a“ being the Pauli matrices

(the 1'“ form a matrix representation of the group generators of SU(2)). The lowest energy



state is degenerate and we could choose any factors a“. For convenience we will choose

a“ = 0. The Lagrangian we wrote down is invariant under SU(2)L <8) U(1)Y, but the

vacuum expectation value (1.36) is not. We can see this explicitly:

war“ 2'0’Y _ i6“70_,2'0/1 0 0

(0|¢|0>—+e e (01¢IO)—e c 2(v/x/2)7é(v/\/2)'

We thus have a non zero (elementary) order parameter signaling the spontaneous break-

down of a symmetry. We should be a little more careful: The above vev is actually invariant

under the transformation 7'3 + Y, which means, that this generator is unbroken. We thus

expect three linearly independent broken generators (1'1, 72, 7'3 — Y) and therefore three

massless Nambu-Goldstone bosons.

We can now choose to parameterize the four degrees of freedom of a in terms of four

real fields in the following way:

\/§ 0-273

If we now let (a) = v and (7?) = 0, we reproduce (1.36). Let us also introduce h E o — v.

(1):—1— (ml’m). (1.37)

Then (h) = 0. Plugging in eqn. (1.37) into the Lagrangian (1.34) yields

L5,, = (0,,h0/‘h + aflaofla) - ALB/2.2, (1.38)

[
\
D
I
H

where we also assumed only small oscillations around the lowest energy configuration and

therefore expanded around the vacuum configuration (a) = v and (7?) = 0. Our particle

spectrum thus contains a massive particle h, the Higgs particle, and three massless fields 7?,

which can readily be identified with the three Nambu-Goldstone bosons.

Before we promote the global SU(2)L 0; U (1)Y symmetry to a local one and thereby

reproduce the SM Higgs sector, we introduce the following matrix field

E 2(102¢*,(0)= TA; (0 + irraoa). (1.39)

where we used the (0 field parameterization of (1.37). We also have

(1 .40)



where we omitted the unity matrix. The Lagrangian (1.34) now reads

1 A 2

c = -2- Tr [6,5310%] — Z [Tr >312 - 112] (1.41)

With the help of the identity 02 (0“)* 02 = —o2 of the Pauli matrices, we can see that if

d) is a doublet under SU(2)L, so is 20%“. Thus we have 2 —+ AL 2, with AL 6 SU(2),

AL = exp (627“).

But the way we have written the Lagrangian in (1.41) reveals another symmetry: It is

also invariant under 2 —> 2 A2, with AR = exp (61037“) and AB being element of another

group, which we denote SU(2) 12- So under the two global SU( 2) groups, 2 transforms in

the following way:

2 _, ALE/UR. (1.42)

It is now easy to see that U(1)}; is a subgroup of SU(2): If (15 has hypercharge 1 /2,

2'0qu has hypercharge —1/2 and so 2 transforms under U(1)}, in the following way: 2 —»

Z 6-73Y0Y.

The vacuum expectation value (vev) (Z) is not invariant under SU(2)L (8 SU(2) 12- But

we see that it is invariant under a simultaneous left and right transformation with 0L = 03

and we denote the corresponding subgroup SU(2)V. The transformations belonging to

this subgroup of SU(2)L (83 SU ( 2)R are called vector transformations. Thus this subgroup

remains unbroken. Plugging Z] = 715 (o + 2007“) into eqn. (1.42) and setting AL = A3,

we see that the pion fields 7r“ transform as a triplet under the unbroken group SU(2)V

whereas the sigma field behaves as a scalar.

The generators of the orthogonal transformation, under 6L = —61?, are broken. So the vev

of the 2 field spontaneously broke SU(2)L cg) SU(2)]; down to SU(2)V and we again see

that we must have three Nambu-Goldstone bosons belonging to the three broken generators

of SU(2)A-

What we just discussed is the linear sigma model for the ungauged Higgs sector of the

SM. In the SM SU(2)L ®U(1)y is gauged (meaning it is a local symmetry). So the U(1)Y

subgroup of SU(2)R becomes gauged.
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Let us introduce the so called moose notation to illustrate this [8]. This notation allows

us to illustrate the symmetry breaking mechanism at the scale v/\/2 at a glance. Fig. 1.1

shows this for our example. The dashed circle on the right hand side illustrates that we

gauged a U( 1) subgroup of the global SU(2)R and the arrow indicates which group is

assumed to transform as the right handed group.

In general, sigma models are used to write down an effective low energy Lagrangian

which implements the desired pattern of symmetry breaking. We will use this in section

1.3 and later also to model the symmetry breaking structure of the Topcolor model we are

going to introduce.

 

Figure 1.1. The Standard Model symmetry breaking structure illustrated in moose notation.

Concentrating just on the gauged groups (meaning to leave 8U (2)R aside for the mo-

ment), we have the following symmetry breaking structure: SU(2)L 69 U(1)), ——) U(1)6m.

So the unbroken group belonging to the generator 73 +Y remains unbroken and is identified

with the gauge group of electromagnetism U ( 1)em.

Since we know how the 2 field transforms, we can write down its SU(2) L 09 U (1)};

gauge covariant derivative:

0,,2 = 0,; + zigwgraz — ‘ig'BpZI—Qg (1.43)

The gauged Lagrangian now becomes

1

[I = 5 '1): [0,2112%] — 2):— [Trziz — 41.2]2. (1.44)

Our goal is now to write down an effective Lagrangian, which only models the pion

degrees of freedom and does not need the h field. Above, we found the mass of the h field

12



to be 171% = 2X02. We can now eliminate the h degree of freedom by making this mass

infinitely heavy by taking A —-> oo. Inspecting the Lagrangian (1.44) we see that

T123122 — U2 = 0 (1.45)

has to be satisfied to avoid an infinite potential term. Using eqn. (1.39) we find 212 =

o2 + 772 and furthermore det 2 = o2 + 772, so 2 is proportional to a special unitary matrix,

which we denote U. We thus see that we can indeed satisfy (1.45) if we set 2 = v/x/2 U.

We can now write U in the following way:

U = eiT“”'“/v with (U) = 1. (1.46)

Note that compared to eqn. (1.39) we here parameterized the pion degrees of freedom

differently by performing a so called polar decomposition. Also note that we need 11 in the

denominator of the exponent to get the dimensions right.

We thus finally found

[I = v712—T‘r[DpUID“U], (1.47)

which is the Lagrangian of a non-linear sigma model, which also models the desired sym-

metry breaking, but does not introduce a physical Higgs particle. We should note that

contrary to the linear sigma model, the non-linear sigma model is not renormalizable. But

nevertheless we can use it to write down low-energy effective Lagrangians.

GENERATION OF MAssras IN THE SM

So far we did not explain why the Standard Model needs the Higgs sector. We will briefly

do this now. But since the mass generation of the Standard Model gauge bosons Wi and

Z due to the non-zero vev of the Higgs particle2 is analogous to what we will discuss in

section 2.3, we will not discuss it here.

The SM model is a chiral theory, meaning that it distinguishes between left- and right-

handed fields by assigning different charges to them. Every Dirac field operator describing

 

2In our notation (h) = 0 only holds, because we already shifted it by v.

13



a fermion can be split into left- and right-handed pieces by applying the corresponding

projection operators, which are defined as PL E %(1 - 75) and PR E %(1 + 75). A

fermion mass term now is proportional to 107/) = 117L212}; + 213RibL and can therefore not be

gauge invariant, because 70L and 11112 belong to different SU(2) representations (and also

have different hypercharges).

But with the sigma field of the Lagrangian from eqn. (1.44) we can write down the

following Yukawa coupling term which respects all symmetries:

1:,» = A‘qTJLZt/JR + h.c., (1.48)

~ MD

/\_=_

(GM)

with the Yukawa coupling constants Au and Ad and w E (u, d). Let us now repeat the polar

where

decomposition we did above, but this time for the linear sigma model, thus keeping the

Higgs field h degree of freedom:

1 - a a
___ _ 27' 71(1') .4

2 (f2 (1) + h(:r))e , (1 9)

where we explicitly wrote the space-time dependence of the fields. Since we are dealing

with a local gauge theory, we can now pick a specific gauge, the so called unitary gauge,

and transform the 2 field:

2 _. {it“s-I‘VE = % (v + 11(4)) . (1.50)

Which means that we “gauged away” the pion fields. The pion degrees of freedom manifest

themselves in the additional longitudinal degree of freedom of the massive gauge bosons.

It is common to say that the Nambu-Goldstone bosons are “eaten” by the gauge bosons to

give them masses.

Coming back to the problem of fermion mass generation, we rewrite the Yukawa cou-

pling term (1.48) in the specific gauge we picked:

Auv _ Adv —

u + ——-d d +h.c.. 1.51J2 LUR L R ( )£y= \/2 
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So this way we were able to write down a mass term without destroying gauge invariance.

Since 2) == 246 GeV, but for example the electron mass is only 511 keV, the Yukawa

coupling constants for the different particles of the SM have to be very small. This is viewed

as one of the shortcomings of the SM. Also, the Yukawa couplings are just introduced by

hand to match the measured fermion masses, but do not evolve from any dynamics. As we

will see, this is contrasting to the goal of Extended Technicolor.

1.3 Spontaneous Symmetry Breaking in QCD

QCD is a non-abelian gauge theory. We thus have asymptotic freedom at high energies

on the one hand, and confinement at low energies on the other hand. This is manifest in

the coupling constant aS of QCD, whose running as a function of the energy scale 11 is

described by the beta function. For a QCD like non-abelian gauge theory with nf quark

flavors and N colors the beta function reads

(9a 012 UN nf

13(00— #2:)"; — 7; (_T + g), (1.52)

to first non-trivial order in a. For QCD N = 3 and nf = 6 which yields a negative beta

function and therefore a decreasing coupling constant for increasing energy scales. This

also means that QCD becomes strong, meaning non-perturbative at small energies. This

causes the well-known hadronization at low energies.

We will now follow the discussion of ref. [7] and again also use ref. [11] and [15]. We

start by writing down the Lagrangian of QCD, at first for a single quark flavor of mass m:

1

c = rcivflDzC'qa — 5 Tran/Fr" — m (we, (1.53)

with the gauge covariant derivative

8 d .93

and the field tensor

Fl“; 2 all/4V — 811A” + 195' [14”, Av] , (1.55)
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where Gp E GfiA“/2, with the Gell-Mann matrices A“ which form a matrix representation

of the SU(3) group generators. Here we explicitly wrote down the color indices c and c’ to

clearly distinguish the local color symmetry from the global flavor symmetry we will look

at in the following.

Compared to the typical3 scale of QCD of around 200 MeV, the up and down quark

masses of a few MeV are small and we can start by treating them as being massless. Sup-

pressing the color indices from now on, we can write down the QCD Lagrangian for the

two flavors:

2

_ . 1
[i = 2; (1,210.),- — 5 Tr FWFW. (1.56)

2:

Since we set the masses of the quarks to zero, the left- and right-handed parts of the quark

fields do not mix (compare to eqn. (1.51)). Noting that 7y; = 75 and that 75 in the projection

operators anti-commute with the 7,] in the QCD Lagrangian, we see that in massless QCD

left- and right-handed fields can indeed be treated as being independent:

2

_ . _ . 1 W
5 = 2: (6121219971. + (122122129172) — 5 TY Fur/F . (1-57)

221

This Lagrangian has the global symmetry

“L “L UR UR

—> U , —) U , 1.58

with UL and UB being arbitrary unitary matrices. Thus we have the globalflavor symmetry

SU(2)L 03> SU(2)R ® U(1)L ® U(1)R, called chiral symmetry. Using (1.13) we can write

down the associated Noether currents:

-#___- it. 4‘:- l‘ -,.71, 01.7 9L, 150—9127 (IR (1.59). a _ . _

7f =0L7“‘r“qL, JR —qm"'r“qR,

u

h Ew ere q d

The most important feature of QCD for us is now that the chiral symmetry of QCD is

believed4 to be spontaneously broken at low energies by the formation of a quark anti-quark

 

3With typical scale we here mean the approximative scale where QCD becomes strong.

4So far there is no rigorous proof for this within the framework of QCD.
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condensate:

(91.912) 74 0- (1-60)

The non-vanishing of this vev has to be clearly distinguished from the process of hadroniza-

tion: The occurrence of mesons consisting of quark anti-quark bound states below some

energy scale does not mean that (1.60) has to hold.

Since ch = (ILCIR + QRqL, (Qq) is not invariant under the full symmetry group of the

Lagrangian and due to (1.60) we thus have a non-vanishing composite order parameter

signalizing the spontaneous break down of the chiral symmetry.

Noting

(100 ' (Z (1

Le" 630nm», (1.61)
—iT

(dB/R) 7" e

we see that again not all symmetry generators are broken. The vev (qq) is invariant if

we transform the left- and right-handed fields in the same way, meaning 9L = 03. The

corresponding symmetry group is called the vector group SU(2)V. Broken are the so

called axial transformations, which transform left-handed fields opposite to right-handed:

Recalling the definition of the projection operators from last section, we thus identify

the currents belonging to the broken generators to be the axial-vector current

71”“ = 75‘,“ - 75‘,“ = 0755704 (1.62)

Note that we will in this discussion ignore the axial U(1) group, which we could recognize

to be spontaneously broken by the same argument. A more careful (quantum field theoret-

ically) analysis shows that this symmetry is not spontaneously broken, but that the conser-

vation of the corresponding axial current j“5 is actually spoiled by anomalies, see [3].

Using the Goldstone theorem, we expect three massless pions 7r“ coupling to the broken

currents:

<0171‘5“(0>17r”(q>> = 27.60%”. 0.63)
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where f7; is called the pion decay constant5. From this we infer that since the currents 37‘5“

transform as a triplet under 8U (2), so do the the pion fields. We more generally can identify

the pions to have the same quantum numbers as qiy5raq since (0| (17775700 la“) 76 0. In

that sense we can write

7rd ~ (77775Taq, (1.64)

implying that the pion is a composite quark anti-quark state. We can now take into account

the small masses of the up and down quark in the QCD Lagrangian by adding the following

mass term

Lnrass = (ILAIQI‘ + (IRIWQLa (1-65)

M = (mu 0 ).
0 md

This term explicitly breaks the axial part of SU (2) at the Lagrangian level (and if we set

where

mu 51$ 7nd also SU(2)V), so we would not expect (massless) Nambu-Goldstone bosons

(NGB) in the spectrum, since the corresponding axial current is no longer conserved. But

in the limit as the quark masses go to zero, we have exactly massless NGB. So in the real

world we expect light NGB, called Pseudo-Nambu-Goldstone bosons (PNGB), which form

a triplet under SU (2).

These PNGB were identified with the three lightest mesons, the QCD pions. We could

well have treated the strange quark as massless, too, and then would have found eight

PNGB, transforming as an octet of flavor SU(3). These PNGB would also be composite

and could have been identified with the Kaons and the 7) of the meson spectrum. It is a

little more difficult to relate the Higgs analogue a field to a particle in the spectrum, but it

is often regarded as a very broad resonance, see ref. [15].

We would now like to find an effective Lagrangian describing the QCD chiral symmetry

breaking. This effective Lagrangian must contain three pions transforming as a triplet under

 

5See [7] for the relation between f,T and pion decays.
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SU(2) and a scalar field a with (a) 75 0. We already found in section 1.2 that the sigma

model Lagrangian, eqn. (1.41), has exactly this properties. Thus we write:

2

c = 9n [aflziaflz] - 2 [Tr 2:12 — f2] (1.66)

with E E 715 (o + inara). We now need to figure out what f is. Working out the (axial)

Noether current 97‘5“, by using (1.13), and calculating (0| j”5a(0) |7rb(q)), we find (see [7])

(017“5“(0> 17”(q>> = ifdabq“. (1.67)

Comparing with (1.63), we find f = fw, which has been measured to be f1, = 93 MeV.

In eqn. (1.41) we had the electroweak scale 17 instead of f“, but this is the only dif-

ference between the effective Lagrangian we found for chiral symmetry breaking in QCD

and the non-gauged version of the SM Higgs sector! We could now indeed take the weak

interactions into acoount and gauge the SU(2)L <8) U(1)}; subgroup of SU(2)L 18> SU(2)R

exactly like we did in section 1.2. QCD would thus dynamically (by the formation of a

quark anti-quark condensate) break the SU(2) L 69 U(1)}; gauge symmetry of the elec-

troweak sector.

We note that just the following two problems prevent us from using QCD to get the

desired symmetry breaking pattern in the Standard Model instead of the SM Higgs sector6:

1. The scale f7r = 93 MeV is 2600 times too small compared to v = 246 GeV,

2. We observe the QCD pion degrees of freedom in the spectrum, they thus cannot give

the weak gauge bosons mass.

This is the motivation to postulate a new strong (QCD-like) interaction with f = 246 GeV,

called Technicolor.

 

6There are of course more subtleties involved here. For example, the SM also needs the Higgs particle to

unitarize the W scattering. We here just want to illustrate a point.
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1.4 Technicolor

In the last section we saw that the Higgs sector in the SM induces exactly the same sym-

metry breaking structure as the effective linear sigma model we wrote to model the sponta-

neous breaking of chiral symmetry in QCD, except that the pion decay constant is roughly

2600 times too small. Spontaneous symmetry breaking in QCD is due to the formation of a

chiral condensate and thus evolves dynamically without having to introduce an elementary

scalar to break the symmetry.

Since elementary scalars are problematic7, an electroweak symmetry breaking process

like in QCD would be desirable. Furthermore, this would provide a dyamical explanation

why there is a symmetry breaking, which the SM lacks. If we take QCD as a prototype for

dynamical symmetry (DSB) with a composite order parameter, we are thus naturally led to

introduce a new scaled up QCD-like interaction, which is called Technicolor (TC).

To make things a little more concrete, we will now introduce the simplest TC model,

which was first introduced by Susskind and Weinberg. As in every Technicolor model we

have to enlarge the gauge symmetry structure of the SM by the Technicolor group SU(NT).

This means that we have to introduce N72. - 1 additional gauge bosons, called Technigluons.

The whole gauge symmetry structure is thus SU(NT) <8) SU(3)QCD (X) SU(2)L 18> U(1)Y.

Furthermore we need to include at least one flavor doublet of techniquarks, which are

charged under SU(NT) and thus carry the index8 a = 1,... , NT: (U, D)“. We will

consider them to be exactly massless and analogous to what we did in QCD thus have in-

dependent left— and right-handed parts to which we assign the following quantum numbers

 

7This is mostly connected to the quadratic divergent mass corrections of scalars, but also due to the fact

that so far there have not been seen any fundamental scalars in nature. See ref. [1 I].

8In this simplest model we choose not to give the techniquarks a charge under the S'U (3), which would

give rise to another index. See [1 l] for generalizations.
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under the gauge symmetry group from above:

a

U(D) -17....
L

UR~(N,1,1,1/2) (1'68)

DR ~(N, 1,1, —1/2).

The right-handed fields are singlets under SU(2)L- Ignoring again the U(1) groups which

are not spontaneously broken (see [1 1]), the global chiral symmetry group is just SU(2)L 18>

SU(2)R, if we include only one chiral doublet of techniquarks.

If we replace q = (u, d) in the last section by Q = (U, D) and also replace the pion

decay constant f7r = 93 MeV by the up-scaled technipion decay constant FTC z 250 GeV

and again use the linear sigma model, we exactly reproduce the symmetry breaking struc-

ture of the SM Higgs sector, but now with a composite and not an elementary “Higgs” field.9

The Nambu—Goldstone bosons (NGB) are (just as in the case of an elementary Higgs) eaten

by the gauge bosons to give them masses. So there are no NGB left in the spectrum. This

would change, if we had introduced more than one doublet of techniquarks, see [1 1].

SCALING UP QCD

Let AQCD by the scale of QCD, meaning the scale where the QCD interactions become

strong, i.e. at 013(A5) % 1. In analogy let ATC be the TC scale. We already introduced

the two decay constants f7T and FTC and the electroweak scale 0 = 246 GeV. Continuing

to consider the case with only one techniquark doublet we can write down the following

scaling rules (see [1 1] for a more detailed treatment):

ATC _ _’U_ \/§

AQCD f1: x/NT'

Using AQCD a: 200 MeV, f7r z 93 MeV and assuming NT = 4, we thereby estimate A z

 
FTC 8 1?, (I .69)

460 GeV. This is assumed to be the scale where we have hadronization of techniquarks due

 

9It is important to note that this particle just plays the same role as the SM Higgs in the sense that it

acquires a non zero vev and thus drives the symmetry breaking. The coupling of this particle is unknown and

not proportional to the mass of the particle it is coupling to like the SM Higgs.
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to OTC z 1. Depending on the Technicolor model one assumes, there is a rich spectrum of

technihadrons (technimesons consisting of linear combinations of quark anti-quark states

and technibaryons consisting of NT techniquarks) forming at that scale. For a detailed

discussion of the experimental implications of this see ref. [11].

Although we can write down a low energy effective theory of TC which resembles the

Higgs sector of the SM, we should emphasize here that TC does not necessarily need a

Higgs boson. We could well use the non-linear sigma model to model the chiral symmetry

breaking and just have the pion degrees of freedom.

Let us now look at what mass scale we expect to find the mass of the lightest vector

meson, the techni-p. Looking at the QCD analogue, the p meson, we find in the case of

having one flavor techniquark doublet (see ref. [11]):

o l 3

IinC % mp7— E. (1.70)

7T

Using again the values from above and mp = 770 MeV, we find mpTC z 1.8 TeV.

The TC model we have considered so far is incomplete because of two major aspects:

At first, we so far did not explain how the masses of the fermions are generated. Secondly,

we have many heavy technihadron states which are stable and we would like to provide

a mechanism which let this states decay to ordinary hadrons. We will therefore introduce

Extended Technicolor in the next section.

1.5 Extended Technicolor

To provide for a possible decay channel of technihadrons into ordinary hadrons we intro-

duce a model with another interaction which couples techniferrnions to Standard Model

fermions: Extended Technicolor (ETC). We will see that this new interaction is also able

to generate masses for the Standard Model fermions.

We will here mostly follow [3] and present just the general ETC idea, which is inde-

pendent of details which vary between different ETC models and are reviewed in ref. [1 1].
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Note that the mass generation process of ETC is analogous to what we will discuss in sec-

tion 2.1 for the top mass generation of Topcolor models. We will therefore not discuss

details of this process here.

Let us introduce the so called master gauge group GETC’ which enlarges the Techni-

color group by placing the Technicolor fermions together with the ordinary fermions in

one irreducible representation of GETC~ The master gauge group is supposed to break

down to Technicolor at the scale [1 (due to some process which we leave unspecified here).

The gauge bosons of Extended Technicolor couple to both, ordinary fermions f and tech-

nifermions F, whereas the gauge bosons of TCloonly couple to the technifermions. More-

over, there will be gauge bosons E which are in ETC, but not in TC. The following diagram

illustrates this:

(F F F f)

<————>

TC

ETC

#

I

Due to the symmetry breaking, the gauge bosons 8 acquire the mass11 Mg m gETCp,

where QETC is the coupling constant of ETC. This gauge boson couples to currents of the

form 17prf, as illustrated in Fig. 1.2.

FL FR

fL fR

Figure 1.2. ETC interaction between ordinary fermions and technifermions.

The corresponding four fermion interaction has the form

1 2 - _ ,
(913:9) (FL’i’pr)(fR”/’FR)- (1.70

2

 

10The TC gauge bosons must be a linear combination of some ETC gauge bosons, since TC is assumed

to be an unbroken subgroup of ETC.

11This is just an estimate, but we will see that this is the general form of the gauge boson mass terms for

an explicit example in section 2.3.
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After doing a Fierz transformation we see that this interaction contains the following term:

1 _ _

‘5’? (FF) (ff)-

If now (at a much lower scale than p) the Technicolor condensate forms, we can put FF

into its vev (FF) and get a mass term for the fermion f:

mf = ——(FF), (1.72)

where we also used Mg 7:: QETCH- We can now estimate (FF) with the scale of Techni-

color:12(FF) ~ (1 TeV)3.

We thus need high scales p to produce small fermion masses. For example we need

p z 30 TeV to produce mf a: 1 GeV.

As we will see explicitly in section 3.1 for the Topcolor model we are going to intro-

duce, the general ETC interactions will also give rise to flavor changing neutral currents

(FCNC), induced by (four-fermion interaction) terms like:

1 _

? (ELA/MdL) (wiry/‘33) . (1.73)

Now one of the big problems of ETC is the following: The large top mass would force )1 to

be rather small (see eqn. (1 .72)) and the FCNC like in (1.73) would then not be suppressed

enough to fulfill the tight experimental bounds on FCNC. See [11] for details.

This inability to produce a heavy top quark is the motivation to introduce Topcolor as-

sisted Technicolor models [10] in which the large top mass arises due to another interaction.

We introduce Topcolor assisted Technicolor in the next chapter.

 

12This is commonly done. However, we will calculate such a vev in the Nambu-lona-Lasinio model in

section 2.1.
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Chapter 2

Introducing the Modified Topcolor Model

2.1 The Topcolor Idea in the Nambu-Jona-Lasinio Approximation

We will in this thesis be interested in a modification of a Topcolor assisted Technicolor

model which was introduced by Simmons and Popovic [14]. But before we introduce this

model and its gauge groups, we would like to motivate the general form ofTopcolor models

like this one.

Our first goal is to introduce a new interaction, called Topcolor [9], which dynamically

gives a mass to the top quark1 similar to the mass generation process in ETC.

Analogous to ETC, if we could find a gauge interaction which, after Fierz rearrangement,

contains the following term

8 — _

E7}; (th12) 9mm), 12-1)

then we could provide a large top mass, if this interaction became strong at a certain scale

and would form a condensate (thR) 75 0. Note that 7/)L denotes the top-bottom chiral

doublet and that we have put in the factor 87r for later convenience. Further note that just

like the TC condensate, (thR) sé 0 breaks the electroweak symmetry as we will see in

section 2.5. Also motivated by the fact that the top quark mass is comparable to the elec-

troweak scale 0, early Topcolor models [9] therefore suggested that the whole electroweak

symmetry breaking is due to a top quark condensate, without introducing TC. But it turned

 

1We will assume that the other fermion masses can be produced via ETC.
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out that these models predict a much too large top mass, see ref. [1 1].

Using a Fierz transformation, one can show (see ref. [11])

87m - AA - AA 87m — _

- W (Wig-57111) (tR’Y’i—Z-trz) = m(¢LtR)(tR1/JL)+-~a (2.2)

with the SU(3) generating Gell-Mann matrices AA. Thus we infer the gauge structure of

our Topcolor interaction to be SU(3). Since we want the gauge boson to acquire the mass

M, the gauge group which we introduce has to be spontaneously broken at some scale. On

the other hand, we know that at low energies we have to produce the unbroken SU(3)0

group of QCD. We can do so by introducing the gauge group structure SU(3)1 (83 SU(3)2

which gets spontaneously broken down to SU(3)C due to some process which we leave

unspecified here.

Furthermore, we assume that one group, let us say the first one, becomes strong at an

energy at the TeV scale2 and that only the third generation quarks transform under this

strong group, whereas the others transform under the weaker SU(3)2 group.

Using the Nambu-Jona—Lasino (NIL) toy model of chiral symmetry breaking, we will

in the following show, how a top quark condensation could then give mass to the top quark.

In the NJL model one assumes a Lagrangian of the form

— .. — . 87m — _

£NJL = 01.2091. + 1141220111272 + W (Win) (tat/4L). (2.3)

where we recognize the last term to be the left-hand side of eqn. (2.2). The approximation

we are making in assuming this Lagrangian to describe our simple Topcolor model lies in

ignoring the interactions in the ellipses of eqn. (2.2). Before we begin the calculation, let

us illustrate the process of the top3 mass generation graphically.

The Topcolor interaction induces interactions between left- and right-handed top quarks

via the exchange of topgluons (sometimes also called Colorons). After the interaction

 

2Analogous to QCD, which becomes strong at AQCD z 200 MeV.

3Actually, this simple version of Topcolor is not able to distinguish between the top and bottom quark and

thus would in the same way generate an unwanted mass for the bottom quark. We will take that into account

later.
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becomes strong, we will see that under certain circumstances there will be a top condensate

to which the top quark couples when moving through the vacuum:

t tL R tr. tn

—>

At low energies this gives rise to the diagram shown at the right-hand side of Fig. 2.1.

This diagram has the right form to be identified with a dynamical mass term4.

tL ta

0

0
*

:
0

+in = tr.Xtr.

Figure 2.1. Dynamical top mass generation.

We now make the following self-consistent ansatz: If the top quark gets a dynamical

mass m, then (in the NJL approximation) it must be due to diagrams like the one shown

in Fig. 2.1. Using the Feynman rules we thus translate the diagrams of Fig. 2.1 into the

following equation5:

+ 7.5)
 

.,87m/ d4k T[z'(16+m)1(1

“m: ’2 C M2 (27.)4 I Hi

87m d4k m 1

= N —— 4 —

01112 / (27r)4 k2+m22

167ml, d4kE m

C M2 (27.)4 46% — m2’

 

 

where NC is the color factor and we used 'I‘r'y5 = 0, Tr 11m = 4m and that the term

proportional to If vanishes due to the anti-symmetry to get the second line. In the third line

 

“Fermion mass terms are proportional to (13217 = 1131.103 + 7,0mm.

5Thanks to Prof. Chivukula and Prof. Simmons for helping me doing this calculation.
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Figure 2.2. Illustration of the solution to the gap equation.

we went to Euclidean space, [so 2 2kg. We now use d4}:E = n2k%dk% to get

N k2
m = —%m/ dk2 —E—. (2.4)

7rM E + m2

This intergral is ultra-violet divergent. The reason for that is our four-femrion approxima-

tion which is no longer valid if k2 N M2. We thus use the cut-offM2 and solve the integral

to get:

_ N016

_ «M?

which is called the gap equation. The case m = 0 is trivial and belongs to the case where

 
m (2.5)

2

m [N12 —m2ln 1” J,
m2

no symmetry breaking occured. In the case m 75 0, we can rewrite our result:

1 m2 M2

—=————1n

n

NC

M2 m2.7T

(2.6)

We now define the critical coupling no E 7r/NC and see that this equation does not have

a solution for K. < rec. In this case we do not get a dynamical mass and (thR) = 0 must

hold. Thus the system is in the Wigner phase (see section 1.1). If then the coupling gets

stronger, n > RC we have m 78 0 and (thR) 75 0. We thus have a phase transition to the

Nambu-Goldstone phase.

Fig. 2.2 illustrates solutions from the gap equation. We see that if the gauge boson mass

is very large compared to the top mass, we are forced to n being very close to its critical
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value nc.

In the Topcolor model which we will introduce in the next section, we do not want

the bottom quark to also form a condensate, so we must provide for another interaction

which distinguishes between the bottom and the top quark. This will complicate the critical

conditions for condensation, but we will still find that large gauge boson masses (compared

to the top mass) force us to regions very near the critical region.

We will later also need another result which can be derived in the NJL model approx-

imation: The so called Pagels-Stokar relation connects the scale A where an interaction

becomes strong (in our case this will be the Topcolor scale), to the pion decay constant f

and the dynamical mass m (in our case the top mass) generated by the formation of the

condensate:

3m“2 A2
2 _

in the limit 771 << A. See the appendix of ref. [1 l] for a derivation.

2.2 The Model and its Gauge Groups

Similar to the models proposed by Simmons and Popovic [14] and Hill [10], we would like

to introduce a Topcolor assisted Technicolor model, i.e. we assume that all particles, except

the top quark get their masses from ETC. The mass contribution from ETC to the top quark

is assumed to be of the order of the bottom quark, or smaller.

As motivated in the last section, we will assume a SU(3) 1 09 SU(3)2 Coloron sector

with the third generation quarks transforming under the stronger SU(3)1 group, which

breakes down to the SM QCD group SU(3)0 at the scale it of order a few TeV.

We will also introduce another interaction, which distinguishes between the top and

bottom quark to be able to produce a top condensate without having a bottom quark or any

other condensate (see section 2.6 for a discussion of the resulting critical couplings). In

order to be able to reproduce the SM U(1)Y hypercharge group, we introduce the gauge

29



 

 

SU(NlTo SU(3)1 SU(3)2 SU(2)W U(1)1 U(1)2
 

I 1 1 SM SM SM 0

II 1 1 SM SM SM 0

III 1 SM 1 SM SM 0
 

Table 2.1. Gauge charge assignments for fermions of I, II and III generation. “SM” indicates

assignment corresponding to the Standard Model.

groups U( 1)1 (8) U(1)2 which are assumed to be spontaneously broken to U(1)}, also at the

scale 11. We will not specify the symmetry breaking at the scale 11 further and just assume

some (maybe composite) scalar <I> acquiring a non-zero vev at that scale. We will discuss

this symmetry breaking in section 2.3.

The whole gauge group structure is thus

SU(N)TC 3 SU(3)1® SU(3)2 3> SU(2)W 3) U(1)13) U(l)2. (2.8)

Table 2.1 shows the fermion charge assignments of our model, which has a flavor-universal

hypercharge sector, but treats the third generation differently in the Coloron sector. This

is what makes this Topcolor model different from the Simmons and Popovic [14] Top-

color model, which treates the third generation differently in the hypercharge sector. See

chapter 4.

The electroweak symmetry breaking down to the QED gauge group U(1)elm is a little

more complicated and will be partly driven by a top condensate and partly by a Technicolor

condensate and we discuss it in section 2.5. We can summarize the different symmetry

breaking by the following diagram (leaving aside the TC and ETC gauge groups):

SU(3)13 SU(3)2 3l SU(2)L 3 U(1)1® U(1)2

j u

SU(3)C®SU(2)L®U(1)Y

j v

SU(3)C ® U(1)em-
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2.3 The First Symmetry Breaking at the TeV Scale

Let us assign the coupling constants QTC, h], 17.2, g, 91 and 9% to our gauge groups

SU(N)TC <8) SU(3)1® SU(3)2 <59 SU(2)W <83 U(1)1® U(1)2. (2.9)

Furthermore we introduce a scalar <03“ transforming as (1,3, 3, 1, p/2\/6, —p/2\/6),

where p is some real (positive) number and the factor of 1 /2\/6 will turn out to be conve-

nient. Note that we allow p to be an additional degree of freedom in our theory. But since

it is associated with a hypercharge, we expect it to be of order one.

In order to break SU(3)1 <29 SU(3)2 and U(1)1 <29 U(1)2 at the scale it down to their

diagonal subgroups SU(3)0 and U( 1)y, respectively, we assume that the scalar <12 acquires

the following non-zero vev

(63) = mg. (2.10)

The covariant derivative, to be applied to (I), then looks like7

D =81+ihAATA+ih AATA+"’B Y11+'"B Yll (211)
ll 14 ~1 1111 22272 1911111 1922742: °

We will suppress unit matrices like those in (2.1 1) from now on, for the sake of a more

readable notation. In the fundamental 3 representation we may write TIA = 33;, and,

likewise, T2A = — (A?)T in the conjugate 3 representation, where AA are the eight Gell-

Mann matrices. To find the mass matrix for the gauge bosons, we use equation (3.4) and

apply the covariant derivative to the vacuum expectation value of ‘1), equation (2.10):

3 .u 5 . P B
(12pm); = .5 (”)0 (721.411,, — rig/1.3,) — 2212768,, (9] 81,, — 9.532”). (2.12)

Now using that the Gell-Mann matrices are traceless, that 636% = 3 and the following

relation for the Gell-Mann matrices

(AA); (AB); = 26‘48, (2.13)
O

 

6See section B in the appendix for an explanation of the conjugate representation and the index notation

we use.

7We use the convention Q 2 T3 + Y.
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one finds for the kinetic part of (I),

(011(3))le (DI‘IQUIBO

= E4“2 [6:80380141’1 4.249,.) (414?, ‘ 02/1532)]

+ 112—59360 (9131119213214) (918?“ 9385)

:9; [HAM/114" -2h1h2/‘1A,1A2A# + ”MAI/1‘?”

+ p12 (912811.31 - 29195311735 + 95231,,BfngBé‘)]-

The right hand side can be put into matrix form:

T 21 h, 41172.2 0 0 A474

11.2 2454: —h1h2 hg 20 20 A?” (2 14)

2 Blp 0 0 13:91 “9g9192 Bil ' .
p

320 0 0-’%(9192 3(92 32

Now the mass matrix of the gauge bosons (2.14) can be rotated to its mass eigenstate

basis by diagonalizing it. Defining cos B E h] / h? + hg and sin 6 E hg/ h? + h2, we

obtain for the mass eigenstates Cf} (massive Coloron fields) and 0;? (massless gluon fields

of QCD), the relations

A_ A .' A
C“ — (083 4“ —sm iAQl

GA—— si1113 A3411+ COS/3 A2); (2.15)

An analogous transformation can be made for the U(1) fields, where the Standard

Model hypercharge field remains massless and the field orthogonal to that, which we de-

note Z’ hereafter, acquires a mass. By applying these transformations to (2.14), one finds

M = u 12,2 + ’12,

C V 1 2 (2.16)

Alzl = u gflg? + 952.

Since we will be working in the electroweak sector most of the time, we also define

for the two massive fields

it, E pu (2.17)
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for later simplification of the notation. Then

MC = %(/h'f +123 218

and)” -"I ’2 ’2 (. )
Z’—'2'\/91+g2'

The gluon and hypercharge fields of the Standard Model (before electroweak symme-

try breaking) are orthogonal to the massive Coloron and 2’ fields and therefore remain

massless.

2.4 The Effective Lagrangian

Using the charges of table 2.], replacing the derivative in the fermion kinetic energy terms

by the covariant derivative and plugging in the mass eigenstates from eqn. (2.15), yields

— . — . A , A

futmfur + frmlijfur = --- - Gila” — 61316”, (2.19)

where f denotes any fermion and the currents are defined by

A _ _ A ° / _ A

JG” = ’1:1 COS 3f1117" 52-f111 — hI2 Sin l3f1,117”2‘2‘f1,11 (220)

A . - A , .. A
and JG” E h] 8111 fiflII'YILAQ—flll + fig COS,I.3f[’11",'“A2—f1’”. (2.21)

We now define g’ E 9192/ g? + 952 and 95 _=_ hlhg/ h? + 11.3, which will soon be

recognized to be the U(1)y and SU(3)C coupling constants of the unbroken subgroups.

We further define ay E gr2/47r, as E gig/4n and

I 2 ‘2
h.

H1 :- ay (37;) , K3 E (is (fl—112) . (2.22)

2 I

Then eqns. (2.20) and (2.21) can be rewritten

 

A - .4 . — A

JG” = v47 (x/K3f1n’7Mz-fur — ‘33—3f1Jn'I‘32-f111) (2-23)

A - A

JG” = 93 (MAT!) , (2.24)
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where we used n3 = 31? cos2 fi h? For low energies, meaning p2 << Mg. and 192 << Mg.“

this yields the effective Lagrangian

l A Au

2 (2.25)

__ 27f x/KI—‘f 'Ajf 03f— AAf

_ Mg, .3 III/7}! 2 III \/I-’€—3 1,117“ 2 [’11 ,

where the factor of two in the denominator comes from the symmetry factor in the Feynman

Rules for two identical currents. Correspondingly the result for the hypercharge fields is

27r

M2 n1 (W‘YCDQ, (226)

Z!

 
[:2]:—

where q denotes any quark.

So far (without having taken into account the electroweak symmetry breaking yet) our

theory has four independent parameters, which we will choose to be M, K.3,p and the scale

u or u' to be consistent with [14]. We should therefore re-express the results for the Coloron

and the Z’ masses in terms of these parameters. For that purpose we first recall:

2 2

ay_ 1 93 95
— ——2——_2

“91 +93
2 4

r1 “ (lygi 1 1

" " ’3—_ 2 2

952 “91 +9’

Soweget

I

n

——l-—g% and

1 _ 1 1

9’2 _ 47ray 9’

We can solve this to find:

/2_4 ,
91 — 7r(hl+O'Y), (2.27)

2 a

gg =47rh—Y(K,1+ay). (2.28)
.1
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We can do the same for the Coloron sector and get:

h? = 47r (n23 + as), (2.29)

h% = [In-(:33 (IE3 + as). (2.30)

.3

Now we can rewrite the Coloron and 2’ mass, eqns. (2.18), in terms of m, 53,)? and u’:

I

[4

Afc=u— K—W(f€3+03),

p 3 (2.31)

MZ’ = u,‘/%(I€1+Qy).

2.5 Electroweak Symmetry Breaking

In section 2.3 we only took into account the first part of the symmetry breaking. The

complete pattern of the breaking, including the corresponding gauge boson fields, is:

W“" Bf B’2‘

SU(2)L ® U(1)1® mm

in

w“" z’i

SU(2)L 65> U(1),»

l v

All

U (1)6").

In this section we will see that the Z boson field coupling of our model is not the same

as in the Standard Model, but will be slightly shifted. Except that we will explicitly use the

sigma model to derive the mass matrix, we will in this section follow ref. [4].

Fig. 2.3 illustrates the whole symmetry breaking structure in the electroweak sector in

a moose diagram. As denoted in Fig. 2.3, we introduce a complex scalar field a to break

the U(1)-groups down to their diagonal subgroups at the scale u. The electroweak symme-

try breaking is realized partially by the top-condensates and partially by the Technicolor-

condensates as will be discussed in detail.
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[I \ U [I “

\ p \

. U(1)l , - '. U(1)2:
\ ”

‘\ 1’

' — _€:__. I _ :_r_:_
91 — cosOsinqS 92 — c050cos¢

Figure 2.3. The pattern of the symmetry breaking of the electroweak sector in moose notation.

It is now worthwile to pause for a minute and to think about the number of independent

parameters we have. We have three symmetry breaking scales u, ft, FTC and from experi-

ment we know the electroweak scale to be 122 = 1 / J20]: derived from the extremely well

measured Fermi constant CF. The Technicolor and the Topcolor scale have to reproduce

this overall scale:

Ffi. + f? = v2. (2.32)

Thus we are only free to choose two scales independently, e.g. u and ft. We also know the

SU(2) coupling constant 9 to be 9 = 6/ sin 0 (see section 2.10 for a discussion of how to

relate sin 6 to observables). In the same sense we know the coupling of the Standard Model

hypercharge group 9’ = 6/ cos 6. As we discussed in section 2.4, g’ = gigé/ 9’12 + 952.

This yields only one additional degree of freedom for the choice of the coupling constants

(95, 95) of the two U(1) groups.

Finally, as in section 2.3, we will have one additional degree of freedom, denoted p,

associated with the U(1)1 and U(1)2 charges of the scalar a which drives the symmetry

breaking at the scale u. We will see that p always appears multiplied by u, so we will

absorb it in our definition of u’ = up.
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Altogether we therefore have four degrees of freedom which we could choose to be

[$1, p, u, ft. Instead we will find it more convenient to exchange ft and n1 for the two new

parameters

sina = {—t and (2.33)

[2

sin2 d) = _£_2___ = _E_Y__ (2.34)

gi2+g’22 I‘1 +ay’

where the angle (15 can readily be recognized to be the mixing angle rotating the gauge

eigenstates of the U(1) gauge bosons into their mass eigenstates.

To realize the electroweak symmetry breaking via the Technicolor and Topcolor con-

densates, we will use the non-linear sigma model introduced in section 1.2. We therefore

define the following two Z-fields parameterized by the Topcolor and Technicolor pions:

21 = 87“"?(1‘Wt and 22 = 370ngqu (2.35)

. a . . .

where we introduced 7“ _=_ 92— With the Pauli matrices a“. When we now define the trans-

formation properties of the Sigma fields, we have to take into account that the U(1) gauge

groups form abelian subgroups of a global SU(2) R- We can take the T3-operator (with the

diagonal representation 7'3) to generate it (as we did in chapter 1.2). The transformations

then look like

- - 3

21 ——) 6”“9“ 21 ef" 9'1 Y1 (2.36)

- - 3

22 ——> (21709“ :32 6—" ”-3”? (2.37)

0 ———> ewllyl/2 0 8_i0,2Y2/2. (2.38)

If we now choose the Y1 and Y2 charge of the scalar field a to be p, then the Z’ mass will

have the same p dependence as in section 2.3. See Table 2.2 for a summary of all charge

assignments.

We will now introduce the gauge covariant derivative of the electroweak sector:

8” +19 T“ w: + zigj Y1 Bf + (951/ng. (2.39)
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Table 2.2. Gauge Charge Assignments for the different composite fields.

 
 

SU(N)TC SU(3)1 SU(3)2 SU(2)W U(1)1 U(1)2
 

4% 1 3 3 1 p/x/é -p/\/5

21 1 1 1 2 1 0

22 1 1 1 2 0 1

a 1 1 1 1 p p
 

Since we know that the electric charge operator Q = T3 + Y1 + Y2 has to be unbroken

and therefore annihilates the vacuum, it will be useful to rewrite (2.39) in terms of the

massless EM-field A” and the massive Z-boson field. Just like in the Standard Model we

introduce the mixing angle 0 (its exact correspondence to the observable weak-mixing-

angle will be discussed later), sin 6 = g’/W, for the mixing of the fields of the

second symmetry breaking. Here we again have 9’ = 93 95/ 9’? + 9'3 for the coupling

constant of the hypercharge group Y 2 Y1 + Y2 after the first symmetry breaking. For the

(first) symmetry breaking at the scale u we already introduced the mixing angle (15. We can

then write down the mass eigenstate fields

Z1: cosqfi B? + sing) Bil

Z' = —sin({) B; + cosqb B“,

after the first symmetry breaking (ZIt denotes the massless gauge boson belonging to the

yet unbroken group Y 2 Y1 + Y2 and is orthogonal to the massive Z’ which we already

introduced in section 2.4). Due to the second symmetry breaking we get

A” =cost9 Z1“ +sin0W§1

Z“ = —sin0ZT+cosBW§l.

Mth the help of the two mixing angles we can also write

9’ _ e ,_ 9’ e

92—
cosgb — cosqbcosQ’ sing) — sincbcosB'

6

 ,—

91"
 

9: sin6’
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Putting everything together and simplifying the result enables us to rewrite the covariant

derivative (2.39) as

D” = a” +ieA“Q+z'
 Z" (T3 — sin2 0Q) +z' e Z’I‘Y’, (2.40)

sin 0 cos 0 cos 0 sin (15 cos (b

where Y’: Yl— Y sin2 q) and the Wi fields were left out.

Using the transformation properties (2.36 -— 2.38) and the charge assignments of Table

2.2 we can now apply this covariant derivative to the vacuum expectation value of our

fields:

DMZ1—> 3”(21> +i quT3(21)

—z' Z”‘cos2 (1573 (21) 

cosOsimficoscfi

DMZ2:) 3p<§32) +i WZ”73(22)

+2 costine¢cos¢ZIZl£mSin2 ¢ T3(22)

Du“) : 8M<0) +22) cosGSin¢cos¢Z M<a>'

Note that since Q is unbroken, Q annihilates the vacuum. The Lagrangian in the non-linear

 

 

sigma model we are using reads

F2 2 2

L = {-2 Tr (DI‘21)T(D,,21) + {7‘ Tr (D“Eg)l(D#§32) + 3‘? (D”a)* (Dfla). (2.41)

Since we only have one gauged SU(2) group, going to unitary gauge would not set both

Sigma fields to one. In terms of Nambu—Goldstone bosons (NGB), this means that only

three NGB (which are a linear combination of rrl and fig) will become the longitudinal

parts of the gauge bosons W+, W‘ and Z to make them massive. In the same manner the

NGB coming from the a-field will make the Z’ massive. So one SU(2)-triplet will remain

in the particle spectrum: the top pions.8

We are here only interested in the gauge boson masses and not in the (derivative) cou-

pling terms of the pions, so it is sufficient to only look at the first order term of the La-

grangian by plugging in one for all fields. The W-mass expression is the same as for the

 

8We will not analyze experimental implications of the existence of top pions and just note that they have

to be sufficiently heavy to explain why none have been found so far. See [I l] for more details.
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Standard Mode] at tree level (apart from the subtlety that we did not relate sin 6 to observ-

ables yet):

(2.42)

Omitting the known masses of the photon and W fields, we can now easily calculate the

squared mass matrix of the Z and Z’ bosons. Setting the fields to one, using Tr T3T3 = %,

F%C + ft2 = v2 and ft = vsin a, we obtain

 

2 2 ' 6 2 2
2 _ e2ul2 a: a: W (co: 0: — cos (1))

— - 2 2 2 sin6 2 _ 2 sin 6 ’
4 SH] 6 COS 0 :3 W (COS a COS (b) m

(2.43)

where we introduced the small parameter 2:2 = 122/u’2 = 122/ (up)2, 3:2 << 1, and also used

. 2 - 2

31119 (22 2.4 2 4 22 $1119
—————- u + sm + F cos ) z u ———————

sin2 ¢ cos2 (I) 1) ft (’5 TC ¢ 1) sin2 (1) cos2 45

to get the second diagonal element. Note that the smallness of 11:2 = 122/u’2 will be justified

in section 3.3, when we apply experimental bounds from electroweak measurements to our

66’

e’c’

with e, 6’ << 1 and c of order 1. A matrix of this form has the eigenvalues (up to second

model.

The matrix of (2.43) is of the form

order in 6,)

A1=c+€— and A2=e——C—, (2.44)

and the corresponding eigenvectors

.61 1
’01 = c and ’02 = I . (2.45)

1 —%
Using (2.45) we can now write down the mass eigenstates of the mass matrix (2.43) in first

order of 2:2 around 2:2 = 0:

Z” ——> Z" —22% (cos2 a — cos2 ¢>) Z’“, (2.46)

8111 6

Z’“ ——> Z’“ + 22%;}?- (0052 a — cos2 ()5) Z“. (2.47)
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To simplify our notation we did not distinguish between the gauge states and the mass

eigenstates of Z and Z’ so far. From now on we will always mean the above mass eigen-

states when we refer to one of the two gauge bosons.

We now use (2.44) to also expand the masses of the Z- and Z’-bosons from the mass

matrix to linear order in 2:2:

2 8202 2 2 2 2
NZ 2 (1 — :1: (cos a — cos (p) ) . (2.48)
 

4 sin2 6 0052 6

To that order, the Z’-mass is just

M2 — 827/2 — “’2 ( ’2 + 2) (2 49)
Z, 4cos26sin2¢cos2¢ 4 g g .

 

consistent with eqn. (2.18).

By plugging in the mass eigenstate of the Z boson in our expression for the covariant

derivative (2.40), we see that the Standard Model coupling of the Z gets shifted to:

92 = ————Sin0:08 6 [T3 - Q sin2 0 — 1:2 (Y1 — sin2 451’) (cos2 a - cos2 45)] (250)

=W [T3 — Qsin2 6 — x2Y cos2 (15(0082 a —- cos2 (15)] , (2.51)

where in the second line we used that Y = Y1 for all fermions in our Topcolor model.

To this level of accuracy the coupling of the Z’ does not get shifted, since the tree-level

coupling of the Z’ will already be suppressed by its large mass:

6
 _ _ - 2

92’ _ sin6sin¢cos¢ (Y1 sm ¢Y)

6 cos (15

= —— 2.52

sin 6 sin (b ( )

Therefore the form of the Z’ effective Lagrangian in (2.26) does not change after the second

symmetry breaking.

2.6 The Full Gap Equations

We already introduced the Nambu-Jona-Lasinio (NJL) model in section 2.1. But there we

did not take into account the U(1) groups. Without these additional groups, we could not
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prevent the bottom quark from condensing and at the same time have the desired top quark

condensate.

We will here modify the gap equation given in ref. [14] to derive the gap equation which

takes into account the Z’ interaction. The result is

m M2 m. 2 M2 3m M2 m 2 M2

87r2 MZ, m} 87r2 Mg m}

(2.53)

where the coefficients G,- are

  

 

G] = finlYng’; for all fermions,

G3 = 0 for leptons,

471’02 1 .

= M k3- for quark generatlons I and II,

C

= $3143 for quark generation III.
A]C

We first observe that in the case mf ——> 0+, eqn. (2.53) reduces to

__ 1

1

822

(01111;, + 3031143.) . (2.54)

If we want a fermion to condense, the gap equation (2.53) for the corresponding fermion

must have a solution for mf>0.9 To figure out for which 141 and n3 values this is true, we

rewrite eqn. (2.53):

2 2 2 2

_ mf , 2 2 mi . 2 m! MZ' 2 mf MC
mf —— m<016121+ 3G3AIC) — ‘87:; (GIAIZIE—l—g; 11]W + 3G3N10K4'g Ina .

(2.55)

If mf > 0, the second term of this equation is always negative (or zero), so we can write

1 2 2
1 < gp‘ (011112, + 3031110). (2.56)

If, on the other hand, this equation holds, eqn. (2.55) can only have a solution for mf > 0.

We therefore only expect a condensation, if eqn. (2.56) holds. Accordingly we expect no

condensation, if

1
1 > gp (0111;, + 3031113.). (2.57)

 

9A5 in chapter2.1 the case mI = 0 is trivial and always possible, so we will ignore it here.
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By plugging in eqn. (2.6), we thus obtain three important (theoretical) constraints for

our model: equations (2.58-2.60). Equation (2.58) follows from the fact that we want the

top quark to condense; equations (2.59) and (2.60) on the other hand have to be fulfilled in

order not to get a bottom quark or T—lepton10 condensation, respectively:

2 2

h3 + ‘2—7‘K1 > 57f, (2.58)

1 2

K3 — 2—7K1 < 37f, (2.59)

1.1 < 271. (2.60)

The critical 141 and ’43 values belong to the case where we set the left-hand side equal to

the right-hand side.

So far we have only taken into account the Z’ and Coloron interactions in the NJL

Lagrangian which leads to the above gap equations. We will now also consider the electro-

magnetic and the QCD interaction by using the gauged NJL model. This means to replace

the ordinary derivatives in the kinetic term of the NJL model by the covariant derivative and

to add a gauge kinetic energy term to the NJL model Lagrangian. We use the result given in

ref. [14] for the Simmons and Popovic model and alter it to be applicable to our Topcolor

model (i.e. take into account the different gauge charge assignments of the fermions). The

result is a slight shift of the equations (258-260):

2 2 4 4

h3+2—7h1>§7f—§as—§ay, (2.61)

1 2 4 2

K3 — 2—7K1 < 37f — gas + gay, (2.62)

K1 < 27? — 60y. (2.63)

Figure 2.4 shows the resulting gap triangle, where (11/(le) = 0.010 and aS(MZ) =

0.118 from ref. [16] was used. Within the triangle all above conditions are fulfilled. Going

back to eqn. (2.55), we also note that for a non-zero dynamical top mass contribution the

 

10Formally a lepton condensation is not excluded by the NJL model. Nevertheless we will find that this

is phenomenologically irrelevant, since experimental constraints (and also the Landau pole constraint) will

force us into the region of K1 being small.
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Figure 2.4. Resulting Gap Triangle corresponding to eqns. (2.61-2.63), where (i) is the lower bound

for (5b) = 0, (ii) is the upper bound for (7'7) = 0 and (iii) is the lower bound for (ft) 7E 0.

left hand side of the gap triangle is approached in the limit where both gauge boson masses

are sent to infinity, corresponding to the case of an infinitely large scale u.

In order not to get a charm condensate, the following condition has to be fulfilled:

2
270

K] + ——5— > 97r. (2.64)

2 K3

Plugging in aSUlIZ) = 0.118 and using n3 ~ 2 within the gap triangle shows that this

does not give a new constraint.

2.7 Implications of the Known Top Mass

We will now briefly discuss that the “smallness” of the top quark mass (compared to the

scale u) will result in K1 and n3 values close to the left hand side of the gap triangle for

reasonable scales u. This is analogous to what we found in section 2.1: For a small ratio

mt/u we are forced to couplings close to their critical values.

Using eqns. (2.31) in the gauged version of eqn. (2.53) gives a relation between rs] and

n3 for a given (desired) dynamical fermion mass, a given scale u and a given p. Since

the top mass is known to be (174.2 i 3.3) GeV [16] and the dynamical mass contribution
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coming from Extended Technicolor can be estimated to be of the order of the bottom quark

mass, i.e. z 5 GeV, we want the Topcolor sector of our model to give a dynamical mass

contribution of around 170 GeV.

7 
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Figure 2.5. The dashed line represents a solution of the gap equation for the scale u = 500 GeV

using the known top mass of mt z 170 GeV. Solutions for higher scales lie to the left of this line.

So using this value for the dynamical top mass, we can now find the solution of the

gap equation (2.53) for a given scale u. Note that for simplicity we here assume p = 1, so

u = 11'. Fig. 2.5 shows the result for the scale u = 500 GeV, which would already be near

the electroweak scale 1). All solutions for scales above 500 GeV would lie even closer to

the left hand side of the gap triangle, which is approached in the limit it —> 00.

2.8 The Landau Pole of U(1)1

Just like in QED, one loop corrections because of fermion loops in in the gauge boson

propagators will result in a running of the coupling constant g’1 of the U(1)1 group. Since

in our Topcolor model, all the fermions only couple to the first U(1) group, there will be

no running of the coupling constant g5.

It is convenient to choose a renormalization scheme, where the running coupling is
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independent of the fermion masses (although in the limit of high energies in which we

are interested here, we could neglect the fermion masses anyway), like the MS (modified

momentum subtraction) scheme.

Then the beta function, defining the running coupling, is given by

 

89, 9I 3

13W) 2 115;} = 121” (2.65)

where p is the energy scale in IV—IS and

1

C = i 2: y} (2.66)

z'

is the sum over the squared hypercharges of all fermions (left and right handed) of the Stan-

dard Model (since they all transform under U( 1)1 with charges equal to their hypercharges

in the Standard Model, see table 2.1). The factor 1 /2 is due to the fact that we have to count

left- and right-handed fermions separately.

Taking into account all three generations and the color factor of three for the quarks,

we find C = 5.

Integrating eqn. (2.65) yields the scale dependent coupling at an arbitrary scale A, if we

know the coupling at another scale A0:

 
2 2 I

aim) = glmo) C , 2 A . (2.67)
1— 6—”?- 91(A0) 111 A—O

This expression for the running coupling has a pole for A = AL, where

6 2

AL 2 A0 exp —;—7T——2], (2.68)

091(A0)

 

called the Landau pole.

Here we implicitly assumed that the behavior of g’l outside of perturbation theory can

still be described by eqn. (2.65), which is a rather strong assumption. Furthermore we

neglect higher order loop correction, which could become important at high scales.

Nevertheless, let us assume eqn. (2.65) does describe the high energy behavior of the cou-

pling constant as well. Then the Landau pole scale AL should be at an energy scale well
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above the symmetry breaking scale u, since this would then be the energy scale where the

theory could not be meaningful anymore. The maximal demand would then be to have AL

comparable to the Planck scale, where we expect new physics to become important at the

latest.11

So let now A z u and let us ask how many orders of magnitude the Landau pole lies

above the symmetry breaking scale u, assuming different values of g; at u. It is therefore

useful to relate g’1 to :61 by the use of eqn. (2.27). We then find

67r2 1

C 47r (:61 + ay)’

 
A

10g if = 10g 6 (2.69)

where log is the logarithm to basis ten. Requiring AL to lie certain orders of magnitude

above u thus gives us an upper bound on 161.

The planck scale, Ap z 1.2 1016 TeV, lies approximately 15 orders of magnitude

above the symmetry breaking scale u, if we assume u z 1 TeV.

Fig. 2.6 shows that if we would want AL to be of the order of Ap, this would give us

the constraint 161 S 0.02. In section 3.3.7 we will find that 161 S 0.0015 has to be fulfilled

to assure compliance with electroweak precision data, so the Landau pole does not give us

any additional constraint.

2.9 Calculation of the Electroweak Parameters

It is common to express deviations from the SM in terms of the so called electroweak

parameters. At first, provided with these parameters we would be able to put constraints

on our parameter space without having to calculate every single observable. Secondly, we

would then be more flexible to take into account contributions coming from other beyond

Standard Models like Extended Technicolor.

To calculate the parameters for our Topcolor model, we will use ref. [4]. It is convenient

to use the following parameterization of the tree-level amplitude, which is sufficient to

 

11This is really just a maximum demand. If for example U(1)1 is embedded in the ETC master group,

then eqn. (2.67) would actually already loose its meaning above the symmetry breaking scale of ETC.

47



 

   
 

0.2 L

O.l5 ~

5 0.1»

0.05 » J

On- . 2.- 91.21 .. .

0 2.5 5 7.5 10 12.5 l5

AL
log—

u

Figure 2.6. The graph shows the upper bound on 161, requiring the Landau pole AL to lie certain

orders of magnitude above the symmetry breaking scale 11.

describe universal corrections to the SM coming from new physics. This parameterization

is introduced and explained in ref. [5]. For the neutral current this parametrization reads

2Q—QI + (T3 _ S2Q)(TI3 _ S2QI)

P2 (32c:2_ S) 2 l ( __ (1'6 )

e? W P +4t/20F 1 OT+439c2

 

- MNC = e (2.70)

 

6 . . .

+ x/20F ——:2'2 T37“ + 472016 (Ap — aT) (Q — T3)(Q’ — T’3),
. (2

whereas the charged current has the following parametrization

(T+T’— + T-T'+)/2 65 (T+T" + T-T’+)
  

S 13 1 (S S C 2

_.._. p2+_(1+_e,,)
e2 167r NEGF 4..- c

(2.71)

where we introduced the Euclidean momentum squared P2 = —p2 to be consistent with

[5]. Note that both amplitudes reduce to the SM tree-level currents in the case of vanishing

electroweak parameters. In the following we will calculate the electroweak parameters Ap,

S, T and 6. We first note that 6 = 0 in our model, since we don’t have a extra heavy SU(2)

triplet.
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The neutral current in the model under consideration reads

2 2

2 QQ' 92 92’
 

- M — + . .. . 2.72

NC 6 P2 P3 +111; 1115, ( )

Next, we can rewrite (2.51):

=__,__. 3( ( 2 - ))
gZ sin60086 [T 1+ :21: cos245 cos (1 cos245

—Q (sin2 6 + 11:2 cos (23 (cos2 a — cos2 d)))]

____ 1 A (T3 _ 2 )

sinOecosfll + I] S Q

where we defined

A1 '5 2:2 C082 6’) (0032 a — cos2 (b) (2.73)

for a more readable notation. By comparison to (2.70) we also see that we found 32 which

was implicitly defined there:

2 sin2 9 + 2:2 cos2 (15 (cos2 a - cos2 (1’))

— 1 + 3:2 cos2 (15 (cos2 a — cos2 (1))

% sin2 6 + :1:2 cos2 0 cos2 (15 (C082 61 - cos2 ab) . (2.74)

 

We now also rewrite (2.48):

where

6262

4 sin2 0 cos2 9

 p22 and A2 E 1:2 (C082 0 — (3052 65) .

Thus we arrive at the following expression for the Z boson tree-level amplitude:

92 I .2 (1+ A1). (T3 — 8262) (1'3 — W)
P2 + Mg sin? 00052 0 P2 + 1122 (l — A2)

(T3— SQQ) (T13 _ S2QI)

— Sl1126C0826P2 + 2ZSin26§0826 I—AZ2

2(1+A1) e (1+A1)

 

 

 

In this form we easily get by comparing to (2.70)

82C2 S __ sin2 0 cos? 6

e2 F3?— 62(1+A])2
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Using 32 from (2.74) and re-substituting A1 we get to first order in 2:2:

01S = 4a:2 ((3032 a — cos2 (1)) C082 (b (3032 6 (2.75)

Next we calculate aT. Again by comparison we find

- 2 2
25m 6003 0 l—Ag 1 ,

‘ ‘ :-—_ l—aT ,

”Z (:-Z (1_A1)2 4¢2( )

where G’F = 7313. Expanding to first order in :1:2 yields

 

aT = 51:2 (cos4 a — (3054 ab) (2.76)

Finally we have to calculate Ap by looking at the Z’ tree-level amplitude:

 

2

g 4

Z2, = 22—2 cos4 ()5 YY'

MZ’ 1)

4

= —2 (Ap — aT) YY',

v

where we used the Z’ mass (2.49) and the Z’ coupling constant (2.52). Using our result for

aT we thus get

Ap = .122 cos4 a. (2.77)

Using again ref. [5] we can translate our result in the Barbieri et al. [2] parametrization of

the eletroweak parameters:

 

A 1 2 (1'6 2C2 2 2

S = ——2— (:15 + 4c (Ap — 0T) + —2— = 2: —2 cos acos (15, (2.78)

43 c 3

7A" 2 Ap = :52 cos2 a, (2.79)

(16

W = = 0 2.80

43202 ’ ( )

2 c2
Y = 6—2 (Ap — (1T) = 22—2 cos4 qb. (28])

s 5

Note that there is also a contribution to Ap coming from loop corrections in the Coloron

sector. Coloron exchange across the top and bottom quark loops of the W and Z vacuum

polarization diagrams induces the following contribution to Ap (cf. [14])

2
. 1 2 2

M 3431361 _1,___ 3 (2.82)
3811] HIV AICA'IZ
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But due to the large Coloron mass, this contribution to Ap turns out to be negligible com-

pared to the tree-level Z’ contribution.

2.10 The Weak-Mixing-Angle

Before we can calculate experimental observable deviations from the Standard Model

in terms of our four free parameters for the electroweak sector ( [sin a, sin (I), u, p] or

”t, 161,11, p]), we have to relate sin 6 to observables. To do so, we will reproduce the results

given in ref. [4].

There are different possibilities for defining the weak-mixing-angle. In the Standard

Model all of them coincide at tree-level, but not at one loop level. For the model we are

considering in this thesis, they do not even coincide at tree level.

One possible choice is to define it via the mass ratio of the W and Z masses (the so-

called Sirlin definition):

M2-
C082 0W = J21. (2.83)

MZ

For our model we find immediately by using eqns. (2.48) and (2.42):

2

cos2 6W 2 cos2 6 + .122 cos2 6 (cos2 a — cos2 6)) , (2.84)

or

2

sin2 6W 2 sin2 6 — :52 cos2 6 (0032 a — cos2 (1)) . (2.85)

We will later use this result to calculate the W mass shift in our Topcolor model.

Noting that since the best measured electroweak quantities are 01,01: and MZ, we will

find another definition of the weak-mixing—angle more convenient:

7T0

(@0ng

We will use this definition for the weak-mixing-angle and in general use a, GF and MZ as

sin2 6Z cos2 6Z = (2.86)

input parameters for all tree-level calculations. For our Topcolor model we have

2

sin2 62 cos2 63 = sin2 6 cos2 6 (I + 2:2 (cos2 a — C082 (1)) ) , (2.87)

5]



where we used 122 = 1/ V201: and a = 62/47r and the Z mass from (2.48).

This equation can most easily be solved by writing sin2 62 = sin2 6 + A sin2 6, with

A sin2 6 of order 2:2. If we only keep linear terms in A sin2 6 we get

 

- 2 2
, srn 6 cos 6 2

A srn2 6 = 2:2 cos2 a — cos2 (15

cos2 6 — sin2 6

and hence

2 sin2 6 cos2 6
 

2

sin2 62 = sin2 6 + :1: (cos2 a — cos2 6)) . (2.88)

cos2 6 — sin2 6

It is important to note that the difference between sin2 6, sin2 6Z: s2 and sin2 6W are of

order 11:2, so that any definition of the weak-mixing-angle may be used in the terms propor-

tional to $2. With this relations we can relate the Lagrangian coupling sin 6 to measurable

quantities.
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Chapter 3

Experimental Constraints

3.1 Flavor Changing Neutral Currents: KR and BB mixing

Our effective Lagrangian, equations (2.25) and (2.26), contains flavor changing neutral

currents (FCNC) in first order, since we do not know the complete underlying field theory

and therefore can have an arbitrary unitary mixing between the flavors. Equations (2.25)

and (2.26) only contain the gauge eigenstates of the theory and thus have to be rotated by a

unitary mixing matrix, which could only be derived from the complete theory. Figure (3.1)

shows the Feynman diagram for this process. To get an estimate of the size of the FCNC,

we will assume a mixing only between the left-handed down quark fields and plug in the

CKM-Matrix for this mixing. The fields in the effective Lagrangian are all left-handed,

since we assume that only they mix.

2

27r — AA 0 _ A“ — x1
= __ bl 41—. ' -_5 d/ 11— ’ I #_ ' 3.1L ME; [,/n3( L7 2 bL) \/’v_3( L7 2 dL+sL7 2 3L ( )

In equation (3.1), the primed fields denote the gauge eigenstates. We obtain the mass

eigenstates by rotating the gauge eigenstates via the CKM-Matn'x, d“ = Vijd1. Plugging
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(a) (b)

Figure 3.1. (a) shows KK mixing in the Top Color model due to Coloron Exchange, (b) shows the

corresponding direct coupled diagram.

this transformation into (3.1) yields:

-- . A

£ = ‘fifig [m (divni‘vfléz—Wdt)
2

__as_(gjvij1dlmuA“v1kdk + gjvm Mai/212116)]
,/ ‘ T 7 T

“3 L L (3.2)

= _ A217; [WE—3V113V32 _ %(V111V12 + V112V22)]2

X (JL’YuAQIESL)2,

where in the last equality we have isolated the terms of interest for KK-mixing. Here

we explicitly see the important difference to flavor universal models like the SM: If the

coupling to the three generations was equal, the sum over the factors Vij would equal one

due to the unitarity of the mixing matrix. This in generally true: Models which dynamically

produce masses (ETC is another example for this) have to couple differently to the three

generations and thus will give rise to FCNC.

We thus obtain a coefficient which has a dependence on K3 and the CKM-Matrix ele-

ments. To simplify equation (3.2) further, the following Fierz identity1 will be useful:

(JLa’mSLB) (JLm”SLa) = + (JLa7fl3La) (31.37%143) - (3-3)

 

‘We have a plus sign on the RHS, because we took into account the extra minus sign from Fermi statistics.

54



We now use this relation and identity (2.13) for the Gell-Mann matrices to rewrite

(chain-:- (A1003 3L6) Um”;- 0“)“ 3L6)

11 _. a _ _

= 5 (dLa’YuSL/a) (dL,{37”8La) 6 (dLaipSLa) (de”8L7) (3'4)

1 _ _

= 3 (dLaiuSLa) (thy/"81.13)-

By using this result in the effective Lagrangian, equation (3.2), we obtain the effective

Topcolor (Tc) Lagrangian for the A3 = 2 process under consideration

[£222 2 —QTC(IWC, n3) (JLOVHSLQ) (JLfi'yf‘sLfl) , (3.5)

where

2
2

QTCMIC, n3) 2 5g?— (flaw13v32 — 31(VT11V12 + VT12V22)] . (3.6)
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Figure 3.2. Standard Model Loop diagrams for As : 2 transition in KK mixing

In the Standard Model (SM) there also exists a KR mixing amplitude, but it is strongly

suppressed by the GIM-Mechanism and therefore only of second order. The corresponding

Feynman diagrams are shown in figure (3.2). A detailed calculation of the involved loop

diagrams can be found in [3]. The result is

Egg/=2 : — 93M (JLaVMSLa) (fimwsw) , (37)

where

, G a 1

QSM E l———-— 3.8
\/2 47? sin2 6W ( )

and

A E Z (Vila/”)2 x, + Z vilivi‘zvlljvflx—WL 1n 3’1, (3.9)
2' 2%], 1172' — 333' IEj
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Figure 3.3. Lower bound for MC due to KK (solid line) and BB (dashed line) mixing for the

allowed values of 53

with x,- E mg/MVZV. The indices 2', j correspond to up, charm and top quark.

The corresponding relevant observable would now be the mass difference between KO

and K0, which can be estimated from the effective Lagrangian, £212 and ngz2. But

since the bound state physics of the involved mesons is not well-understood, this would

only be a rather rough estimate. it makes more sense to compare the two factors (23M

and QTC directly, instead of calculating the sum of both mass difference contributions and

comparing this with the observed value.

To do the calculation, we choose the standard parametrization for the CKM matrix.

Equation (3.10) shows the measured CKM-Matrix elements, where the phase is omitted

and the experimental errors are not taken into account.

0.9745 0.2243 0.0037

Va: —0.2242 0.9736 0.0413 (3.10)

0.0057 —0.0411 0.9991

The solid line of Fig. 3.3 shows the resulting lower bound on MC for the NIL model

allowed values of K3, if we use 05M % OTC and aS(MZ) = 0.118. Due to this constraint,

[”0 Z, lTeV.
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Exactly the same calculation can be done for BB mixing by replacing the quark indices

according to s -—> d and d -+ b. As the dashed line of Fig. 3.3 shows, we get a much stronger

constraint for the Coloron mass in this case: MC 2 6 — 8 TeV.

3.2 Limits on Four-Fermion Contact Interactions

LEP 2 measurements of Scale Limits for Four-Fermion Contact Interactions give us a con-

straint on M. The published analysis of the relevant data assumes an effective Lagrangian

of the general form

2 —' _ 2W 7' —

”“2 (WWW) (WWI/m) = i—g (112mm) (I/JLV“ 16L) , (3-11)
2Ai Ai

where 92/47r is assumed to be one. Ref. [16] provides a list of experimental lower bounds
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Figure 3.4. Lower bound for A12, due to scale limits on contact interactions for the allowed values

Of I61.

for Ai for different four fermion interactions. Taking into account the hypercharges, the

strongest constraint for our model comes from an (eeuu) interaction. For this interaction

we have the following Lagrangian

2 .

£2, = — 2%]?— (émpYeL) (fl'LSIIIYUL)

2’ (3.12)
227TK1 1 (_ )(_ t1 )

: ——-——‘ — C "' 8 'U, U .
61;,12 L111 1. L7 L ,
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where the factor of two takes into account that we have two equal, (eeuu) and (uuee),

effective Lagrangian contributions. Thus we get

A
Mg, 3 7%m. (3.13)

Figure 3.4 shows the corresponding plot, where the measured A+ > 23.3 TeV is true

for the region above the graph. We see that the Z’ mass increases fast with increasing K]

values.
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3.3 Constraints from Electroweak Precision Measurements

3.3.1 General Considerations

We could now just use the experimental bounds on the electroweak parameters 37", Y

and W obtained from a fit to all relevant available observables to get constraints on our

parameter space. Such a fit is provided by Barbieri et al. [2] and we will apply it to our

model in section 3.3.7. But we have two good reasons to do our own fit first: to begin with,

just translating the constraints on the electroweak parameters does not tell us how well our

model is actually fitting the data. This information is hidden in the Xr2nin value of a fit in

our two parameters ml and u’ (if we fix ft by the Pagel-Stokar formula, see section 2.1).

Secondly, it would be interesting to see which observable is causing a strong constraint,

and which is not.

We will therefore in this section at first explain the general fitting procedure for the class

of models which can be parameterized by the amplitudes (2.70) and (2.71) to understand

how Barbieri et al. [2] obtained their general fit in the electroweak parameters. Then we

will do our own fit to the Z pole LEP observables to see to what extend our model is able

to fit the data. Since we will not include as many observables as Barbieri et al., we will

afterwards take the Barbieri fit as the more significant constraint on our parameter space.

Throughout this chapter we will use the following most precisely measured observables

as input parameters (at tree level): the QED coupling constant a, the Z mass MZ and the

Fermi constant CF. See table A.7 for a list of all used input parameters obtained from [I 6].

By input parameter we here mean that we will not take them as fitting parameters, but fix

them to their extremely precise measured mean values. Note that, although all errors are

given for a 1-0 confidence level, we will present all bounds on our parameter space at a

95.4% confidence level, corresponding to a 2-0 uncertainty.

Given the great success of the Standard Model, all models beyond the Standard Model

have to reproduce it at low energies. In our case this is true for large it. Moreover, deviations
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from the Standard Model can only be of order of the Standard Model loop corrections

or less, since otherwise they would have been observed already. Since our model would

predict deviations from the Standard Model already at tree-level (manifest in the altered Z

mass and coupling), these tree-level deviations themselves have to be of the order of the

Standard Model one loop corrections. That means we necessarily have to take into account

all one loop corrections to the Standard Model when calculating observables in our model.

Otherwise we could mistake standard one loop effects for new physics!

We can accomplish this by first calculating the tree-level amplitude, O“, for the ob-

servable 0 under consideration to first order in x2 in our model. Since sin 62 is directly

related to the three most precisely measured quantities, we now choose to write everything

in terms of sin 62 by using the relations given in section 2.10. Then the part of the ampli-

tude remaining as 2:2 —+ 0 can be identified with the Standard Model tree level amplitude

for the given observable, 025M:

0” = 0%,, + 50m), (3.14)

where 60Np is the small deviation due to new physics, which will be of order 51:2. Next we

take into account that 60 must be comparable to the one loop Standard Model corrections

by replacing 025M with the best available theoretical prediction of the Standard Model

including one loop and radiative corrections, 0%,:

0: og’M+60Np. (3.15)

In order to get 0%!M we will use the Fortran program ZFITTER [1]. Finally we note, that

to this level of accuracy we may equivalently do the following2

60 60
l .l | NP 0! | NP

CSM CSM

which sometimes may be more convenient.

 

2We will choose to use this replacement rule. Explicitly doing the calculation also with the replacement

(3.15) showed no significant difference in the final fitting results.
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Our correction term wouldx now have three independent parameters: u’ , cos a and

cos ¢. The experimental constraints on the parameter space would be much easier to handle

and to illustrate if we had only two independent parameters. Indeed, we can estimate cos a

by the use of the Pagels-Stokar formula (see section 2.1):

ft 8W2 n m? ( . )

and hence

3777.2 112
,2 _ t

COb O—l—Wlnmg, (3.18)

where mt is the top mass. In our electroweak analysis, we don’t have to carry around

the dependence on the scale it, since it is only logarithmic and the much more important

dependence on the scale is due to x = 5313. 3 We will simply fix ft to ft x 75 GeV, which

corresponds to u = 2 TeV.

Now there is one subtlety: One loop corrections to the Standard Model depend on the

unknown Higgs mass, and Technicolor models do not have an elementary Higgs boson. So

in our model, too, the Higgs particle needs to be replaced by a particle which plays the role

of the Higgs in our theory. To figure out which particle this is, one would have to explicitly

do a one loop calculation in our Topcolor model with the triangle moose. For the three-site

model this has been done in ref. [13] and the result is that this particle is the techni-p meson,

which we estimated to weigh around 1.5 TeV in section 1.4. In this thesis we will assume

that this is still true in our Topcolor model and use the SM predictions for a heavy Higgs

boson mass.

3.3.2 Fits to Electroweak Data

Starting with the charged and neutral current amplitudes (2.70) and (2.71), all electroweak

observables may be calculated as functions of S, T, 6 and Ap to first order in these param-

eters. To do so, one again has to relate 32, which is implicitly defined in (2.70) and (2.71),

to observables. We already did that in the special case of our model in section 2.10.

 

3Not neglecting this scale dependence during the analysis only confirmed this statement.
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In order to find the Z boson pole mass from eqn. (2.70), we set the denominator of

the Z boson amplitude equal to zero and substitute Q2 = —M§. To first order in S, we

find (cf. [4]):

no 05 06

M2 = -—-——-- 1 —— — T + —— . 3.19

Z V20p$202 ( + 48262 a 48262) ( )

And thus

_ (@0ng 48262 43%?

, 05 a6

= sm26zcos26z (1+m — aT+ 137—05).

Setting 52 = sin2 62 + 6.92 and only keeping terms up to first order in 6.92 we find

 

 

- 2 2
sm 6 cos 6 0S 06

5 2 = z z +— — T + ——
8 cos2 6; — sin2 6; ( 48262 a 43202

and hence

32 -— sin2 0 + Sin2 62 C082 9, + 05' aT + “6 (3 20)
— z cos2 62 — sin2 6;; 432c2 4353c2 ' '

Using this relation, all observables can be expressed to first order in S, T, 6, Ap and the

observable sin 62. Thus the theoretical tree-level prediction 0? for the observable 0,- can

be put into the following form:

01th = 059M + aiaS + biaT + cmd + diAp, (3.21)

where 025M depends on sin 63 and stands for the tree-level expression in the Standard

Model. Now we follow the procedure described in section 3.3.1 and perform the same

replacement as in eqn. (3.15): The tree—level prediction from the Standard Model has to be

replaced by the one-loop prediction (for example by using the program ZFITTER [1]):

0:}! = 051 + aiaS + biaT + 6206 + diAp. (3.22)

An appropriate set of observables 0,- is given in the appendix, table A2, for instance. The

difficult part is now the calculation of the factors a,, bi, c,- and di.
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Subsequently, one can use the X2-method to find the values for S, T, Ap and 6 which

fit the data best (actually it is also a matter of definition what a good fit is, but we shall not

worry about statistical subtleties too much here) and also the uncertainty of these values

for a given confidence level. Although the set of observables in table A.2 is referred to

by the LEP working group [6] as being convenient for fitting, since they only have small

correlations, one still has to take this correlation into account in the definition of the X2

function:

x2(s, T, Ap, 6) E Z (0§h(s, T, Ap, 6) — 0,) (62);1 (0§h(s, T, Ap, 6) — 0,) ,

H (3.23)

where

02 E aipz-jaj. (3.24)

Here a, are the 1-0 errors of the observables 0,- and pij is the correlation matrix, which

for example for the high energy observables in table A.2 can be found in [6]. In the case of

independent (uncorrelated) observables, the correlation matrix is equal to the unity matrix.

Minimizing x2 in S, T, Ap and 6 yields the mean values (S), (T), (Ap) and (6) for

which the X2-function possesses a minimum:

x3... 2 x2<<s>, (T). (A1). (6)). (3.25)

Since the 05" are linear in S, T, Ap and 6, the x2 function is a quadratic form in these

parameters and we can write

AX2(S, T, Ap, 6) a X2(S, T, Ap, 6) — X3,” (3.26)

s — (S)

= (s — (S), T — (T), Ap — (Ap), 6 — (6)) (62)—1 A7212»

6 — (6)

(3.27)

The a’z-matrix and the mean values together with Xgnin thus summarize the results of the

2
whole fitting procedure. Like the 02-matrix from above, 0’ can be split into a (four by
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four) correlation matrix p2]. and an error vector 0;:

I2 = I I I (3 28)

Since the diagonal elements of p’ equal one, the errors a, can be easily extracted from 0'.

We now would like to understand how to find regions in the parameter space which

correspond to certain confidence levels: Suppose X2 depends on M parameters (in our

case M = 4), and we allow V < M of those parameter to vary (meaning we fix M — r/

by some conditions), then every AX2 < C, where C is some positive number, defines

a u-dimensional region in our M-dimensional parameter space. Now the theory of X2-

distributions relates a given desired confidence level, e.g. 68 %, to a value of C which

clearly will be V dependent. A number of C-values for various confidence levels and dif-

ferent free parameters can be found at [16].

If we are just interested in bounds on our specific Topcolor model, we don’t have to be

that general. We can instead calculate the observables at tree-level in our model analogous

to the corresponding Standard Model calculation and just use the different coupling of

the Z boson to fermions from eqn. (2.51). Following the procedure discussed in section

3.3.1, we then express the deviation from the Standard Model prediction in terms of our

free parameters u’, cosa and cos d) to linear order in 2:2. We can then fix cos (1 using the

Pagels-Stokar formula, eqn. (3.18), and perform a X2-fit directly in our two left-over free

parameters x2 and cos (b. This is what we will do explicitly for the set of observables listed

in the appendix.

3.3.3 The Mass of the W Boson

The calculation of our first observable, the W mass, is straightforward. We just have to

plug (2.88) into (2.84) to get:

 

M2 cos4 6 cos2 a — cos2 ' 2

cos2 6W = —g/ = (:082 6g + 1:2 Z,( _ 2 ab) (3.29)

MZ cos2 6g — 8111 62



where we also made use of the fact that we are free to replace cos 6 by cos 6Z in the term

proportional to 2:2. We can also write this result as

2 29 2 _ 2 2

May =Mé’y2 1+ (3,) COS “COS a. 2608 ch) ,
it cos2 6Z—s1n 6Z

 

where we recognized cos2 6ZM% to be the Standard Model tree-level expression for MW:

Mg,2 = cos2 6ZM%. We now have to replace Mg, by the best Standard Model prediction

MOl using ZFITTER:

2 2 2 2

WV =Ma£2 (1+ (3)—fees 02(008 WW (’5) )
 

12’ cos2 6Z - sin2 6Z

or, to that order,

u!
(3.30)

 

2

1 (v )2 cos2 62 (cos2 a —- cos2 (2)2

0032 6g — sin2 62 .

MW = 613,5 (1+ -

Taking into account the experimental error of MW and fixing cos a as explained above,

we could now calculate an experimental lower and upper bound on cos2 (b for every fixed

u’. But thereby we would only optimize our parameters to fit this particular observable and

neglect all the others. We will therefore choose to calculate more observables and then do

a combined x2-fit of all observables.

3.3.4 The Z Decay

In this section we would like to calculate the deviations of the Standard Model Z decay

width. The Z-fermion interaction term in our theory can be cast into the same form as it

appears in the Standard Model:

£=pr7fl (QZLPL+9ZRPR) fa (331)

where PL and P3 are the projection operators

1+75

2 7

1_ ,,

PL: 27" and PR:  
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and 9ZL and gZR can be read off from eqn. (2.51). The Standard Model case is reproduced

for :1:2 —+ 0, which also means cos 6 —> cos 6Z- Since this is true we can start with the ex-

pression for the partial decay width in the Standard Model and simply replace the Standard

Model Z boson coupling with (2.51).

Thus the partial Z decay width has the same form as in the Standard Model

F(Z-—*ff)=(1,+92) (3.32)

and the only difference will be due to the 2:2 dependence of the Z coupling constant (2.51).

Note that we omitted the subscript Z of the coupling constants for notational simplification.

If we now define

, 6

93“ = ———————, (T3 —- sin2 62) ,

sm 6; cos 6,,

we can express the deviation from the Standard Model (which will be of order 2:2) as:

SM
5gL/R = gL/R — gL/R-

We also define

61‘ = r — PSI"

and thus can write

SM 51‘
P = F 1 +W (3.33)

which already has the desired form of eqn. (3.16). We now only need to calculate 6F/F5M,

which can easily be done by noting

6P _ 2g§M6gL+2ggM§gR

5111 _ SM 2 S)” 2

F (91. ) + (912 )

 
(3.34)

to first order in 2:2. Plugging in our expression for the Z coupling and expanding in first

order in x2 we finally find:

Fee = FSM [1 + 1:2 (1.1998 cos4 a — 0.8651 cos2 0 cos2 (:5 — 0.3347 cos4 6)] , (3.35)

for Z decaying to ée (or to flu, Tr, since our model is flavor universal).
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By summing over all Standard Model particles (leaving out the top quark to which the

Z can not decay) we can also calculate the total decay width:

[‘2 :2 Pg? [1 + 2:2 (1.5607 cos4 a — 1.503 cos2 01 cos2 45 + 1.3472 cos4 (b)] . (3.36)

This expression again has the required form to do the replacement (3.16) by using the

ZFITTER result given in table A.1 (this also takes into account the non-negligible phase

space factor in the case of the decay to T1):

FZ = 1"?!“ [1 + :132 (1.5607 cos4 a — 1.503 cos2 (1 cos2 <15 + 1.3472 cos4 (15)] . (3.37)

In addition to the total decay width I‘Z, experimentalist prefer to express their measure—

ments in terms of the following combinations of decay widths:

- the hadronic pole cross-section

 

_ 127T Peerhad

”had 2 2 P2 v

mz z

where

Phad E 2 Fch; (3.38)

(net

- the ratios

Re E Phad/Fee, R”, E Fhad/Pfllt and R4- 5 Phad/PTT,

which reduce to

RI E Phad/Pft’a

if lepton universality is assumed;

- and in the case of a decay to quark-antiquark pairs

Rq E Fati/Fhada e-g. Rb = I213/[had-
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3.3.5 Left/Right and Forward/Backward Asymmetries

Another set of strong constraints are due to measurements of the left/right and for-

ward/backward asymmetries.

Using the notation of ref. [6], we quickly review what is meant by and how it comes to

asymmetries. As we already saw in eqn. (3.31), the Z couples different to left- and right-

handed fermions. If we now consider a positron-electron collider like the SLC (Stanford

Linear Collider), cross sections for the process eé —> ff will depend largely on Z exchange

diagrams and therefore be dependent on the polarization of the initial electron and positron

beam. Due to the different coupling of the left and right-handed electrons and positrons to

the Z boson, the following measurable left/right and forward/backward asymmetries will

 

be non-zero:

0L — 0R 1

A E 3.39

L“ 0L + 0R (1161) ‘ )

AFB 2 91:113., (3.40)
0;: + 0B

where the capital letters L and R refer to the polarization of the initial electron beam (the

positron beam is assumed to be unpolarized) and the cross-sections for forward and back-

ward scattering relatively to the beam axis are denoted 0F and 03, respectively. Finally, P8

is the electron beam polarization (between minus one and zero for left-handed polarization

and between zero and one in the right-handed case).

In the case of Z decaying to 7?, we can additionally define the polarization of a Ti" final

state:

Ur—U]

7975
 (3.41)

a, + a] ’

where the lower-case letters 1 and r refer to the polarization of thefinal state T-lepton.

Without proof we just note (see ref. [6] for a derivation) the following relations which
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are valid in the Standard Model:

f _ 3

f _
ALR — Af (3.43)

pr = _-’4Ta (344)

where

2 2

_ gLf — 9m

Lf gar

Whereas the left/right Asymmetries ALR were directly measured by SLD (Stanford

Large Detector), the polarization ’PT and the forward/backward asymmetries were di-

rectly measured by LEP (Large Electron Positron Collider). LEP indirectly measured the

left/right asymmetries by assuming the validity of eqn. (3.42) and using the SLD measure-

ment of AER.

Using again the shifted Z boson coupling (2.51) and the relations (3.42-3.44) we can,

an analogy to the calculation of the partial Z decay widths, easily derive the correction

factors (1 + C(22)) for all measured asymmetries.

3.3.6 Combined Fit to the Calculated Observables

Now that we have calculated all the different observables in the last sections, we would like

to see how the experimental measurements of those observables constrain our parameter

space. We will therefore in this section use the experimental values for the flavor universal

case given in the appendix and the ZFITTER results for the Standard Model one-loop

predictions given in table A.l to perform a combined fit of all observables listed in the

appendix (flavor universal case) to the experimental data.

As mentioned earlier, all ZFITTER (Standard Model) predictions will depend on the

Higgs mass, which we would have to replace by the techni-p mass at the TeV-scale in our

model (see section 3.3). But since the Higgs mass dependence will be approximately log-

arithmic, we will not make a large mistake, if we take the Higgs mass input of ZFITTER
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to be 800 GeV. We choose the particular value of 800 GeV, because Barbieri et al. provide

a fit of the electroweak parameters for this Higgs mass and we would like to produce com-

parable results. We will also see to what extent our result changes when we use the much

larger Higgs of 1500 GeV which is closer to the techni-p mass we estimated via up-scaling

of QCD in section 1.4.

It is now convenient to define X2 as a function of cos2 (I) and :62 (cos a is not treated

as a free parameter, but fixed by eqn. (3.18)). Taking into account all correlations given in

the appendix, the x2 function is now defined exactly the way we showed it for the general

case in eqn. (3.23). Note that the fit is linear in 2:2, but due to the occurrence of cos4 ()5,

non-linear in cos2 ()5.

The search for the global minimum of the X2 function in the physically allowed region

of the two parameters (:62 Z 0 and 0 3 cos2 (b S 1) reveals that the minimum is actually on

the boundary at cos2 ()5 = 0 and $132 = 0.0037 corresponding to a x?“in = 15.76. For cos2 ()5

very near to the boundary cos2 q) = 0, we can neglect the cos4 (1) term in the x2 function

which of course also does not change the Xiznin value. Our fit can therefore be treated as

an approximately linear fit, although we will not explicitly set cos4 (15 = 0, which would

slightly alter the final upper bound on cos2 (15 (it would turn out to be a little smaller) if we

look at Ax2. This is important for the statistical interpretation of X12111), and AX2, since one

has to assume linearity in the fitting parameters to do so in a statistically well-defined way.

Fig. 3.5 summarizes the whole fitting procedure: For each observable the best fit result

and the pull, defined as the difference between the best fit value and the measurement in

units of the experimental uncertainty, is shown. Large pulls signal a large contribution to

2

Xmin'

The pulls are comparable to the SM fitting result which can be found in ref. [6]. Since

we have 13 observables and do a fit in two parameters, the degree of freedom (d.o.f.) is

(13 —— 2) and ngm/dof. = 1.43. This value should be near one, and the theory of X2

distributions relates this value to a probability in the following sense: Imagine a world

70



Experimental Value Fit Pull
 

r2: (24952100023) GeV 2.4982 GeV

chad: (41.54010037) nb 41.485 nb -

12.: 2076710025 20.747

A113: 00171100010 0.0159

MW: (80.403.10.029) GeV 80.406 GeV

P,= 01465100033 0.1460

A‘LR(SLD)= 01513100021 0.1460

Rb: 0216291000066 0.21580

RC: 0.1721100030 0.1722

Apr= 00992100016 0.1023 1

ACFB= 00707100035 0.0731

Ab“: 092310.020 0.9346

ACLR= 067010.027 0.6677    
0123

Figure 3.5. Comparison of the experimental values and the best fit prediction of our Topcolor model

corresponding to xfifin/dof. = 15.76/ (13 - 2) = 1.43 using a Higgs mass of 800 GeV. Also

shown is the pull of each measurement, which is defined as the difference between measurement

and expectation over the uncertainty of the measurement.

in which the model you consider is right, meaning experiments in this world could be

accurately described with this model. Then the above mentioned probability tells you how

likely it is to have a measurement with given uncertainty which gives a xgnin/dof bigger

than the one you found. For xfifin/dof = 1.43 this probability is 15.1%.

We would now like to compare this to the Standard Model fit. There is no obvious

way to do so. We will choose to fix all predictions of the SM (for the same 11 observables

we used in the other fit) to values calculated with ZFITTER with the input parameters

given in table A.7. We can then do a one parameter fit for the Standard Model treating the

Higgs mass as a free parameter which is just constrained to be greater than 115 GeV due

to direct searches. Of course the xii“ is then found for m}, = 115 GeV and we obtain
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xgnin/d.o.f.(SM) = 16.56/ (13 — 1) = 1.38. This value corresponds to a probability of

20.2%, which is slightly better, but comparable to the result of the above fit for our Topcolor

model.

It is remarkable that our electroweak fitting result is comparable to the SM, because the

plain SM fit with a Higgs mass of 800 GeV for the same 13 observables would give a very

bad fit with a Xgnin around 100. Repeating the fit for our Topcolor model for a Higgs mass

of 1500 GeV also gives a good fit: xfnm/dof = 16.09/ (13 — 2) = 1.46.

We now define Ax2 = x2 — Xgnin and use eqn. (2.34), to replace the free parameter

cos (b, which was convenient for the intervening calculations, again by the parameter [€13

n1

cos2 6) = —.

K1+01y

(3.46)

Working at a confidence level of 95.4% and with two free parameters, we find for example

in ref. [16], our restriction on the parameter space to be (compare to section 3.3.2)

AX2(I<.1,6’) < 6.17. (3.47)

Fig. 3.6 shows the result for two different Higgs masses: For each Higgs mass the

region outside the parabola shaped line is excluded at a confidence level of 95.4% (taking

into account all observables under the assumption of lepton flavor universality listed in the

appendix).

The lower bound we obtain on u’ is found to be approximately 3.5 TeV, with little

dependence on the chosen Higgs mass. This justifies our assumption that 2:2 = 122/112 << 1

in section 2.5. In fact, we find 2:2 S, 0.005 according to this constraint. We now also obtain

an upper bound on the scale of approximately 4.5 TeV, which seems to depend a little more

on the chosen Higgs mass. We finally observe that the allowed K1 region is bounded from

above: [$1 5, 1 x 10‘3.

At first sight it seems strange that we obtain an upper bound on the scale. Since the

Standard Model would be reproduced for u’ ——> 00, this means that the Standard Model

must not fit the data well. The reason for this can be seen in the (for the Standard Model)
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Figure 3.6. Restriction on our parameter space obtained from a fit of all Z pole observables listed

in the appendix for two different Higgs masses: m), = 800 GeV (solid line) and m), = 1500 GeV

(dashed line). For each Higgs mass the region outside the parabola shaped region is excluded at a

confidence level of 95.4%. '

unnaturally high Higgs mass. As is well known [6], the Standard Model fits the current data

best for a (already excluded) Higgs mass of approximately 80 GeV. If we used a lighter

Higgs mass of order 80 GeV, the upper bound on our scale would of course vanish.

To get the desired top condensate and at the same time avoiding bottom quark and tau

lepton condensates has led us in section 2.6 to the gap triangle in the K3411 plane (Fig. 2.4).

Moreover, as we discussed in section 2.7, the known top mass forces 1:1 and 153 to lie in

regions very near the left hand side of the gap triangle at scales of the order 1 TeV. We

have now found that 11' Z 3 TeV and also that K1 5 6 x 10'3. This means that in the NJL

model approximation we are now restricted to the far tip of the gap triangle at regions very

near the left hand side of the gap triangle.

Plugging in eqns. (2.31) for the Z’ and Coloron masses and the desired dynamical top

mass contribution from Topcolor, mt z 170 GeV, into the gauged version of eqn. (2.53)

would now enable us to calculate n3 for a given value of 101, u' and 12.4 In some sense we

 

“The p dependence is due to the fact that the Coloron mass appearing in the gap equation (2.53) is depen-

dent on p for fixed 11’.
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could thereby translate our constraint from above into the corresponding constraint in the

K3412] plane.

Keeping in mind that this translation depends strongly on the reliability of the NJL

model, we no longer speak of excluded regions at a certain confidence level. Instead we

will look again at the solutions to the gap equation (2.53) belonging to the bounds on the

scale we just found: The solid lines in Fig. 3.7 represent the tip of the gap triangle. The

6-"- 4..----1________________
 

 

  

U

0

l t
I

  
 
1.932 1.934 1.936 1.938 1.94

K3

Figure 3.7. The dashed horizontal line illustrates the upper bound on ’61 and the other lines are

solutions to the gap equation belonging to the scales u = 3 TeV (right) and u = 6 TeV (left) for

p = 0.5 (dashed lines) and p = 2 (dotted lines).

dashed horizontal line illustrates the upper bound on K1 and the other lines are solutions to

the gap equation belonging to the scales u = 3 TeV and u = 6 TeV for p = 0.5 (dashed

lines) and p = 2 (dotted lines). Increasing the scale means approaching the left hand side

of the triangle. So the naive use of the NJL model gap equation would restrict 8:3 to lie in

the narrow band between the dashed lines if we choose p = 0.5 and in between the dotted

lines if we choose p = 2. Solutions for the same scales for smaller p would lie even closer

to the left hand side of the triangle and the opposite is true for greater p. The corresponding

lines for p > 3 would even lie outside the right hand side of the triangle.

Although we should not at all rely on the exact values of K3 obtained this way, we can
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still conclude that for such small H1 values, the possible region for IE3 allowing a top quark

but not a bottom quark condensate is very narrow.

INTERPRETATION 1N TERMS OF PESKIN’S ELECTROWEAK PARAMETERS

The resulting bounds on the parameter space we obtained in this section are easy to un-

derstand in terms of the Peskin parametrization of the electroweak parameters which we

calculated in section 2.9:

GS = 41:2 (cos2 a — cos2 (15) cos2 ¢COS2 6

ozT = 2:2 (C034 01 — cos4 05)

Ap = 2:2 cos4 01.

Due to the fact that the best fit value for cos2 ()5 is zero, Ap z aT and S a: 0. Fixing cos2 a

by the Pagel-Stokar relation, eqn. (3.18), gives T m 0.4 for the best fit value 2:2 = 0.0037.

The experimental bounds on S and T are commonly illustrated as an ellipse in the S—T

plane for a reference Higgs mass5. Some of these plots6 also show how the Standard Model

contributions to these parameters become non-zero and leave the experimental bounds for

very large Higgs masses. For a Higgs mass of around 1 TeV the necessary value of T

(coming from physics beyond the Standard Model) to get back into the experimental al-

lowed region is ~ +0.4. See ref. [6].

3.3.7 Constraints From the Barbieri et al. Fit

We now would like to see how much the constraint on our parameter space gets altered if

we take into account the full set of available precision measurements which is included in

the fit of Barbieri et al. [2]. Barbieri et al. [2] use S, T, W and Y as electroweak parameters.

Their relation to the parameters S, T, Ap and 6 we used so far, was already given in eqns.

(2.78-2.81).

 

5Leaving aside Ap for the moment.

6See for example Fig. E2 in ref. [6].

75



The observables used by the electroweak fit of Barbieri et al. [2] are summarized in

table A.2. Additionally they included the data of LEP2 for the cross-sections for eé —>

65, pflflf, 2,, gr) cross sections at \/q— 1 189, 192, 196, 200, 202, 205, 207 GeV.

Continuing to use our notation from section 3.3.2, the result of the fit of Barbieri et al.

can be summarized by the correlation matrix (the order will always be S, T, Y and W)

1 0.68 0.65 —0.12

,_ 0.68 1 0.11 0.19

 

 

 

 

3.4

p 0.65 0.11 1 —059 ’ ( 8)

-0.12 0.19 —0.59 1

by the mean values (S), (T), (Y) and (W) and by the errors a; given in table 3.1.

Higgs mass 103(S) 103 (T) 103(Y) 103(W)

m), =115 GeV 0.0 :l:1.3 0.1 :l: 0.9 0.1 1.2 —0.4 :l: 0.8

m), = 800 GeV —0.9 :l:1.3 2.0 :l: 1.0 0.0 :t 1.2 —0.2 i 0.8

Table 3.1. The mean values and 1-0 errors from the Barbieri et al. fit [2].

By using eqn. (3.27) we thus obtain Ax2 as a function of S, T, Y and W:

§ — <§>

2 -- 2 -_ - z - _ _ ,. (2)-1T-<T>AX (S,T,Y,W) (s (s),T (T),Y (Y),W (14))(6 y_<Y>

W - (W)

(3.49)

where 0'2 was defined in (3.28).

Using the fact that in terms of order 2:2 we don’t have to distinguish between the differ-

ent definitions of the weak-mixing-angles, we can rewrite eqns. (2.78-2.8l):

 

 

A ,2 2 -

S = L2— C.032 02 M cos2 a (3.50)

11’ srn 62 I61 + O'y

A 2

T = 5,—2 C0820, (3.51)

W = 0, (3.52)

2 2 2
11 cos 6; H1

Y = 172 311120 (8 + ) ’ (3'53)2 1 aY
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where we also used cos2 (13 = 171—32? from eqn. (2.34), and a: = v/u’.

If we now again fix cos2 a by the Pagels-Stokar formula as described in section 3.3.1,

we can plug these equations into (3.49) to obtain AX2 as a function of the two free param-

eters KI and 11’.

Having two free parameters and working with a confidence level of 95%, we again

have7 (as in eqn. (3.47))

A

AX2 (5041,17) ,T(I.:1,u’) ,Y(I61,u’) ,W = 0) < 6.17, (3.54)

as a restriction on our parameter space.

Since the Higgs-replacing particle, the techni-p, can be estimated to have a mass at the

TeV-scale (see section 1.4), we will use the mean values and errors given for the Higgs

mass of 800 GeV in table 3.1. Fig. 3.8 shows the result: The region outside the solid,

parabola shaped line is excluded at a confidence level of 95%.

Fig. 3.8 also shows the constraint we calculated in the last section, but this time us-

ing exactly Barbieri’s data given in table A.2. Note that the LEP data Barbieri used was

preliminary at that time and that moreover the mean value for the top mass changed sig-

nificantly. Also the W mass measurement improved due to more recent Tevatron measure-

ments. Comparing the dashed line in Fig. 3.8 with the solid one in Fig. 3.6, it is nevertheless

remarkable that the slight change in the used data gives a notable change on the constraint

on our parameter space (it becomes slightly weaker).

Also remarkable is the fact that the additional LEP2 cross-sections and the low energy

precision data which are also included in the Barbieri et al. fit, slightly relaxes the constraint

we already found. This happens if the pulls of the additional included data are smaller than

the average pulls of the already included data. Another difference between our analysis

from the last section and the Barbieri fit is the different treatment of the radiative corrections

to the SM: Barbieri et al. did not use ZFITTER. Taking these differences into account, the

 

7Note that Ax2(S, T, Y, W) has again to be minimized when expressed in In and u’ and the minimum

has to be subtracted.
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two fits are remarkably consistent.

The whole analysis shows that the parameter space constraints are dependent on the

data we choose to include and also a little on the value we choose for the Higgs mass.

Nevertheless all fits (with little dependence on the Higgs mass) consistently show u’ ,2

3.5 TeV. The upper bound on the other hand has a stronger dependence on the Higgs mass

and we conclude u’ S, 5 — 6.5 TeV.

We should note that in this analysis we did not include the (small) contributions to

the electroweak parameters coming from Extended Technicolor. So the allowed parameter

region obtained here should be viewed as the largest possible.

For the implications of this constraint on allowed regions in the gap triangle in the 63-81

plane, there are no new insights compared to what we already concluded in section 3.3.6.

 

  
  

u’ [TeV]

Figure 3.8. 95% confidence level constraint from the full electroweak fit of Barbieri et al. [2] for

m), = 800 GeV (solid line). For comparison, the dashed line shows the constraint from last section,

but this time using exactly the data of Barbieri et al.
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THE Z’ MAss

It is now instructive to translate the constraint on the scale 11' into a constraint on the Z’

mass, using eqn. (2.31):

' 1

u’ = MZ, fl—. (3.55)
71 I61 + cry

The result is shown in Fig. 3.9. We observe that Z’ masses less than 2 GeV are excluded at

 1.75
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1
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Mz' [TeV]

Figure 3.9. Constraint from the electroweak fit of Barbieri et al. for m), = 800 GeV translated into

a constraint on the Z’ mass.

a confidence level of 95% when using a Higgs mass of 800 GeV. Due to our results from

section 3.3.6 we may expect that for a greater Higgs mass (which may be more appropriate,

since the techni-p meson has a mass at the TeV-scale) this bound relaxes a little. We do

not observe an upper bound for MZ’ since M2’ cc 1/{IE for Isl-values small compared

to ay z 0.01, as can be inferred from eqn. (2.31). Since the best fit value of K1 is zero,

experiment clearly favors a heavy Z’.

THE COLORON MAss

Finally let us also look at the Coloron mass. The result from the NJL model gap equations

was that K3 has to be approximately two and for K1 being small we have K3 z 1.9. Ex-
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arnining eqn. (2.31) for the Coloron mass as a function of K3 and the scale 11, we find that

in this region of I63 z 2, the mass is not much dependent on [$3. Fixing K3 to 163 z 2 and

allowing u’ to vary between four and six TeV, we can estimate the Coloron mass to lie

between 20 and 30 TeV, if we choose p = 1.
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Chapter 4

The Simmons and Popovic Topcolor Model

In this chapter we would like to briefly look at the Simmons and Popovic Topcolor assisted

Technicolor model. This model is exactly identically to our model, except for the fermion

gauge charge assignments: In the Simmons and Popovic model, the fermions are treated

flavor universal in the SU(3) sector, but not in the U(1) sector. Table 4.1 shows the gauge

charge assignments in this model and should be compared to table 2.1. The important dif-

 
 

 
SU(N)TC SU(3)1 SU(3)2 SU(2)W U(1)1 U(1)2

I 1 SM 1 SM 0 SM

II 1 SM 1 SM 0 SM

III I SM 1 SM SM 0
 

Table 4.1. Gauge charge assignments for fermions of I, II and III generation in the Simmons and

Popovic model. “SM” indicates assignment corresponding to the Standard Model. Compare to

table 2.1.

ference to the Topcolor model we considered so far is of course the flavor non-universal

U ( 1) sector. Due to this flavor-non-universality, we can not calculate the electroweak pa-

rameters S, T, . . .. Nevertheless, our derivation of the shift in the Z boson coupling in

section 2.5 was general enough to also cover this model: We simply have to use the general

expression for the Z coupling from eqn. (2.50):

8

9Z =W [T3 — Qsin2 6 — 9:2 (Y1 — sin2 61’) (cos2 a —- cos2 (15)] (4.1)

All other considerations, including the W mass shift, are independent of setting Y = Y1 in

the flavor universal case. Using the Z coupling of eqn. (4.1) and using the fermion charge
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assignments of table 4.1, we see that in the Simmons and Popovic model the corrections

to the Standard Model for third generation fermions are proportional to cos2 4) as was true

for all fermions in the Topcolor model we considered in the preceding chapters. On the

other hand, the first and second generation particles will result in a correction proportional

to sin2 45. This is all we need to know to do a combined fit to all 19 flavor universal

observables listed in Fig. 4.1 and in the appendix.

The resulting fit is very bad, with a sznin/d'o'f' = 48.5/ (19 — 2) = 2.9 for the best fit

values cos2 4) = 0 and x2 = 0.0015 (where we again searched for the global minimum just

in the physical region where 51:2 2 0 and 0 _<_ cos2 45 g 1 and fixed ft x 75 GeV). Fig. 4.1

illustrates the fitting result by again showing the pulls of each observable.

Since all LEP measurements are in compliance with the assumption of lepton universal-

ity, it is not surprising that a model with a flavor non-universal hypercharge sector is more

likely to run into problems than a universal one. The best fit value of cos2 45 = 0 forces

us to a region in the parameter space where sin2 45 is close to one. This results in large

contributions coming from corrections due to the first and second generation fermions. It

is likely that this spoils the fit.

We conclude that based on the preceding analysis, the Simmons and Popovic Topcolor

model seems to be ruled out. Of course we should note that we again did not take into

account implications of ETC (for example, the shift in the Z boson coupling due to ETC,

which also would depend on the particular ETC model under consideration).

The same arguing can be made for another Topcolor assisted Technicolor model which

treats both, the hypercharge sector and the Coloron sector flavor non-universal and was

proposed by Christopher Hill [10].

Without question, the bottom line seems to be that Topcolor assisted Technicolor mod-

els with flavor universal hypercharge sectors are more favorable.
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Experimental Value Fit Pull

 

 

 

  

r2: (24952100023) GeV 2.4894 GeV

6m: (4154110037) nb 41.4574 nb _-

Re: 2080410050 20.7466 -

R”: 2078510033 20.7468 -

11,: 2076410045 20.7501

At"FB = 00145100025 0.0166

A“1:B = 00169100013 0.0166

Arm: 00188100017 0.0158

ATLR= 0.1465i0.0033 0.1417 -

AeLR(SLD)= 01516100021 0.1493 -

A”LR(SLD)= 014210.015 0.1493

ATLR(SLD)= 013610.015 0.1417

MW: (8040310029) GeV 80.3035 GeV

Rb: 0216291000066 0.2160

RC: 01721100030 0.1722

Apr = 00992100016 0.1046 -

ACFB = 00707100035 0.07491

Ab“: 092310.020 0.9343

ACLR= 0.67010027 0.6693

0 1 2 3

Figure 4.1. Comparison of the experimental values and the best fit prediction of the flavor non-

universal Topcolor model corresponding to a X3616 /d.o.f. = 48.5/ (19 — 2) = 2.9 using a Higgs

mass of 800 GeV. Also shown is the pull of each measurement, which is defined as the difference

between measurement and expectation over the uncertainty of the measurement.

83



Chapter 5

Conclusions

Our analysis shows that the dominating constraints on Topcolor assisted Technicolor mod-

els come from electroweak precision measurements. In the case of the Simmons and

Popovic model with the flavor non-universal hypercharge sector, these constraints are

strong enough to make the model highly unsatisfactory.

In the case of the Topcolor model with the flavor universal hypercharge sector, we

are able to fit the electroweak data well. But we are forced to a rather high scale around

5 TeV, which, in the NJL model approximation, results in some fine tuning of the coupling

constants K] and K3, because they are forced to lie very close to their critical values in order

to be able to produce a dynamical top mass of around 170 GeV, which is much smaller than

the scale.

We were also able to estimate the gauge boson masses of the Z’ and the Coloron due to

our constraint from the LEP2 data. The Z’ mass MZI is bound to be MZ’ Z, 2 TeV. The

best fit value, though, would correspond to the limit MZI —’ 00. Since we are forced to

a rather large MZ’ and K1 being small, the contact interaction constraint we considered in

section 3.2 does not give us additional bounds on the Z’ mass. Analogously, the Coloron

mass was estimated to lie between 20 and 30 TeV due to electroweak constraints. This

is much heavier than the lower bound we found on the Coloron mass in section 3.1 from

the requirement to have sufficiently suppressed flavor changing neutral currents, which

naturally arise in every Topcolor model due to the non-flavor universal treatment of the
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third generation. We are thus able to fulfill all experimental bounds we checked.

One unsatisfactory feature of the model we discussed is the unspecified first symmetry

breaking at the scale 11. Of course, we do not want to introduce an elementary scalar

acquiring a non-zero vev like in the SM. After all, it was one of the main motivations

to introduce Technicolor to get rid of the elementary Higgs of the SM. Unfortunately the

scale 11 is so high that there is no obvious way to break that symmetry through a Technicolor

condensate which is assumed to form at a much lower scale of around 12 z 250 GeV.

In the future, with the LHC (Large Hadron Collider), there will be various more things

to look at. For example possible signatures of Z’ decaying to quarks or leptons. Of course,

a discovery of a Higgs particle, which couples like predicted by the SM would immediately

rule out (Topcolor assisted) Technicolor models like the one we considered here.

It would also be interesting to do one-loop calculations in this model like it has been

done for the three-site model in ref. [13] and to see whether the experimental bounds can

still be fulfilled.
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Appendix A

Experimental Data and SM Predictions Used In

Our Analysis

 

 

Observable MH = 800 GeV 114” = 1500 GeV
 

PZ [GeV]

chad [nb]

Table A.l. ZFITTER SM prediction for two different Higgs masses. For the asymmetries addition-

ally the ZFITTER based program SMATASY [12] was used. The ZFITTER and SMATASY input

parameters are given in table A.7.

2.488069

41.4881

20.715

20.715

20.721

0.01444

0.01444

0.01444

80.23222

0.1388

0.1388

0.1388

0.1388

0.2158

0.1722

0.9340

0.6642
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2.485958

41 .4887

20.71 18

20.7121

20.7589

0.0141 1

0.0144

0.0144

80.20057

0.1372

0.1372

0.1372

0.1372

0.2159

0.1722

0.9340

0.6635



I‘Z = (2.4952 3: 0.0023) GeV total Z width

(Thad = (41.540 3: 0.037) nb 66 hadronic cross section

R3 = 20.767 1 0025 I‘(Z —> hadrons)/1‘(z —» e+e-)

Ag.B = 0.01714 1 0.00095 Forward/Backward asymmetry in eé —> 66

MW = (80.426 3: 0.034) GeV pole W mass

79. = 0.1465 1 0.0032

AER = 0.1513 1 0.0021

Rb = 0.21644 i 0.00065

11, = 0.1718 1 0.0031

A}? = 0.099 1 0.0017

in; = 0.067 1 0.0026

A’iR = 0.922 1 0.02

43,, = 0.670 1 0.026

M3 = 91.1875 GeV

m,, > 114 GeV

GF = 1.16637 10-5 GeV’2

mt = (178.0 1 4.3) GeV

03(Mz) = 0.118 1 0.003

a;,,1(MZ) = 128.949 1 0.046

T polarization

Left/Right asymmetry in 66' --1 £6 (SLD)

F(Z —2 bB)/P(Z —> hadrons)

I‘(Z —> cE)/I’(Z —> hadrons)

Forward/Backward asymmetry in eé -—> 06

Forward/Backward asymmetry in eé —> of:

Left/Right asymmetry in eé —+ b6

Left/Right asymmetry in eé‘ —> Cc

pole Z mass

Higgs mass

Fermi constant for ,u decay

pole top mass

strong coupling

electromagnetic coupling

 

QW = ——72.83 1 0.49

Apv = (—160 1 27) 10-9

atomic parity violation in Cs

M¢ller scattering at Q2 = 0.026 GeV2

Table A.2. The high and low-energy precision data included in the Barbieri et al. fit [2]. Barbieri

et al. also used LEP2 measurements of the following cross-sections: eé -—+ eé, pfl, TT, 2,, qt} at

V? m 189, 192, 196, 200, 202, 205, 207 GeV.

 

 

Experimental Value F2 0had RE Alfi‘B

I‘Z = (2.4952 1 0.0023) GeV 1.000

chad = (41.5401 0.037) nb -0297 1.000

 

R) = 20.767 1 0.025

f _AFB _ 0.01711 0.0010

0.004 0.183 1.000

0.003 0.006 -0.056 1.000

 

Table A.3. Experimental values from [6], with corresponding correlation matrix. Assuming lepton

universality.
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Experimental Value I‘Z Uhad Re Rp RT (4)323 (4,1373 A7153
 

I‘Z = (2.4952 1 0.0023) GeV 1.000

ahad = (41.5411 0.037) -0297 1.000

Re 2 20.804 :t 0.050 -0.011 0.105 1.000

RI! = 20.785 :1: 0.033 0.008 0.131 0.069 1.000

R, = 20.764:l:0.045 0.006 0.092 0.046 0.069 1.000

CFB = 0.0145 i 0.0025 0.007 0.001 -0.371 0.001 0.003 1.000

APB = 0.0169:l:0.0013 0.002 0.003 0.020 0.012 0.001 -0.024 1.000

A}.B = 0.0188 :1: 0.0017 0.001 0.002 0.013 -0.003 0.009 -0.020 0.046 1.000

 

Table A.4. Experimental values from [6], with corresponding correlation matrix. Without lepton

universality.

 

 

 

Experimental Value 2R A’zR ER

1.12 = 0.1516 1 0.0021 1.000

A2,, = 0.142 1 0.015 0.038 1.000

AER = 0.136 1 0.015 0.033 0.007 1.000
 

Z _ALR _ 0.1513 1 0.0021

MW = (80.403 :1: 0.029) GeV

Pr = 0.1465 :1: 0.0033

 

 

Table A.5. Experimental values from [6] and [16]. The first left/right asymmetry values with and

without lepton universality were measured by SLD and are given in ref. [6]. The last asymmetry,

7”,, value was used in both fits and corresponds to direct LEP measurement of the T-polarization.

Compared to the W mass given in ref. [6], we use the more recent value (updated by Tevatron

measurements) given in ref. [16].

 

 

Experimental Value Rb RC A??? TB All}? AER

R), = 0.21629 1 0.00066 1.00

RC = 0.17211 0.0030 -0.18 1.00

4%,, = 00992100016 -0.10 0.04 1.00

453.3 = 0.0707 1 0.0035 0.07 -0.06 0.15 1.00

A’iR =092310020 -0.08 0.04 0.06 002 1.00

gR=067010027 0.04 -0.06 0.01 0.04 0.11 1.00

 

Table A.6. Experimental values from [6], with corresponding correlation matrix.
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as(Mz) = 0.1176 :1: 0.0020 strong coupling

Aagad(MZ) = 2.8040 hadronic vacuum polarization

a;,,1,(MZ) = 128.949 :t 0.046 electromagnetic coupling

0;: = (1.16637 :1: 0.00001) 10‘5 Fermi constant [GeV-2]

MZ = 91.1876 :1: 0.0021 GeV pole Z mass

mt = 174.2 i 3.3 GeV top quark mass

Table A.7. From ref. [16]: The high energy precision data used as input parameters in our analysis

(i.e. held fixed during fitting). Except for aem(Mz), these are also the ZFITTER input parameters.

The given value for the electromagnetic coupling constant at the Z-pole is calculated by ZFITTER

in dependence on Aaf’md.
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Appendix B

The Conjugate Representation

A representation R = exp (iaaTa) of the group SU(N), where T“ are the corresponding

hermitean group generators, applied to a vector 11) yields the infinitesimal transformation

47 —> (1 + iaaTa) 11). (B.1)

Now for each transformation generator T“, there is a generator (T“)* = (Ta)T belonging

to the associated conjugate representation, since

4* _. (1 — Ia“ (Ta)*) 41*. (13.2)

If there is a unitary transformation connecting these two sets of generators, the representa-

tion R is called real, otherwise equation (82) defines the conjugate representation of equal

dimension, denoted R.

It is now useful to define

41" 1 4,4,11,3' 1 It), and 12", 1 R3}. (8.3)

Then our transformations (BI) and (B2) read

64,. : +16“ (T“){ 6,-

_ . . (B4)

641’ = —ia“ (Ta);- 473,

where the hermicity of T“ was used: (T“)i’ = (Ta)’i E (Ta);
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