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ABSTRACT

VIBRATION SUPPRESSION IN SIMPLE TENSION-ALIGNED STRUCTURES

By

Tingli Cai

Tension-aligned structures have been proposed for space-based antenna applications that require

high degree of accuracy. This type of structures use compression members to impart tension on

the antenna, thus helping to maintain the shape and facilitate disturbance rejection. These struc-

tures can be very large and therefore sensitive to low-frequency excitations. In this study, two

control strategies are proposed for the purpose of vibration suppression. First, a semi-active con-

trol strategy for tension-aligned structures is proposed, based on the concept of stiffness variation

by sequential application and removal of constraints. The process funnels vibration energy from

low-frequency to high-frequency modes of the structure, where it is dissipated naturally due to

internal damping. In this strategy, two methods of stiffness variation were investigated, including:

1) variable stiffness hinges in the panels and 2) variable stiffness elastic bars connecting the panels

to the support structure. Two-dimensional and three-dimensional models were built to demon-

strate the effectiveness of the control strategy. The second control strategy proposed is an active

scheme which uses sensor feedback to do negative work on the system and to suppress vibration.

In particular, it employs a sliding mechanism where the constraint force is measured in real time

and this information is used as feedback to prescribe the motion of the slider in such a way that

the vibration energy is reduced from the structure continuously and directly. The investigation of

the sliding mechanism was performed numerically using the model of a nonlinear beam. Practical

issues of this control scheme have been considered and measures such as adding a low-pass filter

was taken to ease requirements on the control hardware. It has been shown in simulations that

these two control strategies are effective mechanisms to remove energy from a vibrating system.

To validate the control strategies, an experimental setup was built. A 3.66 meter long aluminum

beam was placed on a rigid bench with a tension device applied at one end. A belt-driven actuator



carried a slider, which moved axially along the surface of the beam. On the sliding interface, the

slider imposed a constraint on the beam to maintain zero transverse displacement. Rotation at the

sliding contact point, controlled by an electromagnetic brake, could be fixed instantaneously, or

allowed to vary freely. The slider was equipped with strain gauges and an encoder to measure

the constraint force from the beam. The sensor data was fed back and processed in real-time by

a control algorithm implemented on a DSP board. Different control strategy combinations have

been experimented on the system. Results showed that, with light material damping present in

the structure, the two control strategies effectively redistributed the vibration energy into the high-

frequency modes, where it was dissipated naturally and quickly.
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CHAPTER 1

INTRODUCTION TO TENSION-ALIGNED STRUCTURES

Large space structures are contemplated for use as space-based radars for imaging and moving ob-

ject identification and tracking. These radars consist of a large support structure and phased array

antennas attached to this structure. The complete system has to be designed so that it can be folded

into a compact volume for ease of transport, and so that the phased array antennas can maintain a

high degree of accuracy after deployment. A high degree of accuracy is difficult to achieve since

these structures are large and sensitive to disturbances that result in vibration. The structure can

be modelled and its deformations can be measured and corrected using sensors and actuators in

real time, but such systems are extremely challenging to engineer. This is because these structures

are designed with numerous and complex joints and mechanisms for folding that introduce nonlin-

earities such as slipping, backlash and deadband. Model-based control also requires development

and identification of a high-dimensional mathematical model that accounts for the nonlinearities

and the integration of significant control system hardware into the structure. Vibration suppres-

sion in large space structures is a challenging problem and a practical solution needs passive or

semi-active control, or an active control scheme using just few sensors and actuators.

To meet the precision requirements of space-based radars, tension-aligned structures have been

proposed by Mikulas et al. (2008) and Jones et al. (2008). Similar to a bow with a string, in a

tension-aligned structure, the array antennas are attached to the support structure via tensioners at

each end (see Fig.1.1); the support structure is used as a compression member to impart tension to

the array antennas pinned at each end. The tension in the antenna array helps maintain flatness but,

more importantly, increases the stiffness of the array, which is necessary for disturbance rejection

(Adler et al., 1998). Other benefits of tension-aligned structures include elimination of the high

dimensional accuracy requirements of the support structure, greater flexibility in design (since the

support structure and the array antennas can be separately packaged and deployed), and reduced
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effect of nonlinearities such as deadband and backlash (Jones et al., 2008); compensation for creep

and manufacturing tolerance build-up (Winslow, 1993); and increase in structural damping (Fang

& Lyons, 1996) which facilitates vibration suppression. The tension-aligned architecture is equally

well-suited for radar designs where the antennas are an array of panels or a flexible membrane

(Kemerley & Kiss, 2000; Jeon & Murphey, 2012; Footdale et al., 2012).

To investigate the feasibility of tension-aligned architectures, Jones et al. (2008), Jones et al.

(2007) studied the effect of tension on the stiffness of a large aperture antenna. Using the DARPA

ISAT1 as the representative platform, nonlinear finite-element methods were used to compute the

system frequencies with sensor surfaces ranging from gossamers to paneled radars. For a free-free

support structure, it was shown that it is not possible to find a tension/mass ratio combination that

yields a higher or even equivalent peak frequency to that of the structure. This implies that the

addition of the sensor surface will only reduce the fundamental frequency of the overall system.

This problem can be alleviated by introducing a load offset such that tension adds bending moments

on the support structure. However, a load offset increases the deformation of the support structure

Support Structure in Compression

Sensor Surface in Tension

Compression Support Truss

Tensioned Radar Array Panels

Figure 1.1 A tension-aligned structure comprised of a support structure and a sensor surface - taken
from Jones et al. Jones et al. (2008).

1Innovative Space-based radar Antenna Technology
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and the tension required to achieve the same fundamental frequency of ISAT is close to the buckling

load. To eliminate problems related to buckling and large deformation, Jones et al. (2008) proposed

to introduce intermediate connectors and guy-wires to provide counter-tension.

The tension-aligned architecture proposed by Jones et al. (2008) can be viewed as a passive

method for vibration suppression where the location of the intermediate connectors and internal

stress in the structure are optimized to attain the same level of structural stiffness as the ISAT

platform. This may not be sufficient for meeting the high accuracy requirements of space-based

radars since space structures such as the ISAT platform are large and prone to low-frequency

excitation. The tension required to achieve the desired level of stiffness is also high and may

not be suitable for long-term operation.

To address these challenges, two control strategies for tension-aligned structures are proposed

in this paper. Strategy 1 is based on the concept of stiffness variation. This method applies and re-

moves constraints cyclically such that vibration energy is funneled into the high-frequency modes

of the structure, where it can be dissipated quickly and naturally due to high rates of internal

damping. Strategy 2 employs a slider mechanism which applies moving loads on the surface of

the structure. There is a constraint force on the structure applied by the slider. Using this measured

constraint force as feedback, the motion of the slider is prescribed such that it does negative work

on the controlled structure and vibration therefore is suppressed. Both control strategies require

fewer sensors and actuators and eliminates the need for extensive computations based on a math-

ematical model of the structure, compared to traditional active control, which relies on accurate

measurement by sensors, careful compensation by actuators and detailed mathematical modelling

of the control system.

Several researchers (Onoda et al., 1991, 1992; Clark, 2000; Corr & Clark, 2001; Ramaratnam

& Jalili, 2006) have explored stiffness variation as a method for vibration suppression. In all these

works, variable-stiffness elements are placed in a state of high stiffness and energy is stored in

them. Once the stored energy reaches a maximum value, the stiffness of the element is switched

to a low value to dissipate energy. In the work of Diaz & Mukherjee (2006b, 2008); Issa et al.
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(2009), stiffness variation was achieved through application and removal of constraints; and energy

dissipation was accomplished through a targeted and purposeful energy redistribution from low-

frequency modes to high-frequency modes. This thesis extended those work to a simple tension-

aligned structure.

Sliding mechanism in the form of constraints in flexible structures has been investigated by

many researchers, especially in areas such as contact mechanics and flexible multibody dynamics,

for example in research by Barhorst (2004); Hong & Ren (2011). There are also studies where con-

straint forces are used to determine the states of the system Sakamoto & Park (2006). However, the

idea of directly manipulating the constraint force to reduce system energy has not been proposed.

Such an idea is developed in this thesis into a method that is implementable in tension-aligned

structures.

The plan of this thesis is as follows. Chapter 2 introduces the control strategy using stiffness

variation for application in multi-dof linear systems and define a “modal disparity index", a met-

ric that can be used to determine the efficacy of our control strategy. Both two-dimensional and

three-dimensional models are presented. Chapter 3 considers the sliding mechanism on a nonlin-

ear beam. After modelling the structure and solving for the constraint force, the control scheme

was formulated and verified numerically. Chapter 4 presents the experimental study of the two

proposed vibration suppression strategies. Chapter 5 summarizes the two methods in different

application condition and propose the work to be done as the next step.
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CHAPTER 2

VIBRATION SUPPRESSION THROUGH STIFFNESS VARIATION

2.1 A two-DOF illustrative example

Consider the two degree-of-freedom mass-spring-damper system in Fig.2.1. The two masses m1

and m2 are connected to fixed supports by springs of stiffness k1 and k2, and to each other by

the spring of time-varying stiffness k3(t). The displacements of the two masses are denoted by

x1 and x2 and the springs are undeformed when the masses are in their equilibrium configuration,

i.e., x1 = x2 = 0. We assume (k1/m1) 6= (k2/m2) such that the two masses have different natural

frequencies when k3(t) = 0. The equation of motion of the two degree-of-freedom system is given

below  m1 0

0 m2


 ẍ1

ẍ2

+
 k1 + k3(t) −k3(t)

−k3(t) k2 + k3(t)


 x1

x2

=

 0

0

 (2.1)

Now consider three cases where the stiffness k3(t) is chosen differently

Unconstrained : k3(t) = 0

Constrained : k3(t) = kr

Switched : k3(t) =

 0 if t ∈ [ti, ti+1)

kr if t ∈ [ti+1, ti+2)
, i = 0,2,4, · · · (2.2)

It is assumed that kr is large compared to k1 and k2, and times tn, n = 0,1,2, · · · , are chosen

such that x2(tn)− x1(tn) = 0. This ensures that no energy is removed from the system when the

m
1

m
2

k
1

k
3
(t) k

2

x
1

x
2

Figure 2.1 A two degree-of-freedom mass-spring-damper system.
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stiffness is switched from kr to 0, or added to the system when the stiffness is switched from 0 to

kr. Assuming modal damping with uniform damping ratio ζ , the equation of motion of the system

can be written in modal coordinates as follows: q̈1

q̈2

+2ζ

 Ω1(t) 0

0 Ω2(t)


 q̇1

q̇2

+
 Ω2

1(t) 0

0 Ω2
2(t)


 q1

q2

=

 0

0

 (2.3)

where q1 and q2 are the modal coordinates, and Ω j(t), j = 1,2, are the natural frequencies of the

system. For the three different cases, the natural frequencies are denoted as follows:

Unconstrained : Ω j(t) = ω j

Constrained : Ω j(t) = ω̄ j

Switched : Ω j(t) =

 ω j if t ∈ [ti, ti+1)

ω̄ j if t ∈ [ti+1, ti+2)
, i = 0,2,4, · · · (2.4)

where ω j =
√

k j/m j, j = 1,2. The expressions for ω̄ j are complicated and are not provided here.

Table 2.1 Parameters used in the 2-DOF simulations

m1 (kg) m2 (kg) k1 (N/m) k2 (N/m) kr (N/m) ζ

1.00 2.00 2.00 2.00 20000 0.001

Simulations were performed for the three cases discussed above, using parameters in Table

2.1 and the same set of initial conditions. The natural frequencies of the Unconstrained and Con-

strained systems were found to be

(ω1,ω2) = (1.4142,1.0000), (ω̄1, ω̄2) = (1.1547,1.7321×102) (2.5)

where the units are rad/s. One of the frequencies for the Constrained system was high relative to

the other natural frequencies. This frequency was associated with the relative motion of the two

masses, when they were connected by the stiff spring kr.

The simulation results are shown in Figs.2.2 and 2.3. The total energy and the displacements of

the Unconstrained and Constrained systems are shown in Fig.2.2. For the Unconstrained system,
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the total energy of the system decayed very slowly; only 10.5% was dissipated in 42.7 s. This is

because of low internal damping associated with low natural frequencies of the system. For the

Constrained system, the total energy decayed rapidly initially, but slowly thereafter; 35.9% was

dissipated in 42.7 s. One natural frequency of the Constrained system was high and rapid decay

of the energy associated with this mode contributed to the initial rapid decay of the total energy.

The displacements of the two masses of the Constrained system appeared to be identical. This

is because of small relative motion of the masses, a consequence of high stiffness of the spring

connecting them.

For both the Unconstrained and the Constrained systems in Fig.2.2, a small fraction of the

energy was dissipated. In contrast, the energy of the Switched system (see Fig.2.3) decayed sig-

nificantly faster; 83.4% was dissipated in 42.7 s. For the Switched system, the two masses were

initially unconstrained. They were connected (constrained) by the spring at t1 = 11.24 s, released

(unconstrained) at t2 = 21.25 s, and again connected at t3 = 32.70 s. As mentioned earlier, t1, t2

and t3 were chosen such that no energy was added to or subtracted from the system during the

process of application or removal of the constraint (stiffness switching). At t = t1 and t = t3, appli-
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Figure 2.2 Total energy and displacements of the Unconstrained system - (a), (b); Total energy and
displacements of the Constrained system - (c), (d)
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Figure 2.3 Switched system: (a) Total energy; (b) energy associated with the low-frequency
mode(s); (c) energy associated with the high-frequency mode; (d) displacements of the masses;
(e), (f) modal displacements. In all of these figures, “uc" and “c" denote the unconstrained and
constrained states of the system. A magnified view of the modal displacement is shown in the
constrained states.

cation of the constraint created a high-frequency mode and funneled energy into this mode, where

it was dissipated quickly; this can be verified from the energy plots of the low- and high-frequency

modes. As in the case of the Constrained system in Fig.2.2, the displacement plots of the two

masses for the Switched system appear to be identical when they were constrained by the spring.

The plots of the modal coordinates show discontinuities at the times of constraint application and

removal. This is because the modal coordinates have different functional descriptions in the con-

strained and unconstrained states. In the constrained state, the high-frequency mode had a small
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amplitude (q2 in Fig.2.3), but its energy content was significant. This energy decayed rapidly each

time after the system was switched from the unconstrained state to the constrained state. This

can be seen from the magnified views of q2 in the time interval [t1, t2], and again in the interval

[t3,42.7]. A comparison of the magnified views of q2 in the intervals [t1, t2] and [t3,42.7] also

confirms that switching resulted in funneling of energy into the high-frequency mode.

The example above illustrates that energy dissipation is faster in systems with switched stiff-

ness than in systems with constant stiffness in the presence of modal damping. The faster rate of

dissipation is not due to direct removal of energy by the action of switching, but due to funneling of

energy into the high-frequency modes of the system. The ease with which energy can be funneled

from the low-frequency modes to the high-frequency modes is discussed in the next section for a

general multi-degree-of-freedom linear system.

2.2 Stiffness variation in multi-DOF systems

Consider the N-DOF linear system

MẌ +K(t)X = 0 (2.6)

where X = (x1,x2, · · · ,xN)
T denotes the vector of generalized coordinates, M denotes the mass

matrix, and K(t) denotes the stiffness matrix. The stiffness matrix K(t) consists of a constant

stiffness matrix K0 and a time-varying stiffness matrix ∆K(t) as follows:

K(t) =K0 +∆K(t), ∆K(t) =

 0 if t ∈ [ti, ti+1)

Kr if t ∈ [ti+1, ti+2)
, i = 0,2,4, · · · (2.7)

where Kr is the change in the stiffness matrix due to the addition of springs connecting pairs of

generalized coordinates. In the simplest case where a single spring is used to connect a pair of

generalized coordinates xm and xn, the entries of Kr ∈ RN×N can be obtained from the Hessian of
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the additional strain energy (1/2)kr(xm− xn)
2

Kr(i, j) =


kr if (i, j) = (m,m) or (n,n)

−kr if (i, j) = (m,n) or (n,m)

0 otherwise

m 6= n (2.8)

where kr is the stiffness of the spring, which is large compared to the magnitude of the entries of

K0.

In Eq.(2.7), t j, j = 0,1,2, · · · , are chosen such that the change in stiffness does increase the total

energy of the system. This is assured by choosing the time t j when switching ∆K(t j) from 0 to Kr

(stiffness increase) such that all the relevant relative displacements are zero. In the simplest case

mentioned above, where a single spring is used, t j is chosen to switch ∆K(t j) from 0 to Kr (stiffness

increase) such that xm(t j)−xn(t j) = 0. When ∆K(t j) is switched from Kr to 0 (stiffness decrease),

t j can be arbitrary. In this process of stiffness decrease, there might be direct and instantaneous

loss of energy due to the fact that relative displacement is usually nonzero given arbitrary t j. This

direct energy loss only favorably reduces the energy of the system.

Let φi and µi, i = 1,2, . . . ,N, denote the linearly independent orthogonal mode shapes and the

corresponding modal coordinates in the unconstrained state. Similarly, let ψi and νi, i= 1,2, . . . ,N,

denote the linearly independent orthogonal mode shapes and the corresponding modal coordinates

in the constrained state. At the time of application of the constraint (∆K changes from 0 to Kr), the

generalized coordinates and their velocities can be expressed as follows:

X(ti+1) =

 ∑
N
i=1 µi(ti+1)φi = Φµ(ti+1)

∑
N
i=1 νi(ti+1)ψi = Ψν(ti+1)

i = 0,2,4, · · · (2.9)

Ẋ(ti+1) =

 ∑
N
i=1 µ̇i(ti+1)φi = Φµ̇(ti+1)

∑
N
i=1 ν̇i(ti+1)ψi = Ψν̇(ti+1)

i = 0,2,4, · · · (2.10)

where Φ = [φ1,φ2, . . . ,φN ] and Ψ = [ψ1,ψ2, . . . ,ψN ] are modal matrices in the unconstrained and

constrained states respectively. Using Eqs.(2.9) and (2.10), the transition of the system from the
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unconstrained state to the constrained state can be described by the relations

ν(ti+1) = Γµ(ti+1), ν̇(ti+1) = Γµ̇(ti+1), i = 0,2,4, · · · (2.11)

where Γ is the modal disparity matrix (Diaz & Mukherjee, 2006a; Issa et al., 2008), and is given

by the relation

Γ = Ψ
TMΦ (2.12)

The transition of the system from the constrained state to the unconstrained state can be similarly

described by the relations

µ(ti) = Γ
T

ν(ti), µ̇(ti) = Γ
T

ν̇(ti), i = 0,2,4, · · · (2.13)

The transformation matrix Γ is the identity matrix when Kr = 0, i.e., when no stiffness variation

is introduced. When Kr 6= 0, Γ(i, j) 6= 0 for some values of i and j, i 6= j. This implies that energy

will be transferred from the j-th mode of the unconstrained state to the i-th mode of the constrained

state, and vice versa. If the frequency of the i-th mode of the constrained state is much higher than

that of the j-th mode of the unconstrained state, the energy transferred from the low-frequency

mode to the high-frequency mode will be quickly dissipated. This follows from the assumption

Constrained

State

Unconstrained

State

Unconstrained

State

constraint

application

constraint

removal

HFM HFM HFM

LFM LFM LFM

one cycle of constraint application and removal

natural dissipation

due to internal damping

Figure 2.4 Vibration suppression through energy funneling from low-frequency modes (LFM) into
high-frequency modes (HFM).
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of the modal damping model with the uniform damping ratio. For the process to be repeated, the

system has to be switched back from the constrained state to the unconstrained state. To avoid

energy flow from the high-frequency modes in one state to the low-frequency modes in the other

state, the system should be held in each state sufficiently long time such that energy in the high-

frequency modes is dissipated. This strategy for vibration suppression is explained with the help

of Fig.2.4.

The success of vibration suppression using stiffness switching will depend on modal disparity

created by the change in stiffness. To quantify modal disparity, we define the metric

λ =
N

∑
i= j+1

N−1

∑
j=1

(i− j) |γi j | (2.14)

where γi j = Γ(i, j) is the (i, j)-th entry of the modal disparity matrix Γ. This metric is a weighted

sum of the projections of the low-frequency modes in the unconstrained state onto high-frequency

modes in the constrained state and the weights are the difference of the indices of the modes in

the two states. This metric will be used to determine better location of constraints in a simple

tension-aligned structure, modeled and simulated in the following subsections.

support structure

hinged panel array

assembled tension-sligned structure

planar elastica arch

Figure 2.5 A tension-aligned structure formed by connecting a support structure (in compression)
to an array of hinged panels (in tension).
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2.3 Model of a two-dimensional simple tension-aligned structure

In this subsection we present a finite-element model of a two-dimensional tension-aligned struc-

ture. The tension-aligned structure, shown in Fig.2.5, consists of a planar elastica arch support

structure in compression and a hinged panel array in tension. The planar elastica arch is initially a

straight slender rod; it is bent into its curved shape by eccentric end loads that maintain equilibrium

with the tension forces in the panels.

2.3.1 Nonlinear dynamic model of the support structure

The dynamic model of the elastica arch is reproduced from the work by Perkins (1990). The

elastica arch, shown in Fig.2.6, is assumed to be a slender rod of length L, held in static equilibrium

under the horizontal end-load f and moment f d, where d denotes the vertical eccentricity of the

end-load f . In a disturbed state, a point on the rod has a displacement of ~u(s, t), where s denotes

the arc length along the centerline of the static equilibrium shape, and t denotes time. ~u(s, t) can

be decomposed into its tangential component and normal components as follows:

~u(s, t) = ut(s, t) ε̂t +un(s, t) ε̂n

where ε̂t and ε̂n are unit vectors along the tangential and normal directions of the static equilibrium

shape, shown in Fig.2.6.

We follow Kirchhoff’s assumptions for rod deformation (Dill, 1992), which are (i) rod is lin-

early elastic, (ii) strains are small (although rotations may be large) and cross-sectional dimensions

X

Y

s
t

nθ
0

s = 0
s = L

f

f d

Figure 2.6 A planar elastica arch
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of the rod are small compared to its length, (iii) cross-sections remain plane, undistorted and nor-

mal to the axis of the rod, and (iv) the transverse stress and rotary inertia can be neglected. Under

these assumptions, the kinetic energy and the strain energy of the rod can be expressed as follows:

ΠT =
1
2

∫ L

0
ρ

[(
∂ut
∂ t

)2
+

(
∂un
∂ t

)2
]
ds (2.15)

ΠV =
1
2

∫ L

0

(
EIk2 +EAe2

)
ds (2.16)

where ρ , E, A and I are constants and denote the mass per unit length, Young’s modulus, cross-

sectional area, and area moment of inertia of the rod, respectively. In Eq.(2.16) k = k(s, t) and

e = e(s, t) are the curvature and the axial strain. The expression for k(s, t) is obtained from Love

(1944) and that of e(s, t) is obtained from Perkins & Mote (1987)

k = ks +
∂

∂ s

(
∂un
∂ s

+ ksut

)
(2.17)

e =
p

EA
=

ps
EA

+
∂ut
∂ s
− ksun +

1
2

[(
∂ut
∂ s
− ksun

)2
+

(
∂un
∂ s

+ ksut

)2
]

(2.18)

where p = p(s, t) is the axial force, and ps and ks are the static values of p and k respectively, in

the static equilibrium configuration.

The work done by external forces can be expressed as

Wnc = f (ut cosθ0 +un sinθ0)|s=0 + f d
(

∂un
∂ s

+ ksut

)∣∣∣∣s=L

s=0
(2.19)

where θ0 is the angle of inclination of the rod at s = 0, which will be determined later. Substituting

Eqs.(2.17) and (2.18) into Eq.(2.16), neglecting terms that have degree three and higher of variables

ut and un, and their spatial derivatives, and using Hamilton’s principle

δ

∫ t2

t1
(ΠT −ΠV +Wnc) dt = 0 (2.20)

we get the non-dimensional equations of motion in the normal and tangential directions Perkins

(1990)

− ∂ 3

∂S3

(
∂Un
∂S

+KUt

)
+

∂

∂S

[
P
(

∂Un
∂S

+KUt

)]
+K

(
P+

1
Ī

)(
∂Ut
∂S
−KUn

)
− ∂ 2K

∂S2 +PK =
∂ 2Un

∂T 2

(2.21)
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K

[
∂ 2

∂S2

(
∂Un
∂S

+KUt

)]
+

∂

∂S

[(
P+

1
Ī

)(
∂Ut
∂S
−KUn

)]
−KP

(
∂Un
∂S

+KUt

)
+K

∂K
∂S

+
∂P
∂S

=
∂ 2Ut

∂T 2

(2.22)

In the equations above, the non-dimensional variables are defined as follows:

S ,
s
L
, D ,

d
L

Ut ,
ut
L
, Un ,

un
L
, K , ksL

P ,
psL2

EI
, F ,

f L2

EI
, Ī ,

I
AL2 , T ,

t(
ρL4/EI

)1/2

(2.23)

Together with the equations of motion, the following boundary conditions are obtained from

Hamilton’s principle

{[
∂

∂S

(
∂Un
∂S

+KUt

)
+K−FD

]
δ

[
∂Un
∂S

]}
S=0

+

{[
− ∂

∂S

[
∂

∂S

(
∂Un
∂S

+KUt

)
+K

]
+P

(
∂Un
∂S

+KUt

)
+F sinθ0

]
δUn

}
S=0

+

{[
K
[

∂

∂S

(
∂Un
∂S

+KUt

)]
+K2 +

(
P+

1
Ī

)(
∂Ut
∂S
−KUn

)
+P−FDK +F cosθ0

]
δUt

}
S=0

+

{[
− ∂

∂S

(
∂Un
∂S

+KUt

)
−K +FD

]
δ

[
∂Un
∂S

]}
S=1

+

{[
∂

∂S

[
∂

∂S

(
∂Un
∂S

+KUt

)
+K

]
−P

(
∂Un
∂S

+KUt

)]
δUn

}
S=1

+

{[
−K

[
∂

∂S

(
∂Un
∂S

+KUt

)]
−K2−

(
P+

1
Ī

)(
∂Ut
∂S
−KUn

)
+P+FDK

]
δUt

}
S=1

= 0

(2.24)

2.3.2 Static equilibrium configuration of the support structure

The static equilibrium configuration of the elastica arch depends on the values of f and d, or

alternatively, on the non-dimensional variables F and D. For a tension-aligned structure, F and D

are design variables; the value of F will depend on the tension desired in the hinged panel array,

and the value of D will depend on the stiffness of the slender rod (elastica arch) and the difference

in lengths of the hinged panel array and the slender rod. Assuming that the values of F and D are
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provided, we determine the static equilibrium configuration by first substituting Ut = Un = 0 in

Eqs.(2.21) and (2.22). This yields the following equations:

−K′′+KP = 0 (2.25)

P′+KK′ = 0 (2.26)

where (.)′ denotes the derivative of (.) with respect to S. Substituting Ut = Un = 0 in Eq.(2.24),

and using the geometric boundary conditions:

δUn(S = 1) = 0, δUt(S = 1) = 0, δUn(S = 0) = tanθ0 .δUt(S = 0)

we obtain the following natural boundary conditions

K = FD at S = 0,1

F +Pcosθ0−K′ sinθ0 = 0 at S = 0
(2.27)

A closed-form solution to Eqs.(2.25), (2.26) and (2.27) involves elliptic integrals of the first kind

and can be found in Perkins (1990). The solutions K(S), P(S), and θ0 determine the equilibrium

configuration and the pre-stress in this configuration.

2.3.3 Linear dynamic model of the support structure

We use the Raleigh-Ritz method Rao (2007) to obtain the linear dynamic model of the elastica

arch about its static equilibrium configuration. To write the differential equations, we substitute

the equilibrium values of P = P(S) and K = K(S) obtained from the solutions of Eqs.(2.25), (2.26)

and (2.27) into Eqs.(2.17) and (2.18), which yields the non-dimensional linear vibration equations

We use the Raleigh-Ritz method Rao (2007) to obtain the linear dynamic model of the elastica

arch about its static equilibrium configuration. To write the differential equations, we substitute

the equilibrium values of P = P(S) and K = K(S) obtained from the solutions of Eqs.(2.25), (2.26)

and (2.27) into Eqs.(2.17) and (2.18), which yields the non-dimensional linear vibration equations

− ∂ 3

∂S3

(
∂Un
∂S

+KUt

)
+

∂

∂S

[
P
(

∂Un
∂S

+KUt

)]
+K

(
P+

1
Ī

)(
∂Ut
∂S
−KUn

)
=

∂ 2Un

∂T 2
(2.28)
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K

[
∂ 2

∂S2

(
∂Un
∂S

+KUt

)]
+

∂

∂S

[(
P+

1
Ī

)(
∂Ut
∂S
−KUn

)]
−KP

(
∂Un
∂S

+KUt

)
=

∂ 2Ut

∂T 2

(2.29)

To solve Eqs.(2.28) and (2.29), we need to go back to the energy form. To this end, we sub-

stitute the equilibrium values of P = P(S) and K = K(S) into the non-dimensional version of

Eqs.(2.17) and (2.18), and then substitute the results in the non-dimensional form of the kinetic

and strain energies in Eqs.(2.15) and (2.16). Neglecting terms that have degree three and higher

of variables Un and Ut and their spatial derivatives, we have the following expressions for the

non-dimensional kinetic and strain energies

Π̄V =
1
2

∫ 1

0


terms 1 and 2︷ ︸︸ ︷
K2 +P2Ī +

terms 3 and 4︷ ︸︸ ︷
2K

∂

∂S

(
∂Un
∂S

+KUt

)
+2P

(
∂Ut
∂S
−KUn

)

+

[
∂

∂S

(
∂Un
∂S

+KUt

)]2
+

(
P+

1
Ī

)(
∂Ut
∂S
−KUn

)2

+ P
(

∂Un
∂S

+KUt

)2
}

dS (2.30)

Π̄T =
1
2

∫ 1

0


(

∂ 2Un

∂T 2

)2

+

(
∂ 2Ut

∂T 2

)2
 dS (2.31)

Note that Π̄V and Π̄T are related to ΠV and ΠT , respectively, by the relations

Π̄V =
L

EI
ΠT , Π̄T =

L
EI

ΠT

In Eq.(2.30), terms 1 and 2 of the integrand are functions of S alone, and not a function of time.

The same is true for terms 3 and 4 since a variation of the integral of these terms can be shown to

be zero. The first four terms of Eq.(2.30) therefore result in constant strain energy, which does not

contribute to the vibration of the system.

We assume Un and Ut to be of the form

Un(S,T ) =Vn(S)eiωT , Ut(S,T ) =Vt(S)eiωT (2.32)
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where Vn(S) and Vt(S) are the mode shapes. The mode shapes are discretized as follows:

Vn(S) = ∑
i

Wn,i(S)Yi =Wn(S) ·Y (2.33)

Vt(S) = ∑
i

Wt,i(S)Zi =Wt(S) ·Z (2.34)

where Wn(S) and Wt(S) are vectors of known shape functions. They are constructed using piece-

wise polynomials (cubic and linear respectively), standard in finite element discretizations, with

discontinuities at nodes. Y and Z are vectors of nodal degrees of freedom (see Eq.(2.38) below)

associated with Vn and Vt . Substituting Eqs.(2.32), (2.33) and (2.34) into Eqs.(2.30) and (2.31), we

rewrite the non-dimensional kinetic and strain energies as follows:

Π̄V =
ei2ωT

2

[
Y T ZT

]
KA

 Y

Z

+Const (2.35)

Π̄T =
ei2ωT

2

(
−ω

2
)[

Y T ZT
]
MA

 Y

Z

 (2.36)

where

Const =
1
2

∫ 1

0

{
K2 +P2Ī +2K

∂

∂S

(
∂Un
∂S

+KUt

)
+2P

(
∂Ut
∂S
−KUn

)}
dS (2.37)

is the constant strain energy associated with the static equilibrium configuration, discussed before.

The mass and stiffness matrices MA and KA of the elastica arch (support structure) are associated

with the generalized coordinate XA

XA = eiωT
[

Y T ... ZT
]T

=

[
u`n,θ

`
A, · · · ,u

i
n,θ

i
A, · · · ,u

r
n,θ

r
A

... u`t , · · · ,ui
t , · · · ,ur

t

]T
(2.38)

where un and ut are the translational degrees-of-freedom and θA is the rotational degree-of-freedom

of each node, and `, r and i denote the left end-node, right end-node and i-th node, respectively, of
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the elastica arch. Note that elements of Y and Z need to be consistent with the geometric boundary

conditions

Vn(S = 1) = 0, Vt(S = 1) = 0, Vn(S = 0) = tanθ0 .Vt(S = 0)

The above boundary conditions will be changed when the elastica arch is assembled with the

hinged panel array.

2.3.4 Hinged panel array model

The array of hinged panels is shown in Fig.2.7. It was modeled using a standard finite element

method. We used two-dimensional two-node frame elements with three degrees of freedom at

each node: two translational and one rotational degrees of freedom. A geometric stiffness matrix

was added to the standard frame stiffness matrix to model the effect of tension f . A hinge between

two panels is treated as a node in the finite element model. The left and right elements of the hinge

node have independent rotations but have common translations. The degrees-of-freedom of the

hinged panel array are denoted by

XP =

x`,y`,θ `
P, · · · , xk,yk,θ k

P︸ ︷︷ ︸
node k on panel array

, xk+1,yk+1,θ k+1
P︸ ︷︷ ︸

node (k+1) on panel array

· · · ,xr,yr,θ r
P


T

(2.39)

where x and y are the translational degrees-of-freedom and θP is the rotational degree-of-freedom

of each node, and `, r and k denote the left end-node, right end-node and k-th node, respectively,

of the hinged panel array. For the generalized coordinates XP, the mass and stiffness matrices are

assembled as MP and KP.

The hinged panel array is then assembled with the elastica arch by connecting their ends to-

gether using pin joints. In the modelling, that is to assemble MA with MP and assemble KA with

KP. After assembly, the end nodes of the two substructures share translations in the plane but

maintain independent rotational degrees of freedom.
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f f

Figure 2.7 The array of hinged panels

2.3.5 Methods of stiffness variation

Stiffness variation described by Eq.(2.7) is realized in the assembled tension-aligned structure by

two methods. These two methods are depicted in Fig.2.8 and are described below:

(A) The rotations of two adjacent panels at their common hinge, θ k
P and θ

k+1
P , are connected by a

rotational spring of time-varying stiffness.

(B) Node i on the elastica arch and node j on the panel array are connected by a translational

spring of time-varying stiffness.

Method (A) can be implemented by placing an electromagnetic brake at the hinge of the adjacent

panels. Turning on the brake will prevent relative rotation between the adjacent panels and will be

equivalent to constraining the degrees of freedom θ k
P and θ

k+1
P by a rotational spring of very high

stiffness. Turning off the brake will release the degrees of freedom and will be equivalent to setting

the spring stiffness to zero. Method (B) can be implemented by connecting and disconnecting an

elastic bar between a point on the arch and a point on the panel. These two points will be chosen

to coincide with nodes of the finite element model for the purpose of simulation.

θ
P

k+1

rotational spring
at hinge

node k

hinged panel array

elastica arch

node i

node j

(A) (B)

θ
P

k

u
t

i

u
n

i

y
 

j

x
 

j

Figure 2.8 Stiffness variation in the tension-aligned structure is realized using two methods: (A)
and (B); these are described in section 3.4.
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The stiffness of the tension-aligned structure can be varied using multiple springs of the type

described in method (A) and/or method (B). Since each of these springs can be in one of two

states, the tension-aligned structure will have multiple stiffness states. In the next section, where

we present simulation results, the stiffness of the structure will be switched cyclically between the

lowest stiffness state and the highest stiffness state via intermediate stiffness states. The lowest

and highest stiffness states are defined as the states with the lowest and the highest fundamental

frequency.

2.3.6 Numerical simulation

The material and geometric properties of the tension-aligned structure are provided in Table 2.2.

The structure is made of aluminum and the damping ratio of all modes is assumed to be ζ = 0.001.

The panel array is comprised of eight panels of dimensions Lp×b×h; these dimensions are shown

in Fig.2.9. Each panel is modelled using 10 beam elements. The support structure (elastica arch)

is initially a straight rod of radius 0.04 m and length ≈ 8.00 m. It is modelled using 80 elements.

The eccentricity of the load applied to the support structure is 0.008 m. The tension in the hinged

panel array was assumed to be 1000 N. This is less than 5% of the buckling load of the straight rod

with free-free boundary conditions. In this subsection, we simulate the behavior of the structure

without control and the structure controlled using two different methods of stiffness variation.

We take an initial condition where the second joint of the hinged panel array (see Fig.2.9) was

displaced vertically by 0.01 m (1% of the length of the panel array) and released. The first 25

h
b

side view

y
1

y
4

y
7

J
1

J
3

J
4

J
6 L

p

Figure 2.9 The eight-panel tension-aligned structure used in simulations.
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Table 2.2 Properties of Simulated Tension-Aligned Structure

Material Aluminum
Young’s modulus E 69×109 Pa
Density ρ̄ 2700 kg/m3

Damping ratio ζ 0.001
Panel number 8
Panel length Lp 1.000 m
Panel area b×h 0.500 m × 0.015 m
Radius of support rod r 0.040 m
Length of support rod L 8.000 m approx.
Eccentricity of connection d 0.008 m
Tension f 1000 N

modes of the structure were simulated; these do not include the rigid-body modes. The energy of

the tension-aligned structure is shown in Fig.2.10 for three different cases, as described below:

1. Unconstrained structure (no control) undergoing free vibration,

2. Constrained structure (no control) with high-stiffness rotational spring in joints J1, J3, J4

and J6 - see Fig.2.9. Using method (A) of stiffness variation, the stiffness of the rotational

springs is activated when the adjacent panels are aligned. The rotational springs are activated

at the earliest possible opportunity in a sequential manner and are kept in their high stiffness

state.

3. Controlled structure with switched stiffness using method (A). The high-stiffness rotational

springs in joints J1, J3, J4 and J6 are activated sequentially when their adjacent panels are

aligned and their stiffness are then set to zero simultaneously. The process is repeated 92

times in the simulation period of 180 sec.

It is clear from Fig.2.10 that the energies of the unconstrained structure and the constrained struc-

ture decay slowly compared to the structure with switched stiffness. After 180 sec, the uncon-

strained structure and the constrained structure have≈ 22.5% of their initial energy left; in contrast,

the structure with switched stiffness has ≈ 0.4% of its initial energy left. Although vibration en-
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ergy is dissipated through internal damping in all three cases, the structure with switched stiffness

has a higher rate of energy dissipation since it effectively funnels energy from the low-frequency

modes to the high-frequency modes.

For the structure with switched stiffness, the joints are released simultaneously, not sequen-

tially, to reduce the time required for each cycle of constraint application and removal. In simu-

lations, where high-stiffness springs are used to constrain the joints, simultaneous release of the

joints causes residual energy stored in the springs to vanish. This discontinuous change in the en-

ergy is not the main mechanism of energy dissipation. An evaluation of this energy over all cycles

indicates that it does not exceed 0.1% of the total energy at its initial level. This means the bulk

of the energy is dissipated due to energy transfer from low-frequency modes to high-frequency

modes. In practical implementation (Issa et al., 2008), where electromagnetic brakes may be used

to constrain the joints, release of the brakes will not result in direct loss of energy (since brakes

do not store energy) but facilitate energy transfer to the high-frequency modes where they will be

dissipated quickly.
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Figure 2.10 Plot of energy for the three cases discussed in Section 4.2.

The rates of energy decay of the unconstrained structure and the constrained structure are al-

most identical. Since the structure has many degrees-of-freedom and activating the springs in

four joints only makes it marginally stiffer than the unconstrained structure. This can be verified

from Table 2.3, which shows the first six natural frequencies of the unconstrained and constrained
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structures.

Table 2.3 First six natural frequencies of the unconstrained and the constrained tension-aligned
structure in rad/s.

Unconstrained
ω1 ω2 ω3 ω4 ω5 ω6

3.820 6.999 9.129 13.144 15.859 20.213

Constrained
ω̄1 ω̄2 ω̄3 ω̄4 ω̄5 ω̄6

3.996 7.502 11.096 28.042 37.875 71.666

The structure with switched stiffness, where stiffness is varied using method (A), has a faster

rate of energy decay than the uncontrolled (unconstrained and constrained) structures.

In order to further improve the efficiency of the control using switched stiffness, we need to

investigate different methods of stiffness variation. Applying methods (A) and (B), again using

25 modes, the behavior of the structure was simulated for the same initial condition that was used

in the previous case. The energy of the tension-aligned structure is shown in Fig.2.11 for the

following three cases:

1. Unconstrained structure undergoing free vibration

2. Structure with switched stiffness using method (A). The high-stiffness rotational springs in

joints J1, J3, J4 and J6 are activated sequentially when their adjacent panels are aligned and

their stiffness are then set to zero simultaneously. The process is repeated 92 times within

the simulation period of 180 sec.

3. Structure with switched stiffness using methods (A) and (B). The high-stiffness rotational

springs in joints J1, J3, and J4 are activated sequentially when their adjacent panels are

aligned. This is followed by connecting an elastic bar (high-stiffness translational spring)

between a point on the elastica arch and a point on the panel array (see Fig.2.9) in a manner

such that no energy is added to the structure. The stiffness of all four springs are then set to

zero simultaneously. The process is repeated 105 times within the simulation period of 5180

sec.
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It is clear from Fig.2.11 that the energy of the uncontrolled structure decays slowly compared to

the structure with switched stiffness. After 180 sec, the uncontrolled structure has ≈ 22.5% of its

initial energy left; in contrast, the structure with switched stiffness using method (A) has ≈ 0.4%

of its initial energy left. For vibration suppression to ≈ 0.4% energy level, methods (A) and (B)

combined requires 76 sec as compared to 180 sec required by method (A). Accordingly, for the

case of methods (A) and (B) combined, the transverse displacements of three points on the hinged

panel array Fig.2.12, which clearly shows the suppression of vibration.
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Figure 2.11 Plot of energy for the three cases simulated.

The efficiency of vibration suppression using stiffness variation can be much improved by com-

bining methods (A) and (B). This improvement in effectiveness can be understood by examining

the modal disparity matrices for the two cases and comparing their modal disparity indices. The

modal disparity indices for these two cases were computed as

λA = 22.15, λAB = 40.48 (2.40)

Since λAB is greater than λA, stiffness variation combining methods (A) and (B) is more effec-

tive than method (A) in transferring energy from the low-frequency modes to the high-frequency

modes. Modal disparity proves to be a effective measure to evaluate the magnitude of stiffness

variation for the purpose of vibration suppression.
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Figure 2.12 Plots of the transverse displacements of three points on the hinged panel array (see
Fig.2.9), in the case of methods (A) and (B) combined.

2.4 Model of a three-dimensional tension-aligned structure

Figure 2.13 Overview of the tension-aligned three-dimensional structure. 8 panels are connected
using 7 hinges and supported by a truss structure.

A three-dimensional model was built to verified the effectiveness of the stiffness variation

method in a more realistic structure. This model takes the design data of the truss structure from
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the ISAT project and we set all material as aluminum. 17 truss cells were built. Each cell has the

dimension of 0.5 m and the truss structure has the total length of 8.5 m. The truss functions as a

support structure and provides tension for the hinged panel array where the antenna is mounted.

There are 8 panels hinged to form an array and each panel has the dimension of 1.00 m×0.50 m×

0.01 m. The overview of structure is shown in Fig.2.13. The combined structure is clamped at

one end and free at another. The tension level is set to be 200 N. The geometry of the structure is

depicted in Fig.2.14.

Figure 2.14 Geometry of the three-dimensional structure.

ANSYS was used for the finite element modelling. The truss structure was modelled using

link elements that have two nodes and three degrees of freedom at each node. The plates were

modelled using shell elements that have four nodes and six degrees of freedom at each node. The

total number of DOF is 648, and 25 modes were used in the dynamic simulation.

Only method (A) was used in this model for the application of stiffness variation. The control

logic was similar to the two-dimensional model. Results of vibration suppression were very con-

sistent, as shown in Fig.2.15. When four hinges were used, the energy plot resembles the results

of the two-dimensional model. As the number of controlled hinges increased, vibration suppres-

sion became more efficient. This is because the magnitude of the modal disparity increases as

the number of controlled hinges increases. In all cases of controlled hinges used, stiffness varia-

tions as a control method has shown its efficacy in vibration suppression in the three-dimensional

tension-aligned structure model.
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Figure 2.15 Plot of energy for cases of controlling different number of joints.
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CHAPTER 3

VIBRATION SUPPRESSION USING A SLIDING MECHANISM

3.1 Sliding mechanism description

Sliding mechanism in the form of constraints in flexible structures has been investigated by many

researchers, especially in areas such as contact mechanics (Popov, 2010; Fischer-Cripps, 2007)

and flexible multibody dynamics (Bauchau, 2010; Wittbrodt, 2006). A good example that has

been studied frequently is the quick return mechanism (Barhorst, 2004) where an inverted slider

crank is connected with a flexible follower. Usually Hamilton’s principle is used together with

Lagrange multipliers to formulate the equations of motion of the system. Constraint forces can be

found by solving for the Lagrange multipliers. Finite element methods are very powerful tools for

numerical simulations of these systems, where Arbitrary Lagrange-Euler (ALE) descriptions are

usually needed to allow finite element nodes to move in the material coordinate system (Hong &

Ren, 2011).

The dynamics of constrained systems, such as the sliding constraint discussed above, are usu-

ally described by Differential Algebraic Equations (DAE) in order to obtain the constraint forces

and to solve for the system states. The idea of controlling the motion of a sliding constraint in

a flexible structure for the purpose of vibration suppression is new and has not been explored in

the literature. This study considers a simple structure of a nonlinear beam with pinned-pinned

boundary conditions and a sliding constraint which is frictionless. Assuming that the constraint

force could be measured, a straightforward control strategy is developed to do negative work on

the system and suppress the vibration energy of the beam. A mathematical model of a nonlinear

beam will be presented in the following section. A simple feedback control scheme for the purpose

of vibration suppression will be presented as well. Then a modified control design that reduces the

bandwidth requirement of the actuator will also be introduced.
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3.2 Equations of motion for a nonlinear beam with a fixed slider

Similar to Section 2.3, we derive the planar vibration model of the nonlinear beam following the

work by Perkins (1990) on the elastica arch. Consider a slender beam shown in Fig.3.1, held in

equilibrium under horizontal end load f , where f can be either tensile or compressive yet less

than the buckling load. The beam is initially straight and keeps being straight with f applied.

It is measured to have length L under f . Both ends of the beam are subsequently pinned to the

ground; this creates pre-stress in the beam. A frictionless slider is assumed to constrain the motion

of the beam; its location is fixed in space that initially coincides with the midpoint of the beam.

The slider restricts the position of the material point on the beam in contact with it, but does not

restrict the slope of the beam. Since the slider is fixed and does not move with the beam, material

can flow through it. A point Q on the beam instantaneously in contact with the constraint can be

described using material coordinate s= sq, where coordinate s is measured in the initial equilibrium

configuration using Lagrangian description (material coordinate). Due to a disturbance, the beam

starts to deform. A given point on the beam has displacement of ~u(s, t), where t denotes time.

~u(s, t) can be decomposed into an axial component ~ut(s, t) which is always in the X-direction

and a transverse component ~un(s, t), which is always in the Y-direction. Note that two sets of

coordinates are used here, namely the material coordinate system s and the X-Y frame.

s

Sliding 

Constraint

L

Y

X

qs

Q

u
t

u(s,t)
u

n

u(s
q 
,t)

Figure 3.1 A pinned-pinned beam with a sliding constraint.
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The sliding constraints can be described as

Cx = ut(s = sq, t)+ sq(t)−L/2 = 0 (3.1)

Cy = un(s = sq, t) = 0 (3.2)

where Eq (3.1) states that the material point Q in contact with the slider is initially measured as sq

in the initial equilibrium configuration, and that point Q has an axial displacement of ut in order to

keep in contact with the slider; Eq.(3.2) states that any material point in contact with the constraint

should never have transverse motion.

We use Kirchhoff’s assumptions for beam deformation (Dill, 1992). (i) The beam is linearly

elastic. (ii) Strains are small (although accumulated rotations may be large), and the cross-sectional

dimensions of the beam are small compared to its length. (iii) Cross-sections remain planar, undis-

torted and normal to the axis of the beam. (iv) The transverse stress and rotary inertia are negli-

gible. In light of these assumptions, with the consideration that the beam remains straight in its

equilibrium configuration, the nonlinear axial strain can be written as Perkins & Mote (1987)

e =− f/EA+
∂ut
∂ s

+
1
2

[(
∂ut
∂ s

)2
+

(
∂un
∂ s

)2
]

(3.3)

The curvature k can be expressed as in Love (1944)

k =
∂ 2un

∂ s2 (3.4)

where A, E, and I denote the cross-sectional area, Young’s modulus, and area moment of iner-

tia of the beam respectively. The virtual work done by internal elastic forces due to any virtual

deformation can be written as

∫
Ω

σδ [ε]dΩ =
∫ L

0
EAeδ [e]ds+

∫ L

0
EIkδ [k]ds (3.5)

where σ and ε represent general stress and strain respectively. Ω is the domain of interest, which

includes all material points on the beam.
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We use the principle of virtual displacement and D’Alembert’s principle, together with La-

grange multipliers to describe the dynamics of the beam in the following form:∫
Ω

σδ [ε]+ (−P+ρü) ·δ [u]dΩ = δ [λ ·C] (3.6)

where vector P is the external force, u is the displacement field, (̇) is the derivative with respect

to time t, λ is a vector of Lagrange multipliers, and C is the vector of constraint expressions. The

term on the right hand side of Eq.(3.6) can be expanded as

λ ·C = λxCx +λyCy (3.7)

where the expressions for Cx and Cy are given in Eqs.(3.1) and (3.2). Since Lagrange multipliers

have the physical interpretations of constraint forces, λx and λy represent the constraint forces in

axial and transverse directions, or X- and Y-directions respectively.

Equation (3.6) states that the beam is in dynamic equilibrium if the external virtual work done

by the applied forces, including the constraint forces, is equal to the internal virtual work done by

the forces due to any virtual deformation that satisfies the kinematic boundary conditions. Here,

the internal virtual work is extended with an inertial term using D’Alembert’s principle. The

kinematic boundary conditions for constraints are included on the right hand side of the equation.

These constraint conditions described by Eqs.(3.1) and (3.2) could be recovered if collecting the

variations of Lagrange multipliers.

In our problem, P will only be used in setting up the static problem to create the initial condi-

tion. As far as the dynamic problem is in concern, we simply set external forces to be zero

P = 0 (3.8)

Substituting Eqs.(3.3) and (3.4) into Eq.(3.5), then substituting the resulting equation together

with Eqs.(3.1), (3.2), (3.7) and (3.8) into Eq.(3.6), and using the following non-dimensional quan-

tities:
S ,

s
L
, SQ ,

sq

L
, Ut ,

ut
L
, Un ,

un
L
, K , kL

F ,
f L2

EI
, Ī ,

I
AL2 , T ,

t(
ρL4/EI

)1/2
, Λ ,

λL2

EI

(3.9)
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we get the energy form of the equations of motion∫ 1

0
Ünδ [Un]dS+

∫ 1

0
Ütδ [Ut ]dS+

∫ 1

0

∂ 2Un

∂S2 δ

[
∂ 2Un

∂S2

]
dS

+
∫ 1

0

(
−F +

1
Ī

∂Ut
∂S

+
1
2Ī

(
∂Ut
∂S

)2
+

1
2Ī

(
∂Un
∂S

)2
)

∂Un
∂S

δ

[
∂Un
∂S

]
dS

+
∫ 1

0

(
−F +

1
Ī

∂Ut
∂S

+
1
2Ī

(
∂Ut
∂S

)2
+

1
2Ī

(
∂Un
∂S

)2
)(

1+
∂Ut
∂S

)
δ

[
∂Ut
∂S

]
dS

=

{
Λy

∂Un(S = SQ)

∂S
+Λx

(
∂Ut(S = SQ)

∂S
+1
)}

δ [SQ]

+ Un(S = SQ)δ [Λy] +
{

Ut(S = SQ)+SQ−1/2
}

δ [Λx]

+ Λyδ
[
Un(S = SQ)

]
+ Λxδ

[
Ut(S = SQ)

]

(3.10)

Integrating Eq.(3.10) by parts and collecting like terms of independent variations yield the differen-

tial form of equations of motion and boundary conditions. The PDEs are written as the following:

from collecting terms involving δ [Un]

−∂ 4Un

∂S4 −F
∂ 2Un

∂S2 +
3
2Ī

(
∂Un
∂S

)2
∂ 2Un

∂S2 +
1
2Ī

∂ 2Un

∂S2

(
∂Ut
∂S

)2
+

1
Ī

∂Un
∂S

∂Ut
∂S

∂ 2Ut

∂S2

+
1
Ī

∂ 2Un

∂S2
∂Ut
∂S

+
1
Ī

∂Un
∂S

∂ 2Ut

∂S2 +ΛyD
(
SQ−S

)
=

∂ 2Un

∂T 2

(3.11)

from collecting terms involving δ [Ut ]

(
−F +

1
Ī

)
∂ 2Ut

∂S2 +
3
2Ī

(
∂Ut
∂S

)2
∂ 2Ut

∂S2 +
1
Ī

∂Un
∂S

∂Ut
∂S

∂ 2Un

∂S2 +
1
2Ī

(
∂Un
∂S

)2
∂ 2Ut

∂S2

+
3
Ī

∂Ut
∂S

∂ 2Ut

∂S2 +
1
Ī

∂Un
∂S

∂ 2Un

∂S2 +ΛxD
(
SQ−S

)
=

∂ 2Ut

∂T 2
(3.12)

from collecting terms involving δ [SQ]

Λy
∂Un

(
S = SQ,T

)
∂S

+Λx
∂Ut

(
S = SQ,T

)
∂S

+Λx = 0 (3.13)

together with the recovered constraint equations in non-dimensional form from collecting terms

involving δΛx and δΛy
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Un
(
S = SQ,T

)
= 0 (3.14)

Ut
(
S = SQ,T

)
+SQ−1/2 = 0 (3.15)

where in Eqs.(3.11) and (3.12) D (·) is the Dirac delta function.

Eqs.(3.11) - (3.15) are a full set of equations of motion describing the dynamics of a nonlinear

beam with a fixed slider. If damping is to be added to the system, Eq.(3.6) needs to be rewritten to

include the viscous damping terms, such as

∫
Ω

σδ [ε]+ησ̇δ [ε]+ (−P+ρü) ·δ [u]dΩ = δ [λ ·C] (3.16)

where the added term ησ̇δ [ε] expresses that the internal damping forces contributing to the virtual

work due to any virtual deformation of the structure. It also states that the damping force is

proportional to the damping coefficient η and the stress rate σ̇ .

Starting from Eq.(3.16), and repeating the process of nondimensionalization and variation de-

scribed above, one can get another set of equations of motion with damping present. The process

is repetitive and is omitted here.

3.3 Numeric simulation of the sliding mechanism of a nonlinear beam

3.3.1 Finite element discretization using adaptive mesh

The finite element model of our system is established in the framework of the Arbitrary Lagrange-

Euler (ALE), following the work of Hong & Ren (2011). To discretize Eq.(3.10) using a finite

element method, we choose to put a sliding node on the beam in the same position coinciding with

the constraint that takes into account the sliding nature of the constraint. The sliding node does not

move in absolute space as long as the constraint is fixed. This special sliding node, therefore, is

described using Eulerian description. As for other nodes, where the Lagrangian description is used,

34



nodes are attached to certain material points chosen at the beginning, and material coordinates of

those nodes will remain the same as time progresses (Spencer, 1980).

Because of the existence of the special sliding node, two neighboring elements that share this

node become variable-length elements, while other elements are still regular. In this sense, the

meshing scheme of the structure is adaptive as the structure deforms and changes its contact point.

It is necessary to derive expressions for velocity and acceleration of any material point in a variable-

length element, which, compared to regular elements, are more complicated.

Consider a standard 2-node, 6-DOF planar frame element described by material coordinates of

the two nodes (Se
1,S

e
2) and 6 nodal displacements (Ue

n1,U
′e
n1,U

e
t1,U

e
n2,U

′e
n2,U

e
t2), where the super-

script e indicates element-wise or local numbering is used. In the framework of ALE description,

both (Se
1,S

e
2) and (Ue

n1,U
′e
n1,U

e
t1,U

e
n2,U

′e
n2,U

e
t2) can vary with time. Using Hermite polynomials for

shape functions of displacement in the normal or transverse direction Ue
n(S,T ), we get

Ue
n(S,T ) = NT

e
(
S,Se

1(T ),S
e
2(T )

)
qe

n(T ) (3.17)

where

Ne =



2ξ 3−3ξ 2 +1

ξ 3−2ξ 2 +ξ

−2ξ 3 + eξ 2

ξ 3−ξ 2


, qe

n =



Ue
n1

U
′e
n1

Ue
n2

U
′e
n2


,



ae
1

be
1

ae
2

be
2


(3.18)

and ξ = (S− Se
1)/(S

e
2− Se

1). The shape functions Ne are functions of both material coordinate S

and node locations (Se
1,S

e
2), which means Ne are functions of S and T . The nodal displacements

qe
n are functions of time T only.

Similarly, choosing Lagrange polynomials, the tangential or axial displacement Ue
t (S,T ) can

be written as

Ue
t (S,T ) = RT

e
(
S,Se

1(T ),S
e
2(T )

)
qe

t (T ) (3.19)
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where

Re =

(Se
2−S)/(Se

2−Se
1)

S−Se
1)/(S

e
2−Se

1)

 , qe
t =

Ue
t1

Ue
t2

,

ce
1

ce
2

 (3.20)

The shape functions RT
e are functions of S and T . The nodal displacements qe

t are functions of

time T .

Differentiating Eqs.(3.17) and (3.19) twice with respect to time, the accelerations can be de-

rived as

Üe
n = NT

e q̈e
n +

∂NT
e

∂Se
1

qe
nS̈e

1 +
∂NT

e
∂Se

2
qe

nS̈e
2 +2

∂NT
e

∂Se
1

q̇e
nṠe

1 +2
∂NT

e
∂Se

2
q̇e

nṠe
2

+
∂ 2NT

e

∂Se
1

2 qe
nṠe

1
2
+2

∂ 2NT
e

∂Se
1∂Se

2
qe

nṠe
1Ṡe

2 +
∂ 2NT

e

∂Se
2

2 qe
nṠe

2
2

(3.21)

Üe
t = RT

e q̈e
t +

∂RT
e

∂Se
1

qe
t S̈e

1 +
∂RT

e
∂Se

2
qe

t S̈e
2 +2

∂RT
e

∂Se
1

q̇e
t Ṡe

1 +2
∂RT

e
∂Se

2
q̇e

t Ṡe
2

+
∂ 2RT

e

∂Se
1

2 qe
t Ṡe

1
2
+2

∂ 2RT
e

∂Se
1∂Se

2
qe

t Ṡe
1Ṡe

2 +
∂ 2RT

e

∂Se
2

2 qe
t Ṡe

2
2

(3.22)

Substituting Eqs.(3.17)-(3.22) into Eq.(3.10) gives us the finite element version of the dynamic

system. If the beam is meshed with 2m elements, there are m elements to the left and m elements

to the right of the constraint. Thus node m+ 1 counted from the left end is the sliding node on

the beam and is fixed in space. This special node has the material coordinate SQ that varies with

time, while other nodes have fixed material coordinates. Now we can use generalized variables q,

a vector with 6m+4 entries written as

q = (a1,a2, . . . ,a2m+1,b1,b2, . . . ,b2m+1,c1,c2, . . . ,c2m+1,SQ,Λx,Λy)
T (3.23)
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∫ 1

0
Ün

Un
q

δ [q]dS+
∫ 1

0
Üt

Ut
q

δ [q]dS+
∫ 1

0

∂ 2Un

∂S2

∂

(
∂2Un
∂S2

)
∂q

δ [q]dS

+
∫ 1

0

(
−F +

1
Ī

∂Ut
∂S

+
1
2Ī

(
∂Ut
∂S

)2
+

1
2Ī

(
∂Un
∂S

)2
)

∂Un
∂S

∂

(
∂Un
∂S

)
∂q

δ [q]dS

+
∫ 1

0

(
−F +

1
Ī

∂Ut
∂S

+
1
2Ī

(
∂Ut
∂S

)2
+

1
2Ī

(
∂Un
∂S

)2
)(

1+
∂Ut
∂S

)
∂

(
∂Ut
∂S

)
∂q

δ [q]dS

=

{
Λy

∂Un(S = SQ)

∂S
+Λx

(
∂Ut(S = SQ)

∂S
+1
)}

δ [SQ]

+ Un(S = SQ)δ [Λy] +
{

Ut(S = SQ)+SQ−1/2
}

δ [Λx]

+ Λyδ
[
Un(S = SQ)

]
+ Λxδ

[
Ut(S = SQ)

]

(3.24)

First, variation of the terms in Eq.(3.10) is carried out by taking derivatives with respect to

q. Then the finite element version of the dynamic system is given as Eq.(3.24). With the help of

Lagrange multipliers, we can treat all variables in q independent with each other, then by collecting

coefficients of arbitrary δ [q], Eq.(3.24) gives rise to (6m+ 6) nonlinear equations. Among them,

by collecting coefficients of δ [Λx] and δ [Λy], two constraint equations are recovered as

Cx = cm+1 +Sm+1−1/2 = 0

Cy = am+1 = 0
(3.25)

Geometric boundary conditions, pinned-pinned two ends, give

Un(S = 0) =Ut(S = 0) =Un(S = 1) =Ut(S = 1) = 0

or

a1 = c1 = a2m+1 = c2m+1 = 0 (3.26)

They cancel four equations out from (6m+ 6). In total, (6m+ 2) equations are obtained re-

garding q. They can be written as

M(q,T ) q̈ = F(q, q̇,T ) (3.27)
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where M is the generalized mass matrix and F is the generalized force vector. If damping is present,

one can follow the whole process starting from Eq.(3.16), then obtain a discretized dynamic system

with the form very similar to Eq.(3.27). The process is not repeated here. It is worth mentioning

that since the two constraint equations expressed are included, Eq.(3.27) is essentially a Differen-

tial Algebraic Equation (DAE) system, featured by the generalized mass M being singular. This

requires special numeric solvers to be described later. Up to this point, it has been shown that the

system is successfully discretized using variable-length finite elements (adaptive meshing).

Table 3.1 Properties and geometry of the simulated beam with a sliding constraint.

Material Aluminum
Young’s modulus E 69×109 Pa
Density ρ̄ 2700 kg/m3

Damping coefficient η 10−5 sec
Beam length L 3.66 m
Beam cross section area 38.1 mm × 1.57 mm
Pre-load f 0 N

A numeric simulation of free vibration is given to demonstrate the effectiveness of our math-

ematical model. Geometry and material properties used in the simulation are listed in Table 3.1.

In the numeric model, the beam was meshed using 20 frame elements. A sliding joint, node num-

ber 11 counted from the left end, was placed on the beam at the same position where the sliding

constraint was located, with the material coordinate SQ as a variable to be solved. There were 10

elements to the left and 10 elements to the right of the sliding node. Elements number 10 and 11

were variable-length elements, while other elements were regular elements which had nodes with

fixed coordinates allocated at the beginning. Initial conditions were created by applying a 5 N

transverse force positive in Y-direction on the beam at S = 0.75 or s = 2.743 m. Eq (3.27) were

formulated and numerically integrated by time to solve for q(T ), q̇(T ) as time progressed. This

process was done using MATLAB solver ode15s. ode15s is a variable order solver based on the nu-

merical differentiation formulas (NDFs). Optionally, it uses the backward differentiation formulas
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(BDFs, also known as Gear’s method) that are usually less efficient. ode15s was chosen as the

numeric solver because it is suitable for solving a differential algebraic problem, i.e., mass matrix

being singular. For more details, refer to Shampine & Reichelt (1997) and Shampine et al. (1999).

The results of the free vibration simulation are shown in Fig.3.2 with dimensions.
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Figure 3.2 Plots of the system in free vibration: normalized energy; transverse displacement sam-
pled at S = 0.75 or s = 2.743 m; material coordinate of the point Q in contact with the slider;
constraint force in transverse direction; constraint force in axial direction.

The oscillatory behavior of the nonlinear beam can be clearly observed from Fig.3.2. The

frequency of the transverse displacement un sampled at S = 0.75 or s = 2.743 m is approximately

half of the frequency of the material coordinate sq which corresponds to the point Q in contact with

the slider. The frequency of the constraint force λy in transverse direction is strongly associated

with the transverse vibration un(S = 0.75), while the frequency of the constraint force λx in axial

direction is strongly associated with sq. Constraint forces also carry high frequency content. This
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is due to the fact that constraint force is related to higher degrees of derivatives of un and ut with

respect to s. The total energy of the system was obtained by combining kinetic and strain energies

and then normalized by the initial energy level. Energy decays slowly due to the presence of light

material damping.

3.3.2 Numeric issue of computing the constraint force: Lagrange multiplier vs. penalty
method

It has been shown in the previous subsection that the sliding dynamics can be solved using the

numeric scheme that employs the Lagrange multiplier that gives rise to an algebraic problem. This

leads to a system of extremely stiff equations (singular mass matrix) and makes the solution process

very costly and time consuming. A special implicit solver that employs backward differentiation

formulas had to be used but showed its inefficiency. The numeric example shown in the previous

subsection took over 24 hours to complete with occasional manual intervention. Considering that

the size of the example problem is actually small (64 unknowns in total), this time consumption is

too high.

The author also explored the numeric scheme using the penalty method instead of Lagrange

multipliers to solve for the constraint forces. In this structural problem, the penalty method es-

sentially was applied by handling the constraint with large springs. In principle, any two degrees

of freedom that are supposed to obey the kinematic constraint of being tied together rigidly are

instead connected using a large spring. Then the constraint force can be derived from the internal

elastic force of the spring given the stiffness of the spring and the relevant two degrees of freedom

solved. Stiffness of the spring should be chosen by considering the trade-off between the con-

straint accuracy and the numeric expense. That is to say, if the spring stiffness is chosen to be very

large, then the constraint and the constraint force could be simulated accurately, but numerically

the problem may be too stiff and difficult to solve. On the other hand, if the spring stiffness is not

set large enough, the numeric problem could be solved more easily, but the constraint modeling

loses its accuracy.
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The benefits of using the penalty method usually come from the fact that instead of using a

special implicit numeric solver for DAEs, a general explicit solver can be used with a fixed time

step. This makes the problem solving process more predictable in terms of time consumption,

given a chosen time step that guarantees the numeric stability. However, after experimenting with

the penalty method on this problem, the author found no apparent advantage of it in terms of

numeric expense. Therefore the numeric simulations presented in the following all used Lagrange

multipliers and DAE formulations.

3.4 Feedback control design of the slider motion

3.4.1 Preliminary design of the slider motion control

The control strategy using sliding mechanism is based on the idea of negative work. This idea

simply explores that energy loss of the beam be facilitated by negative work done by the constraint

force applied by the slider. When the slider is fixed in space, no actual work could be done by the

constraint force and the total energy of the system is only dissipated through material damping,

as shown in simulation results in the free vibration case. Since one can measure (in practice) or

compute (in simulation) the axial constraint force Λx, it can be used as feedback in the control

scheme. Instead of using a fixed constraint, the scheme prescribes the slider’s X-direction motion

XC to be opposite to the direction of Λx to do negative work. This strategy can be realized by

replacing the static constraint in Eq.(3.1) with a moving one as follows:

VC = ẊC =
∂
(
Ut(S = SQ,T )+SQ(T )

)
∂T

(3.28)

The constraint in Eq.(3.2) remains the same.

This control scheme is shown in Fig.3.3. Based on previous work done by Nudehi et al. (1992)

and Issa et al. (2010), we choose the Lyapunov candidate as

V1 = Etotal(q, q̇,T ) (3.29)
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The origin of V1 corresponds to the static equilibrium state of the beam. It is obvious that when the

beam stays in static equilibrium, i.e., q = q0 and q̇ = 0, there is V1 = 0. In the static state q0 has all

entries zero but SQ depending on the slider position. The change of total energy can only be caused

by damping and the work done by the axial constraint force Λx if the X-direction displacement XC

of the slider is prescribed by the control scheme while the Y-direction displacement is always kept

as zero, namely

Ėtotal = Ėdamping + ẊCΛx (3.30)

where Ėdamping ≤ 0. To implement this control scheme, the material boundary needs to be set

since in practice the slider can only operate within a certain range of the beam. In order to realize

Slower ≤ SQ ≤ Supper, the slider position is further prescribed as

− ẊC = u =

 h(y1 = Λx) if Slower < SQ < Supper

0 otherwise
(3.31)

Substituting Eqs.(3.30) and (3.31) into Eq.(3.29) yields

V̇1 =

 Ėdamping−uy1 = Ėdamping− y1h(y1)≤ 0 if Slower < y2 = SQ < Supper

Ėdamping ≤ 0 otherwise
(3.32)

For the choice of control input u in Eq.(3.31), it has been shown in Eq.(3.32) that it leads to V̇1 ≤ 0.

Using LaSalle’s Theorem (Khalil, 2002), one can claim that the origin is asymptotically stable.

We now investigate the efficacy of the control design in Eq.(3.31) by simulation. The beam is

again meshed using 20 elements, with the same properties and geometry shown in Table 3.1. Set

material boundaries slower = 1.33 m and supper = 2.33 m for our simulation. In implementation,

the material range [slower,supper] for control is determined by the stroke length of the sliding

device. The speed limit of the slider is set to be 1 m/sec. With the same initial conditions applied

as in the free vibration case, results are shown in Fig.3.4 with dimensions.
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Figure 3.3 Preliminary feedback control design.

As shown in Fig.3.4, at the end of 12 sec, the total energy of the system was effectively dis-

sipated to 1.0% of its starting level, while the transverse displacement at S = 0.75 was reduced

to 17%. Most high frequency vibration was suppressed, as the history of un(S = 0.75) shows,

leaving the beam with slowly-varying residual transverse oscillations that should be fairly easy to

cope with in application. The range of motion for the slider turned out to be within 0.2 m, which

suggests that a relatively small travel distance suffices for the purpose of vibration suppression in

this design. As the vibration energy was dissipated and the displacement of the beam was reduced,

constraint force λx in X-direction decreased rapidly. This is because the geometric nonlinearity

which gives rise to λx becomes less significant as the reduced amplitude of un decouples the inter-

action between un and ut in the axial strain. One potential problem of this control design is that

because of the high frequency components in λx, the position of the slider oscillates too fast in

order to follow the change of λx, as one can see from the plot of ẋc. This may exceed the band-

width of the actual actuator. The potential issue in implementation leads to our modified feedback

control design, which is to be introduced next.
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Figure 3.4 Plots of the system applied with direct control: normalized energy of the direct control
results in solid line, normalized energy of free vibration in dashed line as reference; transverse
displacement sampled at S = 0.75 or s = 2.743 m; slider position; slider velocity; constraint force
in horizontal direction.

3.4.2 Modified control design

As stated in last subsection, when the slider is trying to follow the change of axial constraint

force Λx, it may oscillate too fast that the hardware requirement exceeds the bandwidth of the

actuator. To tackle this problem, we introduce a Low-Pass Filter (LPF) into the feedback loop,

which measures Λx as its input and gives a signal z as the output. This LPF is chosen to be first

order with the time constant τ . Instead of using Λx directly in the control law, we use the filtered

signal z in the modified feedback control design. Choosing a new Lyaponov candidate, we can

prove that the stability of the modified system can be retained.

The modified control scheme is shown in Fig. 3.5. Choose a new Lyapunov candidate as
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Figure 3.5 Modified control design with filter.

V2 = Etotal + τ

∫ z

0
h(ξ )dξ (3.33)

The origin of V2 corresponds to the static equilibrium state of the beam, i.e., q = q0 and q̇ = 0,

where q0 has all entries zero but SQ depending on the slider position. Use Eq.(3.30) we can obtain

that when Slower < y2 < Supper, the following holds:

V̇2 = Ėtotal + τh(z)ż

= Ėdamping− y1u+h(y1− z)

= Ėdamping− zh≤ 0

(3.34)

And when y2 = SQ ≤ Slower or y2 = SQ ≥ Supper, there is V̇2 = Ėdamping ≤ 0. Therefore using

LaSalle’s Theorem, again we can claim that the origin is asymptotically stable for the modified

control system.

Following is the investigation of the efficacy of the modified control design by simulation.

Meshing, material properties, geometric and control parameters, plus initial conditions were cho-
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sen to be the same as in the preliminary control design. For the first-order low-pass filter, time

constant τ was simulated as 40 ms. Results of simulation are shown in Fig.3.6 with dimensions.
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Figure 3.6 Plots of the system applied with direct control: normalized energy of the modified con-
trol results in solid line, normalized energy of free vibration in dashed line as reference, normalized
energy of the direct control results in dotted-solid line as reference; transverse displacement sam-
pled at S = 0.75 or s = 2.743 m; slider position; slider velocity; constraint force in horizontal
direction after the low-pass filter.

Adding the low-pass filter is a trade-off between control efficiency and actuator bandwidth. As

shown in Fig.3.6, the slider velocity ẋc driven by the actuator, switched less frequently compared

with the preliminary design results, especially at the early stage (before 2 sec). This eases the

requirement for the actuator bandwidth. The cost for this is that the vibration suppression process

becomes less efficient. At the end of 12 sec, 9.7% of the total energy of the system remained. To

achieve the same level of 1.0% suppression, compared to the control without a filter, the modified
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design obviously requires longer time of the slider application.

In summary, up to this point, using the principle of virtual displacement and D’Alembert’s

principle, we has modeled a two-dimensional nonlinear beam with pinned-pinned boundary con-

ditions and a frictionless sliding constraint. A variable-length finite element method (adaptive

meshing) in the framework of ALE description was employed to discretize the dynamic system

and to solve the equations of motion numerically. With the axial constraint force solved at any

moment, the slider motion was prescribed to do negative work on the structure so that vibration

can be suppressed. Numerical simulation results were presented to demonstrate the effectiveness

of this control strategy. To meet the bandwidth requirement of the actuator, a nonlinear filter was

placed in the feedback loop and asymptotic stability of the equilibrium configuration was estab-

lished using Lyapunov stability theory. This method employing a sliding mechasim for vibration

suppression in the flexible structure has been shown its great potential.

3.5 Combining slider motion with stiffness variation

With two vibration control strategies developed, this section looks into the combination of the two.

In a general sense, as the slider moves and changes the contact point with the beam, the stiffness of

the system varies. But this variation occurs continuously. In this context the stiffness variation is

referred to specifically as the mechanism that varies the stiffness of the structure in a discontinuous

way. Stiffness variation in the following is performed on the slider by treating the rotation of the

slider as an on/off joint. When this joint is activated, the rotation of the slider is fixed, as well as

the rotation of the contacted point of the beam. Numerically it is implemented by formulating a

constraint on the rotational degree of freedom at the sliding node on the beam model. For such

stiffness variation to be effective, the beam structure needs to have moderate damping present,

which is very different from the system with light damping. In the latter case, as shown in previous

sections, energy dissipation can not utilize the damping mechanism. It has to rely on the direct

energy reduction means through sliding motion. With moderate damping present, as shown in
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Table 3.2 Properties, geometry and other parameters of the beam system used in the validation
simulation.

Material Aluminum
Young’s modulus E 69×109 Pa
Density ρ̄ 2700 kg/m3

Damping coefficient η 10−3 sec
Beam length L 3.66 m
Beam cross section area 38.1 mm × 1.57 mm
Pre-load (tensile) f 10 N
Added mass 1 0.66 kg
Added mass 2 0.66 kg

Chapter 2, energy redistribution in the frequency domain due to stiffness variation allows the high

frequency energy to be dissipated rapidly.

If the sliding motion designed so far is referred to as "forward sliding" in terms of the direction

of the motion prescribed, one can easily imagine that with light damping, the sliding should not

be applied in the reverse way, for the reason that there would be energy continuously added by

the sliding motion. Such energy will accumulate with no easy outlet through material damping,

even if the energy exists in high frequency form. If reverse sliding is applied, the system will

most likely go unstable or fail structurally in reality. However, if moderate damping is present, the

combination of the reverse sliding and stiffness variation becomes possible, for damping may be

significant enough to dissipate the energy added by the slider. Therefore, a combination involving

reverse sliding will also be investigated.

3.5.1 Simulation of the system undergoing free vibration

Table 3.2 lists the properties, geometry and parameters used in the following simulation. The

geometry of the beam was set to be identical as in the experiments to be presented in Chapter

4. So was the material properties such as Young’s modulus and density. There were lumped

masses added to the beam to decrease the natural frequencies of the structure. Mass 1 was located
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at s = 0.95 m (1/4 of the beam length). Mass 2 was located at s = 2.74 m (3/4 of the beam

length). The damping coefficient η = 10−3 sec was the result of trials to approximate the decay rate

obtained from the experiment results of a beam structure subjected to moderate damping (Chapter

4). The damping coefficient used now is significantly higher than the value η = 10−5 sec used in

earlier simulations.

Results of the free vibration case are shown in Fig. 3.7. The initial conditions of the free

vibration and of all simulation cases were created by displacing mass 1 (located at s = 0.91 m) by

11.2 mm. After being released from its initial displacement, the beam underwent free vibration.

During this process there was no sliding motion, but the slider was allowed to rotate freely.

Five quantities are shown in Fig. 4.7. They are: 1) axial force evaluated on slider, applied

by the beam. 2) slope of the slider, indicating the rotational displacement at the contact point. 3)

position of the slider, measured from left end of the beam, indicating the linear displacement of the

slider. 4) transverse displacement of mass 1. 5) transverse displacement of mass 2.

Results of the axial constraint force and slider slope were basically obtained as the same or-

der of magnitude compared to experiment results (to be presented in Chapter 4). Slider slope and

displacements of the masses all show dominant frequency content in 2 ∼ 3 Hz range. A low fre-

quency envelope or beating behavior, was captured. The beating will be analyzed later in detail in

Chapter 4. Dominant frequency component of the axial constraint force was twice of the domi-

nant frequency component in transverse vibration, consistent with simulation results earlier. Low

frequency component superimposed in the axial constraint force can be estimated as 0.2 Hz. This

can be verified by a Fast Fourier Transform (FFT) analysis shown in Fig. 3.8.

Mass 1, directly displaced in the initial condition, had the displacement that started at the level

of 0.011 m. At 10 sec, mass 1 displacement magnitude decreased to ≈ 0.006 m, 55% of the initial

level. Mass 2, not directly excited by the disturbance, had the initial displacement of 0. As the

vibration propagated from mass 1 and reached mass 2, its displacement started to increase and vary.

At 10 sec, mass 2 also had the displacement of≈ 0.006 m, estimated by observing the neighboring

beating peaks. Vibration was evenly distributed on the two sides of the slider on the beam.
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Figure 3.7 Simulation of the system under free vibration (time domain). Plots from top to bottom:
axial force evaluated on the slider, applied by the beam; slider slope, or rotational displacement;
slider position, measured from left end of the beam; displacement of mass 1; displacement of mass
2.
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Figure 3.8 Simulation of the system under free vibration (frequency domain). Plots from top
to bottom: axial force evaluated on the slider, applied by the beam; slider slope, or rotational
displacement; displacement of mass 1; displacement of mass 2.
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Also evaluated are the accelerations of two masses, as plotted in Fig. 3.9. Mass 1 had the

acceleration that started at the level of 7.4 m/s2. At 10 sec, mass 1 acceleration decreased to ≈ 1.2

m/s2, 16% of the initial level. Mass 2 had the initial acceleration of 0. At 10 sec, mass 2 also

had the acceleration of ≈ 1.2 m/s2, the plot was extended to 12 sec in order to better reveal the

acceleration level as it may be covered in beats.
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Figure 3.9 Simulation of the mass accelerations under free vibration.

A system energy history was evaluated and is plotted in Fig. 3.10. The system energy was

computed by summing the potential energy and kinetic energy of the beam with added masses.

The plot shows that the total energy started at 15.3 mJ and decreased to 2.1 mJ at 10 sec, with 14%

remaining. This means 86% of the energy was dissipated through material damping. The system

has moderate damping level that is comparable to what was observed in experiments (see Chapter

4).

With a reasonably model established above through free vibration evaluation, the combination

of control methods were investigated in the following.
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Figure 3.10 Simulation of the system energy under free vibration.

3.5.2 Simulation of the system employing sliding control only

First is the case employing sliding mechanism only. Results of simulation were produced using

the same initial condition as in the free vibration case shown in Fig. 3.11. The slider moved at

the maximum velocity of 1 m/s. A stroke length of 1.76 m was assumed. This length set the

material boundary right before the slider reaches the two masses. The slider velocity was set to

be zero as it hit the material boundary and continued with the direction of attempting to go over

the boundary. Same algorithm was applied, as shown in Fig. 3.3. One can clearly see the upper

material boundary being reached in Fig. 3.11. For most of the time in the 10 sec interval, the axial

force on the slider was in positive X-direction, or towards the right end of the beam.

Displacement of mass 1 started at the level of 0.011 m. At 10 sec, mass 1 displacement de-

creased to ≈ 0.007 m, 64% of the initial level, higher compared to the free vibration case in which

the value became ≈ 0.006 m. This defeats the purpose of vibration reduction. Or it can be un-

derstood as the direct energy removal by the slider could not compete with the moderate damping
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Figure 3.11 Simulation of the system under sliding control only. Plots from top to bottom: axial
force measured on the slider, applied by the beam; slider slope, or rotational displacement; slider
position, measured from left end of the beam; displacement of mass 1; displacement of mass 2.
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rate. Mass 2, not directly excited by the initial disturbance, had the initial displacement of 0. After

some oscillation, mass 2 displacement decreased back to 0, which showed the effect of vibration

suppression. Similarly, accelerations results were extracted. Results are listed together in Table

3.3 for comparison.

The vibration was not effectively suppressed by the sliding mechanism alone. A conjecture

was then made that the direct energy removal rate by the slider may not be fast enough to create a

meaningful difference compared to the free vibration case. Based on this conjecture, the following

evaluation was performed.
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Figure 3.12 Simulation of the system energy under sliding control only. Solid line shows the total
energy of the beam system. Dashed line represents the energy change directly due to the sliding
motion.

The energy of the system are plotted in Fig. 3.12. The solid line shows the total energy of the

system. The dashed line represents the energy change directly due to the sliding motion. The total

energy of the system started from 15.3 mJ and decreased to 1.7 mJ at 10 sec. The total energy

was reduced by 89%, slightly better than the free vibration case (86% reduction through material
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damping only, no control). What is interesting is that evaluation of the energy change directly due

to sliding motion shows that the slider kept reducing the energy of the system (thereby negative

value for energy change). At 10 sec, the sliding motion reduced the system energy only by 3.1

mJ, which accounted for 20% of the total energy at 0 sec. This shows that the main portion of the

energy decay was due to material damping (69%), not due to the direct energy removal by sliding.

Direct energy removal by sliding was not efficient compared to material damping.

3.5.3 Simulation of the system employing sliding control combined with stiffness variation

Using the consistent parameters and initial conditions, the simulation continued with the case using

the control method combining stiffness variation and forward sliding mechanism. It is referred to

as "forward sliding" for the direction of the sliding motion is the same as the algorithm originally

designed in Section 3.4, as opposed to "reverse sliding", which will also be investigated.

In the following simulation, the sliding motion was independent from the activating/deactivating

operation for stiffness variation, meaning that the slider could still move regardless of the rotational

on/off joint status. Stiffness variation was activated and deactivated cyclically. In simulation, the

activation occurred exactly at the instances when the slider slope passed 0. It was kept activated for

0.1 sec, then was deactivated and released the slope for another 0.1 sec. After that the rotational

on/off joint waited for the next instance of activation and the cycle went on.

Results of this case are shown in Fig. 3.13. The axial force on the slider had a positive value

for most of the time. It is consistent with the fact that the overall slider moved in a positive

direction towards the right end of the beam. After 5 sec, the sliding motion stopped due to the

material boundary. Stiffness variation was activated and deactivated cyclically throughout the

whole process, as reflected in the slider slope plot. The displacement of mass 1 started at the

level of 0.011 m. At 10 sec, mass 1 displacement decreased to ≈ 0.006 m, 55% of the initial

level, not more effective compared to the free vibration case. Mass 2, not directly excited by the

initial disturbance, had the initial displacement of 0. After some oscillation, mass 2 displacement

decreased back to 0, which showed the vibration suppression effect. Similarly, accelerations results
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Figure 3.13 Simulation of the system under combined control of stiffness variation and forward
sliding mechanism. Plots from top to bottom: axial force measured on the slider, applied by the
beam; slider slope, or rotational displacement; slider position, measured from left end of the beam;
displacement of mass 1; displacement of mass 2.

57



were extracted. Results are listed together in Table 3.3 for comparison.
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Figure 3.14 Simulation of the system energy under combined control of stiffness variation and
forward sliding mechanism. Solid line shows the total energy of the beam system. Dashed line
represents the energy change directly due to the sliding motion.

More insight can be gained from the energy plot. As shown in Fig. 3.14, the total energy of the

system started from 15.3 mJ and decreased to 1.2 mJ at 10 sec. The total energy was reduced by

92%, a little better than the free vibration case in which there was 86% reduction through material

damping only, no control. Evaluation of energy change directly due to the sliding motion shows

that the slider kept reducing the energy of the system (thereby negative value for energy change).

At the 10 sec, the sliding motion had reduced the system energy only by 1.3 mJ, which accounted

for 9% of the total energy at 0 sec. This again shows that the main portion of the energy decay was

due to material damping (83%), facilitated by material damping, and can not be attributed to the

direct energy removal by sliding.

In an effort to improve the performance using the current configuration, a completely new

combination was then explored. This combination also involves stiffness variation and sliding
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Figure 3.15 Simulation of the system under combined control of stiffness variation and reverse
sliding mechanism.
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mechanism. But instead of sliding according to the algorithm presented before, the sliding motion

was carried out in the reverse direction.

Theoretically, if sliding in the reverse direction, always opposite to what the original algorithm

suggests in any moment, slider continuously adds energy into the system. This seems to be hurting

the purpose of vibration suppression. But there are potential benefits of doing so. It has been

observed and the conjecture has been validated that through sliding approach, the direct energy

removal rate only may not be fast enough to create a meaningful difference compared to the free

vibration case. The main portion of energy decay was still due to the contribution internal material

damping. The hope of applying reverse sliding is that if the slider keeps moving towards the side

with higher axial force, it may dramatically reshape the energy spectrum in the frequency domain.

The sliding motion will directly add some energy. But if it creates a much higher material damping

rate, the results of the tradeoff may yield faster energy decay overall.

Therefore, the case of combining reverse sliding and stiffness variation was simulated. Simu-

lation results are shown in Fig. 3.15. Axial force on the slider almost always had a positive value.

The slider moved almost monotonically in negative direction towards the left end of the beam, for

it was controlled in the reversed way. It can be understood as that the slider was always "moving

against the wave", towards one part of the beam that exerting more axial force. After 3 sec, sliding

motion was barely observed due to the material boundary. Stiffness variation was activated and

deactivated alternatively throughout the whole process, as reflected in the slider slope plot. Dis-

placement of mass 1 started at the level of 0.011 m. At 10 sec, mass 1 displacement decreased to

less than 0.0001 m, which is less than 1% of the initial level, showing significant vibration reduc-

tion. Mass 2, not directly excited by the initial disturbance, had the initial displacement of 0. After

some oscillation, mass 2 displacement decreased to 0.0007 m, 7% compared to the initial level of

mass 1. Similarly, accelerations results were extracted. Results are listed together in Table 3.3 for

comparison.

The mechanism of the energy change is more revealing from the energy plot. As shown in Fig.

3.16, the total energy of the system started from 15.3 mJ and decreased to 0.05 mJ at 10 sec. The
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Figure 3.16 Simulation of the system energy under combined control of stiffness variation and
reverse sliding mechanism. Solid line shows the total energy of the beam system. Dashed line
represents the energy change directly due to the sliding motion.

total energy was reduced by 99.7%, showing successful vibration reduction compared to the free

vibration case. Evaluation of energy change directly due to the sliding motion shows that the slider

kept adding energy to the system (thereby positive value for energy change). At 10 sec, the sliding

motion had added 1.6 mJ, which accounts for 10% of the total energy at 0 sec. This means that

material damping practically dissipated 110% of the initial level of the system energy.

Apparently, by applying reverse sliding control the slider keeps moving towards the side with

higher axial force. This indeed dramatically reshapes the energy spectrum in frequency domain.

The sliding motion could add some energy (10%). But it creates a much more material damping,

which is facilitated by stiffness variation. The net effect is much faster energy decay overall. In

this way vibration seems to be significantly suppressed.

Combinations of the two control strategies provide the insight of how a real structure with the

similar configuration and dimension may behave under control, as the structure in experiments
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Table 3.3 Comparison of performance of different control strategies. All relative displacements
and accelerations are computed using the mass 1 initial status as reference.

Control Condition

Mass 1 Mass 2 Mass 1 Mass 2 System
Relative Relative Relative Relative Energy
Accel Accel Displacemt Displacemt Remained
at 10 sec at 10 sec at 10 sec at 10 sec at 10 sec

Free Vibration 55% 55% 16% 16% 14%
Sliding Only 64% 0% 14% 0% 11%
Forward Sliding and Stiffness Variation 55% 0% 16% 1% 8%
Reverse Sliding and Stiffness Variation 1% 6% 0% 7% < 1%

usually have moderate damping present. The next chapter presents the experimental study of a

system with two control strategies implemented and applied.
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CHAPTER 4

EXPERIMENTAL STUDY OF VIBRATION SUPPRESSION THROUGH STIFFNESS
VARIATION AND SLIDING MECHANISM

4.1 Experiment design

An experimental setup is presented in this chapter. The content to be shown starts from concep-

tualization and design in Section 4.1, followed by implementation and operation in Section 4.2.

Section 4.3 shows the results of this experimental platform that validate the vibration suppression

strategies proposed.

4.1.1 Tension-aligned structure

The basic structure under study follows the design depicted in Fig.3.1. The system should consist

of two parts: 1) A flexible tension-aligned beam structure. 2) A relatively rigid support structure.

Furthermore, there are the following considerations when designing the system on the structural

level:

1. The beam under tension should be flexible and light-weight. These features make the beam

exposed to noticeable vibration problem due to external disturbances, meanwhile sensitive

to control force from the actuators. Since low-frequency vibration is the main target in this

study, there is a trade-off between flexibility and light-weight. To manufacture a structure

with low natural frequencies, the stiffness needs to be as low as structural stability allows

(flexibility), while the structure needs to carry a reasonable amount of mass. On the other

hand, the amount of mass of the beam should be kept small (light-weight) to allow actuators

with reasonable driving power to be able to change the dynamics of the beam.

2. At the two ends of the beam, there needs to be a stable and easy-to-realize tension device

that imparts enough tension to the beam. After the pre-tension is applied, there ought to be a
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locking mechanism on this tension device that maintains a constant boundary condition for

the beam (pinned-pinned). This is to guarantee that while the beam is undergoing vibration,

the tension device does not add unexpected dynamics to the system.

3. Because one control strategy involves a sliding mechanism, the surface of the beam should be

hard and smooth on which the slider operates. Also although the sliding motion is designed

to be along the axial direction of the beam, deviation from the axis is almost unavoidable.

Therefore, the beam needs to have enough width to tolerate the motion error. But the width

can not be too large to produce any torsional displacement that is not accounted for.

4. The support structure should be rigid enough so that the vibration of the tension-aligned

beam does not interact with the support structure. Ideally, one wants the beam to be directly

grounded through the tension device to eliminate any unwanted dynamics and concentrate

the study only on the beam itself. But in reality, the system including a complex sliding

actuator needs to be mounted on a platform-like support structure. One then has to design

a structure that has the comparable size of the beam and be much more rigid so that the

influence from the vibrating parts (beam, actuators) on the support structure are minimized.

4.1.2 Stiffness variation mechanism

Stiffness variation as our first proposed vibration control strategy was implemented in two ways

in simulations. One way was to use a rotational on/off joint that can be fairly easily realized on a

continuous beam. This is to use a clamping device that has an on/off locking mechanism. The other

way is to connect the beam to the support structure through a translational spring of time-varying

stiffness. This is rather expensive to construct and difficult to engineer.

The experiment design chooses the rotational on/off joint as the means for stiffness variation.

In addition, as described in Section. 4.1.3, the location of the joint, i.e., the contact point with the

beam, can be varied or moved on the surface of the beam, along the beam’s axial direction. This
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further varies the stiffness of the beam. This differs from the situation in Section 2.3 or in Section

2.4, where the on/off joints are fixed at the locations of the discrete hinges between panels.

4.1.3 Sliding mechanism

The design of the sliding mechanism considers the following factors:

1. The slider needs to have enough stroke span to cover a significant portion of the beam’s total

length. It also needs to have significant frequency bandwidth and speed to cope with the

beam dynamics. This is due to fact that the control algorithm dictates that the sliding motion

closely follows the change in the constraint force. As the numeric simulation reveals, this

requires the bandwidth of the slider to be twice compared to the beam’s transverse frequency

that is to be suppressed after excited by external disturbances.

2. The slider needs to be always in contact with the beam surface as it moves. Note that the

beam surface or the sliding motion will not be perfectly smooth or straight. It is necessary

to create a slider contact interface that is not absolutely rigid but has some compliance to

tolerate these imperfections. Otherwise it is possible for the slider to damage the surface of

the beam or even worse to destabilize the beam by the sliding itself.

4.2 Experiment implementation

4.2.1 A nonlinear beam

In order to explore nonlinearity in the beam vibration, which is essential to validate the vibration

suppression strategy through sliding mechanism, the beam ought to be both flexible and slender.

Flexibility requires low Young’s modulus of the material to be used. That allows the beam to

undergo relatively large vibration displacement caused by moderate disturbance. Slenderness is

needed because geometric nonlinearity stems from large tranverse displacement compared to the

beam’s thickness. In other words, the beam needs to be thin enough. Considering the beam
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surface will be constantly exposed to the slider contact, it is preferable to use metal material to

resist the wear for durability consideration. The beam was therefore chosen to have the properties

and geometry as shown in Table 4.1. The beam was estimated to have a 20 mm displacement

as the initial condition, this is over 10 times its thickness, which provides significant geometric

nonlinearity.

Table 4.1 Properties and geometry of the beam used in experiment.

Material Aluminum
Young’s modulus E 69×109 Pa
Density ρ̄ 2700 kg/m3

Beam length L 3.66 m
Beam cross section area 38.1 mm × 1.57 mm

The beam was connected to the support structure through the tension device using a pinned-

pinned boundary condition. This boundary condition, compared to other boundary conditions, has

the flexibility that keeps the natural frequency of the beam low.

4.2.2 Added mass

Lumped masses were added on the beam to lower the natural frequency. Two masses were attached

on the beam. Mass 1, with the weight of 0.33 kg, was located at s = 0.95 m (1/4 of the beam

length). Mass 2, with the weight of 0.32 kg, was located at s = 2.74 m (3/4 of the beam length).

4.2.3 Tension device

The tension device or the tensioner employed a crank mechanism to stretch the beam at its one end.

The crank rotation was converted to linear displacement through a shaft track which was axially

aligned with the beam and a pair of bushings mounted on it. A force sensor was connected between

the crank and the beam to make sure a desired tension level was achieved. After the pre-tension

was applied, the tension device provided a locking mechanism through fastening screws to the track

66



which no longer allowed any axial movement of the beam. This maintained a constant boundary

condition for the beam (pinned-pinned). The beam inevitability slacked after initial mounting due

to gravity. The tension device turned out to be extremely important in the experiment setup in

maintaining the straightness of such a long beam.

4.2.4 Sliding motion control

Sliding motion was provided by the Thomson Tollo M50 belt drive actuator, depicted in Fig. 4.1.

This actuator was powered by a Kollmorgen AKM23E brushless servo motor through a 5:1 gear

reducer. The motion control was implemented by a Kollmorgen AKD-P00306 programmable

amplifier.

Figure 4.1 Belt drive actuator to provide sliding motion.
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4.2.5 Rotational on/off mechanism

The slider was a moving joint in contact with the beam surface. It extended from the contact point

downwards with a shaft and sat on a carriage driven by the sliding actuator. The carriage had a

rotational on/off mechanism on the slider shaft. This controllable on/off mechanism was realized

by a electromagnetic brake that was flange mounted to the carriage. Also installed in the carriage

was an encoder which the slider shaft goes through, as shown Fig. 4.2. The encoder measured the

rotation of the slider shaft as part of the feedback information.

Figure 4.2 The slider carriage that consists of rotational on/off mechanism and encoder to measure
the rotation. A slider shaft is to be assembled on to the carriage.

4.2.6 Slider contact interface

The contact interface between the slider and the beam used ball plunger to provide some com-

pliance. Ball plungers are cylindrical parts with rotational spheres at the tip which minimize the

friction on the beam surface. The spheres are loaded with springs inside the cylindrical body which

allows limited linear displacement. One pair of ball plungers provided two contact point on each

side of the beam. In total four ball plungers were used and created four contact points. On each side

the two contact points were separated by 76 mm so that this portion of the beam had controllable

slope to implement stiffness variation for the purpose of vibration suppression.
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The ball plungers were mounted on a fork-like structure through two plates. The two arms of

the fork structure were equipped with force sensors made of strain gauges as shown in Fig. 4.3.

The force in the normal direction of the beam surface at the contact points was also part of the

feedback information.

Figure 4.3 Slider contact interface with force sensors.

The assembled beam with the sliding interface that sits on the carriage of the sliding track is

depicted in Fig. 4.4.

4.2.7 Measurement for feedback information and the system status

The complete set of feedback information was measured through the following sensor systems: 1)

encoder on the slider shaft measuring slider slope or rotation angle; 2) strain gauges measuring

the force on the slider, applied by the beam with the direction normal to the beam surface; 3) belt-

driven actuation system monitoring slider position. Among these, 1) and 2) were further combined
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Figure 4.4 Assembled parts of sliding and rotational mechanism fixed on the support table in
contact with the vibrating beam.

and processed to derive the axial force applied by the beam to the slider. This force is equal in

magnitude to the constraint force in X-direction, i.e., Λx.

Besides feedback measurement, two accelerometer were mounted on the two added masses

respectively to monitor and record the system status.

4.2.8 Data acquisition

Measurements obtained from sensors were acquired using a dSPACE DS1104 controller board.

The controller board provided A/D and D/A converters, as well as digital I/O interface. It is

programmable from Simulink block diagram environment. The DS1104 board was connected

with a PC through PCI bus.
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4.2.9 Real-time control and data processing algorithm

Real-time data acquired and transmitted from the controller board at the sampling rate of 1 kHz and

was processed in the PC by a control software written in a Simulink environment. The signal flow

of the algorithm followed the design shown in Fig. 3.5. There was also a graphic user interface for

control operation. The interface, as shown in Fig. 4.5, was configured in the ControlDesk software

tool provided along with the dSPACE controller hardware.

Figure 4.5 Interface of the real-time control and data processing software.

4.2.10 Initial displacement holder

To create consistent initial conditions for each experiment for control strategy validation, a simple

initial displacement holder was devised to create a static displacement initial condition. It functions

in a way such that the material point s = 0.95 m (adjacent to mass 1) was displaced by 20 mm and

71



held by the device. When the experiment started, the device was manually released and triggered

the system to operate. The beam started to vibrate and the control mechanism started to take action.

4.2.11 Complete system

The overall system built after design implementation is shown in Fig. 4.6.

Figure 4.6 Complete experiment system built after design implementation.

4.3 Experiment results

4.3.1 Free vibration

The experiment investigation starts from the free vibration case. The beam was given the initial

condition that the material point s = 0.95 m (adjacent to mass 1) was displaced by 20 mm. After
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Figure 4.7 Experiment results of the system in free vibration (time domain). Plots from top to bot-
tom: total force measured on the slider, applied by the beam; slider slope, or rotational displace-
ment; slider position, measured from left end of the beam; acceleration of mass 1; acceleration of
mass 2.
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being released from its initial displacement, the beam underwent free vibration. During this process

there was no sliding motion, but the slider was allowed to rotate freely.

Five quantities were directly measured and recorded, as shown in Fig. 4.7. They are 1) total

force sensed on slider, applied by the beam with the direction normal to the beam surface; 2) slope

of the slider, indicating the rotational displacement at the contact point; 3) position of the slider,

measured from left end of the beam, indicating the linear displacement of the slider; 4) acceleration

of mass 1; 5) acceleration of mass 2.

The following observation can be made. The slider position stayed constant since no sliding

motion was allowed. Quantities such as total force on slider, slider slope and accelerations of the

masses all exhibited a dominant frequency component around 2.5 Hz. A low frequency envelope,

typically referred to as beats, was formulated on the amplitude of the dominant 2.5 Hz vibration.

The envelope can be counted as 4∼ 5 sec for its half period. High frequency components appeared

at the beginning of the dynamic history, which can be clearly seen in the first 1 sec of the slider

slope plot, and the first 2 sec of the mass acceleration plots. The high frequency dynamics were

then dissipated, leaving a smoother dynamic curve as time progressed.

As the most relevant quantities to transverse vibration of the beam, the mass accelerations can

be evaluated as follows. Mass 1, located less than 30 mm to the disturbance source point, started

at the level of 10 m/s2. It rose to 15 m/s2 around 0.3 sec. At 10 sec, mass 1 acceleration decreased

to≈ 2 m/s2, 20% of the initial level. Mass 2, not directly excited by the disturbance, had the initial

acceleration of 0. As the vibration propagated from mass 1 and reached mass 2, acceleration of

mass 2 increased to its maximum value of 8 m/s2 around 0.5 sec. At 10 sec, mass 2 also had the

acceleration of ≈ 2 m/s2, a sign indicating that the vibration energy is evenly distributed on two

sides of the beam.

To better understand the free vibration dynamics of the system, a Fast Fourier Transform (FFT)

analysis was performed to inspect the frequency domain. The analysis was performed on four

quantities out of the recorded five quantities in Fig. 4.7. The constant slider position was not

analyzed since the result would be trivial. Shown in Fig. 4.8, vibration information recorded by the
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Figure 4.8 Experiment results of the system in free vibration (frequency domain). Plots from top
to bottom: total force measured on the slider, applied by the beam; slider slope, or rotational
displacement; acceleration of mass 1; acceleration of mass 2.
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sensors has been converted in frequency domain. For all four quantities, one can tell from the plots

that the energy mainly exists in the frequency range between 2 Hz and 3.5 Hz. Interestingly, all

four plots show two neighboring frequency peaks centered around 2.5 Hz. The difference between

the two peaks is 0.2∼ 0.3 Hz. This explains the beats apparent in the time domain, shown in Fig.

4.7, for the beats are indeed caused by superimposing two frequencies that are close to each other.

And the half period of the beats, measured before as 4∼ 5 sec, agrees with the difference between

the frequency peaks (1/0.25 Hz = 4 sec). 1
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Figure 4.9 Axial force on slider, post-processed from experiment results of the system in free
vibration (time domain).

The key information needed for the purpose of vibration control is the axial force. This quantity

was derived from measurements by multiplying the total force on the beam and the slider slope.

Fig. 4.9 shows a plot of the axial force through post-processing the measurement data of the free

1Given two sine waves of unit amplitude and close frequencies of f1 and f2, when added to-
gether, the combined wave is cos(2π f1 t)+cos(2π f2 t) = 2cos(2π

f1− f2
2 t)cos(2π

f1+ f2
2 t), where

the beating frequency is | f1− f2
2 |.
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vibration case.

The processed axial force clearly exhibits two frequency contents, one around 0.2 Hz and the

other around 5 Hz. This can be verified by the FFT analysis shown in Fig. 4.10. Different from

quantities in Fig. 4.7, the low frequency vibration (0.2 Hz) of the axial force existed independently,

and did not result from beating. Instead, this frequency was superimposed on the higher frequency

component of 5 Hz. This is very important for the control scheme to be apply, as the low frequency

is easy for the mechanical part of the control system to react and to follow.
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Figure 4.10 Axial force on slider, post-processed from experiment results of the system in free
vibration (frequency domain).

The higher frequency around 5 Hz, is twice of the frequency of the quantities in Fig. 4.7.

This again verifies that when the axial and transverse vibrations are nonlinearly coupled, the axial

vibration doubles the frequency of the transverse vibration.
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Figure 4.11 Experiment results of the system under sliding control only. Plots from top to bottom:
total force measured on the slider, applied by the beam; slider slope, or rotational displacement;
slider position, measured from left end of the beam; acceleration of mass 1; acceleration of mass
2.
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4.3.2 Performance of control employing sliding mechanism only

The first vibration control method applied was the control scheme using sliding mechanism only.

Again, five quantities were directly measured and recorded in the experiment, as shown in Fig.

4.11. They are presented in the same form as in Fig. 4.7.

Vibration of the beam and controlled motion of the slider started after release from the initial

displacement configuration, i.e., material point s = 0.95 m (adjacent to mass 1) displaced by 20

mm. Variation of the total force on slide exhibited moderate beating but not as obvious as in Fig.

4.7. The half period of the beating amplitude envelope can be counted as ≈ 1.5 sec. This pattern

also vaguely appeared in the slider slope plot. Likewise, vibration of period ≈ 1.5 sec can be

observed in the slider position plot, corresponding to a motion frequency of 0.6 Hz. However,

this beating behavior can hardly be detected in the acceleration plots of the two masses, where the

single dominant frequency is between 2 Hz and 3 Hz. It can be observed that the frequency of

mass 1 acceleration decreased slightly from ≈ 3 Hz in the first 1 sec to ≈ 2.3 Hz towards the end

of 10 sec. This decrease in frequency can be explained by the fact that the effective beam length

connected to mass 1 increased as the slider motion overall was moving towards mass 2. High

frequency components appeared in the first 1 sec of the mass 1 acceleration, and the first 2 sec of

the mass 2 acceleration. The high frequency dynamics were then dissipated, leaving a smoother

dynamic curve in the acceleration plots as time progressed.

Acceleration of mass 1 started at the level of 10 m/s2. It rose to 16 m/s2 around 0.3 sec. At

10 sec, mass 1 acceleration decreased to ≈ 4 m/s2, 40% of the initial level. Compared to the free

vibration case in which the value became 2 m/s2, here the acceleration level is larger, defeating

the purpose of vibration reduction. Mass 2, not directly excited by the initial disturbance, had the

initial acceleration of 0. As the vibration propagated from mass 1 and reached mass 2, acceleration

of mass 2 increased to its maximum value of 4 m/s2 around 0.4 sec. At 10 sec, mass 2 had the

acceleration of ≈ 1.5 m/s2, slightly decreased compared to the free vibration case (2 m/s2 at 10

sec).
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Figure 4.13 Slider velocity in time domain, processed from the measurement of slider position.
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The slider moved at the maximum velocity of 1 m/s. A span length of 0.55 m was used, which

set the material boundary on the beam for the sliding motion. The slider velocity was set to be

zero if it hit the material boundary and continued with the direction of attempting to go over the

boundary, as the algorithm depicted in Fig. 3.5. One can clearly see the upper material boundary

being reached in Fig. 4.11. The axial force on the slider, which directly determined the slider

motion in the algorithm, was extracted and presented in Fig. 4.12. For most of the time in the 10

sec interval, the axial force on the slider was in the positive X-direction, or towards the right end of

the beam. This can be understood as the vibration was propagating out from the initial disturbance;

the wave had the tendency of pushing the slider away from the source of disturbance, as the design

intent of the algorithm. Slider velocity is plotted in Fig. 4.13. As the slider velocity was controlled

to move in the same direction as the axial force on the slider, it reduced the energy that flowed

through the slider to the other side of the beam where mass 2 is located. This explains why the

acceleration on mass 2 was much smaller that the acceleration of mass 1, and in general smaller

than the same quantity in the free vibration case. This also gave the slider less chance to move

back in negative direction to the mass 1 side, because the energy was mostly kept on the mass 1

side, leaving the mass 2 side not enough energy to compete.

As proposed in Section 3.4, this scheme employs a low pass filter in the feedback loop, to ease

the bandwidth requirement of the mechanical hardware. Knowing from the free vibration analysis

that most of the vibration energy of the system stays below 10 Hz (Fig. 4.8 and Fig. 4.10), the

low-pass filter used the time constant of τ = 0.01 sec, corresponding to the bandwidth of 1
2πτ

= 16

Hz. Post FFT analysis of axial force on slider was performed and presented in Fig. 4.14, and the

analysis on slider velocity in Fig. 4.15. In both FFT results the DC values were omitted. The

energy of axial force was lumped in two frequency ranges, one below 1 Hz, the other in the range

of 5∼ 7 Hz. Since the bandwidth of the slider velocity was reasonably set to be 16 Hz, the slider

had no problem effectively reacting to the feedback information.

Although the control scheme was carried out as designed, the vibration does not seem to be

effectively suppressed by the sliding mechanism. This could by explained as that the direct energy
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Figure 4.14 Axial force on slider in frequency domain.

removal rate by the slider may not be fast enough to create a meaningful difference compared to

the free vibration case. Other control schemes need to be applied.

4.3.3 Performance of control employing stiffness variation mechanism only

The control strategy employing stiffness variation was investigated. This mechanism, as our first

proposed vibration control strategy in Chapter 2, was implemented here in the experiment by

adding onto the slider a clamping mechanism that has an on/off locking capability. This clamping

device, implemented using an electromagnetic brake, can constrain the slope or the rotational

displacement around the contact point. By locking/releasing the clamping device, a on/off joint is

then created similar to the method described in Section 2.3, but with the difference that the joint

works on a continuous beam and it can change its position by sliding.

The threshold for the on/off clamping brake to be activated was set to be 1◦, meaning that the
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Figure 4.15 Slider velocity in frequency domain.

brake was activated and applied a rotational constraint when the encoder measured that the slope

at the contact point fell below 1◦. For each action, the clamping brake was kept activated for 0.05

sec, locking the slope during this time interval. It was then deactivated and released the slope for

another 0.05 sec. After that the clamper waited for the next instance of activation and the cycle

went on. In this experiment the slider had no translational motion. Therefore, the control employs

stiffness variation method only.

Results are shown in Fig. 4.16. Brief pauses can be seen in the slider slope plot, as the result

of activating the clamper. The immediate effect that activating the clamper each time had was the

generation of high frequency vibrations. This can be seen in the acceleration plots. As explained

in Chapter 2, the energy of the high frequency vibration was shifted from low frequency vibration.

The redistribution of vibration energy in frequency domain is the results of stiffness variation. The

vibration suppression was enhanced by internally damping out the high frequency vibration at a
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Figure 4.16 Experiment results of the system under stiffness variation control only. Plots from
top to bottom: total force measured on the slider, applied by the beam; slider slope, or rotational
displacement; slider position, measured from left end of the beam; acceleration of mass 1; accel-
eration of mass 2.
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faster rate. As the beneficial outcome, the acceleration of mass 1 started at the level of 10 m/s2. At

10 sec, it decreased to ≈ 1 m/s2, 10% of the initial level. Compared to the free vibration case in

which the value became 2 m/s2, here the acceleration level was suppressed by an extra 10%. Mass

2, not directly excited by the initial disturbance, had the initial acceleration of 0. As the vibration

propagated from mass 1 and reached mass 2, acceleration of mass 2 started to increase and vary.

At 10 sec, mass 2 had the acceleration of≈ 2 m/s2, almost the same compared to the free vibration

case.

Performance of control employing the stiffness variation mechanism showed a moderate vibra-

tion suppression effect on mass 1 but no effect on mass 2. Considering only one on/off joint was

used in the structure, this result is not surprising. But room for improvement needs to be explored.

4.3.4 Performance of control combining stiffness variation and sliding mechanism

As described before, stiffness variation was implemented using a clamper on the slider that can

be activated/deactivated as an on/off joint. In the following experiment, the sliding motion was

independent from the activating/deactivating operation for stiffness variation, meaning that the

slider could still move regardless of the clamper status. The slider motion was only determined by

the algorithm that takes the computed axial force as the main input.

Using the same setting of stiffness variation and sliding control, the results of combining the

two methods are shown in Fig. 4.17. The sliding motion has the direction controlled by the

algorithm originally designed in Section 3.4, therefore referred to as "forwarding sliding", to be

differentiated from the "reverse sliding", which will be investigated later.

It is interesting to see from the slider position plot that the slider motion went on in a positive

direction almost monotonically until it reaches the material boundary and stopped on it after just 2

sec. One can understand this because the vibration energy is not evenly distributed on both sides

of the slider. The motion of sliding plus the on/off stiffness variation provided by the clamper

somehow blocked the vibration propagation over the contact point from the side of mass 1 to the

85



0 1 2 3 4 5 6 7 8 9 10
-2

0

2

0 1 2 3 4 5 6 7 8 9 10
-2

0

2

0 1 2 3 4 5 6 7 8 9 10

1.4

1.6

1.8

2

2.2

0 1 2 3 4 5 6 7 8 9 10

-10

0

10

0 1 2 3 4 5 6 7 8 9 10

-10

0

10

T
o
ta

l 
F

o
rc

e 
o
n
 S

li
d
er

(N
)

S
li

d
er

 S
lo

p
e

(d
eg

re
e)

S
li

d
er

 P
o
si

ti
o
n

(m
)

M
as

s 
1

 A
cc

el
er

at
io

n

(m
/s

2
)

M
as

s 
2

 A
cc

el
er

at
io

n

(m
/s

2
)

Time (sec)

Figure 4.17 Experiment results of the system under combined control of stiffness variation and
forward sliding mechanism. Plots from top to bottom: total force measured on the slider, applied
by the beam; slider slope, or rotational displacement; slider position, measured from left end of the
beam; acceleration of mass 1; acceleration of mass 2.
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side of mass 2. That explains that the mass 2 side of the beam lack the energy to compete with the

mass 1 side and to push the slider back in negative direction. The stiffness variation by the clamper

still continued to be applied after the translational sliding motion stopped.

The acceleration of mass 1 started at the level of 10 m/s2. At 10 sec, it decreased to ≈ 1.5

m/s2, 15% of the initial level. Compared to the free vibration case in which the value became 2

m/s2, here the acceleration level was suppressed by an extra 5%. Mass 2, not directly excited by

the initial disturbance, had the initial acceleration of 0. As the vibration propagated from mass 1

and reached mass 2, acceleration of mass 2 stared to increase and vary. At 10 sec, mass 2 had the

acceleration of ≈ 0.8 m/s2, suppressed by an extra 12% compared to the free vibration case.

Performance of control combining stiffness variation and the forward sliding mechanism show

a moderate vibration suppression effect on both mass 1 and mass 2. In an effort to improve the

performance using the current experimental configuration, the combination of stiffness variation

and reverse sliding was also explored. This strategy also combines stiffness variation and the

sliding mechanism. But instead of sliding according to the algorithm presented before, the sliding

motion was carried out in the reverse direction.

Results are shown in Fig. 4.18. Since the algorithm was modified, the slider position plot

shows the sliding is taking the opposite motion compared to Fig. 4.17. The moment after the beam

was released from the initial condition, the slider quickly moved towards mass 1, where the initial

disturbance occurred. The slider stopped after ≈ 3 sec when it reached the material boundary.

The stiffness variation by the clamper still continued to apply after the translational sliding motion

stopped.

The effect of vibration suppression was significant. Both mass 1 and mass 2 accelerations

decreased to ≈ 0.5 m/s2, compared to 2 m/s2 in the free vibration case. This gives the best results

among all control strategies. This shows that the new strategy of combining stiffness variation and

reverse sliding effectively pushed the vibration energy into high frequency region and created much

faster energy decay rate through internal material damping. One can observe from the acceleration

plots that high frequency components continuously showed up and the curves were never smooth.
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Figure 4.18 Experiment results of the system under combined control of stiffness variation and
reverse sliding mechanism. Plots from top to bottom: total force measured on the slider, applied
by the beam; slider slope, or rotational displacement; slider position, measured from left end of the
beam; acceleration of mass 1; acceleration of mass 2.
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Table 4.2 Comparison of performance of different control strategies. All relative values were
computed using the mass 1 initial acceleration as reference.

Control Condition
Mass 1 Relative Accel Mass 2 Relative Accel
at 10 sec at 10 sec

Free Vibration 20% 20%
Sliding Only 40% 15%
Stiffness Variation Only 10% 20%
Forward Sliding and Stiffness Variation 15% 8%
Reverse Sliding and Stiffness Variation 5% 5%

The energy redistribution was very effective that the total energy including the energy added by

reverse sliding itself was dissipated all together quickly enough. A comparison of all experiment

cases are summarized in Table 4.2. In the table the percentage was computed using the mass 1

initial acceleration of 10 m/s2 as 100% reference.

4.3.5 Discussion

Experiments show various vibration suppression effects using different control methods. The most

effective method, which combines stiffness variation and sliding mechanism, was predicted in

Chapter 3. This method applies stiffness variation through a clamper while controls the slider to

move in a reverse way. It constantly adds energy directly but also excites high frequency vibration

in the system. Overall, through internal damping enhanced by stiffness variation, the net effect

is that the decay rate of the system vibration is significantly higher than in other cases such as

forward sliding.

Investigation with numeric simulation in Chapter 3 revealed the important relationship be-

tween the two energy removal mechanisms. These two mechanisms are 1) direct energy reduction

through sliding and 2) indirect energy reduction through material damping. It was verified in the

experiment that given the moderate damping rate of the system, direct energy removal through

sliding motion did not perform as the dominant factor of vibration suppression. The major por-

tion of energy dissipation has to rely on internal material damping. To maximize the damping
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effect, sliding motion can be used as a secondary role to facilitate damping process. Together with

stiffness variation implemented using the on/off clamper which does not change energy directly,

sliding, especially reverse sliding, effectively reshapes the energy distribution in the frequency do-

main. It keeps funneling the energy into high-frequency domain where damping effectively turns

the vibration energy into heat.

This scenario is similar to the system presented in Chapter 2, where the damping level is also

moderate. In Chapter 2 vibration suppression is achieved through stiffness variation alone, at the

price of employing multiple actuators. As the number of controlled hinges or springs decreases,

vibration suppression gets less and less efficient. As in the experiment, with sliding mechanism

added, actuators and sensors are all lumped on one sliding device. With a similarly moderate

damping level, the same vibration suppression target can be achieved using less actuators but more

sophisticated sensor design, signal processing and control logic.

It is fairly clear that the control strategy needs to be formulated differently towards systems

with different damping levels. For lightly damped structures, it is better to use direct energy re-

moval method such as sliding, as shown in Chapter 3. For moderately damped structures, damping

facilitated by sliding and/or stiffness variation seems to be a better choice. For heavily damped

structures, which are not within the scope of this thesis, traditional treatment using passive method

such as optimizing the damper location should suffice as an affordable and practical solution.
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CHAPTER 5

SUMMARY AND FUTURE WORK

Tension-aligned structures have shown great potential of providing mass efficiency, ease of trans-

port and a high-degree of accuracy. Such features are highly valuable in space-based applications.

To study the vibration suppression strategy in simple tension-aligned structures, models of struc-

tural dynamics were built with careful consideration of the tension’s role in the structural vibration

behavior. Analysis showed that the tension enter the vibration dynamics mainly through geometric

nonlinearity. Several models illustrated in this study all share the similar bow-string like topol-

ogy. They are comprised of a support structures in compression, which provide tension to sensor

surfaces via the connections at ends. In the examples used, the support structure varies from abso-

lutely rigid object, to a curvedly deformed rod, and further to a three-dimensional, more realistic,

truss-like space structure. The sensor surface under tension ranges from a simple beam to hinged

panel arrays.

Two different control strategies were proposed and applied on those structure models. The first

strategy is vibration suppression through stiffness variation. This semi-active method sequentially

applies and removes constraints in the structure. The process varies the system stiffness and funnels

vibration energy from low-frequency where damping rate is low to high-frequency modes where

internal material damping rate is naturally high. By leveraging material damping, energy is then

indirectly but effectively dissipated. The second strategy, an active method, employs a sliding

mechanism where the constraint force is measured in real time and used as feedback to prescribe

the motion of the slider itself. The prescribed slider motion keeps doing negative work to the

structure thereby vibration energy gets directly removed. This strategy uses a straightforward

idea and very few sensors. It requires more sophisticated actuators and more powerful real-time

computation.

Numeric results show that the two strategies work effectively to achieve the vibration sup-
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pression goal. The stiffness variation method was demonstrated on both two-dimensional and

three-dimensional numeric models where moderate material damping was presented. Compared

to free vibration (no control), the control method provided significantly faster energy decay. The

concept of modal disparity was investigated in the process to further the understanding of the re-

lationship between stiffness variation and control efficacy. The strategy using sliding mechanism

was validated numerically using a one-dimensional nonlinear beam model where light damping

was presented. Several filtering and signal processing techniques were studied to address the prac-

tical issues such as limited actuator bandwidth. Overall the design idea of doing negative work by

the slider to the structure met the expectation of successful vibration suppression. Furthermore, a

experiment platform was built to test both control strategies in a realistic environment. It was found

that to achieve the best vibration suppression results in a moderately damped beam structure, one

shall combine both control strategies in a way such that the stiffness variation method serves as a

primary role, facilitated by the sliding mechanism. This combination delivered the most effective

result by leveraging the structural damping to the most.

All the numeric and experimental studies led to the conclusion that vibration control strategy

needs to be formulated differently towards systems with a different damping level. For lightly

damped structures, it is better to use direct energy removal method such as sliding. For moderately

damped structures, damping facilitated by stiffness variation and/or a sliding mechanism seems to

be a better choice. For heavily damped structures, which are not within the scope of this study,

traditional treatment using passive methods should be an affordable and practical solution.

In the numeric investigation of the sliding mechanism, the contact problem showed to be a

challenge for it cost a great deal of computation time and power. This numeric issue comes from the

root that if the contact problem is formulated using Langrange multipliers, a DAE system emerges

and needs to be tackled using special solvers. On the other hand, if the problem is formulated using

a penalty method, a very stiff ODE system then needs to be solved. Both seem to be expensive

numerically. To fasten the simulation process of the sliding mechanism, more understanding of

numeric method dealing with the contact problem needs to be gained. In the future study a better

92



numeric tool is essential to produce more investigation results by constructing more scenarios.

In the experimental study, a comprehensive approach was taken to combine two strategies

in different ways to find the most efficient combination for vibration suppression. However, the

search was still limited and not exhaustive. It could only be concluded that the best results so

far came from the combination that was the best among the combinations that were tested. It

is expected in the future study that an accurate and mathematical model could be developed to

characterize the system dynamics under both control methods, especially to accurate capture the

contact behavior and damping behavior. In that way an optimal control method combination search

could be performed and the control results could be well predicted.

More studies need to be conducted and better understanding needs to be gained to develop

reliable, robust and practical vibration suppression solutions, for tension-aligned structures to have

greater application in space missions and in other fields.
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