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ABSTRACT

Random Forests and Gene Selection to Classify Arabidopsis Thaliana Ecotypes

By

Hsueh-han Yeh

This thesis discusses the classification and gene selection of ecotype data for

Arabidopsis thaliana. Gene expressions from Oligonuoleotide gene expression arrays

were used to classify Arabidopsis thaliana ecotypes using statistical methods. The

hierarchical cluster method was used to group ecotypes according to latitude and altitude

to distinguish ecotypes. Limma was used to select differentially expressed genes. The

Random Forest algorithm provides a ranking of genes to indicate how well they can

discriminate between ecotypes.

We focus on the Random Forest algorithm. It is an efficient approach and can deal

with a large number ofpredictor variables in a classification process. Parameters are

optimal to achieve a small classification error rate.

The final selection of genes may play an important role in adaptation to stress

conditions. They were further examined for gene function and evidence regarding stress

resistance.

Keywords: Arabidopsis thaliana, Microarray Data, Hierarchical Cluster, Limma,

Random Forest, Classification.
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Chapter 1 Introduction of Microarray and Arabidopsis Ecotypes Data

1.1. Microarray Data

Regulatory regions of plant genes is likely to be more concise than those of animal

genes, but the transcription factors encoded in plant genomes is larger than those of

animals. Thus, plants can contribute to research regarding the influence of transcriptional

factors in multicellular development. Here, we study the reference plant, Arabidopsis

thaliana, for our study, and the dataset is AtGenExpress Ecotypes Expression estimated

by gcRMA. The data is part of the public AtGenExpress expression atlas, which was

created by Afiymeuix ATHl array platform. Microarray, obtained by Oligonuoleotide

Chips or spotted arrays, is a technology to study the expression of thousands of genes.

Microarray technology requires statistical methods to analyze the dataset which are high

dimensional data sets.

Statistical approaches can be used for multiple comparisons of genes to define the

differentially expressed genes between arrays. Data mining is used widely for

Microarray data since it can use a subgroup of genes to predict the observations (e.g.

Ecotypes) that would help to reduce the dimension of Microarray data. In this study, we

use classification approach and data mining technique, Random Forest, to classify the

Arabidopsis thaliana Expression Ecotypes Data.



1.2. Arabidopsis Data

Arabidopsis thaliana

The Arabidopsis ATHl Genome Array, built in TIGR (The Institute for Genomic

Research), contains more than 22,500 probe sets displaying approximately 24,000 gene

sequences on a single array. (http://wwwaffmetrixcom)

Arabidopsis thaliana is a flowering plant, an inconspicuous weed. It has been used as a

model plant organism for many years and has been chosen for used in molecular genetic

analysis. Laibach (1943) first specify that some significant characteristics ofArabidopsis

thaliana make them are suitably used for model plant organism. It has a short life cycle;

it only needs several weeks to mature. Due to its size, it can grow in a limited area.

Furthermore, it has small genome size and nearly non-repetitive DNA (S Barth, A E

Melchinger; 7HLfibberstedt, 2002). These features make Arabidopsis thaliana plants

much conveniently for genetic analysis. Due to these features in ArabidOpsz's thaliana,

international effort has been devoted to build the methods to research its genome.

 Arabidopsis thaliana at an early stage of flowering. [Drawing by K. Sutliff]



Arabidopsis thaliana Ecotype Data

Figure 1 First 10 Ecotypes Distribution Map
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An ecotype is a population of a plant that survives as a distinct group through

ecological environment. AtGenExpress Ecotypes Data used in this paper come from

weigelworld (WWW.weige/worldozg), including 34 ecotypes. Each ecotype is composed by

one or several arrays of22810 genes each. Arabidopsis thaliana is widely distributed

(Meinke et al, 1998), and the 34 ecotypes in the Arabidopsis thaliana Ecotype data used

in this study represent locations in Europe, North America and Afiica. The location,

longitude, latitude, and altitude of each ecotype were listed in the Tablel. The latitudes

of these ecotypes range from 16N to 59N. The longitudes range from 0.53E to 73B, and

from 0.22W to 123W. The highest altitude is 3400m. Overview the distribution of the



ecotypes, 27 ecotypes distributed throughout Europe and 12 ecotypes among these 27

ecotypes in Germany. The other ecotypes are distributed in North America and Africa.

We want to examine ifwe can use these gene expressions to classify Arabidopsis thaliana

ecotypes by statistical methods. First of all, the problem we confront is the large size of

genes in each ecotype. Dimension reduction can help deal with large variables efficiently

and select the most important variables. We use Random Forest to decrease the size of

dataset and classify ecotypes. Random Forest Algorithm will be discussed in the Chapter
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Table 1 Ecotypes Geography Information

Ecotype Location Altitude Latitude Longitude Temperature (“C )

Bay-0 Bayreuth. Germany 350 49N 11 E -2 - 18

C24 Coimbra, Portugal 179 40M 8 E 7.2 — 27

Col-0 Columbia University (US) 49 39M 93 W -3.3 -- 28.9

Cvi Cape Verde Islands 43 16N 24 W 24 - 29

Est Estonia 15 59N 26 E -5.2 - 17

Kin-0 Kinneville, MI 273 43N 85 W -12.2 — 32.2

Ler Landsberg. Germany 628 53N 16 E -1.7 - 19.4

Nd-1 Niederzunzheim, Germany 250 50N 8 E 5.5 - 9.5

Shakdara Pamiro-Alay. Tadjikistan 3400 37N 71 E 0 - 30

Van-0 UBC (Vancouver) 50 50M 123 W 0 — 26     
 

Table 2 Resources ofArabidopsis thaliana GenomeL

 

Resources Contact Person Information of website

 

Arabidopsis database (AtDB)

ABRC* Stock Center (USA)

NASCT Stock Centre (UK)

TIGR: (USA)

SPP§ Consortium (USA)

CSHL\ Consortium (USA)

ESSAConsortium (Europe)

Genoscope (France)

Kazusa Institute ( Japan)

David W. Meinke, J. Michael Cherry,* Caroline Dean, Steven D. Rounsley, Maarten Koomneef.

Arabidopsis thaliana: A Model Plant for Genome Analysis (1998)

M. Cherry

R. Scholl

M. Anderson

S. Rounsley

R. Davis

R. McCombie

M. Bevan

F. Quetier

S. Tabata

http://genome-

www.3tanford.edu/Arabidopsis/

http://aims.cps.msu.edu/aims

http://nasc.nott.ac.uk

http://www.tigr.org/tdb/at/at.html

http://sequence—

www.stanford.edu/ara/SPP.html

http://nucleus.cshl.org/protarab/

http://muntjac.mips.biochem.mpg.de/

arabi/index.html

http://www.genoscope.cns.fr/exteme/

arabidopsis/Arabidopsis.html

http://www.kazusa.or.jp/arabi/



1.3. Gene Selection Process

Grouping 10 ecotypes (3 replications each) by latitude and altitude of first 10

ecotypes ofArabidopsis thaliana Ecotypes Data using Hierarchical Cluster. Four

groups are as follows:

La4 (La-A, La-B, La-C, La—D) A14 (Al-A, Al-B, Al-C, Al-D)

For each ofthese two groupings (A14 and La4) with Limma function ofR software.

A-B, A-C, A-D, B-C, RD, and C-D in each of the grouping La4 and A14,

respectively.

The number of significant genes for each contrast in each grouping is counted.

After counting the number of significant genes, we found that Cvi (La-D) has the

largest number of significant genes differentially expressed in comparison with

other 3 latitude groups. Shakdara (Al-A) has the largest number of significant

genes differentially expressed in comparison with other 3 altitude groups.

Cvi (smallest latitude) and Shakdara (highest altitude) are compared to the other

ecotypes to identify genes that differentiate these.

Contrasts to be considered :

- Cvi - é—(Bayo + C24 + Colo + Est + Kino + Ler + Nd1 + Vano)

o Sha - :3—(Bayo + C24 + Colo + Est + Kino + Ler + Nd1 + Vano)

The top 500 differently expressed genes are selected from each ofthese two

contrasts. Corresponding gene sets are Cvi500 and Sha500.

Optimal parameters, ntree and mtry, in Random Forest are chosen for Cvi500 and

Sha500.

Highly ranked genes (variable importance) are selected from Cvi500 and Sha500.
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There are 43 genes chosen from Cvi500 and 84 genes chosen from ShaSOO.

Compare OOB error rate for the selected genes.

Discuss misclassification arrays in Random Forest.

Gene functions of the selected genes are considered.



Chapter 2 Statistical Methodology

In this chapter, clustering (2.1), linear models for Microarray Data (2.2), and Random

Forest (2.3) will be discussed.

(2.1) Clustering is the first step in our gene selection process. In this section, we use

Hierarchical Clustering method to group the 10 ecotypes into subsets and those subsets

will be contrasted with linear models.

(2.2) Limma is the second step. In this step, we choose smaller subgroups of genes

which are differentially expressed from Lima method by contrasting subsets of

ecotypes obtained in clustering result. We explain the differentially expressed genes.

(2.3) Random Forest is a method to rank genes by their importance in classifying

ecotypes. In this section, we will explain the Random Forest algorithm and the selection

of important predictor variables (genes) from the gene sets chosen with the linear models.

2.1. Clustering

Grouping a collection of observations into subgroups (clusters) is called Clustering.

Observations within the each cluster have smaller distance to each other than to

observations assigned to other different clusters.

In Hierarchical Clustering (Jinwook Seo, Ben Shneiderrnan 2002), the observations

are not separated into subgroups in only one step. Instead, observations are separated by

a serious ofpartitions. Clustering may start from a single cluster containing all

observations to subgroups of observations, called Divisive method. On the other hand

(Figure 2), it may start from n clusters (if you have n observations) and each cluster

contains one observation, then finding the closest distance pair of clusters and combining

them into a single cluster. In the end, all clusters will be combined into one cluster,

called Agglomerative method. The Agglomerative method is used here to identify latitude



and altitude groups (Table 3).

Table 3 Geography of Ecotypes.

 

 

 

 

 

 

 

 

 

 

Ecotype Location Altitude Group(Al) Latitude Group(La)

1 Bay-0 Bayreuth. Germany 350 C 49.56 B

2 024 Coimbra, Portugal 179 C 40.2 C

3 Col-0 Columbia University (US) 49 D 43.0125 C

4 Cvi Cape Verde Islands 43 D 16 D

5 Est Estonia 15 D 59 A

6 Kin-0 Kinneville. MI 273 C 42.466 C

7 Ler Landsberg. Germany 628 B 48.2 B

8 Nd-1 Niederzunzheim, Germany 250 C 50.778 B

9 Shakdara Pamiro-Alay. Tadjikistan 3400 A 37.183 C

10 Van-0 UBC (Vancouver) 50 D 49.85 B       
The process ofAgglomerative Method as follows:

Given a set ofn observations (ecotypes) to be grouped, and a nxn distance matrix

(Euclidean distance measure used) illustrates each pair oftwo observation distance.

Step1. Start with n clusters, and each cluster contains a single observation.

Step2. Select the closest pair of clusters to merge into one new cluster.

Step3. Calculate the distance ofthe new cluster and other old single observation cluster.

Step4. Repeat Step2 and Step3 until all observations merge into one cluster.

Figure 2 Hierarchical Clustering Process
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Hierarchical cluster used to cluster 10 ecotypes into subgroups according to their altitude

and latitude (Figure3). From Figure3, we can see that Cvi and Shakdara differ the most

from the remaining ecotypes.

Figure 3 Ecotype Cluster
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2.2. Limma — Linear Models for Microarray Data

Before Random Forest is applied to gene sets, we use Limma, Linear Models for

Microarray Data (Smyth, G K. 2004), to choose smaller subgroups of genes between

ecotypes. The grouping will be discussed in the following paragraph. Differentially

expressed genes will be used in Random Forest to classify ecotypes and to assign ranks to

the genes.

Limma is used to identify genes whose expression pattern differs from others.

Limma is a software package in Bioconductor in R environment (http://www.r-project.org)

for the analysis of gene expression microarray data. Linear models are constructed for

each gene to determinate weather they are differentially expressed in subgroups of

ecotypes defined by latitude an altitude clusters. In the topTable function ofLimma, M-

value, t-statistic, B—statistic and P. Value of each gene can provide overall ranking of

genes in order of differential expression. M-value is logz-fold change between two groups.

M = 10g2(expresszon value of gene at group A
 

expression value of gene in group B

The t-statistic is a well-known hypothesis to test the mean oftwo groups. The B-

statistic is the log odds that the gene is differentially expressed. For example, if the B-

3.5

statistic is 3.5, the probability that the gene is differentially expressed is —e—; = 97%.
1 .

+ e3

A larger B-statistic indicates higher probability that the gene is differentially expressed.

The P. Value is adjusted for multiple hypothesis testing using Benjamini- Hochberg ’s

method (BH). B—statistics and P. Value provide the same ranking when no data is missing.

Besides, differentially expressed genes are ranked in topTable by their P. Values.

Benjamini- Hochberg ’s method controls thefalse discovery rate (FDR) when testing

thousands of hypotheses, such as in microarray data. We identify genes differentially

lO



expressed in subgroups from Hierarchical Cluster (Figure3) and assign the letters of A, B,

C, D to those four groups (Table3).
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2.3. Random Forest

The Random Forest algorithm by Leo Breiman (L. Breiman 2001) is a classification

procedure consisting of a collection of tree-structured classifiers. Each tree is

independent, identically distributed random vectors. Each tree gives a unit vote for the

class of input vectors (arrays). Random Forest can analyze high dimensional data

efficiently. Two processes ofrandomization occur in Random Forest: trees and nodes.

Trees were built by bootstrap samples, and each node was split by randomly selected

predictor variables (genes).

In the ecotype data, there are ten ecotypes and each ofthem has 3 arrays , so there

are 30 arrays in the ecotype data. Moreover, each array has 22810 genes. In the

Random Forest, the 30 arrays are “input vectors” (class observations) and 22810 genes

are as “predictor variables”. Randomly select N arrays from those 30 arrays with

replacement for the training set (in-bag). The arrays which are not included in the

training set are called out-of-bag (OOB). The training set data are used to grow the tree.

The OOB data are used to estimate the classification error rate and get a variable

importance measure.

12



Figure 4 Random Forest Construction
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Each tree is grown as follows

Step 1. The training set consists ofN observations (arrays) selected at random. Take N

observations (arrays) at random and with replacement from the original data set

called “in-bag”. The observations not selected are called “out-of-bag”. On

average, there will be two third observations “in-bag”, and one third “out-of-

bag .

Step 2. The observations selected from the training set are used to construct a decision

tree. The number of variables is M. A fixed number m"? (mm <<M) of

variables are chosen randomly from M variables, and the number of mm, is

held constant during forest growing. These may variables are candidate for

splitting the node. The best split on these randomly chosen m-variables is used

to split the node which visualizes the tree and examine diagnostic statistics of

each tree. For example, ifwe have M=5 variables, we can choose mny =3

variables to split the node. There are C,5 =10 candidates and each candidate

has 3 variables (mtry ). Randomly choose one of these 10 candidates and apply

the best predictor variable (genes) of these 3 variables to split the node of each

tree. Each tree is grown as large as possible and without pnming.

Step 3. Repeat Step] and Step2 to construct 500 trees, ie. n =500 (default number in
tree

R). Thus, the algorithm is called “Random Forest.”

Step 4. Each tree give a classification for 10 ecotypes, we say each array “votes” for

that class (ecotype). For example, ifAtGE_111A was predicted for BayO at the

terminal node, we say AtGE_11IA “votes” BayO, similarly to other arrays. As

14



the tree is built, each array will be assigned to a class (ecotype) in the terminal

node (vote). For each of the N bootstrap samples, a tree is built. The majority

vote for an array in this forest will be the predicted class (ecotype).

Notations

M : 22810 Genes.

N : 30 Arrays.

m,” : The number of variables (genes) used to split each tree node.

time : The number of trees (bootstraps) in the forest.

In the original paper (Leo Breiman 2001) ofRandom Forests, it was shown that the

error rate in Random Forest depends on two properties: the pairwise correlation between

trees and the strength of each individual tree. The correlation is the extent to which

arrays in a tree are similar fiom one to another. The strength is the overall average

prediction quality. Higher correlation between trees will increase the error rate, and

larger strength of each individual tree will reduce the error rate. Increasing the number of

variables, m will increase both of correlation between trees and strength of each
tryt

individual tree. Decreasing mm, decreases both of them. Therefore, we can use the error

rate to estimate optimal 171,,y . The parameter mm. is the only modifiable parameter

which is sensitive in random forest. The predicted class (ecotype) of overall trees

establishes the classification ofRandom Forest by choosing the most votes of the class in

overall trees.

Features of Random Forest

' It runs efficiently on thousands of observations.

I It can handle large number of predictor variables (genes).

' It can rank predictor variables (genes) importance in the classification.

15



Parameters of ntree and mtry

In the Random Forest, the most important and sensitive parameters are the number

of trees (lime) and the number of variables (mm, ) which are selected at random from all

variables. Each ecotype represents a class in Random Forest. We want to find the

optimal nlree and m", to lower the OOB error rate, since the OOB error rate means that

the ecotypes can be classified well or not. The optimal values for n, and mm, are not
ree

unique.

OOB error estimate

There are about one-third of observations (arrays) not included in the training set.

Building trees based on the observations in the test set (OOB). If the classj has the most

of the votes every time as observation n is in OOB data, classj will be as the predicted

class. The proportion of the number oftimes thatj is not equal to the true class 1' over all

observations N is the OOB error rate estimate.

N

Z 1(an ICm.)

 

OOB error rate : n = 1 N (There are 500 boostrap samples here)

For observation n :

C , : Class j gets the most votes (as every time observation n is in OOB data)

"J

C , : The true class for observation n is i

m

N .° There are N observations

Oi '=l'

I(C.|C.)= f]
n1 m 1 ifj¢i

16



Example:

There are 10 classes in Ecotypes and each class has 3 arrays, so there are 30 observations

in the data. The confusion matrix is computed as follows. For example, observations of

AtGE_111_A, AtGE_111_B, and AtGE_111_C belong to class ofBay0, but in random

forest procedure, class Est gets the most votes for AtGE_111_A which imply that

[(CAtGE_111_A j i CAIGQ“1.4 i ) = I , and class Bay0 gets the most votes for

AtGE_111_B and AtGE_111_C which implies that

[(CAtGE_III_B j i CAtGE_lll_Bi ) = 0 and [(CAtGE_lll_C j i CAtGE_lII_Ci ) = 0

(j: Est, i: BayO). In our example, there are 21 observations with [(an i Cm) = I , so

.N

IEZID(CZyi(:hD)

n=l
 

 

21

OOB error rate is N = 36 = 70% .

OOB estimate of error rate: 70%

Confusion matrix:

BayO C24 C010 Cvi Est Kino Ler Nd1 Shakdara VanO class.error

BayO 2 0 0 0 1 0 0 0 0 0 0.3333333

C24 0 l 0 0 O 0 0 0 2 0 0.6666667

C010 0 0 1 0 0 0 1 0 0 1 0.6666667

Cvi 0 O 0 1 0 1 0 0 0 1 0.6666667

Est 2 O 0 0 0 O 0 1 0 0 1.0000000

KinO 0 0 1 1 0 0 0 0 0 1 1.0000000

Ler 0 0 1 1 1 0 0 0 0 0 1.0000000

Nd1 O 0 0 0 0 1 1 1 O 0 0.6666667

Shakdara 0 0 0 O 0 0 0 O 3 0 0.0000000

VanO 0 0 1 2 0 0 O O 0 0 1.0000000   
 

Variable importance

Much interest in bioinformatics is given to Variable Importance measures. In this

study, we rank the genes and thus reduce the number of variables. A variable importance

measure is obtained as the trees are built based on the OOB data set. The most important

17



predictor variables (genes) are identified by calculating an important score for each

predictor variable (gene). For a predictor variable (gene) X, the gene expression values

of the gene X are permuted in each OOB data set to build the tree. The raw importance

scores are calculated by subtracting the number of votes for each correct class with

permutation from the number of votes for the correct class without permutation. The

average of the raw value over all trees is the raw importance score. The raw importance

score is normalized by dividing by standard error. There are fewer correct votes when

predictor variables (genes) are permuted. Thus, a higher importance score for a gene

identifies this gene with more discriminatory power.

Raw _ SC07'e(X) = z (Nwzthout—permutatton _ Npermutation )tree_i ntree

tree_ i

Raw— Score(X)

without—permutation _ Npermutation )]
Z - Score(X) = 

Square[Variance(N

‘th t- t t' .

NW‘ 0“ perm“ “ '0" :the number of votes for correct class after permutation

l I. . .

Np"m“ a '0" :the number of votes for correct class wzthout permutation
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Chapter 3 Results ofLimma and Random Forest to Ecotypes

3.1. Gene Selection using Limma

There are thirty-four ecotypes input vectors in the original Ecotype data. Here, we

just pick up first ten ecotypes that have been replicated. The locations of these ecotypes

are located across every continent in the world.

Let’s examine latitude clusters first, we divide those 22810 genes into seven sets

(Figure 5). The seven sets are:

It 6: genes are significant in all six contrast combinations

It 5: genes are significant in any five of six contrast combinations

It 4: genes are significant in any four of six contrast combinations

It 3: genes are significant in any three of six contrast combinations

It 2: genes are significant in any two of six contrast combinations

lb 1: genes are significant in any one of six contrast combinations

It 0: genes are not significant in any of the six contrast combinations.

Figure 5 Number of significant contrasts
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Similarly altitude clusters, genes are also divided into seven sets (Figure 5). As

expected most genes are not statistically significant. Moreover, we are also interested in

the number of significant genes per contrast (Table 4 and Figure 6)

Table 4 The number of significant genes for per contrast

 

 

 

 

 

 

 

     

Latitude Altitude

Nmnber of Nanber of

Contrast Significant Contrast Significant

Genes Genes

A—B 349 A—B 1118

A—C 403 A—C 924

A—D 736 A—D 916

13-0 295 B—C 754

B—D 775 13-13 897

C—D 759 OD 547  
 

Figure 6 The number of significant genes for per contrast
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From Table4, we can see that the contrasts ofA-D, B—D, C-D have the larger number

of significant genes at significance level 0.05 in Latitude grouping, and the contrasts of

A-B, A-C, A-D have the larger number of significant genes at significance level 0.05 in

Altitude grouping. Therefore, Group D in Latitude and group A in Altitude are significant

group within other groups. This corresponds to Cvi (group D in Latitude) and Shakdara
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(group A in Altitude). Therefore, we will discuss these two ecotypes (Cvi and Shakdara)

in more detail in the following chapter. 423 genes are significant for all three contrasts A-

D, B-D, C—D among latitude, and 8 genes are significant for all three contrasts A-B, A-C,

A-D among altitude (Figure5). Only one gene (247999_at) appears in both, in the 423-

Latitude genes and the 8-Altitude genes. As expected, gene expression differ the most in

the Shakdara and Cvi ecotypes compared to the others (Figure3).

Figure 7 Significant genes for Latitude and Altitude.
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3.2. Ecotypes of Cvi and Shakdara

We are interested in how Cvi and Shakdara differ from the other 8 ecotypes. Thus,

we examine the contrast between Cvi and the average of other 8 ecotypes, and the

contrast between Shakdara and other 8 ecotypes.

o Cvi - 3(Bay0 + C24 + Colo + Est + Kino + Ler + Nd1 + Vano)

o Sha - é-(Bayo + C24 + Colo + Est + Kino + Ler + Nd1 + Vano)

In each of these two contrasts, we perform multiple comparisons and select the top 500

differently expressed genes ranked by P.Values. Therefore, we have two sets of genes

and each set has 500 genes.

We use Random Forest to reduce the number of genes and decide which of these

highly significant genes mostly affect the classification performance ofthese 10 ecotypes.
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3.3. Gene Selection from Cvi contrasts with other 8 ecotypes

Genes were selected from topTable ofLimma for the Contrast:

o Cvi - éwayo + C24 + Colo + Est + Kino + Ler + Nd1 + Vano)

500 top differently expressed genes were selected from Limma with this contrast, and

called Cvi500. Then we would like to use Random Forest to find the optimal number of

Cvi500 genes to improve classification. Before selecting top ranked genes from Random

Forest, we need to find the optimal ntree and mtry first to reduce the OOB error rate. The

procedure for finding the optimal ntree is as follows:

1. Run Random Forest with different number of trees but select mtry is the default (The

 

default mtty is J the number of variables z 151 ).

2. Repeat 1. ten times and average the OOB error rate of these ten times for each of the

number of trees.

3. To see which number of trees has the lowest average OOB error rate and this

number is our optimal number of trees, ie. ntree. We found the optimal number of

trees is 297 from Cvi500. (Figure 8)
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Figure 9 Optimal value of ntree for Cvi
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After finding the optimal ntree, we would like to find optimal mtry as follows.

4. Run randomforest with ntree=297 and different number ofmtry which is near

J the number of variables z151. Here taking the range of mtry from 130 to 170.

Repeat 4. ten times and average the OOB error rate of these ten times for each of the

number of mtry.

To see which number ofmtry has the lowest average OOB error rate and this number

is our optimal mtry. We found the optimal mtry is 148 from Cvi500. (FigurelO)

Figure 10 Optimal value of mtry for Cvi
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3.4. Gene Selection from Shakdara contrasts with other 8 ecotypes

Genes were selected from topTable ofLimma for the Contrast:

. Sha — éwayo + C24 + Colo + Est + Kino + Ler + Nd1 + Vano)

500 top differently expressed genes was selected from Limma with this contrast, and

called Sha500. We follow the same procedure of finding the optimal ntree and mtry, and

choose optimal ntree = 291 and there are 4 optimal numbers of mtry which can make

Random Forest OOB error rate smallest, 133, 148, 161, 163. (Figurell) (Figure12)

Figure 11 Optimal value of ntree for Shakdara
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Figure 12 Optimal value ofmay for Shakdara
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3.5. Gene Selection from Cvi500 and Sha500 by Random Forest

In order to reduce the number of Cvi500 and Sha500, we select important genes

from Random Forest, but the question is how many genes are needed for the best

performance of classification. Beside ntree and mtry, the number of genes which has

smallest OOB error rate is which we are interested in. From above procedure of finding

optimal mtry and ntree (Figure 9, 10, 11, 12), the value of ntree greater than 200 can get

stable smaller OOB error rate, but the value of mtry is not significant association with the

OOB error rate. Thus, we select the number of most important genes from Random

Forest with ntree=200, but keep mtry be default in Cvi500 and Sha500 respectively. To

rank the genes the measure MeanDecreaseAccuracy was used to measure reliable

importance.

In Cvi500, 43 genes is the smallest number for optimal classification. In Sha500, 84

genes is the smallest number for optimal classification. Then we compare those two sets

of selected genes, there are 43 genes from the intersection of Cvi500 and Sha500, and

there are 4 genes from the intersection of Cvi43 and Sha84. (Figure 15)

Figure 13 Optimal value of the number of genes for Cvi
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Figure 14 Optimal value of the number of genes for Shakdara
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Figure 15 Overlapping genes from Cvi500 and Sha500
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3.6. Compare the OOB error rate of Random Forest

Several sets of genes were selected with Limma and Random Forest. We have two

sets of 500 genes selected from topTable ofLimma; they are Cvi500 and Sha500.

Moreover, we have a set of43 genes from Cvi500, and a set of 84 genes from Sha500.

The following table will show the OOB error rate for Cvi500 and Sha500 and compare

the status of using the optimal ntree and mtry with the status of without optimal ntree and

mtry. Besides, Table5 also shows that the OOB error rate for the selected 84 genes and

selected 50 genes without adjusting parameters

Table 5 Comparison ofOOB error rate

 

Genes Status Number ofGenes OOB error rate

 

 

Without optimal value of 500 16.67%

ntree and mtry

 

Cv' oo

15 With optimal values of

ntree and mtry and

the smallest number of

genes

43 6-67%

 

Without optimal value of
00 10%

ntree and mtry 5

 

Sha500 With optimal values of

ntree and mtry and

the smallest number of

genes

84 3.33%      
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3.7. Misclassifications of Ecotypes

When running the Random Forest, there are some arrays which are misclassified.

Each run gives us different misclassified ecotypes. Table6 shows misclassified arrays

from all Random Forest runs. The most frequent misclassifications are VanO and KinO.

The array ATGE_116_B.CEL (Kino) is often misclassified.

Table 6 Misclassification List

 

 

 

 

 

 

 

 

  

Array Actual Ecotype Predicted Ecotype

ATGE_112_A.CEL C24 Shakdara

ATGE_115_D.CEL Est Colo

ATGE_116_A.CEL Kino Vano

ATGE_116_B.CEL Kino Vano, Shakdara, Bayo

ATGE_116_C.CEL Kino Vano

ATGE_117_D.CEL Ler Est

ATGE_120_A.CEL Vano Kino

ATGE_120_C.CEL Vano Kino   
 

Figure 16 Misclassification figure

 

 

 

O Misclassiflcation

O No Misclassification
   

P
r
e
d
i
c
t
e
d
C
l
a
s
s

       
 

True Class   
 

29



Chapter 4 Gene Ontology

4.1. Gene Ontology with Classification Superviewer

We have identified genes that may be important in adaptation. We selected two

groups of genes, Cvi43 and Sha84 based on Random Forest. Cvi is close to the equator

off the coast ofAfrica with higher temperature than other ecotypes, and Shakdara is a

mountainous (around Himalayas) landlocked country in Central Asia and thus exposed to

climate (eg. Temperature). The adaptation of these two ecotypes has likely been driven

by these stress conditions. We would like to argue that these selected genes are important

for stress resistance.

In order to validate the genes we selected from Random Forest, we classify the gene

function on a group of genes based on the website: “The Bio-Array Resourcefor

Arabidopsis thaliana Functional Genomics” http://bar.utoronto.ca/. The web-based tool

of Classification SuperViewer creates an overview of gene functional classification of a

group ofAGI genes based on the MIPS database (Munich Information Center for Protein

Sequences). Currently, there are 25450 genes for MIPS classifications in the MAtDB

(MIPS Arabidopsis Thaliana Database). Here we do not focus on single genes. Instead,

we want to find gene functions overrepresented in the selected sets of genes that can

provide important information on stress response. Gene function classification is an

approach for grouping genes based on functional similarity. However, Functional

Classification Pie Chart often used in Bioinforrnatics provides the absolute numbers and

percentage of gene function. Absolute numbers of genes on functional classification

might be misleading in a different treatment and situation, but normalizing the group of

genes can avoid this misdirection. In this way, the differences of gene function are more

easily detected. Classification SuperI/iewer includes normalization, bootstrap sampling,
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and provides a confidence estimate for the accuracy of results. The standard deviation

may make results spurious and unreliable. Moreover, if the confidence intervals include

one, the genes of this functional classification may be due to a small number of genes,

and thus the class score is unreliable. We only consider a class score greater than one and.

confidence intervals not including one to check if these categories of functions are

associated with stress response.

A class score for normalization was calculated based on the following equation: (N

is gene number)

N
class(inputset) / Nclassified (inputset)
 

SCOT' class : N / N

class(25K) classified(25K )

(inputset .° Cvi43 and Sha84)

One hundred Bootstrap samples were chosen from the input set. After sampling,

classifying each set and generating them to get class score as above equation.

Furthermore, the standard deviation of each class was shown along with the class score.

If the class scores are greater than one and confidence intervals not including one, the

gene ontology categories are overrepresented within a group of genes. In the following

section is applied to gene groups Cvi43 and Sha84 in Classification Superviewer and

discuss how their overrepresented gene functions affect the stress response. After that,

we simplify the broad and wide spectrum ofknown protein functions based on FunCat

annotation which includes 7 main gene categories (Table7).
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Table 7 Main Function categories of FunCat

 

Main Function categories of FunCat
 

 

Metabolism

01 Metabolism

02 Energy

04 Storage protein

Information pathways

10 Cell cycle and DNA processing

1 1 Transcription

12 Protein synthesis

14 Protein fate

(folding, modification and destination)

16 Protein with binding function or cofactor requirement

(structural or catalytic)

18 Protein activity regulation

Transport

20 Cellular transport, transport facilitation and transport routes

Perception and response to stimuli

30 Cellular communication/signal transduction mechanism

32 Cell rescue, defense and virulence

34 Interaction with the cellular environment

36 interaction with the environment (systemic)

38 Transposable elements, viral and plasmid proteins

Developmental processes

40 Cell fate

41 Development (systemic)

42 Biogenesis of cellular components

43 Cell type differentiation

45 Tissue differentiation

47 Organ differentiation

Localization

70 Subcellular localization

73 Cell type localization

75 Tissue localization

77 Organ localization

78 Ubiquitous expression

Experimentally uncharacterized proteins

98 Classification not yet clear-cut

99 Unclassified proteins   
With the exception of categories 78, 98 and 99. all main categories are the origin of

hierarchical. tree-like structures. To make the introduction of new main categories

possible. the numbering of the categories is not strictly sequential.

The FunCat, a functional annotation scheme for systematic classification of

proteins from whole genomes, Nucleic Acids Research, 2004, Vol.32, No.18:

5539-5545.
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4.2 Gene Ontology of Cvi43 and sha84

Figure 17 Cvi43 — Classification Superviewer
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As we can see, there are five terms whose class scores greater than one and confidence

intervals not including one. The number of genes, Cvi43, associated with terms (1)-(5)

below is greater than expected on the basis of chance. In other words, terms (1)—(5) are

overrepresented in the gene set of Cvi43.

(1) CELL TYPE LOCALISATION

(2) REGULATION OF/INTERACTION W. CELLULAR ENVIRONMENT

(3) SYSTEMIC REGULATION OFleTERACTION W. ENVIRONMENT

(4) TRANSPORT FACILITATION

(5) CELL RESCUE, DEFENSE AND VIRULENCE

Refer to Table7 , (2) (3) (5) are in category ofPerception and response to stimuli. Plant

perception indicates the change in the environment. The stimuli which plants perceive

can respond to the environmental effects of chemicals, gravity, light, moisture, infections,

temperature, oxygen, and carbon dioxide. Plants detect stimuli in different methods and a

variety of reaction response, but generally plant perception occurs at the cellular level.
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Thus, the selected genes are related to climatic conditions for Cvi.

Figure 18 Sh384 — Classification Superviewer
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In Figurel 8, there are eight terms whose class scores greater than one and confidence

intervals not including one. Thus, terms (l)-(8) below are overrepresented in the gene set

of Sha84.

(1) STORAGE PROTEIN

(2) TISSUE LOCALISATION

(3) CELL TYPE DIFFERENTIATION

(4) ORGAN LOCALISATION

(5) TISSUE DIFFERENTIATION

(6) METABOLISM

(7) CELL RESCUE, DEFENSE AND VIRULENCE

(8) ENERGY

Terms of (1) (6) (8) covered all sub-functions of the metabolism. The definition for

metabolism is: “Chemical process occurring within a living cell or organism, including

anabolism and catabolism. Metabolism is a chemical process that typically transforms
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small molecules, but also includes macromolecular process and protein synthesis and

degradation.” Metabolism is associated with energy in some ways. Under stress, in

metabolism some compounds are broken down to yield energy. Then this energy is

directed at repairing the damage made by stress. Thus, metabolism would be an

important factor under many different types of stressors. Under stress, plants may

undergo a change ofmetabolism which would direct energy away from grth and

reproduction and focus on cellular defense and maintenance. Instead, this helps plants

survive in tough environments. Thus, the selected genes Sha84 may be important for

adapting to the climatic conditions in high altitude.

Moreover, cytochrome P450 genes and glutathione-S-transferase genes may play an

important role in oxidative stress resistance since oxidative stress is generated by all

forms of stress in some ways. Several papers mention that Cytochrome P450 genes is

important for plants. Oxidative detoxification of some herbicides in plant tissues is

obtained by a Cytochrome P450-dependent monooxygenase system (Donaldson and

Luster 1991, Hatzios 1991, and Sanderrnann 1992). Cytochrome P450s play important

roles in biosynthesis of a variety of endogenous lipophilic compounds (Donaldson and

Luster 1991 and Bolwell et a1. 1994). Cytochrome P450 monooxygenases are a group of

haem-containing proteins which catalyze various oxidative reactions (Schuler 1996 and

Chapple 1998). In addition, some papers support that Glutathione-S-transferase plays an

important role in plants. Glutathione S-transferases (GSTs) appear to be ubiquitous in

plants and have defined roles in herbicide detoxification (Lamoureux and Rusness 1993).

The fundamental function of GSTs is the detoxification ofboth endogenous and

xenobiotic compounds (Marrs 1996). GSTs play a fundamental role in protection against

endogenous or exogenous toxic chemicals (Sheehan et al. 2001). Furthermore,
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cytochrome P450 genes and glutathione-S-transferase are phase I and phase H

detoxification enzyme, respectively. Therefore, finding such genes associated with any

form of stress may be biologically meaningful.

Besides, a gene (A15g10140) in Cvi43 is FLC (FLOWERING LOCUS C) gene which

is a main detemrinant of flowering time. Arabidopsis thaliana locates in the

Northern Hemisphere with long day time light hours which may affect flowering time.

The transition to flowering is an important event in the plant life cycle and is adapted by

several environmental factors ofphotoperiod, light quality, vemalization, and growth

temperature, as well as biotic and abiotic stresses. Thus, FLC can respond to stresses

and environmental effects. The following 5 genes were identified in both Cvi43 and

Sha84 corresponding to these 3 specific genes and the graph also shows the expressions

of these 5 genes.

Figure 19 Expression graph for 5 specific genes.
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Table 8 FLC, Cflochrome P450 and Glutathione-S-transferase genes

 

 

 

 

 

AGI ID Affy ID Annotation

At4g31500 253534_at CYP8331_ATR4_RED1_RNT1_SUR2_LYP83BI (CYTOCHROME P450 MONOOXYGENASE 8381); oxygen binding

At4g39950 252827_at CYP79BZ_CYP79BZ (cytochrome P450, family 79, subfamily B, polypeptide 2); oxygen binding

At1959700 262916_at ATGSTU16_ATGST016 (Arabidopsis thaliana Glutathione S-transferase (class tau) 16); glutathione transferase

At2922330 264052_at CYP79B3_CYP79B3 (cytochrome P450, family 79, subfamily B, polypeptide 3); oxygen binding

AthlOl40 250476_at FLC_AGL25_FLF_FLC (FLOWERING LOCUS C)  
 

Annotation from “’I‘AIR. affv ATHl array elements-2006-07-l4.txt”
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APPENDIX A

Selected groups of Genes — Cvi43 & Sha84

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cvi43

Affy ID AGI ID Annotation

At3g61520

246173_s_at At5g28370 pentatricopeptide (PPR) repeat-containing protein

At5g28460

24667 l_at At5g30450

246862_at At5g25760 UBC21_PEX4_PEX4 (PEROXIN4); ubiquitin-protein ligase

247760_at At5g59130 subtilase family protein

24779l_at At5g58710 ROC7_ROC7 (rotamase CyP 7); peptidyl-prolyl cis-trans isomerase

248460_at At5g50915 basic helix-loop-helix (bHLH) family protein

similar to unknown protein [Arabidopsis thaliana] (TAIR:AT5624655.1);

249752_at At5g24660 similar to unknown protein [Brassica rapa subsp. pekinensis]

(GB:AAQ92331.1)

249780_at At5g24240 phosphatidylinositol 3- and 4-kinase family protein / ubiquitin family protein

250476_at At5g10140 FLC_AGL25_FLF_FLC (FLOWERING LOCUS C)

similar to PBS lyase HEAT-like repeat-containing protein [Arabidopsis

At3 62460 thaliana] (TAIR:AT3G62530.1); similar to 8OC09_3 [Brassica rapa subsp.

25124l_s_at At3g62530 pekinensis] (GB:AAZ41814.1); similar to OsO7g0637200 [Oryza sativa

g (japonica cultivar-group)] (GB:NP_001060400.1); contains InterPro domain

Protein ofunknown firnction DUF537; (InterProzlPROO749l)

251962_at At3g53420 PIP2A_PIP2_PIP2A (plasma membrane intrinsic protein 2;l)

252168_at At3g50440 hydrolase

similar to unknown protein [Arabidopsis thaliana] (TAIR:AT5G65810.1);

similar to OsOlg0144000 [Oryza sativa (japonica cultivar-group)]

252231_at At3g49720 (GB:NP_001042001.1); similar to conserved hypothetical protein [Medicago

truncatula] (GB:ABE78370.1); contains domain S-adenosyl-L-methionine—

dependent methyltransferases (SSF53335)

At3g47220 . . . . . . .
252459_s_at At3g47290 phosphomosrtrde-specrfic phospholrpase C family protein

252529_.at At3g46490 oxidoreductase, 20G-Fe(II) oxygenase family protein

similar to unknown protein [Arabidopsis thaliana] (TAIR:AT2G26240.1);

similar to OsO4gO653100 [Oryza sativa (japonica cultivar-group)]

(GB:NP_001054104.1); similar to transmembrane protein 14C [Argas

252723_at At3g43520 monolakensis] (GB:AB152790.1); similar to OsO3g0568500 [Oryza sativa

(japonica cultivar-group)] (GB:NP_OOIOSOS 10.1); contains InterPro domain

Protein ofunknown function UPF0136, Transmembrane;

(InterProzlPROOS349)

similar to myosin-related [Arabidopsis thaliana] (TAIR:AT1G24460.1);

similar to hypothetical protein, conserved [Leishmania major]

253532_at At4g31570 (GB:CAJ07774.1); contains InterPro domain Prefoldin;  (InterProzlPROO9053); contains InterPro domain t-snare;

(InterProzlPR010989)
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CYP83Bl_ATR4_REDl_RNT1_SUR2_CYP83Bl (CYTOCHROME

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2535343“ “4331500 P450 MONOOXYGENASE 8381); oxygen binding

254351_at At4g22300 carboxylic ester hydrolase

25436l__at At4g22212 Encodes a defensin-like (DEFL) family protein.

254928_at At4g11410 short-chain dehydrogenase/reductase (SDR) family protein

255257_at At4g05050 UBQ11__UBQ11 (UBIQUITIN 11); protein binding

RIC10_RIC10 (ROP-INTERACTIVE CRIB MOTIF-CONTAINING

255307_at At4g04900 PROTEIN 10)

255578_at At4g01450 nodulin MtN21 family protein

256497_at Atlg31580 ECS1_CXC750__ECS 1

256863_at At3g24070 zinc knuckle (CCHC-type) family protein

257071 at At3g281 80 ATCSLC04_ATCSLC4_CSLC04_ATCSLC04 (Cellulose synthase-lrke

- C4); transferase, transfernng glycosyl groups

257205_at At3g] 6520 UDP-glucoronosyl/UDP-glucosyl transferase family protein

259067_at At3g07550 F-box family protein (FBL12)

similar to OsO4g0528100 [Oryza sativa (japonica cultivar-group)]

259591_at At1g28150 (GB:NP_001053373J)

259733_at At1g77480 nucellin protein, putative

similar to unknown protein [Oryza sativa (japonica cultivar—group)]

260232_at Atl g74640 (GB:BAD28539.1); contains domain no description (G3D.3.40.50. 1820);

contains domain alpha/beta-Hydrolases (SSF53474)

260244_at At1g74320 choline kinase, putative

260252_at At1g74240 mitochondrial substrate carrier family protein

263034_at At1g24020 Bet v I allergen family protein

263777 at At2g46450 ATCNGC12_CNGC12_ATCNGC12 (cyclic nucleotide gated channel 12);

- cyclic nucleotide brndmg / ion channel

similar to unknown protein [Arabidopsis thaliana] (TAIR:AT2G31670.1);

similar to Hypothetical protein [Oryza sativa] (GB:AAK55783.1); contains

265142_at At1g51360 InterPro domain Stress responsive alpha-beta barrel; (InterPro:IPR013097);

contains InterPro domain Dimeric alpha-beta barrel; (InterPro:IPR011008)

265162_at At1g30910 molybdenum cofactor sulfurase family protein

265486_at

similar to unknown protein [Arabidopsis thaliana] (TAIR:AT3G48690.1);

similar to unknown protein [Arabidopsis thaliana] (TAIR:AT3G48700.1);

similar to Esterase/lipase/thioesterase [Medicago truncatula]

2656993“ At2g03550 (GB:ABE83378.1); contains InterPro domain Esterase/lipase/thioesterase;

(InterPro:IPR000379); contains InterPro domain Alpha/beta hydrolase fold-

3; (InterPro:IPR013094)

265768_at At2g48020 sugar transporter, putative

266643 5 at At2g29710 UDP-glucoronosyl/UDP-glucosyl transferase family protein
- - At2g29730

267093_at At2g38170 CAX1_RCI4_CAX1 (CATION EXCHANGER l); calcrumzhydrogen  antiporter 
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Affy ID AGI ID Annotation

245038__at At2g26560 PLA2A_PLA IIA_PLP2_PLA IIA_PLP2 (PHOSPHOLIPASE A 2A);

nutrient reservorr

245400_at At4gl7040 ATP-dependent Clp protease proteolytic subunit, putative

245456_at At4gl6950 RPP5_RPP5 (RECOGNITION OF PERONOSPORA PARASITICA 5)

2459.77 at At5g13110 G6PD2_G6PD2 (GLUCOSE-6-PHOSPHATE DEHYDROGENASE 2);

- glucose-6-phosphate l-dehydrogenase

At5 34920
246642_s_at “£59620

similar to unknown protein [Arabidopsis thaliana] (TAIR:AT3G04860.1);

similar to OsO7g0572300 [Oryza sativa (japonica cultivar-group)]

(GB:NP_001060057.1); similar to OsO3g0806700 [Oryza sativa (japonica

246708_at At5g28150 cultivar-group)] (GB:NP_001051637.1); similar to Protein ofunknown

ftmction DUF868, plant [Medicago truncatula] (GB:ABE92686.1); contains

InterPro domain Protein ofunknown function DUF868, plant;

(InterPro:IPR008586L

247210 at Ath65020 ANNAT2_ANNAT2 (ANNEXIN ARABIDOPSIS 2); calcrum 1011 bmdmg

— calcrum-dependent phospholrpid brndmg

SALl FRYl HOSZ SAL] FIERYl ; 3' 2' ,5'-bis hos hate nucleotidase/

247313_at At5g63980 inositch or phbsphaticglinositdl phosphzitas: ) P P

247404_at At5g62890 permease, putative

247814_at At5g583 10 hydrolase, alpha/beta fold family protein

247999_at At5g56150 UBC30__UBC30; ubiquitin-protein ligase

248079_at At5g55790 unknown protein

248200_at At5g54160 ATOMT1_OMT1_ATOMT1 (O-METHYLTRANSFERASE 1)

248427_at At5g51750 subtilase family protein

248796_at At5g47180 vesicle-associated membrane family protein / VAMP family protein

248800_at At5g47320 RPS19_RPSI9 (4OS ribosomal protein S19); RNA binding

248961_at At5g45650 subtilase family protein

249258_at At5g4l650 lactoylglutathione lyase family protein / glyoxalase I family protein

249567_at At5g38020 S-adenosyl-L-methionine:carboxyl methyltransferase family protein

similar to 0302 0815400 sativa 'a onica cultivar- ou

249610_at At5g37360 mam—00104385021) [0W 0 1’ gr 1’”

249645_at At5g36910 TH12.2.2_THI2.2 (THIONIN 2.2); toxin receptor binding

249733_at At5g24400 EMB2024_EMBZOZ4 (EMBRYO DEFECTIVE 2024); catalytic

similar to unknown protein [Arabidopsis thaliana] (TAIR:AT1G61065. 1);

similar to unknown protein [Saussurea involucrata] (GB:ABC68264.1);

similar to 0506 0114700 0 a sativa 'a onica cultivar- rou

”0072—“ “52417210 (GB:NP_00105I5606J); SIEIDIIZI'Z to 030530534800 [Oryza sgativiig'aponica

cultivar-group)] (GB:NP_001055640.1); contains InterPro domain Protein of

unknown function DUF1218; (InterPro:IPR009606)

250633_at At5g0746O PMSR2._PMSR2 (PEPTIDEMETHIONINE SULFOXIDE REDUCTASE

2); protem-methronme-S-oxrde reductase

250751__at At5g05890 UDP-glucoronosyl/UDP-glucosyl transferase family protein

HB-6 LSN BLH9 BLR PNY RPL VAN LSN LARSON,

2510313“ At5g02030 VAAMANA); DNA bincfing / tfanscfiption factor (

251903_at At3g54120 reticulon family protein (RTNLB 12)
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GSA2_GSA2 (GLUTAMATE- 1-SEMIALDEHYDE 2,1-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2523181“ At3g48730 AMINOMUTASE 2); glutamate-l-semialdehyde 2,1-aminomutase

similar to unknown protein [Arabidopsis thaliana] (TAIR:AT3G47200.2);

similar to hypothetical protein LOC_Oleg29620 [Oryza sativa (japonica

cultivar-group)] (GB:ABA98257.1); similar to 031 1g0543300 [Oryza sativa

252462__at At3g47250 (japonica cultivar-group)] (GB:NP_001068043.1); similar to OsO4g0505400

[Oryza sativa (japonica cultivar-group)] (GB:NP_001053253.1); contains

InterPro domain Protein ofunknown function DUF247, plant;

(InterProzfl’R0041 5 8)

252478_at At3g46540 epsm N-terrmnal homology (ENTH) domam-contammg protern / clathnn

assembly protem—related

252529_at At3g46490 oxidoreductase, 20G-Fe(II) oxygenase family protein

252659_at At3g44430 similar to unknown protein [Arabidopsis thaliana] (TAIR:AT5G41660. 1)

At3g44300

252678_s_at At3g44310 NIT2__NIT2 (NITRILASE 2)

similar to unknown protein [Arabidopsis thaliana] (TAIR:AT5G47860.1);

similar to OsO9g0436900 [Oryza sativa (japonica cultivar-group)]

252724_at At3g43540 (GB:NP_001063263.1); similar to unknown protein [Oryza sativa (japonica

cultivar-group)] (GB:BAD36432.1); contains InterPro domain Protein of

unknown function DUF1350; (InterPro:IPR010765)

252827 at At4g39950 CYP79B2_CYP79BZ (cytochrome P450, fanuly 79, subfarruly B,

- polypeptide 2); oxygen bmdmg

MI-l-P SYNTHASE_MI-1-P SYNTHASE (Myo-inositol-l-phosphate

2528633“ At4g39800 synthase); inositol-3-phosphate synthase

253422_at At4g32240 unknown protein

253666 at At4g30270 MERISB_BRU1_MERI-5__MERISB (MERISTEM-S); hydrolase, acting on

- glycosyl bonds

254248_at At4g23270 protein kinase family protein

similar to unknown protein [Arabidopsis thaliana] (TAIR:ATSG44670.1);

similar to OsO6gO328800 [Oryza sativa (japonica cultivar-group)]

(GB:NP_001057533.1); similar to Os02g0712500 [Oryza sativa (japonica

2545083“ At4g20170 cultivar-group)] (GB:NP_001047907.1); similar to unknown protein [Oryza

sativa (japonica cultivar-group)] (GB:BAD72474.1); contains InterPro

domain Protein ofunknown function DUF23; (InterPro:IPR008 166)

254553_~at At4gl9530 disease resistance protein (TIR-NBS-LRR class), putative

AOP2__AOP2 (ALKENYL HYDROXALKYL PRODUCING 2);

255437—3t At4g03060 oxrdoreductase, actmg on paired donors, wrth mcorporatron or reduction of

molecular oxygen, 2-oxoglutarate as one donor, and mcorporatron of one

atom each of oxygen into both donors

255859_at At5g34930 arogenate dehydrogenase

256021_at Atl g58270 ZW9__ZW9

similar to 18$ pro-ribosomal assembly protein gar2-re1ated [Arabidopsis

256096_at Atl g1 3650 thaliana] (TAIR:AT2G03810.3); similar to hypothetical protein

[Trypanosoma cruzi strain CL Brener] (GB:XP_813437.1)

256221_at At1g56300 DNAJ heat shock N-terminal domain-containing protein

256454_at At1g75280 isoflavone reductase, putative

256458_at At1g75220 integral membrane protein, putative

256489_at At1g31550 carboxylic ester hydrolase/ lipase

256940_at At3g30720 unknown protein  
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257205_at At3g16520 UDP-glucoronosyl/UDP-glucosyl transferase family protein

257228_at At3g27890 NQR_NQR (NADPH2QUINONE OXIDOREDUCTASE); FMN reductase

257580_at At3g06210 binding

similar to unknown protein [Arabidopsis thaliana] (TAIR:AT5G24600.1);

similar to hypothetical protein [Oryza sativa (japonica cultivar-group)]

(GB:BAC55679.1); similar to OsOZg0292800 [Oryza sativa (japonica

2581243" “398215 cultivar-group)] (GB:NP_001046597.1); similar to OsO8g0153900 [Oryza

sativa (japonica cultivar-group)] (GB:NP_001061011.1); contains InterPro

domain Protein ofunknown function DUF599; (InterPro:IPR006747)

258322 at At3g22740 HMT3_HMT3 (Homocysterne S-methyltransferase 3); homocysterne S-

— methyltransferase

Atlg07780 PAIl_TRP6_PAIl (PHOSPHORIBOSYLANTHRANILATE

259770_s_at At1g29410 ISOMERASE 1): hos horibos lanthranilate isomerase

At5g05590 ’ p p y

ATT12__ATT12 (ARABIDOPSIS THALIANA TRYPSIN INHIBITOR

2605463” “293520 PROTEIN 2); trypsin inhibitor

GT_GT/UGT74F2 (UDP-GLUCOSYLTRANSFERASE 74F2); UDP-

260567_at At2g43820 glucosyltransferase/ UDP-glycosyltransferase/ transferase, transferring

glycosyl groups / transferase, transferring hexosyl groups

260685__at At1g17650 phosphogluconate dehydrogenase (decarboxylating)

260872_at At1g21350 electron carrier/ oxidoreductase

similar to zinc finger (Ran-binding) family protein [Arabidopsis thaliana]

(TAIR:ATIGSSO40. 1); similar to Zn-finger in Ran binding protein and

others, putative [Oryza sativa (japonica cultivar-group)] (GB:AAX95671.1);

2609813" At1g53460 similar to OsO3g0712200 [Oryza sativa (japonica cultivar-group)]

(GB:NP_OOIOS 1062.1); similar to 0301g0203300 [Oryza sativa (japonica

cultivar-group)] (GB:NP_00104233 l . l)

NRS/ER_NRS/ER (NUCLEOTIDE-RHAMNOSE

261 105_at At1g63000 SYNTHASE/EPIMERASE-REDUCTASE)

261326 3 at At1g44180 aminoacylase putative / N-acyl-L-amino-acid amidohydrolase putative

- - At1g44820 ’ ’

SMT3_SMT3 (S-adenosyl-methionine-sterol-C-methyltransferase 3); S-

26l727_at At1g76090 adenosylmethionine-dependent methyltransferase

26l924_at Atl g22550 proton-dependent oligopeptide transport (POT) family protein

262134_at At1g77990 AST56_SULTR2;2_AST56 (sulphate transporter 2;2); sulfate transporter

262458__at Atlg11280 carbohydrate binding / kinase

G-TMT_TMT1_VTE4_G-TMT (GAMMA-TOCOPHEROL
262875_at Atl g64970 METHYLTRANSFERASE)

ATGSTU16_ATGSTU16 (Arabidopsis thaliana Glutathione S-transferase

2629l6_at Atlg59700 (class tau) 16); glutathione transferase

263553_at At2g16430 PAP10__PAP10; acid phosphatase/ protein serine/threonine phosphatase

263714_at At2g20610 SUR1_ALFl_HLS3_RTY_SURl_SUR1 (SUPERROOT 1); transaminase

264052-21t At2g22330 CYP79B.3_CYP79B3 (cytochrome P450, family 79, subfamily B,

polypeptide 3); oxygen bmdrng

2645 1 3_at At1 g09420 G6PD4_G6PD4 (GLUCOSE-6-PHOSPHATE DEHYDROGENASE 4);

glucose-6-phosphate l-dehydrogenase

264790_at At2gl7820 ATHK1_AHK1_ATHK1_ATHK1 (HISTIDINE KINASE 1)

264954_at Atl g77060 mutase family protein  
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ARP2_RPL3B__ARP2/RPL3B (ARABIDOPSIS RIBOSOMAL PROTEIN

 

 

 

 

 

 

 

 

2650321“ Atlg6l580 2); structural constituent of ribosome

265058 3 at At1g52030 MBP2_F-ATMBP_MBP1.2_MBP2 (MYROSINASE-BINDING

- - Atlg52040 PROTEIN 2)

265354_at At2gl6700 ADF5_ADF5 (ACTIN DEPOLYMERIZING FACTOR 5); actin binding

265486_at 265486_at

265611_at At2g25510 unknown protein

similar to transcription elongation factor-related [Arabidopsis thaliana]

(TAIR:AT5G25520.2); similar to PHD finger protein-like [Oryza sativa

(japonica cultivar-group)] (GB:BAD24999.1); similar to OsOZg0208600

265905_at At2g25640 [Oryza sativa (japonica cultivar-group)] (GB:NP_001046260.1); contains

InterPro domain Transcription elongation factor S-Il, central region;

(InterPro:IPROO3618); contains InterPro domain SPOC;

(InterPro:IPRO 1 292 1)

266472_at

266643_s_at 23:33.7]; UDP-glucoronosyl/UDP-glucosy1transferase family protein

267078_at At2g40960 nucleic acid binding   
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APPENDIX B

R CODE

#####################################################################

# #

# Pakages Used #

# #

 

 

library(limma)

library(randomForest)

library(varSelRF)

library(maps)

# #

# Reading Data #

# —--——-—-— #

 

Ecodata = read.table("AtGE_ecotypes.txt", header =T, sep="\t")

Geo = read.table("Geo.txt", header =T, sep="\t")

x = read.table("EcotypesGeo.txt",sep="\t")

#####################################################################

 # #

#Map#

# # 

Paflmepw, 4))

par(mfrow=c(2,l))

map("world",col="grey")

text(Geo$Longitude,Geo$Latitude,Geo$Ecotype,col="black",cex=0.8)

points(Geo$Longitude,Geo$Latitude,col= rainbow(16220)[l : 10],cex=0.7,lwd=3)

legend( 120,85, Geo$Ecotype , f111= rainbow(16220)[1:10] , cex=0.8, bty="n")

points(Geo$Longitude[7],GeoSLatitudeU],col="DarkGoldenRod ",cex=3,lwd=2)

arrows(10.5, 30, 10.5, -50, lwd=2,angle = 15,col="DarkGoldenRod ")

text(5.5,-70, "Germany ", adj=0, cex=1.5, col="DarkGoldenRod ")

map("world", "Germany.,COI="DarkGold
enRod H)

text(Geo$Longitude,Geo$Latitude,Geo$Ecotype,cex=0.8,col="red")

points(Geo$Longitude,Geo$Latitude,col= rainbow(16:20)[1: 10],cex=0. 7,1wd=3)
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 # #

# Cluster for La4 and A14 #

# # 

la = x[-1,4]

la=la[l :10]

names(la)=x[- l , 1][ l : 10]

dist(la)

hc.la <- hclust(dist(la))

plot(hc.la)

lakm <- laneans(dist(la),4)$cluster

lakm # Cluster

a1 = x[-1,7]

al=al[1 :10]

names(a1)=x[-1, 1][1 : 10]

dist(al)

hc.al <— hclust(dist(al))

plot(hc.al)

al.km <- kmeans(dist(al),4)$cluster

 

a1.km # Cluster

# #

# Gene Expression Plot #

# # 

genelist = la4 # changable variable

name: "La4"

genedata<-Ecodata[genelist,2 :3 1]

gene.x1<-apply(genedata[,1 :3], 1,mean)
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gene.x2<-apply(genedata[,4:6],1,mean)

gene.x3<-apply(genedata[,7 :9], 1 ,mean)

gene.x4<-apply(genedata[,10: 12], 1,mean)

gene.xS<-apply(genedata[, 13: 15], 1 ,mean)

gene.x6<-apply(genedata[,16: 1 8], 1,mean)

gene.x7<-apply(genedata[, 19:2 1 ],1,mean)

gene.x8<-apply(gcnedata[,22:24],1,mean)

gene.x9<—apply(genedata[,25:27],1,mean)

gene.x] O<-apply(genedata[,28:30], 1,mean)

genegexp<-data.fi'ame(gene.xl, gene.x2, gene.x3, gene.x4, gene.xS,

gene.x6, gene.x7, gene.x8, gene.x9, gene.xlO)

for (i in l:length(genelist)){

GeneExpression.gene=t(rbind(genegexp[i,]))

matplot(GeneExpression.gene,axes=F,frame=T,type='b',pch=1)

row.names(GeneExpression.gene)<-c("BayO", "C24", "C010", "Cvi", "Est", "KinO", "Let", "Nd1", "Sha",

"VanO")

axis(l, 1:10, row.names(GeneExpression.gene))

par(new=T)

}

title(xlab="Ecotypes",main=paste(name))

 # #

# Gene Expression Plot - Each picture represents one gene #

# # 

genelist = la4 # changeable variable

N = 20 # the number of genes

genedata<-Ecodata[genelist,2 : 3 l]

gene.x1<-apply(genedata[, 1 :3], 1 ,mean)

gene.x2<~apply(genedata[,4:6], 1 ,mean)

gene.x3<—apply(genedata[,7:9], 1 ,mean)

gene.x4<-apply(genedata[, 10: 12], 1,mean)

gene.xS<—apply(genedata[,13:15],1,mean)
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gene.x6<-apply(genedata[, l 6: l 8], 1,mean)

gene.x7<-apply(genedata[,19:21],],mean)

gene.x8<—apply(genedata[,22:24],1,mean)

gene.x9<-apply(genedata[,25 :27], 1,mean)

gene.x] O<-apply(genedata[,28 : 30] , 1 ,mean)

genegexp<-data.frame(gene.x1, gene.x2, gene.x3, gene.x4, gene.x5,

gene.x6, gene.x7, gene.x8, gene.x9, gene.xlO)

for (i in 1:N){

GeneExpression.gene=t(rbind(genegexp[i,]))

matplot(GeneExpression.gene,axes=F,frame=T,type='b',pch=1 )

row.names(GeneExpression.gene)<-c("BayO", "C24", "C010", "Cvi",

"Est", "KinO", "Ler", "Nd1", "Sha", "Van0")

axis(1, 1:10, row.names(GeneExpression.gene))

title(main=paste("Gene",i))

}

44 4!
ll "

# Latitude - La4 #

«H 4‘

II II

ecorep = c(1,l,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,9,10,10,10)

design = model.matrix(~-1+factor(ecorep))

Ala4 = design[,S]

Bla4 = design[, 1 ]+design[,7]+design[,8]+design[,10]

Cla4 = design[,2]+design[,3]+design[,6] +design[,9]

Dla4 = design[,4]

designla4 = data.frame(Ala4, Bla4, Cla4, Dla4)

contrast.matrixla4 = makeContrasts(Ala4 — Bla4, Ala4 — Cla4, Ala4 — Dla4, Bla4 — Cla4, Bla4 — Dla4,

Cla4 - Dla4,]evels=designla4)

eco.fitla4 = lmFit(Ecodata[,2:31],designla4)

eco.fit2la4 = contrasts.fit(eco.fitla4, contrast.matrixla4)

eco.ebla4 = eBayes(eco.fit21a4)
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#= decideTests =#

clasla4 = decideTests(eco.ebla4, method: “nestedF”, adjustmethod: “fdr”, p=0.05)

rownames(clasla4) = Ecodata[, 1]

“24 = rowSums(abs(clasla4))

# select the genes which are significant at least in one contrast

cl.la4 = clasla4[,1]

c2.la4 = clasla4[,2]

c3.la4 = clasla4[,3]

c4.la4 = clasla4[,4]

c5.la4 = clasla4[,5]

c6.la4 = clasla4[,6]

la4.cl = which(c1.la4 f—= 1 |c1.la4 =—1)

Ia4.c2 = which(c2.la4 = 1 |c2.la4 =-1)

la4.c3 = which(c3.la4 = 1 | c3.la4 =1)

la4.c4 = which(c4.la4 == 1 |c4.1a4 ==-l)

la4.c5 = which(c5.la4 = 1 |c5.la4 ==-1)

la4.c6 = which(c6.la4 = 1 |c6.la4 ==-1)

la4.all = unique(c(la4.c1,la4.c2,la4.c3,la4.c4,la4.c5,la4.c6))

#= Look decideTests in different way =#

la4k0 = length(which(kla4==0))

la4k1 = length(which(kla4=l))

la4k2 = length(which(kla4=2))

la4k3 = length(which(kla4=3))

la4k4 = length(which(kla4=4))

la4k5 = length(which(kla4==5))

la4k6 = length(which(kla4=6))

la4k = C(la4k0, la4k1, la4k2, la4k3, la4k4, la4k5, la4k6)

names(la4k)=c(0:6)

49



la4bar = barplot(la4k,space=l .5,col= c("yellow",”red”,”blue”,"lightblue", "mistyrose", "lightcyan",

"lavender"),legend=1a4k, xlab=“number of significant contrasts”, main=“la4”)

la4row = which(kla4>=4)

1H 4!
nW

# Latitude - A14 #

44 44
[I ll

ecorep = c(1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,9,10,10,10)

design = model.matrix(~-1+factor(ecorep))

Aal4 = design[,9]

Bal4 = design[,7]

Cal4 = design[, 1 ]+design[,2]+design[,6]+design[,8]

Dal4 = design[,3]+design[,4]+design[,5]+design[,10]

designal4 = data.frame(Aal4, Bal4, Cal4, Dal4)

contrastmatrixal4 = makeContrasts(Aal4-Bal4,Aal4-Ca14,Aal4-Dal4,Bal4—Cal4,

Bal4-Dal4,Cal4-Dal4,1evels=designal4)

eco.fital4 = lmFit(Ecodata[,2:31],designal4)

eco.fit2al4 = contrasts.fit(eco.fital4,contrast.matrixal4)

eco.ebal4 = eBayes(eco.fitZal4)

#= decideTests =#

clasal4 = decideTests(eco.ebal4, method: “nestedF”, adjust.method= “fdr”, p=0.05)

kal4 = rowSums(abs(clasal4))

# select the genes which are significant at least in one contrast

c1.al4 = clasal4[,1]

c2.al4 = clasal4[,2]

c3.al4 = clasal4[,3]
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c4.al4 = clasal4[,4]

c5.al4 = clasal4[,5]

c6.al4 = clasal4[,6]

al4.c1 = which(cl.al4 = 1 | cl.al4 ==-l)

al4.c2 = which(c2.al4 = 1 | c2.al4 ==-l)

al4.c3 = which(c3.al4 = 1 |c3.al4 =1)

al4.c4 = which(c4.al4 = 1 | c4.al4 =-1)

al4.c5 = which(cS.al4 == 1 | c5.al4 ==-1)

al4.c6 = which(c6.al4 = 1 | c6.al4 ==-1)

al4.all = unique(c(al4.c1,al4.c2,al4.c3,al4.c4,al4.c5,al4.c6))

#= Look decideTests in different way =#

al4k0 = length(which(kal4==0))

al4kl = length(which(lcal4=l))

al4k2 = length(which(kal4=2))

al4k3 = length(which(kal4=3))

al4k4 = length(which(kal4=4))

a14k5 = length(which(kal4=5))

al4k6 = length(which(kal4=6))

al4k = c(al4k0, al4kl, al4k2, al4k3, al4k4, al4k5, al4k6)

names(al4k)=c(0:6)

al4bar = barplot(al4k,space=l .5,col= c("yellow",”red”,”blue”,"lightblue", "mistyrose", "lightcyan",

"lavender"),legend=al4k, xlab=“number of significant contrasts”, main=“al4”)

al4row = which(kal4>=5)

44 «H
1' UV

# Cvi vs. the other 8 Ecotypes (without Sha) #

4! 44
'1 ll
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ecorep = c(1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,9,10,10,10)

design = model.matrix(~-1+factor(ecorep))

designcvi = design

colnames(designcvi)<-c("BayO", "C24", "C010", "Cvi", "Est", "KinO", "Ler", "Nd1", "Shakdara", "VanO")

contrast.matrixcvi<~makeContrasts(Cvi -Bay0/8 - C24/8 - C010/8 — Est/8 - KinO/8 —- Ler/8 - Nd1/8 -

VanO/8 ,levels=designcvi)

eco.fitcvi = lmFit(Ecodata[,2:31],designcvi)

eco.fit2cvi = contrasts.fit(eco.fitcvi, contrastmatrixcvi)

eco.ebcvi = eBayes(eco.fit2cvi)

clascvi = decideTests(eco.ebcvi, method: “nestedF”, adjust.method= “fdr”, p=0.05)

kcvi = rowSums(abs(clascvi))

#= Toptable =# selecting the first 500 genes from toptable

num=500

cvi = topTab1e(eco.ebcvi, genelist= eco.ebcvi $genes, coef=1, n=num, adjust="fdr")

d.cvi = read.csv("cvinumber.csv")

n.cvi = d.cvi[,1]

44 44

# Sha vs. the other 8 Ecotypes (without Cvi) #

44 44
II II

designsha = design

colnames(designsha)<—c("BayO", "C24", "C010", "Cvi", "Est", "KinO", "Ler", "Nd1", "Shakdara", "Van0")

contrastmatrixsha<—makeContrasts(Shakdara -Bay0/8 - C24/8 - C010/8 — Est/8 - KinO/8 — Ler/8 - Nd1/8 -

VanO/8,levels=designsha)

eco.fitsha = lmFit(Ecodata[,2:31],designsha)
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eco.fit2§ha = contrasts.fit(eco.fitsha, contrastmatrixsha)

eco.ebsha = eBayes(eco.fit25ha)

#= Toptable =# selecting the first 500 genes from toptable

sha = topTable(eco.ebsha, coef=l , n=num, adjust="fdr")

d.sha = read.csv("shanumber.csv")

n.sha = d.sha[,l]

1‘! if

# Highly Variation - geneselect #

44 44

'7 U

vars=apply(AtGE, 1, var)

sortvars=sort(vars,decreasing = TRUE)

geneselect=sortvars[ 1 :number]

gs = names(geneselect)

gs = as.numeric(gs)

Ecodata[gs, 1]

4'4 44

# Randomly Selection - ran #

44 44

II "

x=runif(number, min=1, max=228 10)

ran=as.integer(x)

# RandomForest #

ff #

rfgenes = n.cvi # changeable variable
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rfname = "n.cvi"

library(randomForest)

ecol=t(Ecodata[rfgenes,2:31]) ## select "number" genes

econames=rep(c("Bay0", "C24", "ColO", "Cvi", "Est", "KinO", "Ler", "Nd1", "Shakdara", "Van0"),each=3)

colnames(eco1)=Ecodata[rfgenes, 1]

ecotypel=data.frame(ecol,econames) ## Data which we want ##

ecotype.rf = randomForest(econames ~ ., data=ecotype1, ntree=100,

keep.forest=TRUE, importance=TRUE)

ecotype.rf

imp = importance(ecotype.rf)

plot(sort(imp[,l1]),type="h",ylab=“Importance Score”, main = rfname)

# see Accuraacy

44 44
II II

# ntree vs. 00B error rate #

44 44

nn

ntree=300

nrf=10 # number ofboostrap

m = matrix(rep(0,ntree*nrt),nrow=ntree)

for (j in 1:nrt){

for(i in 1:ntree){

ecotype.rf = randomForest(econames ~ ., data=ecotypel, ntree=i, mtry=sqn(22810),

keep.forest=TRUE, importance=TRUE)

m[i,j]=ecotype.rf$err.rate[i,l]

matplot(m,type="l",col="grey",lty=1,

xlab="number of trees",ylab="OOB error rate",ylim=c(0,1),frame.plot=F)

axis(l, seq(0,ntree,by=50),col = "#EE9A00", col.axis="blue", lwd = 2)

axis(2, seq(0,l,by=0.2),col = "#EE9AOO", col.axis="blue", lwd = 2)

}
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par(new=T)

}

mean = apply(m, 1, mean)

mean = ifelse(mmean ="NaN", 1, mean)

op = par(new=T)

par(0p)

plot(mmean,type="l",cex=l,col="red",lwd=2,

xlab="number of trees",ylab="OOB error rate",ylim=c(0,1),frame.plot=F,axes=F)

axis(l, seq(0,ntree,by=50),col = "#EE9A00", col.axis="blue", lwd = 2)

axis(2, seq(0,1,by=0.2),col = "#EE9AOO", col.axis="blue", lwd = 2)

par(0p)

mini = min(mean)

a = which(mean—T-mini) # a is the number of trees which we want

text(a,0.4,paste("ntree",a),adj= l ,cex=l .2,col="dark green")

points(a,mean[a],col="dark green",cex=l .2,lwd=3)

#= After finding “optimal ntree” =#

ecotype.rf = randomForest(econames ~ ., data=ecotypel, ntree=a,

keep.forest=TRUE, importance=TRUE)

ecotype.rf

econames=as.factor(econames)

e = ecotypel[,-501]

rf.eco <- varSelRF(e, econames, ntree = 210, mtry=4)

rf.eco

plot(rf.eco)

# mtry vs. OOB error rate #

44 44
'1 H
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rf.mtry=l70

nrf=10 # number of boostrap

numtree=a

m = matrix(rep(0,rf.mtry*nrf),nrow=rf.mtry)

for (j in l:nrf){

for(i in 130:rf.mtry){

ecotype.rf = randomForest(econames ~ ., data=ecotype1,ntree=numtree, mtry=i,

keep.forest=TRUE, importance=TRUE)

m[i,j]=ecotype.rf$err.rate[nnmtree, l]

matplot(m,type="l",col="grey",lty=l ,

xlab="number of mtry",ylab="OOB error rate",ylim=c(0,1),xlim=c(l30,170),frame.plot=F)

axis(l, seq(130,170,by=2),col = "#EE9A00", col.axis="blue", lwd = 2)

axis(2, seq(0,1,by=0.2),col = "#EE9AOO", col.axis="b1ue", lwd = 2)

}

par(new=T)

}

mean = apply(m, 1, mean)

#mean = ifelse(mmean ="NaN", 1, mean)

op = par(new=T)

par(op)

plot(mmean,type="l",cex=1 ,col="red",lwd=2,

xlab="number of mtry",ylab="OOB error rate",ylim=c(0,1),xlim=c(130, l 70),frame.plot=F,axes=F)

axis(l, seq(130,170,by=2),col = "#EE9A00", col.axis="blue", lwd = 2)

axis(2, seq(0,1,by=0.2),col = "#EE9A00", col.axis="blue", lwd = 2)

Par(Op)

mini = min(mmean[131:170])

b = which(mmean==mini) # a is the number of trees which we want

text(b,0.4,paste("mtry",b),adj=0,cex=l .2,col="dark green")

points(b,mean[b],col="dark green",cex=l .2,lwd=3)
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#= After finding "optimal ntree" & "optimal mtry" =#

ecotype.rf = randomForest(econames ~ ., data=ecotype1, ntree=a,mtry=b,

keep.forest=TRUE, importance=TRUE)

 

 

ecotype.rf

#
#

# Select the number of Genes from RandomForest #

44 44

rfgenes=n.cvi

ecol=t(Ecodata[rfgenes,2:31])

econames = rep(c("Bay0", "C24", "C010", "Cvi", "Est", "KinO", "Ler", "Nd1",

"Shakdara", "Van0"),each=3)

colnames(ecol)= Ecodata[rfgenes,1]

ecotypel = data.frame(ecol ,econames)

econames=as.factor(econames)

e = ecotypel[,-501]

rf.eco <- varSelRF(e, econames, ntree=a , mtry=b)

rf.eco

plot(rf.eco)
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ESL-tat

 

Ecotype Latitude Longitude

Bay-0 49.56 11.34

C24 40.2 8.25

Col-0 43.01251667 -70.05

Cvi 16.00208056 -24.05

Est 59 25.04

Kin-0 42.46638889 —84.46

Ler 48.2 10.52

Nd-l 50.77777778 8.03

Shakdara 37.18333333 73.166

Van-O 49.85049722 -123.11

EcotypesGeoxxt

 

Ecotype Location Latitude Longitude Altitude

Bay-0 AtGE_111_A, B, C Bayreuth, Germany 49.56 11.34 350

C24 AtGE_112_A, C, D Coimbra, Portugal 40.20 8.25 179

Col-0 AtGE_113_A, C, D Columbia University (US) 43.01 -70.05 49

Cvi AtGE_114_A, B, C Cape Verde Islands 16.00 24.05 43

Est AtGE_115_A, B, D Estonia 59.00 25.04 15

Kin-O AtGE_116__A, B, C Kinneville, MI 42.47 -84.46 273

Ler AtGE_117_IB, C, D Landsberg, Germany 48.20 10.52 628

Nd-l AtGE_118_A, B, C Niederzunzheim, Germany 50.78 8.03 250

Shakdara AtGE_119_A, C, D Pamiro-Alay, Tadjikistan 37.18 73.17 3400

Van-O AtGE_120__A, B, C University of British Columbia 49.85 -123.11 50

AtGE ecotypeslxt

Which are available on WEIGEL WORLD website:

http://www.weigelworld.org/resources/microarray/AtGenExpress/
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