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ABSTRACT

Random Forests and Gene Selection to Classify Arabidopsis Thaliana Ecotypes

By

Hsueh-han Yeh

This thesis discusses the classification and gene selection of ecotype data for
Arabidopsis thaliana. Gene expressions from Oligonucleotide gene expression arrays
were used to classify Arabidopsis thaliana ecotypes using statistical methods. The
hierarchical cluster method was used to group ecotypes according to latitude and altitude
to distinguish ecotypes. Limma was used to select differentially expressed genes. The
Random Forest algorithm provides a ranking of genes to indicate how well they can
discriminate between ecotypes.

We focus on the Random Forest algorithm. It is an efficient approach and can deal
with a large number of predictor variables in a classification process. Parameters are
optimal to achieve a small classification error rate.

The final selection of genes may play an important role in adaptation to stress
conditions. They were further examined for gene function and evidence regarding stress

resistance.

Keywords: Arabidopsis thaliana, Microarray Data, Hierarchical Cluster, Limma,

Random Forest, Classification.



ACKNOWLEDGEMENTS

I wish to thank many people who made this thesis possible. First of all, it is hard to
overstate my gratitude to my advisor, Dr. Marianne Huebner, Department of Statistics,
Michigan State University. With her enthusiasm, her patience, and her encouragement,
she helped to make statistics and biology fun for me. Throughout my thesis-writing
period, she provided many suggestions and lots of good ideas. Dr. Huebner also helped
me revising my English. Iam very glad and enjoyable to work with her. I wish thank to
Dr. Andreas Weber for his support and grant. Dr. Weber also gave me suggestions to
examine gene functions which makes this thesis complete. I wish to thank my parents.
They raised me, supported me, taught me, and loved me. To them I dedicate this thesis. 1
wish to thank my best friend Hsiu-ching Chang, for helping me get through the difficult
times, and for all the emotional support. My special gratitude is due to my brother, for
his loving support. I also wish to thank William Robert Swindell for giving many helpful

suggestions of biology section.

Finally, I have to say 'Thank You' to all my friends and family, wherever they are

and where they go.

I



TABLE OF CONTENTS

v

List Of Tables ....cccveiuiniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitiiieiicnciiinesetetcscesececcescssmnees \%
List Of FIGUIES ..c.ocvvvriiiuiiiinrininiiieteriesecircstsssssecssssersassssacessacsssssssssssssses VI
Chapter 1 Introduction of Microarray and Arabidopsis Ecotypes Data
1.1 Microarray Data ........c.oieiiiiiiiiii e 1
1.2 Arabidopsis thaliana ...............oooiiiiiiiiii 2
13 Gene Selection ProCess ........vuiuiiiiniiiiiii i 5
Chapter 2 Statistical Methodology
2.1 Hierarchical CIUStErINg .......cocvvieiiinininiiiiin e 7
22 Limma - Linear Models for Microarray Data ............ccccoceiiiiieenenennnnnn. 10
23 Random FOrest .........cooiiiiiiiiiiiiiiii i 12
Chapter 3 Application of Limma and Random Forest to Ecotypes
3.1 Gene Selection using Limma ...........ocviiiiiiiiiiiiiiiiiiiiiniere e eiee e 19
32 Ecotypes of Cvi and Shakdara .............ccooiiiiiiiiiiiiiiiiiiiicieeees 22
33 Gene Selection from Cvi contrasts with other 8 ecotypes .........cc............ 23
34 Gene Selection from Shakdara contrasts with other 8 ecotypes ................ 25
3.5 Gene Selection from Cvi5S00 and Sha500 by Random Forest .................. 26
3.6 Compare the OOB error rate of Random Forest ..............ccccvieieinnnen... 28
3.7 Misclassifications of ECOtypes ......ccccoeuvuieiiniiiiinininiiieiieieieeeneaes 29
Chapter 4 Gene Ontology
4.1 Gene Ontology with Classification SUperviewer ............ccceeveveieniinnn.n. 30
42 Gene Ontology of Cvi43 and sha84 ...............occeviiiiiiiiiiiiiiiininen. 33
APPEDNAICES..ceurnnrinriniieiieiiariorieiestescstessereesssssascasssssssssssssessssssssessessssamnns 38
BibHOGraphy....ccoviiiuiiiiniiiieiiiirieriocsiesarsssesescacessasessssssesesssssssssssesssssscnss 59



Table 1

Table 2

Table 3

Table 4

Table S

Table 6

Table 7

Table 8

LIST OF TABLES

Ecotypes Geography Information........cccccceueieenrininrieicceiacereennen 4
Resources of Arabidopsis Genome...........c.cceeeiviinnenccnsiscscnsnsees 4
Geography of ECOtyPes....cccccviurierinririirninnnrentcntcnceiscescacescnsensens 8
The number of significant genes for per contrast...........c..cccceeeeeenen. 20
Comparison of OOB error rate........ccccceeeceecencencenscacescescescnsonns 28
Misclassification List.....c..ccceceieriininieiariiiecieierieieciriecereccecece 29
Main Function categories of FunCat.........c.cccceceviieininicenencnnnnnen. 32

FLC, Cytochrome P450 genes and

Glutathione-S-transferase gemes.......c.cccceevieinriniincnnieciecincecnennnes 37



Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Figure 19

LIST OF FIGURES

First 10 Ecotypes Distribution Map .........ccccoevvimmncerecerniisenacecees 3
Hierarchical Clustering Process........c.cccccveveieieinnninrcicesecennnacacens 8
Ecotype CIUSter....ccccviirieimruieiniiiriicaceraseserescssasecscscsassscscancns 9
Random Forest Construction...........cccceuvevuiuieinininciininiiecinncanas 13
Number of significant contrasts..........cccceeveiiiiiiiiriiieiececennenne 19
The number of significant genes for per contrast.............cccceueeaee 20
Significant genes for Latitude and Altitude.............cccccvuvueenennas 21
Gene expression of 247999 _at.........cccoeeveienininiiiniiiierensiecenen 21
Optimal value of ntree for Cvi.......ccccciviiiiriiiiiiieinrcccicacacann 24
Optimal value of mtry for Cvi......ccocviiriniinieiinceinecicncecnecernnes 24
Optimal value of ntree for Shakdara.........cccccvececeinrnrceiecececncenens 25
Optimal value of mtry for Shakdara.........ccccccveirieiiirinieiecacansenn 25
Optimal value of the number of genes for Cvi.......ccccececenincennnne. 26
Optimal value of the number of genes for Shakdara..................... 27
Overlapping genes from CviS00 and Sha500............c.cccccevevenaene. 27
Misclassification figure..........ccocoeriiiiniiiiriiiiicrernercniercecessacanes 29
Cvi43 - Classification Superviewer...........ccccccveveiiieirirrerecenacnns 33
Sha84 - Classification Superviewer.........ccccceeveieinieiiiieiecenecnranens 34
Expression graph for 5 specific gemnes.........ccccccvevieiirierieinnincenne 36

VI



Chapter 1 Introduction of Microarray and Arabidopsis Ecotypes Data
1.1. Microarray Data

Regulatory regions of plant genes is likely to be more concise than those of animal
genes, but the transcription factors encoded in plant genomes is larger than those of
animals. Thus, plants can contribute to research regarding the influence of transcriptional
factors in multicellular development. Here, we study the reference plant, Arabidopsis
thaliana, for our study, and the dataset is AtGenExpress Ecotypes Expression estimated
by gcRMA. The data is part of the public AtGenExpress expression atlas, which was
created by Affymetrix ATH1 array platform. Microarray, obtained by Oligonucleotide
Chips or spotted arrays, is a technology to study the expression of thousands of genes.
Microarray technology requires statistical methods to analyze the dataset which are high
dimensional data sets.

Statistical approaches can be used for multiple comparisons of genes to define the
differentially expressed genes between arrays. Data mining is used widely for
Microarray data since it can use a subgroup of genes to predict the observations (e.g.
Ecotypes) that would help to reduce the dimension of Microarray data. In this study, we
use classification approach and data mining technique, Random Forest, to classify the

Arabidopsis thaliana Expression Ecotypes Data.



1.2. Arabidopsis Data
Arabidopsis thaliana

The Arabidopsis ATH1 Genome Array, built in TIGR (The Institute for Genomic
Research), contains more than 22,500 probe sets displaying approximately 24,000 gene
sequences on a single array. (http:/www.affymetrix.com)

Arabidopsis thaliana is a flowering plant, an inconspicuous weed. It has been used as a
model plant organism for many years and has been chosen for used in molecular genetic
analysis. Laibach (1943) first specify that some significant characteristics of Arabidopsis
thaliana make them are suitably used for model plant organism. It has a short life cycle;
it only needs several weeks to mature. Due to its size, it can grow in a limited area.
Furthermore, it has small genome size and nearly non-repetitive DNA (S Barth, A E
Melchinger, TH Liibberstedt, 2002). These features make Arabidopsis thaliana plants
much conveniently for genetic analysis. Due to these features in Arabidopsis thaliana,

international effort has been devoted to build the methods to research its genome.

Arabidopsis thaliana at an early stage of flowering. [Drawing by K. Sutliff]



Arabidopsis thaliana Ecotype Data

Figure 1 First 10 Ecotypes Distribution Map
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An ecotype is a population of a plant that survives as a distinct group through
ecological environment. AtGenExpress Ecotypes Data used in this paper come from
weigelworld (www.weigelworld.org), including 34 ecotypes. Each ecotype is composed by
one or several arrays of 22810 genes each. Arabidopsis thaliana is widely distributed
(Meinke et al, 1998), and the 34 ecotypes in the Arabidopsis thaliana Ecotype data used
in this study represent locations in Europe, North America and Africa. The location,
longitude, latitude, and altitude of each ecotype were listed in the Tablel. The latitudes
of these ecotypes range from 16N to 59N. The longitudes range from 0.53E to 73E, and

from 0.22W to 123W. The highest altitude is 3400m. Overview the distribution of the



ecotypes, 27 ecotypes distributed throughout Europe and 12 ecotypes among these 27
ecotypes in Germany. The other ecotypes are distributed in North America and Africa.
We want to examine if we can use these gene expressions to classify Arabidopsis thaliana
ecotypes by statistical methods. First of all, the problem we confront is the large size of
genes in each ecotype. Dimension reduction can help deal with large variables efficiently
and select the most important variables. We use Random Forest to decrease the size of

dataset and classify ecotypes. Random Forest Algorithm will be discussed in the Chapter

2.
Table 1 Ecotypes Geography Information
Ecotype Location Altitude Latitude Longitude Temperature (T )

Bay-0 Bayreuth, Germany 350 49N ME 2-18
C24 Coimbra, Portugal 179 40N 8E 72-27
Col-0 Columbia University (U.S.) 49 39N 93w -3.3-28.9
Cvi Cape Verde Islands 43 16N 24 W 24-29
Est Estonia 15 59N 26E 52-17
Kin-0 Kinneville, Mi 273 43N 85w -122-32.2
Ler Landsberg, Germany 628 53N 16 E -1.7-194
Nd-1 Niederzunzheim, Germany 250 50N 8E 55-95
Shakdara Pamiro-Alay, Tadjikistan 3400 37N 71E 0-30
Van-0 UBC (Vancouver) 50 50N 123 W 0-26

Table 2 Resources of Arabidopsis thaliana GenomeL

Resources Contact Person Information of website
. . http://genome-
Arabidopsis database (AtDB) M. Cherry stanford.edu/Arabidopsis/
ABRC* Stock Center (USA) R. Scholl http://aims.cps.msu.edu/aims
NASC¥ Stock Centre (UK) M. Anderson http://nasc.nott.ac.uk
TIGR} (USA) S. Rounsley http://www.tigr.org/tdb/at/at.html
. . http://sequence-
SPP§ Consortium (USA) R. Davis www.stanford.edu/ara/SPP.html
CSHL\ Consortium (USA) R. McCombie http://nucleus.cshl.org/protarab/
. http://muntjac.mips.biochem.mpg.de/
ESSAConsortium (Europe) M. Bevan arabi/index html

http://www.genoscope.cns.fr/externe/
arabidopsis/Arabidopsis.html
Kazusa Institute ( Japan) S. Tabata http://www.kazusa.or.jp/arabi/

David W. Meinke, J. Michael Cherry,* Caroline Dean, Steven D. Rounsley, Maarten Koornneef.
Arabidopsis thaliana: A Model Plant for Genome Analysis (1998)

Genoscope (France) F. Quetier




1.3.

Gene Selection Process
Grouping 10 ecotypes (3 replications each) by latitude and altitude of first 10
ecotypes of Arabidopsis thaliana Ecotypes Data using Hierarchical Cluster. Four
groups are as follows:
La4 (La-A, La-B, La-C, La-D)  AM (Al-A, Al-B, Al-C, Al-D)
For each of these two groupings (Al4 and Lad) with Limma function of R software.
A-B, A-C, A-D, B-C, B-D, and C-D in each of the grouping La4 and Al4,
respectively.
The number of significant genes for each contrast in each grouping is counted.
After counting the number of significant genes, we found that Cvi (La-D) has the
largest number of significant genes differentially expressed in comparison with
other 3 latitude groups. Shakdara (Al-A) has the largest number of significant
genes differentially expressed in comparison with other 3 altitude groups.
Cvi (smallest latitude) and Shakdara (highest altitude) are compared to the other
ecotypes to identify genes that differentiate these.

Contrasts to be considered :

e Cui- é—(Bayo +C24+ Colo + Est + Kino + Ler + Nd1+Vano)

e Sha- é(Bayo +C24+Colo + Est + Kino + Ler + Nd1 +Vano)

The top 500 differently expressed genes are selected from each of these two
contrasts. Corresponding gene sets are Cvi500 and Sha500.

Optimal parameters, ntree and mtry, in Random Forest are chosen for Cvi500 and
Sha500.

Highly ranked genes (variable importance) are selected from Cvi500 and Sha500.
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There are 43 genes chosen from Cvi5S00 and 84 genes chosen from Sha500.
Compare OOB error rate for the selected genes.
Discuss misclassification arrays in Random Forest.

Gene functions of the selected genes are considered.



Chapter 2 Statistical Methodology

In this chapter, clustering (2.1), linear models for Microarray Data (2.2), and Random
Forest (2.3) will be discussed.

(2.1) Clustering is the first step in our gene selection process. In this section, we use
Hierarchical Clustering method to group the 10 ecotypes into subsets and those subsets
will be contrasted with linear models.

(2.2) Limma is the second step. In this step, we choose smaller subgroups of genes
which are differentially expressed from Limma method by contrasting subsets of
ecotypes obtained in clustering result. We explain the differentially expressed genes.
(2.3) Random Forest is a method to rank genes by their importance in classifying
ecotypes. In this section, we will explain the Random Forest algorithm and the selection
of important predictor variables (genes) from the gene sets chosen with the linear models.
2.1. Clustering

Grouping a collection of observations into subgroups (clusters) is called Clustering.
Observations within the each cluster have smaller distance to each other than to
observations assigned to other different clusters.

In Hierarchical Clustering (Jinwook Seo, Ben Shneiderman 2002), the observations
are not separated into subgroups in only one step. Instead, observations are separated by
a serious of partitions. Clustering may start from a single cluster containing all
observations to subgroups of observations, called Divisive method. On the other hand
(Figure 2), it may start from n clusters (if you have n observations) and each cluster
contains one observation, then finding the closest distance pair of clusters and combining
them into a single cluster. In the end, all clusters will be combined into one cluster,

called Agglomerative method. The Agglomerative method is used here to identify latitude



and altitude groups (Table 3).

Table 3 Geography of Ecotypes.

Ecotype Location Altitude Group(Al) Latitude Group(La)
1 Bay-0 Bayreuth, Germany 350 C 49.56 B
2 | C24 Coimbra, Portugal 179 C 40.2 Cc
3 | Col-0 Columbia University (U.S.) 49 D 43.0125 o]
4 | Cvi Cape Verde Islands 43 D 16 D
5 | Est Estonia 15 D 59 A
6 | Kin-0 Kinneville, M 273 C 42.466 C
7 | Ler Landsberg, Germany 628 B 48.2 B
8 | Nd-1 Niederzunzheim, Germany 250 C 50.778 B
9 | Shakdara Pamiro-Alay, Tadjikistan 3400 A 37.183 C
10 | Van-0 UBC (Vancouver) 50 D 49.85 B

The process of Agglomerative Method as follows:

Given a set of n observations (ecotypes) to be grouped, and a nxn distance matrix
(Euclidean distance measure used) illustrates each pair of two observation distance.
Stepl. Start with n clusters, and each cluster contains a single observation.

Step2. Select the closest pair of clusters to merge into one new cluster.

Step3. Calculate the distance of the new cluster and other old single observation cluster.
Step4. Repeat Step2 and Step3 until all observations merge into one cluster.

Figure 2 Hierarchical Clustering Process

Hierarchical Clustering

Divisive Method |
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Hierarchical cluster used to cluster 10 ecotypes into subgroups according to their altitude
and latitude (Figure3). From Figure3, we can see that Cvi and Shakdara differ the most
from the remaining ecotypes.

Figure 3 Ecotype Cluster
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2.2, Limma - Linear Models for Microarray Data

Before Random Forest is applied to gene sets, we use Limma, Linear Models for
Microarray Data (Smyth, G. K. 2004), to choose smaller subgroups of genes between
ecotypes. The grouping will be discussed in the following paragraph. Differentially
expressed genes will be used in Random Forest to classify ecotypes and to assign ranks to
the genes.

Limma is used to identify genes whose expression pattern differs from others.
Limma is a software package in Bioconductor in R environment (http://www.r-project.org)
for the analysis of gene expression microarray data. Linear models are constructed for
each gene to determinate weather they are differentially expressed in subgroups of
ecotypes defined by latitude an altitude clusters. In the topTable function of Limma, M-
value, t-statistic, B-statistic and P.Value of each gene can provide overall ranking of

genes in order of differential expression. M-value is log,-fold change between two groups.

expression value of gene in group A

M =log,( . :
expression value of gene in group B

The t-statistic is a well-known hypothesis to test the mean of two groups. The B-

statistic is the log odds that the gene is differentially expressed. For example, if the B-

35
statistic is 3.5, the probability that the gene is differentially expressed is e—5— =97%.
1

+ eJ.

A larger B-statistic indicates higher probability that the gene is differentially expressed.
The P Value is adjusted for multiple hypothesis testing using Benjamini- Hochberg's
method (BH). B-statistics and P, Value provide the same ranking when no data is missing.
Besides, differentially expressed genes are ranked in topTable by their P.Values.
Benjamini- Hochberg’s method controls the false discovery rate (FDR) when testing

thousands of hypotheses, such as in microarray data. We identify genes differentially

10



expressed in subgroups from Hierarchical Cluster (Figure3) and assign the letters of 4, B,

C, D to those four groups (Table3).

11



2.3. Random Forest

The Random Forest algorithm by Leo Breiman (L. Breiman 2001) is a classification
procedure consisting of a collection of tree-structured classifiers. Each tree is
independent, identically distributed random vectors. Each tree gives a unit vote for the
class of input vectors (arrays). Random Forest can analyze high dimensional data
efficiently. Two processes of randomization occur in Random Forest: trees and nodes.
Trees were built by bootstrap samples, and each node was split by randomly selected
predictor variables (genes).

In the ecotype data, there are ten ecotypes and each of them has 3 arrays , so there
are 30 arrays in the ecotype data. Moreover, each array has 22810 genes. In the
Random Forest, the 30 arrays are “input vectors” (class observations) and 22810 genes
are as “predictor variables”. Randomly select N arrays from those 30 arrays with
replacement for the training set (in-bag). The arrays which are not included in the
training set are called out-of-bag (OOB). The training set data are used to grow the tree.
The OOB data are used to estimate the classification error rate and get a variable

importance measure.

12



Figure 4 Random Forest Construction
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Each tree is grown as follows

Step 1. The training set consists of N observations (arrays) selected at random. Take N
observations (arrays) at random and with replacement from the original data set
called “in-bag”. The observations not selected are called “out-of-bag”. On
average, there will be two third observations “in-bag”, and one third “out-of-

bag”.

Step 2. The observations selected from the training set are used to construct a decision

tree. The number of variables is M. A fixed number m,,, (m,, <<M) of
variables are chosen randomly from M variables, and the number of m,, is

held constant during forest growing. These m,,, variables are candidate for

splitting the node. The best split on these randomly chosen m-variables is used

to split the node which visualizes the tree and examine diagnostic statistics of

each tree. For example, if we have M=5 variables, we can choose m,,,=3
variables to split the node. There are C,’=10 candidates and each candidate

has 3 variables (7,,,). Randomly choose one of these 10 candidates and apply

the best predictor variable (genes) of these 3 variables to split the node of each
tree. Each tree is grown as large as possible and without pruning.

Step 3. Repeat Stepl and Step2 to construct 500 trees, ie. n,,,, =500 (default number in
R). Thus, the algorithm is called “Random Forest.”

Step 4. Each tree give a classification for 10 ecotypes, we say each array “votes” for
that class (ecotype). For example, if 4tGE_1114 was predicted for BayO at the

terminal node, we say AtGE 1114 “votes” Bay0, similarly to other arrays. As

14



the tree is built, each array will be assigned to a class (ecotype) in the terminal
node (vote). For each of the N bootstrap samples, a tree is built. The majority

vote for an array in this forest will be the predicted class (ecotype).

Notations
M : 22810 Genes.
N: 30 Arrays.

m, . : The number of variables (genes) used to split each tree node.

N, : The number of trees (bootstraps) in the forest.

In the original paper (Leo Breiman 2001) of Random Forests, it was shown that the
error rate in Random Forest depends on two properties: the pairwise correlation between
trees and the strength of each individual tree. The correlation is the extent to which
arrays in a tree are similar from one to another. The strength is the overall average
prediction quality. Higher correlation between trees will increase the error rate, and

larger strength of each individual tree will reduce the error rate. Increasing the number of

variables, M, ,, will increase both of correlation between trees and strength of each

try »

individual tree. Decreasing 7,,,, decreases both of them. Therefore, we can use the error

rate to estimate optimal 7, . The parameter M, is the only modifiable parameter

which is sensitive in random forest. The predicted class (ecotype) of overall trees
establishes the classification of Random Forest by choosing the most votes of the class in
overall trees.

Features of Random Forest

» It runs efficiently on thousands of observations.

» ]t can handle large number of predictor variables (genes).

» [t can rank predictor variables (genes) importance in the classification.

15



Parameters of ntree and mtry

In the Random Forest, the most important and sensitive parameters are the number
of trees (7,,,, ) and the number of variables (7, ) which are selected at random from all
variables. Each ecotype represents a class in Random Forest. We want to find the

optimal n,,,, and m,, to lower the OOB error rate, since the OOB error rate means that

the ecotypes can be classified well or not. The optimal values for 7,,,, and m,,, are not
unique.
OOB error estimate

There are about one-third of observations (arrays) not included in the training set.
Building trees based on the observations in the test set (OOB). If the class j has the most
of the votes every time as observation » is in OOB data, class j will be as the predicted
class. The proportion of the number of times that j is not equal to the true class i over all
observations N is the OOB error rate estimate.

N
>

I(c_.|C_.)
ney W o m

OOB errorrate :

N (There are 500 boostrap samples here)

For observationn :

Cn . : Class j gets the most votes (as every time observation n is in OOB data)
Yy

Cni . The true class for observation nis1i
N - There are N observations
0 if j=i
i ¢ y=1> 7
nj n 1 if j#i

16



Example:

There are 10 classes in Ecotypes and each class has 3 arrays, so there are 30 observations
in the data. The confusion matrix is computed as follows. For example, observations of
AtGE 111 A, AtGE 111 B, and AtGE 111 _C belong to class of Bay0, but in random
forest procedure, class Est gets the most votes for AtGE _111_A which imply that

1 ( CAtGE_l 11 Aj | CAIGE_III_A i ) =1 , and class Bay0 gets the most votes for

AtGE 111 B and AtGE 111 _C which implies that
1 (CAtGE_lll_B j | CAtGE_Ill_Bi )=0ana I, (CAIGE_III_C j | Cace 111.ci)= 0

(b: Est, i: Bay0). In our example, there are 21 observations with I ( an I Cm-) =1 , SO

N
:E:}D((ZU Icai)
n=1

21

OOB error rate is N = 5‘6 =70%
OOB estimate of error rate: 70%
Confusion matrix:

Bay0 C24 Col0 Cvi Est KinO Ler Nd1l Shakdara VanO class.error
BayO 2 0 0 0 1 0 0 0 0 0 0.3333333
C24 0 1 0 0 0 0 0 0 2 0 0.6666667
Colo 0 0 1 0 0 0 1 0 0 1 0.6666667
Cvi 0 0 0 1 0 1 0 0 0 1 0.6666667
Est 2 0 0 0 0 0 0 1 0 0 1.0000000
Kino 0 0 1 1 0 0 0 0 0 1 1.0000000
Ler 0 0 1 1 1 0 0 0 0 0 1.0000000
Nd1 0 0 0 0 0 1 1 1 0 0 0.6666667
Shakdara 0 0 0 0 0 0 0 0 3 0 0.0000000
Vano 0 0 1 2 0 0 0 0 0 0 1.0000000

Variable importance
Much interest in bioinformatics is given to Variable Importance measures. In this
study, we rank the genes and thus reduce the number of variables. A variable importance

measure is obtained as the trees are built based on the OOB data set. The most important

17



predictor variables (genes) are identified by calculating an important score for each
predictor variable (gene). For a predictor variable (gene) X, the gene expression values
of the gene X are permuted in each OOB data set to build the tree. The raw importance
scores are calculated by subtracting the number of votes for each correct class with
permutation from the number of votes for the correct class without permutation. The
average of the raw value over all trees is the raw importance score. The raw importance
score is normalized by dividing by standard error. There are fewer correct votes when
predictor variables (genes) are permuted. Thus, a higher importance score for a gene

identifies this gene with more discriminatory power.

Raw - Score (X) — Z ( Nwithout— permutation _ N permutation )tree i ntree
tree i -
Z - Score(X) = Raw - Score(X)
- S . without— permutation permutation
quare[Variance(N -N )]

ithout— 1 .
N WiHhout—permutation . upo number of votes for correct class after permutation

’ . . e
N permutation : the number of votes for correct class without permutation

18



Chapter 3 Results of Limma and Random Forest to Ecotypes
3.1. Gene Selection using Limma

There are thirty-four ecotypes input vectors in the original Ecotype data. Here, we
just pick up first ten ecotypes that have been replicated. The locations of these ecotypes
are located across every continent in the world.

Let’s examine /atitude clusters first, we divide those 22810 genes into seven sets
(Figure 5). The seven sets are:

» 6: genes are significant in all six contrast combinations

» 5: genes are significant in any five of six contrast combinations

» 4: genes are significant in any four of six contrast combinations

» 3: genes are significant in any three of six contrast combinations

» 2: genes are significant in any two of six contrast combinations

» 1: genes are significant in any one of six contrast combinations

» 0: genes are not significant in any of the six contrast combinations.

Figure 5 Number of significant contrasts
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Similarly altitude clusters, genes are also divided into seven sets (Figure 5). As
expected most genes are not statistically significant. Moreover, we are also interested in
the number of significant genes per contrast (Table 4 and Figure 6)

Table 4 The number of significant genes for per contrast

Latitude Altitude
Number of Number of
Co igni C igni
Genes Genes
A-B 349 A-B 118
A-C 403 A-C 924
A-D 736 A-D 916
B-C 295 B-C 754
B-D 775 B-D 897
C-D 759 C-D 547

Figure 6 The number of significant genes for per contrast
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From Table4, we can see that the contrasts of 4-D, B-D, C-D have the larger number
of significant genes at significance level 0.05 in Latitude grouping, and the contrasts of
A-B, A-C, A-D have the larger number of significant genes at significance level 0.05 in
Altitude grouping. Therefore, Group D in Latitude and group A in Altitude are significant

group within other groups. This corresponds to Cvi (group D in Latitude) and Shakdara
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(group A in Altitude). Therefore, we will discuss these two ecotypes (Cvi and Shakdara)

in more detail in the following chapter. 423 genes are significant for all three contrasts 4-

D, B-D, C-D among latitude, and 8 genes are significant for all three contrasts A4-B, 4-C,

A-D among altitude (Figure5). Only one gene (247999 _at) appears in both, in the 423-

Latitude genes and the 8-Altitude genes. As expected, gene expression differ the most in

the Shakdara and Cvi ecotypes compared to the others (Figure3).

Figure 7 Significant genes for Latitude and Altitude.

Latitude A-D

Latitude B-D ~ Latitude C-D

Altitude A-B

Altitude A-D

Figure 8 Gene expression of 247999 _at

ID

423 significant 8
Genes 423 Genes
from latitude from altitude

247999_at
|

247999 _at

‘Gene Expression Value
\
\9
‘

Bay-0 C2¢ Cok0 Cvi Est Kin-0 Ler Nd-1 Sha Van0

247999 _at (AT5G56150)

Annotation

ubiquitin-conjugating
enzyme, putative, strong
similarity to ubiquitin-
conjugating enzyme UBC2
(Mesembryanthemum
crystallinum) GI:5762457,
UBC4 (Pisum sativum)
GI:456568; contains Pfam
profile PF00179:
Ubiquitin-conjugating
enzyme.
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3.2. Ecotypes of Cvi and Shakdara
We are interested in how Cvi and Shakdara differ from the other 8 ecotypes. Thus,
we examine the contrast between Cvi and the average of other 8 ecotypes, and the

contrast between Shakdara and other 8 ecotypes.
e Cui- é(Bayo +C24+Colo+ Est + Kino + Ler + Nd1 + Vano)
e Sha- é(Bayo +C24+Colo+ Est + Kino + Ler + Nd1 + Vano)

In each of these two contrasts, we perform multiple comparisons and select the top 500
differently expressed genes ranked by P.Values. Therefore, we have two sets of genes
and each set has 500 genes.

We use Random Forest to reduce the number of genes and decide which of these

highly significant genes mostly affect the classification performance of these 10 ecotypes.
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3.3. Gene Selection from Cvi contrasts with other 8 ecotypes

Genes were selected from topTable of Limma for the Contrast:

e Cui- é(Bayo +C24+ Colo + Est + Kino + Ler + Nd1 +Vano)

500 top differently expressed genes were selected from Limma with this contrast, and
called Cvi500. Then we would like to use Random Forest to find the optimal number of
Cvi500 genes to improve classification. Before selecting top ranked genes from Random
Forest, we need to find the optimal ntree and mtry first to reduce the OOB error rate. The
procedure for finding the optimal ntree is as follows:

1. Run Random Forest with different number of trees but select mtry is the default (The

default mtry is [ the number of variables ~151).

2. Repeat 1. ten times and average the OOB error rate of these ten times for each of the
number of trees.

3. To see which number of trees has the lowest average OOB error rate and this
number is our optimal number of trees, ie. ntree. We found the optimal number of

trees is 297 from Cvi500. (Figure 8)
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Figure 9 Optimal value of ntree for Cvi
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After finding the optimal ntree, we would like to find optimal mtry as follows.

4. Run randomforest with ntree=297 and different number of mtry which is near
[ the number of variables ~151. Here taking the range of mtry from 130 to 170.

5. Repeat 4. ten times and average the OOB error rate of these ten times for each of the
number of mtry.

6. To see which number of mtry has the lowest average OOB error rate and this number
is our optimal mtry. We found the optimal mtry is 148 from Cvi500. (Figurel0)

Figure 10 Optimal value of mtry for Cvi
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34. Gene Selection from Shakdara contrasts with other 8 ecotypes

Genes were selected from topTable of Limma for the Contrast:
e Sha- é(Bayo +C24+ Colo + Est + Kino + Ler + Nd1+Vano)

500 top differently expressed genes was selected from Limma with this contrast, and
called Sha500. We follow the same procedure of finding the optimal ntree and mtry, and
choose optimal ntree = 291 and there are 4 optimal numbers of mtry which can make
Random Forest OOB error rate smallest, 133, 148, 161, 163. (Figurell) (Figurel2)

Figure 11 Optimal value of ntree for Shakdara
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Figure 12 Optimal value of mtry for Shakdara
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3.5. Gene Selection from Cvi500 and Sha500 by Random Forest

In order to reduce the number of Cvi500 and Sha500, we select important genes
from Random Forest, but the question is how many genes are needed for the best
performance of classification. Beside ntree and mtry, the number of genes which has
smallest OOB error rate is which we are interested in. From above procedure of finding
optimal mtry and ntree (Figure 9, 10, 11, 12), the value of ntree greater than 200 can get
stable smaller OOB error rate, but the value of mtry is not significant association with the
OOB error rate. Thus, we select the number of most important genes from Random
Forest with ntree=200, but keep mtry be default in Cvi500 and Sha500 respectively. To
rank the genes the measure MeanDecreaseAccuracy was used to measure reliable
importance.

In Cvi500, 43 genes is the smallest number for optimal classification. In Sha500, 84
genes is the smallest number for optimal classification. Then we compare those two sets
of selected genes, there are 43 genes from the intersection of Cvi500 and Sha500, and

there are 4 genes from the intersection of Cvi43 and Sha84. (Figure 15)

Figure 13 Optimal value of the number of genes for Cvi
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Figure 14 Optimal value of the number of genes for Shakdara
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Figure 15 Overlapping genes from Cvi500 and Shas500
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3.6. Compare the OOB error rate of Random Forest

Several sets of genes were selected with Limma and Random Forest. We have two
sets of 500 genes selected from ropTable of Limma; they are Cvi500 and Sha500.
Moreover, we have a set of 43 genes from Cvi500, and a set of 84 genes from Sha500.
The following table will show the OOB error rate for Cvi500 and Sha500 and compare
the status of using the optimal ntree and mtry with the status of without optimal ntree and
mtry. Besides, TableS also shows that the OOB error rate for the selected 84 genes and
selected 50 genes without adjusting parameters

Table 5 Comparison of OOB error rate

Genes Status Number of Genes OOB error rate

Without optimal value of

00 16.67%
ntree and mtry 5 7

Cvisoo With optimal values of
ntree and mtry and
the smallest number of

genes

43 6.67%

Without optimal value of

00 10%
ntree and mtry 5

Shasoo With optimal values of

ntree and mtry and
the smallest number of
genes

84 3.33%
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3.7. Misclassifications of Ecotypes

When running the Random Forest, there are some arrays which are misclassified.
Each run gives us different misclassified ecotypes. Table6 shows misclassified arrays
from all Random Forest runs. The most frequent misclassifications are Van0 and Kin0.
The array ATGE 116 _B.CEL (Kino) is often misclassified.

Table 6 Misclassification List

Array Actual Ecotype Predicted Ecotype
ATGE_112_A.CEL C24 Shakdara
ATGE_115_D.CEL Est Colo
ATGE_116_A.CEL Kino Vano
ATGE_116_B.CEL Kino Vano, Shakdara, Bayo
ATGE_116_C.CEL Kino Vano
ATGE_117_D.CEL Ler Est
ATGE_120_A.CEL Vano Kino
ATGE_120_C.CEL Vano Kino

Figure 16 Misclassification figure

O Misclassification
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Predicted Class
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Chapter 4 Gene Ontology
4.1.  Gene Ontology with Classification Superviewer

We have identified genes that may be important in adaptation. We selected two
groups of genes, Cvi43 and Sha84 based on Random Forest. Cvi is close to the equator
off the coast of Africa with higher temperature than other ecotypes, and Shakdara is a
mountainous (around Himalayas) landlocked country in Central Asia and thus exposed to
climate (eg. Temperature). The adaptation of these two ecotypes has likely been driven
by these stress conditions. We would like to argue that these selected genes are important
for stress resistance.

In order to validate the genes we selected from Random Forest, we classify the gene
function on a group of genes based on the website: “The Bio-Array Resource for

Arabidopsis thaliana Functional Genomics™ http://bar.utoronto.ca/. The web-based tool

of Classification SuperViewer creates an overview of gene functional classification of a
group of AGI genes based on the MIPS database (Munich Information Center for Protein
Sequences). Currently, there are 25450 genes for MIPS classifications in the MAtDB
(MIPS Arabidopsis Thaliana Database). Here we do not focus on single genes. Instead,
we want to find gene functions overrepresented in the selected sets of genes that can
provide important information on stress response. Gene function classification is an
approach for grouping genes based on functional similarity. However, Functional
Classification Pie Chart often used in Bioinformatics provides the absolute numbers and
percentage of gene function. Absolute numbers of genes on functional classification
might be misleading in a different treatment and situation, but normalizing the group of
genes can avoid this misdirection. In this way, the differences of gene function are more

easily detected. Classification SuperViewer includes normalization, bootstrap sampling,
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and provides a confidence estimate for the accuracy of results. The standard deviation
may make results spurious and unreliable. Moreover, if the confidence intervals include
one, the genes of this functional classification may be due to a small number of genes,
and thus the class score is unreliable. We only consider a class score greater than one and
confidence intervals not including one to check if these categories of functions are
associated with stress response.

A class score for normalization was calculated based on the following equation: (N

is gene number)

N

class(inputset)

/N,

lassified (inputset)

SCO"' class — N / N
class(25K) classified (25K)

(inputset : Cvi43 and Sha84)

One hundred Bootstrap samples were chosen from the input set. After sampling,
classifying each set and generating them to get class score as above equation.
Furthermore, the standard deviation of each class was shown along with the class score.
If the class scores are greater than one and confidence intervals not including one, the
gene ontology categories are overrepresented within a group of genes. In the following
section is applied to gene groups Cvi43 and Sha84 in Classification Superviewer and
discuss how their overrepresented gene functions affect the stress response. After that,
we simplify the broad and wide spectrum of known protein functions based on FunCat

annotation which includes 7 main gene categories (Table7).
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Table 7 Main Function categories of FunCat

Main Function categories of FunCat

Metabolism
01 Metabolism
02 Energy

04 Storage protein

Information pathways

10 Cell cycle and DNA processing

11 Transcription

12 Protein synthesis

14 Protein fate
(folding, modification and destination)

16 Protein with binding function or cofactor requirement
(structural or catalytic)

18 Protein activity regulation

Transport
20 Cellular transport, transport facilitation and transport routes

Perception and response to stimuli

30 Cellular communication/signal transduction mechanism
32 Cell rescue, defense and virulence

34 Interaction with the cellular environment

36 Interaction with the environment (systemic)

38 Transposable elements, viral and plasmid proteins

Developmental processes

40 Cell fate

41 Development (systemic)

42 Biogenesis of cellular components
43 Cell type differentiation

45 Tissue differentiation

47 Organ differentiation

Localization

70 Subcellular localization
73 Cell type localization
75 Tissue localization

77 Organ localization

78 Ubiquitous expression

Experimentally uncharacterized proteins
o8 Classification not yet clear-cut
99 Unclassified proteins

With the exception of categories 78, 98 and 99, all main categories are the origin of
hierarchical, tree-like structures. To make the introduction of new main categories
possible, the numbering of the categories is not strictly sequential.

The FunCat, a functional annotation scheme for systematic classification of
proteins from whole genomes, Nucleic Acids Research, 2004, Vol.32, No.18:
5§539-554S5.
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4.2 Gene Ontology of Cvi43 and sha84

Figure 17 Cvid3 - Classification Superviewer
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As we can see, there are five terms whose class scores greater than one and confidence
intervals not including one. The number of genes, Cvi43, associated with terms (1)-(5)
below is greater than expected on the basis of chance. In other words, terms (1)-(5) are
overrepresented in the gene set of Cvid3.

(1) CELLTYPE LOCALISATION

(2) REGULATION OF/INTERACTION W. CELLULAR ENVIRONMENT

(3) SYSTEMIC REGULATION OF/INTERACTION W. ENVIRONMENT

(4) TRANSPORT FACILITATION

(5) CELL RESCUE, DEFENSE AND VIRULENCE

Refer to Table7 , (2) (3) (5) are in category of Perception and response to stimuli. Plant

perception indicates the change in the environment. The stimuli which plants perceive

can respond to the envi 1 effects of ch gravity, light, moisture, infections,
temperature, oxygen, and carbon dioxide. Plants detect stimuli in different methods and a

variety of reaction response, but generally plant perception occurs at the cellular level.
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Thus, the selected genes are related to climatic conditions for Cvi.

Figure 18 Sha84 — Classification Superviewer
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In Figurel8, there are eight terms whose class scores greater than one and confidence
intervals not including one. Thus, terms (1)-(8) below are overrepresented in the gene set
of Sha84.

(1) STORAGE PROTEIN

(2) TISSUE LOCALISATION

(3) CELL TYPE DIFFERENTIATION

(4) ORGAN LOCALISATION

(5) TISSUE DIFFERENTIATION

(6) METABOLISM

(7) CELL RESCUE, DEFENSE AND VIRULENCE

(8) ENERGY

Terms of (1) (6) (8) covered all sub-functions of the metabolism. The definition for

metabolism is: “Chemical process occurring within a living cell or organism, including

T

and boli Metabolism is a chemical process that typically transforms




small molecules, but also includes macromolecular process and protein synthesis and
degradation.” Metabolism is associated with energy in some ways. Under stress, in
metabolism some compounds are broken down to yield energy. Then this energy is
directed at repairing the damage made by stress. Thus, metabolism would be an
important factor under many different types of stressors. Under stress, plants may
undergo a change of metabolism which would direct energy away from growth and
reproduction and focus on cellular defense and maintenance. Instead, this helps plants
survive in tough environments. Thus, the selected genes Sha84 may be important for
adapting to the climatic conditions in high altitude.

Moreover, cytochrome P450 genes and glutathione-S-transferase genes may play an
important role in oxidative stress resistance since oxidative stress is generated by all
forms of stress in some ways. Several papers mention that Cytochrome P450 genes is
important for plants. Oxidative detoxification of some herbicides in plant tissues is
obtained by a Cytochrome P450-dependent monooxygenase system (Donaldson and
Luster 1991, Hatzios 1991, and Sandermann 1992). Cytochrome P450s play important
roles in biosynthesis of a variety of endogenous lipophilic compounds (Donaldson and
Luster 1991 and Bolwell et al. 1994). Cytochrome P450 monooxygenases are a group of
haem-containing proteins which catalyze various oxidative reactions (Schuler 1996 and
Chapple 1998). In addition, some papers support that Glutathione-S-transferase plays an
important role in plants. Glutathione S-transferases (GSTs) appear to be ubiquitous in
plants and have defined roles in herbicide detoxification (Lamoureux and Rusness 1993).
The fundamental function of GSTs is the detoxification of both endogenous and
xenobiotic compounds (Marrs 1996). GSTs play a fundamental role in protection against

endogenous or exogenous toxic chemicals (Sheehan et al. 2001). Furthermore,
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cytochrome P450 genes and glutathione-S-transferase are phase I and phase I
detoxification enzyme, respectively. Therefore, finding such genes associated with any
form of stress may be biologically meaningful.

Besides, a gene (At5g10140) in Cvi43 is FLC (FLOWERING LOCUS C) gene which
is a main determinant of flowering time. Arabidopsis thaliana locates in the
Northern Hemisphere with long day time light hours which may affect flowering time.
The transition to flowering is an important event in the plant life cycle and is adapted by
several environmental factors of photoperiod, light quality, vernalization, and growth
temperature, as well as biotic and abiotic stresses. Thus, FLC can respond to stresses
and environmental effects. The following 5 genes were identified in both Cvi43 and
Sha84 corresponding to these 3 specific genes and the graph also shows the expressions
of these 5 genes.
Figure 19 Expression graph for 5 specific genes.
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Table 8 FLC, Cytochrome P450 and Glutathione-S-transferase genes

AGI ID Affy ID Annotation
At4g31500 | 253534_at | CYPB3BI_ATR4_REDI_RNT1_SUR2_CYP3B1 (CYTOCHROME P450 MONOOXYGENASE 8381); oxygen binding
At4g39950 | 252827_at | CYP79B2_CYP79B2 (cytochrome P4S0, family 79, subfamily B, polypeptide 2); oxygen binding
At1g59700 | 262916_at | ATGSTU16_ATGSTU16 (Arabidopsis thaliana Glutathione S-transferase (class tau) 16); glutathione transferase
At2g22330 | 264052_at | CYP7983_CYP79B3 (cytochrome P40, family 79, subfamily B, polypeptide 3); oxygen binding
At5g10140 | 250476_at | FLC_AGL2S FLF_FLC (FLOWERING LOCUS C)
A from “TAIR, affy_ATHI1_array_elements-2006-07-14.txt”
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APPENDIX A

Selected groups of Genes — Cvi43 & Sha84

Cvi43
Affy ID AGIID Annotation
At3g61520
246173 _s_at |At5g28370 |pentatricopeptide (PPR) repeat-containing protein
At5g28460

246671 _at At5g30450

246862 _at At5g25760 |UBC21 _PEX4 PEX4 (PEROXIN4); ubiquitin-protein ligase

247760_at At5g59130 |subtilase family protein

247791 _at At5g58710 |[ROC7__ROCT7 (rotamase CyP 7); peptidyl-prolyl cis-trans isomerase

248460 at At5g50915 [basic helix-loop-helix (b HLH) family protein
similar to unknown protein [Arabidopsis thaliana] (TAIR:AT5G24655.1);

249752 _at At5g24660 |similar to unknown protein [Brassica rapa subsp. pekinensis]
(GB:AAQ92331.1)

249780 _at At5g24240 |phosphatidylinositol 3- and 4-kinase family protein / ubiquitin family protein

250476 _at At5g10140 |FLC_AGL25 FLF FLC (FLOWERING LOCUS C)
similar to PBS lyase HEAT-like repeat-containing protein [Arabidopsis

At3262460 thaliana] (TAIR:AT3G62530.1); similar to 80C09_3 [Brassica rapa subsp.

251241 s at At3g 62530 pekinensis] (GB:AAZ41814.1); similar to Os07g0637200 [Oryza sativa

g (japonica cultivar-group)] (GB:NP_001060400.1); contains InterPro domain
Protein of unknown function DUF537; (InterPro:IPR007491)

251962 _at At3g53420 |PIP2A_PIP2__PIP2A (plasma membrane intrinsic protein 2;1)

252168_at At3g50440 |hydrolase
similar to unknown protein [Arabidopsis thaliana] (TAIR:AT5G65810.1);
similar to Os01g0144000 [Oryza sativa (japonica cultivar-group)]

252231 _at At3g49720 |(GB:NP_001042001.1); similar to conserved hypothetical protein [Medicago
truncatula] (GB:ABE78370.1); contains domain S-adenosyl-L-methionine-
dependent methyltransferases (SSF53335)

At3g47220 S . . . .

252459 s at A3g47290 phosphoinositide-specific phospholipase C family protein

252529 at At3g46490 |oxidoreductase, 20G-Fe(II) oxygenase family protein
similar to unknown protein [Arabidopsis thaliana] (TAIR:AT2G26240.1);
similar to Os04g0653100 [Oryza sativa (japonica cultivar-group)]
(GB:NP_001054104.1); similar to transmembrane protein 14C [Argas

252723 at At3g43520 |monolakensis] (GB:ABI52790.1); similar to Os03g0568500 [Oryza sativa
(japonica cultivar-group)] (GB:NP_001050510.1); contains InterPro domain
Protein of unknown function UPF0136, Transmembrane;
(InterPro:IPR005349)
similar to myosin-related [Arabidopsis thaliana] (TAIR:AT1G24460.1);
similar to hypothetical protein, conserved [Leishmania major]

253532 at At4g31570 |(GB:CAJ07774.1); contains InterPro domain Prefoldin;

(InterPro:IPR009053); contains InterPro domain t-snare;
(InterPro:IPR010989)
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CYP83B1_ATR4 RED1_RNT1_SUR2__CYP83B1 (CYTOCHROME

253534 at - |AMg31500 15450 MONOOXYGENASE 83B1); oxygen binding
254351 at At4g22300 |[carboxylic ester hydrolase
254361 at At4g22212 |Encodes a defensin-like (DEFL) family protein.
254928 at Atdg11410 ([short-chain dehydrogenase/reductase (SDR) family protein
255257 _at At4g05050 |UBQI11__UBQI11 (UBIQUITIN 11); protein binding
RIC10__RIC10 (ROP-INTERACTIVE CRIB MOTIF-CONTAINING
255307 _at At4g04900 PROTEIN 10)
255578 at At4g01450 |nodulin MtN21 family protein
256497 _at Atlg31580 |ECS1_CXC750 ECSI
256863 at At3g24070 |zinc knuckle (CCHC-type) family protein
257071 at At3g28180 ATCSLCO4_ATCSLC4_(",‘SLCO4_ATCSLC04 (Cellulose synthase-like
- C4); transferase, transferring glycosyl groups
257205 _at At3g16520 |UDP-glucoronosyl/UDP-glucosyl transferase family protein
259067 _at At3g07550 |F-box family protein (FBL12)
similar to Os04g0528100 [Oryza sativa (japonica cultivar-group)]
259591 _at Atl1g28150 (GB:NP_001053373.1)
259733 at Atlg77480 [nucellin protein, putative
similar to unknown protein [Oryza sativa (japonica cultivar-group)]
260232_at Atlg74640 |(GB:BAD28539.1); contains domain no description (G3D.3.40.50.1820);
contains domain alpha/beta-Hydrolases (SSF53474)
260244 at At1g74320 [choline kinase, putative
260252 _at At1g74240 |mitochondrial substrate carrier family protein
263034 _at At1224020 (Bet v I allergen family protein
263777 at AR2g46450 AT(;NGCIZ_FINQCI?__ATCNGC]Z (cyclic nucleotide gated channel 12);
- cyclic nucleotide binding / ion channel
similar to unknown protein [Arabidopsis thaliana] (TAIR:AT2G31670.1);
similar to Hypothetical protein [Oryza sativa] (GB:AAKS55783.1); contains
265142 at Atlg51360 InterPro domain Stress responsive alpha-beta barrel; (InterPro:IPR013097);
contains InterPro domain Dimeric alpha-beta barrel; (InterPro:IPR011008)
265162 at At1g30910 |molybdenum cofactor sulfurase family protein
265486 _at
similar to unknown protein [Arabidopsis thaliana] (TAIR:AT3G48690.1);
similar to unknown protein [Arabidopsis thaliana] (TAIR:AT3G48700.1);
similar to Esterase/lipase/thioesterase [Medicago truncatula]
265699_at At2g03550 (GB:ABES83378.1); contains InterPro domain Esterase/lipase/thioesterase;
(InterPro:IPR000379); contains InterPro domain Alpha/beta hydrolase fold-
3; (InterPro:IPR013094)
265768 _at At2g48020 |[sugar transporter, putative
266643 s _at A2g29710 UDP-glucoronosyl/UDP-glucosyl transferase family protein
_S_ AQ2g29730 -glucoronosy. -glucosy erase y pr
267093 at ARg38170 CAX1_RCI4__CAX1 (CATION EXCHANGER 1); calcium:hydrogen

antiporter
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Sha84

Affy ID AGIID Annotation

245038 _at A©2g26560 PLAZA_PLA I{A_PLPZ_PLA IIA__PLP2 (PHOSPHOLIPASE A 2A);
nutrient reservoir

245400 at At4g17040 |ATP-dependent Clp protease proteolytic subunit, putative

245456_at Atd4g16950 |RPP5_ RPPS (RECOGNITION OF PERONOSPORA PARASITICA 5)

245977 at At5g13110 G6PD2__G6PD2 (GLUCOSE-6-PHOSPHATE DEHYDROGENASE 2);

- glucose-6-phosphate 1-dehydrogenase
At5g34920

246642 s at [, tsg <0620
similar to unknown protein [Arabidopsis thaliana] (TAIR:AT3G04860.1);
similar to Os07g0572300 [Oryza sativa (japonica cultivar-group))
(GB:NP_001060057.1); similar to Os03g0806700 [Oryza sativa (japonica

246708 _at At5g28150 [cultivar-group)] (GB:NP_001051637.1); similar to Protein of unknown
function DUF868, plant [Medicago truncatula] (GB:ABE92686.1); contains
InterPro domain Protein of unknown function DUF868, plant;
(InterPro:IPR008586)

247210 at At5g65020 ;\NNATZ_ANNATZ (ANNEXIN MDOPSIS 2); calcium ion binding

- calcium-dependent phospholipid binding

SAL1_FRY1 HOS2__SALI1 (FIERY1); 3'(2"),5"-bisphosphate nucleotidase/

247313 at At5g63980 inositol or phssphati@linosito(] phosphz)ltasg ) PO

247404 at At5g62890 |permease, putative

247814 at At5g58310 |[hydrolase, alpha/beta fold family protein

247999 at At5g56150 [UBC30__UBC30; ubiquitin-protein ligase

248079 _at At5g55790 |unknown protein

248200 _at At5g54160 |ATOMTI_OMTI1__ ATOMT1 (O-METHYLTRANSFERASE 1)

248427 at At5g51750 |subtilase family protein

248796 _at At5g47180 [vesicle-associated membrane family protein / VAMP family protein

248800 at At5g47320 |RPS19 RPS19 (40S ribosomal protein S19); RNA binding

248961 at At5g45650 [subtilase family protein

249258 at At5g41650 (lactoylglutathione lyase family protein / glyoxalase I family protein

249567 _at At5g38020 |S-adenosyl-L-methionine:carboxyl methyltransferase family protein
similar to Os02g0815400 sativa (japonica cultivar-gro

2496102t |Atsg37360 [PTLNE0 bass02.1) [Oryza sativa (jap group)]

249645 _at At5g36910 |THI2.2.2_ THI2.2 (THIONIN 2.2); toxin receptor binding

249733 at At5g24400 |EMB2024 EMB2024 (EMBRYO DEFECTIVE 2024); catalytic
similar to unknown protein [Arabidopsis thaliana] (TAIR:AT1G61065.1);
similar to unknown protein [Saussurea involucrata] (GB:ABC68264.1);
similar to Os06g0114700 [Oryza sativa (japonica cultivar-grou

250072 at  [AtSg17210 | Gp b 001036606.1); e 050520234800 [Oryza sgaﬁvap)(]japonica
cultivar-group)] (GB:NP_001055640.1); contains InterPro domain Protein of
unknown function DUF1218; (InterPro:IPR009606)

250633 _at At5g07460 1231\.IISR2._PMSI{.2 ('PEPTID_EMETHIONINB SULFOXIDE REDUCTASE

); protein-methionine-S-oxide reductase

250751 at At5g05890 [UDP-glucoronosy/UDP-glucosyl transferase family protein
HB-6_LSN_BLH9 BLR PNY RPL VAN_ LSN (LARSON,

251032_at At5g02030 VAAMAN;\_); DNA bind_ing / Eanscr—iption factor (

251903 at At3g54120 |reticulon family protein (RTNLB12)
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GSA2__GSA2 (GLUTAMATE-1-SEMIALDEHYDE 2,1-

252318 _at Atg48730 AMINOMUTASE 2); glutamate-1-semialdehyde 2,1-aminomutase
similar to unknown protein [Arabidopsis thaliana] (TAIR:AT3G47200.2);
similar to hypothetical protein LOC_Os12g29620 [Oryza sativa (japonica
cultivar-group)] (GB:ABA98257.1); similar to Os11g0543300 [Oryza sativa

252462 _at At3g47250 |(japonica cultivar-group)] (GB:NP_001068043.1); similar to Os04g0505400
[Oryza sativa (japonica cultivar-group)] (GB:NP_001053253.1); contains
InterPro domain Protein of unknown function DUF247, plant;
(InterPro:IPR004158)

252478 at ABga6540 epsin N-teml homology (ENTH) domain-containing protein / clathrin
assembly protein-related

252529 at At3g46490 |oxidoreductase, 20G-Fe(II) oxygenase family protein

252659 _at At3g44430 |similar to unknown protein [Arabidopsis thaliana] (TAIR:AT5G41660.1)

At3g44300

252678 s_at ABg44310 NIT2__NIT2 (NITRILASE 2)
similar to unknown protein [Arabidopsis thaliana] (TAIR:AT5G47860.1);
similar to Os09g0436900 [Oryza sativa (japonica cultivar-group)]

252724 at At3g43540 |(GB:NP_001063263.1); similar to unknown protein [Oryza sativa (japonica
cultivar-group)] (GB:BAD36432.1); contains InterPro domain Protein of
unknown function DUF1350; (InterPro:IPR010765)

252827 at At4g39950 CYP79B2_CYP79B2 (c.yto‘chrome P450, family 79, subfamily B,

- polypeptide 2); oxygen binding
MI-1-P SYNTHASE _MI-1-P SYNTHASE (Myo-inositol-1-phosphate

252863 _at At4g39800 synthase); inositol-3-phosphate synthase

253422 at At4g32240 [unknown protein

253666 at At4g30270 MERISB_BRU1_MERI-5__MERI5SB (MERISTEM-5); hydrolase, acting on

- glycosyl bonds

254248 at At4g23270 |protein kinase family protein
similar to unknown protein [ Arabidopsis thaliana] (TAIR:AT5G44670.1);
similar to Os06g0328800 [Oryza sativa (japonica cultivar-group)]
(GB:NP_001057533.1); similar to Os02g0712500 [Oryza sativa (japonica

254508 at |Atg20170 |0 1 yar sroup)] (GB:NP_001047907.1); similar to unknown protein [Oryza
sativa (japonica cultivar-group)] (GB:BAD72474.1); contains InterPro
domain Protein of unknown function DUF23; (InterPro:IPR008166)

254553 at At4g19530 |disease resistance protein (TIR-NBS-LRR class), putative
AOP2__AOP2 (ALKENYL HYDROXALKYL PRODUCING 2);

255437 at At4g03060 oxidoreductase, acting on paired donors, with mcorpf)mnon or 'reductlon of
molecular oxygen, 2-oxoglutarate as one donor, and incorporation of one
atom each of oxygen into both donors

255859 _at At5g34930 |arogenate dehydrogenase

256021 at Atlg58270 [ZW9_  ZW9
similar to 18S pre-ribosomal assembly protein gar2-related [Arabidopsis

256096 _at Atlgl3650 |thaliana] (TAIR:AT2G03810.3); similar to hypothetical protein
[Trypanosoma cruzi strain CL Brener] (GB:XP 813437.1)

256221 at At1g56300 [DNAJ heat shock N-terminal domain-containing protein

256454 _at Atlg75280 |isoflavone reductase, putative

256458 _at At1g75220 |integral membrane protein, putative

256489 at Atlg31550 [carboxylic ester hydrolase/ lipase

256940 at At3g30720 [unknown protein
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257205 at At3g16520 |UDP-glucoronosyl/UDP-glucosyl transferase family protein
257228 _at At3g27890 [NQR__NQR (NADPH:QUINONE OXIDOREDUCTASE); FMN reductase
257580 _at At3g06210 [binding
similar to unknown protein [Arabidopsis thaliana] (TAIR:AT5G24600.1);
similar to hypothetical protein [Oryza sativa (japonica cultivar-group)]
(GB:BAC55679.1); similar to Os02g0292800 [Oryza sativa (japonica
28124 at  |AGIB2IS 1o 1ivar-group)] (GB:NP_001046597.1); similar to Os08g0153900 [Oryza
sativa (japonica cultivar-group)] (GB:NP_001061011.1); contains InterPro
domain Protein of unknown function DUF599; (InterPro:IPR006747)
258322 at AB22740 HMT3__HMT3 (Homocysteine S-methyltransferase 3); homocysteine S-
- methyltransferase
Atlg07780 154 1) TRP6 PAIl (PHOSPHORIBOSYLANTHRANILATE
259770_s_at |At1g29410 | o5\ prp AGE 1): phosphoribosylanthranilate isomerase
At5g05590 ; phosphoribosylanthranilate isomeras
ATTI2__ATTI2 (ARABIDOPSIS THALIANA TRYPSIN INHIBITOR
260546_at  |A2g43520 \pp GTEIN 2); trypsin inhibitor
GT__GT/UGT74F2 (UDP-GLUCOSYLTRANSFERASE 74F2); UDP-
260567 _at At2g43820 |glucosyltransferase/ UDP-glycosyltransferase/ transferase, transferring
glycosyl groups / transferase, transferring hexosyl groups
260685 _at Atlgl7650 |phosphogluconate dehydrogenase (decarboxylating)
260872 _at Atlg21350 |electron carrier/ oxidoreductase
similar to zinc finger (Ran-binding) family protein [Arabidopsis thaliana]
(TAIR:AT1G55040.1); similar to Zn-finger in Ran binding protein and
others, putative [Oryza sativa (japonica cultivar-group)] (GB:AAX95671.1);
260981 _at Atlg53460 similar to Os03g0712200 [Oryza sativa (japonica cultivar-group)]
(GB:NP_001051062.1); similar to Os01g0203300 [Oryza sativa (japonica
cultivar-group)] (GB:NP_001042331.1)
NRS/ER__NRS/ER (NUCLEOTIDE-RHAMNOSE
261105_at  |At1g63000 |y NTHASE/EPIMERASE-REDUCTASE)
261326 s at Atlgd4180 aminoacylase, putative / N-acyl-L-amino-acid amidohydrolase, putative
S |At1g44820 P P
SMT3__SMT3 (S-adenosyl-methionine-sterol-C-methyltransferase 3); S-
261727 _at Atlg76090 adenosylmethionine-dependent methyltransferase
261924 at Atlg22550 |proton-dependent oligopeptide transport (POT) family protein
262134 at Atlg77990 |{ASTS6_SULTR2;2 AST56 (sulphate transporter 2;2); sulfate transporter
262458 _at Atlgl11280 |carbohydrate binding / kinase
G-TMT_TMTI1_VTE4__G-TMT (GAMMA-TOCOPHEROL
262875_at At1g64970 METHYLTRANSFERASE)
ATGSTU16__ATGSTU16 (Arabidopsis thaliana Glutathione S-transferase
262916 _at Atlg59700 (class tau) 16); glutathione transferase
263553 _at At2g16430 |PAP10_ PAPI10; acid phosphatase/ protein serine/threonine phosphatase
263714 _at At2g20610 [SUR1_ALFl1 HLS3 RTY_SURI1__SURI (SUPERROOT 1); transaminase
264052 at ARg22330 CYP79B§_C?1P79B3 (gytqchrome P450, family 79, subfamily B,
polypeptide 3); oxygen binding
264513 _at At109420 G6PD4__G6PD4 (GLUCOSE-6-PHOSPHATE DEHYDROGENASE 4);
glucose-6-phosphate 1-dehydrogenase
264790 _at At2g17820 [ATHK1_AHKI1 ATHKI1_ATHKI (HISTIDINE KINASE 1)
264954 at Atlg77060 |mutase family protein
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ARP2_RPL3B__ARP2/RPL3B (ARABIDOPSIS RIBOSOMAL PROTEIN

265032_at Atlg61580 2); structural constituent of ribosome
265058 s at Atlg52030 |MBP2_F-ATMBP_MBP1.2_ MBP2 (MYROSINASE-BINDING
= At1g52040 |PROTEIN 2)

265354 _at At2g16700 |ADF5__ADFS (ACTIN DEPOLYMERIZING FACTOR 5); actin binding

265486_at 265486 at

265611 at At2g25510 |unknown protein
similar to transcription elongation factor-related [Arabidopsis thaliana)
(TAIR:AT5G25520.2); similar to PHD finger protein-like [Oryza sativa
(japonica cultivar-group)] (GB:BAD24999.1); similar to Os02g0208600

265905 _at At2g25640 |[Oryza sativa (japonica cultivar-group)] (GB:NP_001046260.1); contains
InterPro domain Transcription elongation factor S-II, central region;
(InterPro:IPR003618); contains InterPro domain SPOC;
(InterPro:IPR012921)

266472 _at

266643 _s_at ﬁgggg;gg UDP-glucoronosyl/UDP-glucosyl transferase family protein

267078 at At2g40960 [nucleic acid binding
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APPENDIX B
R CODE

AR R R R R B H R AR TR R

—#
# Pakages Used #
—-——#

library(limma)
library(randomForest)
library(varSelRF)

library(maps)

———+#
# Reading Data #
H—#

Ecodata = read.table("AtGE_ecotypes.txt", header =T, sep="\t")
Geo = read.table("Geo.txt", header =T, sep="\t")
x = read.table("EcotypesGeo.txt",sep="\t")

R R

# #
# Map #
# #

par(mar=tep(0, 4))

par(mfrow=c(2,1))

map("world",col="grey")
text(Geo$Longitude,Geo$Latitude,Geo$Ecotype,col="black",cex=0.8)
points(Geo$Longitude,Geo$Latitude,col= rainbow(16:20)[1:10],cex=0.7,lwd=3)
legend(120,85, Geo$Ecotype , fill = rainbow(16:20)[1:10], cex=0.8, bty="n")
points(Geo$Longitude[7],Geo$ Latitude[7],col="DarkGoldenRod ",cex=3,lwd=2)
arrows(10.5, 30, 10.5, -50, lwd=2,angle = 15,col="DarkGoldenRod ")
text(5.5,-70, "Germany ", adj=0, cex=1.5, col="DarkGoldenRod ")

map("world", "Germany",col="DarkGoldenRod ")

text(GeoS$Longitude,Geo$Latitude, Geo$Ecotype,cex=0.8,col="red")
points(Geo$Longitude,Geo$Latitude,col= rainbow(16:20)[ 1:10],cex=0.7,lwd=3)
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# #
# Cluster for Lad and A4 #
# #

la =x[-1,4]

la=la[1:10]
names(la)=x[-1,1][1:10]
dist(la)

hc.la <- hclust(dist(la))
plot(hc.la)

la.km <- kmeans(dist(la),4)$cluster
la.km # Cluster

al=x[-1,7]

al=al[1:10]
names(al)=x[-1,1][1:10]
dist(al)

hc.al <- hclust(dist(al))
plot(hc.al)

al.km <- kmeans(dist(al),4)$cluster
al.km # Cluster

# #
# Gene Expression Plot #
# #

genelist = la4  # changable variable

name= "La4"

genedata<-Ecodata[genelist,2:31]
gene.x1<-apply(genedata[,1:3],1,mean)



gene.x2<-apply(genedata[,4:6],1,mean)
gene.x3<-apply(genedata[,7:9],1,mean)
gene.x4<-apply(genedata[,10:12],1,mean)
gene.x5<-apply(genedata[,13:15],1,mean)
gene.x6<-apply(genedata[,16:18],1,mean)
gene.x7<-apply(genedata[,19:21],1,mean)
gene.x8<-apply(genedata[,22:24],1,mean)
gene.x9<-apply(genedata[,25:27],1,mean)
gene.x10<-apply(genedata[,28:30],1,mean)

genegexp<-data.frame(gene.x1, gene.x2, gene.x3, gene.x4, gene.x5,

gene.x6, gene.x7, gene.x8, gene.x9, gene.x10)

for (i in 1:length(genelist)) {

GeneExpression.gene=t(rbind(genegexp[i,]))
matplot(GeneExpression.gene,axes=F,frame=T,type="b',pch=1)
row.names(GeneExpression.gene)<-c("Bay0", "C24", "Col0", "Cvi", "Est", "Kin0", "Ler", "Nd1", "Sha",
"Van0")

axis(1, 1:10, row.names(GeneExpression.gene))

par(new=T)

}

title(xlab="Ecotypes",main=paste(name))

# #
# Gene Expression Plot - Each picture represents one gene #
# #

genelist = la4 # changeable variable
N=20 # the number of genes
genedata<-Ecodata[genelist,2:31]
gene.x1<-apply(genedata[,1:3],1,mean)
gene.x2<-apply(genedata[,4:6],1,mean)
gene.x3<-apply(genedata[,7:9],1,mean)
gene.x4<-apply(genedata[,10:12],1,mean)
gene.x5<-apply(genedata[,13:15],1,mean)
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gene.x6<-apply(genedata[,16:18],1,mean)
gene.x7<-apply(genedata[,19:21],1,mean)
gene.x8<-apply(genedata[,22:24],1,mean)
gene.x9<-apply(genedata[,25:27],1,mean)
gene.x10<-apply(genedata[,28:30],1,mean)
genegexp<-data.frame(gene.x1, gene.x2, gene.x3, gene.x4, gene.x5,
gene.x6, gene.x7, gene.x8, gene.x9, gene.x10)

for (i in 1:N){

GeneExpression.gene=t(rbind(genegexp(i,]))
matplot(GeneExpression.gene,axes=F,frame=T,type="b",pch=1)
row.names(GeneExpression.gene)<-c("Bay0", "C24", "Col0", "Cvi",
"Est", "Kin0", "Ler", "Nd1", "Sha", "Van0")

axis(1, 1:10, row.names(GeneExpression.gene))
title(main=paste("Gene",i))

}

# Latitude-Lad4 #

#H H#
i g

ecorep =¢(1,1,1,2,2,2,3.3.3,4,4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,9,10,10,10)
design = model. matrix(~-1+factor(ecorep))

Alad = design[,5]
Bla4 = design[,1]+design[,7]+design[,8]+design[,10]
Cla4 = design[,2]+design[,3]+design[,6] +design[,9]
Dla4 = design[,4]

designlad = data.frame(Ala4, Bla4, Cla4, Dla4)
contrast.matrixlad = makeContrasts(Ala4 — Blad4, Ala4 — Cla4, Ala4 — Dla4, Bla4 — Cla4, Bla4 — Dla4,
Cla4 — Dla4,levels=designla4)

eco.fitla4 = ImFit(Ecodata[,2:31],designla4)

eco.fit2la4 = contrasts.fit(eco.fitlad, contrast.matrixla4)

eco.eblad = eBayes(eco.fit21a4)
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#= decideTests =#

clasla4 = decideTests(eco.eblad, method= “nestedF”, adjust.method= “fdr”, p=0.05)

rownames(clasla4) = Ecodata[,1]

kla4 = rowSums(abs(clasla4))

# select the genes which are significant at least in one contrast

cl.la4 = clasla4[,1]
c2.1a4 = clasla4[,2]
c3.1a4 = clasla4[,3]
c4.1a4 = clasla4[,4]
c5.1a4 = clasla4[,5]
c6.1a4 = clasla4[,6]

lad.c1 = which(cl.la4 =1 | c1.la4 =-1)
lad.c2 = which(c2.1a4 = 1 | c2.1a4 ==-1)
la4.c3 = which(c3.1a4 =1 | c3.1a4 =-1)
lad.c4 = which(c4.1a4 = 1 | c4.1a4 =-1)
1a4.¢5 = which(c5.1a4 =1 | ¢5.1a4 =-1)
lad.c6 = which(c6.1a4 =1 | c6.1a4 ==-1)

la4.all = unique(c(lad.c1,la4.c2,l1a4.c3,la4.c4,1a4.c5,la4.c6))

#=Look decideTests in different way =#

la4k0 = length(which(kla4==0))

ladk1 = length(which(kla4d=1))

ladk2 = length(which(kla4==2))

ladk3 = length(which(kla4==3))

ladk4 = length(which(klad==4))

ladkS = length(which(kla4==5))

lad4k6 = length(which(klad==6))

ladk = c(1a4kO0, lad4k1, ladk2, 1adk3, ladkd, la4kS, l1a4k6)
names(ladk)=c(0:6)
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la4bar = barplot(ladk,space=1.5,col= c("yellow",’red”, blue”,"lightblue", "mistyrose", "lightcyan",

"lavender"),legend=1a4dk, xlab="number of significant contrasts”, main="1a4")

ladrow = which(kla4>=4)

#. #
Ly 7

# Latitude - Al4 #

H#
T

ecorep = ¢(1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,9,10,10,10)
design = model. matrix(~-1+factor(ecorep))

Aal4 = design[,9]

Bal4 = designl[,7]

Cal4 = design[,1]+design[,2]+design[,6]+design[,8]

Dal4 = design[,3]+design[,4]+design[,5]+design[,10]

designal4 = data.frame(Aal4, Bal4, Cal4, Dal4)

contrast.matrixal4 = makeContrasts(Aal4-Bal4,Aal4-Cal4,Aal4-Dal4,Bal4-Cal4,
Bal4-Dal4,Cal4-Dal4,levels=designal4)

eco.fital4 = ImFit(Ecodata[,2:31],designal4)

eco.fit2ald4 = contrasts.fit(eco.fital4,contrast. matrixal4)

eco.ebald = eBayes(eco.fit2al4)

#= decideTests =#

clasal4 = decideTests(eco.ebal4, method= “nestedF”, adjust.method= “fdr”, p=0.05)
kal4 = rowSums(abs(clasal4))

# select the genes which are significant at least in one contrast

cl.ald = clasal4[,1]

c2.al4 = clasal4[,2]
¢3.al4 = clasal4[,3]
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c4.al4 = clasal4[ 4]
¢5.al4 = clasal4[,5]
¢6.al4 = clasal4[,6]

ald.cl = which(cl.al4 == 1 | cl.al4 ==-1)
ald4.c2 = which(c2.al4 =1 | c2.al4 ==-1)
ald.c3 = which(c3.al4 = 1| c3.al4 =-1)
ald.c4 = which(c4.al4 =1 | c4.al4 =-1)
al4.c5 = which(c5.al4 == 1| c5.al4 =-1)
ald.c6 = which(c6.al4 =1 | c6.al4 ==-1)

al4.all = unique(c(al4.c1,al4.c2,ald.c3,al4.c4,al4.c5,al4.c6))

#= Look decideTests in different way =#

al4kO0 = length(which(kal4==0))

al4k1 = length(which(kal4==1))

al4k2 = length(which(kal4==2))

al4k3 = length(which(kal4==3))

al4k4 = length(which(kal4=—=4))

al4k5 = length(which(kald==S5))

al4k6 = length(which(kal4==6))

aldk = c(aldkO, aldkl, al4k2, al4k3, al4k4, al4ks5, al4k6)
names(ald4k)=c(0:6)

aldbar = barplot(aldk,space=1.5,col= c("yellow", ’red”,”’blue”,"lightblue", "mistyrose", "lightcyan",

"lavender"),legend=al4k, xlab="number of significant contrasts”, main="al4")

aldrow = which(kal4>=5)

#. #
t 1t

# Cvi vs. the other 8 Ecotypes (without Sha) #

4 #
t T
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ecorep =¢(1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,9,10,10,10)

design = model.matrix(~-1+factor(ecorep))

designcvi = design
colnames(designevi)<-c("Bay0", "C24", "Col0", "Cvi", "Est", "Kin0", "Ler", "Nd1", "Shakdara", "Van0")

contrast.matrixcvi<-makeContrasts(Cvi -Bay0/8 - C24/8 - Col0/8 — Est/8 - Kin0/8 — Ler/8 - Nd1/8 -

Van0/8 ,levels=designcvi)

eco.fitevi = ImFit(Ecodata[,2:31],designcvi)
eco.fit2cvi = contrasts.fit(eco.fitcvi, contrast.matrixcvi)

eco.ebevi = eBayes(eco.fit2cvi)

clascvi = decideTests(eco.ebcvi, method= “nestedF”, adjust.method= “fdr”, p=0.05)

kevi = rowSums(abs(clascvi))

#=Toptable =# selecting the first 500 genes from toptable

num=500

cvi = topTable(eco.ebcvi, genelist= eco.ebcvi $genes, coef=1, n=num, adjust="fdr")

d.cvi = read.csv("cvinumber.csv")

n.cvi = d.cvil,1]

# 4
F 1t

# Sha vs. the other 8 Ecotypes (without Cvi) #

H. H#
g 1

designsha = design
colnames(designsha)<-c("Bay0", "C24", "Col0", "Cvi", "Est", "Kin0", "Ler", "Nd1", "Shakdara", "Van0")

contrast.matrixsha<-makeContrasts(Shakdara -Bay0/8 - C24/8 - Col0/8 — Est/8 - Kin0/8 — Ler/8 - Nd1/8 -
Van0/8,levels=designsha)

eco.fitsha = ImFit(Ecodata[,2:31],designsha)
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eco.fit2sha = contrasts.fit(eco.fitsha, contrast.matrixsha)

eco.ebsha = eBayes(eco.fit2sha)

#= Toptable =# selecting the first 500 genes from toptable

sha = topTable(eco.ebsha, coef=1, n=num, adjust="fdr")

d.sha = read.csv("shanumber.csv")

n.sha = d.sha[,1]

# #

# Highly Variation - geneselect #

# #
vars=apply(AtGE, 1, var)
sortvars=sort(vars,decreasing = TRUE)
geneselect=sortvars[ 1:number]

gs = names(geneselect)

gs = as.numeric(gs)

Ecodata[gs,1]

#. #
+ s

# Randomly Selection - ran #

#H#. H

w 14

x=runif{number, min=1, max=22810)

ran=as.integer(x)

#. H#
t T

# RandomForest #

#. #
g "

rfgenes = n.cvi # changeable variable
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rfname = "n.cvi"

library(randomForest)

ecol=t(Ecodata[rfgenes,2:31]) ## select "number" genes
econames=Ttep(c("Bay0", "C24", "Col0", "Cvi", "Est", "Kin0", "Ler", "Nd1", "Shakdara", "Van0"),each=3)

colnames(ecol)=Ecodata[rfgenes,1]

ecotypel=data.frame(ecol,econames) ## Data which we want ##

ecotype.rf = randomForest(econames ~ ., data=ecotypel, ntree=100,
keep.forest=TRUE, importance=TRUE)

ecotype.rf

imp = importance(ecotype.rf)
plot(sort(imp[,11]),type="h",ylab="Importance Score”, main = rfname)

# see Accuraacy

# #
# ntree vs. OOB error rate #
# #

ntree=300
nrf=10 # number of boostrap

m = matrix(rep(0,ntree*nrf),nrow=ntree)

for (j in 1:nrf){
for(i in 1:ntree){
ecotype.rf = randomForest(econames ~ ., data=ecotypel, ntree=i, mtry=sqrt(22810),
keep.forest=TRUE, importance=TRUE)
m(i,j]=ecotype.rf$err.rate[i,1]
matplot(m,type="1",col="grey" Ity=1,
xlab="number of trees",ylab="0OOB error rate",ylim=c(0,1),frame.plot=F)
axis(1, seq(0,ntree,by=50),col = "#EE9A00", col.axis="blue", lwd = 2)
axis(2, seq(0,1,by=0.2),col = "#EE9A00", col.axis="blue", lwd = 2)
}
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par(new=T)
}
mmean = apply(m, 1, mean)

mean = ifelse(mmean =="NaN", 1, mmean)

op = par(new=T)
par(op)
plot(mmean,type="1",cex=1,col="red",lwd=2,
xlab="number of trees",ylab="0OB error rate",ylim=c(0,1),frame.plot=F ,axes=F)
axis(1, seq(0,ntree,by=50),col = "#EE9A00", col.axis="blue", lwd = 2)
axis(2, seq(0,1,by=0.2),col = "#EE9A00", col.axis="blue", lwd = 2)

par(op)

mini = min(mean)

a = which(mean=—mini) # a is the number of trees which we want
text(a,0.4,paste("ntree",a),adj=1,cex=1.2,col="dark green")
points(a,mean[a],col="dark green",cex=1.2,Iwd=3)

#= After finding “optimal ntree” =#

ecotype.rf = randomForest(econames ~ ., data=ecotypel, ntree=a,
keep.forest=TRUE, importance=TRUE)
ecotype.rf

econames=as.factor(econames)
e = ecotypel[,-501]
rf.eco <- varSelRF(e, econames, ntree = 210, mtry=4)

rf.eco

plot(rf.eco)

4. H
g T

# mtry vs. OOB error rate #

## #
" L
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rf.mtry=170
nrf=10 # number of boostrap

numtree=a

m = matrix(rep(0,rf. mtry*nrf),nrow=rf.mtry)

for (j in 1:nrf){

for(i in 130:rf.mtry){

ecotype.rf = randomForest(econames ~ ., data=ecotypel,ntree=numtree, mtry=i,
keep.forest=TRUE, importance=TRUE)

m([i,j]J=ecotype.rfSerr.rate[numtree,1]

matplot(m,type="1",col="grey",Ity=1,
xlab="number of mtry",ylab="QOB error rate",ylim=c(0,1),xlim=c(130,170),frame.plot=F)
axis(1, seq(130,170,by=2),col = "#EE9A00", col.axis="blue", Iwd = 2)
axis(2, seq(0,1,by=0.2),col = "#EE9A00", col.axis="blue", Iwd = 2)
}
par(new=T)
}

mmean = apply(m, 1, mean)

#mean = ifelse(mmean ="NaN", 1, mmean)

op = par(new=T)
par(op)
plot(mmean,type="1",cex=1,col="red",lwd=2,
xlab="number of mtry",ylab="0OOB error rate",ylim=c(0,1),xlim=c(130,170),frame.plot=F,axes=F)
axis(1, seq(130,170,by=2),col = "#EE9A00", col.axis="blue", lwd = 2)
axis(2, seq(0,1,by=0.2),col = "#EE9A00", col.axis="blue", lwd = 2)

par(op)

mini = min(mmean(131:170])

b = which(mmean==mini) # a is the number of trees which we want
text(b,0.4,paste("mtry",b),adj=0,cex=1.2,col="dark green")
points(b,mean[b],col="dark green",cex=1.2,lwd=3)
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#= After finding "optimal ntree" & "optimal mtry" =#

ecotype.rf = randomForest(econames ~ ., data=ecotypel, ntree=a,mtry=b,

keep.forest=TRUE, importance=TRUE)

ecotype.rf

# #
# Select the number of Genes from RandomForest #
H# 4

"

rfgenes=n.cvi

ecol=t(Ecodata[rfgenes,2:31])

econames = rep(c("Bay0", "C24", "Col0", "Cvi", "Est", "Kin0", "Ler", "Nd1",
"Shakdara", "Van0"),each=3)

colnames(ecol)= Ecodata[rfgenes,1]

ecotypel = data.frame(ecol,econames)
econames=as.factor(econames)

e = ecotypel[,-501]

rf.eco <- varSelRF(e, econames, ntree=a , mtry=b)

rf.eco

plot(rf.eco)
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Geo.txt

Ecotype Latitude Longitude
Bay-0 49.56 11.34
C24 40.2 8.25
Col-0 43.01251667 -70.05
Cvi 16.00208056 -24.05
Est 59 25.04
Kin-0 42.46638889 -84.46
Ler 48.2 10.52
Nd-1 50.77777778 8.03
Shakdara 37.18333333 73.166
Van-0 49.85049722 -123.11

EcotypesGeo.txt

Ecotype Array Location Latitude Longitude Altitude
Bay-0 AtGE 111 A,B,C Bayreuth, Germany 49.56 11.34 350
C24 AtGE_112_A,C,D Coimbra, Portugal 40.20 8.25 179
Col-0 AtGE 113_A,C,D Columbia University (U.S.) 43.01 -70.05 49
Cvi AtGE 114 A,B,C Cape Verde Islands 16.00 24.05 43
Est AtGE_115_A,B,D Estonia 59.00 25.04 15
Kin-0 AtGE_116_A,B,C Kinneville, MI 4247 -84.46 273
Ler AtGE_117 B,C,D Landsberg, Germany 48.20 10.52 628
Nd-1 AtGE 118 A,B,C Niederzunzheim, Germany 50.78 8.03 250
Shakdara AtGE 119 _A,C,D Pamiro-Alay, Tadjikistan 37.18 73.17 3400
Van-0 AtGE 120 A,B,C University of British Columbia 49.85 -123.11 50

AtGE ecotypes.txt

Which are available on WEIGEL WORLD website:

http://www.weigelworld.org/resources/microarray/AtGenExpress/
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