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ABSTRACT

HIGH RESOLUTION ANALYSIS OF EXTRAGALACTIC GLOBULAR
CLUSTERS

By

Christopher Z Waters

Globular clusters are massive compact groups of stars, with masses that range beyond
106M@. Because they are so large, they can remain bound together as they orbit
their host galaxies. They are also very luminous, which ensures that they can be
seen at distances far beyond the point where individual stars are no longer visible.
The combination of these two qualities makes them wonderful test particles to explore
how the dynamical interactions of stars in the cluster change the observed parameters.
The evolution of these clusters has not been very well constrained by observations.
They must lose mass as they orbit, but the exact way that this mass loss changes

their observed properties is not well known.

MS87 is a massive galaxy located 16 Mpc away from the Milky Way. This makes
it much farther than other galaxies that have clearly resolved globular clusters. How-
ever as M87 is so massive (M ~ 1012Mp), its globular cluster population is much
more numerous than those of other closer galaxies. Only about 150 globular clusters
have been detected in the Milky Way, whereas M87 should have close to 10000 clus-
ters. This large population allows for any observed relations to be less influenced by

statistical uncertainty.

The core of M87 was imaged with the Advanced Camera for Surveys on the Hubble
Space Telescope as part of a 50 orbit program in 2005 and 2006. During each orbit,
multiple exposures were taken in the infrared F814W and red F606W filters, giving
total exposure times of 73,800s in F814W and 24,500s in F606W. These very long



exposures provide some of the deepest data ever taken with HST.

As the data used in this project can resolve the faintest clusters, we can use it to
investigate the luminosity and mass functions of the globular clusters in M87. The
final sample contains 2091 clusters, with a luminosity function that matches well with
previously published results. The mass function generated from these clusters shows
the signature of mass loss from two-body relaxation. Much theoretical work has been
done to investigate this evolution, but since there are few galaxies in which large
numbers of clusters can be observed, these theoretical predictions have been difficult
to test in the past. The change in the mass to light ratio between clusters of different
ages and metallicity is an important complication in the shape of the mass function.
However, by correcting for these changes, this sample shows that the different color
groups of the M87 globular clusters indicate different formation epochs.

These data also provide much higher angular resolution than previously available
for populous extragalactic systems. This resolution ensures that the clusters are
broader than just simple point sources, allowing them to be fit with theoretical models
of the cluster structure. Such fits show that the relations between the cluster structure
and luminosity appear to be universal, as those found for M87 match well with the
Milky Way, the only other complete sample that exists. These structure fits also
show that the probability of the formation of low mass X-ray binaries in a cluster is

influenced by the rate of stellar interactions.
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CHAPTER 1:
INTRODUCTION

Globular clusters (GCs) are spherical groupings of many stars that are bound together
by their own self gravity. They appear in every galaxy observers have studied, and
seem to be among the oldest structures in the universe. High resolution images of
galactic globular clusters, such as the Sloan Digital Sky Survey (SDSS) image of
the globular cluster M3 presented in figure 1.1, show an obvious overdensity of stars

compared to the background, with a very dense core of stars blending together.

1.1 GLOBULAR CLUSTERS

The first globular cluster was discovered by Johann Abraham Ihle on August 26, 1665
while he was observing Saturn (Schultz, 1866). This object, now known as M22, was
just one of the 28 galactic globular clusters that appear in Charles Messier’s catalog
of “nebulae,” published roughly a hundred years later. The nature of these objects
was first suggested by William Herschel (Herschel, 1789), who was able to resolve the
individual stars in the cluster. This fact made it clear that globular clusters must be
composed of many stars, and as the stars in the center of the cluster are more tightly
packed, they must be held together by the mutual attractions between the component
stars.

Following their discovery, star counts were used to estimate the shape of the mass
profile, and with the introduction of statistical mechanics in the late nineteenth cen-

tury, globular clusters began to be modeled as a gas of stars (Plummer, 1911). By the



middle of the twentieth century, steady state solutions were found that could satisfac-
torily match the observed density profiles (Hénon, 1961; King, 1966). However, these
solutions indicated that the structure and evolution of these objects are intrinsically
linked, and must be treated simultaneously. This realization has led to recent at-
tempts to explain globular clusters using N-body simulations of the component stars,
which can investigate both the structure and evolution (Baumgardt & Makino, 2003).

Globular clusters are believed to form from the collapse of giant molecular clouds.
This collapse must happen relatively quickly, as the ignition of hydrogen burning in
massive stars is likely sufficient to disperse any remaining gas. Because of this, all
the stars in the cluster can be assumed to have formed at the same time, and as they
all form from gas with the same chemical enrichment, they must all share the same
metal content.

These two facts make globular clusters excellent laboratories to examine the lives
of stars, as the only difference between the individual stars is their masses. The stars
in the cluster therefore fall upon a path that traces the evolutionary history of the
stars. Figure 1.2 illustrates the color magnitude diagram of the galactic globular
cluster M3. The main sequence of stars is clearly visible up to the turnoff around
V' ~ 18.5. This point marks where massive stars are starting to evolve away from the
main sequence, and up the red giant branch. The main sequence lifetimes of stars
at the turnoff provide an estimate of the age of the cluster. These ages indicate that
the globular clusters in the Milky Way are very old, with current ages on the order
of the age of the universe.

Globular clusters are generally more metal poor than the Sun, consistent with their
great ages. Like the metal poor stars of the galactic halo, the Milky Way globular
cluster system is spherically distributed around the center of the galaxy. This fact
was instrumental in one of the great discoveries of the structure of the Milky Way.

Shapley (1921) used the observation that the globular clusters visible from Earth



are not isotropic in the sky, and that they seem to be distributed about a point 8kpc

away. This led to the conclusion that the Earth is not located at the center of the

galaxy.

1.2 SUMMARY OF THESIS GOALS

This thesis examines very deep observations of the central regions of the giant elliptical
galaxy M87. This galaxy is a member of the Virgo cluster of galaxies, and is located
at a distance of 16 Mpc (Macri et al., 1999). Figure 1.3 shows a section of the Virgo
cluster as seen by the SDSS (Stoughton et al., 2002) with the bright object in the
lower left corner being M87. The observations for this project were taken using the
Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST).
This camera has a field of view of 202”7 x 2027, which covers an area roughly the
size of the bright core of M87 visible in the SDSS image. Although this relatively
small image size does not allow the analysis of the full M87 globular cluster system
(believed to number up to 10000 objects), by taking advantage of very long exposure
time images, the sample of the GCs will be effectively volume limited, with even the
faintest objects measured.

Without a cutoff in luminosity, such a sample can be used to construct a complete
luminosity function for the M87 globular cluster system. This luminosity function can
then be used to constrain the evolution of the clusters. The high angular resolution
that HST provides also allows the clusters to be resolved, which allows their structure
to be examined. Therefore, this data set presents an opportunity to put observational
constraints on the structure and evolution of the cluster properties. As the number
of clusters that comprise the sample is very large (N ~ 2000), such constraints have

the power to be more statistically rigorous than can be provided by the Milky Way.



1.3 PREVIOUS STUDIES OF GLOBULAR CLUSTER SYS-

TEMS

For obvious reasons, the Milky Way GC system was the first to be examined in detail.
The Harris (1996) compilation is the standard catalog of Milky Way clusters, drawing
the best determined values from the published literature. The relations between the
various structural parameters were examined by Djorgovski & Meylan (1994), which
is currently the most reliable set of correlations between the parameters, despite the
low number of clusters. |

Although M31 is an obvious next choice for a target, many factors contribute
to hinder the classification of the GC system. As the galaxy is mostly face on, the
clusters are projected against the galaxy light, which makes them difficult to detect. In
addition, the large angular size of the galaxy means that a complete survey requires
many pointings. The most complete current survey is that of Barmby & Huchra
(2001), containing 400 clusters.

Elliptical galaxies are generally considered the best locations to search for GCs as
they have smooth light profiles against which clusters show up easily. In addition,
elliptical galaxies have much larger numbers of globular clusters per unit luminosity.
M87 has been studied before with the WFPC/2 camera on HST (Whitmore et al.,
1995; Kundu et al., 1999; Waters et al., 2006). Recently, it was re-examined as part
of the ACS Virgo Cluster Survey (ACSVCS) (Coté et al., 2004) which studied 100
galaxies in the Virgo cluster. The number of clusters examined per galaxy varies
widely, which limits the conclusions that can be drawn from this sample. Another

issue is that the survey did not have the depth required to detect the faintest clusters.



1.4 OUTLINE

This thesis is organized as follows: Chapter 2 discusses the dynamical processes that
shape globular clusters, and presents the background theory that is used in later
chapters. Chapter 3 discusses the point spread function, and how this affects the
image quality. Chapter 4 outlines the data reduction techniques used. Chapters 5
and 6 cover the globular cluster luminosity and mass functions, respectively, and
discuss their applications to the evolution of the globular cluster system. Chapter
7 presents a new method for measuring the structural parameters of the globular
clusters from high quality data, and chapter 8 presents the results of the measured
parameters. Finally, Chapter 9 summarizes the results of this study, and presents
the final conclusions. Appendix A gives the documentation for the code written for
this thesis that simulates and fits globular cluster profiles and images. Appendix B

discusses the final database of cluster parameters.



Figure 1.1 Image of the Milky Way globular cluster M3. This clearly shows that the
core of the cluster contains many stars, but that even at radii much larger than this
core, the cluster contains more stars than the background. This image was taken
from the SDSS image server at http://www.wikisky.com.



Figure 1.2 Color magnitude diagram of the stars in the globular cluster M3. As the
stars are all of roughly the same age, they trace out the path of stellar evolution.
The main sequence clearly is truncated at V' ~ 19, indicating that more massive stars
have evolved, populating the red giant branch. Measurements with V' > 17 are taken
from SDSS catalogs (Stoughton et al., 2002). The measurement of the brighter stars
shown in blue were supplied by Katie Rabidoux (private communication), based on
observations taken at the MSU 24" telescope.



Figure 1.3 Image of the Virgo cluster of galaxies. M87, the target galaxy for this
project, is located in the bottom left corner. M86 and M84 are the other two large
elliptical galaxies on the right side of the image along with the stream of galaxies
known as Markarian’s Chain. This image was taken from the SDSS image server at
http://www.wikisky.com.



CHAPTER 2:
DYNAMICS OF GLOBULAR CLUSTERS

2.1 KING MODELS

The standard assumption for modeling the dynamics of globular clusters is that they
are comprised of a large number of identical stars of mass m moving in the potential
created by their own self gravity. We can initially assume that the system is collision-
less, and neglect two-body interactions. The distribution function of the stars can
then be defined to be f(Z,7,t) > 0.

Jeans theorem states that the steady-state solution to the collisionless Boltzmann
equation is a function only of integrals of motion in the potential (Binney & Tremaine,
1987). If we assume our system is spherically symmetric, then there are four such
integrals: the total energy E and the three components of the angular momentum

vector L. This allows us to write our distribution function as
f=f(E, L)

For our globular cluster system, the potential that binds the stars together is

generated by the stars themselves. Therefore, from Poisson’s equation
V2P = —4rGp = —47er/fd3t7 (2.1)

We can make the assumption that the distribution function is isotropic, so the distri-



bution depends only on the particle energy based on the observations that globular

clusters do not have significant rotation. Therefore,

fac = f(E)

A first guess for the distribution function for the stars in a globular cluster is that
of the isothermal sphere, in which we assume that the energy of all stars is given by

a Maxwellian distribution:

—&—L1my2
(E) = foe Bl" = foe A (2.2)

f; isothermal
This yields an equation for the density
o0 -—(b-—%l mv? 9 )
Pisothermal(®) = 4’”/(; foe ¢ vedv = ppe o2 (2.3)

Poisson’s equation allows us to rewrite this in terms of the radius from the center of

the cluster instead of the local potential

1d [ odd
—4nCr = o (’” E)
0.2
Pisothermal(T) = onGr2 (2.4)

From this potential, we can define the core radius (called the King radius by some

902
Te= V 4rGpy (25)

This radius is the point where the projected density equals roughly one half the central

authors) as

value. This radius represents a convenient radius scale for the cluster.
It is clear that this is a poor solution for globular clusters, as the total mass

diverges to infinity when integrated over all radii. We can modify the isothermal

10



sphere by noting that globular clusters orbit host galaxies, and as such, experience
an external potential ®g. This assumption leads to a cutoff in the size of the cluster,
as there will be a point where a test particle feels an equal pull to the cluster and the
galaxy. This point is known as the tidal radius of the cluster (see section 2.2).

We can set the distribution for this model to be a modified “lowered isothermal”

model:
fo (e—E/‘72 - e-ET/U2) E< Er

0 E>Er

f(E) = (2.6)

We can make the simplification that any particle that “just reaches” the tidal radius
will be stripped from the cluster, so we can set E = ®(r¢). We can then renormalize

the potential such that ®(r¢) = 0, which gives

o+ 1mv2

fo (e- o — 1) E<0
fKing(E) = (2'7)

0 E>0

This distribution function yields a density of
Umnaz _<l>+lmv2
PKing = 47 fo / e T vidv (2.8)
0

where vmar = —% from the virial theorem. Defining a “reduced potential” W =

—%, allows this to be solved as
g

Pring(W) = o1 (eW et (V) - 2w (1+ §W)> (2.9)

We can again use Poisson’s equation to find a the density at a given radius
4 r2d—W = —4rGpr? [ W erf(VW) — \/ EW 1+ 2W (2.10)
dr dr m 3

11



Unlike the isothermal sphere, this differential equation must be solved numerically
(see Appendix A.1 for details on fast and accurate evaluation of King models). Figure
2.1 shows how the volume and projected surface density change with radius for a set

of central potentials, W,.
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Figure 2.1 Mass density and projected surface density for single mass King models
values of Wy = 3 (red), 6 (green), 9 (blue), and 12 (magenta). The highest value of
W) falls off the fastest in this plot.

Although this model has been used successfully to fit globular cluster surface
brightness profiles, deviations for high quality profiles have led to many attempts
at a more realistic model. The most intuitively reasonable is the multi-mass King
model (Da Costa & Freeman, 1976), which allows the stars in the cluster to have a

distribution instead of just a single value. If we assume energy partition between all
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the stars, such that m,-ai2 = mjajz then the distribution function becomes

2

<I>+1mv
zicifo(e— o2 —1> E<0

0 E>0

mm(E) = (2.11)

where the C; are the fractional masses for each class of stars. Extra care must be
taken when using such models to fit clusters, because although the mass is given by
this distribution function, the fact that the mass to light ratio T may not be the
same for each class of stars means that the observed light distribution may not match
the mass distribution.

Another change to the standard King model that has been proposed is to relax the
requirement of velocity isotropy (Gunn & Griffin, 1979). If the stars have different
masses, then some of them will be scattered onto non radial orbits. Such a model

provides a distribution function of the sort

f(E’L) =

&+ 3mv?
el [ —1) E<o0
2:Ci fo (2.12)

0 E>0

However, both of these changes to the simple single mass King model require very
precise star counts to observe any deviations from the predicted projected density of
the standard single mass King model projected density. They also require many more
assumptions about the properties of the stars in the cluster, and because of this, can

be adjusted in many ways to ensure a good fit.

2.2 TIDAL RADII

As globular clusters orbit a host galaxy, their sizes must be constrained in some

fashion. At some radius 74 their density profiles must drop to zero, and all stars
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outside this radius must be considered bound instead to the host galaxy. A simple
estimate of this size can be found by calculating the point at which tidal interactions
with the host galaxy will cause stars to leave the cluster.

The gravitational force keeping a star bound to the cluster is obviously just

GMcoM,
Feluster = "'_g__i (2.13)
e
Along a line connecting the cluster and the host galaxy, the tidal force will be
2ArGMg M,
Fiigal = _1~3_G_1 (2.14)
G

In this case, setting Ar = ro gives the tidal force felt by a star along this line, and

allows us to estimate the tidal radius as

[ M
re=rgd 2—MCE (2.15)

2.2.1 TIDAL RADII WITH CIRCULAR ORBITS

This result neglects the fact that the cluster is not stationary in the galactic potential,
but instead orbits the galaxy. If we take the simple assumption of circular orbits,
then the cluster and host galaxy experience a potential that can be considered time

independent in a frame that rotates about the center of mass with angular velocity

2 _ G(Mg + Mc)

w- =

2.16)
3 (
e
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In such a frame, Jacobi’s integral is constant, and is given by

1
E; = §v2 + &g+ ®¢ (2.17)
1, 1
= 57"2 + §r2w2 +®cic (2.18)
1
= 3 2 4 Dogp (2.19)

where @, is the effective potential felt by a star:

GMg GM¢o 1 2G(Mg+me)
TG TC 2 TS

Dot (2.20)

As 72 is always a positive quantity, there exists a range of valid potentials to keep E. 7
constant, which in turn constrains the region of space in which the stars can occupy
and be part of the cluster. This boundary is the Roche surface for the cluster, and
we can estimate the tidal radius by taking the distance from the center of the cluster

to the Lagrange point between the cluster and the galaxy. This yields a value

| M,
re=rge 3—]\4—% (2.21)

which is close to the estimate from a static case (Binney & Tremaine, 1987).
Unfortunately, this tidal radius is poorly defined. The surface of zero velocity
is not spherical, and as such, the radius changes at different orientations with the
host galaxy. In addition, stars that pass this radius are not lost with 100% efficiency.
Although they are likely to remain unbound if they pass beyond this surface, they will
still travel along with the cluster for some time. Finally, the most important problem
is due to clusters not orbiting on perfectly circular paths, but rather following elliptical

orbits.
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2.2.2 TIDAL RADII WITH ELLIPTICAL ORBITS

A cluster on an elliptical orbit experiences a potential that varies with time. As this
is difficult to calculate (as it also depends on the relaxation time of the cluster), the
standard assumption (King, 1962) is that the tidal radius is set at pericenter, and

stays fixed at that size for the remainder of the orbit. This assumption leads to a

c
= 3 M
Tt =TqG Bre)llg (2.22)

where e is the orbital eccentricity of the cluster. Other models (Innanen et al., 1983)

tidal radius with the form

have modified this result by considering the motion of the cluster through a realistic
mass distribution, and calculating the tidal radius at pericenter. This gives just a
slight change, r: = %rt elliptical-

Recently, Brosche et al. (1999) have suggested that the ratio of the true observed

tidal radius to the theoretical tidal radius can be parameterized by the form

Tt observed c[TA b
— =10 (—) (2.23)
Tt theoretical Tp

where 74 and rp are the apo- and peri-center distances. They provide their preferred
values of b = 0.664 and ¢ = —0.405. This can be constrained from observations, as

the theoretical tidal radius is proportional to M1/3 (Baumgardt & Makino, 2003).

2.3 MASS Loss

Globular clusters lose mass continually over their lifetimes. There are four main
methods by which mass leaves a globular cluster: dynamical friction, stellar evolution,
gravitational shocks, and evaporation due to two-body relaxation. As each of these
mechanisms have differing time scales, the relative contribution from any one method

changes over the cluster’s lifetime.
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2.3.1 DYNAMICAL FRICTION

Dynamical friction is a slowing felt by a mass as it travels through a population of
other masses. In terms of a globular cluster, dynamical friction serves to degrade the
orbit of the cluster as it passes through the stars of the galaxy.

Following Binney & Tremaine (1987), we can write the force felt by a globular

cluster due to the interactions with the galaxy mass density:

—4m In AG2 M2 p(r) 2X 2
e = c _s2 X
F, dynamical friction 1% (erf (X) ﬁe ) (2.24)

where In A is the Coulomb logarithm, X = 7”% ~ 1, and v% = —GA;{M This force

will cause the cluster to lose angular momentum at a rate

dL Fr dr

as the cluster speed can be assumed to remain the same. We can solve this differential
equation for the time it takes for all of the angular momentum to be dissipated, i.e.,
r — 0. Doing this, with the M87 mass distribution presented by Vesperini et al.
(2003) yields a timescale

3.0905 x 1083 yr [ ve \ (Mc\ 71 r \?
tdynamical friction ~ oA km/s ) \ Mg k_pc (2.26)

This very long timescale makes it clear that the effects of dynamical friction are

expected to be very small over the lifetime of a globular cluster. In fact, only the
most massive clusters are likely to experience any significant mass loss from this

mechanism.
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2.3.2 STELLAR EVOLUTION

The next source of mass loss in globular clusters comes from the evolution of the stars
that make up the cluster. Taking a simple relation for the main sequence lifetime of

bright, massive stars (where M > Mg) (Chernoff & Weinberg, 1990)

-3
tpms ~ 6 x 107 (M%)) yr (2.27)

We can see that these lifetimes can be far less than the expected lifetime of the cluster,
especially for the most massive stars. Since all stellar remnants have a smaller mass
than the initial mass of the star, having the highest mass stars fully evolve on very
short time scales (tpg ~ 108) will clearly cause a sudden drop in cluster mass after a
similar time period.

The effect of stellar evolution on the cluster mass can be estimated by taking a
distribution of stars (such as a Kroupa (2001) IMF with Ny ~ 1 x 10%), and letting it
evolve with the mass of the star immediately changing to the mass of its remnant after
its main sequence lifetime has elapsed. This model is clearly an oversimplification, as
it ignores mass loss due to stellar winds for high mass stars, and neglects the entire
post-main sequence evolution. Regardless, it will provide an estimate of the relative
importance of stellar evolution on the cluster mass loss.

Based on the main sequence lifetimes listed above, it is clear that the majority
of stellar evolution happens within the first 1 Gyr, after which, the rate should fall
quickly. As the fraction of mass in a cluster due to massive stars is assumed to be
constant (as this is only dependent on the cluster IMF), we can write the mass loss
using the form

dM

aM _ _ 2.2
o vsgM (2.28)

where vgg is a time dependent function related to the number of stars leaving the

main sequence. It is clear that ¥gp must have a sudden drop at early times as the
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most massive stars evolve. This drop should then slow to a small value as lower mass
stars become the “most evolved,” as these stars evolve on much longer timescales.

The fact that the majority of the mass loss due to stellar evolution occurs very
early in the cluster’s lifetime is convenient, as it means we can simply ignore all
consideration of this mass loss by simply scaling all cluster initial masses to their
value after stellar evolution has subsided, and then ignore the effect on the subsequent
evolution. This is reasonable as the fact that the mass loss equation above has the
solution

M(t) = MyeJo vse(t)dt (2.29)

Mass loss with this form will only change the normalization of the mass function,
although the shape will remain the same.

Finally, it is worth noting that the sudden drop in mass at early times is likely
to be sufficient to disrupt clusters that have low binding energy. This suggests that
clusters that form with very low initial concentrations, or alternatively, with a dis-
proportionately large number of massive stars relative to the total, are unlikely to

survive past the first 1 Gyr, and will be absent from later surveys.

2.3.3 GRAVITATIONAL SHOCKS

Gravitational shocks occur as the cluster passes by a large but finite mass distribution,
such as the disk of a spiral galaxy or a giant molecular cloud in a galaxy halo. The
passage of the cluster by these objects creates gravitational tidal forces that on average
transfer energy to the stars in the cluster, making them more likely to escape the
cluster.

Given the tidal acceleration acting on a point x in the cluster due to an object at

distance R from the cluster,

22GM
Gtidal = ~ 3 (2.30)
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we can substitute R? = b2 + v2t2, where b is the distance of closest approach for the
cluster and the perturbing mass. Using the impulse approximation for this accelera-

tion yields the expected change in velocity for the test star:

_ 2GMpx

A 2.31
v b2 ( )
We can then find the average change in energy per unit mass
1,49 14(2GMp\?
AE = 2A'v =37 ( 2o (2.32)

and, by integrating over the entire cluster, determine the total change in energy in

the cluster stars (Binney & Tremaine, 1987)

M 2GM
AEiotal = 3Cr;2,( vaP ) (2.33)

The timescale for this process to disrupt a cluster is of the order for this change

in energy to exceed the binding energy of the cluster

tagg ~ y=1 Ebinding

encounters A Etot al (2'34)

For shocks from the galaxy disk (q.v. Spitzer, 1987; Ostriker et al., 1972; Fall & Zhang,

2001)

3 GMCPC'U?Z

ISH= =——=—>5—— (2.35)
20 'rgg?n

where Pp is the orbital period of the cluster around the galaxy, vz is the cluster

velocity as it passes through the plane of the disk, and g, is the maximum gravita-

tional acceleration experienced by the cluster. For Milky Way clusters, this gives a

timescale on the order of tgy ~ 6 X 10%r. With this dissolution timescale, we can
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write the mass loss rate as (Fall & Zhang, 2001)

7kgA

where the factor of %A accounts for corrections to the simple treatment of the deriva-
tion using the impulse approximation, and kg is the constant relating how much mass

is lost for a given change in cluster energy

M_ L E
M~ "SE
This directly gives the relation
aM
— = yggM .
= VsH (2.37)

As before with stellar evolution, this form has an exponential solution, which again
yields evolution that does not change the shape of the mass function, but only shifts

the normalization over time.

2.3.4 Two-BODY RELAXATION

The final mass loss process and generally the most important is evaporation from
the cluster due to two body relaxation. In the dense stellar environments of globular
clusters, there will be many interactions between the stars, which serves to turn
the velocity distribution into a Maxwellian. However, the high velocity tail of this
distribution will ensure that some stars in the cluster will have velocities that will
move them beyond the tidal radius of the cluster, at which point they will be lost to
the host galaxy.

This mass loss must then have a timescale related to the time needed for the

cluster to achieve a Maxwellian velocity distribution. This is the definition of the
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relaxation time, which we can write as

2
(Av)f)

tr = (2.38)
where v2 is the is kinetic energy per mass for a star, and ((Av)ﬁ) is the average change
of this energy per unit time. These quantities can be found by solving the Fokker-
Planck approximation for the cluster (Spitzer, 1987; Binney & Tremaine, 1987), yield-

ing a relaxation time:
3
v

= 0.065 ———
tr nm2G21n A

(2.39)

Generally for a globular cluster, the important timescale is the relaxation time within
3 ; _ 1M1 _ 3 M . oy
the half mass radius. In this case n = TmeV = S and assuming the velocities

are circular
Ml / 2,,.2/ 2

tr X ———
" mGY2In A

(2.40)

From the virial theorem, we know that the kinetic energy of the stars in the
cluster is equal to half the cluster potential energy. This leads to the conclusion that
the escape velocity is only twice the average velocity of a star in the cluster. If we
determine how many stars have such velocities over the course of a relaxation time,

we can also find the expected mass loss rate:
Vey = — (2.41)
where & is the probability that a star with escape velocity is able to reach the edge of

the cluster before being scattered back to a lower velocity. Following Spitzer (1987)

(o 9] o
e = Ar (v)v2dv=i/ e 12z (2.42)
n Jovn, 712 Jous

which gives an estimate of £ ~ 7.4 x 103, within an order of magnitude of the value
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of ¢ = 0.045 given by more detailed evaluation with realistic mass distributions for

the stars (Hénon, 1961). This gives a mass loss rate of (Fall & Zhang, 2001)

7.256emGY/2In A
]\41/27.;31/2

Vey =

(2.43)

Substituting in the mean cluster density p, which we assume to be constant over the

lifetime of the cluster, we find

Vev = kée (Gp)/2mIn AM ™! (2.44)
and a mass loss equation
dM
- = —VevM (2.45)
= kéo (Gp)Y2 mnA (2.46)

As this mass loss is independent of mass, the solution is a linear decay, where

M(t) = Mo — pevt (2.47)

This is a different form for the mass loss than for stellar evolution and shocks. It
gives an amount of mass lost per unit time that is independent of the cluster mass
and constant in time. Because of this, small clusters will be completely destroyed
due to evaporation long before the heaviest clusters have lost even a fraction of their
mass. Such mass loss has the effect of quickly depleting the mass function at low
mass. After time ¢, we would expect that all clusters with initial mass My < peyt to
have been fully disrupted. This does not mean, however, that no clusters lower than
this will be found. These new low mass clusters will be the remnants of more massive

clusters that have also lost mass through evaporation.
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2.4 OBSERVED PROPERTIES OF GLOBULAR CLUSTERS

The structure of globular clusters is defined in terms of the central potential W This
parameter is not however, how the structure is generally defined based on observa-
tions. Instead, the King model concentration is used in its place, and is defined based
on the two main lengths for the cluster

c=logyp (g) (2.48)

C

Figure 2.2 shows that ¢ can be used as a replacement for Wj.

King Concentration
— = ) N
(94} ot
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1

Figure 2.2 Comparison of the central potential W with the observable concentration
c.

The half mass radius rj,, is another commonly measured quantity is defined as
the radius that contains half of the total mass of the cluster. As the mass is generally
an inferred parameter based on the surface brightness, the half light radius, Ry, is

often used in its place. This radius contains one half of the total flux of the cluster,
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and can be used as a suitable substitute for the half mass radius. Both of these radii
are larger than the core radii for most clusters.

A variety of photometric parameters can also be defined to quantify the flux
normalization. The most common of these is the central surface brightness, ug For
most observations, this is difficult to measure accurately, as it requires a fit to the
surface brightness profile, which is then extrapolated to zero radius. Therefore, it is
often replaced with the average surface brightness within the half light radius, which

is more easily measured. The equation for this is simply

(W) =V +2.51ogqg (ZWR%) (2.49)

The central surface brightness can be used to find the central luminosity and mass
densities. Converting the central surface brightness in magnitudes into a luminosity

surface density (in LT‘;?) is reasonably straight forward
logo (o) = 0.4 (26.362 — uy(0)) (2.50)

which can be used to determine the luminosity density in the center of the cluster:

. )
== 2.51
jo= (2.51)

In this case, p is a function of the King model that determines how much of the surface
luminosity is contributed from the core, and how much arises from the projection.

This can be calculated from the King model by taking

P~ /0 (r)dA/ /0 o(r)dV (2.52)

Converting this central luminosity density into a mass density is just a simple multi-
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plication by the mass to light ratio:

po= Tjo (2.53)

The relaxation time is the main timescale for the evolution of the cluster. At the

core of the cluster, the relaxation time is defined as (equation 2.3.4)

tre = 1.491 x 107ﬁ%(m*)_1p(1)/2r2 (2.54)

-1
= 2.5013 x 1075/ 3 (m (;—OM>) yr (2.55)

This timescale often overestimates the evolution, so the half mass relaxation time is

generally used instead. This time is

1, 3/2
= 5 1as1/2
trn = 8.933 x 10°—(m) M /22 (2.56)
-1
= 26799 x 105M1/23/? (ln (%M)) yr (2.57)

Finally, the metallicity of globular clusters can be estimated reasonably well from
the photometric color. This relationship is defined based on the known metallicities
and colors from the Milky Way clusters, and is usually written in the form (Kundu
et al., 1999):

[Fe/H] = —5.89 +4.72(V - I) (2.58)

As globular clusters have colors around V' — I ~ 1.0, they have metallicities around
[Fe/H] ~ —1.2, illustrating that globular clusters are more metal poor than the sun,

which is to be expected based on their ages.
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CHAPTER 3:
POINT SPREAD FUNCTIONS

At the distance of M87, the projected sizes of globular clusters are similar to the
resolving limit of HST. Because of this, we have to account for the effects of the point
spread function, IT. The point spread function (hereafter PSF) defines how the light
of a point source (such as a star at great distance) is spread over the focal plane of
the telescope by diffraction.

In the simplest model, we can consider a telescope as simply a circular aperture
separated from the focal plane by a distance ry. If we only allow monochromatic
light of wavelength A\g to pass through the aperture, then we can model the light as it
passes through the aperture as a series of spherical wavefronts. This yields an image

amplitude of

E= / / o i(kr—wt) g 4 (3.1)
A

perture T
For the circular aperture, we can break the integral into strips of dA = zdy where
T = 2\/}%27—;1/2. Since the difference in amplitude due to diffraction is related to the
differences in path length between all contributions, we can rewrite the equation of
the spherical wave at a given time to explicitly contain this difference in path length

kr — wt = yksinf. Performing the integration, and making further substitutions
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v= 4 and v = kRsin6

2
FE = 2EOR /1 — v2dv

_ 27!‘E0R2 J1 (3.2)
o 7 '

where J1(z) is the first Bessel function. The final image intensity is the square of

this, so

_ Ji(kRsin6)\ 2
I = IO( kRsin6 ) (33)

which is the definition of the Airy disk.

We can compare this simple model to the known properties of HST by noting that
the core size of the PSF for visible light is roughly 0/05. The first minimum of the
Airy disk occurs when 2Rsin§ = 1.22)g. Setting A\g = 555nm and R = 1.2m, we
find that this gives a size § ~ 07058, showing that the HST PSF is dominated by the
diffraction effects of the telescope aperture. Figure 3.1 shows a comparison between
highly sampled HST psFs for the F814W filter, and an Airy disk generated at the
peak wavelength of this filter A = 814nm.

The extra structure that is visible in the real HST PSF shows that real PSFs are
composed of more than a single simple diffraction pattern. It is clear from inspection
of the formula above that the effect of diffraction is a Fourier transform of the aperture.
The optical path of HST contains many more elements than a simple circular opening,
such as support structures, and the “spider” that holds the secondary mirror. The

addition of these objects creates the added complexity that is seen in the final PSF.
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Figure 3.1 Comparison of the Airy disk for a circular aperture comparable in size to
the HST to a highly sampled real HST Psr. This PSF is generated for the F814W
filter with the Airy disk created for the peak wavelength of that filter. The first zero
of the Airy disk clearly correlates to the size of the central core of the true PSF.

3.1 PIXEL RESPONSE FUNCTIONS AND THE EFFECTIVE
PSF

A further complication in modeling the PSF arises from the fact that the focal plane
of the telescope is not a perfect imaging plane, but rather an array of sensors that
make up the CCD imager. For an ideal CCD, the measured image of a point source

would be equivalent to

1(i.j) = M(z,y) @ I(,j) (34)

where III is the Shah function, a regular grid of impulse functions. Due to imperfec-
tions in the production of CCDs, pixels do not fully sample light equally well when
that light is centered differently. If we define the pixel response function #Z as the

sensitivity function of a given pixel over its surface, then the actual detected image
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will be

13,7) = I(z,y) ® Z(z,y) @ W(ij) (3.5)

The pixel response represents the changes in the detection efficiency of a given pixel
when light is incident on different portions of the pixel. One of the main sources of this
is due to the finite thickness of the detector material, and the fact that that material
does not absorb photons with 100% efficiency. This leads to internal reflections off
the back surface of the detector, which in turn causes the light to be scattered into
neighboring pixels. Assuming this scattering is uniform, a point source centered near
a pixel edge will have fewer photons detected in the incident pixel compared with a
source at the pixel center. The individual pixels in the detector are also not perfectly
electrically isolated from each other. This can allow captured photons (now present
as a charge in the detector) to bleed into neighboring pixels. This adds a further
contribution to Z.

Since we can never truly observe the real PSF, but only the convolution of the PSF

and Z#, we can define a new function Il g, the effective PSF as

Ng=1Q% (3.6)

By defining this, we now have a function that works as the standard PSF would in
a continuous focal plane. The effective PSF must be smoother and broader than the
instrumental PSF, as it convolved with &%, which has a width similar to the size of a
pixel. However, by switching to Il.g, we no longer need to worry about integrating

over the surface of a pixel, as that integration is incorporated already.
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3.2 PSFs FOR EXTENDED OBJECTS

We have defined the PSF so far in terms of the effect of diffraction on a point object.
For extended objects, the relations are largely the same. For a point source, the pixel
phase (where the center of the PSF falls in the pixel) changes the flux significantly.
This is not necessarily the case for extended objects, as the fact that the illumination
covers the entire pixel reduces the effect of the pixel phase. If we assume that the
pixel is illuminated by roughly the same flux across its entire surface, then the pPSF
for an extended object can be evaluated by simply evaluating the Il,¢ ¢ at the center
of the pixel. As the light distribution becomes less flat across the pixel, the PSF shifts
to the location of the peak of the lux. However, this will smoothly shift to the point

like case if the distribution becomes significantly peaked.

3.3 EVALUATING THE PSF FOR HST

Since we need the PSFs for HST to accurately model the detected GCs, we can take
advantage of the fact that being in space makes the PSF generally stable with time.
For ground based observatories, motions of the atmosphere can significantly change
the width of the PSF. These motions create a PSF that is much larger than the
aperture diffraction pattern. For ground based observations, the PSF can then be

assumed to be of the form
(24,2
Hground = e ® € (="4+y7)/208tm (3.7)

where ot is of the order of 17, almost certainly larger than II.g. By being in space,
HST does not have this added convolution, and so depends only on the telescope
itself, which leads to consistent modeling of the PSF. Creating such a model for the
PSF is essential for HST, as many pointings do not have sufficient stars to create one

directly from the observation.
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3.3.1 TiINnYTIM

TinyTim (Krist, 1993) is a program that is designed to model the pPsF for HST. It
takes a theoretical model of the telescope aperture and obstructions, and uses Fourier
Transforms to directly estimate the shape of the PSF. It incorporates the expected
object spectrum and the filter response to determine the relative contributions for all
wavelengths. The pixel response of the detector is added as a convolution at the end
of the evaluation.

This program works well for WFPC/2, and is the standard method for generating
PSFs for this instrument. However, the ACS detector is far off the central axis of
the telescope, and as such, has serious geometric distortion. The standard correction
for this distortion is to use Drizzle (see section 4.1.2 for details) to correct the ACS
frames. As the parameters that govern this procedure can change, the default Tiny-
Tim distortion correction does not in general provide a PSF that accurately represents

what is actually observed by the detector.

3.3.2 EMPIRICAL PSF's

To resolve this problem of poorly modeled PsFs, Anderson & King (2006) took the
tactic of empirically measuring the PSFs. To do this, they used 126 orbits of observa-
tions with HST to image the same field in the globular cluster NGC 6397. This field
contained roughly 4000 stars, which were imaged at different rotations and shifts, to
ensure that the stars do not fall on identical locations on every image. A model of the
PSF was then created, and fit to the stars, yielding a position and flux for each star
on each frame. These positions are then used to construct a model of the distortion
for the detector. Finally, the true pixel values were used to update the model of the
PSF. This process was iterated until a final solution was found. This iterative process
is important, as asymmetries in the PSF can alter the measured centroid for the star,

which will in turn yield a worse distortion model (Anderson & King, 2003).
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The final result of this iterative process was an accurate distortion model, and
a highly sampled Ilg. As there are 4000 stars on 126 images, each of which is
roughly 10 pixels in radius, it is clear that this data provides millions of samples of
the effective PSF. To eliminate changes in the PSF across the surface of the detector,
the models were calibrated over different areas so that any changes in the PSF beyond
the standard distortion corrections would be accounted for in the model.

This iterative process was repeated for a variety of filters, and then tabulated into
reference images that contain highly sampled PSFs at a variety of positions across the
image. By interpolating between the different PSFs, we can generate a high resolution
PSF for any position on the detector, and then by interpolating that highly sampled
PSF, we can make one for a given pixel phase. These PSFs are designed for the raw

flat fielded and distorted “FLT” frames. This choice was made as this image is the

most photometrically accurate, as it has had the least processing or resampling.

Figure 3.2 Comparison of TinyTim PSF to the Anderson & King (2006) empirical
ACS PSF after applying the distortion correction. Although the general shapes are
similar, the cores clearly differ, with the TinyTim PSF being more oblong than the
empirical PSF.
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3.4 PSF GENERATION

To generate PSFs for use in modeling the globular clusters, the individual data FLT
frames were zeroed out, and the empirical PSFs were placed at the positions of globular
clusters in the original data. The shifts between frames were included in this, such
that the PSFs on each frame have slightly different pixel phases. This was done with
the goal that once the frames were distortion corrected and aligned, all PSFs for a
given position will also align. These PSF frames are then combined in the same way
as the data, ensuring that the final PSFs are the most accurate representation of a
point source in the data.

Quantifying the error in the final PSFs is very difficult, as there are few bright
stars in the field. As M87 lies out of the plane of the Milky Way, this lack of stars is
not surprising. Complicating the effect is the fact that one of the two obvious stars
is saturated at the core, making it effectively useless in characterizing the quality of
the PSFs we generate. The one remaining star is located at the edge of the bottom
chip. This location is likely to have the largest distortion effects, and so is likely to
be one of the most difficult locations to generate an accurate PSF.

To classify the error, a PSF was generated for the location of the star ((z,y) =
(3995, 340)), and the star itself was extracted from the background subtracted double
resolution image (see chapter 4.2.2). The centroids were found for both the star and
the PSF, and radial profiles were generated. As we are only mostly certain that this
star is not saturated, the choice was made to flux calibrate the PSF by forcing the
profile at 5 pixels to match. This choice excludes the central peak, and calibrates
based on the light in the second maximum. Once this was done, the star and flux
calibrated PSF were interpolated to a common grid, and the percent error between

the two was calculated as
_ Star — PSF

E Star

(3.8)
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Only the central 20 x 20 pixels were checked, as beyond this point, the star image
has dropped to less than 0.1% of the peak, and noise from the galaxy background
begins to be the main source of light. Inside this box, the error is well described by
a Gaussian with (E) ~ 2% and og ~ 6%. The error in the central pixel is 5% which
suggests that this star is not in fact saturated.

This result is reasonable, as it is consistent with the nominal uncertainty in the
empirical PSF. Anderson & King (2006) provide an error estimate of 5% for their
empirical PSFs, in the case of no additional corrections beyond the tabulated grid.
As their method of correction is based on doing a similar error analysis to this, but
for multiple stars across the image, we are unable to apply their method to our data.
These errors are used to construct a perturbation to the standard PSFs, which reduces
the error by about a factor of two.

In addition to the simple errors, we can check that the PSF shape is correct.
Although the star and PSF have nearly identical “bumps and wiggles,” the PSF appears
to have a slightly broader core than the star. Approximating the core of both with
a Gaussian shows that the PSF is indeed ~ 0.15 pixel broader in both directions
(oSt = 1.64, ofSF = 1.80, aff‘“ = 1.71, 03" = 1.85). This error likely arises
from some error in the placement of the PSFs onto the individual frames. In that
coordinate system, this error transforms to an interframe scatter of about 0.08 pixel,
a value which would not be surprising. One possible source of this scatter is from
errors in the geometric distortion, which seems to account for the majority of this

scatter (Ogistortion ~ 0-05 pixels, Meurer (2002)).
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Figure 3.3 Comparison of final drizzled ACS PSF generated from the Anderson &
King (2006) empirical PSFs to the star on the final drizzled data image. The PSF is
made for the position of the star to ensure the distortion calculations match and that
the different response across the detector are removed.
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CHAPTER 4:
DATA REDUCTION

The data used for this project comes entirely from the Hubble Space Telescope. As
discussed in Chapter 3, the PSF for ground based telescopes is much too wide for
extragalactic globular clusters to be imaged accurately. Since we wish to measure
the structure of the clusters, this added broadening will wash out the cluster light,
preventing any structure from being visible. In addition, the broadening makes iden-
tification of faint objects difficult, which would limit the depth to which we can probe.
Very high signal to noise data can be created with HST, which ensures that these

faint objects will be well detected.

4.1 IMAGE COMBINATION

As HST is limited in the length of any single image by its orbit time, multiple short
exposures must be taken to get the long total exposure times needed to achieve the
required high signal to noise. Using multiple exposures of the same image also allows
for problems on the image to be removed. Since the HST detectors are in space,
they are much more susceptible to interference from cosmic rays, which can interact
with the detector and show up as erroneous bright objects. However, as these cosmic
rays are very unlikely to occur on the same pixels in all images, they can be easily
removed by comparing the multiple frames. In addition, the effects of cosmic rays
build up over the exposure, so a single long exposure will have more contamination

from cosmic rays than a short exposure.
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The HST detectors also have a number of bad pixels and bad columns, which
do not correctly measure the light incident on them. The main cameras are also
comprised of multiple detectors, which have gaps between them. By dithering the
telescope pointing, the location of the scene on the detectors also changes, and both
of these gaps in the data can be repaired using pixels from other images. The final
benefit of multiple dithered images is that the data can be combined to yield higher
resolution combined images than any of the original images. The creation of this
higher resolution image requires that the dither include non-integer shifts. As we
assume that the pixels of the detector sample the light distribution in some regular
fashion, these fractional shifts sample the light in the intervening space. The simplest
case is one in which four images are combined with relative shifts (0,0), (0,0.5),
(0.5,0), (0.5,0.5). Since these images sample the light regularly on a grid with twice
the original image resolution, a new image can be created by interlacing the pixels
together.

It is important to note that the construction of new higher resolution images has
little effect on the angular size of the PSF. This new image in no way deconvolves
the scene from the PSF, it merely samples the data better. This means that objects
smaller than the PSF will remain unresolved in the new data. In addition, the very
act of co-adding data tends to introduce further blurring, depending on the technique

and sampling pattern used.

4.1.1 LAUER FOURIER METHOD

One method of recovering resolution from multiple frames is presented by Lauer
(1999), using image combination in the Fourier domain to create a Nyquist sampled
image. Briefly, this method expands each data image by interleaving blank pixels to
pad the data to the final resolution. The Fourier transform of these images is taken,

and multiplied by a phase factor to incorporate the interframe shifts. These transform
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images each contain some information about the image at frequencies higher than the
original sampling frequency. By summing these transform images the contributions
from each dithered image can be incorporated to provide the best estimate for this
high frequency information. The final combined image is then created by taking the
inverse Fourier transform.

In the simple interlacing case as considered above, this method yields identical
results. However, it can also yield reasonable estimates even when the sampling isn’t
ideal. Another benefit is that overconstrained sets of images can be combined in a
least squares method to provide an image that deals with noise on the individual
frames.

Although this method can accurately recreate the underlying scene, it has fairly
strict data requirements. First, the input frames must be cleaned of all cosmic rays
and errors, and must have any geometric distortion due to the instrument optics
corrected. These requirements make it immediately difficult for dealing with ACS
images, which have large distortion effects. Secondly, the input frames should fully
sample the pixel phase space, otherwise, they will create biased images, that depend
on the individual frames unevenly. These images may also contain aliases from Fourier
domain “satellites,” which can arise if the final Fourier transform image does not
properly taper to zero at high frequency. Such satellites will create a blurring of the
high frequency information, limiting the final resolution that can be created. Finally,
there is no packaged form for this method, which prevents widespread adoption,

despite its mathematical elegance.

4.1.2 DRIZZLE

Another method commonly used to combine data is the Multidrizzle package in Pyraf
(Koekemoer et al., 2002). Although less mathematically rigorous, it has much looser

data requirements and is mostly automated. This process not only combines the
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images, but also cleans image defects and corrects for the geometric distortion.

The Drizzle algorithm operates on the input images by first shrinking the pixels
by a scale factor called the “pixfrac.” This step holds the centers of the pixels fixed,
but decreases the area, leaving gaps between the pixels. These shrunken pixels are
then transformed via a geometric transformation onto the final image grid. The small
pixels are then “drizzled” onto the final image by allowing the pixel values to be added
to the output pixels in proportion to the area covered.

This addition to the output grid can be altered by changing the kernel used for
the addition, with a “square” kernel simply adding the fraction based on the area of
overlap, and a “Gaussian” kernel weighting the contribution from the center of the
input pixel more than the edges. An important way to estimate the image is to use
the “turbo” drizzle, which contributes all of the input pixel’s light only on a point in
the center.

After all the individual frames have been drizzled to the output image, a rescaling
is done by normalizing against the weight in each pixel. Since all pixels are not
guaranteed to have the same input area contributed to them, this rescaling is essential
to ensure that the counts measured on all pixels have the same basis. If few images
are used, this rescaling can add noise to the final image due to non-uniform weights.

Multidrizzle first reads the flags for each pixel in the raw flat fielded “FLT” im-
ages, and creates a set of masks for known bad pixels. The FLT images are then
projected onto a common coordinate system via a “turbo” drizzle. The WCS from
each image, plus an external correction supplied from a shiftfile, is used to create the
transformation from the “FLT” to the “single sci.” This step corrects the frames for
geometric distortion, and removes the background offsets between images, ensuring
the various frames have the same geometric and photometric calibration.

At this stage, the many “single _sci” images represent multiple realizations of the

true scene. However, cosmic rays and unknown image defects create deviations from
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this true scene. We can use the fact that we have many images to remove these
defects. A median image is created from the “single_sci” images, with discrepant
pixels clipped out. This median image is “blotted” back to the FLT frame for each
image, to create “BLT” images, which are an expectation of what each raw FLT frame
should look like.

Cosmic ray rejection is accomplished by comparing the FLT to the BLT images.
To avoid improperly masking the bright peaks of real objects (which are most likely
to have the largest scatter between individual images), the masking is weighted by
a gradient image, in which each gradient pixel is set equal to the largest deviation
between the neighbors in the FLT image. A pixel is then flagged as a cosmic ray if
the difference between the FLT and the BLT exceeds:

|FLT — BLT| > scale - Vprr + % * Onoise (4.1)

Errors in the image alignment and sky level can easily lead to improper masking
of objects in the CR phase. If the shifts are incorrect, then the objects will be clipped
from the median image, and hence will likely be flagged as cosmic rays. Errors in
the sky level between frames can do the same, by limiting the number of images that
truly contribute to the median image. Such an error can allow cosmic rays to slip
through by being improperly excluded from the median image.

Once the cosmic rays are found, their locations are added to the static mask
created earlier. This creates a final mask used for the final drizzle. This drizzle uses
a more accurate “square” kernel with the pixfrac set to 0.7 to minimize the size of the
final PSF. Each FLT is then drizzled onto the final “DRZ” image, with all bad pixels
removed and the sky levels matched. The final DRZ image has an exposure time
equal to the sum of the exposure times of the component FLTs. A weight file is also
created that stores the exposure time sum that contributed to each pixel of the DRZ.

The weight varies between pixels based on the effects of the distortion correction and
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the number of frames contaminated by cosmic rays at that position. This weight is
essential to gauge how well the shifts are calculated. In the case of poorly determined
shifts, the locations of objects in the DRZ image are matched by lower values in the
weight image, as the objects peaks will have been flagged as cosmic rays on the frames

that have the worst shifts.

4.1.3 DETERMINING SHIFTS

Accurate interframe shifts are essential to ensure the highest quality final images. As
bad pixels are masked by the Drizzle algorithm, based on flagging statistical outliers,
having inconsistent shifts will skew these statistics.

The first step in measuring shifts is projecting all of the data frames onto dis-
tortion corrected frames. This projection mosaics the multiple chips together, and
arranges the frames onto the same WCS. This can easily be accomplished by stopping
Multidrizzle after the creation of the single sci images.

With the various frames drizzled to what should be a common frame, the errors
between the frame WCS and the true sky WCS manifest as shifts in object coordinates
between the corrected images. A first guess at the transformations needed to correct
each image is created by manually identifying a pair of objects on each image. The
images then have catalogs of objects created with Source Extractor (Bertin & Arnouts,
1996). The brightest objects (500 in this case) are extracted from these catalogs. The
initial transformation is used to find matching objects, which are then used to refine
the transformation by solving the least squares problem for each frame j at each

matched point i:

Xreferencei — X()j = Sj (COS ej:L'ji + sin ()jyji)

Yieferencei — Y0; = Sj (cosbjyj; — sinb;xj;)
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As the transformation is improved, more matches will be found, so this is iterated
until the transformation for each frame converges.

With accurate shifts calculated, we next need to calculate correct sky background
levels. These values are calculated by the calibration process based on the distribution
of image pixel values. Large features (such as the galaxy itself in our data) will skew
this distribution, and tend to overestimate the background level. The individual FLT
images are drizzled into single _sci frames again, incorporating the new shifts. Empty
regions of the images are found, and then the median in a box 100 x 100 pixels is
taken. Each image then has the median deviation from all boxes calculated, after
subtracting the minimum from all images. This median is written to the FLT image

header, to be subtracted during the final run of multidrizzle.

4.2 DATA SUMMARY

The data used for this thesis come from two sets of many orbit observations of the
galaxy M87. The data were taken as part of an initial microlensing survey with the
WFPC/2, and again in a followup survey with the ACS. In order to measure these
microlensing events, they must be monitored over their light curves. This requires
a time series of data taken fairly regularly. For our purposes of creating very deep
images, we can ignore any slight changes due to this microlensing, and simply combine

all the images together into very deep exposures.

42.1 WFPC/2

The data for the original microlensing survey were combined by Tod Lauer, using
his optimal Fourier method. Superimages for each of the four detectors on WFPC/2
were created. These data were taken in two filters, the F606W (a V filter, with peak
wavelength at A = 606nm) and F814W (an I filter, peak wavelength A = 814nm),

with total exposure time ¢y, = 11600s and ¢t; = 30160s.
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These data were used to design and test the methods for detection on such deep
images. A very deep luminosity function was created for the globular clusters (Waters
et al., 2006). However, difficulties in constraining the PSF prevented reliable structure
fitting. Conveniently, the followup ACS data were taken at this time, and the project

switched to use the new data.

422 ACS

The followup data came from a 50 orbit series of observations with the ACS. The
images are of the core of the giant elliptical galaxy M87, extending out to a projected
radius of 8 kpc. The data were taken over the course of a three month search for mi-
crolensing events, which need multiple exposures to look for the changes in brightness.
This arrangement yields data that can be combined into single very deep exposures.

The same two filters were used for this project as for the WFPC/2 survey: F606W
and F814W. On each observing day, four exposures in F814W were taken with slight
pointing offsets to provide for full image sampling every day. This was done as F814W
was the primary filter used for the microlensing search. These exposures are matched
by a single exposure in F606W, which are dithered over the different days, providing
a full sampling of the image plane over the entire set of observations.

In all, 49 F606W and 205 F814W images were combined to yield final images with
exposure times of tyy = 24500s and ¢y = 73800s, making these some of the deepest
images ever taken with HST. In addition to these exposures, 8 exposures in F606W
and 13 in F814W were taken but excluded due to a loss of the telescope pointing. The
main images were combined to a resolution of 07045 pixel ~1, the nominal resolution
of ACS. These images therefore have the highest signal to noise possible. A second set
of images were combined at twice this resolution, 0”025 pixel ™!, for use in modeling
the clusters. These higher resolution images are useful as they provide a better view

of the cluster structure.
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4.3 IMAGE PREPARATION

Given that the final combined exposure times make the final images among the deep-
est ever taken with HST, we have an excellent opportunity to measure the globular
cluster luminosity function fainter than has been done before for any other galaxy. In
order to take advantage of this depth, however, we need to first prepare the images
to ensure that objects are detected with the best possible efficiency. This preparation
mainly involves the removal of the galaxy light. If the galaxy were not removed from
the image, then the photometry of the clusters would be biased by the addition of
extra signal from the galaxy.

Subtracting the galaxy from the image is essential in another way as well. The
detection threshold is defined in terms of the image noise. This constant threshold
works fine for images with uniform noise, such as a sparse field of stars, but for
these images with their strongly varying noise distribution, the threshold needs to
be defined better. This variable noise arises from the fact that the brightness of any
given pixel is dependent on the number of stars that fall within that pixel. This is a
Poissonian distributed quantity, so the noise due to the galaxy scales as the square
root of the galaxy brightness. The center of the galaxy is thus a much noisier region
of the image than the edges, and so using a fixed detection threshold will miss many
real objects at the edges, and count too many noise spikes in the core. With an
accurate model of the galaxy flux, the detection threshold can be weighted to ensure
equal detection efficiency across the image.

The model of the galaxy light must not be biased by any objects on the image, and
must handle the steep changes near the core of the galaxy. There are two common
methods used for removing galaxies, unsharp masking and isophote fitting. Unfortu-
nately, both of these techniques have failings, and so a hybrid method was developed

to ensure the best quality subtraction possible.
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4.3.1 UNSHARP MASKING

The unsharp masking method estimates the galaxy light by smoothing the image so
as to remove the contributions from small scale objects. A simple Gaussian filter will
not work to accomplish this, as any final image will still contain the flux from all of
the small objects, just smeared out onto a larger scale. Instead, a median filter is
used, as this can ignore the bulk of the light from these objects. The quality can be
increased by clipping the highest and lowest pixels from the box before the median is
taken. As the main objects found on the image are mainly globular clusters, we can
choose a box size larger than the expected sizes of these objects. This consideration
leads to the choice of a box 100 x 100 pixels in size.

Two main issues arise from this fitting method. First as each pixel in the final im-
age is calculated a different filter box, adjacent pixels may not have smoothly changing
values. Although the majority of pixels in the filter box will remain the same, there
can be sufficient changes to significantly change the output values. This effect will
increase as the image noise increases, to the point where the galaxy subtraction may
actually increase the final image noise. Secondly, bright objects can skew the median,
even if the brightest pixels are excluded. This effect will cause the unsharp masked
image to oversubtract around any bright objects on the image. It also influences how
the core of the galaxy is subtracted, where the steep galaxy profile skews the median
to lower values. This prevents the core from being correctly modeled, and it will show
up as undersubtracted. Figure 4.5 shows the results of unsharp masking on the final
combined F814W image. These defects in the method can be clearly seen, with the
most obvious oversubtraction occuring around the spiral galaxy at the bottom of the

frame.
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4.3.2 ISOPHOTE FITTING

The ELLIPSE routine in IRAF is commonly used for modeling the light distribution
of galaxies. It fits the galaxy as a series of concentric elliptical sophotes, allowing the
ellipticity, orientation, and center to vary with radius. This method has the benefit
then that all adjacent pixels represent similar points on a smoothly changing model,
which should reduce the noise in the fit. As it fits the values based on only pixels
which match an isophote, it is able to generate a model that accurately accounts for
the steep gradient in the galaxy core. This method can be biased by objects on the
image, but as an isophote is generally fit using many pixels, only objects that take
up a significant fraction of the isophote will have much influence. Such objects can
be masked out, which helps remove this problem.

Unfortunately, the isophote fitting can create odd artifacts at radii where EL-
LIPSE has determined the ellipticity has changed. This leads to small “waves” where
the galaxy light is only partially subtracted, often with matching areas of oversub-
traction on the opposite side of the center. Finally, the ELLIPSE algorithm requires
the isophotes have full angular sampling. This is not true at the largest radii, as the
square image prevents such sampling. As the algorithm stops when this sampling is
not possible, the corners of the image have no fitting done, and hence no subtraction.
Figure 4.6 shows the results of ELLIPSE on the F814W image, illustrating these

problems.

4.3.3 FINAL METHOD

The solution to the difficulties presented is to use a hybrid of these methods. The
image is first scanned by a large box (100 x 100 pixels) and the pixel statistics calcu-
lated within the box. All pixels 40 higher or lower than the box median are flagged,
and the statistics recalculated without them until no more pixels are being flagged.

The box is shifted by half its width, and the process repeated to create a mask that

47






contains all real objects on the image. Since the data region of the final DRZ image
is smaller than the total image, the empty regions created by distortion correction
are also flagged on the mask file.

With a reliable mask created, ELLIPSE is used to find a model for the galaxy.
The fitting algorithm used by ELLIPSE only allows this to work out to a radius
where a full isophote can be constructed. To fill the regions that are not modeled, we
assume that the ellipticity and position angle are fixed at the values of the last fitted
isophote. Incomplete isophotes are then constructed by taking the median values in
annuli of increasing semi-major axis. This extends the fit to cover the entire image.

Although the galaxy model created by ELLIPSE does an excellent job of removing
the majority of the galaxy signal, especially in the sharply peaked core, it still leaves
the small “waves” in the final image. These waves are removed by generating a new
mask from the ELLIPSE subtracted image, and then sampling the image with a wide
median filter and constructing a bicubic spline model between these sampled points.
This spline model is then evaluated across the image, and that difference removed.
With the waves removed, we are left with an image that is fully cleaned of the galaxy.
The final step of the image preparation is the removal of any remaining constant
background offset. This is done by subtracting the mode of the image intensity
histograms from the image. The final mode subtracted histograms are shown in
figure 4.7. The pixel distribution is asymmetric in the galaxy subtracted images,
which is not entirely surprising, as the real objects on the frame should increase the
number of pixels with positive values. The final galaxy subtracted F814W image is
shown in figure 4.8, which shows the clear improvement over the other methods.

The output of this filtering is saved as the “data” image, which has had the galaxy
light subtracted off, and is used for all subsequent analysis. The “background” image
is the final galaxy model, and the “noise” image is the galaxy model plus the fixed

read noise for our data. This image is used as the weight for the detection routine.
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Figure 4.1 Original F606W raw FLT frame before reduction. Cosmic rays can be
seen, such as the feature between the bright GC and the companion galaxy on the
right edge.
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Figure 4.2 Distortion corrected F606W frame. The rhombus shape of the ACS detec-
tor footprint can be clearly seen as a result of distortion correction.
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Figure 4.3 Final F606W image after combining with Multidrizzle. The cosmic rays
have been eliminated from this image, and the interchip gap has been filled with data
from other frames.
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Figure 4.4 Final F814W image after combining with Multidrizzle.
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Figure 4.5 Subtraction of galaxy light using unsharp masking, with a 100 x 100
pixel box. Although it creates a generally smooth image, the fringing effects can be
seen at the eges of the data, as well as in the oversubtraction that surrounds bright
objects. The sharp rise toward the galaxy core skews the median filter, which prevents
pixels within a box that contains the very center of the galaxy from being correctly
subtracted
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Figure 4.6 Subtraction of the galaxy light using the IRAF ELLIPSE routine. Although
the core of the galaxy shows much improvement (illustrated by the fact that the
central dust lanes can now be seen), the two main failures are also visible. The
corners of the image show where ELLIPSE has stopped fitting, and the unevenness
around the core shows where the isophotes have failed to correctly match the galaxy’s
true ellipticity.
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Figure 4.7 Image histograms for the F606W and F814W images. The centering about
zero indicates the background subtraction has correctly removed the galaxy light. The
asymmetry points out that these images contain real objects that are not subtracted
by the galaxy removal.

55



Figure 4.8 Final galaxy cleaned image. Although some artifacts of the galaxy sub-
traction process can be found (such as around the companion galaxies), a clear im-
provement is evident over the simpler methods. This image also shows that the noise
remaining after galaxy subtraction increases towards the center of the galaxy.
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CHAPTER b5:
GLOBULAR CLUSTER LUMINOSITY
FUNCTION

5.1 OBJECT DETECTION

Source Extractor (Bertin & Arnouts, 1996) was used to generate a database of objects.
The galaxy subtracted “data” images were used as the search images, and the galaxy
model was used to weight the detection process. By default, Source Extractor looks
for objects a specified number of standard deviations above the background, taking
the statistics across the entire image. As the noise in this data is highly dependent on
the galaxy flux, this method does not work uniformly across the image. By supplying
a weight image, however, Source Extractor scales the detection threshold across the
image to reflect how the image noise truly behaves.

For this project, a detection threshold of 30 was used, with a minimum area of
2 pixels. This area criterion requires that an objéct must satisfy the threshold on
at least two adjacent pixels, and helps to keep noise spikes from being detected as
real objects. We also set the requirement that an object must be detected at this
threshold on both the F606W and F814W frames. By requiring all objects be found
in both filters, we reject any unusual features that appear in only one. Table 5.1 lists

the quantities directly measured by Source Extractor for each detected object.
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Table 5.1: Quantities measured for each object in both filters by Source Extractor.

Description  Units
(X,Y) position on data image pixels
(e,0) position in the sky (2000 epoch) degrees
m; apparent magnitude within a fixed radius mag
Am; error in the apparent magnitudes mag
threshold local detection threshold counts
background local background level counts
Frex maximum flux value counts
Fiso total flux above detection threshold counts
Aiso area above detection threshold pixels
Uthreshold  surface brightness at the threshold detection level mag / arcsec?
Hmax surface brightness at object peak mag / arcsec?
Aj area at isophotal levels: I; = threshold - (thfgﬁgld)j/ 8 pixels
flags any internal flags about measurement problems
FWHM full width at half maximum pixels
stellarity  classification ranging from one (star) to zero (galaxy)
T1/2 radius containing half of Fi,, pixels
Ag major axis length pixels
Bg minor axis length pixels
0 position angle of major axis degrees
elongation ~ £2
ellipticity 1-— %g
dmerge distance between V and I image centroids arcsec
Rga projected distance to galaxy center arcsec
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5.1.1 INSTRUMENTAL MAGNITUDES

Source Extractor automatically converts the raw fluxes to instrumental magnitudes,
using the photometric zeropoints for the individual filters supplied. This zeropoint is
also modified by the exposure time of the image, so the instrumental magnitude is
defined as

m = —2.5logyg (F) + 2.5log) (tezp) + Zeropoint (5.1)

The zeropoint is listed in the calibration manuals for the individual detectors, and is
reasonably well calibrated.

Unfortunately, this instrumental magnitude only measures the light within the
apertures defined. A single aperture clearly does not fully account for all the cluster

light, requiring a more complete study of the photometry.

5.2 COMPLETENESS CORRECTION

Even though we have set the detection threshold fairly liberally, and have extraordi-
narily deep data, we still expect that we are not likely to be 100% efficient at detecting
objects. The best way to quantify this detection efficiency is to add simulated clusters
to the images, and then check to see how many of these are detected by searching
with Source Extractor and the same detection limits.

Since the detectability of any given object is related to the surface brightness,
and not just the total object flux, we must also incorporate the sizes of the objects.
Simulated globular clusters with a fixed central potential of Wy = 5 (King ¢ = 1.03)
were generated for a grid of apparent instrumental magnitudes and tidal radii. At each
grid point, 200 simulated clusters were randomly added to the background subtracted
images. The detection and measurement was repeated as was done for the real data
with each simulated cluster stored along with the values of the parameters calculated

by Source Extractor.
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Once this is finished, all objects at a given grid point are analyzed, and the ratio
of the number found to the number input is calculated. Due to some significant
objects that remain on the image after galaxy subtraction (most notably the central
jet and the companion galaxy), some regions of the image are manually excluded,
which changes the input number between grid points.

Figure 5.1 shows the completeness surfaces for the two filters. Over the range
of tidal radii that we expect to find globular clusters, the size dependence of the
completeness is fairly weak, so for all further analysis, we define the completeness
solely as a function of apparent instrumental magnitude. Due to the radial dependence
of the galaxy noise, the detection efficiency changes with distance from the core. To
minimize the scatter in the completeness, we divide the data into two radial bins,
breaking at the median cluster distance 68”95. The final completeness for each filter
was then calculated independently for each bin. This allows the completeness in the

outer bin to extend to slightly fainter levels.

5.3 PHOTOMETRIC CALIBRATION

5.3.1 APERTURE CORRECTION

The completeness values measured from the simulated clusters require the instru-
mental magnitudes of an observation to be calculated. The magnitudes measured by
Source Extractor are taken at fixed radii. As the sizes of real clusters are not all
the same, taking a single aperture magnitude for all objects will not equally measure
the total light. This fact suggests that we need a way to correct the fixed aperture
photometry to account for the variable cluster size. This is done with the aperture

correction. This correction is parameterized by an estimate of the size of the object,
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Figure 5.1 Completeness levels as a function of instrumental magnitude and input
cluster size. The lines denote constant completeness, from 100% to 10%, with the
completeness of the line equaling the data completeness. Note that the radius depen-
dence is fairly weak, suggesting that the instrumental magnitude is the main factor
in the completeness. The crosses show the locations of the simulated clusters used to
estimate the completeness.

based on the measured magnitudes with different aperture radii:

R =mypxa — Mapxi (5.2)

The logic behind this parameter is that a small object (with a radius smaller than
2 pixels) will have approximately the same magnitude in both apertures, yielding a
value of R ~ 0. As an object increases in size, more light is measured in the large
aperture compared to the smaller, which pushes R away from zero (and to more
negative values due to the definition of magnitudes).

Given this size parameter, and one of the aperture magnitudes (taken as mypy)
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for convenience), it should be possible to construct an aperture correction, such that

Minstrumental = M4 pxl T A(R, my pxl) (5.3)

Conveniently, the data used for the completeness correction samples this function
A(R,m4py), as the simulated clusters were created with a known instrumental mag-
nitude, and R and mypy are measured by Source Extractor. At each simulated
cluster grid point, all detected clusters are measured, and the median values of R

and myp, are stored at that point, with the value of the aperture correction:
A (median(R)’ median(mgy pxl)) = Minput instrumental — Median(my py) (5.4)

This grid of points has the upper end fixed, such that .A(0, mgpz) = O to anchor
the small object end of the aperture correction (which is not well sampled by the
completeness data). This grid of values (R, myp,, A) is irregularly sampled as the
values of R do not linearly match the input sizes. For each detected object, the
aperture correction is calculated using thin plate splines, which can interpolate such
data. Figure 5.2 shows the surfaces of the aperture correction for the two filters.

In addition to this aperture correction, another correction of 0.1 magnitudes is
applied to the final instrumental magnitude. This extra aperture correction compen-
sates for light that is scattered to large angles by the optics of HST. This is a standard
calibration step, and must be applied even though an aperture correction has already
been applied. The simulated clusters used do not incorporate this scatter, as the PSF

used ignores very wide angle scattering.

5.3.2 COLOR CORRECTION AND EXTINCTION

Most previously published results on globular clusters present the magnitudes using

the standard Johnson Cousins BVRI system. Converting the instrumental magni-
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Figure 5.2 Aperture correction levels as a function of instrumental magnitude and
input cluster size. The weak dependence on the measured magnitude indicates that
the fraction of light lost is generally a function only of the object size. The crosses
show the where the simulated clusters used for evaluation were placed, and the small
dots show where the real globular cluster data falls.

tudes mpgoew and mpgi4w to V and I requires a color correction. The correction

parameters are taken from Sirianni et al. (2005) and reproduced in table 5.2

Table 5.2: Color correction parameters

Filter (V = Ibreak ag a as
F606W <04 26.394 £ 0.005 0.153 + 0.018 0.096 + 0.085
> 04 26.331 + 0.008 0.340 + 0.008 -0.038 + 0.002
F814W <0.1 25.489 £+ 0.013 0.041 £ 0.211 -0.093 £ 0.803
> 0.1 25.496 + 0.010 -0.014 + 0.013 0.015 + 0.003
F775W <12 25.241 £+ 0.005 -0.061 + 0.021 0.002 £ 0.021
> 1.2 25.292 £ 0.033 -0.105 £+ 0.026 0.007 & 0.004
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The corrections are defined as:

V = mF606w+a0+a1(V—I)+a2(V—I)2

I = mpgiaw +bo+b01(V —1) +bo(V - I)2

and are defined piecewise in color on two intervals separated at (V — I)preak- The
standard application of this color correction uses an iterative process, where the color
V — I is updated at each step, and V and I are re-evaluated with that new color.
Unfortunately, the piecewise definition of the color correction creates problems in the

evaluation around the breaks. Instead, an algebraic solution was used, noting:

V—1I = (mpeosw —mrg1aw) +(ao—bo) + (a1 —b1)(V — I) +(ag —bo)(V = I)? (5.5)

which can be solved for a corrected color in terms of the instrumental color. Formally,
this yields two solutions, but it can be seen by checking a sample of colors that only
the negative solution gives realistic magnitudes. Although this method seems to have
the same problem at the color correction breaks, we can check that the calculated
color falls within the necessary range for the coefficients used. Figure 5.3 shows a plot
of the calculated V' — I color as a function of the mpgogw — MFg14w instrumental
color. As this function is continuous even around the color breaks, we can be sure
that the color correction has been applied correctly.

The final photometric step is the application of an extinction term. This term
accounts for the absorption of light as it passes through dust and gas in space. Using
the Schlegel et al. (1998) value for M87’s position on the sky, we can estimate this

extinction as:

Ay = —0.074 (5.6)

A; = —0.043 (5.7)
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Figure 5.3 Plot of calculated V — I color as a function of instrumental mpgoew —
mpg14w color. The continuity ensures that the correction has been applied correctly,
even at the color breaks, which are marked with lines.

54 CONTAMINATION

Even with the various cuts placed on the data, it is still possible that some non-
cluster objects may remain in the sample. Although these objects masquerade as real
clusters, we can statistically remove them by estimating how many of these objects
should appear on our image. To do this, we need to find images that only contain

the contaminating objects.

5.4.1 NOISE OBJECTS

One method to look for noise spikes on the image is to run the detection code on an
inverse image, generated by multiplying the data image by —1. The real objects on
this inverted image have peaks that are then negative, and so fall below the detection

threshold. Instead, only the dark areas of the data image will have peaks that allow
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them to be detected. If the image histogram was perfectly symmetric, than the
number of objects detected on this inverse image <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>