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ABSTRACT

HIGH RESOLUTION ANALYSIS OF EXTRAGALACTIC GLOBULAR

CLUSTERS

By

Christopher Z Waters

Globular clusters are massive compact groups of stars, with masses that range beyond

IOGMQ. Because they are so large, they can remain bound together as they orbit

their host galaxies. They are also very luminous, which ensures that they can be

seen at distances far beyond the point where individual stars are no longer visible.

The combination of these two qualities makes them wonderful test particles to explore

how the dynamical interactions of stars in the cluster change the observed parameters.

The evolution of these clusters has not been very well constrained by observations.

They must lose mass as they orbit, but the exact way that this mass loss changes

their observed properties is not well known.

M87 is a massive galaxy located 16 Mpc away from the Milky Way. This makes

it much farther than other galaxies that have clearly resolved globular clusters. How-

ever as M87 is so massive (M ~ 1012MQ), its globular cluster population is much

more numerous than those of other closer galaxies. Only about 150 globular clusters

have been detected in the Milky Way, whereas M87 should have close to 10000 clus-

ters. This large population allows for any observed relations to be less influenced by

statistical uncertainty.

The core of M87 was imaged with the Advanced Camera for Surveys on the Hubble

Space Telescope as part of a 50 orbit program in 2005 and 2006. During each orbit,

multiple exposures were taken in the infrared F814W and red F606W filters, giving

total exposure times of 73,8003 in F814W and 24,5008 in F606W. These very long



exposures provide some of the deepest data ever taken with HST.

As the data used in this project can resolve the faintest clusters, we can use it to

investigate the luminosity and mass functions of the globular clusters in M87. The

final sample contains 2091 clusters, with a luminosity function that matches well with

previously published results. The mass function generated from these clusters shows

the signature of mass loss from two-body relaxation. Much theoretical work has been

done to investigate this evolution, but since there are few galaxies in which large

numbers of clusters can be observed, these theoretical predictions have been difficult

to test in the past. The change in the mass to light ratio between clusters of different

ages and metallicity is an important complication in the shape of the mass function.

However, by correcting for these changes, this sample shows that the different color

groups of the M87 globular clusters indicate different formation epochs.

These data also provide much higher angular resolution than previously available

for populous extragalactic systems. This resolution ensures that the clusters are

broader than just simple point sources, allowing them to be fit with theoretical models

of the cluster structure. Such fits show that the relations between the cluster structure

and luminosity appear to be universal, as those found for M87 match well with the

Milky Way, the only other complete sample that exists. These structure fits also

show that the probability of the formation of low mass X-ray binaries in a cluster is

influenced by the rate of stellar interactions.
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CHAPTERI:

INTRODUCTION
 

Globular clusters (GCs) are spherical groupings of many stars that are bound together

by their own self gravity. They appear in every galaxy observers have studied, and

seem to be among the oldest structures in the universe. High resolution images of

galactic globular clusters, such as the Sloan Digital Sky Survey (SDSS) image of

the globular cluster M3 presented in figure 1.1, show an obvious overdensity of stars

compared to the background, with a very dense core of stars blending together.

1.1 GLOBULAR CLUSTERS

The first globular cluster was discovered by Johann Abraham Ihle on August 26, 1665

while he was observing Saturn (Schultz, 1866). This object, now known as M22, was

just one of the 28 galactic globular clusters that appear in Charles Messier’s catalog

of “nebulae,” published roughly a hundred years later. The nature of these objects

was first suggested by William Herschel (Herschel, 1789), who was able to resolve the

individual stars in the cluster. This fact made it clear that globular clusters must be

composed of many stars, and as the stars in the center of the cluster are more tightly

packed, they must be held together by the mutual attractions between the component

stars.

Following their discovery, star counts were used to estimate the shape of the mass

profile, and with the introduction of statistical mechanics in the late nineteenth cen-

tury, globular clusters began to be modeled as a gas of stars (Plummer, 1911). By the



middle of the twentieth century, steady state solutions were found that could satisfac-

torily match the observed density profiles (Hénon, 1961; King, 1966). However, these

solutions indicated that the structure and evolution of these objects are intrinsically

linked, and must be treated simultaneously. This realization has led to recent at-

tempts to explain globular clusters using N-body simulations of the component stars,

which can investigate both the structure and evolution (Baumgardt & Makino, 2003).

Globular clusters are believed to form from the collapse of giant molecular clouds.

This collapse must happen relatively quickly, as the ignition of hydrogen burning in

massive stars is likely sufficient to disperse any remaining gas. Because of this, all

the stars in the cluster can be assumed to have formed at the same time, and as they

all form from gas with the same chemical enrichment, they must all share the same

metal content.

These two facts make globular clusters excellent laboratories to examine the lives

of stars, as the only difference between the individual stars is their masses. The stars

in the cluster therefore fall upon a path that traces the evolutionary history of the

stars. Figure 1.2 illustrates the color magnitude diagram of the galactic globular

cluster M3. The main sequence of stars is clearly visible up to the turnoff around

V N 18.5. This point marks where massive stars are starting to evolve away from the

main sequence, and up the red giant branch. The main sequence lifetimes of stars

at the turnoff provide an estimate of the age of the cluster. These ages indicate that

the globular clusters in the Milky Way are very old, with current ages on the order

of the age of the universe.

Globular clusters are generally more metal poor than the Sun, consistent with their

great ages. Like the metal poor stars of the galactic halo, the Milky Way globular

cluster system is spherically distributed around the center of the galaxy. This fact

was instrumental in one of the great discoveries of the structure of the Milky Way.

Shapley (1921) used the observation that the globular clusters visible from Earth



are not isotropic in the sky, and that they seem to be distributed about a point 8kpc

away. This led to the conclusion that the Earth is not located at the center of the

galaxy.

1.2 SUMMARY OF THESIS GOALS

This thesis examines very deep observations of the central regions of the giant elliptical

galaxy M87. This galaxy is a member of the Virgo cluster of galaxies, and is located

at a distance of 16 Mpc (Macri et al., 1999). Figure 1.3 shows a section of the Virgo

cluster as seen by the SDSS (Stoughton et al., 2002) with the bright object in the

lower left corner being M87. The observations for this project were taken using the

Advanced Camera for Surveys (ACS) aboard the Hubble Space Telesc0pe (HST).

This camera has a field of view of 202'.’ x 202'.’, which covers an area roughly the

size of the bright core of M87 visible in the SDSS image. Although this relatively

small image size does not allow the analysis of the full M87 globular cluster system

(believed to number up to 10000 objects), by taking advantage of very long exposure

time images, the sample of the GCS will be effectively volume limited, with even the

faintest objects measured.

Without a cutoff in luminosity, such a sample can be used to construct a complete

luminosity function for the M87 globular cluster system. This luminosity function can

then be used to constrain the evolution of the clusters. The high angular resolution

that HST provides also allows the clusters to be resolved, which allows their structure

to be examined. Therefore, this data set presents an opportunity to put observational

constraints on the structure and evolution of the cluster properties. As the number

of clusters that comprise the sample is very large (N ~ 2000), such constraints have

the power to be more statistically rigorous than can be provided by the Milky Way.



1.3 PREVIOUS STUDIES OF GLOBULAR CLUSTER SYS-

TEMS

For obvious reasons, the Milky Way GC system was the first to be examined in detail.

The Harris (1996) compilation is the standard catalog of Milky Way clusters, drawing

the best determined values from the published literature. The relations between the

various structural parameters were examined by Djorgovski & Meylan (1994), which

is currently the most reliable set of correlations between the parameters, despite the

low number of clusters. I

Although M31 is an obvious next choice for a target, many factors contribute

to hinder the classification of the GC system. As the galaxy is mostly face on, the

clusters are projected against the galaxy light, which makes them difficult to detect. In

addition, the large angular size of the galaxy means that a complete survey requires

many pointings. The most complete current survey is that of Barmby 85 Huchra

(2001), containing 400 clusters.

Elliptical galaxies are generally considered the best locations to search for GCs as

they have smooth light profiles against which clusters Show up easily. In addition,

elliptical galaxies have much larger numbers of globular clusters per unit luminosity.

M87 has been studied before with the WFPC/2 camera on HST (Whitmore et al.,

1995; Kundu et al., 1999; Waters et al., 2006). Recently, it was re-examined as part

of the ACS Virgo Cluster Survey (ACSVCS) (C6té et al., 2004) which studied 100

galaxies in the Virgo cluster. The number of clusters examined per galaxy varies

widely, which limits the conclusions that can be drawn from this sample. Another

issue is that the survey did not have the depth required to detect the faintest clusters.



1.4 OUTLINE

This thesis is organized as follows: Chapter 2 discusses the dynamical processes that

shape globular clusters, and presents the background theory that is used in later

chapters. Chapter 3 discusses the point spread function, and how this affects the

image quality. Chapter 4 outlines the data reduction techniques used. Chapters 5

and 6 cover the globular cluster luminosity and mass functions, respectively, and

discuss their applications to the evolution of the globular cluster system. Chapter

7 presents a new method for measuring the structural parameters of the globular

clusters from high quality data, and chapter 8 presents the results of the measured

parameters. Finally, Chapter 9 summarizes the results of this study, and presents

the final conclusions. Appendix A gives the documentation for the code written for

this thesis that simulates and fits globular cluster profiles and images. Appendix B

discusses the final database of cluster parameters.



 
Figure 1.1 Image of the Milky Way globular cluster M3. This clearly shows that the

core of the cluster contains many stars, but that even at radii much larger than this

core, the cluster contains more stars than the background. This image was taken

from the SDSS image server at httpz/,fwwwwikiskycom.



 

   
Figure 1.2 Color magnitude diagram of the stars in the globular cluster M3. As the

stars are all of roughly the same age, they trace out the path of stellar evolution.

The main sequence clearly is truncated at V ~ 19, indicating that more massive stars

have evolved, populating the red giant branch. Measurements with V > 17 are taken

from SDSS catalogs (Stoughton et al., 2002). The measurement of the brighter stars

shown in blue were supplied by Katie Rabidoux (private communication), based on

observations taken at the MSU 24" telescope.



 
Figure 1.3 Image of the Virgo cluster of galaxies. MS7, the target galaxy for this

project, is located in the bottom left corner. M86 and M84 are the other two large

elliptical galaxies on the right side of the image along with the stream of galaxies

known as Markarian’s Chain. This image was taken from the SDSS image server at

http:,t'y’www.wikisky.com.



 

CHAPTER 2:

DYNAMICS OF GLOBULAR CLUSTERS
 

2.1 KING MODELS

The standard assumption for modeling the dynamics of globular clusters is that they

are comprised of a large number of identical stars of mass m moving in the potential

created by their own self gravity. We can initially assume that the system is collision-

less, and neglect two-body interactions. The distribution function of the stars can

then be defined to be f(a':', 27, t) 2 0.

Jeans theorem states that the steady-state solution to the collisionless Boltzmann

equation is a function only of integrals of motion in the potential (Binney & Tremaine,

1987). If we assume our system is spherically symmetric, then there are four such

integrals: the total energy E and the three components of the angular momentum

vector 1:. This allows us to write our distribution function as

f = NEE)

For our globular cluster system, the potential that binds the stars together is

generated by the stars themselves. Therefore, from Poisson’s equation

V24) = —47er = —47er/fd327 (2.1)

We can make the assumption that the distribution function is isotropic, so the distri-



bution depends only on the particle energy based on the observations that globular

clusters do not have Significant rotation. Therefore,

ch = f(E)

A first guess for the distribution function for the stars in a globular cluster is that

of the isothermal sphere, in which we assume that the energy of all stars is given by

a Maxwellian distribution:

-—¢I>— 1mv2

_ 2 +

fisothermal(E) = fOe E/a = f06 0 (2'2)

This yields an equation for the density

00 —Q—%111202 2 _ (p

pisothermal(q)) = 471/0 f05 0 v d” = p08 E2 (2-3)

Poisson’s equation allows us to rewrite this in terms of the radius from the center of

the cluster instead of the local potential

 

1 d 26“)

—47er — T—QE (7' E)

0.2

pisothermalir) = 277GT2 (2'4)

From this potential, we can define the core radius (called the King radius by some

902

Tc— V 47er0 (2.5)

This radius is the point where the projected density equals roughly one half the central

authors) as

 

value. This radius represents a convenient radius scale for the cluster.

It is clear that this is a poor solution for globular clusters, as the total mass

diverges to infinity when integrated over all radii. We can modify the isothermal

10



 

sphere by noting that globular clusters orbit host galaxies, and as such, experience

an external potential <I>G. This assumption leads to a cutoff in the size of the cluster,

as there will be a point where a test particle feels an equal pull to the cluster and the

galaxy. This point is known as the tidal radius of the cluster (see section 2.2).

We can set the distribution for this model to be a modified “lowered isothermal”

model:

f0 (TE/‘72 — e‘ET/a2 E < ET

ms): ( l (2.6)
0 E 2 ET

We can make the simplification that any particle that “just reaches” the tidal radius

will be stripped from the cluster, so we can set ET = <I>(rt). We can then renormalize

the potential such that <I>(rt) = 0, which gives

<I>+1mv2

f0(e_ 02 —1)E<0

fKing(E) = (2-7)

0 E 2 0

This distribution function yields a density of

”max <1>+ 21mv2

PKing = 47rf0 e_ a 11sz (2.8)

0

where '0me = _%1q_> from the virial theorem. Defining a “reduced potential” W =

—%, allows this to be solved as
0'

mam = A (eW arm/w) — (Ea: (1 + §W)) (2.9)

We can again use Poisson’s equation to find a the density at a given radius

1 rzd—W = —-47rG)017'2 eW erf(\/ W) — (LEW 1+ 2W (2.10)

dr d'r 7r 3

11



Unlike the isothermal sphere, this differential equation must be solved numerically

(see Appendix A.1 for details on fast and accurate evaluation of King models). Figure

2.1 shows how the volume and projected surface density change with radius for a set

of central potentials, W0.
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Figure 2.1 Mass density and projected surface density for single mass King models

values of W0 = 3 (red), 6 (green), 9 (blue), and 12 (magenta). The highest value of

W0 falls off the fastest in this plot.

Although this model has been used successfully to fit globular cluster surface

brightness profiles, deviations for high quality profiles have led to many attempts

at a more realistic model. The most intuitively reasonable is the multi-mass King

model (Da Costa & Freeman, 1976), which allows the stars in the cluster to have a

distribution instead of just a single value. If we assume energy partition between all
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2_
the stars, such that midi — mjajz then the distribution function becomes

<I>+1mv2

Zicif0(e— 02 —1) E<0

0 E20

fMM(E) = (2.11)

where the C, are the fractional masses for each class of stars. Extra care must be

taken when using such models to fit clusters, because although the mass is given by

this distribution function, the fact that the mass to light ratio T may not be the

same for each class of stars means that the observed light distribution may not match

the mass distribution.

Another change to the standard King model that has been proposed is to relax the

requirement of velocity isotropy (Gunn & Griffin, 1979). If the stars have different

masses, then some of them will be scattered onto non radial orbits. Such a model

provides a distribution function of the sort

<I>+lmv2

2(6—22—0 _.)
0 E20

f(E, L) = (2.12)

However, both of these changes to the simple Single mass King model require very

precise star counts to observe any deviations from the predicted projected density of

the standard single mass King model projected density. They also require many more

assumptions about the properties of the stars in the cluster, and because of this, can

be adjusted in many ways to ensure a good fit.

2.2 TIDAL RADII

As globular clusters orbit a host galaxy, their sizes must be constrained in some

fashion. At some radius rt, their density profiles must drop to zero, and all stars
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outside this radius must be considered bound instead to the host galaxy. A simple

estimate of this size can be found by calculating the point at which tidal interactions

with the host galaxy will cause stars to leave the cluster.

The gravitational force keeping a star bound to the cluster is obviously just

 

GM M

Fcluster = ——(2'2—: (2°13)

7'0

Along a line connecting the cluster and the host galaxy, the tidal force will be

QATGMgM

Ftidal = 3 * (2-14)

"G

In this case, setting Ar :—: r0 gives the tidal force felt by a star along this line, and

allows us to estimate the tidal radius as

/ M

rt = r0 3 _2ll/ICG (2.15)

2.2.1 TIDAL RADII WITH CIRCULAR ORBITS

This result neglects the fact that the cluster is not stationary in the galactic potential,

but instead orbits the galaxy. If we take the simple assumption of circular orbits,

then the cluster and host galaxy experience a potential that can be considered time

independent in a frame that rotates about the center of mass with angular velocity

(.02 = G(MG;- MC) (2.16)

’"G
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In such a frame, Jacobi’s integral is constant, and is given by

1
EJ = i112 + CD0 + (DC (217)

1 1
= 579 + -2-r2w2 + <I>G+C (2.18)

1
= -2—7'~2 + <I>eff (2.19)

where (Deff is the effective potential felt by a star:

 

= GMG + GMC + 1720(MG + mg)

2.20

TC TC 2 Ta ( )
(peff

As 1‘2 is always a positive quantity, there exists a range of valid potentials to keep EJ

constant, which in turn constrains the region of space in which the stars can occupy

and be part of the cluster. This boundary is the Roche surface for the cluster, and

we can estimate the tidal radius by taking the distance from the center of the cluster

to the Lagrange point between the cluster and the galaxy. This yields a value

/ M

m = 7G 3 _31WCG (2.21)

which is close to the estimate from a static case (Binney & ’Ifemaine, 1987).

Unfortunately, this tidal radius is poorly defined. The surface of zero velocity

is not spherical, and as such, the radius changes at different orientations with the

host galaxy. In addition, stars that pass this radius are not lost with 100% efficiency.

Although they are likely to remain unbound if they pass beyond this surface, they will

still travel along with the cluster for some time. Finally, the most important problem

is due to clusters not orbiting on perfectly circular paths, but rather following elliptical

orbits.
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2.2.2 TIDAL RADII WITH ELLIPTICAL ORBITS

A cluster on an elliptical orbit experiences a potential that varies with time. As this

is difficult to calculate (as it also depends on the relaxation time of the cluster), the

standard assumption (King, 1962) is that the tidal radius is set at pericenter, and

stays fixed at that size for the remainder of the orbit. This assumption leads to a

/ M
_ 3 C

Tt — Tc; —————-(3+ e)MG (2.22)

where e is the orbital eccentricity of the cluster. Other models (Innanen et al., 1983)

tidal radius with the form

have modified this result by considering the motion of the cluster through a realistic

mass distribution, and calculating the tidal radius at pericenter. This gives just a

slight change, rt = gr, elliptical-

Recently, Brosche et a1. (1999) have suggested that the ratio of the true observed

tidal radius to the theoretical tidal radius can be parameterized by the form

Tt observed c TA b
—— = 10 (—) (2.23)

rt theoretical 7P

where rA and rp are the apo- and peri-center distances. They provide their preferred

values of b = 0.664 and c = —0.405. This can be constrained from observations, as

the theoretical tidal radius is pr0portional to M1/3 (Baumgardt & Makino, 2003).

2.3 MASS LOSS

Globular clusters lose mass continually over their lifetimes. There are four main

methods by which mass leaves a globular cluster: dynamical friction, stellar evolution,

gravitational shocks, and evaporation due to two-body relaxation. As each of these

mechanisms have differing time scales, the relative contribution from any one method

changes over the cluster’s lifetime.
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2.3.1 DYNAMICAL FRICTION

Dynamical friction is a slowing felt by a mass as it travels through a population of

other masses. In terms of a globular cluster, dynamical friction serves to degrade the

orbit of the cluster as it passes through the stars of the galaxy.

Following Binney & Tremaine (1987), we can write the force felt by a globular

cluster due to the interactions with the galaxy mass density:

—47r1nAG2M2p(r) 2X _ 2

Fdynamical friction = C (erf (X) e X ) (2-24)
2 __

”c
\/7—r

where lnA is the Coulomb logarithm, X = 72%; ~ 1, and a?) = G—Aim. This force

will cause the cluster to lose angular momentum at a rate

dL F7“ dr

as the cluster speed can be assumed to remain the same. We can solve this differential

equation for the time it takes for all of the angular momentum to be dissipated, i.e.,

r —* 0. Doing this, with the M87 mass distribution presented by Vesperini et a1.

(2003) yields a timescale

3.0905x1013yr 120 MC ‘1 r 2

tdynamical friction ~ In A m E k—pc (2-26)

This very long timescale makes it clear that the effects of dynamical friction are

 

expected to be very small over the lifetime of a globular cluster. In fact, only the

most massive clusters are likely to experience any significant mass loss from this

mechanism.
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2.3.2 STELLAR EVOLUTION

The next source of mass loss in globular clusters comes from the evolution of the stars

that make up the cluster. Taking a simple relation for the main sequence lifetime of

bright, massive stars (where M > M9) (Chernoff & Weinberg, 1990)

—3

tMS ~ 6 x 109 (3%) yr (2.27)

We can see that these lifetimes can be far less than the expected lifetime of the cluster,

especially for the most massive stars. Since all stellar remnants have a smaller mass

than the initial mass of the star, having the highest mass stars fully evolve on very

short time scales (tMS ~ 106) will clearly cause a sudden drop in cluster mass after a

similar time period.

The effect of stellar evolution on the cluster mass can be estimated by taking a

distribution of stars (such as a Kroupa (2001) IMF with NI. ~ 1 x 106), and letting it

evolve with the mass of the star immediately changing to the mass of its remnant after

its main sequence lifetime has elapsed. This model is clearly an oversimplification, as

it ignores mass loss due to stellar winds for high mass stars, and neglects the entire

post—main sequence evolution. Regardless, it will provide an estimate of the relative

importance of stellar evolution on the cluster mass loss.

Based on the main sequence lifetimes listed above, it is clear that the majority

of stellar evolution happens within the first 1 Gyr, after which, the rate should fall

quickly. As the fraction of mass in a cluster due to massive stars is assumed to be

constant (as this is only dependent on the cluster IMF), we can write the mass loss

using the form

dM
_ z _

2.2dt VSEM ( 8)

where USE is a time dependent function related to the number of stars leaving the

main sequence. It is clear that USE must have a sudden drop at early times as the

18



most massive stars evolve. This drop should then slow to a small value as lower mass

stars become the “most evolved,” as these stars evolve on much longer timescales.

The fact that the majority of the mass loss due to stellar evolution occurs very

early in the cluster’s lifetime is convenient, as it means we can simply ignore all

consideration of this mass loss by simply scaling all cluster initial masses to their

value after stellar evolution has subsided, and then ignore the effect on the subsequent

evolution. This is reasonable as the fact that the mass loss equation above has the

solution

M(t) = Moefci V8E<t’)dt’ (2.29)

Mass loss with this form will only change the normalization of the mass function,

although the shape will remain the same.

Finally, it is worth noting that the sudden drOp in mass at early times is likely

to be sufficient to disrupt clusters that have low binding energy. This suggests that

clusters that form with very low initial concentrations, or alternatively, with a dis-

proportionately large number of massive stars relative to the total, are unlikely to

survive past the first 1 Gyr, and will be absent from later surveys.

2.3.3 GRAVITATIONAL SHOCKS

Gravitational shocks occur as the cluster passes by a large but finite mass distribution,

such as the disk of a spiral galaxy or a giant molecular cloud in a galaxy halo. The

passage of the cluster by these objects creates gravitational tidal forces that on average

transfer energy to the stars in the cluster, making them more likely to escape the

cluster.

Given the tidal acceleration acting on a point a: in the cluster due to an object at

distance R from the cluster,

2$GM

“tidal = __R—3£ (2-30)
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we can substitute R2 = b2 + v2t2, where b is the distance of closest approach for the

cluster and the perturbing mass. Using the impulse approximation for this accelera-

tion yields the expected change in velocity for the test star:

 

2GMPSU

A = 2.31v 522) ( )

We can then find the average change in energy per unit mass

_ 1 2 _ 1 2 20M}: 2

AE — 2A2) —— 2a: ( b2v ) (2.32)

and, by integrating over the entire cluster, determine the total change in energy in

the cluster stars (Binney & Tremaine, 1987)

M

AEtotal = T391772; (
 (2.33)
2GMp)

b2?)

The timescale for this process to disrupt a cluster is of the order for this change

in energy to exceed the binding energy of the cluster

tSH N V_1 Ebinding

encounters AEtotal (2'34)

For shocks from the galaxy disk (q.v. Spitzer, 1987; Ostriker et al., 1972; Fall & Zhang,

2001)

3 Gil/[01302]?

tSH =—— (2.35)

20 rgggn

where PC is the orbital period of the cluster around the galaxy, ”Z is the cluster

velocity as it passes through the plane of the disk, and gm is the maximum gravita-

tional acceleration experienced by the cluster. For Milky Way clusters, this gives a

timescale on the order of tSH ~ 6 x 109yr. With this dissolution timescale, we can
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write the mass loss rate as (Fall 81: Zhang, 2001)

7 A
VSH = —iS—— (2.36)

3 tSH

where the factor of gfl accounts for corrections to the simple treatment of the deriva-

tion using the impulse approximation, and ItS is the constant relating how much mass

is lost for a given change in cluster energy

M_K§

M "‘ SE

This directly gives the relation

dM

:lt— — z/SHM (2.37)

As before with stellar evolution, this form has an exponential solution, which again

yields evolution that does not change the shape of the mass function, but only shifts

the normalization over time.

2.3.4 TWO-BODY RELAXATION

The final mass loss process and generally the most important is evaporation from

the cluster due to two body relaxation. In the dense stellar environments of globular

clusters, there will be many interactions between the stars, which serves to turn

the velocity distribution into a Maxwellian. However, the high velocity tail of this

distribution will ensure that some stars in the cluster will have velocities that will

move them beyond the tidal radius of the cluster, at which point they will be lost to

the host galaxy.

This mass loss must then have a timescale related to the time needed for the

cluster to achieve a Maxwellian velocity distribution. This is the definition of the
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relaxation time, which we can write as

 

tr = 2 (2.38)

where v2 is the is kinetic energy per mass for a star, and ((Av)l2l) is the average change

of this energy per unit time. These quantities can be found by solving the Fokker-

Planck approximation for the cluster (Spitzer, 1987; Binney & Tremaine, 1987), yield-

ing a relaxation time:

.03

t = 0.065—————

" nm2G'2 lnA

(2.39)

Generally for a globular cluster, the important timescale is the relaxation time within

the half mass radius. In this case n = %%€—‘17 = 8%,??? and assuming the velocities

are circular

M1/27‘Z/2

t —_

r or mGl/2lnA

(2.40)

From the virial theorem, we know that the kinetic energy of the stars in the

cluster is equal to half the cluster potential energy. This leads to the conclusion that

the escape velocity is only twice the average velocity of a star in the cluster. If we

determine how many stars have such velocities over the course of a relaxation time,

we can also find the expected mass loss rate:

uev = — (2.41)

where fie is the probability that a star with escape velocity is able to reach the edge of

the cluster before being scattered back to a lower velocity. Following Spitzer (1987)

00 00

5e = @- (v)v2dv=i§/ e_x23:2d:13 (2.42)

”f 2v.n 7rl/ 2.45

which gives an estimate of {6 ~ 7.4 x 10—3, within an order of magnitude of the value
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of fie = 0.045 given by more detailed evaluation with realistic mass distributions for

the stars (Hénon, 1961). This gives a mass loss rate of (Fall & Zhang, 2001)

7.2556mGI/21nA
Vev = (2.43)

1 2 3/2
M / Th

 

Substituting in the mean cluster density ,5, which we assume to be constant over the

lifetime of the cluster, we find

Vev = kg. (G',5)1/2 mln AM‘1 (2.44)

and a mass loss equation

dM

= kg. (Gp)1/2 mlnA (2.46)

As this mass loss is independent of mass, the solution is a linear decay, where

M(t) = M0 — uevt (2.47)

This is a different form for the mass loss than for stellar evolution and shocks. It

gives an amount of mass lost per unit time that is independent of the cluster mass

and constant in time. Because of this, small clusters will be completely destroyed

due to evaporation long before the heaviest clusters have lost even a fraction of their

mass. Such mass loss has the effect of quickly depleting the mass function at low

mass. After time t, we would expect that all clusters with initial mass M0 < nevt to

have been fully disrupted. This does not mean, however, that no clusters lower than

this will be found. These new low mass clusters will be the remnants of more massive

clusters that have also lost mass through evaporation.
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2.4 OBSERVED PROPERTIES OF GLOBULAR CLUSTERS

The structure of globular clusters is defined in terms of the central potential W0 This

parameter is not however, how the structure is generally defined based on observa-

tions. Instead, the King model concentration is used in its place, and is defined based

on the two main lengths for the cluster

c: loglo (£3) (2.48)

C

Figure 2.2 shows that c can be used as a replacement for W0.
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Figure 2.2 Comparison of the central potential W0 with the observable concentration

c.

The half mass radius Thm is another commonly measured quantity is defined as

the radius that contains half of the total mass of the cluster. As the mass is generally

an inferred parameter based on the surface brightness, the half light radius, Rh is

often used in its place. This radius contains one half of the total flux of the cluster,
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and can be used as a suitable substitute for the half mass radius. Both of these radii

are larger than the core radii for most clusters.

A variety of photometric parameters can also be defined to quantify the flux

normalization. The most common of these is the central surface brightness, 440 For

most observations, this is difficult to measure accurately, as it requires a fit to the

surface brightness profile, which is then extrapolated to zero radius. Therefore, it is

often replaced with the average surface brightness within the half light radius, which

is more easily measured. The equation for this is simply

(4),, = V + 2.510g10 (27.3%,) (2.49)

The central surface brightness can be used to find the central luminosity and mass

densities. Converting the central surface brightness in magnitudes into a luminosity

surface density (in L—JEEZ) is reasonably straight forward

log10(20) = 0.4 (26.362 — W(0)) (2.50)

which can be used to determine the luminosity density in the center of the cluster:

. 20

.70:— 2.51

Tcp ( )

In this case, p is a function of the King model that determines how much of the surface

luminosity is contributed from the core, and how much arises from the projection.

This can be calculated from the King model by taking

p~/O Z(r)dA//0 p(r)dV (2.52)

Converting this central luminosity density into a mass density is just a simple multi-
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plication by the mass to light ratio:

p0 = T30 (2-53)

The relaxation time is the main timescale for the evolution of the cluster. At the

core of the cluster, the relaxation time is defined as (equation 2.3.4)

k _ 1/2_ 7 1 3
tTC — 1.491X1O E—A-<m*> p0 Tc (2.54)

—1
1 2 4

= 2.5013 x 107p0/ r2 (In (%M)) yr (2.55)

This timescale often overestimates the evolution, so the half mass relaxation time is

generally used instead. This time is

1
tr}, = 8.933 x 105m(m)—1M1/2r2/2 (2.56)

—-1

= 2.6799 x106M1/2rZ/2(1n(3£0-M)) yr (2.57)

Finally, the metallicity of globular clusters can be estimated reasonably well from

the photometric color. This relationship is defined based on the known metallicities

and colors from the Milky Way clusters, and is usually written in the form (Kundu

et al., 1999):

[Fe/H] = —5.89 + 4.72 (V — I) (2.58)

As globular clusters have colors around V -— I ~ 1.0, they have metallicities around

[Fe/H] ~ —1.2, illustrating that globular clusters are more metal poor than the sun,

which is to be expected based on their ages.
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CHAPTER 3:

POINT SPREAD FUNCTIONS
 

At the distance of M87, the projected sizes of globular clusters are similar to the

resolving limit of HST. Because of this, we have to account for the effects of the point

spread function, If. The point spread function (hereafter PSF) defines how the light

of a point source (such as a star at great distance) is spread over the focal plane of

the telescope by diffraction.

In the simplest model, we can consider a telescope as simply a circular aperture

separated from the focal plane by a distance m. If we only allow monochromatic

light of wavelength A0 to pass through the aperture, then we can model the light as it

passes through the aperture as a series of spherical wavefronts. This yields an image

E = // §2ei(kr'wt)dA (3.1)

Aperture 7'

amplitude of

For the circular aperture, we can break the integral into strips of dA = :cdy where

at = 2m. Since the difference in amplitude due to diffraction is related to the

differences in path length between all contributions, we can rewrite the equation of

the spherical wave at a given time to explicitly contain this difference in path length

k1“ — wt = yk sin 0. Performing the integration, and making further substitutions
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v = if and '7 == kRsinO

 

2 1 _

E = 239R / mm
0 -1

27TE0R2 J1(’7)

7'0 '7

 (3.2)

where J1(:2:) is the first Bessel function. The final image intensity is the square of

this, so

_ J1(kRsin6’) 2

I _ IO( kRsinB ) (33)

which is the definition of the Airy disk.

We can compare this simple model to the known properties of HST by noting that

the core size of the PSF for visible light is roughly (1’05. The first minimum of the

Airy disk occurs when 2R Sine = 1.22A0. Setting A0 = 555nm and R = 1.2m, we

find that this gives a size 6 ~ 07058, showing that the HST PSF is dominated by the

diffraction effects of the telescope aperture. Figure 3.1 shows a comparison between

highly sampled HST PSFS for the F814W filter, and an Airy disk generated at the

peak wavelength of this filter A = 814nm.

The extra structure that is visible in the real HST PSF shows that real PSFS are

composed of more than a single simple diffraction pattern. It is clear from inspection

of the formula above that the effect of diffraction is a Fourier transform of the aperture.

The optical path of HST contains many more elements than a simple circular opening,

such as support structures, and the “spider” that holds the secondary mirror. The

addition of these objects creates the added complexity that is seen in the final PSF.
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Figure 3.1 Comparison of the Airy disk for a circular aperture comparable in size to

the HST to a highly sampled real HST PSF. This PSF is generated for the F814W

filter with the Airy disk created for the peak wavelength of that filter. The first zero

of the Airy disk clearly correlates to the Size of the central core of the true PSF.

3.1 PIXEL RESPONSE FUNCTIONS AND THE EFFECTIVE

PSF

A further complication in modeling the PSF arises from the fact that the focal plane

of the telescope is not a perfect imaging plane, but rather an array of sensors that

make up the CCD imager. For an ideal CCD, the measured image of a point source

would be equivalent to

NM) = 11093069111072) (3-4)

where III is the Shah function, a regular grid of impulse functions. Due to imperfec-

tions in the production of CCDs, pixels do not fully sample light equally well when

that light is centered differently. If we define the pixel response function g as the

sensitivity function of a given pixel over its surface, then the actual detected image
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will be

KM) = H($,y)®9?($,y)®111(i,3') (3-5)

The pixel response represents the changes in the detection efficiency of a given pixel

when light is incident on different portions of the pixel. One of the main sources of this

is due to the finite thickness of the detector material, and the fact that that material

does not absorb photons with 100% efficiency. This leads to internal reflections off

the back surface of the detector, which in turn causes the light to be scattered into

neighboring pixels. Assuming this scattering is uniform, a point source centered near

a pixel edge will have fewer photons detected in the incident pixel compared with a

source at the pixel center. The individual pixels in the detector are also not perfectly

electrically isolated from each other. This can allow captured photons (now present

as a charge in the detector) to bleed into neighboring pixels. This adds a further

contribution to %.

Since we can never truly observe the real PSF, but only the convolution of the PSF

and 32’, we can define a new function Hefl‘, the effective PSF as

Heff = H (8) .9? (3.6)

By defining this, we now have a function that works as the standard PSF would in

a continuous focal plane. The effective PSF must be smoother and broader than the

instrumental PSF, as it convolved with .%7, which has a width similar to the size of a

pixel. However, by switching to Hefl‘, we no longer need to worry about integrating

over the surface of a pixel, as that integration is incorporated already.
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3.2 PSFS FOR EXTENDED OBJECTS

We have defined the PSF so far in terms of the effect of diffraction on a point object.

For extended objects, the relations are largely the same. For a point source, the pixel

phase (where the center of the PSF falls in the pixel) changes the flux significantly.

This is not necessarily the case for extended objects, as the fact that the illumination

covers the entire pixel reduces the effect of the pixel phase. If we assume that the

pixel is illuminated by roughly the same flux across its entire surface, then the PSF

for an extended object can be evaluated by simply evaluating the Heff at the center

of the pixel. As the light distribution becomes less flat across the pixel, the PSF shifts

to the location of the peak of the flux. However, this will smoothly shift to the point

like case if the distribution becomes significantly peaked.

3.3 EVALUATING THE PSF FOR HST

Since we need the PSFS for HST to accurately model the detected GCs, we can take

advantage of the fact that being in Space makes the PSF generally stable with time.

For ground based observatories, motions of the atmosphere can significantly change

the width of the PSF. These motions create a PSF that is much larger than the

aperture diffraction pattern. For ground based observations, the PSF can then be

assumed to be of the form

_ 2 2

IIground = Heff ‘3’ e (a: +3; ”208mm (3-7)

where Oatm is of the order of 1’.’, almost certainly larger than Heg. By being in space,

HST does not have this added convolution, and so depends only on the telescope

itself, which leads to consistent modeling of the PSF. Creating such a model for the

PSF is essential for HST, as many pointings do not have sufficient stars to create one

directly from the observation.
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3.3.1 TINYTIM

TinyTim (Krist, 1993) is a program that is designed to model the PSF for HST. It

takes a theoretical model of the telescope aperture and obstructions, and uses Fourier

Transforms to directly estimate the Shape of the PSF. It incorporates the expected

object spectrum and the filter response to determine the relative contributions for all

wavelengths. The pixel response of the detector is added as a convolution at the end

of the evaluation.

This program works well for WFPC/2, and is the standard method for generating

PSFS for this instrument. However, the ACS detector is far off the central axis of

the telescope, and as such, has serious geometric distortion. The standard correction

for this distortion is to use Drizzle (see section 4.1.2 for details) to correct the ACS

frames. As the parameters that govern this procedure can change, the default Tiny-

Tim distortion correction does not in general provide a PSF that accurately represents

what is actually observed by the detector.

3.3.2 EMPIRICAL PSFS

To resolve this problem of poorly modeled PSFS, Anderson & King (2006) took the

tactic of empirically measuring the PSFS. To do this, they used 126 orbits of observa-

tions with HST to image the same field in the globular cluster NGC 6397. This field

contained roughly 4000 stars, which were imaged at different rotations and shifts, to

ensure that the stars do not fall on identical locations on every image. A model of the

PSF was then created, and fit to the stars, yielding a position and flux for each star

on each frame. These positions are then used to construct a model of the distortion

for the detector. Finally, the true pixel values were used to update the model of the

PSF. This process was iterated until a final solution was found. This iterative process

is important, as asymmetries in the PSF can alter the measured centroid for the star,

which will in turn yield a worse distortion model (Anderson & King, 2003).
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The final result of this iterative process was an accurate distortion model, and

a highly sampled Hefl'. As there are 4000 stars on 126 images, each of which is

roughly 10 pixels in radius, it is clear that this data provides millions of samples of

the effective PSF. To eliminate changes in the PSF across the surface of the detector,

the models were calibrated over different areas so that any changes in the PSF beyond

the standard distortion corrections would be accounted for in the model.

This iterative process was repeated for a variety of filters, and then tabulated into

reference images that contain highly sampled PSFS at a variety of positions across the

image. By interpolating between the different PSFS, we can generate a high resolution

PSF for any position on the detector, and then by interpolating that highly sampled

PSF, we can make one for a given pixel phase. These PSFS are designed for the raw

flat fielded and distorted “FLT” frames. This choice was made as this image is the

most photometrically accurate, as it has had the least processing or resampling.

 

Figure 3.2 Comparison of TinyTim PSF to the Anderson 85 King (2006) empirical

ACS PSF after applying the distortion correction. Although the general shapes are

similar, the cores clearly differ, with the TinyTim PSF being more oblong than the

empirical PSF.
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3.4 PSF GENERATION

To generate PSFS for use in modeling the globular clusters, the individual data FLT

frames were zeroed out, and the empirical PSFS were placed at the positions of globular

clusters in the original data. The shifts between frames were included in this, such

that the PSFS on each frame have slightly different pixel phases. This was done with

the goal that once the frames were distortion corrected and aligned, all PSFS for a

given position will also align. These PSF frames are then combined in the same way

as the data, ensuring that the final PSFS are the most accurate representation of a

point source in the data.

Quantifying the error in the final PSFS is very difficult, as there are few bright

stars in the field. As M87 lies out of the plane of the Milky Way, this lack of stars is

not surprising. Complicating the effect is the fact that one of the two obvious stars

is saturated at the core, making it effectively useless in characterizing the quality of

the PSFS we generate. The one remaining star is located at the edge of the bottom

chip. This location is likely to have the largest distortion effects, and so is likely to

be one of the most difficult locations to generate an accurate PSF.

To classify the error, a PSF was generated for the location of the star ((a:,y) =

(3995, 340)), and the star itself was extracted from the background subtracted double

resolution image (see chapter 4.2.2). The centroids were found for both the star and

the PSF, and radial profiles were generated. AS we are only mostly certain that this

star is not saturated, the choice was made to flux calibrate the PSF by forcing the

profile at 5 pixels to match. This choice excludes the central peak, and calibrates

based on the light in the second maximum. Once this was done, the star and flux

calibrated PSF were interpolated to a common grid, and the percent error between

the two was calculated as

_ Star — PSF

E Star

(3.8)
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Only the central 20 x 20 pixels were checked, as beyond this point, the star image

has dropped to less than 0.1% of the peak, and noise from the galaxy background

begins to be the main source of light. Inside this box, the error is well described by

a Gaussian with (E) ~ 2% and 0E ~ 6%. The error in the central pixel is 5% which

suggests that this star is not in fact saturated.

This result is reasonable, as it is consistent with the nominal uncertainty in the

empirical PSF. Anderson 85 King (2006) provide an error estimate of 5% for their

empirical PSFS, in the case of no additional corrections beyond the tabulated grid.

As their method of correction is based on doing a Similar error analysis to this, but

for multiple stars across the image, we are unable to apply their method to our data.

These errors are used to construct a perturbation to the standard PSFS, which reduces

the error by about a factor of two.

In addition to the simple errors, we can check that the PSF shape is correct.

Although the star and PSF have nearly identical “bumps and wiggles,” the PSF appears

to have a slightly broader core than the star. Approximating the core of both with

a Gaussian Shows that the PSF is indeed ~ 0.15 pixel broader in both directions

(of;tar = 1.64, 0;” = 1.80, a?” = 1.71, 0531? = 1.85). This error likely arises

from some error in the placement of the PSFS onto the individual frames. In that

coordinate system, this error transforms to an interframe scatter of about 0.08 pixel,

a value which would not be surprising. One possible source of this scatter is from

errors in the geometric distortion, which seems to account for the majority of this

scatter (0distortion ~ 0.05 pixels, Meurer (2002)).
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Figure 3.3 Comparison of final drizzled ACS PSF generated from the Anderson &

King (2006) empirical PSFS to the star on the final drizzled data image. The PSF is

made for the position of the star to ensure the distortion calculations match and that

the different response across the detector are removed.
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CHAPTER 4:

DATA REDUCTION
 

The data used for this project comes entirely from the Hubble Space Telescope. AS

discussed in Chapter 3, the PSF for ground based telescopes is much too wide for

extragalactic globular clusters to be imaged accurately. Since we wish to measure

the structure of the clusters, this added broadening will wash out the cluster light,

preventing any structure from being visible. In addition, the broadening makes iden-

tification of faint objects difficult, which would limit the depth to which we can probe.

Very high signal to noise data can be created with HST, which ensures that these

faint objects will be well detected.

4.1 IMAGE COMBINATION

As HST is limited in the length of any single image by its orbit time, multiple short

exposures must be taken to get the long total exposure times needed to achieve the

required high Signal to noise. Using multiple exposures of the same image also allows

for problems on the image to be removed. Since the HST detectors are in space,

they are much more susceptible to interference from cosmic rays, which can interact

with the detector and show up as erroneous bright objects. However, as these cosmic

rays are very unlikely to occur on the same pixels in all images, they can be easily

removed by comparing the multiple frames. In addition, the effects of cosmic rays

build up over the exposure, so a single long exposure will have more contamination

from cosmic rays than a short exposure.
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The HST detectors also have a number of bad pixels and bad columns, which

do not correctly measure the light incident on them. The main cameras are also

comprised of multiple detectors, which have gaps between them. By dithering the

telescope pointing, the location of the scene on the detectors also changes, and both

of these gaps in the data can be repaired using pixels from other images. The final

benefit of multiple dithered images is that the data can be combined to yield higher

resolution combined images than any of the original images. The creation of this

higher resolution image requires that the dither include non-integer shifts. As we

assume that the pixels of the detector sample the light distribution in some regular

fashion, these fractional shifts sample the light in the intervening Space. The simplest

case is one in which four images are combined with relative shifts (0,0), (0,0.5),

(0.5,0), (0.5,0.5). Since these images sample the light regularly on a grid with twice

the original image resolution, a new image can be created by interlacing the pixels

together.

It is important to note that the construction of new higher resolution images has

little effect on the angular size of the PSF. This new image in no way deconvolves

the scene from the PSF, it merely samples the data better. This means that objects

smaller than the PSF will remain unresolved in the new data. In addition, the very

act of co-adding data tends to introduce further blurring, depending on the technique

and sampling pattern used.

4.1.1 LAUER FOURIER METHOD

One method of recovering resolution from multiple frames is presented by Lauer

(1999), using image combination in the Fourier domain to create a Nyquist sampled

image. Briefly, this method expands each data image by interleaving blank pixels to

pad the data to the final resolution. The Fourier transform of these images is taken,

and multiplied by a phase factor to incorporate the interframe shifts. These transform
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images each contain some information about the image at frequencies higher than the

original sampling frequency. By summing these transform images the contributions

from each dithered image can be incorporated to provide the best estimate for this

high frequency information. The final combined image is then created by taking the

inverse Fourier transform.

In the simple interlacing case as considered above, this method yields identical

results. However, it can also yield reasonable estimates even when the sampling isn’t

ideal. Another benefit is that overconstrained sets of images can be combined in a

least squares method to provide an image that deals with noise on the individual

frames.

Although this method can accurately recreate the underlying scene, it has fairly

strict data requirements. First, the input frames must be cleaned of all cosmic rays

and errors, and must have any geometric distortion due to the instrument optics

corrected. These requirements make it immediately difficult for dealing with ACS

images, which have large distortion effects. Secondly, the input frames should fully

sample the pixel phase space, otherwise, they will create biased images, that depend

on the individual frames unevenly. These images may also contain aliases from Fourier

domain “satellites,” which can arise if the final Fourier transform image does not

properly taper to zero at high frequency. Such satellites will create a blurring of the

high frequency information, limiting the final resolution that can be created. Finally,

there is no packaged form for this method, which prevents widespread adoption,

despite its mathematical elegance.

4.1.2 DRIZZLE

Another method commonly used to combine data is the Multidrizzle package in Pyraf

(Koekemoer et al., 2002). Although less mathematically rigorous, it has much looser

data requirements and is mostly automated. This process not only combines the
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images, but also cleans image defects and corrects for the geometric distortion.

The Drizzle algorithm operates on the input images by first shrinking the pixels

by a scale factor called the “pixfrac.” This step holds the centers of the pixels fixed,

but decreases the area, leaving gaps between the pixels. These shrunken pixels are

then transformed via a geometric transformation onto the final image grid. The small

pixels are then “drizzled” onto the final image by allowing the pixel values to be added

to the output pixels in proportion to the area covered.

This addition to the output grid can be altered by changing the kernel used for

the addition, with a “square” kernel simply adding the fraction based on the area of

overlap, and a “Gaussian” kernel weighting the contribution from the center of the

input pixel more than the edges. An important way to estimate the image is to use

the “turbo” drizzle, which contributes all of the input pixel’s light only on a point in

the center.

After all the individual frames have been drizzled to the output image, a rescaling

is done by normalizing against the weight in each pixel. Since all pixels are not

guaranteed to have the same input area contributed to them, this rescaling is essential

to ensure that the counts measured on all pixels have the same basis. If few images

are used, this rescaling can add noise to the final image due to non-uniform weights.

Multidrizzle first reads the flags for each pixel in the raw flat fielded “FLT” im-

ages, and creates a set of masks for known bad pixels. The FLT images are then

projected onto a common coordinate system via a “turbo” drizzle. The WCS from

each image, plus an external correction supplied from a shiftfile, is used to create the

transformation from the “FLT” to the “single_sci.” This step corrects the frames for

geometric distortion, and removes the background ofl'sets between images, ensuring

the various frames have the same geometric and photometric calibration.

At this stage, the many “single_sci” images represent multiple realizations of the

true scene. However, cosmic rays and unknown image defects create deviations from
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this true scene. We can use the fact that we have many images to remove these

defects. A median image is created from the “single_sci” images, with discrepant

pixels clipped out. This median image is “blotted” back to the FLT frame for each

image, to create “BLT” images, which are an expectation of what each raw FLT frame

should look like.

Cosmic ray rejection is accomplished by comparing the FLT to the BLT images.

To avoid improperly masking the bright peaks of real objects (which are most likely

to have the largest scatter between individual images), the masking is weighted by

a gradient image, in which each gradient pixel is set equal to the largest deviation

between the neighbors in the FLT image. A pixel is then flagged as a cosmic ray if

the difl'erence between the FLT and the BLT exceeds:

S

|FLT — BLTI > scale - VFLT + N - ”noise (4.1)

Errors in the image alignment and sky level can easily lead to improper masking

of objects in the CR phase. If the Shifts are incorrect, then the objects will be clipped

from the median image, and hence will likely be flagged as cosmic rays. Errors in

the sky level between frames can do the same, by limiting the number of images that

truly contribute to the median image. Such an error can allow cosmic rays to slip

through by being improperly excluded from the median image.

Once the cosmic rays are found, their locations are added to the static mask

created earlier. This creates a final mask used for the final drizzle. This drizzle uses

a more accurate “square” kernel with the pixfrac set to 0.7 to minimize the size of the

final PSF. Each FLT is then drizzled onto the final “DRZ” image, with all bad pixels

removed and the sky levels matched. The final DRZ image has an exposure time

equal to the sum of the exposure times of the component FLTS. A weight file is also

created that stores the exposure time sum that contributed to each pixel of the DRZ.

The weight varies between pixels based on the effects of the distortion correction and
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the number of frames contaminated by cosmic rays at that position. This weight is

essential to gauge how well the Shifts are calculated. In the case of poorly determined

Shifts, the locations of objects in the DRZ image are matched by lower values in the

weight image, as the objects peaks will have been flagged as cosmic rays on the frames

that have the worst shifts.

4.1.3 DETERMINING SHIFTS

Accurate interframe shifts are essential to ensure the highest quality final images. AS

bad pixels are masked by the Drizzle algorithm, based on flagging statistical outliers,

having inconsistent shifts will skew these statistics.

The first step in measuring shifts is projecting all of the data frames onto dis-

tortion corrected frames. This projection mosaics the multiple chips together, and

arranges the frames onto the same WCS. This can easily be accomplished by stopping

Multidrizzle after the creation of the single_sci images.

With the various frames drizzled to what should be a common frame, the errors

between the frame WCS and the true sky WCS manifest as shifts in object coordinates

between the corrected images. A first guess at the transformations needed to correct

each image is created by manually identifying a pair of objects on each image. The

images then have catalogs of objects created with Source Extractor (Bertin 83 Arnouts,

1996). The brightest objects (500 in this case) are extracted from these catalogs. The

initial transformation is used to find matching objects, which are then used to refine

the transformation by solving the least squares problem for each frame 3' at each

matched point z':

Xreferencez’ — XOj = Sj (COS 63'ij + Sin ajyjz’)

Yreferencei —Y0j = Sj (COS9j1/jz' *Sinajwjz')
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As the transformation is improved, more matches will be found, so this is iterated

until the transformation for each frame converges.

With accurate shifts calculated, we next need to calculate correct sky background

levels. These values are calculated by the calibration process based on the distribution

of image pixel values. Large features (such as the galaxy itself in our data) will Skew

this distribution, and tend to overestimate the background level. The individual FLT

images are drizzled into single_sci frames again, incorporating the new shifts. Empty

regions of the images are found, and then the median in a box 100 x 100 pixels is

taken. Each image then has the median deviation from all boxes calculated, after

subtracting the minimum from all images. This median is written to the FLT image

header, to be subtracted during the final run of multidrizzle.

4.2 DATA SUMMARY

The data used for this thesis come from two sets of many orbit observations of the

galaxy M87. The data were taken as part of an initial microlensing survey with the

WFPC/2, and again in a followup survey with the ACS. In order to measure these

microlensing events, they must be monitored over their light curves. This requires

a time series of data taken fairly regularly. For our purposes of creating very deep

images, we can ignore any slight changes due to this microlensing, and simply combine

all the images together into very deep exposures.

4.2.1 WFPC/2

The data for the original microlensing survey were combined by Tod Lauer, using

his optimal Fourier method. Superimages for each of the four detectors on WFPC/2

were created. These data were taken in two filters, the F606W (a V filter, with peak

wavelength at A = 606nm) and F814W (an I filter, peak wavelength A = 814nm),

with total exposure time W = 116003 and tI = 30160s.
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These data were used to design and test the methods for detection on such deep

images. A very deep luminosity function was created for the globular clusters (Waters

et al., 2006). However, difficulties in constraining the PSF prevented reliable structure

fitting. Conveniently, the followup ACS data were taken at this time, and the project

switched to use the new data.

4.2.2 ACS

The followup data came from a 50 orbit series of observations with the ACS. The

images are of the core of the giant elliptical galaxy M87, extending out to a projected

radius of 8 kpc. The data were taken over the course of a three month search for mi-

crolensing events, which need multiple exposures to look for the changes in brightness.

This arrangement yields data that can be combined into Single very deep exposures.

The same two filters were used for this project as for the WFPC/2 survey: F606W

and F814W. On each observing day, four exposures in F814W were taken with slight

pointing offsets to provide for full image sampling every day. This was done as F814W

was the primary filter used for the microlensing search. These exposures are matched

by a single exposure in F606W, which are dithered over the different days, providing

a full sampling of the image plane over the entire set of observations.

In all, 49 F606W and 205 F814W images were combined to yield final images with

exposure times of W = 245008 and tI = 738008, making these some of the deepest

images ever taken with HST. In addition to these exposures, 8 exposures in F606W

and. 13 in F814W were taken but excluded due to a loss of the teleSCOpe pointing. The

main images were combined to a resolution of 0(.’045 pixel-1, the nominal resolution

of ACS. These images therefore have the highest signal to noise possible. A second set

of images were combined at twice this resolution, 0’.’025 pixel‘l, for use in modeling

the clusters. These higher resolution images are useful as they provide a better view

of the cluster structure.
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4.3 IMAGE PREPARATION

Given that the final combined exposure times make the final images among the deep-

est ever taken with HST, we have an excellent Opportunity to measure the globular

cluster luminosity function fainter than has been done before for any other galaxy. In

order to take advantage of this depth, however, we need to first prepare the images

to ensure that objects are detected with the best possible efficiency. This preparation

mainly involves the removal of the galaxy light. If the galaxy were not removed from

the image, then the photometry of the clusters would be biased by the addition of

extra Signal from the galaxy.

Subtracting the galaxy from the image is essential in another way as well. The

detection threshold is defined in terms of the image noise. This constant threshold

works fine for images with uniform noise, such as a sparse field of stars, but for

these images with their strongly varying noise distribution, the threshold needs to

be defined better. This variable noise arises from the fact that the brightness of any

given pixel is dependent on the number of stars that fall within that pixel. This is a

Poissonian distributed quantity, so the noise due to the galaxy scales as the square

root of the galaxy brightness. The center of the galaxy is thus a much noisier region

of the image than the edges, and so using a fixed detection threshold will miss many

real objects at the edges, and count too many noise spikes in the core. With an

accurate model of the galaxy flux, the detection threshold can be weighted to ensure

equal detection efliciency across the image.

The model of the galaxy light must not be biased by any objects on the image, and

must handle the steep changes near the core of the galaxy. There are two common

methods used for removing galaxies, unsharp masking and isophote fitting. Unfortu-

nately, both of these techniques have failings, and so a hybrid method was developed

to ensure the best quality subtraction possible.
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4.3.1 UNSHARP MASKING

The unsharp masking method estimates the galaxy light by smoothing the image so

as to remove the contributions from small scale objects. A simple Gaussian filter will

not work to accomplish this, as any final image will still contain the flux from all of

the small objects, just smeared out onto a larger scale. Instead, a median filter is

used, as this can ignore the bulk of the light from these objects. The quality can be

increased by clipping the highest and lowest pixels from the box before the median is

taken. As the main objects found on the image are mainly globular clusters, we can

choose a box size larger than the expected sizes of these objects. This consideration

leads to the choice of a box 100 x 100 pixels in size.

Two main issues arise from this fitting method. First as each pixel in the final im-

age is calculated a different filter box, adjacent pixels may not have smoothly changing

values. Although the majority of pixels in the filter box will remain the same, there

can be sufficient changes to significantly change the output values. This effect will

increase as the image noise increases, to the point where the galaxy subtraction may

actually increase the final image noise. Secondly, bright objects can skew the median,

even if the brightest pixels are excluded. This effect will cause the unsharp masked

image to oversubtract around any bright objects on the image. It also influences how

the core of the galaxy is subtracted, where the steep galaxy profile skews the median

to lower values. This prevents the core from being correctly modeled, and it will show

up as undersubtracted. Figure 4.5 shows the results of unsharp masking on the final

combined F814W image. These defects in the method can be clearly seen, with the

most obvious oversubtraction occuring around the spiral galaxy at the bottom of the

frame.
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4.3.2 ISOPHOTE FITTING

The ELLIPSE routine in IRAF is commonly used for modeling the light distribution

of galaxies. It fits the galaxy as a series of concentric elliptical sophotes, allowing the

ellipticity, orientation, and center to vary with radius. This method has the benefit

then that all adjacent pixels represent similar points on a smoothly changing model,

which should reduce the noise in the fit. As it fits the values based on only pixels

which match an isophote, it is able to generate a model that accurately accounts for

the steep gradient in the galaxy core. This method can be biased by objects on the

image, but as an iSOphote is generally fit using many pixels, only objects that take

up a significant fraction of the isophote will have much influence. Such objects can

be masked out, which helps remove this problem.

Unfortunately, the isophote fitting can create odd artifacts at radii where EL-

LIPSE has determined the ellipticity has changed. This leads to small ‘fivaves” where

the galaxy light is only partially subtracted, often with matching areas of oversub-

traction on the opposite side of the center. Finally, the ELLIPSE algorithm requires

the isophotes have full angular sampling. This is not true at the largest radii, as the

square image prevents such sampling. As the algorithm stops when this sampling is

not possible, the corners of the image have no fitting done, and hence no subtraction.

Figure 4.6 shows the results of ELLIPSE on the F814W image, illustrating these

problems.

4.3.3 FINAL METHOD

The solution to the difficulties presented is to use a hybrid of these methods. The

image is first scanned by a large box (100 x 100 pixels) and the pixel statistics calcu-

lated within the box. All pixels 40 higher or lower than the box median are flagged,

and the statistics recalculated without them until no more pixels are being flagged.

The box is shifted by half its width, and the process repeated to create a mask that
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contains all real objects on the image. Since the data region of the final DRZ image

is smaller than the total image, the empty regions created by distortion correction

are also flagged on the mask file.

With a reliable mask created, ELLIPSE is used to find a model for the galaxy.

The fitting algorithm used by ELLIPSE only allows this to work out to a radius

where a full isophote can be constructed. To fill the regions that are not modeled, we

assume that the ellipticity and position angle are fixed at the values of the last fitted

isophote. Incomplete isophotes are then constructed by taking the median values in

annuli of increasing semi-major axis. This extends the fit to cover the entire image.

Although the galaxy model created by ELLIPSE does an excellent job of removing

the majority of the galaxy signal, especially in the sharply peaked core, it still leaves

the small “waves” in the final image. These waves are removed by generating a new

mask from the ELLIPSE subtracted image, and then sampling the image with a wide

median filter and constructing a bicubic spline model between these sampled points.

This spline model is then evaluated across the image, and that difference removed.

With the waves removed, we are left with an image that is fully cleaned of the galaxy.

The final step of the image preparation is the removal of any remaining constant

background offset. This is done by subtracting the mode of the image intensity

histograms from the image. The final mode subtracted histograms are shown in

figure 4.7. The pixel distribution is asymmetric in the galaxy subtracted images,

which is not entirely surprising, as the real objects on the frame should increase the

number of pixels with positive values. The final galaxy subtracted F814W image is

shown in figure 4.8, which shows the clear improvement over the other methods.

The output of this filtering is saved as the “data” image, which has had the galaxy

light subtracted off, and is used for all subsequent analysis. The “background” image

is the final galaxy model, and the “noise” image is the galaxy model plus the fixed

read noise for our data. This image is used as the weight for the detection routine.
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Figure 4.1 Original F606W raw FLT frame before reduction. Cosmic rays can be

seen, such as the feature between the bright GC and the companion galaxy on the

right edge.
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Figure 4.2 Distortion corrected F606W frame. The rhombus shape of the ACS detec-

tor footprint can be clearly seen as a result of distortion correction.
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Figure 4.3 Final F606W image after combining with Multidrizzle. The cosmic rays

have been eliminated from this image, and the interchip gap has been filled with data

from other frames.
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Figure 4.4 Final F814W image after combining with Multidrizzle.
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Figure 4.5 Subtraction of galaxy light using unsharp masking, with a 100 x 100

pixel box. Although it creates a generally smooth image, the fringing effects can be

seen at the eges of the data, as well as in the oversubtraction that surrounds bright

objects. The sharp rise toward the galaxy core skews the median filter, which prevents

pixels within a box that contains the very center of the galaxy from being correctly

subtracted
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Figure 4.6 Subtraction of the galaxy light using the IRAF ELLIPSE routine. Although

the core of the galaxy shows much improvement (illustrated by the fact that the

central dust lanes can now be seen), the two main failures are also visible. The

corners of the image show where ELLIPSE has stopped fitting, and the unevenness

around the core shows where the isophotes have failed to correctly match the galaxy’s

true ellipticity.
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Figure 4.7 Image histograms for the F606W and F814W images. The centering about

zero indicates the background subtraction has correctly removed the galaxy light. The

asymmetry points out that these images contain real objects that are not subtracted

by the galaxy removal.
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Figure 4.8 Final galaxy cleaned image. Although some artifacts of the galaxy sub-

traction process can be found (such as around the companion galaxies), a clear im-

provement is evident over the simpler methods. This image also shows that the noise

remaining after galaxy subtraction increases towards the center of the galaxy.
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CHAPTER 5:

GLOBULAR CLUSTER LUMINOSITY

FUNCTION
 

5.1 OBJECT DETECTION

Source Extractor (Bertin 8; Arnouts, 1996) was used to generate a database of objects.

The galaxy subtracted “data” images were used as the search images, and the galaxy

model was used to weight the detection process. By default, Source Extractor looks

for objects a specified number of standard deviations above the background, taking

the statistics across the entire image. As the noise in this data is highly dependent on

the galaxy flux, this method does not work uniformly across the image. By supplying

a weight image, however, Source Extractor scales the detection threshold across the

image to reflect how the image noise truly behaves.

For this project, a detection threshold of 30 was used, with a minimum area of

2 pixels. This area criterion requires that an object must satisfy the threshold on

at least two adjacent pixels, and helps to keep noise spikes from being detected as

real objects. We also set the requirement that an object must be detected at this

threshold on both the F606W and F814W frames. By requiring all objects be found

in both filters, we reject any unusual features that appear in only one. Table 5.1 lists

the quantities directly measured by Source Extractor for each detected object.
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Table 5.1: Quantities measured for each object in both filters by Source Extractor.

 

 

 

Description Units

(X,Y) position on data image pixels

((1,6) position in the sky (2000 epoch) degrees

m,- apparent magnitude within a fixed radius mag

Am,- error in the apparent magnitudes mag

threshold local detection threshold counts

background local background level counts

Fmax maximum flux value counts

Fiso total flux above detection threshold counts

Aiso area above detection threshold pixels

#threshold surface brightness at the threshold detection level mag / arcsec2

,umax surface brightness at object peak mag / arcsec2

A,- area at isophotal levels: I,- = threshold-(51%;“é‘1—dyy8 pixels

flags any internal flags about measurement problems

FWHM full width at half maximum pixels

stellarity classification ranging from one (star) to zero (galaxy)

r1/2 radius containing half of Pisa pixels

AE major axis length pixels

BE minor axis length pixels

63 position angle of major axis degrees

elongation fig

ellipticity 1 — §§

dmerge distance between V and I image centroids arcsec

Rgal projected distance to galaxy center arcsec
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5.1 . 1 INSTRUMENTAL MAGNITUDES

Source Extractor automatically converts the raw fluxes to instrumental magnitudes,

using the photometric zeropoints for the individual filters supplied. This zeropoint is

also modified by the exposure time of the image, so the instrumental magnitude is

defined as

m = —2.510g10 (F) + 2.510g10 (temp) + Zeropoint (5.1)

The zeropoint is listed in the calibration manuals for the individual detectors, and is

reasonably well calibrated.

Unfortunately, this instrumental magnitude only measures the light within the

apertures defined. A single aperture clearly does not fully account for all the cluster

light, requiring a more complete study of the photometry.

5.2 COMPLETENESS CORRECTION

Even though we have set the detection threshold fairly liberally, and have extraordi-

narily deep data, we still expect that we are not likely to be 100% efficient at detecting

objects. The best way to quantify this detection efficiency is to add simulated clusters

to the images, and then check to see how many of these are detected by searching

with Source Extractor and the same detection limits.

Since the detectability of any given object is related to the surface brightness,

and not just the total object flux, we must also incorporate the sizes of the objects.

Simulated globular clusters with a fixed central potential of W0 = 5 (King 0 = 1.03)

were generated for a grid of apparent instrumental magnitudes and tidal radii. At each

grid point, 200 simulated clusters were randomly added to the background subtracted

images. The detection and measurement was repeated as was done for the real data

with each simulated cluster stored along with the values of the parameters calculated

by Source Extractor.
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Once this is finished, all objects at a given grid point are analyzed, and the ratio

of the number found to the number input is calculated. Due to some significant

objects that remain on the image after galaxy subtraction (most notably the central

jet and the companion galaxy), some regions of the image are manually excluded,

which changes the input number between grid points.

Figure 5.1 shows the completeness surfaces for the two filters. Over the range

of tidal radii that we expect to find globular clusters, the size dependence of the

completeness is fairly weak, so for all further analysis, we define the completeness

solely as a function of apparent instrumental magnitude. Due to the radial dependence

of the galaxy noise, the detection efficiency changes with distance from the core. To

minimize the scatter in the completeness, we divide the data into two radial bins,

breaking at the median cluster distance 68’.’95. The final completeness for each filter

was then calculated independently for each bin. This allows the completeness in the

outer bin to extend to slightly fainter levels.

5.3 PHOTOMETRIC CALIBRATION

5.3.1 APERTURE CORRECTION

The completeness values measured from the simulated clusters require the instru-

mental magnitudes of an observation to be calculated. The magnitudes measured by

Source Extractor are taken at fixed radii. As the sizes of real clusters are not all

the same, taking a single aperture magnitude for all objects will not equally measure

the total light. This fact suggests that we need a way to correct the fixed aperture

photometry to account for the variable cluster size. This is done with the aperture

correction. This correction is parameterized by an estimate of the size of the object,
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Figure 5.1 Completeness levels as a function of instrumental magnitude and input

cluster size. The lines denote constant completeness, from 100% to 10%, with the

completeness of the line equaling the data completeness. Note that the radius depen-

dence is fairly weak, suggesting that the instrumental magnitude is the main factor

in the completeness. The crosses show the locations of the simulated clusters used to

estimate the completeness.

based on the measured magnitudes with different aperture radii:

R = m4 pxl — m2 pxl (5'2)

The logic behind this parameter is that a small object (with a radius smaller than

2 pixels) will have approximately the same magnitude in both apertures, yielding a

value of ’R. ~ 0. As an object increases in size, more light is measured in the large

aperture compared to the smaller, which pushes ”R. away from zero (and to more

negative values due to the definition of magnitudes).

Given this size parameter, and one of the aperture magnitudes (taken as m4px1
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for convenience), it should be possible to construct an aperture correction, such that

minstrumental : m4 pxl + “MRI m4 pxl) (5-3)

Conveniently, the data used for the completeness correction samples this function

A(’R., m4 pxl): as the simulated clusters were created with a known instrumental mag-

nitude, and ”R, and m4px1 are measured by Source Extractor. At each simulated

cluster grid point, all detected clusters are measured, and the median values of ”R

and m4px1 are stored at that point, with the value of the aperture correction:

A (median(R), median(m4 pxl» = minput instrumental - median(m4 pxl) (5:4)

This grid of points has the upper end fixed, such that A(0,m4pxl) = 0 to anchor

the small object end of the aperture correction (which is not well sampled by the

completeness data). This grid of values (72, m4”), A) is irregularly sampled as the

values of ’R do not linearly match the input sizes. For each detected object, the

aperture correction is calculated using thin plate splines, which can interpolate such

data. Figure 5.2 shows the surfaces of the aperture correction for the two filters.

In addition to this aperture correction, another correction of 0.1 magnitudes is

applied to the final instrumental magnitude. This extra aperture correction compen—

sates for light that is scattered to large angles by the optics of HST. This is a standard

calibration step, and must be applied even though an aperture correction has already

been applied. The simulated clusters used do not incorporate this scatter, as the PSF

used ignores very wide angle scattering.

5.3.2 COLOR CORRECTION AND EXTINCTION

Most previously published results on globular clusters present the magnitudes using

the standard Johnson Cousins BVRI system. Converting the instrumental magni-
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Figure 5.2 Aperture correction levels as a function of instrumental magnitude and

input cluster size. The weak dependence on the measured magnitude indicates that

the fraction of light lost is generally a function only of the object size. The crosses

Show the where the simulated clusters used for evaluation were placed, and the small

dots show where the real globular cluster data falls.

tudes mF606W and mF814W to V and I requires a color correction. The correction

parameters are taken from Sirianni et a1. (2005) and reproduced in table 5.2

Table 5.2: Color correction parameters

  al a2

 

Filter (V — I)break a0

F606W < 0.4 26.394 :1: 0.005

> 0.4 26.331 :1: 0.008

F814W <0.1 25.489 :t 0.013

> 0.1 25.496 i 0.010

F775W < 1.2 25.241 :l: 0.005

> 1.2 25.292 i 0.033

0.153 d: 0.018

0.340 :I: 0.008

0.041 d: 0.211

-0.014 :I: 0.013

-0.061 :1: 0.021

-0.105 :I: 0.026

0.096 :I: 0.085

-0.038 :1: 0.002

-0.093 :1: 0.803

0.015 :I: 0.003

0.002 :I: 0.021

0.007 :t 0.004
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The corrections are defined as:

V = mF606w+00+al(V—I)+02(V-1)2

I = mF814W + b0 +bl(V—1)+b2(V — I)2

and are defined piecewise in color on two intervals separated at (V — I)break- The

standard application of this color correction uses an iterative process, where the color

V — I is updated at each step, and V and I are re—evaluated with that new color.

Unfortunately, the piecewise definition of the color correction creates problems in the

evaluation around the breaks. Instead, an algebraic solution was used, noting:

V— I = (mF606W — mF814W) + (00 — b0) + (GI - bl)(V— 1) + (a2 -— b2)(V — [)2 (5-5)

which can be solved for a corrected color in terms of the instrumental color. Formally,

this yields two solutions, but it can be seen by checking a sample of colors that only

the negative solution gives realistic magnitudes. Although this method seems to have

the same problem at the color correction breaks, we can check that the calculated

color falls within the necessary range for the coefficients used. Figure 5.3 shows a plot

of the calculated V — I color as a function of the mF606W — mF814W instrumental

color. As this function is continuous even around the color breaks, we can be sure

that the color correction has been applied correctly.

The final photometric step is the application of an extinction term. This term

accounts for the absorption of light as it passes through dust and gas in space. Using

the Schlegel et a1. (1998) value for M87’s position on the sky, we can estimate this

extinction as:

AV = —0.074 (5.6)

A; = —0.043 (5.7)
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Figure 5.3 Plot of calculated V — I color as a function of instrumental mF606W —

mF814W color. The continuity ensures that the correction has been applied correctly,

even at the color breaks, which are marked with lines.

5.4 CONTAMINATION

Even with the various cuts placed on the data, it is still possible that some non-

cluster objects may remain in the sample. Although these objects masquerade as real

clusters, we can statistically remove them by estimating how many of these objects

should appear on our image. To do this, we need to find images that only contain

the contaminating objects.

5.4.1 NOISE OBJECTS

One method to look for noise spikes on the image is to run the detection code on an

inverse image, generated by multiplying the data image by —1. The real objects on

this inverted image have peaks that are then negative, and so fall below the detection

threshold. Instead, only the dark areas of the data image will have peaks that allow
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them to be detected. If the image histogram was perfectly symmetric, than the

number of objects detected on this inverse image would directly give the number of

noise spikes in the data image. The fact that the histograms Shown in Figure 4.7

are not symmetric suggests that our data is deep enough to measure a bias in how

the stars in M87 are distributed. Despite the fact that we cannot use these objects

directly to correct for the contamination, we can still use this as a lower limit, and

correct for the points that are detected.

5.4.2 BACKGROUND GALAXIES

The contamination by background galaxies is obviously a major contribution to the

number of objects found. A quick look at the galaxy subtracted data image shows a

large number of background spiral galaxies that are easy to identify. The Hubble Ultra

Deep Field (Beckwith et al., 2006) is a very deep data image taken of an “empty” field

with a goal of looking at the distribution of distant galaxies. This gives an obvious

way to estimate the contribution from these galaxies.

Unfortunately , simply searching for UDF galaxies will overestimate this contri-

bution. Instead, we need to ensure that the noise characteristics of the UDF match

that of the data. This first requires a rebinning of the UDF data from a pixel scale of

(If/030 to the pixel scale of the data (0’.’045). Next, the UDF is overlaid on the image

footprint of the data, and trimmed to match the field of view. With the geometry

matched, the noise characteristics can be matched to our data. The UDF is given in

counts per second, so must first be scaled to match the exposure time of our data.

Finally a noise image is created from the data galaxy model. This noise model as-

sumes each pixel is drawn from a Gaussian distribution with mean zero and standard

deviation equal to the square root of the galaxy level. This noise model is then scaled

such that when added to the UDF, the final image variance equals that of the data

image. This method makes it certain that objects in the UDF frame that fall “near
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the center of the galaxy” have more noise than objects that fall at the edge. Figures

5.4 and 5.5 show the original UDF image, as well as the final cropped and noise added

final version. The apparent loss of objects from the center of the image is a result of

the increase in the image noise in that region.

The reduction is identical for objects detected in the UDF as for the data objects,

with the only exception being that the UDF filters are F606W and F775W. However,

we can convert these filters to the same standard V and I system, minimizing the

changes.

5.5 CLUSTER CANDIDATES

The cluster detection code used so far has been designed to detect as many objects

as possible. Unfortunately, this also means that some fraction of the objects detected

are not true globular clusters. The two main sources of contaminating objects are

background galaxies and noise fluctuations from the galaxy light (including random

local overdensities in the stars that make up the galaxy). To eliminate as many

of these contaminating objects as possible, we make a series of cuts in the many

dimensional space of parameters.

The first cut is to remove objects that have dmerge > 0’.’015. This removes things

that are likely to be random matches of noise between the two images, that do not

represent real objects. Next, we can apply a color cut where only objects with

0.5 < V — I < 1.7 are considered to be globular clusters. These limits are based

on observations of other globular cluster systems and cover the range of colors where

clusters are known to exist. Finally, we only want to consider objects that have a

final completeness value greater than 0.5. This limit is chosen because if we are only

detecting half of these objects, then any count of them is influenced more by the

errors in the completeness than in the true number of objects.

These cuts so far are all based on obvious ways to limit the sample. We can
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also make the assumption that globular clusters are circular, and set limits on their

ellipticity such that g VI < 1.5. We also assume that clusters are peaked, such

that the central pixel is bi‘ighter than the rest of the cluster. By comparing the peak

surface bright to a calculated average surface brightness, we can exclude objects where

the average surface brightness is brighter than the peak surface brightness:

000455 2

Hpeak < V + 2-510g10 (AISO ( 1px] ) ) . (5'8)
 

Such an object is likely a very extended background galaxy, or a very blurry noise

object.

The numbers of clusters detected with each of the various cuts are given in table

5.3. This shows that the various restrictions on the data remove the majority of the

contaminating objects, and yields a final number of clusters consistent with what is

expected based on earlier surveys. The one object that is manually excluded from

the sample is the HST-1 knot in the jet, which successfully eludes these cuts. This

is likely due to the fact that it is dominated by a small flaring emission source, that

makes it appear reasonably point like (Perlman et al., 2003; Waters & Zepf, 2005).

Figure 5.6 shows the color magnitude diagrams of both the full sample of detected

objects, as well as the full sample of objects on the contaminating frames. It is clear

that at the brightest magnitudes, the globular clusters are easy to identify.

68



 
Figure 5.4 F606W UDF image rescaled to match the pixel scale of the M87 data.

Nearly all objects on this image are galaxies, making it an excellent field to investigate

the expected contamination from background galaxies.

69



 
Figure 5.5 F606W UDF image cropped to the footprint of the M87 data, and with

added noise to simulate the effects of the galaxy subtraction process. This added

noise can be seen by the apparent preferential loss of objects from the center of the

image, where the noise added has a stronger variance.
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Table 5.3: Impact of Selection Cuts on Sample Size

 

 

 

 

 

Cut Nclusters Ninverse NUDF

Raw V 9454 721 790

Raw I 12495 249 255

Joint V+I 6624 194 249

dmerge < 01015 5392 194 249

Completeness > 0.5 4045 47 231

V — I < 1.7 3113 26 176

V — I > 0.5 2919 16 114

§|V < 1.5 2434 6 60

§| I < 1.5 2191 4 34

#peak < (p) 2092 2 33

Final Sample 2091 2 33

 

5.5.1 PHOTOMETRIC ACCURACY

As the ACS pointing contains the majority of the clusters imaged by Kundu et a1.

(1999) and Waters et a1. (2006), we can test the photometric accuracy of the survey

by comparing the measured magnitudes to those previously done. For the Kundu

et al. (1999) sample, there are 989 clusters matched between the two samples, with

magnitude differences

V — VKundu = —0.028 :t 0.100

I — [Kundu = 0.033 a: 0.107

(V — I) — (V — I)Kundu = —0.06 :1: 0.110
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Figure 5.6 Color magnitude diagrams of detected objects. The left panel shows all

objects detected on the data image. The globular clusters are clearly visible as the

vertical stripe around V — I ~ 1.0. The right panel Shows the objects detected in the

inverse (shown as asterisks) and UDF (shown as boxes) images. The objects detected

in the data image, but excluded from the sample due to their properties are also

shown as small crosses.

For the Waters et a1. (2006) sample, there are 814 clusters in common, and the

differences are

V — VW,tars = 0.035 :t 0.102

I — 1W,ters = 0.073 :t 0.086

(V — I) - (V — I)Waters = ——0.035 :t 0.127

These deviations are consistent with the expected photometric errors.
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5.6 LUMINOSITY FUNCTION

The luminosity function for the globular clusters shows how many are detected at a

given magnitude. Each detection is weighted by the a factor

__ i1

_ Completeness,

 

z' (5.9)

where the positive case is for objects from the “cluster” sample, and the negative case

for the “false” and “UDF” samples. These samples are included to correct for the

expected contaminating objects that still exist in the sample. The error in each bin

is then

Ebin = (II/VII) V Nbin (5-10)

Figure 5.8 shows the final GCLF, including both the completeness weighting and

the contamination rejection. Overplotted with the GCLF is the smoothed complete—

ness as a function of magnitude. This shows that our sample is 50% complete to

nearly V ~ 27. As this is the product of the completenesses in both the F606W and

F814W filters, the final completeness is color dependent. For the range of colors we

consider for our globular cluster sample, the 50% completeness limit generally follows

the line V50% ~ 25.9 + 0.8 (V — I).

GCLFS have in general been modeled by Gaussians, due to their peaked natures.

Recently, more physically motivated models have been used, based on the expected

mass lost from the clusters. Such models are discussed further in Chapter 6. The

best fitting Gaussian to the binned GCLF gives a turnover of (V) = 23.62 with a

Width of 0V = 1.40. Repeating this for the I data yields (I) = 22.58 with a] = 1.35.

5.6.1 COLOR DEPENDENCE

The M87 globular clusters are bimodal in color, as are the GCs in most galaxies. This

bimodality is obvious from the color magnitude diagram, in figure 5.7, with a blue
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peak around V - I ~ 0.9 and a red peak at V — I ~ 1.1. If we divide the clusters

between two samples in color separated at V — I ~ 1.03, we can create luminosity

functions for each. This divisions places 959 clusters in the blue sample, and 1133 in

the red sample. Figure 5.9 shows the GCLFS for these two samples, along with their

associated completeness functions.

It is clear from this figure that the faint end of the blue sample falls off faster

than the red sample. This drop is somewhat expected based on the color dependent

completeness function, but as shown, the fallofl' occurs at a level where the sample

should still be roughly 90% complete. Therefore, this drop must be a real effect, such

that the faintest clusters tend to be from the red sample. On the bright end of the

GCLF, the blue sample also drops off at brighter magnitudes. Fitting Gaussians to

these two samples confirms these eflects, with the blue sample having a higher mean

than the red sample, with <V>blue = 23.31 and <V>red = 23.89. In addition to the

differences in the means, the widths of these Gaussian fits are also different, with the

blue sample significantly narrower than the red sample: Ublue = 1.21 and 0red = 1.40.

We can check that these fits are not just an effect of the sampling by comparing

them with the t— and F— tests. These tests indicate that the means of the two

samples are significantly different (t = 10.042, p-value = 1.6 x 10’”), as are the

variances (F = 1.34, p-value = 2.5 x 10—6).

5.6.2 RADIAL DEPENDENCE

Although we can only measure the projected distance from the clusters to the center

of M87, any radial dependence of the cluster luminosities should still be evident.

To investigate this, the clusters were divided into five bins in projected radius with

widths of 2 kpc. Table 5.4 shows the Gaussian fits to the GCLFS for these bins, along

with the number of clusters in each bin. The fall in the number of clusters beyond

RGC ~ 6 kpc is due to the shape of our field, and not from a sudden drop in the
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cluster density. Figure 5.10 plots the binned GCLFS as simple lines, along with the

completeness functions for each bin. We can see that the peak of the GCLF moves

fainter with increasing distance from the center of the galaxy, along with an increase

in the GCLF dispersions.

Table 5.4: Radial Dependence of the GCLF

 

 

Bin NGC (V) 0’

 

0 < R < 2 186 23.30 0.985

2 < R < 4 481 23.46 1.246

4 < R < 6 569 23.56 1.280

6 < R < 8 568 23.73 1.437

8 < R < 10 244 23.75 1.488

 

We can again use the t— and F— tests to confirm that this radial gradient is a

real property of the GCLF. Comparing each bin against the next larger indicates that

only the outer two bins have consistent means (p ~ 0.43). This is likely due to the

fact that the outermost bin preferentially samples the smaller radii due to the square

shaped frame, so it is sampling clusters most like its neighboring bin. The variances

also match for the two outer bins (p ~ 0.53) and also for the R2_,4 and R4_,6 bins

(12 ~ 0.53). Again, the differences in completeness make an attractive explanation for

this, but as before, the data is complete beyond the point where the GCLF begins to

fall.

5.6.3 COMPARISON WITH PUBLISHED RESULTS

A selection of published Gaussian GCLF fits are presented in Table 5.5. Figures 5.11

and 5.12 show these fits overplotted withithis new ACS GCLF data for both filters.
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The first GCLF to compare our data to is based on the Harris (1996) catalog of

Milky Way globular clusters, using the most recent (2003) revision. The histogram

of this data is shown in figure 5.11, illustrating the statistical advantage found in our

sample. The peak for the Milky Way is only marginally fainter than we observe in

M87, with a t—test p value that suggests they are not significantly different. The vari-

ances, however, are very much different, with the Milky Way GCLF much narrower.

This variance is in fact consistent with the M87 blue sample, which is reasonable as

the Milky Way GC system is composed predominantly of blue clusters.

For our V GCLF, we compare against the two WFPC/2 surveys (Kundu et al.,

1999; Waters et al., 2006) as well as one ground based survey (McLaughlin et al.,

1994). The WFPC/2 samples match well, with reasonable t— and F— test p values.

Incorporating the photometric offsets calculated in Section 5.5.1 shifts the turnover

values even further into agreement. The McLaughlin et a1. (1994) sample has much

brighter completeness limits, such that they are only sensitive to the bright half of

the GCLF. This leads to a significant problem in fitting a Gaussian, as is seen by the

fainter peak and wider dispersion.

The agreement with the I GCLF is not quite as good, likely due in part to the

worse completeness effects for the I data. The Kundu et a1. (1999) and Waters et

a1. (2006) samples are again reasonably consistent, with the p values improving again

when the offsets between the samples are applied. The comparison with the ACSVCS

sample (Jordan et al., 2007) indicates Significant disagreement. This is likely biased

due to the fact that the ACSVCS used the F850LP (z) filter, which extends further

into the infrared that our F814W. To compare the samples, we’ve used a simple

conversion of I — z = 0.3. This ignores any more complicated color dependence of

the correction, which may account for the narrower dispersion in the ACSVCS fits.

However, it seems far more likely that the ACSVCS dispersion is an underestimate,

based on the lack of the very faintest clusters in their sample.
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V — I ~ 1.1 respectively.

Figure 5.7 Color magnitude diagram of the final sample of clusters with color his-

togram. The blue and red clusters can be seen as grouping around V —— I ~ 0.9 and

V'—I
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Figure 5.8 Final globular cluster luminosity function along with the completeness

function. This shows that the sample is at least 50% complete down to 27th mag-

nitude, Where the cluster distribution is seen to drop to roughly zero. The dashed

curve represents the best fitting Gaussian, with u = 23.623 and a = 1.40.
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Figure 5.9 Comparison of the red and blue cluster GCLFS. The Gaussian fits are

plotted, along with the smoothed completeness curves for both samples.
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Figure 5.10 Comparison of the GCLF between five bins in projected distance from

the center of M87 along with their completeness curves. The lines are for R042 (red),

R2_.4 (blue), R445 (green), R643 (magenta), and R8_,10 (cyan).
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5.7 BLUE TILT

Recent deep observations of extragalactic globular cluster systems have suggested the

existence of a “blue tilt,” where fainter clusters from the blue metal poor sample are

bluer (and hence, more metal poor) than the brighter blue clusters (Strader et al.,

2006; Harris et al., 2006). This tilt is explained as a result of a metallicity-luminosity

relation of the form Z 0: L055.

We can look for such a trend in our data by dividing the sample into bins of width

one magnitude, and running a KMM (Ashman et al., 1994) test on these samples.

This test looks for bimodality in the sample, and finds the best fitting peaks and

dispersions for the two groups. Table 5.6 shows the results of this test, and the

results are plotted over the globular cluster color-magnitude diagram in figure 5.13.

Table 5.6: Bimodality with Cluster Luminosity

 

 

Bin NGC %blue I-‘blue ablue %red ”red cred

 

V < 20 9 0.22 0.59 0.11 0.78 1.12 0.19

20 < V < 21 63 0.53 0.85 0.09 0.47 1.10 0.08

21 < V < 22 229 0.47 0.84 0.08 0.53 1.11 0.11

22 < V < 23 421 0.54 0.87 0.10 0.46 1.14 0.06

23 < V < 24 613 0.45 0.85 0.09 0.55 1.15 0.08

24 < V < 25 459 0.35 0.84 0.10 0.67 1.19 0.13

25 < V < 26 224 0.49 0.95 0.15 0.51 1.33 0.13

26 < V < 27 74 0.48 0.98 0.16 0.52 1.42 0.14

 

The brightest bin contains too few objects to give reliable results, and the color

dependent completeness can be seen to deplete the edge of the CMD below V ~ 25,

making the faintest two bins also unreliable for investigating the color bimodality.
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The remaining bins have almost identical values for ”blue: indicating that our sample

shows no evidence for a blue tilt. AS this sample is much deeper (generally by at least

a magnitude) and more complete than those that appear to have a blue tilt, it seems

likely that the tilt is not a real effect, but rather some systematic photometric error.

83



nnn

QUU ' I ' l ' I ' I ' I ' I ' I
 

   
Figure 5.11 Comparison of the final GCLF to the M87 GCLF of Waters et al. (2006)

(red histogram) and the Milky Way GCLF based on the data of Harris (1996) (black

histogram). This comparison shows the number advantage this new sample presents.

In addition, the truncation of the Waters et al. (2006) sample at V ~ 26 can be seen

to limit the faint end of the GCLF. Overplotted are the best fitting ACS Gaussian

fit (dashed line), the Milky Way fit (dotted line), and the ground based McLaughlin

et a1. (1994) fit (dot dashed), rescaled to match the number of ACS clusters.
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Figure 5.12 Comparison of the final I band GCLF to the M87 GCLF of Waters et

a1. (2006). The Gaussian fits are for the ACS (solid), WFPC/2 (dashed), and the

ACSVCS z filter (dot dashed).
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Figure 5.13 Bimodality of the cluster sample as a function of

which we expect to see completeness issues influence the fitting.
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magnitude. As the

peaks of the blue cluster distribution stay constant from V ~ 21 to V ~ 25, we see

no evidence for a blue tilt. The black line illustrates the 90% completion limit, below

 



 

CHAPTER 6:

GLOBULAR CLUSTER MASS FUNCTION
 

The mass spectrum of globular clusters is defined as 211(M)dM, which gives the number

of clusters with mass between M and M + dM. We then define the mass function as

= MWM)

1081009)

 

‘1’ (10810(M)) (6.1)

to directly relate to observational counts of clusters. In the literature, both 19 and \II

are interchangeably called the “mass function.”

For an initial mass function Ibo E «MM, 0) = 212(M), we can see that the evolved

form of this must be 7,!)(M, t) 0: 2120(M0) where M0 is the original mass of the cluster

at t = 0. Considering the mass loss mechanisms of section 2.3, we can see that for

both stellar evolution and gravitational shocks, the mass loss has the form

M(t) _,,t

— = 6.2

M0 6 ( )

whereas two body relaxation yields

M(t) = M0 — at (6.3)

Since the form of both stellar evolution and gravitational shocks simply scales the

initial mass function, we can neglect the effects of these mechanisms, and instead,

simply allow the normalization to change over time. This defines the evolution with
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respect only to the number of clusters that survive. Evaporation does not follow this

form, and so must be treated by actually evolving the cluster mass spectrum.

6.1 INITIAL MASS FUNCTION OF GLOBULAR CLUSTERS

For this study of the M87 globular cluster system, we want to consider two forms for

the initial mass function. The first IMF we consider is a power law, where

(MM) oc M—a (6.4)

The standard choice of a is a = 2.0, as this is what is observed to be the luminosity

function of young star clusters in merging galaxies (Zhang & Fall, 1999). Since these

merging galaxies are thought to be in the process of creating new globular clusters,

this observed function is likely to be a reasonable estimate of the mass function of

all systems of newly formed clusters. This IMF is also reasonable from a theoretical

standpoint, as it assumes that the collapse of the giant molecular clouds that form

GCs is effectively scale free.

Unfortunately, such power law mass functions overpredict the number of high mass

globular clusters in many evolved systems. A solution is to use a Schechter (1976)

like function, in which above some cutoff mass, M0, the number of clusters decays

exponentially:

’I/J(M) oc M’arfM/MC (6.5)

This form retains a power law shape at low masses, but falls off to more closely match

observations at higher mass. Burkert & Smith (2000) present this form of IMF as the

result of the expected mass function for the sizes of giant molecular clouds that form

from the merging of smaller clouds. They give a = 1.5 and also provide a fit to value

for the cutoff in M87, M0 = 5 x IOGMQ. We use this form for the fitting, although

we allow the cutoff value to be fit to match the data.
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6.2 MASS LOSS RATES

If we define the mass loss rate as

dM
—_ = _ —7dt kM (6.6)

we would like to find a form for the total mass function as a function of time, given

the initial mass function 1120(M). As the mass loss equation is so simple, we can solve

it by direct integration:

MMM = —kdt

M(t) t

M’YdM = —k/ dt

M0 0

; 1+7_ 1+7 _ _1+7(M(I) M0 ) _ kt

So, the cluster mass at any time is just

1+

M(t)1+7 = M0 ’7 — kt(1 + ’y) (6.7)

Since we observe the evolved mass, we can invert this to find the starting mass for

a given cluster, which gives the relative weights for that cluster from the IMF. This

gives the mass Spectrum for evolved clusters as

wevolved(M) = VIMF (M0) (6.8)

= 51M...((M(t)1+7+kt(1+y))1/“+”) (6.9)

This evolved mass function depends on the product of the mass loss rate and the

current time of evolution. As we only know the current ages of the clusters indirectly,

it makes sense to consider this as a Single parameter, 7' = k - t. This represents the

total mass lost by the cluster over its entire life. This also provides the peak value
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of the GCMF, as clusters at the peak have lost roughly half their mass, and so have

current masses equal to 7'.

6.2.1 FALL & ZHANG

Following Fall & Zhang (2001), we can consider the mass loss of a globular cluster

to be due mainly to the effects of two-body relaxation. As stellar evolution happens

quickly, we can assume that it happens immediately after the clusters’ formation, and

as such, can be treated as a simple shift of the IMF. Similarly, the mass loss due to

shocks affects the mass function as a whole, and can also be ignored as a simple Shift.

Using the general form above, we can write the mass loss as

dM

d—t = —kM0'0 (6.10)

where is k is the #60 of evaporation defined in section 2.3.4.

6.2.2 BAUMGARDT & MAKINO

We would also like to consider the model presented by Baumgardt & Makino (2003),

based on N-body calculations of multimass globular clusters. These simulations in-

cluded all of the mechanisms presented in section 2.3. Baumgardt 85 Makino (2003)

parameterize the dissolution timescale of clusters in their simulation as

_ :1: 1—36

tdiSS _ ktrhtcrossing (6-11)

1—3:

1 2 3/2 ‘5 3/2N / rh rh
  

Gl/2m1/21nA G1/2N1/2m1/2

k l x52
lnA VG
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Noting that N = 1%? we can see that this gives

tdiss 0C M33 (6.12)

We can convert this to the general form by noting

0 tdiss

/ —kM7dM = / dt (6.13)
M0 0

1 +1

so, 7 = :1: — 1. The simulations they performed suggested a range of x from 0.75 to

0.85, with 0.75 being their preferred value. This gives a general mass loss:

M
dEI— = —kM“0°25 (6.15)

Some authors have suggested that the correct way to convert the Baumgardt &

Makino (2003) dissolution time to a mass loss is to set the mass loss rate It o< Mg , and

leave that fixed for the entire lifetime of the cluster. For an evolved system like M87,

this will give a result very similar to the constant mass loss rate M = kMO°0. All

massive clusters (M > 7') will have lost such a small fraction of their mass that they

Show no change. The least massive clusters (M << 7') will also have effectively the

same mass loss rate, as they all come from progenitor clusters with nearly identical

masses. Only around the turnover (M ~ 7') will there be much change, where the

progenitor masses are sufficiently different to create changes in the mass loss rate.

This will have the effect of creating a slightly more peaked mass function, although

the scale of this effect is still very small.

A final check that setting the mass loss rate as a function of the current cluster

mass is correct can be seen by overplotting the evolution curve of this model against

the evolution curves plotted by Baumgardt & Makino (2003) of their N-body simu-
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lations. Figure 6.1 does this, illustrating that both this model and the N-body data

drop faster than linear early in the cluster’s life, and then slow down to a slower than

linear loss in the later stages of evolution.
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Figure 6.1 Comparison of M or M‘0'25 mass loss model to various Baumgardt &

Makino (2003) N-body simulations. The deviation around t/tdiss = 1.0 arises from

the differences when the number of stars in the cluster becomes small.

6.2.3 LAMERS ET AL.

The final published model we consider is that given by Lamers et a1. (2005). This

model builds upon the results of Baumgardt & Makino (2003), by noting that as In A

also depends on the number of particles, it must slowly vary over the life of the cluster

as the number of stars drops. They use a polynomial fit to this function, adopting

the form

N 0.75 N 0.75

This polynomial is equivalent around N ~ 3 x 105, which corresponds to a mass
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Mequiv ~ 1.2585, with a slight overestimate of the dissolution time for lower masses.

Lamers et al. (2005) also notes that for an object moving in a circular orbit,

722 _.

7m = V - F = 4770p (6.17)

r

and uses this to substitute the local galaxy density for the second term in the Baum-

gardt & Makino (2003) solution, giving their final dissolution time as

M 0.62 —1/2

where Cam, is a parameterization of the dissolution time. They quote a value for Cam)

of 810, with a range stretching down to 300.

They compare this relation to the star cluster populations of the Milky Way,

M51, M33, and the Small Magellanic Cloud. Although these samples contain large

numbers of young clusters that are unlikely to be bound globular clusters, they insist

the results are valid for all types of clusters. Using the general form again, this has a

mass loss

E = —]€M_0'38 (6.19)

following the conversion from dissolution time to mass loss used above for Baumgardt

& Makino (2003).

6.3 MASS FUNCTION

The observed clusters are used to make the mass function for M87, by first converting

the measured magnitudes to masses, via the relations:

_L__ = 10<V+5—5loele<d)—Ve>/(—2.5>

LO

M L
_ = T—

MO LC
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where we take the mass to light ratio to be equal to T = 3.0. A histogram of these

masses is created in boxes of logarithmic M, weighted by their completion factors (in

the same way as for the GCLF), yielding the mass function \I!. This mass function is

plotted in figure 6.2, along with the best fitting mass loss models. This figure shows

that the Burkert & Smith (2000) IMF fits the high mass clusters best.

The fits to the mass loss models were created by minimizing the x2 deviations for

each bin. The models were allowed two free parameters: A, an arbitrary normalization

defined to be equal to the value of loglo (\II(6)), and T, the total mass loss experienced

by the clusters. For the Burkert & Smith (2000) IMF, the value of M0 was also

allowed to vary to ensure the best possible model. This makes only a small difference

in the value, as MC tends to stay reasonably close to the initial value. The best

fitting values for these fits for each mass loss model are given in table 6.1 along with

the reduced X2 for each fit.

Table 6.1: Best fitting mass loss fits to ACS data.

 

 

 

 

 

 

IMF 'y 7' A x2

Powerlaw a = 1.8 0.00 150980 2.275 2.9933

0.25 9346.2 2.277 3.5235

0.38 2273.8 2.275 3.8841

Powerlaw a = 2.0 0.00 202558 2.281 2.4658

0.25 12175 2.279 3.0689

0.38 2927.4 2.275 3.4850

Burkert & Smith (2000) log10(Mc) = 6.4 0.00 178462 2.375 1.3648

0.25 11950 2.382 1.6782

0.38 3238.6 2.390 1.8368

Burkert & Smith (2000) log10(Mc) = 6.376 0.00 186644 2.382 1.3512

10g10(MC) = 6.343 0.25 13481 2.399 1.6053

log10(MC) = 6.340 0.38 3772.2 2.408 1.7451
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Figure 6.2 M87 GCMF with best fitting mass loss models. The left panel shows

models with powerlaw IMFS, and the right panel shows models with Burkert & Smith

(2000) IMFs. Fit parameters are given in table 6.1. The mass dependence for the

models are MO'0 (red solid line), M‘0'25 (blue dot dashed line), and M“0'38 (green

dashed line).

6.3.1 COMPARISON TO MASS LOSS MODELS

We can compare these best fitting values to the expected values of 7' from the mass

loss coefficients in each of the models. For the Fall & Zhang (2001) case, this is easy,

as 7' is simply equal to pev - tfifetime, or

TFZ = 26966 (GPII/2 m In Atlifetime (6-20)

Taking the lifetime to be 12 Gyr, {e = 0.045, m = 0.7MQ, lnA = 12, and using the

value of p ~ 3.7%? gives a value of TFZ = 157200, which is close to the the best fit
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value.

For the other two models, 7' does not directly relate to the mass lost, but to some

power of this quantity. Given the general form of the mass loss (equation 6.6), we can

note that for a model with mass dependence M'7, 7' will have units of 5%. Regardless,

the expected coefficient of such a model can be calculated from the dissolution time,

by noting that all of the cluster’s mass is gone by that time, such that tdiss = Ail.

The dissolution time for the Baumgardt & Makino (2003) model is given by equa-

tion 6.11, so

7 = L (mlnA)0'75 E —1 __3’_ 1 M29. (6 21)

BM 1.91 1kpc 220km/s 1 — e 1 x 106yr '

Using the same quantities as above, and assuming a circular orbit where e = 0 and

 

GM 1/2 , , M075 . .
v = (fim) ~ 488km/s, this gives TBM = 12778——®—yr , also conSIStent w1th the

best fitting value.

Repeating this same procedure for the Lamers et al. (2005) model dissolution time

yields

_ 0.62 p 1/2 t. .

TLamers = 087112) (104MO) (W) (fifi) (6°22)

where we take Cam, = 810. This yields a value of TLameTs = 8605.9 that is much

greater than the best fit values. To match the best fit value, we must change Gem, ~

1847.9, which greatly increases the lifetimes for these clusters compared to the Lamers

et a1. (2005) prediction, a result that is not surprising, given that Gem, is based on

samples that likely contain objects that are not fully bound.

6.3.2 MASS TO LIGHT RATIO

As the cluster evolves, mass segregation moves the most massive stars to the core, and

the lighter stars to the outskirts of the cluster. These light stars are then preferentially

stripped from the cluster, leaving the fraction of more massive stars in the cluster to
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rise over time. The lightest stars contribute only slightly to the mass of the cluster,

but contribute even less to the cluster luminosity. Therefore, as these stars leave the

cluster, the mass to light ratio drops.

Generally, the mass to light ratio changes more dramatically due to the evolution

of the stars in the cluster. However, for old GC populations such as M87, this effect

can be assumed to be negligible, as the stars with short evolution times will have

all evolved. The N-body simulations of Baumgardt & Makino (2003) track the effect

the loss of individual stars has on T, as well as the changes due to stellar evolution.

They correct for the stellar evolution, giving just the changes due to dynamics. For

simplicity, we model these changes as

. t

AT ( t ) = 00’ {dissolution < 02 (623)

tdissolution 1 _ 5 t ' t > 0 2

6 6 tdissolution ’ tdissolution .

 

with the initial mass to light ratio T0 = 3.0.

As it is the best fitting model, we use the c) = 0.0, Burkert & Smith (2000) IMF

model to examine the effects of this changing T. This also has the benefit that the

fraction of life is easy to calculate

t M
_= 1 _

tdissolution M + T

 (6.24)

due to the linear nature of the mass loss. This allows the individual cluster masses

to be corrected for the changes in T. As this depends on the fit value of 7', the

correction and the fit must be iterated until a stable solution is found. The final

fit gives a smaller value for 7', but with a better value of x2. This new best fitting

7" also matches much better with TF2, suggesting that the changes in mass to light

are significant to the low mass end of the GCMF. Table 6.2 presents the best fitting

model for the data using this variable mass to light ratio, and the fit is shown in
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figure 6.3.
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Figure 6.3 Best fitting mass loss model, incorporating the variable mass to light ratio

from Baumgardt & Makino (2003). The dashed line shows the calculated t/tdiss for

the mass, and the dot dashed line shows the mass to light ratio used at each mass.
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Table 6.2: Best fitting mass loss fits incorporating variable mass to light ratio.

 

 

 

Dataset Burkert 85 Smith (2000) log10(MC) '7 7' A X2

ACS log10(MC) = 6.419 0.00 149604 2.311 0.7587

WFPC/2 log10(MC) = 6.350 0.00 155177 1.996 0.7979

Harris (1996) log10(Mc) = 6.046 0.00 113297 0.936 0.9486

 

6.3.3 COMPARISON TO PREVIOUS RESULTS

Figure 6.4 Shows how this new mass function compares to the one presented by Waters

et al. (2006). The extra depth the new sample provides a tighter constraint on the

mass loss rate, as the smallest clusters have more influence on the mass loss rate. The

eflects of the changing mass to light ratio also produce the effect predicted by Waters

et al. (2006), that the premature loss of clusters was an artifact of such changes.

When this new variable mass to light ratio method is used to fit the Waters et al.

(2006) data, the results match up very well. The differences between the ACS and

WFPC/2 mass loss rates are within 5% of each other.

We can also compare our results to those presented by Jordan et al. (2007) based

on the results of the ACS Virgo Cluster Survey. They fit “evolved Schecter functions”

to their data, similar to what is done here and in Waters et a1. (2006) with our

Burkert 85 Smith (2000) IMFs. Unfortunately, they do these fits in magnitude, forcing

a conversion to our mass based units. For M87, Jordan et al. (2007) present the

following values:

(’1‘) = 2.67 (6.25)

5 = —7.287:I:0.089 (6.26)

m0 = —9.850:I:0.232 (6.27)
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where we can convert these values to our units as

0 = C — 2.5log107' (6.28)

mc = C — 2.5log10 MC (6.29)

C = V + 2.5leg10 M = 5.928 (6.30)

This gives values TACSVCS = 1976612 and loglo M0 = 6.321.

This neglects the fact that the F435W filter used by the ACSVCS does not directly

match the profile of a V filter, but based on the reasonable agreement in the cutoff

mass, this appears to work well regardless. The high value for TACSVCS derived

in this manner, along with the truncation of their published luminosity functions

indicates that they suffer from the same overestimate of the decay rate as the original

Waters et al. (2006) data. In addition, as shown above, neglecting the dynamical

effects on the mass to light ratio also tends to increase the best fit values of 1'.

The Harris (1996) Milky Way sample was also fit, although the number of clusters

used is far smaller. It is interesting to note that the best fitting cutoff mass is

significantly lower in the Milky Way.

6.3.4 COLOR DEPENDENCE OF THE MASS LOSS

The analysis of the red and blue GCLFS indicated that the distributions were signif-

icantly different than each other. We can investigate this further by examining the

best fit mass loss models for these samples. Due to the splitting of the sample, we

are restricted in how small a mass we can reliably fit. For both samples, the clusters

below loglo M ~ 4.5 were excluded, as the evolution of T depletes the bins in such a

way as to bias the fits to large mass loss rates. Figure 6.5 shows the GCMFs for the

two samples, along with their best fitting mass loss models.

This plot clearly shows that the blue sample has a higher cutoff mass than the
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Figure 6.4 Comparison of this GCMF (red) to that presented by Waters et al. (2006)

(green) . The mass functions are scaled to provide the same normalization, and the

best fitting mass loss models are shown for both. Note how the added depth in the

new data offers better constraints on the mass loss. In addition, the best fit model

from Jordan et al. (2007) is plotted for this new ACS sample (pink dotted), and the

Milky Way data of Harris (1996) along with the best fit mass loss model (blue).

red sample (log MC blue = 6.45, log MC red = 6.32). This is a rather significant shift,

corresponding to a 30% difference in the masses for the clusters at the turnover.

Such a large difference may be explained by a simple difference in the mass to light

ratios due to the metallicity differences, as such changes can range up to around 10%

(Ashman et al., 1995).

As the metal poor clusters are believed to be older, any evolutionary effect should

be more pronounced on those clusters. Without such a signature, it seems unlikely

that some high mass evolutionary effect can explain this difference.

The mass loss rates found by the best fitting models show that the blue clusters

do seem to have lost more mass than the red (rune = 205113, Tred = 130304). This

101



is to be expected, as stellar evolution is linear with time, so the older blue clusters

will have lost more of their mass over time. However, directly taking these values of

7' suggests that the blue population is nearly twice as old as the red population. This

is unreasonable, and suggests that the fit values may be biased due to the lack of the

lowest mass clusters.

However, if we shift the cutoff masses to be equivalent (in other words, assuming

that the metallicity dependence of T explains the effect fully), we can determine the

new mass loss for the models. Holding loglo MC red constant, we find a new fit to the

blue clusters where ’T‘blue = 152052. If we assume that the mass loss is the same for

both types of cluster, this gives a ratio for the ages of the red and blue clusters as

t . .

hfetlmered N 0.87 (631)

tlifetime blue

For the nominal age of 12 Gyr for the blue clusters, this suggests that the red clusters

formed about 1.5 Gyr later, consistent with expectations.
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Figure 6.5 Comparison of the GCMFs for the red and blue samples. The blue sample

clearly has a higher cutoff mass, and as it turns over faster, a larger amount of mass

loss.
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CHAPTER 7:

STRUCTURAL PARAMETER FITTING
 

The superior resolution offered by our data Opens up the possibility of looking at more

than simply the brightness of the clusters. The fact that the cluster widths are signif-

icantly wider than the local PSFS indicates that we are resolving the actual structure

of the cluster. By generating simulated clusters, and matching these templates to the

data, we can estimate the parameters of that real cluster. The program superking

(see Appendix A.2) was written to perform the generation and fitting of simulated

clusters. Briefly, superking reads in a list of extracted GC images and associated

PSFS, estimates the initial parameters from the data image, and then uses a variety

of fitting stages to calculate the set of parameters that yield the best X2 value.

As discussed in chapter 2, only three parameters are generally needed to fully

define a King model: the concentration, any of the defined radii, and a brightness

calibration. We have chosen the tidal radius and the total cluster flux to define our

models, but due to the relations between the model parameters, any equivalent choice

would be equally valid (say, the core radius and the central surface brightness). In

addition to the parameters that define the model, there are parameters related to how

the cluster projects onto the image plane. As the sampling of the model can change

significantly with small changes in the center of the cluster, we must include the peak

position of the cluster, :50 and yo, as parameters in the fits. This must be fit as part

of the template, as asymmetries in the PSF can skew a simple centroid away from

the “true” value. Finally, since the local background is not guaranteed to be exactly
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zero, a constant background level is also added to the parameters.

Other parameters can be added to this list, but, in general, are less important

to the fit quality. The PSF centering can be allowed to move, to more accurately

represent the effects of the pixel response function on subpixel shifts in the centering.

This was included in the fitting, but most PSF shifts are negligible, so this parameter

tends not to change much during fitting. The cluster ellipticity can also be included

by laying the model onto a template image as a function of semi-major axis instead of

a simple radius. However, this is not included in the King model formalism, and the

definition of the tidal radius is not well constrained for such an objects. As we have

required all cluster candidates to have at most Q? = 1.5, we should have few highly

elliptical objects in the fitting sample, so this parameter can be safely excluded.

The data images are constructed by extracting a box of 128 x 128 pixels centered

on the cluster peak. These were drawn from the F814W image that had been drizzled

to twice the nominal ACS resolution, such that 1 pixel = 0(.’025. The choice was made

to use this instead of the single resolution data as the increase in resolution provides

more pixels on a given cluster, so even though the signal decreases, the quality of a

given fit is better constrained. The image size was chosen to correspond to a projected

radius of ~ 128 pc, which is larger than the tidal radii of most Milky Way globular

clusters. Therefore, all extracted images should fully contain the G0.

7.1 ERROR ANALYSIS

Even before running the fitting, it is clear that by fitting six main parameters by

minimizing the X2, there will be some degeneracy in the fits. This can cause coupled

errors between the best fitting values. The first source of error is between :20, yo, and

re. This arises from the fact that miscentering the cluster forces the fit to move light

away from the model peak to accommodate the peak in the data, leading to a model

with a higher core radius. A similar effect can be caused from errors in the PSF. If
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the PSF used for fitting is wider than the true PSF, then the best fitting model will

have a smaller core radius to ensure that the final convolved simulated cluster has

the correct effective width.

The largest problem in the fitting couples 0, rt, cluster magnitude, and the back-

ground level together. This coupling is easiest to visualize by assuming an error in the

background level in which BFit > BTme. In this case, the best fitting tidal radius will

be smaller than the true value, as any wide tails will be swallowed by the increased

background level. Since the cluster is then smaller, fewer pixels are considered to

be part of the cluster, so the best fit flux is also smaller. As the size of the core is

changed little by this error, but the tidal radius has decreased, the fit concentration

will be lower as well. The opposite case works similarly, with a smaller background

creating clusters with larger rt, larger F, and higher c.

Given the set of expected errors, it is reasonable to wonder how well any of these

parameters can be fit. To test this, artificial globular clusters were generated for the

full range of expected parameters. These fake clusters have Poissonian noise for the

cluster light, as well as Gaussian noise with the value of a chosen from the range

observed in the data images. Looking at the quality of these fits and the variance in

the parameters provides an estimate of how well we can believe the fits to the real

data.

This estimate of the error does ignore two major sources of uncertainty. First, as

the template images are created using the same PSF as they are fit with, they are

certain to have better fits than any real data. The PSFs used are the best estimate

of the true image PSFS, but are not likely to be perfect matches. This uncertainty

will make the fits to the real data noisier in the core. The second problem is that the

templates are made with Gaussian distributed noise over a fixed flat background. The

real images often contain other globular clusters, and may not have such an idealized

noise and background. This will cause issues with the background estimate, and as
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discussed above, that can seriously alter the fit.

7 .1.1 POSITION ERRORS

Figure 7.1 shows the histograms Of the position deviations from the simulated cluster

fitting, along with the best fitting Gaussians to the distribution. It is clear that the

simple position errors have wide wings that are poorly fit by the Gaussian model.

However, incorporating the PSF Offsets largely eliminates these wings. This points

to the PSF Offset changing the modeling only slightly, and working more as a second

component Of the positioning. If we compare the “effective centers,” defined as :30 —

aspsp, between the input and output values, we can see that there are no Offsets

between the two (Ax = —0.0005, Ay = —0.0007) and very small scatter (ox =

0y = 0.016). This confirms that the centers found during the fitting process are

exceptionally accurate.

7.1.2 MAGNITUDE AND BACKGROUND ERRORS

The error in the measured magnitudes is in general small (0M = 0.004). For the

faintest clusters, however (V > 25), there is an extended tail where the measured

magnitude is even fainter. This suggests that the fitting routine fails to correctly

identify and fit these clusters, and provides the limit for the faintest cluster that can

be reliably fit.

The background is generally well measured, although the distribution is wider

than a simple Gaussian. Figure 7.2 shows the scatter in the background as a function

Of the input magnitude, with the largest scatter coming from the brightest clusters.

This is to be expected, as these bright clusters will tend tO skew the statistics used

for calculating the background. In addition, the Objects in this sample with the

largest scatter also are the clusters with the largest input tidal radii, which would

also naturally lead to errors in the background, as these large clusters will serve to

107



400 I I I I I I . 100 I I I I I I
  

300
l l

750 ‘ 4T

Z200 Z500

100* * 250* *

0 MMW. ___I _l__ J I

'- .0 —0.5 0.0 0.5 1.0 0R).

I l l l

            
 

  

          
 
 

(5 -0.25 0.25 0.5

5'30 IN — 5'30 OUT $0 IN * $0 OUT)0-($13IN - 1‘13 OUT)

400 I I I I I I I 100C I I l

300* ~ 750* l7 d

l

2200* d 2500* *

100* * 250* _

0.01 *‘J 4‘ ‘ i ‘ "‘ 'Dl ‘ “ ‘

.0 -0.5 0.0 0.5‘“ 1.0 056.5 -025 0.0 0.25 0.5

yOIN ‘ 1’10 OUT (310 IN * yo OUT) * (yPIN- yPOUT)

Figure 7.1 Expected errors in position from fitting simulated clusters.

raise the image average.

7 .1.3 STRUCTURE ERRORS

Given that the background shows a problem in fitting the largest clusters, it is rea-

sonable to investigate how well the structure Of such large clusters is fit. The central

potential fits for these clusters are very good, but show a large scatter and Offset in

the best fitting Rt. A detailed check of the source of this scatter shows that the limit

Of reliable Rt fits occurs at RtIN ~ §image size. This is an obvious limit, as larger
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clusters are not fully contained on the fitting image, and SO should not be expected

to be fit well.

The effects Of the input radius on the central potential fits Show almost the exact

Opposite trend. The largest clusters have excellent fits tO the central potential, due to

the large number Of pixels devoted to the central core. The small clusters, however,

have a much larger scatter. This is reasonable, as such small clusters begin to all lOOk

like a point source. If we consider a fairly diffuse cluster, with c = 1.0, but then set

Rt = 5 pixels, then the central pixel will contain 3% Of the total light Of the cluster.

This effect is even worse as the concentration increases, making all small clusters

effectively point like. Using this as a guide, we can set a lower limit Of Rt > 5 pixels

for reliable fits to the central potential.

7.2 FITTING RESULTS

From the sample Of all clusters detected, 1194 were chosen for fitting. These clusters

were selected to be brighter than V = 25, and were chosen to be the brightest clusters

within 25 pixels. This spacing requirement was added to allow PSFS to be generated

without problems from overlapping. Once the best fitting model was calculated with

superking, the various derived parameters defined in section 2.4 were calculated as

well. Given the results from the fitting Of the simulated data, all clusters that have

final tidal radii less than 5 pixels or greater than 64 pixels were excluded from further

analysis. This leaves a final sample Of 1096 clusters.

Figure 7.4 shows one Of the extracted cluster images, along with the residual

for the best fitting model. The deviations in the core are generally less than 5%,

consistent with the expected error in the PSF. Based on this fact, it seems unlikely

that any fit can be made with a better residual, without some new understanding Of

the PSF.
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Figure 7.4 Original extracted cluster (x,y) = (4562,6772) and residual for best fitting

model. The companion cluster near the top Of the frame does not seem to skew the

fitting at all.
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CHAPTER 8:

GLOBULAR CLUSTER STRUCTURE

RESULTS
 

Given this extensive sample of structural parameters, we can compare against the

Milky Way results Of Djorgovski & Meylan (1994). The Milky Way is Obviously the

best Observed, and has a some advantages over any extragalactic sample. First, the

true three dimensional distance from the center of the galaxy can be easily found,

whereas only the projected distance is Observed for M87. In addition, the small

distances to the Milky Way clusters allows spectra tO be taken in a reasonable amount

Of time, providing a direct measure Of the central velocity dispersion Of the stars.

Finally, even the faintest clusters Of the Milky Way have values for at least some Of

their structural parameters, and as discussed in Chapter 7, the fitting in our data is

limited to V ~ 25.

Despite these issues, the M87 sample does have one main advantage over the Milky

Way. The shear number of globular clusters ensures that for the range Of parameters

that can be fit, the results should be more statistically sound. Over the range in

luminosities that we consider, Djorgovski & Meylan (1994) used 116 clusters (out

Of a total sample size Of 143 clusters), giving this new sample nearly ten times the

number Of Objects.
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8.1 EFFECT OF CLUSTER LUMINOSITY ON STRUCTURE

Figure 8.1 shows the relations between several structural parameters with the absolute

V magnitude. These are plotted long with the Milky Way data taken from Harris

(1996) , which is effectively the same set Of measurements used by Djorgovski & Meylan

(1994). This figure shows that the two samples line up rather well, and illustrates

that brighter clusters tend to be more concentrated, and have smaller cores than lower

luminosity clusters.

These trends become more clear in figure 8.2, in which the M87 data is median

binned in magnitude, with the error bars calculated using the non-parametric method

presented by Djorgovski & Meylan (1994), where

0 = 0-7415(Q75 - Q25) (8-1)

where Q75 and Q25 are the 75th and 25th percentiles in the bin. This gives the same

value as the standard deviation if the bin is populated with Gaussian distributed

data, but in the case Of data with many outliers, provides an estimate that ignores

such points.

The binned data shows a clear trend Of increasing concentration with brighter

clusters. This trend continues up to My ~ —10, beyond which the concentration

flattens out, with a constant concentration level for the brighter Objects. This flat-

tening may represent a failing in the quality Of the fits for clusters with the smallest

core radii. However, the binned results Of Djorgovski & Meylan (1994) also Show such

a flattening above My ~ —9. This suggests that the effect may be real, and as the

M87 data extends about two magnitudes brighter, we are simply seeing more Of this

flattening.

The enhancement in concentration also shows as a drop in the binned core radius

over the same luminosity range. Djorgovski & Meylan (1994) fit this drop as re ~
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L;0.5i0.25, or in terms Of magnitudes

loglo Tc oc 0.2MV (8.2)

Fitting this trend over the full range Of the M87 data gives loglo rc oc 0.04MV, which

does not match well. However, limiting the sample to only those clusters fainter than

My ~ —9 provides a fit Of

loglo rc = 0.15MV + 0.943 (8.3)

well within the error range given by Djorgovski & Meylan (1994)

As the central density increases with both increasing concentration and luminosity,

it is not surprising that the trend in this parameter is fairly strong. The Djorgovski

& Meylan (1994) fit gives p0 ~ Lgfl, or

loglo p0 O< —0.8MV (8.4)

Restricting the fitting again to the range Of magnitudes considered for the Milky Way,

we find a trend Of

10g10 p0 = —0.69MV — 0.939 (8.5)

for the M87 data, which again matches.

The lack Of a trend between the half light radius with luminosity is a well known

result for globular clusters, due to the fact that it contradicts what is Observed for

elliptical galaxies, which have larger eflective radii with increasing mass. This con-

stant half light radius has been Observed in young cluster systems (Zepf et al., 1999;

Larsen, 2004), which suggests that the half light radius is set during formation. The
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M87 data provided a confirmation Of this lack Of trend, with

1ch10 n, = 0.013MV + 0.604 (8.6)

  

      
  

 
 

     
Figure 8.1 Parameter correlations with absolute magnitude. The red crosses are the

new M87 data, and the green asterisks are the Harris (1996) data. All distances are

in parsecs, and the central density is given in solar masses per cubic parsec.

115



8.2 EFFECT OF DISTANCE ON STRUCTURE

The structure Of globular clusters is expected to change with the distance from the

center Of the galaxies. The clusters that are close to the core will shrink due to the

higher potential felt by the cluster, which in turn raises the concentration and central

density. However, due to the projection eflects, any such trend is washed out in this

sample.

Figure 8.3 shows the trends with projected distance, although nO attempt was

made tO try tO fit trends tO the data. Qualitatively, the clusters with the lowest

concentration dO seem tO be at the largest projected distance. Similarly, the half

light radii increases with distance. Unfortunately, without a good deprojection, no

firm trends can be established.

8.3 RELATIONS BETWEEN CORE PARAMETERS

Djorgovski & Meylan (1994) also show the correlations between various core structural

parameters, plotted here in figure 8.4. The fairly tight correlations are believed to

be the result Of clusters evolving toward core collapse. The central density of such a

cluster is expected to follow the relation p0 ~ rc'2'23 (Binney & Tremaine, 1987), the

same result found by Lynden-Bell 85 Eggleton (1980) by modeling core collapse in a

thermally conducting gas. A fit to our data yields

p0 O< 7‘6—2‘12 (8.7)

remarkably close to the theoretical expectation.
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8.4 THE FUNDAMENTAL PLANE OF GLOBULAR CLUS-

TERS

In addition to simple correlations between parameters, Djorgovski & Meylan (1994)

noted that the parameters were related by a manifold Of only three dimensions: a

size, a shape, and a brightness. This is reasonable to expect, as globular clusters are

reasonably well fit by King models, which have exactly the same parameters. Beyond

this, Djorgovski (1995) determined that the parameters can be fit to “Fundamental

Plane.”

This plane is given in terms Of the cluster surface brightness as

#0 = (—4.9 :l: 0.2) (loglo a — 0.45log10 re) + (20.45 :I: 0.2) (8.8)

(0);, = (—4.1 :l: 0.2) (loglo a — 0.7110g10 rc) + (19.8 :I: 0.1) (8.9)

for the core and half light radii. Djorgovski (1995) notes that the core result can be

transformed tO match the virial theorem (1°C ~ 0'2I0—1), and that the half light radius

result can be transformed to match the fundamental plane result for elliptical galaxies

(Th N 01410—08).

Unfortunately, this derivation for a fundamental plane requires information that

we do not have for M87. However, if we accept that the clusters are fit by King

models, then we can take advantage Of a “cheat.” We have defined the core radius as

902

= 8.10

Tc V 47TG'p0 ( )

This a is formally the 3-d velocity dispersion, and not the line Of sight dispersion mea—

 

sured by spectra and used for the fundamental plane relations. However, McLaughlin

(2000) shows that for concentrations greater than 0 ~ 1, these two values deviate by

less than 10% from each other. Therefore, we can trade the central density to get a
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velocity dispersion. Doing this, and then fitting the best plane to the M87 data yields

#0 = —5.0 (loglo a — 0.53log10 Tc) + 21.4 (8.11)

(0);, = —5.0 (loglo a — 0.6010g10 TC) + 21.16 (8.12)

which are very close to the cited fundamental plane relations.

A closer lOOk at the cheat indicates that our calculation of po is based directly on

values of no and re (equation 2.53). Therefore, if simply rearranging the structural

parameters can provide a “fundamental plane,” for this data set that closely matches

those published, then it suggests that the fundamental plane is not a surprising effect,

but merely the consequence Of the fact that globular clusters are well defined by King

models.

8.5 LMXB PROBABILITY

Low mass X-ray binaries (LMXBS) are binary star systems in which one star overfills

its Roche lobe, dumping mass onto the companion star. This companion is assumed

to be a compact Object, like a neutron star or black hole, as the X-ray luminosity is

SO great. The source Of these X—rays is believed to be gas that is heated as it spirals

into the companion gravity well. These LMXBS have been found with surprisingly

high numbers in globular clusters, leading to the theory that these Objects are formed

when two previously unrelated stars form a close binary due to stellar interactions.

Such an event would be vastly more likely to occur in the dense stellar environment

Of a globular cluster than in the field.

TO investigate these Objects in the M87 sample, we used the catalog Of X-ray

sources in Jordan et al. (2004) and matched the Objects against our catalog Of glob-

ular clusters. Figure 8.5 shows the structural parameters and CMD for the Objects

matched, along with the general cluster population. As has been noted by many an-
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thors before (Jordan et al., 2004; Sivakoff et al., 2007; Kundu et al., 2007), the bright

clusters and the more metal rich (or redder) clusters are more likely to host LMXBS.

Furthermore, the structural parameter data suggests that for the GCS that host

LMXBS that are not among the brightest clusters, those clusters with high concen-

trations (or equivalently, small core radii and high central densities) are the most

likely. This is consistent with the LMXB probability being a function Of the stellar

encounter rate

2 3 2 3
r r

I‘ CC 8% ~ fl00_0_ ~ p657"? (8.13)

As shown above (section 8.4), both Of these parameters tend tO scale with the cluster

luminosity, so this efl'ect is not surprising. However, by looking at the plot Of P,

we can see that at a given magnitude, clusters with LMXBS tend to have the most

extreme values Of 1".
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Figure 8.2 Parameter trends in averaged bins of luminosity. The solid green lines

show the best fit trends from Djorgovski 88 Meylan (1994), and the dashed blue lines

the new M87 fits.
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123



 

CHAPTER 9:

CONCLUSIONS
 

The data used for this thesis have shown that very deep images Of galaxies can provide

a wonderful Opportunity to investigate the evolution and structure Of globular clusters.

Although there are likely few datasets that have the same depth as the one used for

this project, other galaxies that are closer can easily be adapted tO use the same

methods. However, it is clear that space based Observing provides a tremendous

advantage over ground based imaging, due to the enhanced resolution.

The globular cluster luminosity function Observed for M87 is consistent with pre-

vious space based surveys. The dispersion measured for this new sample does tend to

be larger than those found previously, likely due to the truncation Of the GCLF in that

shallower and less complete data. Although the bimodality Of cluster colors has been

Observed before, this sample shows no evidence for a mass-metallicity relation that

some recent studies have found. Since the data presented here is so much deeper and

better sampled, it seems likely that and the appearance Of such a relation is simply

the effect Of photometric errors. By separating the cluster luminosity function into

radial bins, it is clear that the bins closer to the core Of the galaxy have brighter mean

values and smaller dispersions. This result is entirely consistent with the expectation

Of enhanced mass loss from clusters in those regions.

The effect mass loss has on the shape Of the cluster luminosity function becomes

even more clear after considering the cluster mass function. The Observed mass

function is fit very well by considering mass loss only due tO the effects Of evaporation
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from two-body relaxation. By accounting for the changes in the cluster mass to

light ratio from the preferential loss Of the lowest mass stars, the Observed mass loss

rate is consistent with theoretical predictions. The mass function also explains the

differences that are seen between the GCLFS for the red and blue cluster samples.

The shift in the blue peak to brighter luminosities is due to a lower mass to light ratio

for these clusters compared to the red sample. After accounting for this, the peak

masses are effectively the same between both samples. Assuming that both types Of

cluster lose mass via the same mechanism, then the smaller Observed dispersion in

the blue GCLF is likely due tO those clusters being Older and having lost more Of

their total mass due to that difference in age.

The high resolution images used for this project show that reliable King model

structural parameters can be measured, even at the distance Of the Virgo cluster. The

trends between these parameters appear to be universal, as the relations between the

cluster structure and luminosity Observed for the Milky Way match well with those

found for M87. However, care must be taken when finding relations between the

various parameters. As globular clusters are well fit by King models, the Observed

parameters are coupled together by the definition Of such a model. Specifically, the

proposed “fundamental plane” for globular clusters appears to simply be an artifact

Of this parameter coupling.

As has been Observed before, low mass X-ray binaries are more likely tO be found

in clusters that are brighter and more metal-rich. As these Objects are believed to

form due to the capture Of a star tO a compact Object to create a close binary, they

probability Of finding an LMXB should correlate with the rate of stellar interactions,

1". This interaction correlates strongly with luminosity, obscuring which parameter is

most important. However, for the fainter clusters, only those clusters with larger than

normal values Of I‘ are found tO host an LMXB, suggesting that stellar interactions

are the important factor.
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APPENDIX A:

DETAILED SOURCE CODE
 

A.1 LIBKINGMODEL

LIBKINGMODEL is a C library written as part of this thesis to simplify the cre-

ation and evaluation Of King (1966) models. In addition to creating the one di-

mensional volume and surface densities, it can also project this onto a two dimen-

sional image, and perform the convolution with an instrumental PSF. The library is

linked against the Gnu Scientific Library (GSL, http://www.gnu.Org/software/gsl/),

the FFTW Fast Fourier Transform library (http://www.fftw.org/), and CFITSIO

(http: //heasarc.gsfc.nasa.gov/docs/software/fitsio/) to handle many numerical meth-

ods, and to allow standard fits images to be used.

In general LIBKINGMODEL is very fast, able to generate a complete template image

from scratch in about a second on a 1 GHz processor. Individual model generation

is faster than this, although the dominant component of the execution time remains

in solving the King model differential equation.

There are two main structures used in the library. The kingmodel, which contains

the 1D model, and the kingmodel_template, which holds the 2D image information.
 

The kingmodel internally calculates the main defining parameters Of the model: the

central potential (W0), the core (Tc) and tidal radii (rt), and the King concentration

(c). All Of these are in an undefined “internal unit” system, as are the volume and

surface densities. Since these parameters are generally normalized after the fact, this

is not major problem.
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A.1.1 KINGMODEL.C

The functions defined in this file handle the allocation, generation, and evaluation Of

the one dimensional King model.

king-model III km_mode1_alloc(int size); This function allocates a kingmodel struc-
 

ture pointer for evaluation. The size parameter denotes how many radial sam-

ples are used for the model.

void km_model_free (kingmodel *M) ; This destroys a kingmodel pointer, and frees all
 

memory associated with it.

void 1m_model_solve(kingmodel *M, double W0); This solves the King model with
 

specified central potential @, and stores the calculated volume density. The

differential equation for the model density comes from Poisson’s equation, where

d 2dW _ 2 W 4 2

dr (1" dr ) — 47rGr p1(e erfi/W WW (1 + 3W)) (A.1)

as the density can be written in terms Of the reduced potential as

p(W) = p1 (8W erf\/W — :W (1 + gW)) (A.2)

This second order diflerential equation can be solved by breaking it into two

first order difl'erential equations

dW

07 = Y (A.3)

dY 2

fl — ~47er(W) — ;Y (A.4)

This system of differential equations is solved using a very accurate 8th or-

der Runge-Kutta Prince-Dormand solver from GSL. This method requires the
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Jacobian Of the system, which is easy enough to find:

0 1

J = —47rG (6W erf (x/W) — %W) -%

(A.5)

' . . _ 9

The first step to solve the model IS to calculate the core radlus, rc — , /m.

The next step is to find the King tidal radius, where W becomes zero. Unfor-

tunately, there is no analytic solution for this. Instead, it is found by using a

binary search algorithm to bisect the range Of values considered until the range

becomes very small. The final range is then the uncertainty in the tidal radius,

and is restricted tO be smaller than 1 x 108-re. Although this is a fairly stringent

constraint, the speed Of the binary search algorithm allows this tO be found with

only a dozen or so iterations.

Once the tidal radius is found, the radius is divided into samples. The first five

points are fixed tO have the values

r1: {0.0.1 x 10’1”. 1 x 10‘8, 1 X 10'6I1 X 1041} (A6)t

tO ensure that the very core Of the cluster is reasonably sampled. The remaining

points are distributed logarithmically, such that

10810 (Ti) = 10810 (Tt) X i/_Size (A-7)

With the radius array filled, the volume density is then evaluated at each sample

radius, and the values stored as well.

Once both arrays have been filled, GSL is used to construct a cubic spline

through all the data points. This ensures that the evaluation can be performed

quickly at all radii, and that no further calls to solve the differential equation
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are needed. This spline is also stored in the kingmodel. Finally, the tidal radius

is solved once more, to determine the cutoff for the spline. This stage usually

only corrects the tidal radius slightly, and is done to check the limit beyond

which the spline cannot be evaluated anymore. This new tidal radius is then

used to calculate the model concentration.

void km_model_project (kingmodel *M); This function projects the volume density
 

into a surface density. GSL is again used to perform this integration. The

standard integral for projection is

 

2 (R) = 2 /rt p(7‘)—-—T——d7° (A8)

but, by noting that we can write f = p(r) and gfi = fl, we can use

integration by parts to remove the Singularity from the integral:

2 (R) = 2 ((p(I~)I/II2 — R2)” — f” dp—mI/fl — R29) (A.9)
R R (17'

which then allows a faster and simpler integration method tO be used that does

not need to work around the point where r = R. This can be simplified further,

as we can notice that the first term is zero at both endpoints. This leaves the

projection integral in terms Of the volume density derivative, which is easy tO

calculate with the spline implementation. This integral is evaluated on the same

set of radial points as the volume density, and a Spline is created for it as well.

king-model It km_model_simple(double W0); For quick cases in which only a single
 

model is needed, this function allows a kingmodel to be allocated, and the

model with central potential fig solved and projected in one step.

double km_model_eva1_rho(kingmodel *M, double r);
 

double km_mode1-eva1_drho(kingmodel *M, double r);
 

130



double km_model_eva1_surf(kingmodel *M, double r);
 

double km-mode1_eva1_dsurf(kingmodel *M, double r); These four functions evalu-
 

ate the King model at a specified radius, and return the value Of the p(r), (1%;2,

2(R), or d—figfl. The radius is again in the internal radius units, and so needs

to be converted using the stored king-model tidal or core radius.

A.1.2 KINGIMAGE.C

The functions in this file handle the creation Of template images that contain a two

dimensional representation for a kingmodel. The layout parameters and image data

are stored in the kingmodeLtemplate structure.
 

kingmodel_temp1ate *km_temp1ate_alloc(int size) ; This allocates space for the im-
 

age data On a square image Of length size.

void km_temp1ate-init (kingmodel_template *T,
 

double x0,double y0,doub1e px1_tidal_radius); This function sets the center
 

and tidal radius scale for use in the filling stage.

void km_temp1ate_fi11(kingmodel *M,kingmodel_temp1ate *T,char *method);

This fills the template image with the specified kingmodel surface density data.

The method can be either Sampled or Elliptical, although only the Sampled

method has been thoroughly tested.

The Sampled method functions by first assuming that the model has circular

symmetry. It then evaluates the projected radius as

2 . 2 . 2

R = (a: —1nt(x(_))) + (y —1nt(fl)) (A.10)

This ensures that the peak Of the cluster is located on a pixel corner. The phase

values for the template, phi_x = 39 — int(x_0_) and phi_y = fl — int(yg), are
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then stored to be applied following convolution. This is a necessary step, as

simply laying the pixels out directly will tend to underestimate the core value

for highly concentrated models after convolution.

The ’Elliptical’ method works in a similar fashion, using a radius equation
 

2

2R = (0-5-3.5.).(...—55m) .
((-(m — 89) Sinai—1193) + (y — fl) cos(t_he_1;_a_)) /§) (AM)

where theta is the position angle Of the major axis, and g is the ellipticity. This

method is not recommended, as it does not ensure the core is properly sampled,

nor does it correctly model the cluster as an elliptical Object, but merely skews

the standard spherical form.

void km_temp1ate-normalize (kingmodeLtemplate *T,double flux); This function
 

normalizes the image in a kingmodeLtemplate tO have total counts flux.
 

void km_template_free(kingmodel_temp1ate *T);
 

This destroys the kingmodeLtemplate, and frees all associated memory.
 

A.1.3 KINCCONVOLVEC

As this library is designed largely tO help fit King models to Observed data, the gen-

erated images must be convolved with the PSF Of the detector. This file contains the

functions needed tO perform this convolution using the FFTW fast Fourier transform

library.

void km_template_plan(kingmodel_temp1ate *T);
 

TO perform the Fourier transforms, FFTW requires “plans” to be generated to

speed up the calculation. This function generates the plans necessary for a given

template. This only needs to be done once for a given template, as it depends
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only on the template size.

void km-temp1ate_convolve(kingmodel-template *T, fitsimage *PSF);
 

This performs the actual convolution with Q. The PSF data is first padded

to the Size Of the template image, and then shifted SO that the peak value is

on pixel (0,0). The PSF data is wrapped around the edges, which ensures that

after the convolution, no unwanted shifts are introduced.

Following this, both the template and the PSF are transformed into the Fourier

domain, and convolved by multiplying the complex values pixel by pixel. This

product image is then transformed back tO the real domain, yielding the con-

volved image. This image is then normalized to unit flux. If the values Of

wandM are not zero, the convolved image is shifted back to the correct

centering.

void km-template_shift(kingmodel_temp1ate *T); This function performs the shift
 

to remove the efl'ects Of phi_x and phi_y using a bicubic interpolator.

A.1.4 KINGUTILS.C

This file contains miscellaneous routines, largely for converting between the various

model parameters. Since these parameters are functions of a given King model, they

are included here.

double km_concentration_to_wo(kingmodel *M, double c); The concentration for a
 

given W0 can be found by simply evaluating the model. This function works

the other way, searching for the value Of W0 that has a concentration of 9.

double hn_integrate-f1ux(kingmodel *M, double R) ; This function finds the total
 

flux (in the internal units) enclosed within a given projected radius.
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double km_find_rha1f (kingmodel *M) ; This finds the radius that contains half Of the
 

total flux Of the cluster.

void km_scale_radii(kingmode1 *M, double rt, double *rc, double *rh);
 

This calculates the core and half light radii that correspond to the given

kingmodel, and have tidal radius g.

void km_calculate_surface_brightness(kingmodel *M, double mag,
 

double pixel_sca1e, double *muO, double *meanmu-half);
 

This calculates the central and half light surface brightnesses for a cluster Of

given mag and pixel_8cale in arcseconds.
 

void km_calcu1ate_central_density(kingmodel *M, double mag,
 

double pixel_scale,double distance, double *rhOO);
 

Calculates the central mass density for the model in solar masses per cubic

parsec.

A.2 SUPERKING

Superking is a program to determine the best fitting single mass King (1966) model

to a given globular cluster image. It automatically finds the best central potential,

tidal radius, center, cluster magnitude, and background level, with few required in-

puts.

The default way to run superking is tO simply specify an extracted GC image and

a corresponding PSF. Alternatively, a list Of GC and PSF images can be specified in a

file, and superking will proceed to fit all the images. The Options supported by the

program are as follows:

—help, -h Display a list Of the Options available, and a usage summary.

—list, -L Read a list Of GC and PSF image pairs from a file.
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—gain, -g Specify the image gain for the GC images. The fitting is performed in

units Of electrons, so the gain is required for the conversion.

—readnoise, -r Give the detector read noise to be included in the noise calculation.

—zeropoint, -z The zeropoint used for converting the measured flux into an instru-

mental magnitude.

—background, -K Fix the background level to be the Specified constant value for

the entire fitting.

—quick, -q Use only a single pass Of the Levenberg-Marquardt solver to find the best

fitting model.

-slow, -s Run a more thorough search method that adds a second pass grid search

in W0 and RI.

—randomize, -R Randomize the initial model values by searching for a new maxi-

mum around the first guess.

I—brute, -B Change how many samples are taken during the grid search. The search

is square, so this value determines the number Of samples on a side.

—iterations, -I Change the number Of iterations used at a given sampling step.

—range, -J Multiplier for all the ranges considered when doing a search.

-N Set the radial resolution of the King model.

-Z Set the size Of the King model template image.

A.2.1 INITIALIZATION

Superking loads the GC and PSF images, and calculates a first set Of estimates

for the fit parameters directly from the data. The uncertainty in the background
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is found by calculating the standard deviation Of the image, using an iterative 30

clipping process. The cluster is assumed tO be in the center Of the image, so that

is set as the first guess. The image minimum is set to the background, although

that is nearly always an underestimate. As the central potential and tidal radius are

not easy to estimate directly from the image, they are set to 5 and 15 respectively.

These values are chosen simply because they are good “middle” values. The initial

magnitude is found by summing the image flux and converting it.

An error map is calculated and stored along with the GC image. This contains

the expected noise on each pixel, and is used in calculating the x2 value. The exact

form Of the error map can be altered by changing Options in the superking.h header
 

file. The default error calculation incorporates all Of the major sources Of error

ECU, y) = Gain ' lGC(33a 31“ + Ugeadnoise + Gain ° 0“gaskground (A.12)

Once all the initial values are calculated, and the necessary images loaded, a logfile

is Opened to store the results Of the calculation for each step Of the fitting process.

A.2.2 FIT EVALUATION

The quality of the fits is determined by calculating the x2 value for the model. This

is calculated as

 
 

22?(Gain 300% y)- (1'“111x-'1"(1”I?I’)’1"3“’1‘gr‘)‘1nd))2 (A.13)
=Nx'1Nyx E($?y)

For each new set Of fit values, superking determines what has changed from the

previous run. As the various stages Of the evaluation of a new model run at different

rates, it is worthwhile to attempt tO prevent any unneeded calculations. Changes in

the photometric parameters, the magnitude and the background, require no changes

to the model, and are implemented as just a Simple reevaluation Of the x2 value.
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Changes in how the cluster is laid out, either in the cluster centering or in the scaling

of the tidal radius, do require a new template image tO be generated and convolved

with the PSF. However, the King model used previously can continue tO be used in

all cases, except that Of a change in W0.

Because Of the different speeds involved in the changes Of different parameters,

the speed of the fitting process can be improved by holding the slow parameters fixed

while the faster parameters are varied. This can help alleviate the degeneracy Of the

fitting, as the best fitting magnitude and background can be quickly found for a given

set Of W0 and Rt.

A.2.3 FITTING PROCEDURE

If the “—randomize” Option is specified, the program first randomly samples magnitude

and background values in an attempt to find the best fitting initial values. The ranges

for these parameters are Am = :l:1, AB = i1000 counts. This is repeated for the

position, with a range in both 2:0 and yo Of :l:1 pixel. This uses a randomized hill

climbing algorithm, which checks if the proposed value is better than the current

value, and if so, sets the new center to that location. This ensures that a good value

can be found quickly.

A grid search is the next stage Of the fitting, with a range Of W0 from 3.5 to

13, and a range Of Rt from 0 pixels to half the image size. At each grid point, the

magnitude and background are searched using the same hill climb algorithm, over

ranges (Am, AB) = (:l:0.1, :l:150). This helps ensure that these parameters are the

best values possible for the given (W0, Rt). If this were not done, the degeneracy Of

these four parameters would likely prevent equally good fits across the grid.

With the Optional randomized refinement Of the parameters finished, a Levenberg-

Marquardt solver (using the implementation provided by GSL) is used to attempt

to find a good set Of fit parameters. This fit is generally reasonable, but the Odd
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degeneracy Of the parameters can cause the Levenberg-Marquardt solver to Often find

a local minimum instead Of the final global best fit.

TO rectify this, unless the “—quick” Option is given, superking repeats the hill

climb and grid searches again, with an Optional second pass if the “—slow” Option is

also used. The ranges searched for this are given in table A.1. As is clear from these

ranges, the second pass is designed to refine the fit around the final best fitting model.

With the fitting completed, the best fitting model is calculated, and the results

saved to a series Of images: the best fitting template, the difference image between

the data and the template, the x2 map, and the calculated error map. If the fitting

is being run from a list, a new file with the “.best” extension is created that saves the

best fitting values for each set Of input images.
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APPENDIX B:

GLOBULAR CLUSTER CATALOG
 

In order to allow easy access to the globular cluster data, a SQLITE database was

created to store the various measured parameters. Given that there are thousands Of

Objects, with up to a hundred parameters for each one, no other method Of organizing

the data is practical.

Each Object stores all Of the values measured by Source Extractor for both data

images. After matching the filters, the final RA and DEC are chosen, and the dis-

tance from the center Of the galaxy is calulated. The next set Of parameters are

the photometric data calculated during the calibration phases, with instrumental and

final magnitudes, and the aperture corrections and completeness values for both fil-

ters. These are combined to create the Object color and final completeness. Finally,

a quality flag is calculated to note how likely an Object is tO be a cluster. A quality

Of zero is reserved for the good Objects, with higher values being a bitmask to denote

all the reasons why an Object is rejected.

For clusters that have matches in either the Kundu et al. (1999) or Waters et

al. (2006) samples, that data is stored as well, with a “merge” value that gives the

angular separation Of Objects between catalogs. The Jordan et al. (2004) Xray data

is also matched in the same way, and stored for the clusters that match. Finally, the

raw output of superking is stored, along with the calculated structural parameters

defined in section 2.4.

This same database is also used to store the results from the false and UDF
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frames, along with all the calibration data from the simulated cluster searches. These

components are included to allow for any reanalysis at a later date.
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