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ABSTRACT

STREAM TRANSIENT STORAGE MODELING BASED ON

FRACTIONAL-IN-SPACE DISPERSION

By

Rammesh Padmanabhan Navaneethakrishnan

Solute transport in natural streams is often described using the transient storage (TS)

model in which two separate equations are used to describe the partitioning of the so-

lute between the main channel and the storage zones. Several stream tracer studies have

found heavy-tailed rising and falling limbs in the time—concentration breakthrough curves

(BTCs) because of the long-range spatial correlation of the dispersion process as well

as the exchange processes between the storage zones and the main channel respectively.

Application of the TS model to field sites with multiple stream reaches is accomplished

by estimating one set of parameters for each stream reach in order to describe the scale-

dependent dispersion process. Dispersion and the storage zone processes are known to give

rise to competing parameters in the TS model sometimes leading to singular convergence

during parameter estimation. Therefore, the inability to describe dispersion accurately

introduces uncertainty in the storage zone processes and parameters. In this work, we

propose an alternative TS model based on the concept of anomalous diffusion described

mathematically using fractional-in-space derivatives. The new Fractional-in-space Tran-

sient Storage (FSTS) model has the ability to describe the observed early (non-Fickian)

dispersion in some stream reaches and is able to describe the scale-dependence of the dis-

persion process. The model is used to describe tracer transport in two Michigan streams

using one dispersion coefficient but different fractional derivative exponents in different

reaches. The new FSTS model was found to better constrain the TS model parameters

by providing a superior description of dispersion.
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CHAPTER 1

Introduction

More than half of the world’s population lives in urban areas [Cohen, 2003] and stream

ecosystems are undergoing significant changes due to rapid urbanization in many parts of

the world. Changes in impervious cover and the concomitant changes in stream hydrol-

ogy, geomorphology, water quality and physical habitat are a direct result of urbanization.

Anthropogenic activities are the major cause of large increases in stream nutrient con-

centrations measured worldwide, often resulting in declining water quality (often referred

to as the “urban stream syndrome” [Meyer et al., 2005]). These changes have important

implications for human health and the ecological integrity of ecosystems. Understanding

how streams respond to natural and anthropogenic stressors is therefore critical to man-

aging these resources effectively. Hydrological metrics are generally used as indicators

of urban impacts on stream ecosystems [Roy et al., 2005; Booth, 2005]. These include,

for example, a flashier hydrograph (i.e., increased frequency of high flows as defined by

the stream flashiness index), higher nutrient concentrations but less efficient nutrient up-

take rates and less taxonomic diversity or species richness when compared to unaltered

streams. The dynamics of solute transport in steams plays a critical role because many

solutes such as Nitrogen or Phosphorus are present in short supply and therefore regulate

primary or secondary productivity. Solute transport modeling is important since it allows

us to explore the relationship between physical characteristics of the stream (such as geo-

morphology, nature of the substrate, flow etc.) and hydraulic variables such as dispersion,

transient storage, and lateral inflow. A combination of tracer studies and solute transport

modeling provides a framework to quantify important processes, separate physical and



biological controls and allows comparisons to be made across different scales [Dangelo

et al., 1993]. Transient storage (hereinafter TS) refers to multiple processes that con-

tribute to solute retention in a stream resulting in a delay in the downstream movement

of solute mass. A distinction is usually made in the literature between in~channel storage

due to surface features such as vegetation, woody debris and eddies and pools (e.g., due

to extensive meandering) within the stream (called surface storage) and the retention of

solutes due to interaction with near-bed sediments (called hyporheic exchange). Unless

otherwise specified TS usually refers to the combined effect of both types of storage. In

stream solute transport models, the dispersion coeflicient D, the size of transient storage

zones AS and the exchange rate a between the main channel and the storage zones are im-

portant hydraulic variables that depend on stream physical characteristics. The variables

D and a depend on pr0perties such as discharge, velocity distribution and the channel

cross-sectional area, therefore they correlate with stream order. A3 strongly depends on

the presence or absence of in-stream complexity (e.g., the presence or absence of leaves,

cobbles/boulders). The lateral inflow qL which reflects the contributions from the sides

as well as from groundwater depends on the geomorphology, streambank porosity and the

location of the watertable [Dangelo et al., 1993].

Measuring stream health is one of the approaches to monitor and direct the sustainable

use of streams and stream restoration efforts [Harbott et al., 2005]. Regulatory guidelines

require that certain criteria be satisfied for water bodies to be considered healthy. In

addition to the usual water quality parameters (such as suspended solids concentration,

pH, temperature and dissolved oxygen), recent efforts have included stream organisms

as indicators of stream health (e.g., fish and plant assemblages). Microbial communities

respond rapidly to environmental change. Two important services are provided by mi—

crobial communities - they are a food source for higher trophic levels in the food web

and they regenerate nutrients through mineralization of organic detritus [Harbott et al.,

2005; Allan, 1995]. Coliforms and nitrifying bacterial counts are typically higher in urban

streams (due to sewage discharges) compared to native/unaltered streams. In contrast,

urban streams are known to have decreased microbial metabolism due to increased sedi-



ment metal concentrations associated with urbanization [Wei and Morrison, 1992]. One

very important element of stream restoration, which had long been neglected and is still

an area of active research is the hyporheic exchange zone. It is term derived from Greek

roots -hypo, meaning under or beneath, and rheos, meaning a stream (rheo means to flow).

Hyporheic exchange zone provides habitat for aquatic macro-invertebrates and provides

conditions for heterotrophic primary production [Mulholland, 1997]. It is responsible for

changes in surface water quality through physical and biogeochemical processes. There

are number of variations to the definitions of hyporheic zone (Figure 1) depending upon

the field they are used in as shown by the definitions given below:

1. The hyporheic zone is the zone below and adjacent to a streambed in which water

from open channel exchanges with interstitial water in the bed sediments;

2. It is the zone around a stream in which the fauna of the hyporheic zone (the hy-

porheous) are distributed and live;

3. It is the zone in which groundwater and surface water mix.

A large number of studies have been reported in the last decade to understand the

exchange between the hyporheic zone and main stream including physical mixing with

groundwater [Constantz, 1998], chemical reactions [Bencala and Walters, 1983; Duff et al.,

1998], microbially mediated chemical transformations [Duff and Triska, 1990] and trans-

port of nutrients thorough groundwater-surface water interactions [Wondzell and Swan-

son, 1996; Valett et al., 1996; Jonsson et al., 2003]. Stream solute transport modeling

is an important activity in all of the efforts reported above as it provides a means to

test hypotheses about processes based on observed data. The focus of this research is

on the numerical solution of the TS equations which govern solute transport in streams,

therefore we will study the hyporheic zone from a hydrologist’s angle, which often regards

it as an extension of the stream channel, where water can spend longer duration than in

the open channel [Jones and Holmes, 1996]. Conceptual models of the hyporheic zone

and the processes that occur within it have been studied in many fields, but we will limit



our study to the well-known TS model as presented, for example, by Bencala and Walters

[1983].

Pool and Riffle Stream Meandering Stream

 

    

    

  

. .3; — /

\I" «7’ Direction of

\1’3 r n . l c :3’ Ground-we er

Flow   
Influence of local and regional

ground-water flow systems,

hyporheic zone, and stream

Figure 1.1. Illustration of transient storage mechanisms (a) when solutes enter small pockets

of slow-moving water and (b) when solutes leave the main channel and enter the porous media

that makes up the bed and banks of the channel. Arrows denote the solute movement between

the main channel and the transient storage zone. [Runkel, 1998; Schmid, 2004]

In order to understand the physical processes occurring in the TS systems, tracer studies

are typically done in the streams. The tracer studies involves releasing a slug of tracer

across the cross-section of the stream or river, and measuring concentrations at various

downstream locations. Breakthrough curves (time vs concentration plot) at various down-

stream locations helps in the understanding of transport of solute in the streams and their

interaction with the storage zones. Typically, conceptual models are used to describe the

transient storage processes using mathematical equations. Various parameters including

dispersion coefficient, velocity and storage zone parameters are estimated by minimizing

the error between the model estimates and the observed values. The estimated parame-

ters from these models are useful in understanding the physical, chemical and biological

function of streams. One of the most common mathematical models used in literature



to describe the longitudinal solute transport in surface and sub-surface systems is the

classical advection-diffusion equation (ADE) defined as [Chiba et al., 2006]

ac ac 620
—_

=

1-

at ”a: D 82:2 ( 1)

where 0: concentration of the solute; u = average velocity of the solute; D = dispersion

coefficient; a: 2 space coordinate in flow direction and t = time. The above equation as-

sumes that the solute plume spreads at a rate consistent with the Fickian diffusion theory

i.e., a particle’s motion has little or no long-range spatial correlation. But this is not al-

ways true in transport of solutes in rivers and streams as has been observed in many field

dispersion studies. The observed concentration breakthrough curves (BTCs) (concentra-

tion vs time) at a given spatial location have been found to have a flat long tails stretching

upstream, demonstrating a greater variance than predicted by the Fickian solution. It

has also been observed that that BTCs exhibit heavy leading edge, which is indicative of

faster-than—fickian processes, which usually occurs because of preferential flow paths in a

stream. These behaviors are referred as anomalous diffusion in the literature because it

does not follow the classical bell shaped breakthrough curve usually associated with Fick-

ian diffusion. One of the possible reasons for the heavy falling edges in the BTC is that the

solute particle may be sorbed to solids or get diffused into regions where the advective flux

in negligible (e.g. dead zones) resulting in heavy-tailed falling limb BTCs. Therefore, in

order to seek an explanation for the physics underlying the observed non-Fickian disper-

sion a wide range of models have been proposed in the past. Some studies have focussed

on the use of TS models based on the solute exchange processes between the main channel

(e.g. stream, river) and the storage zone (eg. dead zone, hyporheic zone) [Bencala and

Walters, 1983; Davis et al., 2000; Fischer, 1979; Lees et al., 1999], while some models have

used scale-dependent dispersion (i.e., increase in dispersion coefficient indefinitely with

downstream distance) models to describe the faster-than-Fickian processes, also called

super-diffusion [Berkowitz and Scher, 1995; Worman, 1998]. One of the main reasons for

using scale dependent parameters were in order to describe the long-range spatial and/or

temporal correlation of particle movement observed in various field studies. However, the

vast majority of these models, assume, either explicitly or implicitly, an underlying Fick-



ian transport at some scales [Sposito and Jury, 1986], which assumes that the particle’s

motion has little or no spatial correlation. One of the approaches used in the application

of the TS models based on Fickian dispersion involves the use of a set of constant param-

eters for each breakthrough curve within a selected stream reach. The difliculty with this

approach is that since each breakthrough curve is treated separately by fitting the model

to the observed data, the estimated dispersion coefficients contain errors associated with

the non-Fickian behavior of the solute plume. This situation is further complicated due

to the fact that other parameters in the TS model produce an effect that is essentially

similar to the dispersion coefficient (e.g., changing the peak in the breakthrough curve).

The result is a set of parameters that do not describe the observed data. Examples of sit-

uations in which the TS model produced physically unrealistic parameters are described

in Fernald et al. [2001] and Phanikumar et al. [2007]. One of the objectives of this work is

to propose an alternative method of describing dispersion using the concept of fractional-

in-space diffusion in-order to describe the non-Gaussian rising-limb of the BTCs observed

in field studies as well as better constraining the stream solute transport models. When

the second order diffusion term is replaced with a fractional order term, the classical ADE

becomes the fractional ADE (fADE). We use the term “fADE”with the understanding

that only the dispersion term is described using a fractional-in—space derivative. In a

similar way, when the Fickian diffusion term is replaced with a fractional diffusion term

in the well-known TS model [Bencala and Walters, 1983], we get the fractional-in-space

TS model which we refer to as the FSTS model in this work. More discussion about

the fADE, FSTS and their mathematical properties as well as their numerical solution

will follow in Chapters 3, 4 and 5. FYactional diffusion relies on the concept of fractional

derivative Operators which we discuss in the next section briefly.

1.1 Fractional Calculus and the Fractional Derivative

Fractional calculus has a long history, having been mentioned in a letter from Leibniz to

L’Hospital in 1695 [Weilbeer, 2006]. In his letter Leibniz writes:



“You can see here sir, that one can express a term like (1235 or dl‘zx—y by an

infinite series, even though it seems to be far from the geometry, which usually

only considers the differences of positive integer exponents or the negatives

with respect to sums, but not yet those, whose exponents are fractional. It is

true that it is still to show that it is this series for dl‘zx ; but not only this can

be explained in a way. Because the ordinates a: are expresses in a geometric

series, such that by choosing a constant dfi it follows that da: =xdfl: a ,or

(if one chose a as unit) dz = xdfl , meaning ddx would be 23.332, and c132:

would be = 2:333 etc. and den: = 233-58 . And thus the differential exponent

has been changed by the exponents and by replacing d6 with da: : z, yielding

den: = mesa” Thus it follows that (12:1: will be equal to :1:m. It seems

like one day very useful consequences will be drawn from this paradox, since

there are little paradoxes without usefulness.”

Other leading mathematicians like Fourier, Bernoulli, Euler and Laplace were among the

many who had dabbled with fractional calculus and the mathematical consequences of

it [Nishimoto, 1991]. The fractional integral and derivative operators are an extension

of definitions from integral values to real values, similar to fractional exponents from

integral exponents. There exist numerous definitions of fractional derivatives including the

definitions of Riemann-Liouville, Griinwald-Letkinov, Weyl, Caputo, Marchaud, Riesz,

and Miller Ross [Kumar and Agrawal, 2006]. The most popular definitions in the world

of fractional calculus are the Riemann-Liouville, Griinwald-Letnikov (GL) and the Caputo

definitions. A number of textbooks have also been published over the past few decades in

the field of fractional calculus which treats the subject in-depth [Miller and Ross, 1993;

Oldham and Spanier, 1974; Podlubny, 1999].

One of the main differences between the integer-order derivatives and fractional-order

derivatives is that while integer-order derivatives are local, fractional-order derivatives

have a non-local behavior. Due to this fundamental difference, the fractional derivative

at a point depends upon the characteristics of the entire function and not just the values

in the vicinity of a point; hence a differintegral operator (function consisting of both



differential as well as integral operators) is used to define them [Ochoa-Tapia et al., 2007].

As the function is defined using an differintegral operator a lower limit and an upper limit

is required to define the fractional derivative. The plot shows the comparison between

fractional derivative and integer order derivative of a function f(x) = 2:2 and f(:c) = :33.

We present the formal definitions, various properties and numerical approximations to

the fractional derivatives in Chapter 3
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Figure 1.2. Comparison of integer and fractional derivative of f (1:) = 3:2

1.2 Numerical Methods

Closed-form solutions of the governing equations exist only for limited cases (i.e., bound-

ary and initial conditions). For the TS model, such solutions are even rare and the few

solutions that exist need to be evaluated numerically by evaluating infinite series and com-

plex integrals. The computational time and effort required to evaluate complex analytical

solutions is comparable to the time it takes to numerically solve the governing equations,



therefore numerical solution of the governing partial differential equations (PDEs) is the

preferred approach in recent years, especially with the advent of high-speed processors and

compilers that exploit the architecture of these processors. The main advantages of using

numerical methods are that they are not limited to constant parameters or simple initial

and boundary conditions common to analytical solutions. Additionally, they are com-

putationally effective and easier to program and more effective when running parameter

estimation models.

One can use any of the three approaches to solve the ADE numerically - Eulerian, La-

grangian, or mixed Eulerian-Lagrangian [Neuman, 1984] approaches. Similarly the fADE

can be solved using the above three approaches but most of the work reported in the liter-

ature used an Eulerian approach [Schumer et al., 2001; Meerschaert and Tadjeran, 2004;

Deng et al., 2004] or a mixed Eulerian-Lagrangian method. In the Eulerian approach, the

advection and fractional diffusion terms are solved simultaneously by numerically approx-

imating them individually. Since, we find many situations in surface as well as sub-surface

flow are advection dominated; a finer finite difference mesh is required to minimize the

errors and capture the advection front accurately. Since, hydrologic simulations are run

for large time intervals, any reduction in grid size will translate into a significantly lesser

computational time. By using a higher order scheme for solving the advection term better

accuracy can be achieved using a larger grid size. In the literature, there are many higher

order numerical schemes (e.g. compact, WENO, spectral methods) to solve the hyper-

bolic system of partial differential equation (e.g. advection ) as well as parabolic system

of partial differential equation (e.g. diffusion) but these schemes have not been used for

solving the fADE. Operator splitting methods in which the advection and dispersion terms

are solved using separate numerical schemes (best suited for their class) are an attractive

alternative but such methods have not been solved in the context of the fADE or the

FSTS models. One of the objectives of this work is to fill this gap. We solve the advec-

tion and the fractional diffusion equations independently using Eulerian techniques and

combine them using Operator-splitting methods. We restrict our study to the usage of two

higher order accurate advection schemes: a weighted essentially non-oscillatory (WENO)



scheme [Liu et al., 1994] and a fourth-order accurate compact scheme [Demuren et al.,

2001] for solving the advection terms. The fractional diffusion term is solved using the

Griinwald-Letnikov [Oldham and Spanier, 1974] and Caputo [Caputo and Mainardi, 1971]

definitions. Although fractional calculus has a history that is as old as the calculus itself,

numerical solution of fractional differential equations is a relatively new area of research.

Some of the traditional approaches to handling boundary conditions and approximating

derivatives are not directly applicable while dealing with fractional PDEs. For example,

depending on the definition of the fractional derivative being used, the (fractional) deriva-

tive of a constant may not be equal to zero. This result has immediate consequences from

the point of specifying boundary conditions to transport problems based on conservation

laws. This means that certain definitions of the fractional derivative, although mathemat-

ically well defined, can not be used in describing solute transport in streams. Therefore

a systematic evaluation of different definitions of the fractional derivative is important

to understand the relative merits of various approximations. The main objectives of this

study are as follows:

1. To use fractional-in-space dispersion in the TS model (i.e., the FSTS model) to

describe the non-Gaussian rising-limb of the BTCs, in order to better constrain the

stream solute transport model;

2. To evaluate operator-splitting approaches applied to the fADE and compare the

performance of two higher order accurate advection schemes (WENO and compact);

3. To compare the numerical approximation of a fractional order dispersion term using

the Caputo and the Griinwald -Letnikov definitions to model fractional diffusion;

4. To demonstrate that the new FSTS model can be used to describe field data by

estimating the TS model parameters in two Michigan streams.

The next section gives the brief outline of the thesis.

10



1.3 Outline of thesis

In this thesis, we systematically analyze all the model equations (or sub-components) of

the FSTS model: the hyperbolic advection equation, the parabolic fractional dispersion

equation, the fADE and the fractional transient storage (FSTS) model . This approach

allows us to examine the numerical approximations and the errors involved by comparing

numerical solutions with analytical solutions for the respective sub-models.

In Chapter 2, a brief overview of the finite difference techniques to solve one-

dimensional hyperbolic equations is discussed. A comparison of the WENO and fourth-

order compact scheme is reported using a test case whose solution resembles the move-

ment of a slug of tracer in a river. Our main objective here is to discuss the two advection

schemes and identify the better method for solving the advection part of the fADE equa-

tion.

In Chapter 3, we discuss the two well known definitions of approximating the fractional

derivative numerically: GL and Caputo. A higher order numerical approm'mation to the

Caputo derivative will be discussed. Additionally, different forms of fractional diffusion

equations will be discussed. A comparison of the CL and Caputo for the space-fractional

diffusion equation will made with the analytical solution using method-of-manufactured

solutions (MMS) approach.

In Chapter 4, we propose the new fADE model based on the Operator-splitting (OS)

approach to solve the fADE. The higher order numerical scheme for hyperbolic PDE

(WENO and compact) discussed in Chapter 2 will be used for solving the advection term

while the fractional derivative operators (Caputo and GL ) discussed in Chapter 3 will

be used to solve fractional dispersion using OS method. A comparison of the the new

numerical model will be made for describing the movement of a slug of tracer in a river.

In Chapter 5, we use the new numerical fADE model proposed in Chapter 4 for solving

the solute transport using the fractional transient storage model (FSTS) and compare it

with the analytical solution by De Smedt et al. [2005] for second-order diffusion case. We

test our FSTS model by estimating various field parameters for the Red Cedar River and

the Grand River.

11
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CHAPTER 2

Advection Schemes

Advection and diffusion processes fall into hyperbolic and parabolic systems of partial dif-

ferential equations respectively. The combination of these classes of equations is among

the most widespread in all of science, engineering, finance and other fields where mathe-

matical modeling is involved. Very often one of the processes is dominant, as is the case in

surface and sub-surface contaminant transport where advection is dominant. Advection-

dominated transport processes are characterized by sharp fronts which are often difficult

to capture without using a higher order numerical method or fine grid resolution. Since

numerical methods that work best for diffusion (parabolic class of PDEs) are not always

well-suited for describing advection (hyperbolic class of PDEs), we take advantage of

Operator-splitting approaches to solve the fractional advection dispersion (fADE) equa-

tion by using different numerical schemes to describe the two processes. In what follows,

we limit ourselves to one spatial dimension due to our interest in stream solute transport

in the longitudinal direction. Extensions to multiple dimensions are generally straight-

forward and can be based on the concept of dimensional splitting [Khan and Liu, 1998;

van der Houwen and Sommeijer, 1997].

The unsteady one-dimensional advection equation written in conservative form is given

by:

(9c 80

—— — = 0 0 < t > 0 2.16t + ”82: , :1: < oo, ( )

where c denotes the concentration, It the mean velocity, :1: the distance and t denotes

time. The analytical solution to this problem is simply the advection of the profile given

13



by the initial condition without any attenuation in the peak. For a finite-difference nu-

merical scheme to be useful for solving the above equation, it must satisfy certain re-

quirements such as accuracy, stability, consistency, convergence and efficiency [Roache,

1998]. Lower-order schemes introduce significant smearing while describing sharp fronts

due to excessive numerical diffusion. Numerical errors generally build up with time and

contaminate the solution, particularly in situations where transport simulations must be

run for large time durations. Since, numerical (or false) diffusion results from an error

in the finite-difference approximation of its continuum counterpart (i.e., discarding the

higher-order terms in a Taylor series expansion), grid refinement can be used to obtain

accurate solutions using lower-order schemes. However, this is not an attractive Option

for describing field data since parameter estimation (which requires thousands of model

runs if global search algorithms are used) is often an important component and lower-

order schemes are unattractive as the computational effort involved can be prohibitive.

Spectral, compact and essentially non-oscillatory (ENO) schemes are attractive classes of

high resolution numerical methods that are known to have higher resolving power (points

per wavelength or PPW) compared to lower—order schemes. Upwind and high-resolution

schemes belong to an active area of research and a comprehensive review of all these

methods is beyond the scope of this work. Hussaini et al. [1997] provides the background

and a review of some of the earlier deve10pments in this field. In this chapter we consider

and evaluate two types of numerical methods in their ability to describe the hyperbolic

advection process - a fifth-order accurate Weighted Essentially Non-Oscillatory (WENO)

scheme [Shu, 1997] and a fourth-order accurate compact scheme [Demuren et al., 2001].

Although spectral methods are attractive in situations where the imposition of periodic

boundary conditions does not pose a problem (e.g., in atmospheric science), they are gen-

erally less flexible in specifying boundary conditions for stream solute transport modeling;

therefore these methods are not considered in this work. An important class of numerical

methods for solving the advection equation includes the Lagrangian and semi-Lagrangian

schemes [Wallis, 2007]. These methods are particularly attractive as they do not exhibit

false numerical diffusion and their time-step is not limited by the Courant condition. The

14



Courant condition can be restrictive when spatial variations in velocity are encountered

(e.g., groundwater). Solute transport equations for streams are often applied on a reach

basis using a constant average velocity for each reach. Therefore, the Courant condition

may not be very restrictive depending on the scheme used. Lagrangian advection schemes

are therefore not considered in this work.

2.1 The Weighted Essentially Non-Oscillatory

(WENO) Scheme

The weighted essentially non-oscillatory (WENO) finite difference schemes have become

one of the most popular methods in solving equations based on hyperbolic conservation

laws. These methods are often used in computational fluid dynamics (CFD) to simulate

incompressible and subsonic compressible flows. The primary motivation for using these

schemes has to do with their ability to reduce or eliminate spurious oscillations near

discontinuities (Gibbs phenomenon). Traditional finite difference schemes (e.g., upwind

and central schemes) are based on fixed stencil interpolation which works for globally

smooth problems. For example, in a simple finite difference scheme information for cell i is

based on information at neighboring cells (e.g., ....i—2, i— 1, 2', 7+1...) It is well established

in literature that the oscillations encountered in using the fixed stencil approximations

suffer from numerical instabilities in nonlinear problems containing discontinuities. The

oscillations do not decay even when the finite difference mesh is refined. In order to

remove these oscillations the essentially non-oscillatory scheme (ENO) was first pr0posed

by Harten et al. [1987].

In the END scheme instead of using a fixed stencil for interpolating the concentration

at cell i, a functional criterion based on the size of the Newton divided differences between

the candidate stencils on the left ( e.g., i— 1, 7—2, ...) and right (e.g., 7+1, i+2, ....) is used

to determine the local stencil for interpolation. This technique is more robust compared

to other functional criteria such as highest degree divided differences among all candidate

stencils and picking the one with the least absolute values. Even though this approach is

robust for a wide range of grid sizes, Arc, the scheme is usually of lower order accuracy,

because all candidate stencils are not used in the final interpolations. In order to address

15



the problem of achieving higher order acuracy without any oscillations Liu et al. [1994]

pr0posed a new scheme which uses all the candidate stencils by assigning specific weights

to each of them. This class of schemes are called weighted essentially non-oscillating

schemes (WENO) in which a convex combination of all candidate stencils is used instead

of just one as in the original ENO. The WENO schemes thus achieve uniformly higher-

order accuracy throughout the domain which is preserved for piecewise-smooth functions

as well.

The WENO schemes have been extensively used, in particular to simulate shock turbu-

lence interactions [Pirozzoli, 2002], relativistic hydrodynamics [Dolezal and Wong, 1995],

gas dynamic problems [Serna and Marquina, 2004] as well as in image processing [Burgel

et al., 2002; Fedkiw et al., 2003]. Most of the problems solved using WENO are of the

type in which solutions contain both shocks and rich smooth-region structures [Cadiou

and Tenaud, 2004; Sebastian and Shu, 2003; Tai et al., 2002]. In environmental engineer-

ing and the earth sciences, shocks can occur while describing the transport of conservative

and reactive solutes in streams and ground water, sediment transport [Tsai et al., 2004],

dam break situations, chemotaxis and bioremediation [Gallo and Manzini, 1998].

2. 1 . 1 One-Dimensional Reconstruction

Consider the model equation for unsteady, one-dimensional advection in conservative

form:

 

80 8(uc)_

87+ 8:1: —0 (2'2)

In the above equation uc represents the advective flux. Replacing the flux (uc ) with the

function f(c) we get

80 + (9f(c)

at 82:

 = 0 (2.3)

which is the one-dimensional conservation law [Costa and Don, 2007]. We discretize the

space into uniform intervals of size As: and denote z,- = 2113:. Variables evaluated at the

spatial location 2:,- will be identified by the subscript i. The conservative finite difference
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form of equation 2.2 can be written as:

g: _Aix (13% — 12%) (2'4)

where the numerical flux fi+§ is the average value of the flux over cell 2'. This is de-

termined using WENO reconstruction. For a (2k - 1)th order WENO scheme, we first

compute k numerical fluxes given by:1

=Zlf,__,.+,- r=0,. .,-—k 1 (2.5)

j==0

f2+2

Since we are considering a fifth order scheme, 1: = 3 and the concentration in cell 2' is

given by:

124% = f(C2—2,---1C2'+2) (2-6)

where f() is determined using the WENO algorithm, which takes into account any shocks

observed in neighboring cells using nonlinear weights. For the fifth order WENO scheme

the numerical flux is estimated by using a convex combination of all the three numerical

fluxes (k = 3) as shown below

* __ + 2+ 7+ 11+ + + ++

f,.,—wo(af._2—af-_1+ f-)+w1(—if-..-1+§f +5.1)

   

++ (2.7)

+1”2 (lift +6fi+1“ 6fi+2)

where the nonlinear weights w; (k = 0,1,2) are defined in the following way

+ + +

20+ 2 00 20+ = 01 20+ 2 a2 (2.8)

0 013+aif+cxéF 1 07(‘)"+-<32'1I+o:§F 2 ag+af+a§

where

2 2 2

+ _ I 1 + _ 6 1 + __ 3 1 2 9)
a —- a — a — -

0 m (6+ISOZF) 1 To (EMS?) 2 It) (6+152ZF) (

Here the I5",, (k = 0, 1, 2) are the so called “smoothness indicators” which measures the

smoothness of the function f (2:) in the stencil and e is a small constant used to avoid the

denominator to become zero and is typically taken as 10-6. The smoothness indicators

(15),) are given by:

2

[Sah==lfg(fi_2—2fi_.1+fi) +4(f2'-2 4f11+3fi2)
[5+ = g (fi_1 — 2fz. + fi+1)2 + % (fH -fz.+1)2

(2.10)

[8+ = i301“ 2fi+1+ fi+2)2 +4(4f2+1+ f2’+2)2
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Similarly, f;_% can be found by replacing 2 with 2' — 1. Substituting 124% and f;_%

in equation 2.3, we get an approximation to the derivative (ac/8t). For stability, it

is important that upwinding is used in constructing the flux. Therefore, in order to

determine the direction of flow, the easiest and most inexpensive way is by determining

the Roe speed [Shu, 1997] which is given by:

. 1 = Eli—ff (2.11)
2+2 C2+1 - C;

If a.+1 Z 0 , the flow direction is from left to the right and we would use f__ 1 while

1 2 2+2

for a. 1 < 0, the flow direction is from right to left and we would be using f.— . In
2+2 2+1/2

the above discussion we estimated f.+ In a similar manner one can estimate f2'_+1/2’
2+1 2'

which is similar to the above method with different weight coefficients [Shu, 1997].

So far, we have discussed only spatial discretization. In order to achieve higher order ac-

curacy in time, a third order Total Variational Diminishing (TVD) Runge-Kutta method

[Shu, 1997] was used. TVD-based time discretization is used since non-TVD based Runge-

Kutta time discretizations can generate oscillations even for WENO—based spatial dis-

cretization [Gottlieb et al., 2006]. The following TVD Runge—Kutta algorithm was found

to produce excellent results [Shu, 1997].

c1 = c” + uAt (__af(C;(n))

02 = gen +21[c1 + uAt (_6f 2(1)) (2.12)

c”+1 = §cn + §c2 + guAt (__g)_8f(cx(2))

The above algorithm is stable for a CFL < 1/4 [Gottlieb and Shu, 1997]. The scheme

was found to be uniformly fifth order accurate including at smooth extrema [Jiang and

Shu, 1996]. We considered a test case to examine the order of the above scheme with

periodic boundary conditions by considering the following example in which a sine wave

is advected in the positive x—direction with a constant speed.

BC BC

a+ua—x_0, —1<:1:<l (2.13)

u = 1, C(2, 0) = sin(7r:r) (2.14)
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Figure 2.1. Comparison of fifth order WENO—Roe scheme with analytical solution for Ax = 0.1,

CFL:0.1 att=1

We found the order of the scheme using Loo and L1 error norms given by:

L1 = 7%: ([Canaly — Cnuml) (2-15)

 

LC>0 = max ( Comm — Cnuml) (2.16)

where N is the number of grid points and Candy and Cnum are the analytical and

numerical solutions, respectively. The fifth order accuracy was achieved at about 40 grid

points (Table 2.1) which is in agreement with the results of [Shu, 1997]. We therefore

conclude that in order to achieve fifth-order accuracy for a WENO scheme, a minimum

grid resolution is required. Based on our test case this requirement can be expressed as:

Ax S 0.0250 for u = 1.

19



2.2 A Fourth-Order Compact Scheme with Spectral-Like Reso-

lution

To produce nth-order accuracy, most numerical schemes require a stencil of (n + 1) grid

points. compact schemes, on the other hand, require fewer than (n + 1) points to achieve

the same level of accuracy (hence the name compact). A well-known example involves the

central difference approximation of the second derivative of a function. To achieve second-

order accuracy (in space or time), the scheme uses information from three grid cells 2', 2+1

and 2'- 1. Compact schemes are attractive as they can achieve higher-order accuracy using

just two points. At least two other reasons make the compact schemes attractive - the

two-point stencil is ideally suited for making computations on highly irregular or stretched

grids (e.g., to resolve the structure of a turbulent boundary layer) and the schemes have

exponential error convergence similar to the classical spectral methods. By contrast, the

error convergence rate for the WENO schemes discussed above is linear, which limits their

ability to achieve higher-order accuracy in large computational domains.

Compact schemes achieve higher-order accuracy by treating the derivative terms in the

governing equation as unknown functions to be solved (in addition to the function itself).

This means that for the advection equation, the concentration c and its first deriva-

tive c’ will be solved at the end of every time step. A fourth-order compact scheme was

introduced by Gupta, Manohar and Stephenson in the early 80’s for solving the advection-

diffusion equation (ADE). It has also been used to solve the Navier-Strokes equation [Li;

Phanikumar, 1994] and Euler equations [Abarbanel and Kumar, 1988]. Lele [1992] found

that implicit compact schemes have better fine-scale resolution, and yield better global

accuracy than standard higher-order finite difference schemes. Here we briefly describe

the algorithm used to solve equation 2.1 using a fourth-order implicit compact scheme.

Additional details and examples applications to other areas (e.g., aero-acoustics) are avail-

able in [Demuren et al., 2001]. This scheme was also used to model solute transport in

soil columns [Phanikumar and Hyndman, 2003]. The first derivative term appearing in

equation 2.1 was obtained by solving the following tri-diagonal matrix system [Lele, 1992]:

I I I “I
OICi_1+Cz+aICz+1 = é—A—E(Cz+1—Ci_l) (2.17)
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where c; = 5%, a] = 11;, and a1 = 154—.

The LHS of equation 2.17 contains the unknown derivatives at grid points 2' and 2' i 1,

while the RHS contains the known function values (e.g. concentration) at at the grid

points 2' :l: 1 . In matrix form the system of equation 2.17 can be written as

AxC’ = Bx (2.18)

where Ax is a tridiagonal N3 x Na; matrix (Nx is the number of grid points), and Bx is a

vector. The resulting tridiagonal system of equations was solved using Thomas algorithm

[Press, 2002]. For nonperiodic boundaries, one sided finite difference approximations are

required to close the system of equations at the boundary points: 2' = 1 and 2 = N. A

third-order approximation was used at 2' and 2' = N given by [Demuren et al., 2001]

C] + 2c’2 = A—lx. (IE—5C1 + 202 + $63) (2.19)

A similar approximation was used at 2' = N. Storage of variables could potentially

become an issue while using the compact schemes. Therefore, we used a three-stage—third

order Runge-Kutta scheme proposed by [Lowery and Reynolds, 1986] with low-storage

requirements for temporal differencing. By low-storage we mean only two storage locations

(one for time derivative and one for the variable itself) are required for time advancement,

which is achieved by continuously overwriting the storage location for the time derivatives

and unknown variables at each substage for M = 1, 2 and 3 as

* (M) _ M .. M—l
Hz. _a H2 (2.20)

GEM-+1) = c?! + bM+1uAtHz-(M) (2.21)

M

r41”) = 71ng _ ufl< ) 2.228,, < >

where coefficients aM and 0M are given in Table 2.1 and

M-1)
~.(M—1) _ 1c}
H,- — 08% (2.23)
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Table 2.1. Coefficients of a three-stage—third-order Runge-Kutta scheme, from Lowery and

Reynolds (1986)

M b

 

Table 2.2. Order of accuracy for the WENO-Roe and the compact schemes

or or

 

2.3 A Test Case: Advection of a Gaussian Pulse

To evaluate the performance of the two advection schemes and to assess the nature and

magnitude of errors introduced by the schemes, we used a test case for which the solution

is similar to the instantaneous release of a slug of tracer in an infinite domain. The slug

will maintain the same initial profile (in our case Gaussian) for all times since dispersion

is zero. The initial condition (which is also equal to the exact solution for all times) is

given by:

C(x, 0) = 05 exp [— (32 111(2)] , -20 g a: g 450; u = 1 (2.24)

This solution will test the time-advancement of the initial profile using these schemes with

the equation 2.1. Table 2.2 below summarizes the comparison of the results obtained

using the WENO and the compact schemes. All the comparison were done at time

t = 5. We used two criteria to determine which scheme will be preferred for solving

the fADE equation. Since our interest was in running the models for large times (while

describing field data), schemes that give stable results for the largest times step size At

with the least numerical dispersion will be preferred. Additionally, the domain sizes for

simulations used in surface water modeling are typically large, therefore, schemes that

give reasonably accurate solutions with a larger step size will be preferred because of the
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lower computational time. The stability of the numerical schemes is determined using

CFL (Courant-Friedrichs-Lewy) number defined by:

uAt

CFL -—- E (2.25)

For a scheme to be stable the general criterion is that CFL S 1. For an explicit scheme,

if CFL 2 1, the scheme will become unstable and will not converge.
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Figure 2.2. Comparison of the compact, WENO and first-order upwind scheme for A2: = 1,

u=1,CFL=0.1att=5

We initially used a crude grid size and found that for CFL = 0.1, both WENO and

compact schemes perform reasonably well in describing the peak with the WENO scheme

giving a lower Root Mean Squared Error (RMSE) (Figure 2.3). The first order upwind

scheme introduced significant numerical dispersion and was not able to describe the peak

accurately (Figure 2.3). Comparisons for a larger time using the same crude grid showed

that while the compact scheme tends to produce oscillations, the WENO scheme intro-

duces numerical dispersion. It is therefore, clear that a more refined grid size should be

used for accurately describing the peak. In a second simulation using fine grids, we found
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Figure 2.3. Plot showing that comparison of RMSE error (log—scale) for compact, WENO and

first-order scheme for different CFL and A2: values

that both compact and WENO schemes were able to describe the peak without any os-

cillations. As the grid size (Am) decreased the compact scheme was found to give a lower

RMSE error (see Figure 2.3) while as CFL number decreased both of them approached

similar orders of RMSE error.

2.4 FFT Analysis of Advection Schemes

Numerical solutions of differential equations generally contain both dissipative (i.e., errors

in the peak or amplitude) and dispersive (i.e., phase errors) errors even if the model

equation is non-dispersive as is the case for the pure advection test case considered here.

Numerical solutions can be compared and analyzed based on a number of metrics such as

the truncation errors and rates of convergence of the schemes, as well as dispersive and

dissipative behavior. It is often a challenge to select criteria that fairly evaluate different
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classes of numerical methods. A general methodology which can be used to compare

numerical solutions obtained from different schemes is a mathematical framework based

on Fourier analysis since the method provides a great deal of information about the errors

involved. Fourier analysis is most commonly used to find the frequency components

buried in a noisy signal in the time domain (e.g., time series of discharge data at a gaging

station). To analyze the resolution properties of the schemes, the concentration profiles

as a function of distance at a given time can be transformed from the physical space to

the wave number space and analyzed using FFT analysis. Results of the FFT analysis are

shown in Figure 2.5. We noticed that the WENO scheme introduced significant numerical

dissipation in addition to producing considerable phase errors at high wave numbers.
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2.5 Conclusion

Based on the above results, we conclude that the compact scheme provides a superior

description of advection and is therefore the preferred choice for solving the fADE since

WENO scheme for large time simulations seems to disperse higher compared to the com-

pact scheme. It is important to capture the peak accurately since it allows us to under-

stand various effects of fractional dispersion. If numerical dispersion is introduced with

an advection scheme, it will be diflicult to understand whether the dispersion observed

is due to numerical dispersion or due to fractional dispersion. Our results indicated that

the compact scheme produced superior solutions without any oscillations as long as low

CFL numbers were used to maintain stability.
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CHAPTER 3

Fractional Difl'usion: Preliminaries and

Numerical Approximations

3. 1 Introduction

Transport of solute particles in surface and subsurface water can be viewed as a purely

probabilistic problem. The classical Fickian diffusion model is based on the assumption

of Brownian motion. Brownian motion assumes that the particle’s motion has no long-

range spatial correlation i.e., long walks in the same direction are rare. But what happens

to particles with long-range spatial correlation? One can answer the above question

using fractional calculus and a class of probability density functions (PDFs) described

using continuous time random walks (CTRW). Using CTRW, the diffusion process can

be viewed as a result of random walk in space and time. In other words, a particle can

undergo jumps of random size at random times. The random walk in time and space

can be represented by the joint probability density function P(:r, t), which describes each

particle “transition” over a distance, x — 23’, in time t—t’, using the master equation given

by [Montroll and Weiss, 1965].

Pa, t) = 6(x) / w’yzt’

t

Contribution from particles that

have not moved during (0, t) (3.1)

t 00

+ ft/J(t — t’) [ f Ma: — :r')P(:r’ — t’)d$’] dt’

0 -oo

Contribution from particles located at x

and jumping to x’ during (0, t)

This equation may be used to describe various kinds of diffusion equations, depending
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In

4W
Tn = waiting time 01(1) = waiting time PDF

Cm =iump A(C.,) = jump size PDF

Figure 3.1. The random jump in space and time in a CTRW model

upon how the waiting time (7n) and jump distributions (A(()) are chosen. Fickian diffu-

sion is the limiting case of CTRW. The assumptions being that the waiting times between

the jumps (Tn) are exponentially distributed and the jump distances ( Cn) are normally

(Gaussian) distributed. But in case of anomalous diffusion, which is a more general case,

the jump distributions are non-Gaussian with divergent moments to account for anoma-

lously large particle movements also known as “Lévy flights”. Similarly, the waiting times

can have an arbitrary distribution instead of an exponential distribution for a second-order

diffusion. An increasing number of processes are being described by anomalous diffusion

where the random waiting times and jumps do not follow the Gaussian distribution. In

these cases, the overall transport is better described by steps that are not independent

(long range) and can have arbitrarily large” waiting times.

3.2 Fractional-in-space Diffusion

Fractional-in-space diffusion is used to describe faster-than—Fickian growth rates, skewness

and heavy leading limbs of BTCs in streams and heterogenous aquifers. The diffusive flux

for fractional-in-space diffusion can either be based on a fractional Fickian flux [Zhang

et al., 2007] or on a regular integer order flux (the well-known Ficks law) [Schumer et al.,

2001]

In the first case, the diffusive flux is fractional order and non-local, and is given by [Yong

et al., 2006].

—1ac_a[()aa C (3.2)

5? .- 51.: :17 8130—1

 

While for the the second case, the integer order divergence in the above formulation was
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replaced by a fractional analogue resulting in fractional-in—space diffusion given by:

ac 60-1 ac

B—t ‘-W [was] (33)

Both equations 3.2 and 3.3 are equivalent for the case, when D(:r) is constant and inde-

pendent of the spatial variable a: [Yong et al., 2006], reducing it to

g)” 300

at _ 82:“ (3.4)

3.3 Fractional-in-time Derivative: Sub-Diffusion

Fractional-in-time derivatives are used to describe long waiting times between the ran-

dom jumps, usually accompanied with travel times of particles longer than the expected

classical Fickian diffusion, called sub-diffusion. For example, Haggerty et al. [2000] used

fractal, or power law to describe a distribution of rates instead of using a single rate

model. This can be thought to be as scaling in time, where the coefficients on the time

operators need to be adjusted with time. A fractional-in-time derivative can be used to

describe rate coefficients which are scale invariant in time. One classic example of a sub-

diffusive process involves solute transport in a stream in which the exchange process is

between the main channel and the storage zones. The storage zones trap the contaminant

particles, hence the longer time, characterized by heavy falling limb in BTCs. In a stream

transient storage (TS) models, this exchange process is usually described as a first-order

mass transfer process, which can be viewed as a special case of the processes described

by a fractional-in—time derivative. The governing equation for the sub-diffusion is given

by Gorenflo et al. [2002].

05c 320
W =3 DEE-f Where 0 < )6 $1 (3.5)

Other variations of the fractional-in-time diffusion are as follows

aac 3 ac
—ata _ 5:; (195) (3.6)

One form of the diffusion equation that is fractional in both space and time can be

represented as

 

aa'c avar-1 ( 30)

ate = agar—T a; (3”)
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where a and a’ are fractional exponents in space and time, respectively.

Fractional diffusion relies on the concept of fractional derivative operators which we

discuss in the next section. We limit our discussion to the definitions and theory relevant

to this study. We introduce formal definitions of fractional derivatives and discuss the

numerical methods to approximate them. Additionally, a comparison between the two

well known definitions of fractional derivatives (Caputo and Griinwald-Letnikov) will be

presented.

3.4 Fractional Derivative: Multiple Definitions

Although the integer derivatives of a function are mathematically well-defined with well-

known physical and geometrical interpretations, the fractional derivatives are much less

explored and understood. For example, it is well-known that there are no geometrical

interpretations of a fractional derivative as of today [Podlubny, 1999]. While there are a

number of areas in which physical interpretations of the fractional derivative are meaning-

ful and useful, one has to come to terms with the fact that there are multiple definitions of

the same fractional derivative. While some definitions are well-suited for certain types of

applications, other definitions are not. Therefore, as mentioned in chapter 1, we consider

(and evaluate) three main approaches to defining the fractional derivative: the Riemann-

Liouville definition, the Griinwald-Letnikov (GL) definition and the Caputo definition.

Here we introduce their formal definitions and in the next section we introduce numerical

methods to approximate these derivatives. In order to understand the fractional deriva-

tive it is important to understand the concept of a fractional integral, both of which are

closely related. This section summarizes some of the prOperties of the fractional order

integral and differential operators relevant to our work. Additional details can be found in

Podlubny [1999] and Oldham and Spanier [1974]. The traditional expression of repeated

integration of a function for an integer order is given by:

a: $1 $2 $n-1

aDgnflx) = fdx1/d22/d503... / dznf(1:n) (3.8)
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The order of integration can be interchanged and equation 3.8 can be written as

aDE”f(:r) = (”—15, [x (x — sir-170mg (3.9)
a

To extend the above equation to non-integers, the integer is replaced with a real number

and the factorial in the denominator is replaced with the more general gamma function

I‘(), which is an extension of the factorial function to complex and real number arguments.

The gamma function is defined as

00

I‘(a:) = /e_tt$—1dt (3.10)

0

and satisfies the following prOperty

I‘(n) = (n — 1)! (3.11)

Replacing the factorial with the more general gamma function, we get the Riemann-

Liouville (RL) fractional integral defined as [Oldham and Spanier, 1974]

 

1 .2:
—u _ _ u—l

Fractional derivative operators of order or act as an inverse of the fractional integral of

order a, i.e.,

aDgaDiaflx) = f(as) (3-13)

dN

aDg‘flx) = —_N [aDEVf(m)] Where l/ = N — a (3.14)

d2:

d” —(N—a) d0
were) = M [.19. f(x)] = 35,; (x) (3.15)

In a similar way, the RL derivative can be defined as [Samko et al., 1993]

 

I‘inI—ai (£3) (1; (x—ujlguln+1 du 72 — 1 S a < n

00313:) = (3.16)

gum) a = n
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3.4.1 The Riemann-Liouville Derivative

Fractional derivative of a function f at a point a: can be defined based entirely on infor-

mation either on the left-hand side or the right-hand side of a spatial location in question

(Figure 3.2). If the independent variable is time instead of space, then the left fractional

derivative can be interpreted as an operation on the past states of the function (f) while

the right derivative can be interpreted as an operation performed on the futures states of

f [Podlubny, 1999]. The left RL derivative at a: is defined as

a:

a _ 1 an f(u)

anf(;r) _ I‘(n __ a) 5322 (:1: _ u)a—n+1

a.

  du (3.17)

 

Left Right

anaf(X) xDbaf(X)

r-A-v—H

4. : i
a x b

Figure 3.2. The left and right RL derivatives at a point a:

while the right RL derivative at 2: is defined as

  

a _ (_1)n an fl“)
,0, f(x) - r / (u_ du (3.18)

(n — a) 32:" m)a—n+1

where n - 1 g a S n and I‘() is the gamma function. Although the RL derivative is

a well-defined mathematical function, one can easily encounter problems when applying

it to physical problems. In particular, the fact that the RL derivative of a constant is

not zero can cause problems while specifying boundary conditions (e.g., continuous slug

release of a tracer of a known constant concentration in a stream). For example, consider

the fractional derivative of a constant C',

C

anC = r(1— a)(.2: — a)“
 (3.19)

where 1 S a S 2. As observed, the RL derivative is singular at the lower limit. This

presents a problem when using the RL expression for estimating the derivative at the

initial boundary since

. a _

aggnaanfliv) — oo (3.20)
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kaa) = o (3.21)

where k = 0, 1, 2...n—1 and 1 g a g 2 . Similarly, the Laplace transform of the RL deriva-

tive depends on the fractional derivative at zero, which introduces initial value problems

(refer Podlubny [1999] for details). These drawbacks of the RL derivative Operator can

be resolved by using the Caputo definition of the fractional derivative.

3.4.2 The Caputo Derivative

As the RL derivative, Caputo derivative is also a dz'flerintegral expression but the opera-

tion of integral and derivative is interchanged in case of Caputo derivative. The Caputo

derivative can be defined as Podlubny [1999]

Car 1 x 70%) u
anf( )—I.(n_a) a (z_u)a-n+1d (3.22) 

where n —— 1 g a g n and the superscript C is used to distinguish the Caputo derivative

from the regular RL derivative. One of the main differences between Caputo and RL

definitions is that the initial value of the Caputo derivative is in terms of integer-order

derivative in Caputo unlike in RL. For example, consider the case of 1 g a S 2 commonly

encountered in describing the transport of solutes, for which the Caputo derivative is

defined as

 ..CDgflx) = 172—133 / (x fufflmdu (3.23)

The Riemann-Liouville fractional derivative requires initial conditions expressed in terms

of initial values of fractional derivatives of the unknown function [Podlubny, 1999; Samko

et al., 1993] while the Caputo derivative, in comparison, requires that the initial condition

are expressed in terms of initial values of integer order derivatives. Therefore, Caputo

derivative can be used in physical problem where one can interpret the integer-order

initial values whereas in case of RL derivative the fractional initial value is difficult to

interpret and not known easily. This can be avoided by treating only the cases of zero

initial conditions. However, for zero initial conditions the Riemann-Liouville and Caputo

fractional derivatives coincide [Podlubny, 1999].
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Horn the above definitions of non-integer fractional derivatives, it is apparent that

these derivative are non-local operators and these derivatives find important applications

in various fields. A fractional derivative at a certain point in space or time contains

information about the function at earlier points in space or time, respectively. Thus,

fractional derivatives possess a memory effect, which they share with several materials like

viscoelastic materials and polymers and this property is also important to applications in

hydrology such as anomalous diffusion.

3.5 Numerical Approximations: The GL and Caputo Deriva-

tives

In this section we discuss the finite difference approximations to a fractional derivative

using the Griinwald-Letnikov and Caputo derivative operators. The GL based fractional

derivative operator is a fractional formulation using backward difference for any arbitrary

function f(as), although the convergence of the infinite sum cannot be ensured for all

functions. There exists a link between the Riemann-Liouville and GL approaches to

fractional derivative operators and the exact equivalence between the two approaches has

been shown in Podlubny [1999]. The GL approximation to the fractional derivative is

given by

. "" a) .

aDgftr) = N11m————(1)32:()(F—j_—j-——F(+ f(a: — Jh) (3.24)

where N = (.2: — a) /Am and is a positive integer] . The above equation can be simplified

to the following sum of series given by:

D“f :2 w,f(x — jh) (3.25)

j=0

where the weights 203- are defined as

a —1

20]: = (I — j ) wj_1 (3.26)

The right sided GL fractional derivative can similarly be defined as

 

1 ”Pu—a)
$013705): “in mflx'tjh)
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3.5.1 The Caputo Derivative

The Caputo derivative can be approximated for the fractional diffusion equation using

finite volume method. The scheme described below was adapted from Zhang et al. [2006]

who used this method for solving the fractional advection dispersion equation (fADE). We

use essentially the same approach but we only consider the fractional diffusion equation.

The transport domain [0, L] is divided into N equal elements of size Ax. Using the mass-

balance equation based on the diffusive flux during time period At the fractional diffusion

equation can be written as

Uzi-Hm — C: _ Qt+At/2 _ Qt+At/2

At — 2—1/2 2+1/2
 (3.27)

where the subscripts 2' :i: 1 and 2' :l: 1/2 represent locations xiil and “3211/22 respectively

as show in Figure 3.3. The two fractional diffusive fluxes are estimated using the Caputo

derivative given by:

 

 

$2—1/2

$i+1/2

QHI/ZZITZ—{D—a) o/ ($¢+1/21—y)a’1%dy (329)

which can be simplified and written in finite difference form as follows. Further details

are provided in Appendix A.

r-, -

wj(Ci—j - Ci—j-il (3-30)

c
o |

)
_
I

D

Qi-l/Z = F(2 — a)Aa:a

 

ll
H

1

D

Q2+1/2=p(2_ a)A$a :7ij(02+1—j Cf—j) (3-31)
 

  
The above value of diffusive flux can be substittited backin equation 3.27 to get the final

form of the discretized fractional diffusion equation as

(Ct+At _ 2Ct+At++Ct+At)

 

2+1

0.1“” -Ci 0 + >: w,CU...- —C:_ -> ‘__= {:1 J J (3.32)
At F(2 — a)Axa 1w



where

w,- = 0 + 02"" — 012'“ (3.33)

The above equation is solved using a semi-implicit approach described by Lynch et al.

[2003], where the Gaussian terms (2 — 1, 2' and, 2' + 1) are solved implicitly while the

“tail” terms (2' — 2,2' — 3....1, 0) are solved explicitly. The above equation reduces to the

classical Fickian diffusion for a = 2.

x'-l xi xi+1

 

b j
.g - ‘ ...—

 

  ? V

xi-l/Z xi+1/2

Figure 3.3. Control volume approximation to the Caputo fractional derivative

3.6 Higher Order Approximations

Most numerical solutions of differential equations involving fractional derivatives are first

order accurate (either in time or space or both depending on which of the derivatives is

being approximated). This is true for both the CL as well as the Caputo definitions.

Higher-order accurate approximations are attractive when solutions need to be obtained

with minimum computational effort, especially when parameters are being estimated. In

order to implement higher order finite difference approximations we need to approximate

the weights in GL or Caputo to a higher order. Podlubny [1999] showed that the weights

20):!) can be obtained as the coefficients of the power series expansion of a generating

function 02. The generating function 021(2) generates the coefficients for the first order

derivative to first order approximation while its a-th power, given by the function 02?

generates the coefficients for the first order approximation of the a—th fractional derivative.

Here 2 denotes a complex number. Once the generating function is selected, the weights

can be obtained by evaluating the Fourier integral of the generating function. For example,

the weights for the first order formulas presented in the previous sections can be obtained

using the generating function for the a—th derivative (to first order approximating) using
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the function (2)1 (z) = (1 — z)a:

 

a °° F(a +1) k °° (a) k
(1 — z) = (—1)k z .-= w z (3.34)

[:20 F(a — k +1) [22:30 1‘

Substituting z = e—i‘f’ we have

n m o

(1 — e-up)°‘ = Z mime—2kg“ (3.35)

k=0

(a)
and the coefficients wk can be obtained from the relation:

(a) 1 27r

wk =-,—,—,;O/fa(<p)e“wd<p, sewn-fir)“ (3.36)

(a)
The coefficients wk can be computed using the fast Fourier transform. In order to

compute higher order approximations to the fractional derivative instead of using(1 -— 3)“

as a generating function, one needs to use higher order generating functions. Lubich

[1986] obtained higher order approximations of order 2, 3, 4, 5 and 6 for the CL fractional

derivative using the following generating functions. These are plotted as a function of the

complex number 2 in Figure 3.6

3 1 a

wga)(z) :2 (5 — 22 + 522) (3.37)

11 3 1 0:

(”(3a)“) = (6 — 32 + 52:2 — fizz) (3.38)

25 4 1 0‘
35,24.) = (12 — 42 + 322 — 323 + 124) (3.39)

137 10 5 1 a
wéa) (Z) = (-60— '— 5 + 5 2 — —3-23 + 4 4 — 525) (3.40)

(a) -147- L521? 134-9516 a“’6 (z)— 60 62+ 22 3.2 + 42 52 +62 (3.41)

While the approach described above is mathematically elegant and requires that the

weights be computed only once, we describe another approach to obtain a higher order

approximations to the fractional derivative. The method is based on directly integrating a

higher order accurate integer derivative (based on the Caputo definition). This approach

is attractive for simulating advection dispersion problems since the advection term (first

derivative) is already computed to higher order accuracy using a compact scheme
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Figure 3.4. Higher-order approximations: The generating function u) as a function of 2

3.6.1 Higher Order Caputo Fractional Derivative Using Integer Derivatives

In order to approximate the Caputo derivative to a higher order, two steps are involved. In

the first step an integer order derivative inside the integral is computed to a higher order.

In the second step, the integral is computed to a higher order approximation. Several

methods exists to approximate the definite integral using finite difference approaches

including Simpson’s rule, Trapezoidal rule, Gaussian quadrature etc. Here, we use the

modified form of trapezoidal rule described by Odibat [2006] to approximate the integral

in the Caputo derivative. The advantage of using this method is that the numerical

approximation is second order accurate and is computationally easy to implement, since

it uses a weighted sum of the function and its integer order derivatives at specified points.

Since the points at which the integer order derivatives are estimated are fixed, we can

easily approximate the derivative using any higher order numerical approximation. The

overall order of the fractional derivative is governed by the lowest order between the
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definite integral approximation and integer order derivative.

The algorithm to approximate the Caputo fractional derivative of arbitrary order

a > 0 for a given function using the trapezoidal numerical approximation is as follows.

Consider a function f(1:) between interval [0, a] divided into k subintervals [:rj,:cj+1]

of equal width h = f: by using the nodes :5]- : jh for j = 0, 1,2,3, ....,k. The Caputo

fractional derivative is given by [Odibat, 2006]

[(k - lln—aH - (k - n + a — 1)kn-a] f"(0)

hn—a +fn(a)

I‘(n + 2 — a) k—l (k — j + 1)n—a+1
(3.42)

+ .2 -2(k - yin—“+1 1mm)
3:1 +(k __ j _ 1)n—a+1

S’Dgflx) =
 

where n — 1 < a < n. The integer order derivatives (fn) in the above expression can be

approximated using any regular finite difference numerical approximation. We used the

fourth order compact scheme discussed in Chapter 2 to approximate the first derivative (

for 0 < a g 1) and second derivative (for 1 < a S 2).

3.6.2 A Test Example

We tested the new numerical method by taking the a-th fractional derivative (a = 0.5)

for the test function f(x) = sin(:r). Using the new numerical method discussed above, we

estimated the first derivative of the function f(x) = sin(:1:) using the fourth-order compact

scheme at all the finite difference mesh points between 0 S :1: S 1. The analytical solution

to the fractional derivative of f(1:) = sin(a:) is given by [Odibat, 2006]

 

 

00 . .

CD” sina: 2 331—0: E (_1)2$22 for 0 < a < 1 (3.43)

0 3’ i_ I‘(2i+2—a)

0° i+1 2i+1

C a - 2—a (“1) ‘13
D = E .0 Ismx :1: {—0 F(2i+4—a) for 1<a<2 (344)

The order of the scheme was estimated systematically using various grid sizes (Ax) by

computing the errors (6) relative to the analytical solution. The order of the scheme was

estimated by fitting a power-law equation of the form y = aArrb in a Ax vs 6 plot shown

in Figure 3.5. The values for a and b comparison for the CL and H-Caputo (higher order
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Caputo) derivative is illustrated in Table 3.1. We find from the table that the new higher

order scheme based on the Caputo definition gives a second order accurate approximation

to the fractional derivative.

Table 3.1. Table showing the order of numerical approximation for Griinwald-Letnikov and

h—Caputo derivative operators

95% Confidence Interval

a
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Figure 3.5. Comparison of RMSE error (log scale) for the fractional derivative with the ana-

lytical solution between GL and H-Caputo derivative (higher order Caputo)

3.7 An Exact Solution: The Method of Manufactured Solutions

The method of manufactured solutions [Roache, 1998] is a technique which can be used

for verifying the numerical algorithm in situations where analytical solutions do not exist.
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There are various instances where either the PDE does not have any closed-form solution

or the closed-form solution is limited to specific initial and boundary conditions. For

example, if a new finite difference numerical scheme is developed for a PDE, which has

no analytical solution, then it is difficult to access the accuracy of the new scheme. The

MMS is a useful approach in such cases. The idea of the MMS is that one can proceed

by assuming a solution and substituting it back in the PDE for which we require the

analytical solution. Since the assumed solution is not the exact solution for the PDE, we

find the remainder by substituting the assumed solution in the PDE and subtracting that

reminder from the the original PDE. The assumed (or “manufactured”) solution will then

satisfy the modified PDE (original PDE minus the remainder). The details of the above

approach will be demonstrated with an example for comparing the Caputo and CL based

fractional-in-space diffusion equation. We used the MMS approach because the analytical

solutions to the fractional-in-space diffusion equation given below are limited to specific

initial and boundary conditions.

92 _ 8‘10

at _ 6330‘

For comparing the numerical solution with the analytical solution, we chose a function

(3.45)

whose fractional derivative was easy to estimate and could be used to estimate the ana-

lytical solution easily of equation 3.45 using the MMS approach. A zero initial conditions

was chosen for solving equation 3.45, in order to make a fair comparison between the

Caputo and GL derivatives, since both derivatives become equal for zero initial condition.

We chose the function f(as, t) = e-th where t represent time and a: the spatial location.

The fractional derivative of the function f(:5, t) with respect to a: is given by:

aaf —t ( N4) 3—a)
= e ——:c 3.46F( ) ( )

5E5 4—a

Substituting the above value in equation 3.45 we get

35?:- : De—t ($343”) (3.47)

Clearly, f(z, t) is not the solution for the above equation since the LHS (-te—t$3) is not

equal to RHS (De—t (fi%x3—a))_ We modify the existing equation so that f(x, t)

is the solution to the fractional diffusion equation. Therefore, we estimate the remainder
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R, and substitute back to the RHS side of equation 3.45 so that f(2:, t) will satisfy the

fractional diffusion equation.

_ DI‘(4) —a
R = e t (-x3 — @333 ) (3.48)

Adding R to RHS of equation 3.45 we get

if. : Dfl + (ft (—x3 _ fi%x3—a) (3.49)

whose closed-form solution is now f(z, t) = e‘tx3. We use a finite domain size (0 S a: S 1)

and vary a (1 g a S 2) to compare the CL and Caputo based approaches for solving the

fractional-in—space diffusion equation. The initial and boundary condition used were:

Initial Condition:

f(x,0) = 2:3 o _<_ :1: g 1 (3.50)

Boundary Conditions:

;((1), g i :_t } for all other time t (3.51)

In order to find which of the schemes gave better results, we ran simulations for different

grid sizes (Ax), dispersion coefficients (D), and fractional exponents (a). The plot (Figure

3.6 and 3.7) below shows the comparison of RMSE error between the CL and Caputo

fractional derivative operators for different grid sizes of A2: = 0.1 and A2: = 0.01. We

observe that for a larger step size the Caputo derivative produced greater error compared

to the CL derivative, and vice-versa. In order to understand the difference in behavior due

to the grid size, we compared the weights of both Caputo and GL derivatives. We tried

to use this approach, since fractional derivatives contains information of earlier spatial

locations and assigns weights to each of them.

The weights of the CL are based on the modified GL definition given by Deng et al.

[2004] where the fractional derivative of the function C(x) is given by:

8%. 1 N+1 a t

Two: “ Eu 2 ijN+1_,- (3°52)
i=0
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Figure 3.6. Plot showing the variation of RMSE (log scale) with fractional derivative exponents

(a) for two grid sizes A2: = 0.1 and A2: = 0.01 with D = 1 at time, t = 1

The concentration at location i can be thought to be as a function of concentrations at

other locations given by:

 

N

Ci = f E: iji+1—j (3-53)
.___0

where

a — 1 .

wj = 1 — i wj_1, wo =1, ] = 1,2,3... (3.54)

For a CL derivative the value of the function at a spatial location i is dependent on the

function value at spatial locations i+ 1, i, i — 1, i-2, ..... 0. The coefficients decrease rapidly

when j Z 3 for all values of (1. Similarly, for the Caputo derivative defined using the finite

volume approach given by equation 3.27, one can collect the terms and using algebraic

manipulation (See Appendix C for details) arrive at the following:

N

Ci 2 f wgCZ-H + (—2IU8 + wf)C,- + Z (w; - 2w§+1 + w§+2)Ci—j—1 (3.55)

4:0
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Figure 3.7. Plot showing the variation of RMSE (log scale) with dispersion coefficients, D, for

grid sizes of A1: = 0.1 and Ax = 0.01 with a = 1.8 and at time, t = 1

where

- 2—a _ . 2—a

w; = (J + 1)1“(3 _ a?) (3.56) 

Tables 3.2 and 3.3 show the relative influence of the weights at all spatial locations for

finite difference mesh points between the Caputo and GL derivatives. We found that the

Caputo derivative has a higher relative weights at the i point compared to the CL deriva-

tive, which may be one of the factors contributing to a more accurate Caputo derivative

approximation compared to CL. There may be other reasons for the differences, which

has not been explored in this study. Overall, we found that for the fractional-in-space

diffusion equation, Caputo based fractional derivative performed better for reasonably

fine step sizes.
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CHAPTER 4

Fractional Advection Dispersion Equation

In this chapter we present the numerical methods for solving the one-dimensional

fractional-in-space advection dispersion equation (hereinafter fADE) based on operator

splitting. The fADE is given by:

a30 BC_D(fl6"C 30)

‘37 “3:" 336+(1‘5)_a(_4)a
(4.1)

where C is the concentration, t is the time, :1: is the spatial coordinate, u is the mean

velocity, (1 is the order of fractional derivative, D is the dispersion coefficient and B

(0 3 fl 3 1) is the skewness parameters that controls the bias of the dispersion. We will

discuss the operating-splitting (OS) technique to solve equation 4.1.

4.1 Semi-Analytical Solution for the fADE

Closed-form solutions to the fADE do not exist in the literature but semi-analytical solu-

tions to boundary value problems can be found using the Laplace or the Fourier transform

in a manner similar to what was described in Ogata and Banks [1961]. Benson et a1. [2000]

gave a semi-analytical solution for the fADE equation for boundary conditions similar to

an instantaneous release of a slug of tracer in a stream (the instantaneous release can be

mathematically represented using the Dirac-delta function). The solution for the fADE

for an infinite domain given by [Benson et al., 2000] is

C(k, t) = exp -;—(1 — fi)(-—z‘k)0‘t + —;-(1 — fi)(—z’k)aDt — ikut] (4.2)

where i = \/—1 and —1 _<_ 6 S 1 indicates the relative weight of the forward versus

backward transition probability and 1 < a < 2 is the scaling exponent in the one-

dimensional space, 14 is the velocity, D is the dispersion coefficient with units LOT—1.
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With the notational simplification B = |cos(7ra/2)D|, and with the identities i = cur/2

and em = cos 0 + sin 0, equation 4.2 can be rewritten as

6%. t) = exp{-Bt Ikl" [1 + mean (4))
. (4.3)

.tan(7ra/2)) — zkvt}

The above Fourier-transformed solution does not have a closed form inverse solution, but

can be put into a canonical form of the characteristic function of the a—stable density

(see Benson et al. [2000]for details) to get the final solution of fADE as

C(k, t) = exp (Bt |k|a — ikut) (4.4)

where a = (Bt)1/a indicates the stable density that is shifted by the mean (at) and is

invariant upon scaling by tl/a.

This analytical solution suffers from the limitations similar to most analytical solutions,

i.e., they are applicable only when the parameters are constant, and when relatively simple

initial and boundary conditions are used. In real world problems this can pose serious

limitations on the practical applicability of these solutions; for example, for a spatially or

temporally varying velocity and dispersion coefficients analytical solutions do not exist.

Additionally, the analytical solution exists only for an infinite domain with zero flux

boundary conditions at both the ends. Figure 4.1 shows the BTCs for an instantaneous

release of slug of mass m = 1 kg for different values of 0, using the analytical solution

code written by Benson [1998]. Note that for a = 2, the classical ADE is recovered. One

can observe from Figure 4.1 heavy-rising limbs for a < 2, indicating faster-than-Fickian

process.

4. 1 . 1 Numerical methods

The classical ADE is a mixed system of hyperbolic (advection) and parabolic (dispersion)

partial differential equations (PDEs). The hyperbolic equation is generally difficult to

solve accurately because of the lower order accuracy of spatial differencing. Since gener-

ally both advection and dispersion terms are solved simultaneously, lower order accurate

methods introduce significant error in the advection term in the form of numerical disper-

sion compared to dispersion term. In the classical ADE, higher order accurate numerical
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schemes exists for both the advection as well as the second-order dispersion term, however

as discussed in Chapter 3 there exists only first-order accurate numerical methods for the

fractional dispersion term. Therefore, for the fADE equation the numerical approxima-

tion is limited by the order of accuracy of fractional dispersion term, which results in a

relatively crude resolution overall. There are three solutions to resolve the problem of

not using a high-resolution finite-difference mesh: (i) Use a higher-order accurate numer-

ical approximation for both the advection and the fractional dispersion terms; (ii) Solve

the advection and fractional dispersion terms independently using the Operator-splitting

technique; and finally (iii) Use the semi-Lagrangian approach for the advection term and

existing numerical approximation for the fractional dispersion term. We chose the second

approach of using the OS technique to separate the advection and the fractional disper-

sion terms and solving them using the numerical methods discussed in Chapters 2 and

3. The advection terms were approximated using the WENO and the fourth-order com-
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pact schemes, while the fractional dispersion terms were approximated using Caputo and

Criinwald-Letnikov (CL) derivative operators.

4.2 Operator Splitting Methods

Operator splitting (OS) methods were originally developed for reasons of speed, accuracy,

and stability. These methods present a divide—and-conquer strategy where the unwieldy

systems of PDEs are broken down into simpler subproblems and treated individually

using specialized numerical algorithms best suited for their class. Depending upon the

PDE problem to be addressed, one can use different types of OS methods. In differential

splitting the PDEs was split time before space and can be represented as

S

3f
E+£f=0, 13:22:53 (45)

3:1

where £3 represents the physical processes of interest (e.g. advection, diffusion, reaction

etc.). In case of algebraic splitting, the order of splitting is reversed with space splitting

done before time. It is commonly used for segregated solution of the semi-discretized

equations. The OS method is applied to L 2 L3 resulting from the space discretization

before applying the time splitting.

3.1.2.125; (.6)
8t ’ 3:1 '

where L; represents the discrete operators (sparse matrices of arbitrary origin). Since this

study is limited to one-dimensional space, there is no need for dimensional splitting, but

we will be taking advantage of the differential splitting to solve the fADE. OS methods

can introduce errors in the final solution and depending upon the type of OS technique

used the order of errors changes. Generally the order of the OS is bounded by the lowest

order of the numerical algorithm which in our case is fractional diffusion since both CL

and Caputo derivative Operators are first-order accurate while compact and WENO are

of fourth and fifth-order accurate respectively.

OS algorithms can be solved using different orders of accuracy. For example, the

first-order accurate OS method includes methods by Marchuk and Yanenko [1964] while
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the second-order accurate methods include Strang splitting [Khan and Liu, 1995]. In this

study, we use the second—order accurate Strang splitting algorithm to solve the fADE,

since our aim is to minimize the time-splitting error introduced by OS and at the same

time have an OS method which has higher order accuracy compared to the first-order

fractional dispersion. The Strang OS method can be applied to the fADE by rewriting

equation 4.1 as

62—?+£C=0 and £=£1+£2 (4.7)

where

3 30
= ‘3? 2 2 a; (4.8)

We split the time step At into half-time steps and solved the equations using the Strang-

£1

splitting algorithm. In the first half-time step At/2, the advection term is solved using

the higher order numerical methods (WENO or compact), while the fractional dispersion

is solved using semi-implicit approach for the complete time of At. Since, advection and

dispersion processes take place simultaneously for the complete time step At, we advect

for the remaining time step At/2.

?th + 41%;: = 0 in (tn, t"+1/2) (4.9)

80 800
3? + (— 54.71) = 0 in (t",t”+1) (4.10)

22% + 463—: = o in (tn+1/2,t”) (4.11)

Strang splitting is second-order accurate and unconditionally stable if the discrete coun-

terparts of £1 and £2 are positive-definite matrices. Positive-definiteness is not a problem

in our case since our governing equations were based on conservation laws.

4.3 Boundary Conditions

We used the Strang OS approach described above to simulate tracer transport in a stream

for two cases: (a) a continuous release and (b) an instantaneous release (“spill”) of a slug

of tracer. Both cases were simulated by considering an infinite domain. Two types of

boundary conditions were considered: (i) a prescribed concentration boundary and (ii)
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a prescribed flux boundary. These boundary conditions are well known in contaminant

hydrology, however, we need to modify these well-known boundary conditions for the case

of fractional dispersion, therefore they are discussed below in more detail.

Prescribed-Concentration: The LHS boundary was simulated using constant concen-

tration is given by:

C(0,t) = 00 t _>_ 0 (4.12)

while the RHS boundary (at an infinite distance) was simulated using zero prescribed flux

for all times and is given for the classical ADE by

BC

III—'00

Prescribed Flux boundary: The LHS and RHS boundaries were simulated using the

prescribed flux boundary conditions for an infinite domain :5 6 (—oo, 00) with instanta-

neous release of slug of tracer at a: = 0. For the classical ADE with an infinite domain,

the prescribed flux at the two boundaries is equal to the dispersive flux at the inlet and

outlet boundaries and can be written as

BC
—D = 0

35 x-r-oo (4.14)

The above is not the correct boundary condition in case of fractional dispersion, since the

dispersive flux at the two outlets is a fractional dispersive flux unlike the integer-order

flux in the ADE. The fractional-order flux at the two boundaries is given by:

*9 (4433.41-41fi3.)
x-r-oo (4.15)

_ 3.1—10 _ 30-10 _

The two dispersive fluxes at the two boundaries are approximated using the control volume

approach described by Zhang et al. [2006] and are given by (details in the Appendix A)

flwo(C—N+1 — C—N)

Q N = _ D N—l
_ +1/2 I‘ZZ—alAz-a + 20 (1 - [3)(C-N+1+j — C—N)

J:

N—1

Q _ _ D . flwj(CN—j “— CN—j—l)

N—l/2 — I‘(2—a[Aza 1:0

+(1- 5)(CN—1 — 0N)

We equated both the above fluxes to zero, since we were using infinite boundary conditions.

(4.16)
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4.4 Solution of the fADE for Continuous Release

For simulating the fADE using a prescribed-concentration boundary for the case of con-

tinuous release of a tracer, we chose a domain of size L = 20m with zero concentration

everywhere in the domain initially. At t = 0 a conservative tracer with a constant con-

centration of CO was imposed at the LHS boundary at a: = 0 and the boundary condition

remains constant throughout the period of simulation. The RHS boundary at a: = L

was simulated by using zero-flux prescribed flux given by . We used 6 = 1 , a case also

studied by Benson et al. [2004] and Liu et al. [2004]. The fADE was solved using strang

OS approach, with the advection term solved using WENO numerical approximation and

fractional dispersion term was solved using CL and Caputo derivative approximations

(see Figure 4.4).
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Figure 4.2. Concentration profiles for the continuous release of a tracer in a stream simulated

using the fADE. The fADE was numerically solved using the WENO-CL and WENO-Caputo

schemes and compared with the semi-analytical solution of [Benson et al., 2000]. The parameters

in the solution are Co=1ppb at t: 55, 103 and 15s with u = 1ms‘1, D = 0.1m1'8/s, a = 1.8,

CFL = 0.1 and Ax:0.1250m

We find that the comparison based on the CL approach does not match with the semi-
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analytical solution by Benson et al. [2000]. This has also been observed by Zhang et al.

[2006], where the fractional dispersion was solved using the Riemann-Liouville definition

which has been been shown to have exact equivalence to the CL approach used here by

Podlubny [1999]. The inability of the CL—based numerical solution to correctly describe

solute transport as given by the analytical solution was attributed to the fact that the

fractional derivative of a constant (in our case the prescribed concentration CO) does not

vanish (that is not equal to zero) in the case of the CL approach. This was not an issue

while using the Caputo derivative based numerical scheme which agreed well with the

analytical solution. We therefore conclude that the Caputo derivative is the preferred

approach for simulating continuous release in a stream.

4.5 Instantaneous slug release

We simulated the instantaneous release using a prescribed-total-flux-boundary at a: = 0

and a free drainage outlet at a: = L, commonly encountered in hydrology by using the

following boundary condition, described earlier in Chapter 3

30-10 30-10

x——L

30-10 63—10

where an initial slug of conservative mass of tracer equal to m = M0 was released at

t = 0 at the spatial location a: = 0. The domain of simulation is a: = [—L, L]. We

simulated this boundary using an “infinite” domain with the tracer slug released at a: =

0. We wanted to understand which combination of numerical schemes works best in

describing the instantaneous slug release, which will be used later to describe field data.

Therefore, we tested both WENO and compact schemes for solving the advection process

while the CL and the Caputo derivative operators were used for approximating fractional

dispersion. Hence, we tested all the four possible combinations of schemes, i.e., WENO-

CL, WENO-Caputo, compact-CL and compact-Caputo for simulating this case using the

OS technique.
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During our initial runs, we found that the RMSE error was not a true measure of

whether or not the scheme was reasonable enough to capture the peak or the tail ac-

curately. Therefore, we ran many simulations and visually checked to see within what

reasonable range the schemes perform well. We wanted to know if the numerical solution

can describe both the peak and the tail and if it is in reasonable agreement with the semi-

analytical solution by [Benson et al., 2000]. In order to accurately capture the effects of

various flow conditions occurring in the field including high advection or high dispersion,

we used the cell Peclet (Pe) number as a metric to represent various conditions. For

example, using the cell Peclet number we can capture the effects of fractional derivative

exponent (a), velocity (u), dispersion coefficient D and the mesh size Aa: using a single

parameter. The cell Peclet number for the fADE can be defined as:

a—l

P8 = ”ALE—— (4.19)

Note that for a = 2, the fADE cell Pe number is equivalent to the ADE cell Pe number.

All the breakthrough curves were plotted at a distance of a: 2 10m. from the point of

injection of the tracer. We compared all the four schemes by plotting the BTCs and

comparing then with the semi-analytical solution by Benson et al. [2000]. We used forward

skewed fractional dispersion (fl = 1), since in an advection-dominated flow (e.g., streams)

dispersion will be biased forward which was also noted by Benson [1998] and Zhang et al.

[2006]

4.5.1 High Peclet Number: Advection-Dominated Systems

We simulated a high Peclet number condition to compare the four schemes listed above

with the analytical solution. A comparison is shown in Figure 4.3.

We found the that the compact-based advection scheme gave oscillations in the tail region

of the breakthrough curve using both the CL as well as the Caputo based fractional

derivative operators. This supports the well-known fact (see Demuren et al. [2001]) that

the compact scheme introduces oscillations at high Peclet number. The WENO based

advection scheme was not able to simulate the peak or the tail correctly using any of

the fractional dispersion schemes but did not suffer from oscillations because of its non-
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Figure 4.3. Plot showing the comparisons for all the four schemes for a Pa = 6.6 (Ax=0.25m,

D = 0.05m1'8/s, u = 1ms‘“1, CFL =0.1, t=153 and a = 1.8). Numerical oscillations were

observed in case of compact based approaches while numerical dispersion was observed in the

case of WEN0 based advection schemes

oscillatory nature. The WENO scheme is a little dispersed as it requires a minimum grid

size to achieve the fifth-order accuracy as illustrated in Chapter 2. Since a crude grid

size of Ax=0.25 is used in the above simulation, dispersion error is noticed. Our runs

show that for P6 < 2 all the four schemes were able to simulate the peaks well but the

CL-based fractional dispersion did not simulate the tail well. This is in agreement with

the higher RMSE errors for the CL derivative operator compared to the Caputo-based

approximation which we had discussed in Chapter 3. For Pe < 2 both the compact and

the WENO—based fADE solutions were not able to simulate the analytical solution well.

We find that as the Pe number increases, there exists a significant difference between

outputs from the two models. We decreased the Pe number and found that all the four

schemes give a reasonably good fit without any significant difference. The advantage of

using the compact based advection for P6 < 2 is that it performs the best in explaining

the peak compared to the WENO for various crude grid sizes. This is important since the

57



 

10 l l I l l

0 Benson et al. (2000)

- 0 - Weno-6L

- 4 - Weno-Caputo

—-¢— Compact-Caputo

—°— Compact-6L
.
3

O
o

   
l
.
5

.
3

O
I

0

C
o
n
c
e
n
t
r
a
t
i
o
n
(
p
p
b
)

3
s
,

 
 

10“ ,

, I I I I I

5 10 15 20 25 30 35

Time (s)

Figure 4.4. Plot showing the comparison for a Pa = 1.7 for all the four schemes (Ax=0.25m,

D = 0.05m1'8/s,u = 1ms’1 , CFL =0.1, t=15s, a=1.8). All the schemes show reasonably good

fit, although the WENO based advection scheme introduced small numerical dispersion

tracer studies are performed in rivers over long reaches. A crude grid size will result in a

faster simulation which in turn will result in a lesser computational time during parameter

estimation. On the other hand, the WENO scheme performs satisfactorily even for high

Pe number without oscillations although significant dispersion errors are introduced for

crude grid sizes. We conclude that for simulating advection-dominated systems, the grids

should be refined such that the condition Pe < 2 is satisfied.

4.5.2 Low Peclet Number: Dispersion-Dominated Systems

In order to understand whether Caputo or CL based fractional dispersion scheme explains

the dispersion better for a spill case, we ran simulations for another limiting case, i.e.

high dispersion. For a high dispersion situation , there will be no significant difference

between the advection schemes because the physical dispersion far exceeds any numerical

dispersion in WENO or compact schemes. A test case for D = 10m1'8/s, u = 1m/s

with Fe = 0.0574 was used. We found that using the CL fractional diffusion, the peak
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was higher than the analytical solution, while the Caputo based fractional diffusion was

able to simulate the analytical solution (both tail and peak) accurately. Both WENO

and compact based advection schemes were able to explain the analytical solution well

with almost no apparent difference as expected. Therefore, the moving front was highly

smeared (due to physical dispersion), so the effect of any numerical smearing was negligible

in comparison. It was also observed that as one approaches lower Pe number,the CL based

fractional dispersion was unable to explain the peak. This is consistent with the results

in chapter 3 (Figures 3.6 and 3.7) where we demonstrated that the Caputo derivative

provides a superior description of fractional dispersion. We found that the CL dispersion

peaks and tail concentration were higher compared to the analytical solution as shown in

Figure 4.5 below

 

0.45 -

0.4 '-

0.35 -

 
l + Benson et al. (2000)

0.2 - - -Compact-Caputo 4

—Compact-6L

0.15
..

C
o
n
c
e
n
t
r
a
t
i
o
n
(
p
p
b
)

3 (
I
I I

0.1 -‘

0.05
..   0 I I I I I I I I I

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

Figure 4.5. Breakthrough curves for a low Pe = 0.057 (A1: = 0.5, CFL = 0.1, a = 1.8, fl = 1,

D = 10m1'8/s, u = lms‘l) at a distance of 5m from the spill location.

In order to confirm whether significant errors are introduced due to OS, a first order up-

wind based advection scheme using CL and Caputo was used to solve the fADE without

any OS using the same parameters (see Figure 4.6). As observed from figure 4.6 both OS
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and the no—OS approaches gave similar results, which implies that the OS does not intro-

duce any significant errors. This implies that Caputo based fractional-in-space provides

a superior description compared to CL, supporting the earlier results in Chapter 3.
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Figure 4.6. Breakthrough curve (without OS) for a low P6 = 0.057 (Ax = 0.5m, CFL = 0.1,

a = 1.8, fl = 1, D = 0.05m1'8/s,u = 1m/s) at a distance of 5m from the spill location.

4.5.3 Effect of fractional derivative exponent(a)

To understand the effect of the fractional derivative exponent a with Pe number less than

1, we plotted the breakthrough curves for three different values of a. It was found that as

0: tends towards 1, the fractional dispersion term becomes similar to the advection term.

It was found that both caputo and CL based fractional dispersion schemes are not able

to simulate the tail. Also, there seems to be a phase error introduced as a approaches

1. The observed difference between the analytical and numerical solutions as a -—> 1.0 is
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attributed to a change in the nature of the partial differential equation from parabolic

(for any value of a > 1.0) to hyperbolic (for a = 1.0). Therefore the point a = 1.0 may

be treated as a singularity as far as the validity of the numerical solution is considered.
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Figure 4.7. Breakthrough curves comparison between CL and Caputo with Benson et al. [2000]

for different values of a with P6 = 0.1

In conclusion, the operator splitting approach was found to produce accurate numerical

solutions to the fractional advection dispersion equation as long as the cell Peclet number

was sufficiently low (typically less than 2.0). The combination of a compact scheme for

advection and the Caputo-based approximation of the fractional dispersion was found to

produce the best results (that is, describing the peak as well as the tail in the breakthrough

curves). The WENO scheme did not introduce oscillations (not a surprising result con-

sidering the nature of this scheme), but significant dispersion errors were introduced at

high Peclet numbers.
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CHAPTER 5

Stream Transient Storage Modeling

It has been observed in various studies that the dispersion process traditionally described

using Fickian diffusion fails to explain the field measurements. Data collected from nearly

100 streams and rivers shows that the unit-peak concentration tends to attenuate in

proportion to the travel time with the 0.89 power, not the 0.5 power predicted by second-

order dispersion [Jobson, 2001]. This is indicative of a non-Fickian diffusion process

sometimes also called as anomalous diffusion. This can result in a heavy leading and

falling limbs in the time-concentration breakthrough curves (BTCs) [Schumer et al., 2003].

The heavy leading limb is indicative of faster-than—Fickian growth rate, usually because

of preferential flow paths. On the other hand, heavy falling limb is indicative of the

delay of solute in the main channel because of the exchange processes between the main

channel and storage zone. In order to understand both these processes, we examine solute

transport processes in a stream.

Solute dispersion in rivers or streams primarily consists of contributions from four

mechanisms: molecular diffusion, turbulent diffusion, shear—flow dispersion and scaling

dispersion [Fischer, 1979]. The most important among them being the shear-flow dis-

persion, which typically involves mixing due to spatial variability in the flow field. This

process produces progressive spreading of the dissolved and suspended substances that

causes the variance of the concentration distribution with time. Taylor [1954] showed

that after sufficient mixing distance, the variance grows linearly with time and then the

concentration distribution follows Fick’s law of diffusion. However, this is not always
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true because of the substantial water influx across channel boundaries, which results in

a far less uniform velocity field than what has been previously assumed while using a

second-order dispersion in these systems [Bencala and Walters, 1983; Harvey and Core-

lick, 2000]. Additionally, the exchange of solute in the stream with the hyporheic zone

has been shown to produce a consistent delay in the solute transport relative to the main

stream flow, leading to a heavy falling limb in the BTCs. On the other hand, the heavy

leading or rising limb in the BTC is observed because of the long-range spatial correlation

of the dispersion process. This leads to an enhanced diffusion (super-diffusion) than what

the second-order diffusion solution estimates [Sahimi, 1993]. It is a result of the infinite-

variance particle jump distributions that arise during transport of solute in heterogenous

media [Schumer et al., 2001].

There have been many approaches in the past to describe the non-Fickian processes.

For example, to model the long-range spatial correlation of the dispersion process, some of

these models have used variable dispersion coeflicient, by varying the dispersion coefficient

linearly with downstream distance [Berkowitz and Scher, 1995; Wheatcraft and Tyler,

1988]. However, it is difficult to justify this approach, unless there is a some definite trend

in the heterogeneity of the stream. There have also been many cases where these adjusted

models gave physically unreasonable parameters for the observed field data [Constantz,

1998]. One of the other approaches used in the past is to use the fractional-in-space

advection-dispersion equation (fADE) to model the long-range spatial correlation [Deng

et al., 2004]. The drawback of using fADE is that it does not account for the transient

storage of solutes in the river banks or the hyporheic zones. These exchange processes can

be of an arbitrary order depending upon the type of processes occurring. For example,

the hyporheic exchange process typically follows a power law residence time distribution

(RTD) because of the large waiting times of solute along the subsurface flow paths and due

to adsorption. On the other hand, surface storage exchange processes typically follow an

exponential law RTD because of comparatively shorter waiting times. The fADE model

does not account for these processes which includes adsorption and desorption, and the

effects of vegetation and reactions [Deng et al., 2006]. To account for the transient storage
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of the solute in these storage zones, we use the transient storage (TS) model in this study.

5.1 Transient Storage Model

The transient storage model describes solute transport in streams taking the physical,

chemical and biological characteristics into account. Most of the previous TS models

used the standard advection-dispersion equation (ADE) for solute transport with addi-

tional terms accounting for transient storage, lateral inflow and other processes (e.g.,

decay, sorption) depending upon the scope and complexity of the problem. Generally, the

TS model is used in conjunction with the observed field studies to estimate the hydro-

logic parameters affecting solute transport. The standard one-dimensional TS model is

described using equations 5.1 and 5.2 for the main channel and the storage zones respec-

tively [Runkel and Broshears, 1991]

50 ac _ 1 a 30 qL

a7 + “5; — 23—4; (ADE) + 74“”? C) + 5‘03 C) ‘5'”

803 A

where C = cross-sectional average of concentration in the main stream (ML-3); Cs = con-

centration in the storage zone (ML—3); CL = lateral inflow solute concentration (ML-3);

u = cross-sectional average of water velocity (LT‘l); D = coefficient of longitudinal dis-

persion (L2T); a: = space coordinate in the flow direction (L); t = time (T); e = a first-

order storage exchange coeflicient (T-l); A = main channel cross-sectional area (L2);

A3: storage zone cross-sectional area (L2) and (IL 2 lateral inflow rate (L3T"1L-1).

These equations are applicable to conservative (non-reactive) solutes such as tracers, but

nonconservative (reactive) solutes may be accounted for by adding chemical reaction terms

(e.g., kinetic sorption and decay) to equations 5.1 and 5.2.

This conceptual model assumes a first-order mass exchange between the main channel

and the storage zones. However, field studies have reported breakthrough curves with

heavier power law tails as opposed to the exponential tails modeled using a first-order

exchange process [Becker and Shapiro, 2000; Haggerty et al., 2000]. This deviation has

been attributed to the longer or deeper hyporheic flow paths [Worman, 2002; Marion
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et al., 2003] which are generally not described properly using first-order exchange kinetics.

Additionally, equations 5.1 and 5.2 assume that the subsurface is a well-mixed reservoir,

while in reality hyporheic exchange is generally characterized by a strong exchange due

to spatial variations of properties such as permeability in the subsurface [Marion and

Zaramella, 2005]. Some researchers have used a fractional-in-time derivative to describe

more complex exchange patterns between the main channel and the storage zones in

aquifers [Schumer et al., 2003], however, time fractional derivatives is beyond the scope of

the current work. In this study, we use the existing TS model assumptions, of describing

the heavy-tailed falling limb, using the first-order exchange process between the main

channel and the storage zones. Additionally, we replace the second-order dispersion using

fractional-in-space dispersion to model the heavy rising limb observed due to faster-than-

fickian processes. We refer to this new model as the fractional-in-space transient storage

model (FSTS).

5.2 The Fractional-in-Space Transient Storage (FSTS) Model

The FSTS model can describe the non-Gaussian rising and falling limb in a BTC by

using fractional-in-space dispersion and a first-order exchange process between the main

channel and the storage zones respectively. The FSTS model is based on fADE instead

of ADE and can be rewritten as

3C BC 60C qL

-3—t+u—3—£:D5x—a+7I—(CL—C)+E(Cs—C) (5-3)

3C5 A

where a is the fractional derivative exponent and fl is the skewness parameter that controls

the bias of the dispersion. We ran a number of simulations in order to understand the

differences between the FSTS and TS models. All the simulations were run subject to

6 = 1, for a concentration profile skewed forward, a case also studied by [Benson et al.,

2004] to represent preferential transport along pathways such as fractures and macrOpores.

We simulated the injection of a tracer in a stream, subject to the following initial and
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boundary conditions

C(O, 0) = Co and C(r, 0) = 0,v :r:(a: 75 0) and t = 0 (5.5)

-D (4%? + (1 — mmagc) _+_ = 0

30-10 30-112: °° for 0 g t < 00 (5.6)

Figure 5.1 (the figure is a spatial snapshot of concentration at a given time) shows that

higher concentration is observed for a < 2 compared to a = 2 at larger downstream

distances in the main channel at t = 6003. This is due to the faster-than-fickian process

discussed earlier, which results in solutes moving faster than the standard second-order

dispersion based TS model.
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Figure 5.1. Numerical model showing the snapshot of concentration vs distance in the main

stream at t = 600s spatially for A = 40 m2, A, = 4 m2, .0 = 1m1-8/s, u = lms’l, e = 0.0 s—l,

M 2: 1000g. The point of injection is at a: = 10 m

We also ran the FSTS model with a = 2.0, to understand how the concentrations in the

stream and the storage zones change with time. In Figure 5.2 we plot the distribution of

concentration in the main channel and the storage zone for a = 2 and storage exchange

coefficient, 6 = 0.001. We can observe that the major contribution to the rising limb of
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the BTC comes from the main channel (stream). However, the opposite is true for the

falling limb of the BTC (Figure 5.2 log scale). This is because of the large waiting times

of the solute in the storage zones before releasing back into the main channel.
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Figure 5.2. Breakthrough curve for the stream and storage zone concentration at a distance

of a: = 50m from the point of injection in (a) linear scale and (b) log log scale. In log scale,

it can be observed that for the falling limb the major contribution of the concentration comes

from the storage zone whereas, for the rising limb it is the main channel. (A = 40 m2, A, = 4

m2, D = 1m1-8/s, [3 = 1, u = 0.5ms-1, e = 0.001 s-1,M = 1000 g, a = 2)

We also compared the FSTS model with the TS model in order to compare the behavior

of the BTCs in the main channel for these models. We ran the model for the parameters

mentioned in Figure 5.2 and observed that the heavy falling limb for both of these models

gave almost similar concentration while significantly higher concentration for the rising

limb in case of FSTS model. This reinforces our earlier discussion that both these models

uses first-order exchange processes between the main channel and the storage zone, which

controls the falling limb, and therefore give similar concentration magnitude. On the

other hand, the rising limb is controlled by the fractional-in-space dispersion, therefore
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the FSTS model gives a heavier rising limb compared to the TS model.
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5.2.1 Comparison of the FSTS model with the Analytical Solution for a = 2

We used the analytical solution by De Smedt et al. [2005] to evaluate the accuracy of our

FSTS model for the special case of Fickian diffusion, i.e., a = 2. There exists no analytical

solution for the FSTS model, hence we compared our numerical model for a = 2, which

effectively reduces it to a TS model. Analytical solution for the TS model exists and is

given by De Smedt et al. [2005] for an instantaneous injection of a tracer in a river with

uniform flow in an “infinite” domain. The analytical solution to equations 5.1 and 5.2 is

given by [De Smedt et al., 2005]

t 29—”27.2
1 e t—T.

E + ———2— — — E J 8’)",

C(15, t) = f 40" 2? ) ( ) 01(33, T)dT (5.7)

0 —EJ (egg-I), 87')

where 6 = A3/A and C1(a:,t) is the classical solution to the ADE for an instantaneous
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slug release and is given by:

M (x — 'ut)2

01(x,t) =mexp— (W) (5.8)

The J function in the above equation can be evaluated using the following relation

12. n-l
a 00 m

J(a, b) = 1 — e—b/e—AIO (2M) d/\ = 1 — e_a-b Z a. f—nT (5.9)

n=1 0 '
F

0

where 10 is the modified Bessel function of zero order. One of the drawbacks of the above

analytical solution is the problem of convergence for higher values of 5 due to the large

computational time required to evaluate the J functions. Therefore, if this equation is

used for parameter estimation it will increase the computational time significantly which

makes the numerical model more attractive. The above analytical solution was also found

to agree well with other numerical models like OTIS [Runkel, 1998]. The FSTS model was

found to be in excellent agreement with this analytical solution for a = 2, for different

values of e, D, and u as shown in Figures 5.4, 5.5, and 5.6 respectively.

5.3 Application of the FSTS Model to Describe the Field Data

We applied the FSTS model to describe tracer transport in two Michigan streams. One

of the streams had a large reach length (The Grand River, Reach Length - 42 km) while

the other had a smaller reach length (The Red Cedar River, Reach Length - 5 km). In

order to apply the FSTS model to the streams, we first confirmed whether the BTCs of

the observed tracer concentration for these sites exhibited non-Gaussian behavior during

early or the late time. This was done by plotting the concentration on a probability scale

against the Z—scores of the travel time. A deviation from the straight line is indicative

of the non-Gaussian behavior. One can observe from the Figure 5.3, that the rising limb

for the Reach C of the Red Cedar River shows a deviation from the straight line, which

indicates non-Fickian early breakthrough. This justifies the use of fractional-in-space

dispersion based TS model to describe the field data for the site.
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Figure 5.4. Comparison of compact-Caputo based fADE with the analytical solution given by

De Smedt et al. [2005] for Q = 16 mas-1, A = 40 m2, A, = 4 m2, D = 1 mas’l, M = 1000 g,

a = 2.0, A1: = 0.33 m and a: = 1230 m

5.3.1 The Red Cedar River, Michigan

The Red Cedar River (RCR) is a fourth-order stream in south central Michigan. It

originates as an outflow from Cedar lake, Michigan, and flows into East Lansing and

Michigan State University (MSU). The RCR meanders through the MSU campus over a

stretch of 5km (our study reach) and has an average slope of 0.413 m/km. The study

reach was bounded by Hagadorn Bride on the East and the Kalamazoo Street Bridge on

the West (Figure 5.8). Out of the many tracer studies done on this river in 2002 we used

the tracer test conducted on 19th March, 2002 [Phanikumar et al., 2007] with a discharge

rate of Q = 19.89 m3/s. Fluorescein dye was injected at the Hagadorn Bridge and samples

were collected at downstream locations at the Farm Lane (1400m), Kellog (3100m) and

Kalamazoo Bridge (5079m), respectively (Figure 5.8). The total mass injected was equal

to 10.70 kg Phanikumar et al. [2007]. Since it was a small reach, the influence of the

lateral inflow (contribution from tributaries and baseflow) was negligible [Phanikumar
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Figure 5.5. Comparison of compact-Caputo based fADE with the analytical solution given by

De Smedt et al. [2005] for Q = 20 m3s‘1, A = 40 m2, A, = 4 m2, 6 = 0.0001 ms’l, M = 100 g,

a=2.0,A2:=0.33mandx=10m

et al., 2007] and therefore, we used qL = 0 for all the simulations.

Phanikumar et al. [2007] applied the TS model on a reach-by-reach basis for the three

reaches A, B and C as shown in Figure 5.8. They used a global optimization algorithm to

estimate parameters for each of the three reaches (total of 15). They were able to estimate

parameters for the reaches A and B , but for the reach C parameters were found to suffer

from singular convergence [Runkel, 1998; Fernald et al., 2001], likely due to competition

between processes. Our FSTS model uses a constant D and variable a values for each

of the reaches, to capture the long-range correlation of the dispersion process. Using this

approach we were able to describe the scale dependency of the dispersion process and

better constrain the model parameters. We estimated the a value on a reach~by-reach

basis to account for the intra-reach variability that can not be captured using a constant

a. In the FSTS model we estimated the six parameters (i.e.,A, As, qL, s, D and (1)

instead of five for the TS model for each of the reaches because of the introduction of an

extra parameter, a. For the three reaches A, B, and C where we tested our FSTS model,
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the total number of parameters were equal to 16 (5 for each reach and a constant D). All

the parameters in the FSTS model were estimated using global optimization procedure

based on genetic and pattern search algorithms as implemented in MATLAB (Goldberg,

1989]. Parameter estimation was done by minimizing the root-mean-square error (RMSE)

between the observed data and the simulated values.

We found that the FSTS model (see Figure 5.9) was able to describe the observed

tracer concentrations satisfactorily for all the three reaches. A constant D = 4.14 was

used to describe all the three reaches A, B and C. The a values decreased with downstream

distance from 1.98 to 1.75. This was because of the increase in the magnitude of deviation

from the Fickian diffusion as the plume travels a larger downstream distance. The higher

values of the (As/A) with downstream distance are attributed to the alluvium storage

and the sediment characteristics (gravel and coarse sand) in reach C. Table 5.1 gives

the estimated values for all the three reaches with the normalized RMSE error between

observed and simulated values.
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Figure 5.7. Probability plot showing the normalized concentration (or probability) as a function

of the Z—scores of travel time for the Reach C of the Red Cedar River. Deviation from the straight

line indicates a deviation from Fickian diffusion

5.3.2 The Grand River, Michigan

We also tested the FSTS model on the Grand River in order to see whether it was able

to simulate the scale-dependent dispersion process on a significantly larger reach of 42

km compared to the 5 km reach for the Red Cedar River. This study reach extended

from the city of Grand Rapids to the town of Coopersville. The data and analysis based

on the TS model (i.e., with a second-order dispersion term) are described in Shen et al.

[2007]. The surficial geology of the Grand River Basin is dominated by rivers crisscrossing

the moraines and outwash plains formed by extensive glaciation during the Pleistocene.

Sampling was carried out at four downstream sites / bridges from the point of injection

at Ann Street Bridge near downtown Grand Rapids (see Figure ??). The downstream

sampling locations were Wealthy Street (Site 1), 28th Street( Site 2), Lake Michigan Drive

(Site 3) and 68th Street (Site 4). The study reach was sufficiently long to make watershed

influences important Shen et al. [2007], hence we accounted for the lateral inflow in the

FSTS model. The average discharge for the river during the tracer study measured by
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Figure 5.8. Red Cedar River Watershed showing the Red Cedar River and the sampling

locations (adapted from Phanikumar et al. [2007])

the USGS streamflow gaging station was 91.43 cubic meter per second. Further details

can be found in Shen et al. [2007].

In order to correctly estimate the mass of the tracer injected in the main stream channel,

we iterated the BTC for reach A and used it for estimating FSTS model parameters for

the reaches B,C, and D. The parameters for this site were estimated similar to the Red

Cedar river. The RMSE error and the estimated parameters for the reaches is shown in

Table 5.2. A constant D = 3.32 was used to describe all the three reaches A, B and C.

The a values decreased with the downstream distance from 1.99 to 1.62 similar to the

Red Cedar river indicating an increase in the magnitude of deviation from the Fickian

diffusion with downstream distance.
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CHAPTER 6

Conclusions

The major conclusions of this work are summarized below.

1. The fractional derivative based on the Caputo definition was found to provide a

superior description of the fractional-in-space dispersion for the case of instantaneous

slug release in a stream. In the past, space-fractional Caputo derivatives were shown

to provide a better description (compared to the Criinwald-Letnikov definition) for

continuous slug release in a stream; however, this issue was not examined in detail

for the case of instantaneous release. The superior performance of the Caputo

derivative is likely due to the distribution of the weights as shown in chapter 3.

2. Of the two advection schemes examined in this work, the fourth order accurate

compact scheme was found to provide better solutions. The WENO scheme was

found to introduce phase and amplitude errors for large wave numbers. Although

these schemes have a Courant number restriction, it was not too stringent for the

applications considered in this work since constant reach-averaged velocities are

used in the models. For the more general case in which the velocities are spatially

non-uniform, schemes that do not have a Courant number restriction may be more

attractive (e.g., Lagrangian or semi-Lagrangian schemes).

3. We have successfully implemented an operator splitting approach for solving the

governing equations. The approach was based on the Strang OS method and the

advection and dispersion equations were solved using separate numerical methods.
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Comparisons shown in chapter 4 indicate that the OS scheme produced excellent

results.

. One of the objectives of this work was to test whether improved dispersion modeling

will enable us to better constrain the TS model parameters such as the storage

zone exchange rate. The motivation was provided by the fact that in some stream

reaches dispersion was not needed to describe the observed breakthrough data while

in other reaches the classical ADE was found adequate. Examination of tracer

breakthrough in the Red Cedar River showed that in one of the reaches (Reach C),

the early breakthrough was clearly non-Fickian which indicated that a fractional

order derivative was needed to describe the transport. Application of our fractional

transient storage (FSTS) model showed that one dispersion coefficient but different

a values described the observed data well without resulting in any false convergence

problems noted earlier for this reach using a standard TS model.

. Higher order approximations of the fractional derivative are attractive for several

reasons (e.g., more accurate solutions on a relatively crude grid means less computa-

tional effort while estimating parameters). In this work we described one framework

that can be used to obtain higher order accurate solutions based on the Caputo def-

inition of the fractional derivative by evaluating the integer order derivatives to

higher order accuracy using a compact scheme.
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APPENDIX A

Caputo Derivative Operator

The one-dimensional fADE equation to simulate the solute movement in surface and sub-

surface system without the source term is given by:

Bt +u$=D3—0 8" (02: + (1 41—33..) (4.1)

The finite difference method described below is based on the method preposed by

Zhang et al. [2006] and modified for an infinite domain [—L, L]. The finite difference form

of equation A.1 can be written as

 

414—“

A A (A2)

1
05+ t—Cz'fl t _ Qt+At/2 _ Qt+At/2

“ A1: — 1—1/2 1+1/2

where the fractional dispersive flux can be approximated using the Caputo derivative

 

 

given by: a:

i—1/2

Q. = _:D__ f 1 diy (A 3)
2—1/2 m2 _ a) (“71—1/2 _ war—1 3y '

“5241/2

—D 1 BC

Qi+1/2 : F(2 _ (I) / ($i+1/2 .. y)a_1‘a—;dy (A.4)

Assuming that C in [:0 — zi+1/2,x — 2,; 1/2] is linearly distributed, the concentration

gradient BC/Bx can be approximated by [C(x — $i+1/2) — C(x — x,_1 )2)] /A:r. Sub—
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stituting it in equation A.3 to get (22-4/2 as

i-l

J=0

2
2

I‘(2—a)

+ .53

 
which is equal to

D

Z (Ci—j -Cz'—j—1) f

N—z'

J=0

xi_1/2 fl0,($i—1/2—y)

a—l dy
y

 

—L

L-z-

+

2—1/2 __ 0' ,f (1 a) (z,_1/2+y)dy
 

xj+1/2

31-1/2

$j+1/2

(Cm — Ci+j-1) f

31—1/2

 

Qi—l/2 = _I‘(2 — a)A:c°‘

where

 

w = 0+1)“ — (2')“

Similarly the flux Qi+1/2 can be approximated as

F

D

Qi+1/2 = —F(2 — a)Aa:a

 

 

i

1.230 'Bwj(0i+1—j ‘ Ci-j)

N—i—l

+ 1.120 (1_’6)wj(Cz'+j+1—

1—

ya"

fidy

C.

 

2+j)

 

 

(A.5)

(A.8)

(A.9)

In equation A.1 the advection term can be approximated using central differencing given

by [Zhang et al., 2006]

3_C = Ci+1 - Ci—l

8:1:

 

2A$
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Substituting equation A.10 in equation A.1 the finite-difference form of fADE is given by:

t+At t t+At_ t+At
C. —C. C. C._1

2+1 2

‘J—A—H + “ 2A2:
 

  

' t+At t+At t+At ‘

(Ci—_l ‘26} +Ci+1 )

z

t t

+j§13wj(cz'+1-j — Ci—j)

i—l

. t t A.11

D _J=1flw](0z J —Ci_j_1) ( )

= FZZ—aiAza { >

N—z—l t t

+ 3'21 (1 — fi>wj(0i+j+1 ‘ Ci+j)

N—z' t t

‘ 3.21 (1 ‘ 5le(ci+j ‘ Ci+j—1)
t = J

The above equation is a semi-implicit form, since the Gaussian dispersion terms (RHS

-first three terms) and the advection terms are solved implicitly while the non-Gaussian

terms (remaining RHS terms) are solved explicitly. One can also approximate the advec-

tion term to a higher order accuracy using either a WENO or compact scheme discussed in

Chapter 2. A prescribed concentration boundary or a prescribed-flux boundary with inlet

boundary at x = —L and outlet boundary at a: = L can be used to solve the above equa-

tion. The prescribed-flux boundary commonly encountered in hydrology can be modeled

as a prescribed flux at a: = —L and a free drainage at the outlet :1: = L. The boundaries

can be modeled as

30—10
30-10 _

uC' — D (3W + (1 - B)6(—$)Q"I)$=_L — UC—L (A 12)
-1 —l

_D (fl—TZa—C + (1 -— B)———I8f’:)a€ x = 0

C'_L represents the concentration at the inlet boundary. This approach uses an integer-

order flux boundary instead of fractional-dispersive boundary given by [Zhang et al., 2006]

D 311:3(C;-N+1 " C—N)

Q—N+1/2 =‘W + £0 (1 — fl)(C_N+1+j - C—N)
N_13—

(A.13)

D Z fiwflCN—j _ CN-j”1)

QN—1/2 =“W i=0

+(1- [3)(CN—1 — 0N)

84



APPENDIX B

Griinwald-Letnikov Derivative Operator

The value of a fractional derivative Operator (based on Griinwald) acting on the function

C(x, t) is an infinite series given by [Oldham and Spanier, 1974]

(900 1 N—l a) .

3335Mnmm2:0“p0-——+—j1)0($-Jh.t)
(3.1)

where I‘()=gamma function, Ax = :r/N; N = positive integer. Oldham and Spanier

[1974] presented another definition to the above definition which has a better convergence

property and is given by:

N—1F

BO‘C_ 1 (j —___a) ,

In analogy, the backward-finite difference form of the above equation is given by Griiwald-

Letnikov by induction

N—l

800 1 a
_= ' _— c _ A ,
313a NIP-3:0 Axum—a) ‘72—: (j) (CE J :r,t) (B 3)

where the coefficients a over j = weighting factors, reflect the length of the memory of

the fractional derivative and is given by [Podlubny, 1999]:

—1—a
wq_ .7 ma

,7 ——J—,——wj“_1 , 1118 =1, j=1,2,3... (B4)

The coefficients of the equation BI, 82, and 8.3 are equivalent, and can be expressed as

300
axa Naia :0 infamy. (13.5)

jzo
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which is the Griiwald-Letnikov definition while

N+1
8‘10 1 t

330: z Am“ 2 w?CN+1—j (B.6)

j=o

is the Deng-Singh-Bengtsson definition [Deng et al., 2004].
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APPENDIX C

Griinwald—Letnikov and Caputo Weights

We estimate the normalized weights of the CL and Caputo derivative operators to compare

the relative influence of the functional values at various spatial locations for the derivative

operators. While the CL derivative is approximated using the shifted GL derivative

operator, the Caputo weights are approximated using a finite volume approach. The

shifted GL derivative is given by:

 

N+1

3.72? z A? Z “’3' CN+1_,- (0'1)
i=0

where

a —1
. = 1__ -_ , :1, . 21,2,3". C-2w‘7 ( 2' )w'7 1 W0 J ( )

In case of the CL, since a finite-difference approach is used to approximate the derivative,

the coefficients of the series given by equation 0.1 is equal to the weight itself and is given

by equation (3.2. In case of Caputo fractional derivative, the derivative is defined using a

finite volume approach given by:

OCDgC = Qi—l/Z ‘ Qi+1/2 ((13)

where the flux Q2._1 /2 is given by:

 

z—l

D

Qi-1/2 : ‘r(2 — ammo: gwiwi—j ‘ Ci—j—I) (Q4)

and the flux (2241/2 is given by:

 

D ' C

Qi+1/2 = —[‘(2 _ 0,an Z wj(Cz'+1—j — Ci—j) (G5)
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The weights to? are given by:

w; = (,- + I)“ — (2')“ (0.6)

for 1 S a < 2. Substituting the flux values in equation C.3, we get

D i z-l

F(2 —— a)Axa Z w§(0i+1-j - Ci—j) - Z w§(0i_j - Ci—j—l) ((3.7)

.=0 j==0

 

The above equation can be rewritten and simplified as

F i -

CH1 _ 202' + Ci—l + .2 w§(Ci+1—j — Ci—j)

0000 = 0 3:1
0 “3 I‘i2—aiAaza i—l

" .2 w§(Cz'—j “ Ci—j—l)
L 3:1 , 1 i

1—

C

Ci+1 ‘ 202' + 01—1 + 3.5211” '(Ci—H—j — gci-j + Ci—j—l)

  

__ D

— I‘i2—alea J

+wf(Cl — CO)

Collecting the common terms from the above equation and rearranging it, we get

11180241 + (-2w8 + w‘f)Ci + (1118 -— 2112? + w§)Cz-_1+

D (“If — ng + w§)C’z-_2 + (112% - 210% + wfi)Cz-_3+

C C C C C

 630:0 =

(0.9)

We replaced constant 1 by 1118 in order to have a consistent subscript notation.
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