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ABSTRACT

ADAPTING WIRELESS SENSOR NETWORKS

TO OBSTRUCTED AND CONCAVE ENVIRONMENTS

By

Chen Wang

The advances of electronic circuits make it possible to achieve intelligent compu-

tation in small devices at low cost, which enables the development of wireless sensor

networks in recent years. Wireless sensor networks consist of large volume of sensors

deployed in a field and have broad applications in collecting data from the physical

world. In practice, wireless sensor networks are often deployed in complicated envi-

ronments including obstructed or concave areas, where radio signals are interfered or

blocked by obstructions, which leads to irregular communication patterns or concave

network topologies. In this dissertation, we systematically investigate how system

performance are affected by complicated environmental factors, and develop a suite

of solutions in sensor localization and data communications that can be applied to

sensor networks deployed in obstructed and concave environments.

Sensor Localization provides fundamental support for sensor network protocols

and applications. However, localization results can be severely distorted by com-

plicated environments, where distance measurements may have large errors because

radio or ultrasound signals are blocked, reflected, or distracted by obstructions. To ad-

dress these problems, we propose the virtual ruler approach to filter out the incorrect

distances in the measurement step. We further propose the upper bound approach in



localization algorithms to eliminate the impact of incorrect distance measurements.

It is a challenging task to realize packet routing in a wireless sensor network, be-

cause only small routing states can be maintained in a sensor’s limited memory space.

Location aware routing has been proposed to realize scalable packet routing by greedy

forwarding based on a small set of neighbors’ positions. However, location aware

routing has low routing success rate when sensors are deployed into obstructed and

concave environments. To improve the routing success rate of the greedy forwarding,

we propose the topology aware routing that uses the graph embedding to efficiently

encode a network topology into small size routing states. We further improve the

end to end routing performance by encoding the expected number of transmissions

to small routing states.

Radio packets may be lost in transmission because radio signals are susceptible to

environmental interference. We propose the receiver-centric protocol to realize reliable

data transmission for sensor networks with high throughput and low overhead. The

receiver-centric protocol utilizes the broadcast nature of radio signals and multihop

forwarding of sensor networks. Since the communication throughput can also be

reduced by radio interference among neighboring sensors, we further enforce channel

access scheduling to CSMA protocol to mitigate channel interference. The channel

access scheduling proposed in this dissertation is specially designed based on the tree

structure that is naturally formed in data collection of a sensor network, and therefore

outperforms other MAC protocols designed for general purposes.
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CHAPTER 1

Introduction

The advances of electronic circuits make it possible to achieve intelligent computation

in small devices at low cost, which enables the development of wireless sensor networks

in recent years. A wireless sensor network consists of small sensors that are equipped

with sensing devices, processors, and memory. Sensors are typically deployed in an

environment in large volume and form an ad hoc network where neighbors commu-

nicate with each other through wireless channels. The primary function of a wireless

sensor network is to collect data from a deployed environment to a central base sta-

tion. Wireless sensor networks have the following unique characteristics: i) sensors

are small and therefore can be deeply embedded into an environment; ii) sensors are

cheap and therefore can be deployed in large volume; iii) sensors are self—organized

and can automatically form a network after the deployment; iv) while each individ-

ual sensor has limited processor and memory resources, they can cooperate with each

other to achieve substantial processing capability and storage capacity. These charac-

teristics enable wireless sensor networks to be powerful tools that can closely observe

the physical world with high fidelity.
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Figure 1.1 Architecture of a wireless sensor

Equipped with different sensing devices, wireless sensor networks have broad ap—

plications in collecting data from the physical world including battlefield surveillance,

environmental and habitat monitoring, disaster recovery, structural monitoring, med-

ical diagnostics, healthcare, asset tracking, etc. For example, sensors can be densely

deployed in large volume to a battle field to monitor enemy activities, where numer-

ous redundant sensors help the sensor network to be resilient to an enemy’s attack.

Sensors can also be deeply embedded into glacial layers to monitor the movement

of glaciers, which is helpful to the investigation of the global warming phenomenon.

In fire disaster, sensors can be rapidly deployed to the field and quickly collect tem-

perature data for rescue teams. Because a sensor network can be self—operated for a

long time without the attention of human being, sensors can be implanted into civil

infrastructures like bridges to detect their structural defects. Equipped with cameras,

sensors can also be deployed along streets to monitor traffic.

All these applications are built on the basic infrastructure of sensor networks,

which have the functionalities of collecting, processing, storing, and transferring data.

Sensors are equipped with sensing devices, processors/memory, and radio transceivers



to achieve these functionalities. Figure 1.1 shows the general design architecture of

a wireless sensor, which includes the basic services of localization, timing, power

management, security, and data communication. Many sensor network applications

require sensed data to be labeled with location and time information, which neces-

sitates the localization and timing services. Many applications demand the long life

time of wireless sensor networks with limited energy resources, which can be achieved

by power management that schedules sensors’ activities for energy saving. Sensors

may be deployed in a hostile environment, where security mechanisms are necessary

to protect sensors against malicious attacks. Finally, sensors communicate with each

other with low power transceivers through wireless channels, which necessitates a

suite of energy-efficient networking protocols in MAC, network, and transport layers.

It is ftmdamental important to design energy-efficient sensor networks because

sensors are powered by batteries and need to operate for a long time with the lim-

ited energy supply. Such a design principle, together with the constraints of low

cost and small dimension, raises challenging problems to develop practical wireless

sensor networks. Due to the limited available resources, in-network distance mea—

surements based on radio or ultrasound signals are either error-prone or short-range,

which makes it difficult to achieve accurate localization results for sensor networks.

It is also a challenging task to achieve accurate and synchronized timing service for

large scale sensor networks equipped with low cost clocks. Sensors need to be in

sleeping status for most of the time to prolong their operation time and periodically

activate themselves to achieve necessary sensing coverage and to maintain network

connectivity. It is not a trivial task to optimally schedule sensors’ activities such



that sensing coverage and network connectivity can be realized with minimal energy

consumption. Sensors use low power wireless transceivers for communication, which

incurs several problems: i) weak radio signals are susceptible to environmental inter-

ference and lead to unreliable data transmission; ii) sensors can only communicate

with neighbors within a short range, and the long distance communication has to be

realized through multihop forwarding, which requires the support of routing mecha-

nism; iii) since sensors share wireless channels with neighbors, channel collision can

easily happen in a densely deployed sensor network.

More challenging problems arise when sensors are deployed in complicated envi-

ronments including obstructed or concave areas, which is often necessary due to the

broad applications of sensor networks. For example, when sensors are deployed in for-

est for habitat monitoring, the communication between sensors can be blocked by trees

or heavy bush. Neighboring sensors can also be blocked by buildings when sensors are

deployed in streets for traflic monitoring. It is possible to deploy sensors along rivers

or valleys for environmental monitoring, which have concave shapes. Complicated

environments can significantly affect system performance of wireless sensor networks,

which raises challenging problems in many aspects of their system design includ-

ing sensor localization, timing service, sensing coverage, network connectivity, power

management, and data communication. We aim to adapt wireless sensor networks to

complicated environments. In this dissertation, we focus on addressing the following

problems and developing solutions for sensor localization and data communication.

First, in-network distance measurements will have large errors in complicated envi—

ronments where radio or ultrasound signals are reflected or scattered by obstructions,



which can severely corrupt the localization results. Second, it is a challenging prob-

lem to realize packet routing in concave network topology where previously proposed

location aware routing often fails to deliver a packet in the local minimum. Third,

radio signals are susceptible to the interference of complicated environments, which

leads to unreliable wireless channels and lost data packets. Fourth, sensors are often

densely deployed and communicate with each other through short radio links, which

are more resilient to interference of complicated environments. However, channel in-

terference can easily happen among neighboring sensors with the dense distribution.

In the following discussion, we detail how the system performance of localization

and data communication are affected by complicated environments and introduce

our proposed approaches that achieve accurate localization results and reliable data

communications for sensor networks deployed in obstructed and concave areas.

1.1 Sensor localization

Most applications of sensor networks label sensed data with location information,

which requires sensors to be aware of their own positions. Many approaches have

been proposed to locate sensors with low cost [1]. The basic idea is to select a

few sensors as beacons that can determine their own positions with the attached

GPS receivers. The rest sensors can determine their positions by referring to nearby

beacons. Sensor localization usually consists of two steps: distance measurement and

geometric computing. Least squares fitting is commonly used in the second step to

minimize the impact of distance measurement errors on the final positioning results.



Least squares fitting assumes that distance measurements in sensor networks are close

to their true values, and sensors’ positions can be accurately located by minimizing

the difference between the measured distances and the distances computed from the

assumed locations of the sensors. However, in a obstructed or concave environment,

some distance measurements may have large errors, which cannot be simply reduced

by least squares fitting, such that the final localization results are severely corrupted.

This often happens in a realistic sensor network. We list possible cases as follows.

To reduce the cost and dimension of sensors, many localization approaches sug-

gest reusing radio signals for measuring the relative distance between adjacent sensors.

This is based on the observation that radio signals attenuate during their transmission

such that their transmission distance can be inferred from received signal strength

(RSS). However, since the radio signals can be strongly affected by environments, dis-

tances inferred from radio signals tend to be inaccurate and unreliable. Particularly,

the distance measurement between a pair of sensors may have large errors if the line-

of-sight path between the sender and the receiver is blocked by obstructions. In this

case, radio signals will be weakened by the obstructions, which leads to erroneous

distance measurements estimated by received signal strength. When ultrasound is

used to measure distances between pairs of sensors, the measurements may also have

large errors if line-of-sight paths are blocked between transceivers. In such a case,

ultrasound signals are transmitted along reflected paths from a sender to a receiver,

which is much longer than the distance of the straight line connecting the pairwise

sensors.

Due to limited resources available from sensor networks, distance measurements in



sensor networks are often short-range. In order to obtain sufficient distance measure—

ments, multihop based approaches were proposed to infer distances between any pair

of sensors (including beacons) by approximating the lengths of the shortest paths to

the Euclidean distances. The localization accuracy of multihop based approaches are

built on the basis that the Euclidean distances between pairwise sensors can be well

approximated by the lengths of the shortest paths. Such an approximation is achiev-

able only when the shortest paths are close to straight lines, which requires sensor

nodes are uniformly and densely distributed in a convex area. Although the uniform

and dense distribution can be achieved through controlled deployment, it cannot be

guaranteed that sensors are deployed in a convex area. A typical example is in habi-

tat monitoring, sensors are deployed to complex areas such as valleys or rivers which

may have concave shapes. The other scenario is that sensors are deployed in streets

of urban areas where sensors may be separated from each other by buildings which

results in concave network topologies. In such cases, the lengths of the shortest paths

may not reflect the Euclidean distances correctly, because the shortest paths between

some pairwise sensors have to detour along the concave areas and cannot be close to

a straight line no matter how densely sensors are deployed.

Our performance evaluation shows that the large errors of incorrect distance mea-

surements (defined as outliers) cannot be reduced by least squares fitting, which is

the basis of most localization algorithms. In order to accurately locate sensors, it is

necessary to exclude those outliers incurred by obstructed environments. However, it

is a challenging task for sensors to identify those outliers because the resource con-

strained sensors do not have visualization capabilities to recognize obstructions. In



our research, we propose a suite of solutions to locate sensors in obstructed environ-

ments and concave areas. We first propose to exclude the outliers in the distance

measurement step. We use mobile beacons to walk around obstructions and provide

distance measurement service to pairwise sensors. Based on the multiple values ob-

tained to the same distance, we exclude incorrect ones through statistical approaches

[2]. We further propose to use the upper bound approach to exclude outliers in the

localization algorithm [3] [4] [5] Our upper bound approach is based on the observa-

tion that outliers, incurred by obstructions or concave structures, are always larger

than their true values. The intensive performance evaluation shows that the upper

bound approach can accurately locate sensors in both obstructed environments and

concave areas.

1 .2 Packet routing

The development of in-network storage and in-network process inspires intensive co-

ordination among intelligent sensors. This necessitates point-to—point communication

between any pair of nodes. Point-to—point routing, however, is a challenging problem

in a wireless sensor network because the network may consist of thousands of nodes

with limited resources to maintain routing states. Location aware routing (LAR)

shows its potential in that packets can be delivered based on small constant size rout-

ing states. LAR proposes to forward packets in a wireless network according to nodes’

geographic positions [6] [7]. In LAR, a packet will be greedily forwarded to the next

neighbor which is geographically closer to the destination, and finally delivered to the



 

  
Figure 1.2 Inconsistence between the topological structure and geographic

structure

destination after consecutive hop by hop forwarding. LAR is promising in that packet

routing is realized through a localized algorithm that solely relies on the positions of

the destination, the current node, and its immediate neighbors. The positions of a

small set of neighbors compose a sensor’s routing states, which can be easily fit to

the sensor’s limited memory.

The greedy forwarding of LAR, however, cannot guarantee packet delivery due to

the problem of the local minimum, where a packet cannot find any neighbor which

is geographically closer to the destination. This always happens when sensors are

deployed in concave environments that contains voids. An example of local minimum

is shown in Figure 1.2, where node S cannot find any neighbor that is geographically

closer to destination D.

Many recovery solutions have been proposed to route a packet from the local

minimum. For example, the face walking proposes to uses the left (right) hand rule

to forward a packet toward the clockwise (counterclockwise) direction along the edge

of a void whenever a packet is trapped in a local minimum [6] [7] The small scope



flooding has also been proposed to find the right routing path from the local minimum

to the destination [8]. The recovery solutions often incur higher computation or

communication costs than the simple greedy forwarding.

In our study, we seek to improve the routing performance of greedy forwarding

without reliance on costly recovery strategies. we reveal the inherent tradeoff between

the quality of routing performance and the size of routing states in wireless sensor

networks. We suggest that the key approach to an optimal routing design is how to

efi‘icz'ently encode a network topology into small dimensional coordinates from which

hop count distances between pairwise sensors can be accurately recovered. Based on

the precisely hop count distance comparison, our proposed topology aware routing

can assist the greedy forwarding to find the right neighbor that is one hop closer to

the destination, and therefore achieve high success rate of packet delivery [9]. The

intensive performance evaluation shows that the topology aware routing can achieve

routing performance comparable to the shortest path routing while preserving the

routing states as small as location aware routing. Since high routing success rate

can be achieved in concave environments where voids are presented, topologr aware

routing provide a viable solution to realize point to point in a large scale sensor

network deployed in a concave environment.

Not only the network topology, but also the radio communication channels of a

wireless sensor network can be affected by the deployed environment. Since radio

signals are susceptible to environmental interference, a wireless channel often demon-

strates complex spatial characteristics in a obstructed environment. This spatial

complexity is oversimplified by the disc model that are widely used in location aware
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routing and the shortest path routing. The disc model uses a simple comiectivity sta-

tus to describe the wireless channels between pairwise nodes, i.e. pairwise nodes have

the perfect reception channel if they are within the maximum transmission range of

radio signals. In a realistic wireless network, neighboring nodes are often connected

through unreliable wireless channels where packets may be lost due to the trans-

mission error of radio signals. It is normal that packet loss rate is increased with

the transmission range because the radio signals attenuate during their transmission.

Both the location aware routing and the shortest path routing try to select a routing

path with the least number of hops, such that each individual hop has a long trans-

mission distance and high packet loss rate, which degrades the routing performance

between the source and the destination.

We aim to improve the end-to-end routing performance of the greedy forwarding in

complicated environments where radio signals are susceptible to interference. Instead

of encoding hop count distances into virtual coordinates as in topology aware routing,

we encode the number of expected transmissions for a packet to be successfully deliv-

ered between the source and the destination. Because virtual distances inferred from

nodes’ coordinates directly reflect the end-to—end communication channel quality, the

greedy forwarding can guide a packet along the optimal routing path which uses the

least number of transmissions to successfully deliver a packet from the source to the

destination [10].
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1.3 Reliable data transmission

Because radio signals are susceptible to environmental interference, packets may be

corrupted or lost when transmitted through radio channels. Radio packets have high

loss rate in obstructed environments because radio signals are interfered and blocked

by obstmctions. It is necessary to retransmit lost packet to achieve reliable data

transmission in wireless sensor networks. Two basic mechanisms have been widely

used for lost packet retransmission: the sequence-based mechanism and the tim-out

mechanism. The sequence-based mechanism is mainly used by end-to—end recovery, in

which the source labeled packets with continuous sequence numbers, and lost packets

can be detected by the destination based on the discontinued sequence numbers of

received packets. The sequence—based end-to-end recovery is not suitable for wireless

sensor networks because it always recovers lost packets from source and therefore is

not energy efficient. In contrast, the time—out mechanism is adopted by the hop-

by-hop recovery, in which an intermediate node (sender) forwards a packet to the

next hop (receiver) and waits for the acknowledgement (ACK) from the receiver for

a certain period. The sender will retransmit the packet if the acknowledgement is

not received. The hop-by-hop recovery is more energy efficient than the end-to—end

recovery because it retransmits a packet just in the place where it is lost instead of

from the beginning of the forwarding path.

The time-out based hop-by—hop recovery, however, incurs high overhead and re-

duces transmission throughput. First, data packets in wireless sensor networks usually

have small size. In time-out mechanism, the receiver sends back the acknowledgement
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for each small size data packet, which incurs high overhead that cannot be ignored in

resource-constrained sensor networks. Second, the ACK itself my be lost due to the

unreliable nature of wireless channels, which incurs unnecessary packet retransmission

and consumes bandwidth resources. Third, packet may be lost because of channel

congestion, in which packets are corrupted in collisions or dropped by the overflowed

buffer in the receiver. However, the time-out mechanism can not distinguish channel

loss from channel congestion and will blindly retransmit packets when ACKs are not

received. This will intense channel congestion if all senders keep retransmitting lost

packets.

We aim to improve the hop—by-hop recovery and seek an optimal design of re-

transmission mechanism with the following properties. i) It incurs small overhead to

retransmit lost packets. ii) it only transmits lost packet when necessary and does not

create duplicated packets. We propose the receiver-centric protocol to realize these

two properties. First, the receiver-centric protocol uses the sequence based mecha-

nism to detect lost packets. All the packets are labeled with continuously increased

sequence numbers by the sender, and the lost packets are detected by the receiver

based on the missing sequence numbers. The missing sequence numbers are sent back

from the receiver to the sender through the virtual back channel, which is created

by utilizing the broadcast nature of radio signals and the multihop forwarding of

wireless sensor networks. When an intermediate node forwards a packet to the next

node, the packet can be overheard by the previous node. Therefore, we can piggy—

back the missing sequence numbers to data packets. When a receiver continues to

forward packets to the next hop, the missing sequence numbers can be sent back to
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the previous sender through overbearing. Because we do not use extra packets to send

missing sequences, the overhead of packet retransmission is minimized. Second, the

receiver-centric protocol uses the negative ACk mechanism, i.e. the receiver notifies

the sender only when it detects packet loss, and the sender retransmits packets only

when the receiver requires. In this process, duplicated packets are avoided.

1.4 Channel access scheduling

In order to resist interference of complicated environments, sensor are usually densely

deployed such that i) neighboring nodes can communicate with each other through

short links with strong radio signals; and ii) short radio links have less chance to

be blocked by obstructions. However, wireless channels can be easily interfered with

each other in a densely deployed sensor network, which reduces channel utilization

and transmission throughput. In order to reduce the channel interference, a suite

of media access control (MAC) protocols have been proposed to schedule channel

access among neighboring sensors. MAC protocols can be divided into two categories:

TDMA protocols and CSMA protocols.

TDMA protocols assign time slots to neighboring sensors that share the same

wireless channels. Since sensors only access the wireless channel in their own time

slots, channel interference can be completely avoided by TDMA protocols. However, it

is diflicult to apply TDMA protocols in wireless sensor networks because i) they either

require a global view of an entire network topology to assign time slots [11] or incur

extra message exchange within two-110p scope [12]; and ii) sensors can only access
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the channel in fixed time slots, which leads to idling time slots and reduces chamlel

utilization. In contrast, CSMA protocols use the contention mechanism, in which

each sensor listens to the channel first, and sends out packets whenever the channel

is idle. Channel collision may happen when two sensors detect the charmel idling and

send out packets simultaneously. CSMA protocols solve the channel collision with

the random back off mechanism, in which each sensor wait for a random time period

before it attempts to send out a radio packets. Channel collision wastes bandwidth

resources and reduces channel utilization. This can become a serous problem in a

densely deployed sensor networks, where multiple sensors may send out radio packets

through the same wireless channel.

To reduce channel collisions of CSMA protocols, we enforce channel access schedul-

ing among neighboring sensors with our proposed receiver-centric protocol. The

receiver—centric protocol operates as an overlay of CSMA MAC layer, and utilizes

the tree-based topology, the unique data transmission pattern presented in sensor

networks, to assist charmel scheduling. The tree-based topology, naturally formed in

sensed data collection, has the hierarchical structure and can be readily reused to

schedule channel access. In the receiver-centric protocol, each intermediate node in

the tree topology is viewed as a parent, which receives data from multiple sources

of children. The parent manages channel access of its children. By utilizing the

tree-based structure of data collection that is unique in sensor networks, the receiver-

centric protocol improve the performance of CSMA that is originally designed fore

general media access control.
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1.5 Structure of the content

We present the dissertation as follows. We summarize previous work in sensor lo-

cation, packet routing, data transmission, and channel access scheduling in Chapter

2. In Chapter 3, we demonstrate how to exclude outliers at the stage of distance

measurement, the first step of localization. We further present how to use the upper

bound approach to accurately locate sensors in obstructed and concave environments

in Chapter 4. In Chapter 5, we detail how to realize optimal end to end packet rout-

ing with small routing states. We discuss the reliable data transmission in Chapter 6

and channel access scheduling in Chapter 7. We conclude the dissertation and discuss

future study in Chapter 8.
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CHAPTER 2

Background

It is often necessary to deploy sensors into complicated environments including ob-

structed or concave areas, where radio signals may be interfered or blocked by ob-

structions, which leads to irregular radio transmission patterns or concave network

topologies. The complicated environments have severe impact on system performance

and therefore should be carefully considered in system design of wireless sensor net-

works. In this dissertation, we develop a suite of solutions in sensor localization,

packet routing, reliable data transmission, and channel access scheduling to adapt

wireless sensor network to obstructed and concave environments. Before we describe

our approaches, we summarize related work as below.

2.1 Sensor localization

Most applications of sensor networks require sensed data to be labeled with position

information, which necessitates sensors to be aware of their own positions. The

positions of sensors, however, cannot be directly measured by manual methods or

simply acquired by GPS receivers because both approaches are costly when applied
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to numerous disposable sensors. Moreover, sensors may be deployed to inaccessible

areas such as volcanoes, which makes the manual measurement impractical. Sensors

may also be deployed to indoor environments, wild habitats with heavy vegetation,

or urban areas surrounded by skyscrapers, where GPS receivers may inaccurately

or even impossibly locate sensors due to the bad signal reception. Considering the

factors of cost, accuracy, and accessibility, it is necessary to seek a low cost solution

to accurately locate sensors even in an extremely harsh environment. In the following

discussion, we introduce sensor localization and its possible applications.

A simple approach is to infer a sensor’s position through GPS, which measures

distances from a sensor to multiple reference points in Satellites and calculates the

sensor’s position through triangulation computation. However, due to the low cost

design constraint, it is prohibitive to equip GPS receivers in all sensors. A com-

promised solution is to deploy GPS receivers to a few sensors which are defined as

beacons. The rest of sensors infer their positions based on their relative distances to

those beacons. Based on this model, the sensor localization problem can be formalized

as follows. Given a network graph G = (Vm U V", E), the vertex set Vm defines the

beacons set, the vertex set Vn defines the sensor set whose coordinates are unknown,

and the edge set E defines all the measurable distances between pairs of vertex (2', j )

where z', j E Vm U V". The sensor localization is to recover coordinates of the vertex

in the set Vn under the constraints of edge set E and beacon set Vm.

Despite its simple description in mathematics, sensor localization is a challeng-

ing task in engineering which imposes tight design constraints on sensor nodes with

low costs, power saving and small dimensions. Under such constraints, current avail-
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able distance measurement techniques based on ultrasound can only achieve accurate

results in short-range, such that beacons are not globally accessible to all sensors espe-

cially when beacons are sparsely distributed. Consequently, the simple triangulation

algorithm cannot be directly applied to locate all sensors because some sensors may

not have sufficient beacons available as their immediate neighbors. Numerous solu-

tions have been proposed for sensor localization. In the following discussion, we intro-

duce the distance measurement techniques currently available for sensor networks in

Section 2.1.1. In Section 2.1.2, we discuss why the inaccurate and short-range distance

measurements raise challenges to sensor localization. We summarize representative

sensor localization approaches that have been proposed before in Section 2.1.3.

2.1.1 Distance measurement methods

Following the sensor design principles of low costs and small dimensions, radio and

sound signals are widely used to measure distances in sensor networks.

Radio based distance measurements

Radio signals are related to distances in that their signal strength attenuates dur-

ing their propagation. Consequently, the transmission distance between a pair of

sensors can be inferred from received signal strength (RSS) by the ideal radio prop—

agation model 1285' or PS/d", where d is the distance between the transceivers.

Distances estimated from RSS, however, may have large errors because radio signals

are susceptible to environmental interference. First, radio signals can be reflected,

diffracted, and scattered by obstacles, which creates different transmission paths be-
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tween transceivers. The actual received signals are the vector sum of all the radio

signals received along different paths. The signal strength may be weakened when

the waves of multipath signals are out of phase, or reinforced when the waves of

multipath signals have the same phase. Second, radio signals will be attenuated by

obstructions during their transmission. This phenomenon is called shadowing that

also incurs measurement errors in the RSS approach.

We can also obtain the distance between a pair of sensors by measuring the time

of flight (TOP) of radio signals from a sender to a receiver. Since the flight speed of

radio signals is constant, the distance between a pair of sensors can be computed by

multiplying the TOP of radio signals by their speed. Because radio signals transmit

at an extremely fast speed, meaningful measurements can only be achieved by highly

precise clocks that are synchronized between the sender and the receiver. The clock

synchronization can be avoided by measuring the TOP of the round-trip of radio sig-

nals in the sender side. In the round-trip distance measurement, the signal process

delay incurred by the receiver circuit needs to be carefully filtered. The clock synchro-

nization can also be avoided by measuring the differences of ToF from a transceiver

to multiple beacons. For example, sensors with GPS receivers can estimate their own

positions by referring to the beacons in satellites. Here only beacons in satellites need

to be equipped with synchronized and precise atomic clocks. The major sources of

the measurement errors of the TOP approach is the multipath effect, the clock drift

and clock resolution. In order to achieve accurate measurement, it is critical for the

ToF approach to precisely identify the first arrival of radio signals that is received

from the line-of-sight path between a pair of sensors. However, radio signals of the
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line-of-sight path may be interfered by other radio signals transmitted along reflected

paths.

Sound based distance measurements

Sound or ultrasound signals are suitable for distance measurement in sensor networks

because accurate measurement can be achieved at relatively low costs. Since the

speed of ultrasound signals is relatively slow (approximately 331.4m/s), their trans-

mission delay are measurable by inexpensive clocks, which makes it possible to apply

the ultrasound based ToF approach to low-cost sensors. The ultrasound based ToF

approach, however, has three limitations in its distance measurements. First, the

ultrasound based ToF approach can achieve accurate distance measurements only

when a line-of-sight path exists between pairs of sensors. Similar to radio signals,

ultrasound signals also have the multipath effects during their transmission, i.e. the

receiver may receive ultrasound signals along multiple reflected paths besides the

line-of-sight path. Since ultrasound signals spend more transmission time along the

reflected paths than the ”line-of-sight” path, the multipath effect can be filtered out

by reading the earliest arrival signals. However, if the line-of—sight path is blocked be-

tween the transceivers, the distance measured by the ultrasound based ToF approach

may have large errors. Secondly, ultrasound signals have unidirectional transmission.

In order for all receivers around a transmitter to receive its ultrasound signals, ether

multiple microphones are installed as in Figure 2.1 or a cone reflector is used as in Fig-

ure 2.2. Thirdly, the ultrasound ToF approach has short measurable range; because

ultrasound signals attenuate fast in air and cannot propagate to a long distance.
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Figure 2.1 Multiple microphones installed in Figure 2.2 A cone reflector helps

a sensor mote to achieve omni-directional ultra- a. sensor mote to reflect ultrasound

sound signal transmission signals to multiple directions

2.1.2 Challenges of sensor localization

The difficulty of sensor localization is to obtain sufficient positioning accuracy based

on inaccurate and short-range distance measurements. A successful localization ap-

proach needs to address three challenges: 1) how to tolerate distance measurement

errors; 2) how to overcome the limit of short-range distance measurements; 3) how

to implement a localization algorithm at low communication/computation costs in a

distributed fashion.

Tolerate measurement errors

In the triangulation algorithm, the position of a sensor is recovered from the con-

straints of distance measurements. As shown in Figure 2.3, when the measured

distance between sensor S and beacon B,- is available, the position of sensor S is

determined as the intersection point of the three circles with radius (1;. However, the

simple triangulation algorithm may fail to find a feasible position for a sensor when

distance measurements have errors. As shown in Figure 2.4, due to the measurement

error of distance, the three circles will not intersect into one point, which means we
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Figure 2.4 Circular constraints cannot intersect into one point. because of measurement
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cannot find a feasible position for sensor S whose distances to beacons can simultane-

ously fit all the measured distances. Since distance measurement errors are inevitable

in practice, the objective of a localization algorithm is to minimize the impact of

measurement errors and maximize the possibility that the estimated position of a

sensor is close to its true position. Here the distance between the estimated position

and the true position of sensor S is defined as the positioning error that is a critical

metric to evaluate a localization algorithm. When sensors are deployed in a complex

area abundant with obstructions, line-of-sight paths may be blocked between pairs

of sensors. In such a case, distances measured either by RSS or TOP of ultrasound

approach may deviate significantly from their true values. These distance measure-

ments with large errors are regarded as outliers that could severely corrupt the final

localization results. How to identify and exclude outliers is a challenging task because

sensors usually have no visualization capability to detect obstructions.

Distance measurement range limitations

Because distance measurements in sensor network are short range (due to design

constrains on energy consumption and size), there may be insufficient measurements

to uniquely determine sensor positions. A simple example is given in Figure 2.5,

which shows that the relative structure of the network camiot be known without

sufficient distance measurements. In Figure 2.5, only four measurements are known,

so the network structure could be any of an infinite set of non-equivalent quadrangles

(two are shown). In Figure 2.6, all distance measurements between pairs of sensors

are known, so the relative structure can be uniquely determined. But note that
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at least one of the added cross-measurements will necessarily be larger than the

side measurements, so it may not be available given sensor distance measurement

limitations.

Communication and computation costs

Sensors have to be manufactured at low cost because they are disposable and in-

tended to be’deployed in large volume. This design constraint of low cost leads to

limited hardware resources to support computation and communication. First, cur-

rent MICA2 sensors use Atmega128 8-bit microcontrollers that have maximum 16

MIPS throughput at 16 MHz. The programmable flash memory of MICA2 sensors

is only 128K bytes. Because of such limited hardware resources, a localization algo-

rithm should avoid intensive computation before it can be successfully implemented

in a sensor board. Second, because sensors with low power radio transmitters can

only communicate with nearby neighbors, multihop forwarding is widely used for

message transmission between pairs of sensors, which is the primary source of energy

consumption for a sensor network. In order to save energy and extend the lifetime
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of a sensor network, a good localization algorithm should avoid broadcasting massive

messages to an entire network. Considering all the restrictions above, a practical local-

ization algorithm should tolerate distance measurement errors, deal with short-range

measurements, and incur low communication/computation costs. In the following

sections, we will detail how current sensor localization algorithms provide solutions

to those challenges.

2.1.3 Sensor localization algorithms

Due to the tight design constraints of low cost and small dimensions, sensors often

lack sufficient hardware resources to achieve accurate and long—range distance mea-

surements. To compensate for the limited measurement capability, numerous sensor

localization algorithms have been proposed that can be categorized as area-based

algorithms, distance-based algorithms, and mobile sensor based algorithms.

Area-based algorithms

In area-based algorithms, actual distance values are not involved in the localization

algorithms, and the position of a sensor is estimated by picking up a point within

an area. A typical example is the Centroid approach[13], which estimates a sensor’s

position as the centroid of the polygon formed by beacons that are within the radio

transmission range of the sensor.

APIT[14] approach further improves the localization accuracy by utilizing the

redundancy of available beacons, from which 3 beacons are selected out to form a

triangle. The APIT approach can determine if a sensor is within the triangle by com-
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paring the beacons’ RSS with immediate neighbors. It is possible to obtain multiple

triangles from different beacon combinations, and a set of triangles containing the

sensor can be selected out. The sensor’s position can be pinpointed to the intersec-

tion of all the containing triangles, which can be a small area when multiple triangles

are involved in the intersection. As a result, the APIT approach can achieve better

localization result than the basic Centroid approach.

Distance-based algorithms

Distance-based algorithms estimate sensors’ positions from pairwise node distances,

which are obtained through the media of radio signals or ultrasound with different

measurement accuracy. All the distance-based algorithms recover coordinates of sen-

sor nodes from distance constraints, such that pairwise node distances calculated from

recovered coordinates are consistent with correspondent measured distances.

The basic distance-based algorithm is the multilateration, which is applicable

when distances from a sensor to multiple beacons are available. To tolerate distance

measurement errors, least squares fitting is proposed to minimize the difference be-

tween calculated distances and measured distances from the sensor to all available

beacons:

f) = argmgnZUP-pil wt)? (2-1)

where p is the sensor’s position to be estimated, p,- are beacons’ positions, [p — pi]

are calculated distances and cf,- are measured distances.

As we mentioned before, in-network distance measurements between pairwise sen-

sors are often short-range. The basic multilateration algorithm may fail for some
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sensors due to insufficient beacons available as their immediate neighbors. Two pos-

sible solutions to overcome the limitation of short-range measurement are recursive

approaches and mutihop based approaches.

Recursive approaches[15] [16][17] repeatedly apply the basic multilateration algo-

rithm by converting sensors to beacons after their positions are determined. In recur-

sive approaches, ”converted” beacons can be propagated from an area which is close to

the ”starting" beacons to an area where the ”starting” beacons are inaccessible. This

makes it possible for sensors faraway from ”starting” beacons to locate themselves

with the aid of ”converted” beacons. One problem of recursive approaches is that

the localization error may accumulate and the final result may be severely distorted.

To minimize the jeopardy of accumulated errors, recursive approaches are usually

built on the basis of accurate distance measurements such as time of flight(ToF) of

ultrasound. It is also pointed out in [17] to avoid large errors such as flip over when

beacons are distributed closely to a straight line.

By approximating the length of the shortest path to the Euclidean distance be-

tween pairwise nodes, multihop based approaches[13] [18][19] [20] can infer distances

between any pair of nodes in a connected network, hence all beacons are accessible to

each sensor. Consequently, each sensor can locate itself through the basic multilatera-

tion algorithm. Multihop based approaches can only provide coarse localization result

due to their approximate distance estimation. However, multihop based approaches

are low—cost solutions because they suggest to reuse the communication radio signals

to infer pairwise node distances. The low-cost character makes multihop based ap-

proaches ideal candidates for applications which have tight restriction on cost and
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dimension while less demand on localization accuracy.

When a global view of all pairwise node distances is available, coordinate assign-

ment can be achieved through centralized localization algorithms such as Mulitdi-

mensional Scaling (MDS) [21] [22] [23] and Semidefinate Programming (SDP) [24] [25].

Both approaches use optimization algorithms to search for coordinate assignment such

that the distance constraints can be best fit. For instance, the MDS is to solve the

following optimization problem which minimize the difference between all calculated

distances and measured distances:

13 = 318m}? Z (lPi - le — Elly)?

iJeV

Here, P is the position matrix which contains all the sensors’ positions to be estimated.

[pi — pj] is the calculated distance, d},- is the measured distance between sensor i and

j and V is the vertex set representing all sensors. It is notable that the multihop

approaches are also suggested in MDS[22] to infer distances between any pair of

sensors since the classic MDS requires distance knowledge of all pairs of nodes.

Both the multilateration and MDS are built on the basis of least squares fitting,

which fits the calculated distances to measured distances. The least squares fitting is

based on the belief that all the distance measurements are close to their true values

and have equal error distributions. However, when sensors are deployed in a concave

environment, some of the distances estimated by the multihop based approach may

deviate far away from their true values because the shortest paths have to detour

along the concave shapes and deviate from straight lines. If we still use the least

squares fitting algorithm to equally fit all the measurements, the final positioning
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results will be deteriorated by those ”bad” distance measurements. To address this

issue in multihop algorithms, two approaches have been proposed before.

It is suggested in [26] to use the four nearest beacons instead of all of them in the

multilateration localization. This is based on the observation that the distances from

a sensor to the nearest beacons will be less affected by the concave shapes. However,

it is still possible that the shortest path to the nearest beacon is affected by the

concave shapes.

Proximity-distance map(PDM) is proposed in [27] to approximate lengths of the

shortest paths to Euclidean distances correctly in anisotropic networks. In PDM,

each sensor is assigned a coordinates in M-dirnensional embedding space defined by

the lengths of the shortest paths from sensors to all M beacons:

P2: = [Pi1.---PmlT.

where pij is the length of the shortest path from the ith sensor to jth beacon. The

objective of PDM is to find out sensors’ coordinates in M-dimensional embedding

space defined by Euclidean distances from sensors to all M beacons:

ii = [121: - - JiMJT.

where [U is the Euclidean distance from the 73th sensor to jth beacon. When the

Euclidean distances from a sensor to all the beacons are available, the multilateration

such as least squares fitting can be used to calculate sensor’s location based on those

Euclidean distances. PDM assumes there exists a linear transform between p, and

1,; such that l,- = Tp,. The linear transform T can be learned from beacons, where

beacons’ coordinates of both p,- and l,- are known.

30



The intuition of PDM is that the topology character of the entire network can

be well represented by the beacons, since they are uniformly distributed in the net-

work. Therefore, the linear transform T learned from beacons can be also applied to

other sensors to transform their coordinates p, to coordinates 1,: defined by Euclidean

distances.

Mobile sensor based approaches

Using mobile nodes in ad hoc wireless networks has been suggested by previous work

[28] [29]. Especially, using a mobile beacon to locate sensors has been proposed in [30],

which assumes that the mobile beacon is equipped with GPS and know its absolute

coordinate. When the mobile beacon moves around a sensor, the sensor can estimate

the distances to various positions of the mobile beacon. Based on its relative distances

to the mobile beacon, the sensor’s absolute coordinate can be determined.

The mobile-assisted approach proposed in [31] suggest to measure distances be-

tween pairwise nodes without reliance on GPS signals. The mobile-assisted approach

uses a single mobile beacon to obtain distances between pairwise sensors. In order

to have sufficient constraints to calculate the distance between pairwise sensors, the

mobile-assisted approach requires the beacon to move along a certain track. For ex-

ample, the mobile beacon must move along a straight line for two consecutive steps

in the two dimensional localization. Moreover, the mobile-assisted approach pays less

attention to the incorrect distance measurement incurred by obstructions. Based on

distances acquired by mobile beacons, the iterative least squares fitting is proposed in

[32] to exclude an incorrect distance measurement in each iteration when a measured
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distance significantly differs from the estimated distance.

2.2 Packet routing protocols

Due to its fundamental importance, packet routing in wireless networks has been

studied for decades. In order to adapt to dynamic changing network topologies due

to node mobility, DSDV[33], TORA[34], DSR[35], and AODV[36] have been pro-

posed which either periodically broadcast routing updates or learn routing paths on

demand by message flooding. On—demand routing protocols is further improved by

utilizing multiple input multiple output technology in [37]. Dominating-Set Routing

has been developed to limit the routing broadcast message within a subset of network

nodes[38]. To further reduce or avoid the communication overhead of message flood-

ing, Location aware routing (LAR) has been suggested to utilize nodes’ geographical

positions to discover routing paths[39] [7] [40] [41][42] [43] [44] [45] [46] [47] [48]. LAR is

based on the observation that a wireless network’s topological structure is similar to

its geographical structure. Consequently, a packet can be forwarded one hop closer to

its destination if it is greedily forwarded to a neighbor which is geographically closer

to the destination. Nevertheless, the LAR may fail to deliver a packet in the local

minimum when voids are presented, which is often the case when nodes are deployed

in a concave area.

Numerous recovery schemes have been proposed to assist LAR to go through the

local minimum. When local minimum happens due to the presentation of voids, the

GPSR suggests to follow the right-hand rule to traverse around the edge circle of
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the voids: a packet is always forwarded along the counterclockwise perimeter of a

void[7]. BOUNDHOLE proposes to find all the points of local minimum by finding

out the boundaries of holes(voids)[49]. The local minimum can be recovered by

routing packets through paths connecting the boundaries of voids. Instead of locating

and bypassing voids, fall-back mode has been proposed to route a packet to the

beacon which is nearest to the destination whenever the local minimum is met[8]. The

beacon thereafter initiates a small scope flooding to find the final destination. Despite

their effectiveness, recovery schemes are more costly than simple greedy forwarding

because either sophisticated algorithms are used to exploit geometric characteristics

of a network or flooding is involved to search for destinations.

Due to the tight design constraints imposed in sensors, nodes’s locations are often

inaccurate or even unavailable. In order to be independent on the location infor-

mation, several algorithms have been proposed recently to generate nodes’ virtual

coordinates from network topologies. GEM maps a mesh network into a tree struc-

, ture such that a packet can be first forwarded up the tree until it reaches an ancestor

of the destination. The ancestor thereafter relays the packet to the final destina-

tion. To shorten routing paths, short cuts are created in each layer of the tree such

that a packet may be relayed to a destination before the common ancestor of the

source and destination is reached [50]. Geographic routing without location informa-

tion (NoGeo) in [51] proposes to use virtual coordinates to support greedy forward-

ing. This idea is further developed by a serial of virtual coordinates based approaches

[52] [53] [54] [8] [55] [56]. All these approaches proposed to construct nodes’ coordinates

from hop count distances instead of geographic distances to support the greedy for-
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warding. However, local minimum still exists in these approaches because hop count

distances cannot be accurately recovered from constructed coordinates.

Moreover, the hop count distance based greedy forwarding suffers the same prob-

lem as the geographic routing in that the quality of underlying wireless charmels are

not reflected in the routing decision. Both approaches tend to select a route with

fewer intermediate forwarding nodes and therefore longer distance hops.

Several approaches[57] [43] [58] [59] have been proposed to balance the forwarding

distance and radio link quality, which either defines a threshold to exclude low quality

radio links; or defines a new metric which can be maximized under the constraints of

both forwarding distance and radio link quality. Nevertheless, the greedy forwarding

based on defined local metrics may fail to find the optimal end-to-end routing path

because the local metrics combined by the forwarding advance and the link qual-

ity between immediate neighbors can not reflect the global communication channel

qualities.

The optimal routing metrics in a wireless network have been investigated in

[60] [61]]62] [63] [64], which propose the ETX and RTT instead of the shortest path

as the routing metric. The proposed metrics are incorporated into the on—demand

routing such as DSR to discover the optimal routing path.

We propose to use embedding techniques to assign sensors with optimal virtual

coordinates such that routing path quality can be accurately inferred from assigned

coordinates. The embedding techniques have proved their success in Internet overlay

networks[65] [66] [67]. All the work is motivated to create an overlay network which

can exploit network proximity in the underlying Internet. Network embedding was
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also suggested to discover sensor nodes’ geographical positions from a network topol-

ogy[22] [21].

2.3 Reliable data transmission

To reliably transmit packets over lossy wireless channels, a group of transport proto-

cols have been proposed to recovery lost packets based on the retransmission mecha-

nism. Among the proposed approaches, the RMST[68] and RBC[69] approaches use

time-out mechanism to detect lost packets. As we discussed in Section 1.3, the stop-

and-wait nature of the time-out mechanism reduces channel throughput. On the other

hand, the sequence-based mechanism is used by the PSFQ[70], GARUDA[71], and

lazy loss detection [72] to detect lost packets and recover lost packets in a hop-by-hop

fashion. The sequence-based mechanism uses the strict in-order sequence numbers

to detect lost packets, which may incur packet delay and reduce channel through-

put. This happens because packets cannot be forwarded by an intermediate node

if any packet with the lower sequence number has not been recovered. Otherwise,

unnecessary packets retransmission requests will be falsely invoked. The unnecessary

retransmission requests can be partially reduced by the availability map pr0posed in

GARUDA[71], in which the retransmission requests can only be initiated when the

packets with missing sequences are available in an upstream core node. The above

recovery approaches ensure high data transmission reliability through complex mech-

anisms to detect and retransmit lost packets, which is critical to applications where

packet loss is intolerable. For example, the PSFQ and GARUDA approaches are
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specially designed for download stream transmission from the sink to sensors. The

control messages, such as reprogramming packets, have to be delivered from the sink

to sensors with high reliability.

2.4 Channel access scheduling

Media access control (MAC) is critical to sensor networks where multiple sensors

share the same communication channel for data transmission. To reduce channel

collisions, a group of TDMA based protocols have been proposed to assign time slots

among adjacent sensors [11][12] [73] [74]. However, TDMA protocol may either require

a global view of the entire network topology, or incur massive message exchange be-

tween neighboring sensors. Moreover, TDMA is not flexible and scalable, which makes

it impractical to be deployed in a changing sensor network comprising thousands of

nodes. In contrast, the major MAC protocols that have been implemented in sensor

networks are CSMA based protocols [75] [76] [77]. To reduce channel collisions while

maintain the flexility of CSMA, hybrid solutions of CSMA and TDMA have been

proposed. Z-MAC suggests to use CSMA when data transmission is low and switch

to TDMA when data is transferred at high rate [73]. This approach helps a sensor

network to achieve high channel utilization under both high and low channel con-

tention. Funneling-MAC [78] proposes to use the TDMA in the region that is close to

the sink while use CSMA for the rest part of a sensor network. This approach applies

the TDMA to a small area that has highest channel contention in a sensor network,

and keep the CSMA in rest sensors. Unlike these approaches, the receiver-centric
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approach proposed in this dissertation is neither replace the CSMA, nor complement

CSMA. Instead, we enforce a channel access scheduling overlay on the CSMA pro-

tocol, which retains the flexibility and scalability of CSMA while effectively reduce

channel collisions.
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CHAPTER 3

Mobile Beacons Based Distance

Measurement for Sensor Localization

3.1 Motivation

Sensor localization involves two steps: distance measurement and localization algo-

rithm. When distance measurements have large errors, it is difficult to use localization

algorithm to achieve accurate results. In this chapter, we aim to filter out incorrect

distance measurements in the first step, which can provide a good basis for local—

ization algorithms. Particularly, we propose to use mobile beacons equipped with

ultrasound transceivers to find correct distance measurements of pairwise sensors in

an obstructed environment.

Despite its accurate results in the line-of-sight condition, the ultrasound ToF

approach must address two challenges before it can be readily applied to a sensor

network deployed in a complicated environment, especially in an indoor environment

where ultrasound signals are reflected along multiple paths. The first challenge is that

the ultrasound ToF approach has short measurable range due to the power constraint
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of sensor nodes. The second challenge is that distance measurements will have large

errors in an obstructed environment. As shown in Fig. 3.1, when the line-of-sight

path is blocked between sensor 81 and 32, the distance has to be estimated from a

reflected path which is much longer than the true distance between 81 and 82. In this

chapter, we try to address these two challenges by using mobile beacons to measure

distances between pairwise sensors deployed in an indoor environment.

To measure distance between pairwise sensors, we propose to use a pair of beacons

attached to a small vehicle which randomly moves around in the deployed area. In

our proposed approach, only beacons are equipped with ultrasound senders, and sen-

sors are equipped with receivers that passively receive ultrasound signals broadcast

by beacons. The distance between pairwise sensors can be determined if both sensors

are within the beacons’ ultrasound transmission range. When mobile beacons move

around in the deployed area, it is possible to obtain sufficient distance constraints

through which sensors’ relative positions can be uniquely determined. Here, mobile

beacons behave as a virtual ruler that wanders in the deployed area to provide dis-

tance measurement service to pairwise sensors as shown in Fig. 3.2. Compared with

previous ultrasound based distance measurement approaches where a sensor acts as

both a sender and a receiver, the virtual ruler approach can achieve longer distance

measurement range such that more distance constraints are available to form a rigid

network to uniquely determine sensors’ positions. Such a long range distance mea-

surement can be achieved without violation of the energy constraints, because only

beacons are equipped with high power ultrasound senders and sensors are equipped

with receivers consuming less energy. As a result, the virtual ruler approach addresses
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Figure 3.1 Ultrasound multipath effect in Figure 3.2 The virtual ruler moves

an indoor environment around in the deployed area

the first challenge of short distance measurement range.

To address the second challenge that distances estimated along the reflected paths

have large errors, we conduct intensive experiments to test ultrasound distance mea-

surement in an indoor environment. We observe that a sensor’s incorrect position,

estimated from a reflected path instead of a straight line, is always mirrored to its

true position. As shown in Fig. 3.1, the distance estimated between sensor 81 and

52 along the reflected path is equal to the distance between $1 and 55, the mir-

rored position of 52. Based on this phenomenon, we further observed that incorrect

distance measurements incurred by multipath effect have finite values that are vir-

tual distances between sensors and their mirrors. This makes it possible to identify

incorrect distance measurements through a statistical approach. When the virtual

ruler moves around a pair of sensors, the distance between the pair of sensors can be

measured by the virtual ruler multiple times from different perspectives. We observe

two phenomena: i) a distance between the same pairwise sensors can be measured by
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the virtual ruler more frequently if it is less affected by obstructions; ii) among all

the measured values to the same distance, the correct measurement value is observed

more frequently than incorrect ones. Therefore, we can identify correct distance mea-

surements based on the distribution of measured values. Moreover, the confidence to a

distance measurement can be quantified according to the distribution of its measured

values. Based on the measurement confidence, the mobile distance measurement can

be further combined with the recursive approach such that the distance measure-

ment with higher confidence will have higher priority to be applied in the recursive

approach.

The rest of the chapter is organized as follows. Section 3.2 describes the vir-

tual ruler approach. Section 3.3 evaluates our proposed virtual ruler approach by

comparing it with previous work. We summarize this chapter in Section 3.4.

3.2 Virtual ruler distance measurement approach

In this section, we first evaluate the measurement accuracy of the ultrasound ToF

approach in the line-of-sight condition. After that, we test the ultrasound ToF ap-

proach in an obstructed environment. Based on our experimental observations, we

propose the virtual ruler approach that can measure distances between pairwise sen—

sors from multiple perspectives and filter incorrect distances statistically. How to

combine the virtual ruler approach with the recursive approach is included at the end

of this section.
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3.2.1 Ultrasound distance measurement in the line-of-sight condition

Using ultrasound to measure distances in a sensor network has been extensively stud-

ied in previous work [79] [80]. In this chapter, we repeat the experiment of distance

measurement in a line-of-sight condition and compare the result with that in an ob-

structed environment. We use the same hardware as the Cricket system [81], which

attaches two ultrasound transceivers to the MICA2 nodes developed by UC Berkeley

[82]. The Cricket sensor nodes broadcast the radio signals and ultrasonic signals at

the same time. The ultrasonic signals will reach a receiving node later than the radio

signals due to their speed difference. By measuring the flight delay of the ultrasonic

signals, the distance between a sender and a receiver can be estimated based on the

constant speed of ultrasonic signals.

We measure the distances between a pair of Cricket sensor nodes in the line-of-

sight condition. The pair of sensors are placed on platforms 2 inches above a hallway’s

floor with ultrasound transceivers facing towards each other. We vary the distances
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between pairwise sensors from 0.3 feet to 30 feet. The experimental result is shown

in Fig. 3.3, where x-axis represents the actual distances and y-axis represents the

estimated distances. Fig. 3.3 shows that a clear linear relationship exists between

the actual distances and estimated distances. The actual distances are slightly larger

than the measured distances because sensors cannot be manufactured exactly the

same as each other such that each sensor may use a slightly different time to process

radio and ultrasound signals. However, the measurement errors caused by manufac-

tory difference are a constant and can be easily calibrated through a fitting function

between the actual distances and estimated distances. The fitting function for the

pair of sensors used in this experiment is y = 0.9 x a: + 0.2. After calibration, the

ultrasound approach can achieve high distance measurement accuracy. Methods for

calibrating sensors in large volume has been studied in [80].

3.2.2 Ultrasound distance measurement in an obstructed environment

Despite its high measurement accuracy in the line-of-sight condition, the ultrasound

approach may have large measurement errors in an indoor obstructed environment

where multipath effects cannot be avoided. In an indoor environment, the ultrasonic

signals may travel along multiple paths and arrive in a receiver at different time,

though they start at the sender simultaneously. Nevertheless, if the line-of-sight path

exists between pairwise sensors, the receiver can always identify the flight time along

the shortest straight line by selecting the earliest arrival time of the ultrasonic signals.

The situation becomes worse if a line-of-sight path does not exist between the sender

and the receiver. As shown in Fig. 3.4, because the straight line between a sender
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and a receiver is blocked by an obstruction, the ultrasonic signals have to travel a

longer distance along reflected paths. Consequently, the estimated distance is much

longer than the Euclidean distance between the pairwise sensors.

Because the ultrasonic signals along the reflected paths have the same format as

those along the straight lines, it is impossible for a single receiver to identify incorrect

distance measurements affected by obstructions. However, our experiments show

that a sensor’s false position estimated by the reflected path is always mirrored to

the sensor’s true position. In other words, the distance estimated along the reflected

path between pairwise sensors is exactly equal to the distance between the sender

and the mirror of the receiver, which is shown in Fig. 3.4, where the true positions

of the receivers are represented as circles and the mirrored positions are represented

as crosses. We verify this phenomena through a series of experiments. As shown in

Fig. 3.4, we put the sender in the fixed position m while varying the receiver’s position

from 121 to 115. Because the line-of—sight path between the sender and the receiver

is blocked by the obstruction, the ultrasonic signals have to travel along the path

reflected by the wall. The distances of the reflected paths between the sender and

various positions of the receivers are measured by the ultrasound, and we compare the

measured distances with the actual distances between the sender and the mirrored

positions of the receiver.

These experiments are demonstrated in Fig. 3.4, where the solid lines are the

reflected paths from the sender m to the receiver’s positions 111 to 77.4, while the

dotted lines are the distances between the sender m to the mirrored positions of 11.1 to

114. The receiver at position n5 cannot receive any ultrasound signals from m, because
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Table 3.1 Comparison between the reflected distances and the distances from the sender

to the receiver’s mirrored positions ‘

IllllT01'S

distance

 

even the signals reflected by the wall are blocked by the obstruction. Table 3.1 lists

the comparison results between the measured distances along the reflected paths and

the calculated distances between the sender and mirrored positions of the receiver.

Table 3.1 shows that the measured distances of the reflected paths are much larger

than the Euclidean distances between the sender and the receiver but close to the

distances between the sender and mirrored positions of the receiver.

Because the incorrect distance measurement between pairwise sensors is always

equal to the virtual distance from one sensor to the mirrored position of the other, we

can conclude the incorrect distance measurements incurred by obstructions have finite

values since the mirrored positions of a sensor are finite. This observation motivates us

to measure the distance between pairwise sensors from multiple perspectives and filter

out finite number of incorrect distance measurements through a statistical approach.

3.2.3 Measure distances through the virtual ruler

In order to measure distances between pairwise sensors from multiple perspectives,

we attach two beacons to a small vehicle that randomly moves around in the deployed

area. Because the distance between the attached beacons is fixed, we can easily infer
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the distance between a pair of sensors if the distances from the sensors to both beacons

are known. Here, the mobile beacons behave as a virtual ruler that moves around

to measure pairwise distances between sensors. Moreover, the distance between the

same pair of sensors can be measured multiple times when mobile beacons move to

different locations. Using mobile beacons to measure the distance between pairwise

sensors is shown in Fig. 3.5, where node m1 and m2 are mobile beacons and node m

and n2 are sensors. Because beacons’ relative positions are fixed to each other, relative

coordinates can be assigned to all the beacons. Here, we assign ml’s coordinate as

(0,0) and mg’s coordinate as (O, L), where L is the fixed length between m1 and 7m.

By measuring distances dij from node n,- to beacon mj, the relative position of sensor

n, can be calculated as below.

I]; = arg mniin 2011,; — mjl — dij)2 (3.1)

Based on the relative position of n1 and 17.2, the Euclidean distance between the
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Figure 3.7 Distance measurement value distribution obtained by mobile beacons

pairwise sensors can be simply calculated as |n1 — n2|. We utilize the ultrasound’s

mono—directional transmission to avoid flip over error when two beacons are used.

More robust results can be achieved when three beacons are laid out as a triangle.

Intuitively, the error of the distance estimated by the virtual ruler is related to the

fixed length L between pairwise beacons. Higher distance measurement accuracy

can be achieved by the longer length L. To evaluate the relationship between the

distance measurement error and the length L, we conduct a series of experiments by

varying the length L. The measurement error under different value of L is shown in

Fig. 3.6, which illustrates that sufficient measurement accuracy can be achieved with

the relatively small length L. Consequently, we can implement the virtual ruler by

attaching the beacons to a small vehicle.

Although high accuracy can be achieved by the virtual ruler when line-of-sight
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paths exist from pairwise sensors to both beacons, the distance measurement may

have large errors in an obstructed environment where some of the distances from

pairwise sensors to beacons are measured along reflected paths. However, as we

discussed in Section 3.2.2, the incorrect distance measurements caused by obstructions

have finite values. We use the virtual ruler to measure the distance between a pair

of sensors in a floor environment. The distribution of the measured value is shown

in Fig. 3.7, where y-axis represents the measured values and x-axis represents the

location from which the value is measured. Fig. 3.7 illustrates that only several

values are obtained by the virtual ruler. The distance measurement to the same

pair of sensors has finite values because incorrect distances are equal to the virtual

distances between one sensor to the finite mirrored positions of the other sensor. To

further explain this phenomena, we list three examples in Fig. 3.8, where m1 and

m2 represent the mobile beacons and m and n2 represent sensors, and the distance

between n'l’ and 112 represents the incorrect distance estimation due to the multipath

effects. Fig. 3.8(a), Fig. 3.8(b), and Fig. 3.8(c) show that 1, 2, and 4 line-of-sight paths

are blocked by the obstruction respectively. An interesting observation is that when

4 line-of-sight paths are blocked by the obstruction in Fig. 3.8(c), both sensors are

mirrored to the other side of the wall. As a result, the distance between the mirrored

positions is equal to the distance between the original pairwise sensors. Therefore, the

distance is correctly estimated by the mobile beacons, though they measure distances

along the reflected paths to the sensors.

When the virtual ruler moves around in the deployed area, it will measure dis-

tances between pairwise sensors after each moving step. During the movement, the
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Figure 3.8 Examples of distances estimated by mobile beacons in an obstructed envi-

ronment

virtual ruler can measure the distance between a pair of sensors from different per-

spectives to obtain different values, among which the correct distance measurement is

mixed with the incorrect ones incurred by obstructions. In the following discussion,

we show how to identify a correct distance measurement by assigning a confidence

value to the measured distance.

3.2.4 Evaluate the distances measured by the virtual ruler

In order to identify correct distance measurements, we conduct intensive simulations

in various obstructed environments. When the virtual ruler moves around a pair of

sensors, it can observe different distance measurement values d1,d2, . . . (in between

the same pair of sensors from different perspectives. Moreover, the same value d,- can

be measured by the virtual ruler multiple times from different locations. Let k,- be the

number of measurements of value (1,. Let N be the total number of measurements

to the same pair of sensors. We have N = 23:1 13,-. Based on the distribution

of the measured values, we observe two phenomena that are helpful in identifying

correct distance measurements. First, a distance between a pair of sensors tends to
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have a larger N if it is less affected by obstructions. This is because fewer distance

measurements are observed by beacons when the pair of sensors are surrounded by

obstructions and therefore are difficult for the virtual ruler to access. Second, among

all the distance values measured to the same pair of sensors, the value with the

largest number of measurements km” has the highest probability to be the correct

distance measurement. Because a typical indoor environment contains more open

spaces than obstructions, pairwise sensors have higher probability of being observed

by mobile beacons through line-of-sight paths than through reflected paths. Based on

the observations above, we choose the value with the largest number of measurements

lama; as the correct distance measurement between a pair of sensors. Moreover,

we assign confidence C to a distance measurement according to N and km“ as

C = N + /\ x km“, where A is the weighting coefficient. Based on the confidence of

distance measurements, we combine the virtual ruler distance measurement with the

recursive approach, in which the distance measurements with higher confidence will

have higher priorities to be applied.

3.2.5 Combine the virtual ruler distance measurement with the recursive

approach

In the recursive approach, a few sensors are pointed as beacons whose positions are

determined through out-of-band approaches such as manual measurements. In order

to distinguish the beacons used by recursive approaches from the mobile beacons

used by distance measurement, we define the former as the static beacons. Recursive

approaches first locate sensors that are close to static beacons and iteratively convert
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sensors to beacons after their positions are determined. Consequently, the static bea-

cons can be propagated from the initial beacons to an entire deployed area such that

all sensors can be localized. In the process of the recursive approaches, multiple can-

didates are often available to be converted to new beacons. Distance measurements

between pairwise sensors are also redundant in a densely deployed sensor network

such that sensors can be localized by using only partial distance measurements. The

localization result will not be affected by the sequence of converting sensors to bea-

cons and the distance measurement subset if all the distance measurements have the

same error distribution. However, in an obstructed indoor environment, where cor-

rect distances are mixed together with incorrect distances, it is critical to choose the

optimal sequence of the recursive process such that the incorrect distance measure-

ments can be excluded from the distance measurement subset used in the recursive

process. Based on the confidence assigned to distance measurements by our mobile

beacons, the optimal recursive sequence can be approached as follows. In each step

of the recursive approach, the candidate is selected such that we can maximize the

confidence of all the distance measurements that are used to locate the candidate.

3.2.6 Moving strategy

We assume that the virtual ruler moves around as below. It follows a step by step

movement pattern. For each moving step, the virtual ruler randomly selects a moving

direction. However, our test shows that such a random moving strategy leads to a

non-uniform distribution of the moving tracks. As shown in Fig. 3.9, the virtual ruler

only visits the right part of the floor while ignoring the left part. To improve the
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Figure 3.9 Beacons’ moving tracks with Figure 3.10 Beacons’ moving tracks with

random moving strategy enhanced moving strategy

coverage of the virtual ruler, we assume that the virtual ruler has certain intelligence

such that they can communicate with nearby sensors to decide the moving direction.

During the process of measurement, each sensor keeps recording how many times it

has been measured. The virtual ruler queries neighboring sensors before it makes the

moving decision. Based on the queried results, the virtual ruler moves towards the

sensor that have least measurement times. The moving track of the enhanced moving

strategy is shown in Fig. 3.10, where the floor is uniformly covered by the virtual

ruler and all the sensors are visited.

3.3 Performance evaluation

We evaluate our virtual ruler approach in a 20m x 20m square area where 50 sensors

are randomly deployed. Two configurations of the deployed area are used in our sim-

ulation: i) 20 obstructions are randomly positioned (Fig. 3.11); ii) the square area

is configured into a real indoor environment where rooms are separated from each
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other by walls (Fig. 3.10). The virtual ruler moves around in the area and measures

pairwise distances of static sensors within their measurable range. As illustrated in

Fig. 3.10, the dashed lines show the trace of the virtual ruler that moves randomly

throughout the region. The virtual ruler moves a total of 100 steps, and stops at each

step to perform measurements. In this section, we evaluate both the distance mea-

surement performance and the localization performance when combining the virtual

ruler approach with the recursive approach.

3.3.1 Distance measurement performance of the mobile beacon approach

When the virtual ruler moves around in the deployed area, it can measure the dis—

tance between a pair of sensors multiple times from different perspectives. For the

distance between the same pair of sensors, the virtual ruler may obtain different val-

ues, among which the correct value is mixed together with the incorrect ones. In

order to statistically identify the correct value from the incorrect ones, we investigate
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the characteristics of the distance measurement distribution through intensive simu-

lations conducted in indoor environments. We record all the distance measurement

values obtained by the virtual ruler and plot the distribution of measured values in

Fig. 3.12, where Fig. 3.12(a) shows the full distribution of all the distance measure-

ments and Fig. 3.12(b) shows an enlarged part of Fig. 3.12(a) for clear visualization.

The height of each vertical bar represents the total number of distance measurements

N between a pair of sensors. The vertical bar is further divided into two segments

and the height of the the bottom segment represents the number of measurements

Irma; of the value than, which has the largest number of measurements among all

the values observed by the virtual ruler. The sum of the number of measurements of

all other values is represented as the length of the top bar. The bottom bar is col-

ored in gray if it is the correct value; otherwise the bar is colored in black. Fig. 3.12

shows that the majority of bottom bars are painted in gray, which means the correct

distance measurements tend to be observed by the virtual ruler more frequently than

incorrect ones. Therefore, among all the measured distance values to the same pair

of sensors, we can select the one with the highest observed frequency as the correct

distance measurement.

We compare the distance measurement of the mobile-assisted approach [31], vir-

tual ruler approach, virtual ruler approach with frequency analysis in both the indoor

environment and random obstruction environment. The comparison results are shown

in Table 3.2 and Table 3.3 respectively. The comparison shows that the virtual ruler

approach has lower percentage of incorrect distance measurements than the mobile-

assisted approach. Moreover, the percentage of incorrect distance measurements of
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Figure 3.12 Distance measurement distribution

the virtual ruler approach can be significantly reduced by frequency analysis.

From Fig. 3.12, we can find a few counter examples where incorrect distance

measurements fall to the bottom bars that are painted in black. However, the bar

that contains the correct distance measurement at the bottom tends to be high.

This observation motivates us to further exclude incorrect distance measurement by

imposing a threshold to distance measurement. When the total number of distance

measurements falls below the threshold, we regard the distance measurements as

incorrect ones. By using the threshold strategy, the percentage of incorrect distance

measurement is further reduced, as shown in Table 3.2 and 3.3.

3.3.2 Localization performance by combining the mobile beacon distance

measurement with recursive approaches

The observations above shows that a distance measurement can be evaluated through

two metrics: i) the total number of measurements to the same distance between

pairwise sensors; ii) among all the measurements, the proportion of the value that
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Table 3.2 Distance measurement comparison in an indoor floor environment

 

 

 

 

     

distance mea- mobile- virtual ruler virtual ruler virtual

surement ap— assisted with one time with he ruler with
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total number 486 658 658 201

of measure-

ments

the number 129 I46 100 2

of incorrect

measurements

percentage 26.54% 22.19% 15.2% 1%

of incorrect

measurements
 

Table 3.3 Distance measurement comparison in

obstructions
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distance mea— mobile- virtual ruler virtual ruler virtual

surement ap- assisted with one time with fre- ruler with

proach measurement quency analy- threshold

sis strategy

total number 579 740 740 253

of measure-

ments

the number 159 166 104 3

of incorrect

measurements

percentage 27.46% 22.43% 14.05% 1.2%

of incorrect

measurements
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Figure 3.13 Distance measurement sub- Figure 3.14 Applying virtual ruler to the

set selected by virtual ruler recursive approach

has the largest contribution to the total number of measurements. Based on the

two metrics, a confidence value can be assigned to each distance measurement such

that we can rank distance measurements according to their confidences. With the

ranked distance measurements, the virtual ruler distance measurement can be readily

combined with the recursive approach to exclude incorrect distance measurements by

giving a higher priority to a distance measurement with higher confidence. We then

evaluate the combination of the virtual ruler approach and the recursive approach in

the indoor floor environment. Besides the distance measurement errors incurred by

the obstructions, we add Gaussian distributed random error to distance measurement.

The simulation result is shown in Fig. 3.13 and Fig. 3.14. Fig. 3.13 shows that the

virtual ruler successfully excludes most incorrect distance measurements and only two

incorrect ones (painted with two bold dashed lines) are involved in the localization.

In Fig. 3.14, the circles represent the true positions of sensors and lines represent the

localization errors between true positions and the estimated positions.
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Figure 3.15 Compare the virtual ruler approach and iterative least squares fitting

We further compare the virtual ruler approach with the iterative least squares fit-

ting algorithm in [32] that filters out incorrect distance measurements by iteratively

applying least squares fitting. In each iteration of the iterative least squares fitting

approach, the estimated distances between a sensor and static beacons are calculated

based on the sensor’s position estimated by least squares fitting. The distance mea-

surement that differs most from its estimated value is excluded in the next iteration.

Fig. 3.15 shows the comparison result in the indoor environment. We can see that

the virtual ruler distance measurement combined with the recursive approach outper-

forms the iterative least squares fitting algorithm. The iterative least squares fitting

algorithm fits all the measured distances equally such that the final estimated loca-

tion is the averaged result of all the measurement. However, the least squares fitting

algorithm does not guarantee that the estimated result will favor the correct distance

measurements. If the estimated location favors the incorrect distance measurements,

the correct distance measurement will be filtered in the iteration.
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3.4 Summary

It is a challenging task to locate sensors in an indoor environment because the multi-

path effects will incur large errors in distance measurements. The incorrect distance

measurements, once mixed together with correct distance measurements, are difficult

for localization algorithms to identify and exclude. In this chapter, we proposed to fil-

ter out the incorrect distance measurements in the first step of distance measurement.

By using mobile beacons to measure distances between pairwise sensors from multiple

perspectives, our proposed virtual ruler based distance measurement can statistically

identify incorrect distance measurements, which provides a good basis for indoor lo-

calization algorithms. Especially, the virtual ruler based distance measurement can

be further combined with the recursive approach such that distance measurements

with higher confidence are selected with higher priority. The performance evaluation

shows that the virtual ruler based distance measurement can achieve better localiza-

tion results than previous mobile-assisted approaches.
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CHAPTER 4

Locating Sensors in Complicated

Environments with the Upper Bound

Approach

4.1 Motivation

In the previous chapter, we use the mobile virtual ruler equipped with ultrasound

transceivers to filter incorrect distance measurements between pairwise nodes. How-

ever, this approach utilizes the unique character of ultrasound based distance mea-

surement, i.e. incorrect distance measurements have finite values and can be excluded

through statistical analysis. As a result, the virtual ruler approach cannot be applied

to some sensor network applications that prefer the radio based distance measure-

ment to the ultrasound based distance measurement because the former has lower

cost and smaller dimensions. The radio based distance measurement estimates dis-

tances between pairwise sensors from received radio signal strength (RSS), which

is based on the phenomenon that radio signals attenuate during their transmission.
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The RSS-based distance measurement often has large errors when radio transmis-

sion paths are blocked by obstructions, because the radio signals can be weakened

by obstructions. An example is shown in Figure 4.1, where the RSS—based distance

measurement between node P1 and P0 is much larger than its true value.

Because in—network distance measurements usually have short range, multihop

approaches have been proposed to infer distances between any pairs of sensors, which

approximate the length of the shortest path to the Euclidean distance between a pair

of node. However, when sensors are deployed in a cave area, the distance inferred

from multihop approaches will have large errors. An example is shown in Figure 4.2,

where the length of the shortest path between node P3 and P4 is much longer than

the Euclidean distance between node P3 and P4.

When distance measurements between pairwise sensors have small errors, sensor’

positions can be accurately located by the maximum likelihood estimation (MLE)

algorithm. MLE algorithm assumes that each measured distance is an approximation

of the corresponding true distance. Thus, the optimal position for a sensor node is
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found by minimizing the differences between the measured distances and the distances

calculated from the assumed position of the node. More formally, this idea can be

described as follows:

Let {P5,1 S i S n} be the set of beacon nodes. Let P0 be the node whose

position is unkown, and P0 be its estimated position. For each beacon Pi, let d,- be

its measured distance to P0, and [POE-l be its estimated Euclidean distance to node

P0. To minimize the difference between the measured distances and the estimated

ones, we can refer to the optimization problem below, which is a typical least squares

fitting problem.

it

Po = argngnZaPoal — at.)2
0 .

2:1

Since the above objective function computes the aggregated difference between

measured distances and the estimated ones, small errors in individual distance mea-

surement will be averaged out, and as a result will not affect the accuracy of final

estimated position significantly.

MLE algorithm, however, may fail to locate sensor accurately in complicated

environments including obstructed or concave areas, where distance measurements

based on the RSS approach or multihop approaches have large errors. In this case,

a single distance with a large error can corrupt the final localization results. An

example is shown in Figure 4.1, the estimation result PO’ is pushed far away from its

true position P0 due to the incorrect distance measurement P1P0.

In this chapter, we propose to use the upper bormd algorithm to locate sensors in

62



complicated environments. The upper bound algorithm is based on the observation

that incorrect distance measurements, either inferred from the RSS approach or the

multihop approach, are always larger than their true value. Consequently, measured

distances can be always viewed as the upper bound of the true values between pairwise

sensors. By enforcing the upper bound constraints to the MLE algorithm, a sensors’s

estimated position can be tightly confined in the small area intersected by correct

distance measurements. In the following discussion, we detailed how to apply the

upper bound algorithm to the RSS-based approaches and the multihop approach

respectively.

4.2 Apply the upper bound algorithm to RSS—based ap-

proaches

We have shown that RSS-based distance measurements may have large errors in

obstructed environments and can corrupt the final localization results. To facilitate

our discussion, we categorize distance measurement errors into two groups: micro-

ernor refers to the case where the distance measurement is only slightly affected by

environments, such as atmospheric conditions, and the error is within a tolerable

extent; macro-ermr refers to the case when radio signals are severely distorted by

environments, such as obstructions, and measured distances are significantly different

from their true values.

In order to achieve accurate localization results in obstructed environments, we

apply the upper bormd algorithm to RSS-based approaches, which is named as Mul-
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Figure 4.3 MRTP approach

tiscale Radio Transmission Power (MRTP) approach. Unlike the range-based ap—

proaches, which translate a distance from the Received Signal Strength (RSS)[83],

the MRTP approach gradually increases a beacon’s transmission range by increasing

the scales of its transmission power, and the upper bound of the distances between

a beacon and other sensors are determined by the minimal audible radio signals re-

ceived by the sensors. By using the discrete scale levels of transmission ranges to esti-

mate distance between sensors, we reduce estimation errors caused by the fluctuation

in radio signals. Furthermore, unlike the range—based approaches, where measured

distances are used as approximation for the true distances, In MRTP approach, mea-

sured distances only serve as upper bounds for the true distances that define a set

of feasible locations for sensors. By avoiding approximating true distances with the

measured distances, the MRTP approach will be resilient to the macro-error distance

measurement, which usually is significantly different from the true distance.

Two possible techniques can be used to obtain the distance upper bound con-
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straints between beacons and a sensor. The first approach is to quantize the RSS

into multiple scales. Each RSS scale is mapped to a distance, which can be obtained

through empirical test. When a sensor receives radio signals from a beacon, it com-

pares measured RSS with empirical data. The distance upper bound constraints can

be obtained by finding out the smallest RSS scale which is larger than measured RSS.

The second approach is proposed when sensor nodes are incapable of measuring RSS.

The main idea is to gradually increase the radio transmission power of sensors, un-

til the radio packets can be ”heard” by some receivers or the maximum transmission

power is reached. Since each scale of transmission power corresponds to certain trans—

mission range, given that a receiver receives a radio signal from a sender, it is able to

infer, based on the scale of received signal, within which range it is from the sender.

To be more precise, let P0 be the receiver with unknown position, and P1 be the

sender. When P0 receives a signal from P1 at power scale level of ml, the following

inequality will hold for receiver P0, i.e., [P0131] g f(m1), where [P0P1I stands for the

Euclidean distance from receiver P0 to sender P1, and f(m1) is a function that maps

the transmission power scale level of signals into its transmission range, which can

be determined using empirical data. The above case can be generalized to multiple

beacons, in which a different inequality constraint is introduced for every beacon P;.

Let {m1,m2, . . .mr} be the set of signal levels that P0 has received from beacons

{P1, P2, . . . Pr}. Thus, the following set of inequalities will hold for receiver P0, i.e.

lPon-l S f(mz') (131$ 7‘)-

However, the above set of inequality only determines the area that receiver will

stay in. In order to pin down the exact location, we need to further decide which
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position among the confined area is more likely to be correct than other positions.

To solve this problem, we follow the Centroid approach, i.e., when a receiver detected

a signal from a sender, it must be close to the sender. Thus, within the determined

area, we believe the position that is closest to all ’audible’ senders is most desirable

one. This simple idea can be formulated into the following optimization problem, i.e.,

,.

B0 = argrrfraipXNPon-l2 (4.1)

i=1

subject to [PoPil S f(m,-) V1 3 2' S r

The above optimization problem is a typical quadratic constraint and quadratic pro-

gramming (QCQP) problem and can be solved efficiently using second order cone

programming algorithms[84].

Compared to the range-free approach with uniform transmission power, the MRTP

approach is more accurate, especially when the receiver is close to sensors. It is

interesting to note that the Centroid approach can be viewed as a special case of

Equation (4.1) when all the upper bounds f(m;) = 00. This result indicates that the

centroid approach can be viewed as a MRTP approach under the assumption that

the distance information is extremely inaccurate. However, in practice, by scanning

the transmission power from low to maximum, distance measurement with reasonable

accuracy can be achieved, at least for the beacon nodes that are close to the receivers.

Under that circumstance, we will expect the proposed MRTP algorithm to provide

more accurate estimation of a sensor’s location than the range—free approach.

Compared to the MLE approach, the MRTP approach is more tolerant to large er-

rors in macro-error distance measurements. This is because the MLE approach treats
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each estimated distance as an approximation of the true distance and applies the max-

imum likelihood estimation to find a position such that all estimated distances are

fitted well. In the case of obstructions that block between beacons and receivers, the

estimated distances can be significantly far away from the true distances, which can

severely degrade the accuracy in location estimation if we fit all measured distances

equally.

In contrast, in our proposed MRTP approach for location recovery, we never treat

the estimated distance (i.e., f(m,)) as a good approximation of the true distance.

Instead, an estimated distance only provides the upper bound as to which range the

receiver will be away from the sender. Due to the competition between different con-

straints and the objective function, only certain constraints are effective to determine

the receiver’s position and the rest inequalities are ignored. To better illustrate this

point, an example is shown in Figure 4.3, in which an obstruction blocks between P1

and the receiver P0. As a result, more transmission power is required to send the

radio packets from P1 to P0, which results that the measured upper bound is much

larger than the actual distance between Po and P1. For the other three beacons P2 P3

and P4, since there is no block of obstructions, more accurate upper bound estima-

tion between them and the receiver can be achieved. Since the distance between the

receiver P0 and each sender is less than the estimated upper bound, for each sender,

we draw a circle to represent the feasible area that receiver P0 can stay. The final

admissible area for P0 is the intersection of all circles. As indicated in Figure 4.3,

because of the loose upper bound estimation for the distance between beacon P1

and Po, the circle for P1 has no impact in determining the final intersection. This
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analysis indicates that the proposed algorithm is able to filter out certain erroneous

upper bound estimation, thus is more robust than the range-based approaches in an

environment where multiple obstructions exist and correct distance estimations are

difficult to obtain.

4.2.1 Experiment of the MRTP approach

To investigate the feasibility and performance of the MRTP approach in a real de-

ployed environment, we conduct a serial of experiments, where sensors are deployed in

a basket ball court. One sensor is attached to a laptop to accept inputs and display the

localization results. The sensors used in the experiments are MICA2 sensor motes, the

product from Crossbow company equipped with Chipcon CC1000 radio transceiver

with the capability to adjust transmission power from —20 to 10dBm[85] [86].
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Range experiment on Open area

To test the transmission ranges under different radio power scales in an open area

environment, we put two sensors in the hallway, with one as the sender and the

other as the receiver. To facilitate our measurement in a small area, only the sender

is equipped with antenna. The sender is attached to the serial interface board of

MIB510, through which commands are sent to the sender to set the scale of radio

transmission power and start sending radio packets. The receiver counts the number

of received packets for each transmission and saves it to the EPROM, which is read out

later through the serial interface board. The ratio between the number of received

packets and the number of sent packets is the probability for any radio packet to

be successfully received within the experimental distance under certain transmission

power. We sent 100 packets for each transmission, and repeated this experiment

20 times for different distances between the sender and the receiver. The whole

process above was repeated for different transmission power scales. Figure 4.4 plots

the received packet rate versus the distances between the receiver and the sender

for different radio transmission power scales. Clearly, for each transmission power

scale, there exists a sharp critical distance within which almost 100% of packets are

successfully received; beyond the distance, almost no packet is received. We conclude

that a clear mapping between the transmission power scale and its corresponding

transmission range is available by seeking those critical points in the plot.
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Evaluate the MRTP approach in a small scale experiment

To test the accuracy of the MRTP approach, we conducted a measurement experiment

on a small scale physical sensor network. We deployed 9 beacons in a open area, whose

positions were determined by a pseudo random generator. A sensor with unknown

position was randomly placed in the same area. Through the laptop attached to

the sensor, the“start to send” command is sent to each beacon, which sent out a

serial of radio packets with different transmission power scales. The sensor found out

the receivable packets with minimal transmission power scale, which was mapped to

the transmission range based on the empirical data we collected in the experiment

before. Based on the upper bound constraints from multiple beacons (from 3 to 9),

the estimated position of the sensor is computed through our MRTP algorithm. The

distance between the real position and the estimated position was recorded as the

estimation error. The experiment was repeated 100 times by placing the unknown

sensor to different locations. The estimation error averaged over 100 experiments was

used as the final result.

Figure 4.5 shows that the average estimation error is reduced given more beacons

are involved in the computation, and the estimation accuracy less than 2 meters can

be achieved under the current MICA2 hardware support. We expect more accurate

estimation if the scale of the transmission power can be more accurately adjusted.
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4.2.2 Compare the MLE, Centroid and MRTP approaches in large scale

simulations

In the simulations below, we compare the performance of three methods, including

the MLE, the Centroid, and the MRTP approaches. Radio signal is assumed to

be the only method for determining the relative positions of sensor nodes. Nodes

are randomly deployed in a 100m by 100m square area. The simulation is repeated

multiple times with different number of nodes and beacons. The metrics defined

below are used in our simulation:

0 Estimation Error: the Euclidean distance between the estimated location of

a sensor node and its actual position. For the 2"” unknown node, it is defined

as a,- = ((513,- - 1:02 + (37,- — y;)2)1/2, where (53,-, 3”,) is the estimated location and

(33,331,) is the real one.

0 Average Estimation Error: the overall accuracy of a localization algorithm.

It is defined as a = 2,111 0,- /N, where N is the total number of unknown nodes.
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0 Median Estimation Error: the median value of ordered Estimation Errors

of all estimated sensors.

0 Localization Rate: the ratio of successfully located nodes to the total number

of nodes.

0 Radio Transmission Range: the maximum distance to which the radio signal

can be propagated from a beacon.

o Beacon Density: the number of beacons per unit area.

Performance in Open flat area

We compare the performance of centroid, MLE and MRTP algorithms in an open flat

area, where the radio signal propagation is slightly affected by the atmospheric con-

ditions such as temperature. This is related to the case where estimated distance can

be micro-erroneous, but not macro-erroneous. We first fix Beacon Density and only

vary the Radio Transmission Range. The simulation result in Figure 4.6 shows that
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Localization Rate of Centroid algorithm is improved as Radio Transmission Range

increases. This is because a larger radio transmission range will broaden the coverage

area of beacons, and as a result, they become visible to more sensor nodes. Since for

the Centroid algorithm to successfully locate the position of a sensor node, at least

one beacon is required to be visible to the node, improving the visibility of beacons

will help the Centroid algorithm to locate more sensor nodes. However, as shown in

Figure 4.7, a larger Radio Transmission Range leads to an increase in the Average

Estimation Error. This is because the measurement granularity of the Centroid ap-

proach is equal to the Radio Transmission Range. Thus, a larger Radio Transmission

Range will result in a coarser estimation of positions for sensor nodes. Based on the

above analysis for the Centroid algorithm, given a fixed number of beacons, improv-

ing Localization Rate will degrade the estimation accuracy. The above dilemma is

due to the uniform transmission range used by the Centroid algorithm. In a random

deployment, some sensor nodes are close to beacons, while others stay far away from

the beacons. For the nodes with multiple beacons in their vicinity, a shorter radio

transmission range is more preferable for higher accuracy. For other nodes far away

from beacons, a larger radio transmission range is required for them to be located.

The only way to improve both metrics in Centroid approach is to increase the Beacon

Density, as proposed in [87]. Figure 4.8 and Figure 4.9 shows that both the Local-

ization Rate and the estimation accuracy are improved as the number of beacons

increases.

By using the non-uniform radio transmission range in each beacon, our MRTP

algorithm successfully conciliates the contradiction between the Localization Rate
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and the estimation accuracy. As illustrated before, the estimated location for an un-

known node is confined to the intersection between multiple circles. When a sensor

node is close to multiple beacons, an accurate estimation can be achieved since the

intersection area is tightly bounded. By increasing the range of radio transmission of

beacons, we are able to reach the sensor nodes that are far away from all beacons,

thus their locations can still be computed. Figure 4.9 shows that the MRTP approach

achieves significantly improved accuracy than the Centroid algorithm in estimating

locations. It also indicates that the localization accuracy tends to saturate when a

certain threshold of beacon density is reached. Our simulation also shows that all un-

known nodes can be located when beacons’ maximum transmission range is increased

to a certain value. The MRTP algorithm outperforms the Centroid algorithm because

the multi-scale radio transmission range provides more distance knowledge than the

fixed radio transmission range.

Below we compare the performance of MRIP and MLE approaches in open flat

areas, where the accuracy of distance measurement is critical to the accuracy of both
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localization estimations. We define the metrics below to represent the accuracy of

distance measurement of MRTP and RSS, respectively.

0 Scale Unit: the Scale Unit determines the length of increment in the trans-

mission range when a beacon’s transmission power scale is escalated to the next

adjacent level. Here, we assume that the increment in transmission range is

uniformly distributed.

0 Distance Measurement Standard Deviation (DMSD): To simulate the

error in distance measurement of the RSS that is caused by the radio’s irreg-

ularity, a normal distribution is used to model the noise in measured distance,

with a mean at the true distance m and a standard deviation 0 o m, where

coefficient a is the noise factor.

Figure 4.10 and Figure 4.11 shows that the Average Estimation Error increases

when the Scale Unit and the coefficient a of the DMSD increase. The simulation

shows MRTP and MLE achieve the same accuracy when the Scale Unit is 1m and
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Figure 4.14 Performance of the MLE ap- Figure 4.15 Performance of the MRTP

proach approach

the coefficient is 0.1, which means the MRTP approach with Scale Unit of 1m has the

same localization accuracy as the MLE approach whose Standard Deviation is 10%

of the measured distance.

Figure 4.12 shows that the Average Estimation Error decreases, for both the

MRTP and MLE approaches, as the number of beacons increases. Note that according

to Figure 4.12, a steady decrease in the Average Estimation Error is observed for

MLE, while the performance of MRTP appears to saturate when the number of

beacons exceeds a certain threshold. This is because the MRTP approach treats the

estimated distance as an upper bound of the true distance. This assumption is no
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longer true when the true distance is within the range of the random noise in distance

measurement. In contrast, since the MLE approach treats the measured distance as

approximation of true distance, the noise in distance measurement is averaged out

through solving the optimization problem in Equation (4.1). However, as we will

see later in this chapter, we trade the accuracy of location estimation with its fault-

tolerance. From the analysis above, we can conclude that: in the open flat area with

fixed number of beacons, the MRTP approach can achieve more accurate estimation

result than Centroid approach, and the estimation accuracy of both the MRTP and

the MLE approaches are determined by the basic distance measurement accuracy.

Performance in an obstruction abundant environment

The simulation shows that in the flat open area, where the distance measurement is

slightly affected by some random factors, the location estimation accuracy of both the

MRTP and the MLE approaches is determined by the basic distance measurement

accuracy. In such a case, the MRTP approach can be viewed as a multilevel quantized

the MLE approach. It appears that the MRTP approach is different from the MLE
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approach only in the format of distance measurement. In this section, we consider

a realistic setup, in which multiple obstructions are placed to severely deteriorate

the accuracy of distance measurements. In other words, the distance measurements

can be macro-erroneous under this environment. The performance comparison of

the MLE, the Centroid, and the MRTP approaches is shown in Figure 4.13, which

illustrates that MRTP outperforms MLE in an obstruction abundant environment.

Figure 4.14 and Figure 4.15 show an example of comparing the MLE and the

MRTP approaches, where each gray bar represents an obstruction, and each solid

line represents the Estimation Error. The distribution of Estimation Errors is also

shown at the bottom of corresponding graph, which plots the Estimation Errors of

all nodes in the increasing order of the errors. The comparison demonstrates that

almost all the estimation results of the MLE approach are severely corrupted, while

more than half of the sensor nodes are located with high accuracy in the MRTP

approach. Some of the nodes in the MRTP approach cannot estimate their positions

accurately because almost all the beacons are invisible to those nodes; therefore the

estimated node is not tightly constrained in a small area. Figure 4.16 shows that

both the Average Estimation Error and the Median Estimation Error increase as the

number of obstructions increases. This is because more beacons are hidden behind

the obstructions. As shown in Figure 4.17, by increasing the Beacon Density in the

deployed area, the estimation accuracy can be improved because more beacons are

seen by the unknown nodes.
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4.3 Apply the upper bound algorithm to multihop ap-

proaches

In this section, we further discuss how to apply the upper bound algorithm to mul-

tihop approaches. Multihop approaches have been proposed to overcome the limita-

tion of the short-range distance measurement in sensor networks, which suggests to

infer distances between any pair of sensors (including beacons) by approximating the

lengths of the shortest paths to the Euclidean distances. Assisted by the multihop

approaches, distances between any sensor to all beacons are available. This makes it

possible to locate all sensors with a few beacons.

The localization accuracy of multihop based approaches are built on the basis that

the Euclidean distances between pairwise sensors can be well approximated by the

lengths of the shortest paths. Such an approximation is achievable only when the

shortest paths are close to straight lines, which requires sensor nodes are uniformly

and densely distributed in a convex area. When sensors are deployed in concave

areas, the lengths of the shortest paths may not reflect the Euclidean distances cor-

rectly, because the shortest paths between some pairwise sensors have to detour along

the concave areas (for instance C shape as shown in Fig. 4.2). To achieve accurate

localization results in concave areas, we apply the upper bound algorithm to mul-

tihop approaches, which is defined as the improved multihop approach (i-multihop

approach). We detail the i-multihop approach as follows.
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4.3.1 Improved multih0p approach

In this section we introduce our improved multihop (i-Multih0p) approach and

explain how it can be extended to concave areas. To facilitate our discussion, we

define symbols in the table below.

Symbol Defination

p position of the sensor to be estimated

|p — pil Euclidean distance calculated from a sensor’s position p to

a beacon’s position p,-

d, measured distance between a senor and the 71th beacon

d,- true Euclidean distance between a sensor and the ith beacon

Before we detail our i-Multihop algorithm, we will review the original multihop

approach and investigate why it fails in concave areas.

Multihop algorithm: distance fitting approach

The key idea of multihop approaches is to discover a sensor network’s geometry struc-

ture from its communication network topology. In multihop approaches, a sensor

network is viewed as a connected graph G = (V, E), where V is the vertex set rep-

resenting sensors and E is the edge set representing links between a pair of sensors

which are within radio transmission range. Multihop approaches infer the distance

between a pair of sensors by approximating the length of the shortest path to the Eu-

clidean distance. the length of the shortest path between vertex m and n is calculated

as Lmn = 21,-, where l,- are the lengths of intermediate edges included in the shortest

path. The value of I,- can be inferred from RSS which attenuates exponentially when

the transmission distance is increased.
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In the cases where RSS value is not available, multihop approaches infer the length

of the shortest path from the average length per hop, which can be sampled by beacons

as follows.

1. Distances Dij between any pair of beacons can be evaluated from their known

coordinates.

2. The number of hops Hij of the shortest path between pairs of beacons can be

inferred from the Dijkstra or Distance Vector algorithm.

3. The average length per hop to the ith beacon can be calculated as

h- _ Zjevm Dij

z _ 3

ZjeVm Hij

where Vm is the beacon set.

When the average length per hop is available, the length of the shortest path from a

sensor to the ith beacon can be calculated as

Li = hi X Hi,

where H,- is the number of hops of the shortest path from the sensor to the ith beacon.

The accuracy of multihop approaches is built on the assumption that the shortest

path between a pair of sensors is close to a straight line, which is possible as long as

the following assumptions hold:

1. Sensors and beacons are densely and uniformly distributed.

2. The network is maintained as a connected graph.
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3. The deployed area has a convex shape.

The uniform and dense distribution of sensors can be achieved through a carefully

controlled deployment. How to maintain k-connectz’m’ty of a network by selecting a

proper transmission power is well studied in [88] [89]. Therefore, it is not difficult to

hold the first two assumptions. However, the third assumption cannot be guaranteed

in practice, since the shapes of deployed areas are often out of human being’s control.

As we pointed out before, the concave shape has severe impact on distance esti-

mation of multihop approaches. Although a good approximation between the length

of the shortest path and the Euclidean distance can still be achieved in some sce-

nario (for instance P1P2 shown in Fig. 4.2), the lengths of the shortest paths may

differ significantly from the Euclidean distances between pairwise nodes. This is be-

cause the shortest paths may be distorted by the concave area and cannot be close

to a straight line. Such an example is shown as P3P4 in Fig. 4.2. To distinguish

the distorted distance estimation from the rest, we divide the distances estimated by

the multihop approaches into two categories: one is incorrect distance measurements

which are distorted by the concave shape, the other is correct distance measurements

which are not affected by the concave shape. Previous work[21][27] has shown that

the localization results of MDS and mltilateration are severely corrupted by the large

errors of incorrect distance measurements.

As we discussed before, to offset the inaccuracy of distance measurements, the

maximum likelihood estimation (MLE) uses the least squares fitting to estimate sen-

sors’ positions by minimizing the difference between the calculated distances and
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measured distances, which can only tolerant small measurement errors and cannot

accurately locate sensors when large measurement errors are presented.

MultihOp algorithm: the four nearest beacons

To eliminate the impact of concave shapes, it is proposed in [26] which uses the 4

nearest beacons instead of all of them. The intuition is that the shortest path from a

sensor to the nearest beacon may be less affected by concave shapes. To facilitate our

presentation, we denote this algorithm as the néMultihop algorithm. The n-Multihop

algorithm has two potential limitations.

1. The shortest path to the nearest beacon does not necessarily mean it is not

affected by the concave shape. An example is shown in Fig. 4.2 where the path

P1P2 is longer than P3P4, while the former is less affected by the concave shape

and more close to its Euclidean distance.

2. By only using 4 beacons, some of the good distance measurements are elimi-

nated from the localization, and therefore the redundancy of available beacons

is sacrificed.

Now we start to detail our i-Multihop algorithm as below.

i-Multihop algorithm: upper bound approach

To facilitate the discussion, we first assume the iii—network distance measurements

between immediate neighbors are accurate, thus the mismatch between the shortest

paths and straight lines connecting pairwise sensors is the only source of the distance
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measurement error. We will relax this assumption in later discussion. Based on this

assumption, we can have the following observation:

Observation 1: All the measured distances d;- are no less than their true value d,

(‘Z‘ 2 d5), because the length of the shortest path is always longer than the Euclidean

distance of the straight line connecting pairwise nodes. Especially, the incorrect

distance d”,- distorted by the concave shape is much larger than its true value (1’,

(3’, >> (12), because the shortest path deviates significantly from the straight line.

Based on the observation above, we model sensor localization in concave areas as

below.

Model 1: Given a network graph G = (VmUVn,E3UEt), the vertex set Vm

defines the beacons set; the vertex set Vn defines the sensor set whose coordinates are

unknown; the edge set E, defines all the correct distance measurements d;- 2 di; and

Et defines all the incorrect distance measurements d”, >> d;. The sensor localization

is to filter out the incorrect distance measurements Et and recover coordinates of the

vertex set Vn under the constraints of correct measurements E3 and beacon set Vm.

The challenge is how to recognize the incorrect distance measurements from the

rest in the model where incorrect distance measurements are mixed together with

correct distance measurements, which is impossible to be achieved by observing an

individual distance measurement alone. However, we show that it is possible to

eliminate the impact of incorrect distance measurements from the final localization

result when multiple distance measurements are available. Instead of fitting distance
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Figure 4.18 Sensor P is constrained in the intersection of the circular regions P1, P2

and P3

measurements, we use upper bound constraints to locate sensors as below.

A . 2

p = aremy: ID - Pil (41-?)

subject to |p — ml 3 d,-

Remark 1 The algorithm described in Eqn (4.2) can filter out incorrect distance

measurements and achieve accurate localization results if and only if the number of

correct distances is no less than 3.

Based on our assumption d; 2 d,- we have distance measurement error 6,- = d,- -

d; 2 0. Without losing generality, for all the distances measurements between the

senor and beacons, we assume 61 S 62 g 3 6m << 6m+1 S 6m+2 . .. 5 (in. Here,

6,; (1 S i S m) are small errors of correct distance measurements, and 6.,- (m + 1 g

i _<_ n) are large errors of incorrect distance measurements.

Since d,- 2 di, we have p E 0,, where C, is the circular region with origin pi and

radius d}. We define the area of C,- as 5,, which represents the uncertainty of the
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estimated position 5. Based on the knowledge of d; _>_ d4, we have Ip — Pil _<_ d,. The

probability of estimated position p follows the uniform distribution:

1/3, ,if lp - Pil S. (It;

19(1)) =

0 , otherwise.

When S,- becomes smaller, the probability density of p(p) is increased. Thus,

the uncertainty of the estimated position p is decreased. When multiple distance

measurements are available, the true position of node p should be in the intersection

of all circular regions 0,, i.e. p E I = 01991 0,, and the probability of p follows:

1/S’(I) ,ifp E I;

p(p)=

0 , otherwise.

Here, the area S(I) of intersection region I represents the uncertainty of the final

estimation result. If 6.,- —> 0, 3(1) ——» 0, the estimated position ’15 can be accurately

pinpointed to its true position p.

Let St = 019-3”, 0,. We have S(I) S St, which means the uncertainty will not be

increased when incorrect distance constraints are added in the localization. Therefore,

the incorrect distance measurements will not deteriorate the final localization result.

The fundamental reason why the upper bound approach can tolerate the incorrect

distance measurement is that its assumption d,- 2 d, is consistent with the observation

d;- > d;, while the assumption 3:, 3 d, of the original distance fitting algorithm is

inconsistent with the observation d, >> d,.

An example of upper bound approach is shown in Fig. 4.18, where the distance
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measurement between P and P4 is much longer than its true value, which results

in the large circle constraint. However, the incorrect distance measurement between

P and P4 has no impact on the final estimation result, since sensor P is tightly

constrained by the constrained circular regions of P1, P2 and P3.

The previous work[24][4] also suggests to use the upper bound constraints to lo-

cate sensors. Instead of using the local optimization where only distance to immediate

neighboring beacons are used, the work [24] uses the global optimization of semidefi-

nite programming. However, all approaches suffer the same problem, which requires

that beacons are placed on the outside boundary of deployed area. Otherwise, the

estimated positions will collapse toward the center. Such a phenomenon have been

observed in previous work[25][26]. Below is a formalized description of the problem.

Problem 1 Given beacons pi, there exists a polygon region P with all the uertices of

pi. if sensor 1) is not within the polygon P (1) ¢ P), the sensor’s position fr estimated

by the upper bound approach will collapse toward the P.

An example is shown in Fig. 4.19, where P ¢ AP1P2P3.‘ The sensor is constrained

by a large intersection area, thus has high uncertainty. Position Pe estimated by the

upper bound algorithm of Eqn (4.2) is attracted towards the AP1P2P3 and deviates

from its true position. This is contrast to previous example in Fig. 4.18, where sensor

P is tightly constrained in a small intersection because beacons are distributed around

the sensor.

To solve the collapse problem, we propose our solution as below.
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Figure 4.19 Collapsed result of the upper bound approach

i-Multih0p algorithm: hybrid approach

In this section, we assume that sensors are densely distributed, thus the correct

distance measurements, which are not affected by the concave shape, are close to

their true values. Based on this assumption, we have the observation below.

Observation 2: All the measured distances d, are no less than its true value

d,- (cl, 2 (1,). For all the correct distance measurements [1,, we have d, x d,. For

incorrect distance measurements, we have ((3% > d:).

Based on the Observation 2, we model the sensor localization as below.

Model 2: Given a network graph G = (VmUVn,E3UEt), the vertex set Vm,

defines the beacons set; the vertex set Vn defines the position unknown sensor set;

the edge set E, defines all the correct distance measurements 3, 2 d,- 8; d; as d,; and

E't defines all the incorrect distance measurements d”, > d;. The sensor localiza-

tion is to recover coordinates of vertex set Vn by filtering out the incorrect distance

measurements Et and fitting the correct distance measurements.
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Based on the Model 2, we propose the localization algorithm below.

A=ar‘min — .~ —d-2 4.3
P g p ZUP pzl i) ( )

subject to Ip — p,| S d,

Remark 2: The algorithm described in Eqn (4.3) can filter out the incorrect

distance measurements, and the final localization results will not collapse even when

the sensor is not contained in the polygon formed by beacons.

The hybrid algorithm described in Eqn (4.3) combines the advantage of upper

bound constraints and distance fitting. First, it uses the upper bound constraints to

filter out the impact of incorrect distance measurements and pinpoint the estimated

position to the intersection constrained by correct distance measurements. Second,

it uses the distance fitting to fit correct distance measurements, which pushes the

estimated position f) toward its true position p and the final estimated position is

not affected by the layout of beacons.

To facilitate the optimization computing, the algorithm in Eqn (4.3) can be sim-

plified as below.

Since |p—p,-| _<_ d}, we have |p—p,-| —d;' S 0, thus d; — lp—p,| Z O. The objective

function (4.3) can be simplified as:

’13 = arg mgnZfil: - Ip — prl),

which is equivalent to

i5 =argngn-Zflp-prll
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Since lp — pil 2 O, we can rewrite the objective function as:

i5 = arg Hg“ — lep — PiDZ

The final objective function is described as below.

fi = arg Hgn— lep - Pil)2

subject to Ip — pil S d},

which is equivalent to the objective function below.

f; = argmgxqu — p.02 <44)

subject to IP — pil S d;

The intuition of the algorithm above is that the estimated position is pushed far away

from beacons, thus towards the outside constrained boundaries. The final optimiza-

tion result is that the estimated position is limited in the intersection area of circular

constrained regions (upper bound constraints) and pushed towards the constrained

boundaries (distance fitting), which is the intent of the hybrid approach.

i-Multih0p algorithm: final version

In this section, we will relax the assumption that the in—network distance measure-

ments between immediate neighbors are accurate. Without this assumption, distances

estimated from the lengths of the shortest paths will have two error sources: one is

the measurement error between immediate neighbors, the other is incurred when the

shortest path is not close to a straight line. Under this circumstance, it is possi-

ble that some of the distance measurements are less than their true values. This
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happens in correct distance measurements where the shortest path is very close to a

straight line and the measured distance of each segment is less than its true value,

such that the length of the shortest path is less than the Euclidean distance due to

the error accumulation of each segment. Based on this analysis, we have the following

observation.

Observation 3: All the correct distance measurements 8, is close to (either larger

or less than) its true value d,- (d: z dg). All the incorrect distance measurements d:

is larger than its true value d; (3’,- >> d2).

Based on this observation, the sensor localization is remodeled as below.

Model 3: Given a network graph G = (VmUVn,E3UEt), the vertex set Vm

defines the beacons set; the vertex set Vn defines the position unknown sensor set;

the edge set E, defines all the correct distance measurements 3, x d,- ; and Et defines

all the incorrect distance measurements 3',- >> (12. ' The sensor localization is to recover

coordinates of vertex set by filtering out the incorrect distance measurements Et and

fitting the correct distance measurements.

The hybrid approach with the upper bound constraints will not work in the model

3, because incorrect distance measurements may be less than their true values such

that the constrained circular regions cannot intersect with each other. In such a case,

no feasible position exists to satisfy all the upper bound constraints and the objective

function will not find out a suitable solution.

To solve the problem above, we add slack variables 5.,- to the hybrid approach to

get our final version of the i-Multihop algorithm.
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r» = argmgnZsz- +5, — Ip — p.02 + kZa <45)

subject to Ip - pil S cl; + 52"

where k is the weight coefficient which is set to a large value (106 in our computation).

Due to the large value of the weight coefficient k, the second apart It 26,; has much

higher priority to be minimized than the first part, which means the slack variable 5,

has higher priority to be minimized than the difference between calculated distance

|p —— pil and the measured distance 51;.

The intuition behind the objective function (4.5) can be described as follows. For

those distance measurements which are less than their true values, the slack variables

5,- can increase the upper bound to the minimum extent such that the summary of

the measured distance d; and the slack variable 5,- is greater than the true value d,-,

The consequence is that all the circular region constraints intersect into an non-empty

set which contains a feasible solution for the objective function. Through this way,

the problem is transformed to Model 2 where all the upper bound constraints are

larger than the true distances. Therefore, we can use the similar approach as Model 2

to locate sensors by filtering out incorrect distance measurements and fitting correct

distance measurements.

Again, we simplify the objective function (4.5) to facilitate our optimization com-

putation as below.

3 = argmgn—ZUP—Pillz +kz€i (4-6)
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subject to |p — pil S 3, +5,

Average length per hOp

In the case where distance measurements between immediate neighbors are unavail-

able, multihop algorithm estimate distances by multiplying the number of hops of the

shortest path with the average length per hop. Here, the average length per hop to

the ith beacon can be sampled as below.

= Ejevm Dij

ZjeVm Hij ’

hi

where Dij is the Euclidean distance from the jth beacon to the ith beacon, and Hi]-

is the number of hops from the jth beacon to the ith beacon.

However, the average length per hop calculated as above can be severely affected

by the concave shapes. Because the shortest path between beacons may also be

distorted by the concave shape and deviate far away from a straight line, the actual

length Lij of the shortest path will be much longer than the Euclidean distance

Di} calculated from the coordinates of the beacons. Therefore, the true value of the

average length per hop Lij /H,-j is much larger than the value estimated from Dij/H,;j.

This will make the average value estimated by ZjeVm Dij/ ZjeVm Hij less than the

actual one EjeVm Lij/ ZjeVm Hi]. because some of the distances Dij are much less

than the lengths of Lij.

To solve the problem above, we need to filter out the pairwise beacon distances

which are distorted by concave shapes, which is achievable by reusing the i-Multihop

algorithm above. Since the calculation of the average length per hop is to infer dis-
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tances from coordinates, it is a reversed process of localization algorithm which infers

coordinates from distances. Therefore, we can use similar idea as i-Multihop algo—

rithm to filter out distorted pairwise beacon distances and calculate correct average

length per hop as below.

T=argmlinZUhi + 5i - lpr - pl) + kZEi

subject to lp, — pl S lhi + 8;,

where l is the average length per hop, h, is the number of hops of the shortest path

between p and p,-, e,- is the slack variable, and k is the weight coefficient. The

intuitive explanation of the objective function is to find the optimal value of the

per hop’s average length l which can minimize the difference between the calculated

distance |p,- — p| and the summary of the measured distance lit,- and the slack variable

5,: under the upper bound constraints. Similar to the i-Multihop algorithm, with the

help of the upper bound constraints, only measured distances which are close to

their true Euclidean distances will be involved in the optimization, and the incorrect

distance measurements which are much larger than the true values are filtered out.

To facilitate the optimization computation, we simplify the objective function above

to the following linear optimization.

7: arg mlin(Z h,)l + k 26,- (4.7)

subject to |p,: — pl 3 Hz, + e,
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4.3.2 Performance evaluation

We compare the i-Multihop algorithm with the original Multihop algorithms and

n-Multihop algorithm in this section. Since all these three algorithms use the same

beacon message flooding or Distance Vector algorithm to compute the number of hops

along the shortest paths, the communication cost of the three is the same. Therefore,

we can ignore the details of message communication and focus on the character of their

geometry calculation. Such an abstraction can help us to evaluate their performance

in Matlab simulation, where a sensor network is described as a network graph with

vertices representing sensor nodes and edges representing the measurable distances

between immediate neighbors.

To investigate the impact of concave shapes on the performance of the multihop

approaches, we use three basic configurations. In the first configuration, 400 nodes

were randomly deployed in a 200 x 200m2 square area which has the convex shape.

In the second configuration, A portion of sensors in the square area were moved out

and the square shape of the network topology is transformed to the C shape as shown

in Fig. 4.2. In the third configuration, we transform the network topology to the S

shape.

The following metrics are used in our evaluation.

0 Transmission range R: the maximum radio transmission range of sensor

nodes.

0 Estimation error Hi: the distance between the estimated position and true

position of sensor node i, and n, = lfi, — pil.
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0 Average estimation error ii: the average value of the estimation error it,

and i2 = Z iii/N, where N is the total number of sensors.

Comparison of distance fitting, upper bound and hybrid approaches

We compare the performance of distance fitting, upper bound and hybrid approaches

in the C shape configuration. In this comparison, we assume distance measurements

between immediate neighbors are accurate enough, thus the deviation of the shortest

path from the straight line is the only error source of distance measurement. The

comparison result is shown in Fig. 4.20, where circles represent the true positions of

sensors (solid circles for beacons and empty circles for sensors), and the lines represent

the estimation error in. The distribution of estimation error a,- is also described by

the bar graph on the right side, where the sensors are ordered by their estimation

error M. The comparison shows that the distance fitting approach(Fig. 4.20(a)) has

the worst performance, because it tries to fit the distances to all the beacons while

some of them are severely distorted by the C shape. Fig. 4.20(b) shows that the

performance is improved significantly by the upper bound approach, which uses the

distance upper bound to filter out the impact of distorted distance measurements.

The performance is further improved by the hybrid approach (Fig. 4.20(c)), which

solves the problem that the upper bound approach may have large estimation errors

when all the beacons are located in one side of a sensor.
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Average length per hop

When distances between immediate neighbors are not available, we can sample the

average length per hop from beacons. However, as we discussed above, the average

length per hop calculated in the original multihop algorithm will also be affected by

concave shapes because the shortest paths between beacons may deviate far away

from straight lines. To eliminate the effect of concave shapes, we use the upper

bound constraints in i-Multihop algorithm to filter out the shortest paths which are

distorted severely by concave shapes. We evaluate the estimation accuracy of the

average length per hop as follows. First, the average length per hop is estimated in

the square shape configuration using the original multihop algorithm. The experiment

is repeated multiple times with different radio transmission ranges. For each radio

transmission range, the square shape configuration is transformed to the C shape

configuration by removing out some sensor nodes, and the average length per hop is

estimated again by i-Multihop algorithm and multihop algorithm respectively. Since
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the C shape is the subset of the square shape, they should share similar topologr

properties including the average length per hop. Fig. 4.21 shows that the average

length per hop calculated by the i-Multihop algorithm is closer to the average length

per hop of the square shape configuration than the one calculated by the multihop

algorithm. This demonstrates that the i-Mulithop algorithm can recover the average

length per hop correctly even in concave shapes.

A notable thing on the average length per hop of the shortest path is that it

is different from the average distance between immediate neighbors. The reason is

explained as follows. To minimize the total number of hops between two sensors,

each hop of the shortest path is stretched to its maximum value. The consequence is

that the average length per hop is increased with the radio’s maximum transmission

range, as shown in Fig. 4.21. In the experiment, we repeat the test by varying the

radio transmission range while keeping all other network configuration the same as

each other, thus the distances between immediate neighbors are the same in each test.

However, the experiment shows that the average length per hop is increased when

the maximum radio transmission range becomes longer.

Impact of concave shapes

In this section, we focus the performance comparison on the connectivity-based mul-

tihop algorithms, where the distances between immediate neighbors are not available

and the average length per hop is sampled from beacons. To investigate the impact of

concave shapes on the performance of multihop algorithms, we compare the multihop

algorithm based on distance fitting, n-Multihop algorithm and i—Multihop algorithm
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in square shape, C shape and S shape configurations.

Fig. 4.22 shows the performance comparison of the three algorithms in the square

shape configuration. The Multihop and the i-Multihop algorithms have similar per-

formance, while the performance of the n-Multihop algorithm is much worse than

the other two algorithms. The n-Multihop algorithm has the worst perform because

in cormectivity—based multihop algorithm, the distance estimated from the nearest

beacon does not guarantee it is the best estimation which is closest to the true Eu-

clidean distance. The performance of the n-Multihop algorithm becomes worse when

the maximum transmission range becomes much longer than the average distance

between immediate neighbors. As we discussed above, the average length per hop h

is different from the average distance d between immediate neighbors, and the former

is strongly related to the maximum radio transmission range R. When the density of

deployed sensors is fixed, choosing large transmission range R will improve the net-

work connectivity, which is helpful to sensor localization since the network becomes

more rigid with higher connectivity. However, the large transmission range R will
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lead "to the consequence that the average length per hop h is much larger than the

average distance d between immediate neighbors. If we estimate distances from the

nearest beacon, it is possible that the beacon is within one or two hops range. If

it is within one hop range, the true distance to the beacon is close to the average

distance d between immediate neighbors. The consequence is that the true distance

is less than a single average length per hop h, which is smallest measurable unit in

connectivity-based Multihop algorithm. This will cause relative large errors from the

sensor to nearby beacons. Such a distance estimation error imposes a limitation on

the positioning accuracy of the n-Multihop algorithm. On the other hand, instead

of fitting distances to the nearest beacons, the i-Multihop algorithm tries to fit the

distance measurements which are closest to their true Euclidean distances, such that

the final positioning result of a sensor is closer to its true location.

Fig. 4.23 shows the performance comparison of the three algorithms in the C

shape configuration. The Mulihop algorithm performs worst, while the i-Multihop

algorithm is the best of the three. The localization accuracy of the i-Multihop algo-

rithm is improved significantly when the number of beacons are increased from 10 to

16, and it eventually converges to a fixed value when the number of beacons is con—

tinuously increased. There exists a critical point because in C shape configuration,

when the number of beacons exceeds certain value, most of sensors can have three

beacons which are connected by the shortest paths that are close to straight lines.

The Mulithop algorithm has the worst performance because some of the distance esti-

mation are distorted by the C shape. The n—Multihop algorithm does not perform as

well as the i-Multihop algorithm because its localization accuracy is upper bounded
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by the granularity of the transmission range, as we discussed above.

Fig. 4.24 shows the performance comparison of the three algorithms in the S shape

configuration, which is more concave than the C shape and some of the distances

estimated by the shortest paths deviate further from their true Euclidean distances.

The comparison shows that the Multihop algorithm performs much worse than the n-

Multihop algorithm and i-Multihop algorithm, and the i-Multihop algorithm has the

best performance. In the S shape configuration, the performance of the i-Multihop

algorithm is increased significantly when the number of beacons is increased to 30,

and after that, it eventually converges to a fixed value. The critical point of the

number of beacons is larger than the C shape because more beacons are necessary

for all sensor to have at least three beacons connected by the close-to-straight-line

shortest paths.

From the comparison above we can conclude that the i-Multihop algorithm per-

forms best in the three algorithms, and it can locate sensors in concave environments

with positioning accuracy comparable to that of convex environments if the number

of beacons reaches the threshold.

4.3.3 Iterative approaches

The simulations above show that certain minimum number of beacons are required

for i-Multihop algorithm to achieve sufficient localization accuracy in concave areas.

More beacons are demanded when deployed areas become more complicated. This

is because a sensor can accurately locate itself only when it is connected to at least

three beacons by the close-to-straight-line shortest paths. If only a few beacons are
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deployed in a concave area such as C shape or S shape, it is possible that some of

sensors are connected to less than three beacons by the close-to-straight-line shortest

paths, which results in large estimation errors. In this section, we show that high

accuracy can be achieved with less beacons by iteratively applying the i-Multihop

algorithm.

In the iterative approach, a few beacons are deployed as initial beacons. Due to the

small number of initial beacons, they may be ”visible” to only a small part of sensors

through the close-to—straight-line shortest paths. Those small portion of sensors can

accurately locate themselves by referring to the initial beacons. After that, those

sensors with accurately determined positions ”convert” themselves as new beacons by

advertising beacon signals. It is possible that the newly added beacons are connected

through the close-to-straight-line paths to some sensors which do not have sufficient

initial beacons before. By utilizing the beacon signals sent from newly added beacons,

those sensors previously with inaccurate estimation results can refine their positions

and achieve accurate positioning results. The whole process are recursively repeated

until all sensors are accurately located or no more beacons are added.

The challenging of applying the i-Multihop algorithm into the iterative process is

how to identify ”good” candidates which can accurately locate themselves. In other

words, we need to estimate how accurate a sensor can locate itself before we can itera-

tively apply the i-Multihop algorithm. Due to the absence of global view of the entire

network, a sensor cannot judge if it is connected to at least three beacons through the

close-to—straight-line paths. Thus, we cannot identify ”good” candidates by simply

counting the distances estimated from close-to—straight-line paths. In the following
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discussion, we propose the upper bound approach to estimate sensors’ positioning

accuracy.

Estimate positioning accuracy

As we discussed in Section 4.3.1, suppose a sensor p is within circular region con-

straints C, with origin p,- and radius cll. Here p, are beacons’ positions and d; are

estimated distances from p to pi. Let St = 00,-, which represents the intersection

area of all constrained regions 0,. We notice that the position of the sensor can

be pinpointed more accurately when the area of 3; becomes smaller. On the other

hand, if less than three distance measurements are correct distance estimations, the

intersection area St tends to be large. This observation shows that we can identify

good candidate for new beacons by checking the size of the intersection area St.

However, it is difficult to accurately calculate the area of the intersection 3; due

to its irregular shape. Instead, we use the radius of the intersection St to estimate the

positioning accuracy. As shown in Fig. 4.25, the intersection’s radius du is defined

as the maximum distance between the estimated position 13 to any other point p:

within the intersection area and can be calculated as below.

du = mgx If) — pzl (4-8)

subject to le - pal S d;

Here, 13 is the position estimated by our i-Multihop algorithm, p,- are beacons’ posi-

tions and cf,- are measured distances. By the definition of du, we have (in 2 de, where
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Figure 4.25 By its definition, radius (1,, is larger than estimation error de

de is the estimation error between estimated position 13 and the true position p. In

other words, (1,, is the upper bound of the estimation error dc and can be used to

estimate the positioning accuracy. Sensors with small estimation errors are identified

if they have small estimation radius (1“.

Apply i-MultihOp algorithm iteratively

Based on the radius (1“, we can find out sensors with high positioning accuracy, which

makes it possible to apply i-Multihop algorithm iteratively in concave areas. In the

iterative approach, positions of beacon nodes are broadcast through beacon signals.

Beacon signals have counters which are increased by the lengths of hops when they

are forwarded between neighboring sensors. The length of the shortest path from a

sensor to a beacon can be found out from the minimum counter value among all the

received beacon signals sent out by that beacon. Therefore, each sensor can learn

beacons’ positions and the lengths of the shortest paths to those beacons. Sensors
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keep listening to beacon signals and refine their positions each time when new beacon

signals are received. At the same time, sensors’ position accuracy is estimated by their

radiuses d“. When the radius of a sensor is less than the threshold, it will advertise

itself as a new beacon, whose beacon signals can be utilized by other sensor to refine

their estimated positions. The positioning processes are repeated until all sensors are

accurately located or no more beacons are added. Note the iterative process can be

implemented by sensors’ localized algorithm which consists of beacon signals listening

and position refining. Therefore, it can be implemented in a fully distributed fashion.

Implement iterative i-Multihop approach in a distributed fashion

The pseudo-algorithm of the iterative i-Multihop approach is described in Algo-

rithm 1. In the iterative algorithm, if a sensor is a beacon, it exits the localization

algorithm after it sends out beacon packets. If the sensor is not a beacon, the sensor

keeps listening to beacon packets. After it receives new beacon packets, the sensor

recalculates its location together with the estimation error. If the estimation error

falls below the threshold of becoming beacons, the sensor will announce itself as a

new beacon and send out beacon packets. The entire algorithm terminates when no

new beacons are added into the system. This algorithm is fully distributed because

it can be finished by individual sensor without global coordination. The localized op-

erations involve three simple steps: 1)keep listening to beacon packets; 2)update the

estimated location and estimation accuracy; and 3)announce itself as a new beacon

if the estimation accuracy falls below the threshold.
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while true do

if the sensor is a beacon then

send out beacon packets which contain the sensor’s coordinate;

break;

end

keep listening to beacon packets for a time period;

if beacon packets received then

Update the sensor’s position with the newly received beacon packets;

else

break;

end

Estimate the upper bound of localization error du;

if du S beacon_threshold then

set the sensor as a beacon;

end

end

Algorithm 1: Iterative i-Multihop algorithm

Performance of iterative i-Multih0p algorithm

We evaluate the performance of the iterative i-Multihop algorithm as follows. In

the evaluation, 314 nodes are deployed in a C shape area with only 4 initial beacons

are deployed at the four corners. We assume that distances between neighboring

sensors are measurable, thus the mismatch between the shortest path and the straight

line is the main source of the distance measurement error. Fig. 4.26 shows both

the average estimation error and the median estimation error are decreased along

the iterative process when more and more beacons are involved in the localization

process. We also note that the median estimation error is always smaller than the

the average estimation error. This is because a small portion of sensors have much

larger errors than the rest of sensors. To further illustrate the iterative i-Multihop

algorithm, an example is shown in Fig. 4.27. At the beginning(Fig.4.27(a)) when only

the four initial beacons are used, a number of sensors have large errors because they
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Figure 4.26 Positioning accuracy is improved along the iterative process

do not have three beacons visible through the close-to-straight-line shortest paths.

Fig. 4.27(b) shows the intermediate status of the iterative process, where some sensors

improve their positioning accuracy by referring to newly added beacons. Fig. 4.27(c)

shows the final stage of the iterative process, where majority of sensors can locate

themselves accurately. We notice that there are a few sensors which can not locate

themselves accurately in the final stage. This is because those sensors do not have

good beacons’ layout even with the help of iterative approach. Those sensors with

large estimation errors can be identified by their radius du, thus we can notify upper

layer location-aided applications when sensors have large estimation errors and the

positioning results are unreliable.

The iterative i-Multihop algorithm differs from previously proposed iterative ap-

proaches in the following aspects:

0 It does not require that initial beacons are adjacent to each other, which is
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Figure 4.27 Demo of iterative i-Multihop algorithm
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an implicit assumption for other iterative approaches to initiate the iterative

process.

For beacons to be propagated to entire areas, previous iterative approaches

usually require dense and uniform sensor distribution. Otherwise, the newly

added beacons cannot approach some sensors and the whole iterative process is

interrupted. On the contrary, in the iterative i-Multihop algorithm, all sensors

can be located as long as they form a connected network. This is because

sensors’ positions are first estimated from initial beacons, and then refined by

newly joined beacons. Here, the iterative strategy are mainly used to improve

the positioning accuracy.

If the positioning accuracy cannot be improved by the iterative process due to

awkward beacon layout, the positioning error can be estimated by the radius

du, which can be sent to upper layer applications together with the positioning

data. With the notification of positioning accuracy, the upper layer location-

aided applications can utilize the location information more intelligently by

prudently dealing with the sensors with large estimation errors.

A potential problem of previous iterative approach is that the positioning errors

may accumulate along the iterative process. This is because the newly joined

beacon are not as accurate as initial beacons and may have large estimation

errors, especially the flip-over errors discussed in [17]. The estimation errors of

newly joined beacons may accumulate in the following localization process and

the final results are severely corrupted. The accumulative errors are minimized
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in iterative i-Multihop algorithm because of two reasons: (1) we use the ra-

dius du to estimate positioning accuracy and beacons are only converted from

sensors which can accurately locate themselves; (2) in the iterative i-Multihop

algorithm, the positioning accuracy is consistently increased because sensors’

estimated positions are updated by new beacon signals only when their estima-

tion accuracy are improved, i.e. smaller radius tin can be achieved.

4.4 Summary

In this chapter, we propose the upper bound approach to locate sensors in oomph-

cated environments including obstructed and concave areas, where both the RSS-

based approaches and the multihop approaches may have large errors in distance

measurements. The upper bound approach is based on the observation that incorrect

distance measurements inferred from the RSS-based approaches and multihop ap-

proaches are always larger than their true values. Therefore, we can regard distance

measurements as the upper bound of their true values and confine estimated posi-

tions to the small areas intersected by correct distance measurements. We evaluate

the upper bound approach in both obstructed environments and concave areas with

intensive simulation tests, which show that the upper bound approach is an effective

solution to accurately locate sensors in complicated environments.
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CHAPTER 5

Packet Routing in Wireless Sensor

Networks

5.1 Motivation

Reporting sensed data to a base station is the primary function of a sensor network.

A huge volume of data can be generated by numerous sensors, which incurs high

communication cost if all the raw data is sent to the base station. To solve this

problem, Directed Diffusion [90] and TinyDB/TAG [91] suggest a query/response

mechanism. In this mechanism, the base station query named data through interest

flooding, and only the data matching the interest is reported. Such a query/response

mechanism is inspired by the novel concept of data-centric communication [92] in

which data is named by attributes and the communication primitive is a form of query:

which data has the named attributes? Here, the name of sensed data is the main

concern rather than the identity of the sensor. To further reduce the communication

costs incurred by the interest flooding, the data-centric storage [93] [94] proposes to

store data by name at nodes, which follows the rule that all data with the same general
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name are stored at the same node. Queries for data with a specific name can therefore

be sent directly to the node without reliance on interest flooding. The data-centric

storage can be readily realized if point-to—point routing is available in sensor networks,

which helps sensing nodes to store data to hosting nodes, and the base station to

retrieve data from hosting nodes. Wireless sensor networks, when evolving their

capability from simple sensing and reporting to complicated in-network storage [95]

and in-network process [96], require intensive coordination among intelligent sensors.

Such a coordination necessitates point—to-point routing between any pair of sensors.

Due to its fundamental role, the research on point—to—point routing for a wireless

network, initiated more than a decade ago [97], is still an active and ongoing area

[98] [99][100] in which many challenging problems need to be addressed.

First, point-to—point routing cannot be directly ported from wired networks, which

achieve the scalability through hierarchical architecture and address aggregation. The

hierarchical architecture aggregates routers into autonomous systems. Each router in

an autonomous system is attached with several physical networks. Hosts in the same

physical network share high-order ‘bits of addresses as their network prefixes. The

aggregation of both routers and addresses helps to minimize routing states maintained

in each individual router because: (1) internal routers of an autonomous system only

need to maintain routing information of physical networks within the same system;

(2) autonomous systems, which are interconnected through border gateway routers,

are viewed as single entities in the backbone inter-domain routing. The abstraction

of autonomous systems helps to minimize routing states in gateway routers since the

internal details of autonomous systems are transparent to the backbone routing.
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Despite their success in wired networks, it is diffith to apply the hierarchical

architecture and address aggregation to wireless sensor networks. First, wireless sen-

sor networks consist of randomly deployed nodes which communicate with each other

through radio channels. As a result, a purely flat network topology is naturally formed

because randomly deployed nodes can only communicate with their immediate neigh-

bors within the radio transmission range. It is difficult to organize a wireless sensor

network topology into a hierarchical structure unless long haul wireless links can be

easily added between remote nodes. Second, the address aggregation is meaningless

in a flat network topology, since no central routers in the upper tier can be attached

by a group of nodes which share high-order bits of addresses as group prefixes. With-

out the aid of hierarchical architecture and address aggregation, it is prohibitive to

implement the table-driven shortest path routing in a wireless sensor network, which

requires per-destination states maintained by individual nodes. When the network

scales to thousands of nodes, the large size routing tables containing thousands of

entries cannot be affordable to resource-constrained sensors.

The conflict between the large size network with a random structure and the small

routing states affordable to sensors raises fundamental challenges to point-to-point

routing in a wireless sensor network. To address this problem, location aware routing

(LAR) has been proposed to forward packets in a wireless network according to nodes’

geographic positions [6] [7] In LAR, a packet will be greedily forwarded to the next

neighbor which is geographically closer to the destination, and finally delivered to the

destination after consecutive hop by hop forwarding. LAR is promising in that packet

routing is realized through a localized algorithm that solely relies on the positions of
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the destination, the current node, and its immediate neighbors. The positions of a

small set of neighbors compose a sensor’s routing states, which can be easily fit to

the sensor’s limited memory.

The location aware routing assumes that a packet can be moved closer to the

destination in the network topology when it is moved geographically closer to the

destination in the Euclidean space. This assumption is based on the observation that

the topological structure of a wireless network can be approximated by its geographic

structure. Because a wireless node can only communicate with its neighbors within

the maximum radio transmission range, pairwise nodes may have a short communi-

cation path in the network topology if they are geographically closer to each other

in the Euclidean space, i.e. the hop count distance between pairwise nodes is pro-

portional to their Euclidean distance. This observation is correct in an ideal wireless

network model where sensors are uniformly distributed in an open flat area and com-

municate with neighbors through wireless channels of perfect reception. However, this

ideal model oversimplified the spatial complexity of a realistic wireless sensor network

that has complicated topological structure and irregular wireless radio communication

patterns when deployed in complicated environments.

Due to the discrepancy between a wireless network’s complex spatial character-

istics and its oversimplified geographic description, the location aware routing may

fail to deliver a packet or forward a packet along a suboptimal routing path. For

example, a packet may be trapped in a local minimum where none of the neighbors

is closer to the destination. A packet may also be forwarded along a route consisting

of long distance hops with low quality wireless channels. Numerous approaches have
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been proposed to recover the location aware routing from local minimum[7] or find

the proper forwarding advance without sacrificing channel quality[57] [43] [58]. Con-

strained by the inaccurate geographic model on a network topology, these workaround

solutions cannot guarantee a packet to be efficiently forwarded along the optimal rout-

ing path.

In this chapter, we aim to improve the routing performance of the greedy for-

warding with two steps. First, we propose the topology aware routing to solve the

problem of local minimum. The topology aware routing encodes hop count distances

between pairwise nodes into nodes’ virtual coordinates. Based on the precise hop

count distance comparison, the greedy forwarding can always find the next hop that

is one hop closer to the destination, and achieve guaranteed packet delivery with con-

secutive hop-by-hop forwarding. Second, we propose the ETX distance based greedy

forwarding to find the optimal routing path comprising high quality links. The ETX

distance based greedy forwarding embeds 3 wireless sensor network into a Euclidean

space where nodes’ virtual distance is equal to the number of expected transmissions

for a packet to be successfully delivered between the pairwise nodes. Because the

virtual distance directly reflects the end-to-end conununication channel quality, the

greedy forwarding can guide a packet along the optimal routing path which has the

shortest virtual distance.

In the following discussion, we first detail the spatial complexity of wireless sensor

networks and how it affect the routing performance in Section 5.2. We further show

how topology aware routing solves the local minimum problem in Section 5.3. After

that, we show that the end to end routing performance can be improved by ETX
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distance based greedy forwarding in Section 5.4. We evaluate the topolog' aware

routing in Section 5.5 and ETX distance based greedy forwarding in Section 5.6 .

After that, we summarize this chapter in in Section 5.7.

5.2 Spatial complexity of a wireless sensor network

Because radio signals are susceptible to environmental interference, a wireless sensor

network often demonstrates complex spatial characteristics in a complicated environ-

ment, which include complicated network topologies and irregular radio communica-

tion channels.
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5.2.1 Spatial complexity of a wireless network t0pology

Location aware routing (LAR) assumes that a packet will be one hop closer to its

destination in each forwarding and finally delivered to the destination after consecu-

tive hop by hop forwarding. This assumption, however, can only hold when nodes are

uniformly distributed in an open flat area. When sensors are deployed in complicated

environments, radio communication links may be blocked by obstructions and the

network topology will have a concave shape. In such a case, the greedy forwarding

may be trapped in the local minimum, where no neighbor is geographically closer to

the destination. An example of local minimum is shown in Fig. 5.1, where node S

cannot find any neighbor that is geographically closer to destination D.

Numerous recovery schemes have been proposed to solve the local minimum prob-

lem by exploring the geographic characteristics of a wireless network[7] [49] or resorting

to small range message flooding[8] The recovery schemes usually have higher compu-

tation complexity than the simple greedy forwarding or may not work as a universal

solution to handle various cases due to the spatial complexity of a wireless network.

For example, the right-hand rule based perimeter routing[7] has suggested to route

a packet along the counter clockwise direction when a packet is trapped into a lo-

cal minimum. For the specific case in Fig. 5.1, the perimeter routing cannot route

a packet through the local minimum M since the counter clockwise routing path is

blocked by the obstruction.

In this chapter, we solve the problem of local minimum by encoding hop count dis-

tances to nodes virtual coordinates, such that hop count distances between pairwise
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nodes can be precisely recovered from their small dimensional coordinates. Based

on the precise hop count distances comparison between neighboring nodes, greedy

forwarding can find the exact neighbor that is one hop closer to the destination.

We show such an coordinate assignment mechanism can be approached through net-

work embedding. An example of network embedding is shown in Fig. 5.2, where

the same network topology of Fig. 5.1 is embedded into a 2-dimensional Euclidean

space. Here, the same network topology, i.e. nodes’ adjacent relationships are the

same, is expressed in two different manners: Fig. 5.1 lays out nodes according to

their geographic coordinates from which the inferred Euclidean distances represent

the geographic distances between pairwise nodes; Fig. 5.2 lays out nodes according

to their virtual coordinates embedded from hop count distance metric space, and

Euclidean distances inferred from virtual coordinates represent hop count distances

between pairwise nodes.

Because hop count distances of a network topology are directly reflected by Eu-

clidean distances in Fig. 5.2, precise hop count distance comparison between neigh-

boring nodes to a destination can be achieved from the comparison of their Euclidean

distances to the destination. Based on the precise comparison, greedy forwarding can

find the right neighbor that is one hop closer to the destination. As shown in Fig. 5.2,

node 8 can find' the right neighbor M, which is one h0p closer to the destination D,

because the hop count distances from node 5' and M to destination D are consistent

with their Euclidean distances to D. This is in contrast to Fig. 5.1 , where node

3 has longer hop count distance to D than node M while its Euclidean distance to

destination D is shorter.
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Figure 5.3 Long distance radio links of Figure 5.4 Packet reception between

location aware routing pairwise wireless nodes

5.2.2 Spatial complexity of wireless channels

The location aware routing uses a. simple connectivity model to describe the wire-

less channels between pairwise nodes, i.e. pairwise nodes have the perfect reception

channel if they are within the maximum transmission range of radio signals. In a

realistic wireless network, neighboring nodes are often connected through unreliable

wireless channels where packets may be lost due to the transmission error of radio

signals. It is normal that packet loss rate is increased with the transmission range be-

cause the radio signals attenuate during their transmission, which leads to low signal

to noise ratio (SNR). Since the location aware routing greedily select the next hop

which is closest to the destination and therefore furthest to the sender, the location

aware routing tends to include long distance hops in the routing path which are often

unreliable and have high packet loss rate. An example is shown in Fig 5.3. Based

on the greedy forwarding policy of the location aware routing, a packet is forwarded

along the routing path 84 —» 29 —r 54, which may have higher packet loss rate and
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lower throughput than the routing path of 84 —> 5 —> 91 —> 4 —> 47 —> 54 consisting

of more while shorter intermediate links.

Several approaches[43] [57] [40] have been proposed to balance the forwarding dis-

tance and radio link quality, which can be divided into two categories:

1. define a threshold to exclude low quality radio links.

2. define a new metric which can be maximized under the constraints of both

forwarding distance and radio link quality.

The irregular radio signal transmission pattern, however, makes it difficult to improve

the performance of the location aware routing through these two strategies.

For the first strategy, it is difficult to determine a proper threshold value which can

maximize the end-to-end routing performance. Fig. 5.4 shows the packet reception

between pairwise nodes that we measured on the MICA2 sensor platform, which

demonstrates that the perfect radio channel with 100% reception only exists between

transceivers within a short distance. If the threshold is aggressively set to only include

links with 100% packet reception, we may have a disconnected network or a routing

path comprising excessive intermediate nodes, which increases both the processing

cost and delay. We use an example to further explain how the threshold values

affect the end-to—end routing performance. As shown in Fig. 5.3, the routing path

84 -—r 5 —) 88 —> 54 selected by the threshold of 85% packet reception rate outperforms

the routing path 84 -—» 5 —> 91 —+ 4 —> 47 —> 54 selected by the threshold of 100%

packet reception rate, because the former uses less intermediate nodes in the packet

forwarding with slightly inferior links. Because a proper threshold to determine the
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optimal routing path may vary from different pairwise nodes, the location aware

routing with a constant threshold cannot provide a universal solution to find the

optimal routing path between any pairwise nodes.

Instead of simply excluding low quality radio links below a certain constant thresh-

old, the second strategy selects radio links by optimizing the forwarding advance and

quality of radio links simultaneously. For example, the energy-efficient forwarding[57]

chooses the next hop which can maximize the product of the packet reception rate

(PR) and the distance traversed towards the destination. This strategy can achieve

good routing performance when i) nodes are uniformly distributed; ii) the packet

reception rate of the wireless channels can be explicitly modeled by the transmission

distance. However, in an obstructed environment, radio signals have complex trans-

mission patterns because the signal strength may be either strengthened or weakened

due to multipathing or shading effect such that the packet reception rate is less cor-

related to the transmission distance and therefore difficult to model. Fig. 5.4 shows

pairwise transceivers has different packet reception rates in outdoor and indoor envi—

ronments.

Even if the location aware routing can find the optimal tradeoff between the

forwarding advance and the link quality for individual hops, it may fail to find the path

with the optimal end-to—end routing performance. Because both the advance distance

and PRR are local metrics, the greedy forwarding may lead to a local minimum and

fail to find the globally optimal path, which often happens in a network topology

with complex spatial characteristics.

In this chapter, we try to find the optimal routing path by embedding a wireless
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sensor network into a Euclidean space where nodes’ virtual distance is equal to the

number of expected transmissions (ETX) for a packet to be successfully delivered

between pairwise nodes. Because the virtual distance directly reflects the end-to-end

communication channel quality, the greedy forwarding can guide a packet along the

optimal routing path which has the shortest virtual distance.

In the discussion below, we describe how the problem of local minimum is solved

by topology aware routing. We further show that the end to end routing performance

can be improved by ETX distance based greedy forwarding.

5.3 TOpology aware routing

In this section, we show that greedy forwarding can achieve the same routing perfor-

mance as the shortest path routing as long as hop count distances between neighboring

nodes can be precisely compared. Next, we illustrate how to use the multidimensional

scaling(MDS) to embed a network topology to a low dimensional Euclidean space in

which the hop count distances between pairwise nodes can be accurately recovered.

We also show how to extend the topology aware routing based on multidimensional

scaling (TAR-MDS) to a distributed fashion through beacon sampling. The compar-

ison between topology aware routing, beacon vector routing, and logical coordinate

routing is discussed in the end of the section.

Before we proceed to the detailed description of TAR, we clarify the objectives of

our proposed TAR as below:

1. We target to improve point-to-point routing performance of a wireless sensor

123



network comprising a large number of randomly deployed stationary nodes.

This covers the main category of sensor networks which have limited dynamic

characters due to nodes’ failures.

2. We focus on improving routing success rate of greedy forwarding without re—

liance on any recovery schemes. As we discussed before, greedy forwarding is a

viable routing approach to deliver packets in a wireless sensor network based on

small routing states. Our objective is to reduce the chances of resorting to re—

covery schemes, which are regarded as auxiliary solutions to greedy forwarding

and often more costly.

5.3.1 Greedy forwarding v.s. the shortest path routing

Proposition 1 The greedy forwarding will route a packet from a source 3 to a des-

tination d along the shortest path if hop count distances to the destination between

neighboring nodes can be precisely compared in a connected network.

Proof: Let 6(2’, d) be the hop count distance between node i and destination d. Let

N(i) be the set of all the immediate neighbors of node i. Since the hop count distances

between neighboring nodes can be precisely compared, the greedy forwarding can find

node j E N(i) such that 6(2’, (1) — 5(j, d) = 1, i.e. node j is the neighbor which is one

hop closer to the destination (1 than node i.

1. When 6(s, d) = 1, source 3 will directly route a packet to destination d because

destination d is the only neighbor which is one hop closer to itself:
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Since 6(s,d) -— 6(j,d) = 1, we have 1 — 6(j,d) = 1, i.e. 6(j,d) = 0. As a result,

j=d.

2. Assume that when 6(s, d) g k, the greedy forwarding will route a packet along

the shortest path. We prove that when 6(s, d) = k + 1, the greedy forwarding

will route a packet along the shortest path:

The greedy forwarding will forward a packet from source 3 to its neighbor m

such that 6(s,d) — 6(m,d) = 1, i.e. k +1 — 6(m,d) = 1. As a result, we

have 5(m, d) = k. Based on the assumption, the greedy forwarding will route

a packet along the shortest path to destination d, which means the number

of hops for the greedy forwarding to deliver the packet from node 777. to d is

11:. Consequently, the number of hops for the greedy forwarding to deliver the

packet from node 8 to d is k +1, which equals 6(s, d), the hop count distance of

the shortest path between node 3 and d. Therefore, we can conclude the greedy

forwarding will route a packet along the shortest path when 6(3, d) = k + 1. El

5.3.2 Embed network tepologies to low dimensional Euclidean Spaces

Proposition 1 shows that the greedy forwarding can achieve the same routing perfor-

mance as the shortest path routing if a network topology can be accurately expressed

by routing states, i.e. hop count distances between pairwise nodes can be precisely re-

covered from their local routing states. An naive approach to infer hop count distances

between pairwise nodes from their local routing states is to maintain per-destination

state in each node. The per-destination state maintained by node i in a network of



size N can be viewed as a N-dimensional virtual coordinate:

xi = [331'], $121 ' 1 - ixii’Vlt'

Here, rij is the hop count distance from node i to node j. Based on per-destination

states, the hop count distance between any pair of node m and d can be easily obtained

as xmd. Consequently, the hop count distances from neighboring node m and n to

a destination d can be precisely compared by evaluating xmd — 13nd, which provides

sufficient support for greedy forwarding to achieve the same routing performance as

the shortest path routing.

High routing performance can be easily achieved based on the N-dimensional per-

destination routing states. The challenge of an optimal routing design for wireless

sensor networks is how to achieve high routing performance based on small constant

size routing states, which can be reduced as how to accurately express a network

topology by small routing states in an efficient fashion. A viable approach to the effi-

cient expression of a network topology is to ”losslessly compress” N-dimensional per-

destination states to low dimensional routing states from which hop count distances

between pairwise nodes can still be precisely recovered. This compression problem

can be generalized as an embedding problem, which embeds a N-dimensional hop

count distance metric space into a M-dimensional Euclidean space, where M << N.

An embedding problem can be formalized as follows.

Let (X, 6) defines a metric space. Here X is a set and 6 is a metric which

defines a distance function between elements in X. For elements x,,xj,xk 6 X,

the distance function 6 satisfies (1) symmetry: 6(x,-,xj) = 6(xj,x,-); (2) positive
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definiteness: 6(xi,xj) Z 0 and 6(x.,-,xj) = 0 iff i = j; (3) triangular inequality:

509,391) + 5(Xkan) Z 509',le-

Let (P, d) defines the Euclidean space. Here P is a set of points mapped from

elements in the set X and d is a metric which defines the function of 2-norm Euclidean

distances between pairwise points in P. For pi, pj E P, we have d(p,-, pj) = lp, —pj|.

Definition 1 An embedding of metric space (X, 6) into an Euclidean space (P, d) is

a mapping oi : X ——> P such that

1- Pi = 45(35):

2- 6(322133') = (101503;), (25016)) = (“1’13le = In — le

Remark 2 For a network topology, the node set with the hop count distance func-

tion defines a metric space which can be embedded into an Euclidean space, because

hop count distance function satisfied symmetry, positive definiteness and triangular

inequality.

Embedding a network topology into an Euclidean space can be intuitively ex-

plained as given hop count distances between pairwise nodes in a network topol-

ogy, finding nodes’ coordinates in a M-dimensiona1 Euclidean space such that the

hop count distances can be inferred from the 2-norm Euclidean distance of the

mapped space. The objective of the embedding is to find the minimal M such that

6(x,,xj) = d(<,1')(x,:), ¢(xj)), i.e. to embed a hop count distance metric space into the

lowest dimensional Euclidean space in which hop count distances between pairwise

nodes can still be precisely preserved.
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Instead of an exact embedding, a network t0pology can be approximately embed-

ded into an Euclidean space by relaxing condition 2 as 6(x,-,xj) z d(g'>(x,-), d(xj)).

Here, we slightly sacrifice the embedding accuracy to achieve lower dimensionality of

the embedded Euclidean space and therefore smaller routing states. In summary, we

define an efficient expression of a network topology as below:

Definition 2 An efficient expression of a network topology is to embed the network

topology into a M-dimensional Euclidean space such that:

1. M is minimized;

2. difference between hop count distances of the network topology and Euclidean

distances of the embedded space are minimized:

min 2: (5(94', 333') - cit/9(a), ¢($j))2-

2,,zjex

The double minimums in the definition above cannot be achieved simultaneously.

The contradiction between the accuracy of the embedding and the small dimension-

ality of the embedded space reflects the inherent tradeoff between the accuracy of a

network expression and the size of the expression. In this chapter, we seek to achieve

an embedding accurate enough to support high routing performance at the low di-

mensionality suitable to resource-constrained nodes. In the following discussion, we

show how to use multidimensional scaling (MDS) to realize this efficient expression.

For simplicity, we use short notations defined in Table 5.1 in following discussions.
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Table 5.1 Notation list

 

Notation Definition
 

 

 

2 node in a wireless sensor network

P nofi set of a wireTess sensor network, i.e. i 677

It beacon node which broadcast beacon messages to a networY

such that hop count distances from all other nodes to a

beacon node are available
 

 

 

  

K beacon node set

6,5 hop count distance between pairwise node? and j of a net-

work topology

dz-j Euclidean distance between node i anch in the embedded

space  
 

5.3.3 Embed network t0pologies through the multidimensional scaling

We use the multidimensional scaling (MDS) to find the optimal embedding which

can efficiently compress routing states while accurately preserve hop count distances.

MDS is a set of dimensionality reduction techniques which discover meaningful low

dimensional structures hidden in their high dimensional observations. The MDS can

be generalized as assigning coordinates to data points such that Euclidean distances

estimated from the coordinates can best fit measured distances:

A . 2

P = arg man 2: (dij — dij) (5.1)

2,7619

We use a short deduction below to show how MDS can be used to embed a hop count

distance metric space into a Euclidean space. According to the embedding defined in

Definition 1, we have

2 2 t t t t
6,5 = lPi - le =(p1- Pj) (p.- - Pj) = pip.- + Pij - 2pm]-

By shifting matrix P to the center, nodes’ coordinates p,- and pj can be expressed

as the function of hop count distance 5,5. Please refer to [101] for the complete

intermediate deduction steps.
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i=1 j=1

=f(6i )

bwfl=mfifi 6%

Let [f(5,?,.)} = F, we have PtP = F (5.3)

Because F is symmetric, it can be decomposed through singular value decomposition

  

(SVD) as:

PW=F=Vmfl

Pt ___ V21/2

~ - 1/2

01

02

[plap2tn ' :let = [VlaVZa- ”,le

ON

Here, 01 _>_ 02 _>_ _>_ 0,. 2 or“ = (n+2 = ...0N = 0 are the rank-ordered set of

singular values. Let 02.1 /2 E /\,-. We have

[p1,p2,...,pN] = [A1V1,/\2v2,...,ANVN]t. (5.4)

From Eqn (5.4), we have node i’s N-dimensional coordinate

t

p: =[A1V1i,)\2V2i,. ° - a Al‘lleil

such that 6,5 = lp, — pjl for pairwise nodes i and j. In the discussion below, we show

how to reduce the dimensionality of p, to realize the exact embedding and approximate

embedding.
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For exact embedding

L815 p; = [Alvliah2v2i1- ' ' 1 ATVTilt'

It can be easily verified that 6,]- : |p,~ — pjl = Ip; — pal since A,“ = Ar+2 = =

AN = 0. As a result, we construct a r-dimensional coordinate for node i such that

r < N and hop count distances between pairwise nodes can be exactly inferred from

r-dimensional coordinates.

For approximate embedding

Let P? = [/\1V1z‘, A2V21‘, . . . . Anivmilt. m < 7‘-

The difference between the hop count distance and the Euclidean distance estimated

from m-dimensional coordinates is:

5121'— Pg" Pilz =|p£ - 133-l2 - Ipi’ — 3" 2

= Z A%(vki "
ij)2

(5.5)

m+15k§r

Based on Eqn (5.5), we have ng’ — p3.’| ——> 6,5 when m —> r. This reflects the tradeoff

between the accuracy of network expression and the size of network expression. More-

over, if rank-ordered singular value )1, quickly converge to zeros after the first several

most important ones, we have ng’ — ;?| m 6,5 for a relative small m. This is the case

for network embedding and is verified in our performance evaluations. Here, MDS

not only reveals the inherent tradeoff between the accuracy and size of a network
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expression, but also provide a viable approach to efficiently approximate a network

topology. The approximation of the embedding can be quantified as distortion stress

defined as below.

= ZijeP(6ij — 6117392

ZijeP 6123‘

The MDS is based on principal component analysis(PCA)[101] which can be

6 

intuitively explained by the example in Fig. 5.5, where a set of points are dis-

tributed in a 2-dimensional XY space. For points p1 and p2, their Euclidean dis-

 

tance can be calculated as |p1p2| = \/(p1$ — p23,)2 + (p1y — pgy)2. If we rotate

the XY space to X’Y’ space, the same distance can be calculated as lP1P2l =

 

\/(P1z’ — p21,)2 +(p1y; — p23”)? Here (P1y’ — p2y1)2 z 0 because all points are

distributed close to X’ axis. Consequently, we have lplpgl 5:: phi — plxl, i.e. the

distance between points p1 and p2 in a 2-dimensional space can be approximated

by their 1-dimensional coordinates. This example shows that by changing the view

of the same data set, distances information can be well approximated in a lower

dimensionality.

In practice, we can use the following steps to use MDS embedding to assign

coordinates to nodes in a wireless sensor network.

1. Obtain the network topology by base station, which floods topology detection

packets to an entire network and collects the connectivity information between

neighboring nodes based on nodes’ responses forwarded back along the reversed

paths of flooding.

2. Use Dijkstra algorithm to compute hop count distances between pairwise nodes
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in the network topology.

3. Based on hop count distances between pairwise nodes, use MDS to embed the

network topology into an Euclidean space where each node is assigned a coor-

dinate.

4. Base station sends coordinates to corresponding nodes.

The algorithms above incurs massive communication messages to detect network

topologies and uses a centralized computation to assign nodes’ coordinates. In the

following section, we investigate how to embed a network topology in a distributed

fashion.

5.3.4 Embed network t0pologies in a distributed fashion

In this section, we show how to embed a network topology in a distributed fashion by

sampling a portion of nodes in the network. We randomly select M nodes as reference

points (beacons) fiom a network of size N . Each beacon k floods a beacon message

to the network which contains a hop counter initialized as zero. The hop counter is

increased by one when the message is forwarded to a next hop. By finding out the

smallest hop counter among all the received beacon messages, a node can infer its

hop count distance to beacon 11:. Based on the received messages sent out by all M

beacons, node i can construct its hop count distance vector as below.

. _ , t
X. - [$11,312. - - - 1332'Ml

Here, mg is the hop count distance from node i to beacon j.
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Figure 5.6 Beacon coverage with radius R

In order to reduce the communication cost, we only measure hop count distances

from a node to M beacons instead of all the N nodes of a network. When sufl‘icient

beacons are uniformly distributed, it is possible to infer characteristics of a network

topology through beacon sampling. As a result, we can achieve reasonable embedding

accuracy based on partial observations, i.e. hop count distance measurements to a

set of beacons instead of an entire network. To illustrate the relationship between

embedding accuracy and size of beacon set, we start with some definitions below.

Definition 3 Node i’s minimum beacon distance I,- is defined as the hop count dis-

tance from node i to the nearest beacon, i.e. l,- = minjeK 6,5, where K is the beacon

set.

Definition 4 Beacon coverage radius R is defined as the maximum l, for all nodes

of a network, i.e. R = maxiepli, where P is the node set of a network.

The intuition of the definition above is that all the deployed area is covered by

the union of circular regions centered at beacons with radius R as shown in Fig. 5.6.

Accordingly, any node can find a beacon within the range of hop count distance R.
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Pr0position 2 By only measuring hop count distances to a set of beacons, a network

topology can be approaimately embedded into a space in which the distance estimation

error is bounded by beacon coverage radius R.

Proof: If we can measure hop count distances to all the nodes of a network of

size N, the network can be exactly embedded into a hop count distance metric space

(X, 6) such that 1) node i’s per-destination state is described by its coordinate as

x, = [2,1,12,32, . . . ,riN]; 2) hop count distance between node i and j can be accurately

inferred as 6,]- : 6(x,-,xj) = 33ij-

If hop count distances are only available to a set of beacons of size M, the network

can be approximately embedded into a M-dimensional space (X’ , 5’) where node i’s

coordinate is described as:

I _ I I I 2‘.

xi - [372'1132'2’ 1 - ~ ’xiMl —

Here xgj is the hop count distance from node i to the jth beacon. The distance

function 6’ is defined as

6' xi.x'- = -,wherek=ar mind.
( z; _7) 2k grEK Jr

Intuitively, we find the nearest beacon k to node j and use hop count distance 6,), to

estimate distance between pairwise nodes i and j. The distance estimation error in

the embedded space is:

I52" — 5(Xi,x;-)l = I525 - 5ikl-

Because hop count distance defines a metric which satisfies that triangle inequality,
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as shown in Fig. 5.6, we have

I515 — 51H S 5n- S R- D

From Proposition 2, we can conclude that a dense and uniform beacon distribution

is helpful to minimize the distance estimation error since such a beacon distribution

can achieve small beacon coverage radius R. Increasing beacon density, however,

will lead to higher dimensionality of the embedded space if we directly assign node

coordinates in which each dimension is the hop count distance to one of beacons. In

order to achieve sufficient embedding accuracy while preserving low dimensionality

of the embedded space, we use the same strategy of above section to reduce the

dimensionality through two steps. In the first step, the low dimensional embedded

space is learned from beacon set such that each beacon is assigned a virtual coordinate.

In the second step, non-beacon nodes’ coordinates are calculated by fitting hop count

distances to all the beacons. The details of these two step are discussed below.

Step one: a designated leading beacon collects the hop count distance vectors

from all other beacons and construct beacons’ hop count matrix X as below.

X = [x1,x2, . . . ,x,,,,], where x,- E K.

Based on the matrix X, We use the MDS to embed the hop count distance metric

space (X, 6) into a low-dimensional Euclidean space (P, d) such that each beacon is

assigned a virtual coordinate k,-.

Step two: we use least square fitting to embed a non-beacon node into the low-

dimensional Euclidean space such that the differences between hop count distances
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and the corresponding Euclidean distances from the node to all beacons are mini-

mized.

1U

13,-: arg mpin E ([6,3- — |p,; — kj|)2.

1 .

1:1

Consequently, node i’s virtual coordinate is the optimal result of the object function

above which can best fit the estimated Euclidean distances dij to the hop count

distances 6,7- from node i to all the beacons.

The distributed multidimensional scaling (DMDS) approach proposed above em-

beds nodes to a low-dimensional Euclidean space by fitting hop count distances to a

set of beacons, which is all the observed network topological information available to

us. The performance evaluation in next section shows that the hop count distance

between any pairwise nodes can be accurately inferred from the virtual coordinates,

despite the fact that the virtual coordinated are constructed from the partial observa-

tions on beacons. The topological characteristics of an entire network can be sampled

from beacons because of two reasons:

1. Randomly selected beacons are uniformly distributed in the network, which

makes them good candidates to represent the structure of a network topology.

2. High redundancy is shared between neighboring nodes. As we discussed above,

neighboring nodes have similar hop count distances to the third node due to

the triangular inequality. Wealthy topological information can be preserved by

only using hop count distances to a few beacons because the hop count distance

to other nodes close to beacons are often redundant.
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5.4 ETX distance based greedy forwarding

Both topology aware routing and location aware routing assume that wireless channels

between neighboring nodes have perfect reception, i.e. packets can always be success-

fully delivered. Based on this assumption, the shortest path between the source and

the destination is the optimal routing path that requires the least number of packet

forwarding. However, radio signals attenuate in transmission and are susceptible to

environmental interference, which may lead to corrupted packets. In such a case,

packets need to be retransmitted before they can be successfully delivered. Since the

topology aware routing or the location aware routing aims to find the shortest path,

each individual hop has long transmission range and low quality. Consequently, the

greedy forwarding will fail to find the optimal routing path comprising high quality

links.

In this section, we further improve the end-to—end routing performance of the

greedy forwarding by improving the expression accuracy of a wireless sensor network.

Unlike the simple geographic model where the communication route is approximated

by the geographic path, we embed a wireless sensor network into a Euclidean space

where nodes’ virtual distance is equal to the number of expected transmissions (ETX)

for a packet to be successfully delivered from a source to a destination. Because the

virtual distance directly reflects the end-to-end communication channel quality, the

greedy forwarding can guide a packet along the optimal routing path which has the

shortest virtual distance. Here we use the number of expected transmissions instead

of the hop count distance as the routing metrics to improve the routing performance
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because the former has the following properties: i) it reflects the underlying wireless

channel quality between neighboring nodes; ii) it also reflects the end-to—end channel

quality from a source to a destination.

In the follow discussion, we first show how to evaluate the quality of wireless

chamiels. After that, we describe the ETX distance based greedy forwarding.

5.4.1 Evaulation of underlying wireless channel

The communication quality and cost of a wireless channel can be evaluated by various

metrics such as packet reception ratio, transmission delay, and throughput. A detailed

comparison of three link—quality metrics - expected transmission count (ETX) [60],

per—hop round trip time (RTT) [61], and per-hop packet pair delay - has been con-

ducted in [62], which concludes that the ETX metric has the best performance in a

static wireless sensor network. In this chapter, we show that ETX is an ideal metric

to define the virtual distance to support the greedy forwarding to achieve optimal

end-to-end routing performance.

To route data over unreliable wireless channels, hop-by-hop recovery is usually

preferred over end-to-end recovery[68]. The hop-by—hop recovery is realized by ac-

knowledging received packets and retransmitting lost packets. For neighboring nodes

i and j in a route path, the receiver j will send back an acknowledgment to sender

i when a packet is correctly delivered; and the sender i will retransmit a packet if

it has not received the acknowledgment within a certain time period after a packet

transmission. Assume that the packet loss rate from node i to j is Pij and the packet

loss rate from node j to node i is Pji. The probability of a successful packet trans-

140



mission is (1 — Bj)(l — P3,), and the expected number of retransmissions defined as

the expected transmission count metric in [60] between node i and j is:

ETXfiJ) = 1/(1- Pijlll — Pjil-

Assume that a pairwise node p1 and pn has the routing path I comprising interme-

diate nodes p2, p3, . . . ,pn_1; we have the expected transmission count of the routing

path I as:

n—l

ETX“) = Z ETX(Pi,pi+1)

i=1

It has been proposed in [60] to incorporate the ETX into the on-demand routing

such as DSR to find the optimal routing path between pairwise wireless nodes. In

the combined approach, the source broadcasts route probing message to an entire

network. The routing paths can be discovered when the destination sends back the

response messages along the reversed paths of the probing message. Among all the

paths connecting source and destination, the optimal routing path can be determined

with the minimal ETX.

In this section, we propose to combine the ETX metric with the greedy forwarding

such that the optimal routing path can be found without reliance on the frequently

broadcast route probing messages.
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5.4.2 Greedy forwarding based on the ETX distance

We define the ETX virtual distance between pairwise nodes x,- and xj as the minimal

ETX among all the routing paths connecting x; and xj, i.e.

509',le = {$1411} ETXUi),

where L is the set of routing paths connecting nodes x,- and xj. In this section, we

assume that ETX distance between pairwise nodes in a wireless sensor network can

be inferred from their virtual coordinates.

The greedy forwarding can achieve Optimal end-to-end routing performance based

on ETX distance comparison between neighboring nodes. In order to achieve that,

we need to assign nodes virtual coordinates from which ETX distances can be accu-

rately recovered. We can apply the same MDS embedding technique proposed in the

topology aware routing by simply replacing the hop count distance metric with the

ETX distance metric.

Based on the comparison of the ETX distances between neighboring nodes, the

greedy forwarding can determine the next hop as follows: suppose a packet need to

be forwarded to the destination xk. Let node x,- be the intermediate node with the

routing packet and set N define all the neighbors of node x,. The next forwarding

hop can be selected from the neighbor set N as:

523- = argxmérjiv(6(x,-,xj) + 6(xj,xk)), (5.6)

J

i.e. the packet is greedily forwarded to the next hop xj which minimizes the summary

of the ETX distances 6(x,-,xj) and 6(xj,xk).
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5.5 Performance evaluation of topology aware routing

To evaluate topology aware routing (TAR), we compare the TAR, location aware

routing (LAR), logical coordinate routing (LCR), and beacon vector routing (BVR) in

this section through intensive simulation. Our evaluation focuses on the effectiveness

of the constructed coordinates to support the greedy forwarding, i. e. the routing

success rate of greedy forwarding given a node coordinate assignment of a network.

To clearly evaluate the effectiveness of various coordinate assignment schemes, we

test the routing success rate only based on the greedy forwarding and do not resort

to any recovery solutions to the local minimum. Before proceeding to the detailed

performance comparison, we brief LCR and BVR below and summarize the difference

between TAR, LCR and BVR.

5.5.1 Difference between tapology aware routing, beacon vector routing

and logical coordinate routing

Previous work of beacon vector routing[8] and logical coordinate routing (LCR) [55]

is similar to our proposed virtual coordinate approach in that nodes’ coordinates are

constructed from the hop count distances between pairwise nodes. Both BVR and

LCR directly assign node coordinates based on their hop count distances to a set of

beacons:

pi : [1921:19in - ' Ipillil?
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where p,k( 1 _<_ k g M) is the hop count distance from node i to beacon k. Based on

nodes’ coordinates, LCR calculates the distance between pairwise nodes (i, j) as:

diiaj) = [Pi - le = (20% - ij)2)1/2.

k=1

The BVR uses a different approach to estimate distance from node coordinates as

following. Suppose d is the destination node, the distance from node 3 to node d is

calculated as below:

6;,(3, d) = A6;(s, d) + 6,:(3, d),

where

63(3) d) = Z max(p8i — pd‘lr 0):

iECk(d)

5,;(s,d)= Z maX(Pdi—Psi10)-

iECk(d)

Here, Ck(d) is the set of the k closest beacons to destination d. rims, d) is the sum

of differences when the selected beacons are closer to destination d than to node

3. 5;(s,d) is the sum of differences when the selected beacons are farther to the

destination d than to the node 3. The next hop 3' is chosen such that the 5k (j,d)

is minimized among all neighbors. The intuition behind BVR is to select nearest

beacon set Ck(d) to the destination (1 and greedily forward a packet towards the

beacon set Ck(d). Since beacons in Ck(d) are close to the destination d, the packet is

forwarded along the right direction. BVR improves LCR in that only the k (k < M)

closest beacons (routing beacons) to destination (1 other than all the M beacons are

involved in the distance comparison. As a result, BVR only needs to maintain hop

count distances to k routing beacons as the destination address in a packet’s head

and therefore uses less bytes than LCR.
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Our proposed topology aware routing (TAR) differs from BVR and LCR in two

aspects:

1. TAR assigns nodes’ coordinates by minimizing the differences between esti-

mated Euclidean distances and measured hop count distances. In contrast, the

distance estimated by LCR and BVR has less geometric relationship with the

hop count distances between pairwise nodes. As a result, TAR can compare

hop count distances between neighboring nodes more precisely and therefore

achieve better routing performance of greedy forwarding.

2. In BVR and LCR, the dimensionality of nodes’ coordinates is equal to the

size of beacon set. As a result, increasing size of beacon set to sample more

characteristics of a network topologI will inevitably increase dimensionality of

nodes’ coordinates, which leads to larger size of routing states. In contrast, TAR

uses MDS to effectively reduce dimensionality of nodes’ coordinates such that

wealthy topological information can be efficiently encoded into low-dimensional

coordinates.

Since the fundamental differences between various coordinate assignments are

their capabilities to extract the topological characteristics from a wireless sensor net-

work, our evaluation focuses on the geometric characteristics of the network layer

where the network topology has major impact on the routing success rate. We

assume the physical layer and MAC layer of communications links have the same

impacts on compared routing protocols. To isolate the interference of the physical

and MAC layer to our routing performance comparison, we make the assumption
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Figure 5.7 Square layout Figure 5.8 C layout Figure 5.9 Street layout

that the communication links are reliable and can always deliver a packet between

neighboring nodes. Such an abstraction can help us focus on how network topologies

affect the greedy forwarding routing and how well network topologies are described

by coordinate assignment solutions.

5.5.2 Simulation configuration and evaluation metrics

We use three configurations to simulate three representative scenarios of wireless

sensor network deployments. The first scenario is that wireless nodes are deployed in

an open flat area, which is simulated by a square shape network topology as shown

in Fig. 5.7. The second scenario is that wireless nodes are deployed along a long path

such as a river or valley, which often consists of segments of C shapes or S shapes. We

generate the C shape network topology to simulate this scenario as shown in Fig. 5.8.

The third scenario is that wireless nodes are deployed in streets of an urban area,

where radio communications are blocked by buildings. We generate a square shape

where multiple rectangles were positioned to simulate buildings as shown in Fig. 5.9.

To compare the performances of TAR, LAR, BVR and LCR, we repeate the

following experiment in the same network topology configuration for each routing
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scheme. In each experiment, the same randomly selected 1000 pairwise nodes are

used as sources and destinations to test greedy forwarding routing based on nodes

coordinates assigned by one of the routing schemes. We count the total number of

routings which fail to deliver a packet from the source to the destination due to the

local minimum. The percentage of failed routings (Routing Failure Rate) is used to

measure the effectiveness of the routing scheme. All the metrics used to evaluate the

routing performance are summarized below.

0 Routing Failure Rate: The percentage that a packet cannot be delivered by

the greedy forwarding from the source to the destination.

0 Average Routing Length: The average number of hops that a packet need

to be forwarded from a source to a destination.

0 Radio Transmission Range: The maximum range that the wireless radio

signals can be transmitted by a node.

0 Beacon Density: the number of beacons used in a network.

0 Virtual Coordinate Dimensionality: the number of elements used in a

node’s virtual coordinate.

5.5.3 Performance comparison between LAR and TAR-MDS

We first compare the performance between the location aware routing (LAR) and the

topology aware routing using the multidimensional scaling approach (TAR-MDS).

In order to set up a fair play, we intentionally embed network topologies into two
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dimensional Euclidean spaces through MDS. Consequently, both routing approaches

have the same costs in terms of the size of routing states maintained by individual

nodes and the length of the destination address in a packet head.

Fig. 5.10 shows that TAR-MDS has much lower routing failure rates than LAR in

the square configuration when the transmission range is short. This is because voids

exist in a sparse network topology which leads to the mismatch between the lengths of

the shortest path and the geographic distance, i. e. the shortest path has to detour

around the voids and deviate away from the straight line. Due to the mismatch

between the lengths of the shortest path and the geographic distance, a node may

have a neighbor which is one hop closer to the destination but geographically farther

to the destination.

Fig. 5.10 also shows that both LAR and TAR has similar routing failure rates when

nodes’ radio transmission range is long. This is because voids disappear in a dense

network topology and the lengths of the shortest paths in the network topology can be

148



 

.
5

0
" J 9
’
a
, i 

 

  

  

  

 

    

 

  

°\°
%, JMDS-TAR

3 g .4 'O-SPR

m

_I

CE) 10'
@355-

h

.c

g
5

““3
n:

E” 5’
g) 3.5»

'5
s

6:” s

G ‘ ‘ . .
< 3'49flII-e-1-

1QIIIIIon...

2 4 6 8 1o 12 2 4 s a

Dimensionality Dimensionality

Figure 5.12 Impact of virtual coordi- Figure 5.13 Routing quality of MDS-

natcc’ dimensionality on routing failure TAR

rate

well approximated by the geographic distances. However, in a concave network such

as C shape network, the TAR-MDS always has lower routing failure rates than the

LAR, which is shown in Fig. 5.11. This is because in the C shape network topology,

the shortest paths between pairwise nodes have to detour along the C shape and

deviate away from the straight line directly connecting sources and destinations.

5.5.4 Impact of virtual coordinates’ dimensionality in TAR-MDS

Fig. 5.12 shows that the routing failure rate of TAR-MDS can be significantly de-

creased if we increase the dimensionality of node coordinates from 2 to 6. After that,

the routing failure rate eventually converges to zero. Fig 5.13 shows that TAR has

the same average number of hops per routing as the shortest path routing (SPR)

when the dimensionality is increased to 6. The routing failure rate decreases with

the increase of virtual coordinates’ dimensionality because higher dimensional virtual

coordinates preserve higher fidelity of the network topology in the embedding. On
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the other hand, a low routing failure rate can be achieved at a fairly low dimension-

ality (6 in this experiment) because the MDS is an effective dimensionality reduction

technique which can accurately embed a network topology into a low dimensional

Euclidean space.

Despite its effectiveness, the TAR-MDS algorithm is a centralized approach which

relies on the global view of an entire network. In the following section, we evaluate

the distributed version of the TAR, i.e. topology aware routing using distributed

multidimensional scaling(TAR—DMDS), which uses less communication costs and is

more suitable to the distributed wireless sensor network.

5.5.5 Impact of beacon set size on the routing performance

We investigate the impact of beacon set size on the routing performance of TAR-

DMDS, BVR and LCR. All the three approaches share the similarity in that nodes’

coordinates are constructed based on hop count distances to a set of beacons. Fig. 5.14

shows the relationship between the routing failure rates and the size of beacon set in

C network topology. This figure shows that a small number of beacons (close to 4)

is insufficient to represent the characteristics of the entire network topologies and a

certain number of beacons (more than 20 in these two configurations) are required in

order to achieve relatively low routing failure rates.

The discussion above shows that certain number of beacons is required to sample

sufficient topological information from a network topology. We further investigate the

relationship between the number of required beacons and the size of sampled network.

We generate C shape network topologies at various size of 400, 800 and 1600 nodes.
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All the three networks have the same node density and are similar to each other in

topological structure. We test the routing failure rate at different beacon sample size

in all three networks. The result is shown in Fig. 5.15, which illustrates that their

routing failure rates are close to each other when the number of beacons reaches a

certain value (60 in our test). Based on this test, we conclude that the required size

of sampling beacons mainly depends on the complexity of network topology instead

of the total number of nodes, and the number of required beacons does not scale with

the size of a network.

5.5.6 Impact of node coordinates’ dimensionality in TAR-DMDS

The performance evaluation above shows that a certain number of beacons are re-

quired to achieve low routing failure rate. Large size of beacon set, however, will

inevitably lead to high dimensionality of node coordinates and therefore large size

routing states and long destination addresses in packets’ heads. BVR uses routing

beacons to reduce the length of destination addresses in packets’ heads. Our proposed
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TAR-DMDS can achieve both small size routing states and short length of destina-

tion address by utilizing the dimension reduction technique. In this comparison, we

view the number of routing beacons of BVR as the coordinates’ dimensionality. We

compare routing failure rates of TAR-DMDS and BVR with different coordinates’

dimensionalities. Fig. 5.16 shows that the TAR-DMDS has lower routing failure rate

than BVR in various dimensionalities. Especially in the low dimensionality such as

2, the routing failure rate of TAR-DMDS is much lower than that of BVR. The TAR-

DMDS outperforms in low dimensionality because of two reasons: (1) the virtual

coordinates of TAR-DMDS are constructed by directly fitting the hop count dis-

tances, which sets up a good basis for precise hop count distance comparison between

neighboring nodes; (2) BVR only uses routing beacons in distance comparison, while

TAR-DMDS embeds nodes’ coordinates from the hop count distances to all available

beacons and encodes more topological information into coordinates.
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5.5.7 Routing performance based on neighbors’ coordinates within two

hops scope

The performance evaluation above shows that the topology aware routing can achieve

high routing success rate at low dimensional virtual coordinates. This intrigues us to

further investigate the routing performance when a node can learn coordinates which

are two hops away. Due to the low dimensionality of virtual coordinates, the routing

status can still be maintained at small size even a node preserve all the coordinates

of nodes within two hops. The only cost here is the extra communication messages

to exchange coordinates between two hop away nodes.

The results of performance evaluation are shown in Fig. 5.17 and Fig. 5.18. We

can see that the same routing failure rates can be achieved at smaller sample size or

lower virtual dimensionality when a node’s routing scope is expanded to two hops.

However, the performance improvement is not obvious when the scope is expanded

from 2 hops to 3 hops.
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5.5.8 Robustness of tapology aware routing

In order to evaluate the robustness of topology aware routing, we use the street layout

network topology as the testbed. We simulate nodes’ failure by taking all the edges

from failed nodes to their neighbors such that packets cannot be forwarded from/to

failed nodes. When TAR-MDS, TAR-DMDS and BVR are used for routing packets,

certain percentage of failed nodes are randomly selected from the network. We vary

the percentage of failed nodes from 5% to 20% to investigate the resilience of topology

aware routing to the node failures.

Fig. 5.19 shows that the routing failure rates of both TAR-MDS and TAR-DMDS

are increased when the node failure rate increases. The TAR-MDS and TAR-DMDS

fail to delivery packets because the routing paths discovered by TAR-MDS and TAR-

DMDS are broken due to nodes’ failures. However, we can observe that TAR—MDS

and TAR-DMDS do show certain resilience to nodes’ failures based on the relative

small slopes of the two curves, which have the similar slopes as that of BVR. The

performance evaluation shows that TAR-MDS and TAR-DMDS have the capabilities

to tolerate nodes’ failures by bypassing failed nodes.

154



 

.
5
4
.
:

O
N
t
h

 

+80 injection rate

+10 injection rate
   

M
‘
F
O
U

i  
 

#
o
f
t
r
a
n
s
m
i
s
s
i
o
n
s
p
e
r
p
a
c
k
e
t

N
O

4 6 8 1o

# of forwarding hops

Figure 5.21 Experiment of mutlihop forwarding

5.6 Performance evaluation of ETX distance based greedy

forwarding

We evaluate the ETX distance based greedy forwarding through a small scale

experiment based on MICA2 platform and a large scale simulation based on

TOSSIM/TYTHON[102]. TOSSIM is a bit level simulator which shares the same

TinyOS code with the MICA2 platform. We first evaluate the packet transmission in

multihop forwarding on the MICA2 platform. After that, we compare the greedy for-

warding based on the ETX distance with the location aware routing in the TOSSIM

simulator. Besides the metric used in Section 5.5, the following metric is also used

evaluation.

Number of transmissions per packet: The number of transmissions per packet

is the total number of transmissions, including retransmissions required for a packet

to be forwarded from the source to the destination.
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5.6.1 Evaluate packet transmission in MICA2 platform

Because the MAC layer of the current MICA2 sensor platform does not acknowledge

packets successfully received, we implement the ACK-retransmission mechanism in

the network layer. When an intermediate node receives a message, it will send an

acknowledgment back to the previous hop before forwarding the message to the next

hop. All the received messages are buffered in a queue and retransmitted until they

are acknowledged by the next hop or the maximal retransmission threshold is reached.

We implement a path driven routing in the network layer to evaluate packet trans-

mission performance along different forwarding paths. The packet format is shown

in Fig. 5.20, where the routing path field contains the sensor IDs of all the interme-

diate forwarding nodes. The next hop field is a pointer to the routing path field.

The value of the next hop field is increased by one when a packet is forwarded along

one hop. Based on the next hop field, we can find the next forwarding hop by look-

ing up the routing path field. The retransmissions field records the total number of

transmissions (including retransmissions) of the forwarded packet. Consequently, the

number of transmissions required to route a packet from the source to the destination

is available at the end of the routing path.

We arrange all the sensor nodes in a straight line and attach one laptop to the

first node (source) and the other laptop to the last node (destination). A packet is

injected to the routing path from the laptop attached to the source and the total

number of packet retransmission is read at the laptop attached to the destination.

By fixing the distance between the source and destination, we forward packet along
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Figure 5.22 Number of transmissions between pairwise nodes
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different routing paths which consist of different number of intermediate forwarding

nodes. We also test the multihop forwarding with different packet injection rates.

The experimental result is shown in Fig. 5.21, which illustrates several properties of

multihop forwarding in wireless channels: i) the high packet transmission rate will

increase the average number of transmissions due to the channel collision of packet

transmission; ii) the optimal number of forwarding hops exists for a pairwise nodes

with a fixed transmission distance. Because a routing path with a small number of

forwarding hops contains long distance low quality links, a packet has to be retrans-

mitted multiple times in each individual link. On the other hand, a routing path

with too many forwarding hops will lead to excessive packet forwarding. Besides, the

densely distributed intermediate nodes have higher packet collision probability. We

use the ETX distance to measure the optimal routing path between pairwise nodes.

The ETX distance based greedy forwarding is further evaluated in the TOSSIM sim-

ulator.

5.6.2 Evaluate the ETX distance based greedy forwarding in TOSSINI

TOSSIM is a bit level simulator which can accurately simulate the radio transmission

channels between wireless sensors. We use the lossy radio model which assumes each

bit of the transmission packet has the probability of p to be flipped. The probability

of bit flipping is measured from the real experiment. When a packet is received, the

correctness is verified/recovered by forward error correction (FEC) code. A packet

will be dropped if it cannot be recovered by the FEC verifying code. We use the

TYTHON to control the simulated nodes in TOSSIM, which act as the two laptops
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attached to the source and the destination. The pairwise source and destination

are randomly selected from 100 nodes deployed in a 125 by 125 feet square area.

The testing packet is injected to the simulated network through TYTHON which is

forwarded along different routing paths computed from different routing algorithms.

The average number of packet transmissions and the packet delivery ratio is logged

by TYTHON. In order to minimize the interference between radio links, we inject the

testing packets in a sequential order with a time interval between consecutive packets.

We first evaluate the greedy forwarding on 8 pairwise nodes randomly selected.

We use both greedy forwarding based on ETX distance (GF-ETX) and the location

aware routing (LAR) to forward packets between each pairwise nodes and record the

average number of transmissions. Fig. 5.22 shows that the GF-ETX uses less number

of transmissions to deliver packets from a source to a destination.

We further compare the GF—ETX, the location aware routing with threshold

(LAR-threshold) and the location aware routing based on the product of the packet
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reception rate and the forwarding distance (LAR-PRR x distance). Fig. 5.23 and h

Fig. 5.24 show that both the number of packet transmissions and the packet failure

rate are increased with the increment of packet size. Moreover, the location aware

routings are more susceptible to the packet size and have high average number of

packet transmissions for larger size packets. This is because both the routing ap-

proaches tend to select low quality routing links with high bit flipping error and

multiple bit errors may happen in long length packets which cannot be recovered by

FEC code.

We compare the GF-ETX with the location aware routing in complex deployed en-

vironment by adding obstructions into the deployed area, which increases the spatial

complexity of the network topology. Fig. 5.25 and Fig. 5.26 show that the greedy for-

warding based on ETX distance is less affected by the interference from obstructions

and can always learn the optimal routing paths in a complicated network topolog.

Because the ETX distance is a global metric which defines the end-to-end channel
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quality between pairwise nodes, the greedy forwarding based on ETX distance can

foresee the affection of obstructions and guide packet to bypass the obstruction along

an optimal route.

We further evaluate how network dynamics, such as node failure, affect the rout-

ing performance of the ETX distance based greedy forwarding. We simulate nodes’

failures by temporarily turning off nodes in TOSSIM. To keep the constant number

of active nodes, a certain percentage of nodes keep turning on/off periodically. We

vary the percentage of failed nodes from 2% to 12% to investigate the resilience of

ETX distance based greedy forwarding to the node failures. Fig. 5.27 and Fig. 5.28

show that the impact of network dynamics on the routing performance is limited.

This is because in a densely deployed wireless sensor network, multiple routing paths

exist between pairwise nodes such that the greedy forwarding can successfully find a

backup route by walking around failure nodes.

We evaluate the coding efficiency of ETX-embedding by varying the dimensional-
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ity of the embedded space. Fig. 5.29 and Fig. 5.30 show that the routing performance

is increased when the dimensionality is increased from 2 to 6, and converges after the

dimensionality is greater than 6. The evaluation shows that the ETX-embedding can

efficiently encode a wireless sensor network topology into small size virtual coordi-

nates such that good routing performance can be achieved under low dimensionality

embedded space.

5.7 Summary

Packet routing in wireless sensor networks is a challenging problem because data

often needs to be routed in a purely flat network topology consisting of thousands of

nodes which have limited resources to preserve routing states. Location aware routing

shows its potential in that it uses simple greedy forwarding to deliver packets based on

small size routing states. However, location aware routing uses the ideal geographic

model that often oversimplified the spatial complexity of a wireless sensor network

that are deployed in complicated environments. In this chapter, we propose to use

graph embedding to achieve optimal end to end routing performance in complicated

environment with small routing states. We first solve the local minimum problem

by embedding a network topology to a Euclidean space where hop count distances

can be recovered from node virtual coordinates. Based on the accurate hop count

distance comparison between neighboring nodes, the greedy forward can find the

right neighbor that is one hop closer to the destination and finally deliver the packet

through consecutive hop-by-hop forwarding. We further show that the routing quality
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can be improved by embedding the network topology to a Euclidean space where

the number of expected transmissions (ETX) can be recovered from nodes’ virtual

coordinates. Guided by the ETX distance, the greedy forwarding can find the optimal

routing path with the least number of transmissions to successfully deliver a packet

from the source to the destination. We evaluate our proposed approaches in both

simulations and experiments, which shows they can improve the routing quality in

terms of the routing success rate and routing costs.
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CHAPTER 6

Reliable Data Transmission in Wireless

Sensor Networks

6.1 Motivation

Radio signals can be reflected and scattered by obstructions in complicated environ-

ments, which leads to unreliable wireless channels and packet loss in transmission. It

is necessary to retransmit lost packets to ensure reliable data transmission in lossy

wireless channels. In this chapter, we investigate how to realize the reliable data trans-

mission with minimal overhead and maximal throughput. Two basic mechanisms have

been widely used to achieve reliable data transmission over lossy channels. In time—

out mechanism, a sender waits for an acknowledgement (ACK) from a receiver after

a packet is sent out. If the ACK is not received within a certain time, the packet

will be retransmitted. The time-out mechanism may degrade throughput of wireless

sensor networks because i) its stop-and-wait nature reduces nodes’ transmission rate;

ii) the ACK packets consumes network bandwidth; iii) lost ACKs incur unnecessary

retransmission. The extra overhead incurred by ACK has been partially mitigated
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Figure 6.1 Packet success rate under different lossy channels

in RBC [69] that piggybacks grouped ACKs into forwarding data. The sequence

based mechanism is the other approach to achieve reliable data transmission and has

been successfully applied in the sliding-window algorithm of TCP protocol. However,

originally designed for end-to-end protocols, the sequence based mechanism is not

robust and incurs extra overhead when directly ported to hop—by-hop recovery [68].

In this chapter, we analyze the problems incurred by the sequence based mechanism

in hop-by—hop recovery and propose the receiver-centric protocol to overcome those

problems.

We organize the chapter as follows. We first define the problem of reliable data

transmission in Section 6.2. After that, we detail the lost packet recovery of the

receiver-centric protocol in Section 6.3. We evaluate the receiver-centric protocol in

Section 6.4 and summarize the chapter in Section 6.5.
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6.2 Problem definition

In general, sensed data is loss-tolerant because packets containing the reported data

have few correlations among each other and meaningful information can be inferred

from partially received packets. For better understanding of monitored events, it

is more important to capture the total number of unique reports rather than to

reliably deliver each individual packet. Nevertheless, it is necessary to retransmit

lost packets in unreliable wireless channels to maximize the channel throughput and

improve energy efficiency. We use a simple numerical analysis to illustrate this point.

Assuming that the packet loss rate of a wireless channel is 5. The packet success

rate after n-hop forwarding will be (1 —— e)". We plot the packet success rate under

different a and n in Figure 6.1, which shows that more than 40% packet will be lost

after 6—hop forwarding when channel loss rate 5 = 0.1. This can seriously degrade

channel throughput and waste transmission energy since many packets are lost in the

middle of forwarding.

The time-out mechanism has been proposed to retransmit lost packets, in which

a sender will wait for an acknowledgement after it sends out a packet to a receiver. If

the sender does not receive the acknowledgement from the receiver within a certain

period, it will retransmit the packet. The lost packet may be retransmitted multiple

times until reaching a certain threshold. The time-out mechanism is simple and can

be easily implemented. However, it incurs several problems when applied to resource-

constrained sensor networks.

1. the ACKs incur extra overhead that cannot be ignored in bandwidth-limited
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wireless channels. In order to send back one bit information of an ACK, the

receiver need to switch its receiving mode to transmitting mode, synchronize

with the original sender by sending a serial of sync bytes, and finally transmit the

ACK data. All this requires a minimum of 10 — 15 bytes to just send the ACK.

Since the data packets in sensor networks usually have small size (maximum

29 bytes in TinyOS 1.0 implementation), the extra overhead of ACK packets

cannot be ignored.

2. the ACK itself my be lost due to the unreliable nature of wireless channels.

This incurs unnecessary packet retransmission. The duplicated packets may be

retransmitted in each forwarding and compete for bandwidth resources with

data packets.

3. packets may be lost because of channel congestion, in which packets are cor-

rupted in collisions or dropped by the overflowed buffer in the receiver. However,

the time-out mechanism can not distinguish channel loss from channel conges-
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tion and will blindly retransmit packets when ACKs are not received. This will

intense channel congestion if all senders keep retransmitting lost packets.

To investigate how ACKs affect data transmission in sensor networks, we conduct

experiments on a pair of MICA2 sensor motes. In our experiments, 200 packets are

sent between a pair of sensors with different sending rates. In the first group of

experiment, packets are transmitted with the time-out retransmission mechanism by

enabling ACKs from the receiver to the sender. In the second group of experiment,

we disable ACKs and do not use any retransmission mechanism. The comparisons

are shown in Figure 6.2 and Figure 6.3, which illustrates that disabling ACKs can

help sensors to achieve higher packet success rate and transmission throughput when

packets are sending at small interval and therefore hight speed.

To retransmit lost packets while eliminating negative effect incurred by ACKs,

we propose the receiver-centric protocol that can completely address the problem

discussed above. First, the receiver-centric protocol is a sequence-based retransmis-

sion mechanism. It detect lost packets by checking the continuous received sequence

number, which does not require to send ACKs. Second, the sequence numbers are

notified to the sender implicitly by overbearing, which does not require extra mes-

sages. Third, the retransmission decision is decided by the receiver, which can easily

detect channel congestion by checking its own buffer. Therefore, the retransmission

will not mistakenly initiated due to channel congestion. Details of the receiver-centric

protocol are discussed as the following section.
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6.3 Reliable data transmission with the receiver-centric pro-

tocol

The receiver-centric protocol uses the sequence-based mechanism to detect and re-

transmit lost packets, which is similar to the sliding window mechanism used by the

TCP protocol. To detect lost packets between a sender and a receiver, the sequence-

based mechanism labeled all the packets from the sender with continuous sequences,

and lost packets can be detected by the receiver if it receives packets with discontinued

sequences. Based on discontinued sequences, the receiver can request the sender to

retransmit the lost packets with missing sequences. The sequence-based mechanism,

originally designed for the sliding window algorithm of the end-to—end TCP protocol,

works between a pair of transceivers to ensure a highly reliable, strick in order packet

transmission. Different from the TCP protocol, the receiver-centric protocol apply

the sequence-based mechanism in hop-by-hop recovery to achieve high throughput

and energy efficient data transmission from multiple sources to a sink. This differ-

ence leads to different design principles and implementation details, which we details

as follows.

6.3.1 Streaming data transmission form sources to a sink

As we discussed the before, the receiver-centric protocol is designed to maximum

throughput from sources to a sink. To receive a large volume of unique packets within

a short period has higher priority than to ensure reliable transmission of individual

packets. Based on this principle, we design the receiver-centric protocol to stream
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packet transmission that will not be interrupted by the lost packet retransmission.

We first show that continuous packet forwarding can be interrupted by the time-

out mechanism and the sequence-based mechanism directly ported from the TCP

protocol. After that, we discuss how the continuous data stream is maintained in the

receiver-centric protocol.

In the time-out mechanism, a sender will wait for the ACK for a certain period

after it sends a packet to a receiver. If the ACK is not received, the sender will

resend the packets. This stop-and-wait mechanism reduce the channel transmission

throughput. Moreover, ACKs may be lost, which incurs unnecessary retransmission.

In this case, duplicated packets waste channel bandwidth resources.

The sequence-based mechanism can speed up packet forwarding because no ACKs

are sent back from the receiver and the sender. All the network bandwidth can be

used for data forwarding. However, the sequence based mechanism relies on strictly

in-order sequence to detect lost packets, which may incur extra overhead and inter-

rupt packet forwarding stream. As illustrated in Figure 6.4, when the source sends

out packets to the sink through multihop forwarding, the source labels packets with

continuously increased sequences. When node 0 receives packets 4 an 5 while lose

packets 3, it will request node B to resend packets 3. At this moment, packets 5

and 6 have to be hold by node C and cannot be sent to node D. Otherwise, node

D will also detect packet 3 is missing and request node C to retransmit. Here all

the subsequent nodes have to wait until node C to recover the single lost packet 3.

Therefore, the data forwarding streaming is interrupted by lost packet recovery. The

situation may become worse if some packets cannot be recovered due to buffer over-
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stops forwarding packet 4, 5, and 6 when node B continues to forward packet 4, 5,

packet 3 is lost and 6 even when packet 3 is lost

flow. Those lost packets will always be detected by intermediate forwarding nodes

and incur frequently lost requests for un-recoverable packets.

The sequence-based mechanism cannot maintain a continuous data forwarding

stream because it relies on strictly continuous sequences globally maintained between

the source and the sink. Therefore, an interruption happened to any intermediate

node will stop data forwarding of the entire path. To solve this problem, we use the

localized numbering mechanism to relabel each packets at each forwarding. In this

mechanism, when a node receives packets, it will re-label packets with a continuously

increased sequences maintained in the local variable. An example is shown in Fig-

ure 6.5, where each node independently maintain a local sequence number that is

increased with received packets. Node C can detect lost packet 3 based on discon-

tinued sequences. However, node C can still continue forwarding packets 4 and 5 to

node D with no problems since all the packets are re—labeled by node C with new

sequences. The packets forwarding between the pair of node B and C and the pair
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of C and D is isolated by sequence renumbering. Therefore, packet interruption in

one hop will not affect the continuous forwarding of the entire path.

6.3.2 Request lost packets with overbearing

To ensure continuous data packet forwarding, the receiver-centric protocol does not

use dedicated messages to request lost packets from a sender. Instead, the lost se—

quences are piggybacked to data packets and the sender can be notified through

overbearing. This mechanism uses the the broadcast nature of radio channels and the

character of multihop forwarding, where packets forwarded by an intermediate node

can always be overheard by its predecessor. Therefore, it can be used to signaling

the predecessor with lost sequences. The consequence is that a virtual back-channel

is created along the reverse path of data forwarding, in which a receiver can send lost

sequences to its previous sender. The extra overhead is one more byte needs to at-

tached to the data packet, which is more economical to use a dedicated message with

more than 10 bytes length to notify the sender. More importantly, all the bandwidth

can be dedicated to data packet forwarding when extra request messages are avoided.

6.3.3 Recover lost packets with O(1)time complexity

The receiver-centric protocol aims to provide high throughput of data forwarding by

minimizing the overhead incurred by lost packet recovery. This is achieved by slightly

modifying the queue management with an extra virtual head. In the receiver—centric

protocol, each forwarding sensor maintains a buffer that operates as a normal queue,

i.e. a received packet enters into the tail of the queue, and the packet at the head of
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Figure 6.6 The receiver-centric protocol divides the packet buffers into three regions:

the sending region, the recovery region, and the receiving region

the queue is sent out. In the receiver-centric protocol, the queue is divided into three

regions: the sending region, the receiving region and the recovery region. As shown

in Figure 6.6, where the sending region contains all the packets that wait to be sent,

the recovery region contains all the sent packets, and the receiving region contains

empty buffers that wait for new packets. Here, the sending region works as an normal

queue which sends out packets at the head and receives packets at the tail. However,

when a packet is sent out, it will be temporarily moved from the sending region to

the recovery region, which might be used to recover lost packets as follows.

When the sender is notified by the receiver with missing sequences, the lost packets

can be recovered from the recovery region. To achieve that, We use an extra pointer

named vHead which can be temporarily pointed to the buffer containing the lost

packets. When the lost packet is resent, the normal head will be continue used for

packet forwarding. Here vHead is used to lookup and resend the lost packet. In

the receiver-centric protocol, to look up lost packets in the recovery region can be

finished in 0(1) time without scan the entire region. This is achieved by renumbering
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a packet based on the the index of the buffer containing that packet. Because the

local sequence variable is increased simultaneously with the queue movement, i.e. the

sequence number will be increased by 1 when a new packet enters into the queue,

the sequence number s assigned to the new packet is correlated with the index 1' of

the buffer containing that packet. We have 1' = s modeN, where N is the buffer size.

Therefore, the index of a lost packet can be easily computed from its sequence with

0(1) time.

6.3.4 Implement sequence-based recovery in TinyOS

We have implemented the sequence-based recovery mechanism in TinyOS 1.13.

A simplified program of the sequence-based recovery mechanism is illustrated in

Figure 6.7, which consists of three parts: the overbearing of lost sequences in

ReceiveMsg.receive(), the lost packet retransmission in QueueSerm’cTaskO, and

the close of the retransmission in SendMsg.send().

First, an intermediate node acquires the lost sequence through overbearing

packets sent by the next hop. if the field LostSeq of the overheard packet

contains non-null value, the node will set bRecover == TRUE and vHead =

lostSeq mod MSG.QUEUE_SIZE, i.e. point the UHead to the index of the buffer

contain the lost packet.

The Task QueueServicTask runs in the background, which repeatedly sends

packets at the Head of the queue (sendinngg = ScMsgBufU-Ieadj). How-

ever, if bRevoer is TRUE, which means the intermediate node receives a lost se—

quence, The QueueServz‘ceTask will retransmit the packet pointed by the vHead
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event TOS_MsgPtr

ReceiveMsg.receive[uint8_t id](TOS-MsgPtr pMsg){

if( pMsg_data->src =- parent

as pMsg_data->lostSeq ls NULL )

vHead = pMsg_data->lostSeq Z MSG_QUEUE_SIZE;

bRecover = TRUE;

return &tmpBuf;

}

return mForward(pMsg);

}

task void QueueServiceTask(){

TDS_MsgPtr sendinngg;

{bool bRecover;

if(bRecover){

sendinngg = & MsgBuf[vHead];

else

sendinngg = & MsgBuf[Headl;

pMsg_data I (Hsg_data *)eendinngg->data;

call SendMsg.send(sendinngg->addr,

sizeof(Msg_data), sendinngg);

return;

event resu1t_t

SendMsg.sendDone(TOS_MsgPtr pMsg, bool success){

if(pMsg == aMsgBuIEhead]){

head = (head + 1) Z MSG_QUBUE_SIZE;

}

if(pHsg == &MsgBuf[vHeadl){

vHead = EMPTY;

post QueueServiceTaskC);

return SUCCESS;

}

}

Figure 6.7 Sequence-based retransmission algorithm
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typedef struct SF_CMD{

uint8_t src;

uint8_t CMD;

bool bACK;

uint8_t power;

uint16_t injectRate;

uint8,t num_children;

} SF_CMD;

Figure 6.8 Control message format

(sendinngg = 8.5MsgBuf[vHead]).

When the intermediate node finishes sending a packet, it uses the

SendMsg.SendDone() to maintain the queue. If the sent packet is from the Head

of the queue, the Head is moved to the next buffer unit. If the sent packet is from

the vHead, which means the sent packet is retransmitted, both the UHead and the

bRecover are cleared.

6.4 Performance evaluation

We implement the receiver-centric protocol in TinyOS and evaluate the performance

of the receiver-centric protocol in both MICA2 and Tmote sensor motes. The receiver-

centric protocol is evaluated by comparing with the time-out retransmission enabled

with acknowledgments (ACK), and the best-effort mechanism without acknowledg-

ments (NA OK). We use the linear topology to evaluate the sequence-based retrans-

mission mechanism. the following metrics are used in our evaluation.

0 event throughput: the event throughput is defined as the total number of

unique packets received at the receiver per second.

0 energy efficiency: the energy efficiency is defined as the total number of bytes
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of data divided by the total number bytes that are used to transmit the data.

0 packet inject interval: the packet inject interval is the time period between

two consecutive packet sending, which determines the sending speed of a sender.

0 buffer size: the buffer size is length of transmission queue, i.e. is the maximum

number of packets that a forwarding node can hold.

0 data size: the data size is the number of bytes in a packet that is used to

contain sensed data.

6.4.1 Experimental design and configuration

In order to evaluate the transmission throughput of different approaches, we have

sources to keep sending packets, which can be forwarded by intermediate nodes and

collected by the sink. The sink is connected to a laptop where the control terminal

can i) control the experiment; ii) collect and analyze received packets. The control

terminal is implemented with Java and communicates with the sink through the

SerialForwarder. Our system consists of two parts, the management part and the data

transmission part. In the management part, the control message is broadcast from

the sink to the entire network, which initializes the network with desired configuration

parameters including the radio transmission power, the buffer size, and the packet

data size.

The sink also uses the control messages to trigger sources to start sending packets.

The format of the control message is shown in Figure 6.8, which contains several

fields including the packet inject rate, transmission power, ACK field, and packet
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size. By setting those field with proper values, sources can be initiated with different

parameters for each testing. It is possible that control messages may be lost during the

broadcast, which results that i) some sources may not be triggered; ii) intermediate

nodes may not be initiated with the proper transmission power and buffer size. We

use two strategies to solve this problem. First, all the packets received by the sink

are forwarded to the laptop through the serial cable. The packets contain the source

ID that generates the packets. By checking all the received source IDs, the inactive

sources that do not send packets can be identified and re—triggered. Since all the

configuration parameters, such as the transmission power and buffer size, are included

in the control messages, sources can be initialized with correct parameters as long as

it is triggered by the control messages. Second, sources can pass the configuration

parameters to intermediate nodes through data packets. When sources generating

data packets, they will initialize packets with the transmission power and buffer size.

Therefore, intermediate nodes can reset the configuration parameters with the same

values as long as they receive packets from sources.

Since we only evaluate the communication performance of a sensor network at the

link layer, the routing function at the network layer is not included in our program.

Instead, we use fixed routing path in our test. This can be achieved by statically as-

signing routing table when sensor motes are reprogrammed. For the network topolo-

gies used in our evaluation, we only need to define the child/parent relationship in

the routing table, such that a intermediate node can receive packets from its children

and forward packets to its parent.

Assisted by the management part, we can control the testbed and evaluate dif-
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ferent approaches in data transmission part. After we reprogrammed sensor motes

with one approach, we conduct multiple tests with different settings of packet inject

rate, buffer size and packet size. This is achieved by the control message broadcast

from the sink. We detail our performance evaluation under various settings in the

discussion below.

6.4.2 Lost packet recovery under different packet inject interval

We compar event throughput of the receiver-centric, the ACK, and the best-effort

(NACK) approaches with a two hop network topology, where the sender continuously

sends 200 packets to the receiver. All the packets received by the receiver are for-

warded to the control terminal running in the laptop. The control terminal filters

out duplicated packets based on the packet ID assigned by the sender. We evaluate

the three approaches at different packet inject intervals. The comparison results are

shown in Figure 6.9. The evaluation shows that the ACK mechanism has higher

event throughput than the NACK approach under large packet inject interval. This
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is because the ACk appproach can recover lost packets and therefore collect more

packets at the receiver. However, when the packet inject interval becomes smaller,

the ACK mechanism has lower event throughput than the best-effort mechanism.

This is because of two reasons. First, when packets are sent at high speed with

small inject interval, the ACK messages will compete bandwidth resources with data

packets in the saturated wireless channel. Therefore, data packets will have smaller

bandwidth and lower throughput. Second, ACKs may be lost due to the unreliable

wireless channel. This makes the sender falsely believe that packets have been lost

and unnecessarily retransmit duplicated packets. The duplicated packets consumes

extra bandwidth resources and lower the throughput of data packets.

The evaluation above shows the inherent tradeoff between the benefit and overhead

incurred by ACKs. We argue that it is necessary to maintain packet recovery at the

link layer of a sensor network because i) Packets lost in the middle of a forwarding

path wastes energy; ii) lost packets reduce event throughput. We therefore propose

the receiver-centric protocol to recover lost packets with small overhead. Figure 6.9

shows that the receiver-centric protocol outperforms the ACK mechanism and the

best-effort mechanism at both high packet inject rates and low packet inject rates.

The receiver-centric protocol improves event throughput because i) it recovers lost

packets and ii) packets are recovered at small overhead and only when necessary.

6.4.3 Lost packet recovery under different buffer sizes

We evaluate how the buffer size affect event throughput of the receiver-centric pro-

tocol. We fix the packet inject interval at 32 per millisecond, and vary the buffer
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size of all the forwarding nodes from 4 to 64. We test all the three approaches at

different buffer sizes. The evaluation results of Figure 6.10 shows that the receiver-

centric protocol performs worse when the buffer size is small, and outperforms other

approaches when the buffer size is larger than 32. The receiver-centric protocol have

better performance with larger buffer size because more buffer space can be allocated

to the recovery region, which increase the possibility of recovering lost packets.

6.4.4 Lost packet recovery under different packet size

The event throughput can be affected by the packet size because a larger packet

size consumes more bandwidth and is easier to be lost during the transmission. We

evaluate how packet size affect the event throughput by varying the length of data

field from 10 to 40 bytes. The default maximum data length is 29 bytes in TinyOS 1.0,

we modify the system configuration to increase the maximum data length to 40 bytes.

The comparison results of Figure 6.11 shows that the event throughput of all the three

approaches are reduced when the packet size become larger. However, the NACk
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approach has the lowest event throughput when data length is larger than 25 bytes.

This because when packet size become larger, more packets will be lost during the

transmission. These lot packets will not be received in the NACK approach because

it has no recovery mechanisms. However, some of the lost packets can be recovered

by the receiver-centric approach and the ACK approach, and therefore achieve higher

event throughput. Among all the three approaches, the receiver-centric approach has

the highest event throughput at different data lengths, because packets are recovered

with with small overhead.

6.4.5 Energy efficiency of lost packet recovery

We evaluate energy efficiency of the receiver-centric approach at different data sizes

from 10 bytes to 40 bytes. The evaluation results of Figure 6.12 shows that both

the energt efficiency of both the receiver-centric and the ACK approaches are slowly

increased when the data size becomes larger. The packet with larger data size is

more energy eflicient, because each packet has the fixed length of packet head and
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the ratio of data field is increased when it has larger length. However, more packets

may be lost during the transmission when data size become larger, which reduces the

volume of data received at the sink. This offset the benefit of increased data length.

Figure 6.12 also shows that the energy efficiency of the NACK approach drops fast

when the data size become larger. This is because lost packets can not be recovered

in the NACK approach and reduce the number of received data packets at the sink.

6.4.6 Lost packet recovery under different number of hOps

We evaluate how the length of forwarding paths affect the event throughput by varying

the number of forwarding nodes from 1 to 5. Figure 6.13 shows that the event

throughput of the three approaches are reduced when the forwarding path become

longer. particularly, the event throughput of the ACK approach and the NACK

approach are severely affected by the number of forwarding hops. The ACK approach

can be severely affected by the number of forwarding hops, because channel collision

in the same forwarding path is intensified when the path contains more hops. The

NACK approach has much lower event throughput when the path contains more

forwarding hops, because more packets are lost in a longer forwarding path. In

contrast, the receiver-centric approach outperforms the other two approaches because

i) it recovers the lost packets and ii) the recovery process does not intensify in—path

channel collision.
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6.5 Summary

We propose the receiver-centric protocol to realize reliable data transmission with

maximal throughput in sensor networks. Aiming at improving the event throughput

instead of reliably transmitting each individual packets, the receiver centric approach

optimizes the sensor network transport protocol as follows: i) it maintains the continu-

ous data stream forwarding by minimizing the overhead incurred by control messages;

ii) the virtual backward channel is created by utilizing the broadcast nature of wire-

less channels. We evaluate the effectiveness of the receiver-centric protocol through

experimental comparison conducted in the MICA2 testbed, which shows that the

receiver-centric protocol outperforms the hop-by-hop recovery and the best effort ap-

proach when events are reported with high sending rate through a densely deployed

sensor network.
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CHAPTER 7

Channel Access Scheduling in Wireless

Sensor Networks

7.1 Motivation

It is often necessary to densely deploy sensors in complicated environments such that

neighboring sensors can communicate with each other through short radio links, which

are less susceptible to environmental interference. However, charmel interference can

easily happen among densely deployed sensors. Particularly, when huge volume of

data need to be reported within a short time, channel interference among neighboring

sensors can be intensified and become a serious problem. To solve this problem,

several TDMA—based MAC protocols [11][12] have been proposed to assign time slots

for channel access between neighboring sensors. These approaches either require a

global view of an entire network topology to assign time slots [11] or incur extra

message exchange within two-bop scopes [12]. Moreover, idling time slots reduces

channel utilization. Because of their flexibility and scalability, major well-known

MAC protocols like S-MAC [75], T-MAC [76], and B-MAC [77] adopt the contention-

185



based CSMA mechanism. However, channel contention may still happen in CSMA

mechanisms when multiple neighboring nodes send data packet at high speed. In

this chapter, we extend the receiver-centric protocol to reduce channel contention of

CSMA mechanisms.

The receiver-centric protocol operates as an overlay of CSMA MAC layer and

integrates the functions of both reliable data transmission and scheduling of chan-

nel access (Figure 7.1). What distinguish the receiver-centric protocol from other

approaches is its fully cross layer design to maximize the system efliciency. The

receiver-centric protocol utilizes the tree-based topology, the unique data transmis-

sion pattern presented in sensor networks, to assist packet retransmission and channel

scheduling. The tree-based topology, naturally formed in sensed data collection, has

the hierarchical structure and can be readily reused to manage data transmission. In

the receiver—centric protocol, each intermediate node in the tree topology is viewed

as a parent, which can receive data from multiple sources of children. The parent

manages data retransmission and channel access of its children. By utilizing the

tree—based structure of data collection that is unique in sensor networks, the receiver-

centric protocol improve the performance of CSMA that is originally designed for

general media access control.

We organize the paper as follows. We first define the problem of channel access

scheduling in Section 7.2. After that, we detailed the channel access scheduling of

the receiver-centric protocol in Section 7.3. We evaluate the receiver-centric protocol

in Section 7.4 and summarize the chapter in Section 7.5.
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Figure 7.1 Receiver-centric protocol operates between the application layer and MAC

layer, which utilizes the tree-based structure to schedule channel access

7.2 Problem definition

Data collection in wireless sensor networks always incurs multiple sensors to simul-

taneously forward data packets using radio channels of the same frequency. Multiple

access control (MAC) is necessary to schedule neighboring sensors to use the shared

channels. Because MAC protocols have critical impact on senor network performance,

numerous approaches have been proposed that can be divided into three categories:

CSMA, TDMA, and hybrid solutions of CSMA and TDMA.

Due to its simplicity, flexibility, and robustness, CSMA are widely adopted as

major MAC protocols [75] [76] [77] in sensor networks. CSMA uses caring sensing

multiple access mechanism to schedule neighboring sensors to access shared channels.

Each senor listens to a channel and only sends out packets when it is idling. It

is possible that two sensors listen to the same idling channel and send out packets

simultaneously, which incurs collision and corrupt packets. To solve this problem, the

back-off mechanism is proposed in which a sender may back-off random time before it

resend a packet. A sender may keep resending a packets multiple times when a group

of senders try to send out packets at a high transmission rate. This is the case when
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large volume of bursting data need to be collected to a sink within a short period,

which incurs intensive collisions and reduces network throughput.

To reduce channel collision in sensor networks, several approaches have been pro-

posed to use TDMA to schedule channel access. By carefully assigning time slots to

neighboring sensors that compete for the same channel, collision can be avoided be-

cause each sensor access the channel at different time slots. However, extra overhead

is incurred by the TDMA mechanism to reduce channel collisions. First, it is not

a trivial problem to assign time slots in a sensor network such that sensors will not

interfere with each other during their transmission. It is NP-hard to find an assign-

ment that is completely interference-free. Even for a close-optimal solution, either a

global view of an entire network topology is required, or volume of message exchanges

within two hop scopes are necessitated. Second, TDMA requires strict time synchro-

nization that incurs frequent signaling, and timing drift may require a sensor network

to re-assign time slots. Third, time slots are statically assigned to sensors in TDMA

such that it is not flexible to topology changing, channel varying, and different data

transmission patterns. In this case, collisions may happen due to changed network

topology or channel conditions, or channel may be wasted due to the low utilization

of idling channels.

To combine the advantages of CSMA and TDMA, hybrid solutions have been

proposed. Z-MAC suggests to use CSMA in low data transmission rate and switch

to TDMA when data transmission rate is high. Funneling-MAC proposes to apply

TDMA in sensors that are deployed close to the sink and use CSMA in rest sensors

that are far away from the sink. Funneling—MAC retains the flexibility and easy
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deployment of CSMA while focuses on solving channel collision in the area that is

close to the sink.

The receiver-centric approach is different from all the approaches above in that we

are not replace the CSMA but wrap the CSMA with an overlay. The receiver-centric

protocol works between the application layer and the MAC layer and realizes the

application-aware channel access scheduling, i.e. the tree-based transmission pattern

is incorporated into the channel access scheduling. By scheduling data transmission

in the overlay, the collision in the MAC layer can be reduced. The receiver-centric

protocol is efficient because its cross-layer design effectively utilizes data transmission

in the application layer for channel access in the MAC layer. The receiver-centric

protocol is flexible and easy to be deployed because it is a localized algorithm that

does not require global view of a network topology or massive signaling. We detailed

the design, implementation, and evaluation of the receiver-centric protocol in the

following sections.

7.3 Channel access scheduling with the receiver-centric pro-

tocol

To maximize the throughput of data transmission, we further reduce channel colli-

sions by enforcing channel access scheduling to CSMA. Operating as an overlay, the

receiver-centric protocol bridges the application layer and the MAC layer, such that

channel access can be scheduled in MAC layer according to the data flow of the appli-

cation layer. We detail the channel access scheduling of the receiver-centric protocol
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Figure 7.2 Receiver-centric protocol schedules time slots to different children through

overbearing

as follows.

7.3.1 Basic idea

Instead of replacing CSMA, the receiver-centric protocol cooperates with CSMA to

achieve charmel access scheduling between neighboring sensors. As shown in Fig-

ure 7.1, the receiver-centric protocol operates as an overlay on CSMA. In this archi-

tecture, sensor still uses CSMA to access shared wireless channels. However, channel

collisions can be effectively reduced since we reinforce the access scheduling in the

receiver-centric overlay. Besides, this scheduling is efficient because it utilizes the

unique data flow pattern presented in the tree-based sensor network topology. The

receiver—centric protocol also minimizes the overhead of scheduling by reuse the data

packet and does no incur extra signaling messages.
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When collecting data from sources to a sink, the tree based topology will be

naturally formed, where an intermediate node acts as a parent to receive packets

from multiple children. Here, the parent-children structure is the basic unit of the

tree-based network topology. We aim to realize channel access scheduling within

this unit. As shown in Figure 7.2, where the parent receives packets from multiple

sources of children and forwards packets towards the sink. Here, the parent is in the

centralized position which can be utilized to schedule packet sending of its children.

Moreover, this scheduling can reuse data packets through overbearing and does not

incur extra signaling messages.

7.3.2 Channel access scheduling through overbearing

In the receiver-centric protocol, a delay 6 is inserted into each packet sending, i.e. a

sender will hold for a 6 time period before it sends out the next packet. During this

period, the sender waits for the scheduling signals from the parent. This is achieved

through overbearing. When the parent forwards a packet to the next hop, one byte

field is attached to the packet for scheduling. The parent set this scheduling field with

the node ID of one of its children, which can be overheard by all its children. When

a child finds that the overheard scheduling ID is equal to its own ID, the child will

start to send a packet immediately after the parent finishes sending a packet. We use

the round-robin scheduling to insure fairness among children, i.e. when the parent

forwards a packet from child 1', it will attach node ID 2' + 1 to the scheduling field,

which prompts node 2' + 1 to send a packet after the parent finishes forwarding the

packet from node 1'. The process of channel scheduling can be summarized as holding
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and prompting. To reduce channel collision, all the children hold for a time period

before sending their next packets, and one of children is prompted to start its packet

when it overhears the scheduling ID from the parent.

Figure 7.2 illustrates the ideal case of the round-robin scheduling realized through

the overbearing. When parent P forwards packet from child 1, the node ID 2 is

attached to that packet, which can be overheard by all the children. Only node 2

that matches the scheduling ID will start to send its packet. The process is continued

without incurring channel collisions.

7.3.3 Robust and flexible design

The example above shows an ideal case where all the nodes are perfectly scheduled by

the receiver-centric protocol. However, real situation incurs more complicated cases,

which includes channel collisions between adjacent units and channel idling within a

scheduling unit.

Because the receiver-centric protocol only schedules channel access within the

unit that contains the parent and all its children, channel collisions may still happen

between adjacent units. We let this part of collisions to be handled by the underlying

CSMA. The receiver-centric protocol cannot complete eliminate channel collisions in

a sensor network. Instead, we seek to partially mitigate channel collisions with a

light-weight solution that can be readily realized.

Because the receiver-centric protocol cooperates with the CSMA to realize the

channel access, the communication channel can be efficiently utilized in a flexible

fashion. A network topology may change due to node leaving or joining. These node
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event TOS_MsgPtr

ReceiveMsg.receive[uint8_t id](TDS_MsgPtr pMsg){

if(pMsg_data—>src == parent at

pMsg_data->scheduleID =8 TUS_LOCAL_ADDRESS ){

bSchedule = TRUE;

}

}

event result_t

Sendflsg.sendDone(TOS_ngPtr pflsg, bool success){

if (pMsg == tfisgBuffheadl)

head = (head + 1) Z MSG_QUEUE_SIZE;

if (pMsg == thgBuvaHeadl)

vHead = EMPTY;

send_vait = 0;

bSchedule = FALSE;

call Timer_send.start(TIMER_ONE_SHOT, DELAY_SLOT);

return SUCCESS;

}

event resu1t_t Timer_send.fired(){

if( send_wait < send_delay

&& bSchedule == FALSE ){

send_wait = send_wait + DELAY_SLOT;

return call Timer_send.start(TIMER_0NE_SHDT,

DELAY_SLDT);

}else

post QueueServiceTask();

Figure 7.3 Channel access scheduling in the receiver—centric algorithm

activities can only temporarily affect the receiver-centric protocol and has little effect

on its final performance. It is possible that node 2' suddenly crashes in the scheduling

process. However, this will not stop the scheduling process because node 2' + 1 will

start to send packet after 6 delay. Here packet sending of node 2' + I is not triggered

by the scheduling and some other child may also start to send packets, which results

in channel collisions. We resort to CSMA to solve these collisions. After one of the

child gain the channel access, the scheduling of the receiver-centric protocol will be

resumed by attaching scheduling field with the node ID next to that child.

193



7.3.4 Implement the channel access scheduling in TinyOS

We implement the channel access scheduling in TinyOS 1.13. The simplified pro-

gram of channel access scheduling is illustrated in Figure 7.3, which consists of

three part: the scheduling part in function ReceiveMsg.recez‘ve(), the delay part in

SendMsg.SendDone(), and the timer Timersend.fired(). To enforce the channel

access scheduling in CSMA, we insert a timer to the flmction SendMsg.SendDone().

When a packet is sent out, instead of immediately sending the next packet, the

QueueServz'ceTask is delayed by the timer Timersend. The QueueServz'ceTask

can be started when i) the maximum delay has reached (sendxwait < senddelay)

or ii) the intermediate node is scheduled by its parent (bSchedule =2 TRUE).

Here, the bSchedule can be set to TRUE if the node overhears the schedule!D is

equal to itself (scheduleID == TOSLLOCALJIDDRESS), as shown in function

Rece-iveMsg.receive().

7.4 Performance evaluation

We implement the receiver-centric protocol in TinyOS and evaluate the performance

of the receiver-centric protocol in both MICA2 and Tmote sensor motes. The similar

testbed, configuration, and metrics as the previous chapter is used to evaluate the

channel access scheduling of the receiver-centric protocol. Particularly, we use the star

topology and tree topology to evaluate the channel access scheduling mechanism.
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7.4.1 Event throughput of channel access scheduling

We evaluate the event throughput of channel access scheduling as follows. We have

two sources to send packets to a parent, which forwards received packets to the sink.

Three approaches, including the receiver-centric with channel access scheduling, the

ACK with CSMA, and the NACK with CSMA are evaluated in this test. We fist

evaluate how the packet inject rate affect the event throughput by varying the packet

inject interval from 16 millisecond to 256 millisecond. Figure 7.4 and Figure 7.5 show

that when sources send out packet with small inject interval, the receiver-centric

protocol outperforms both the ACK mechanism and the NACK mechanism with

CSMA. Here, by enforcing the scheduling over CSMA, the receiver centric approach

reduces the channel collision and improve event throughput.
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7.4.2 Channel access scheduling under different number of sources

We further evaluate the scheduling mechanism under different number of sources.

We vary the number of sources from 2 to 5 and test the event throughput at the

sink. Figure 7.6 and Figure 7.7 show that the event throughput is reduced with

the increased number of sources. This because i) the bandwidth is divided and less

bandwidth can be reserved by an individual source and ii) increasing the number

of sources intensify the channel collisions, which results that more packets are lost

during the transmission. Figure 7.6 and Figure 7.7 also show that the receiver-centric

approach outperform the other two approaches at different number sources, because

the scheduling mechanism reduces the channel collisions.

7.4.3 Channel access scheduling under different buffer sizes

We evaluate how the buffer size affect media access scheduling on MICA2 sensors by

varying the buffer size from 16 to 64. Figure 7.8 shows that the event throughput of

all the three approaches are increased when the buffer size is increased. The three
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nel access scheduling under different buffer access scheduling under different packet

sizes sizes

approaches have close event throughput when the buffer size is small. However, the

receiver-centric approach outperforms the other two approaches when the buffer be—

come larger. All the three approaches have close and worst performance with small

buffer size, because large number packets are dropped due to buffer overflow. When

sensors have sufficient buffer size, they can achieve higher event throughput. Particip-

ially, this event throughput can be further improved by channel access scheduling of

the receiver-centric approach.

7.4.4 Channel access scheduling under different packet size

The effect of packet size on event throughput is shown in Figure 7.9. The event

throughput of all the three approaches is decreased when the packet size is increased.

This is because under the fixed network bandwidth, less number of packets can be

transmitted within a certain period if the packet size becomes larger. Our test shows

that the receiver-centric approach outperforms the other two approaches at different
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packet sizes. The test also shows that the event throughput of NACK is higher than

that of ACK when the packet size is small, while lower than that of ACK when the

packet size becomes larger. This is because larger size packets are more easily lost

in transmission, which significantly reduce event throughput of the NACK approach

that has no recovery mechanisms.

7.4.5 Channel access scheduling in the tree t0pology

We evaluate the channel access scheduling in the tree topology consisting of 15 nodes.

In this evaluation, all the leaf nodes work as sources and send packet to the root of

sink. The channel access of leaf nodes is scheduled by their parents, which works

as intermediate nodes and are also scheduled by upper layer parents. We vary the

packet inject rate of sources from 8 millisecond to 20 millisecond and test the event

throughput of the receiver—centric, the ACK, and the NACK approaches. The evalu-

ation results in Figure 7.10 show that the receiver-centric approach outperforms the

other two approaches at different packet inject intervals. Particularly, the charmel

access scheduling of the receiver—centric approach can improve 30% event throughput

when packets are sent with small interval of 8 millisecond.

7.5 Summary

In this chapter, we aim to improve data transmission throughput in sensor networks

by enforcing channel access scheduling to the CSMA. Our solution is flexible and

scalable, and can be easily deployed in sensor networks. We have implemented the
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channel access scheduling in TinyOS 1.13 and evaluated their performance on both

MICA2 sensors and Tmote sensors. Our evaluation shows that the channel access

scheduling of receiver-centric protocol can significantly improve channel throughput

of wireless sensor networks.
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CHAPTER 8

Conclusion and Future Study

In this chapter, we conclude the work presented in this dissertation and discuss future

study.

8.1 Conclusion

In the previous discussion, we demonstrate that wireless sensor networks will have ir-

regular radio communication patterns or concave network topologies when deployed in

complicated enviromnents including obstructed or concave areas. We further demon-

strate that system performance can be severely affected by obstructed and concave en-

vironments and special considerations are necessary to design wireless sensor networks

for obstructed and concave environments. To build robust wireless sensor networks

that can be adapted to obstructed and concave environments, we have developed a

suit of approaches in sensor localization, packet routing, reliable data transmission,

and channel access scheduling. We summarize our work as below.

Sensor localization provides basic service to many location aware applications

and protocols. While many approaches have been proposed to locate sensors with lim-
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ited available resources, few of them address the problem that distance measurements

may have large errors when sensors are deployed into complicated environments. We

try to accurately locate sensors that are deployed in complicated environments, where

distance measurements have large errors because the radio or ultrasound signals may

be reflected by obstructions. We have developed a group of algorithms to identify dis-

tance measurements with large errors, and to compute sensors’ positions only based

on correct measurements.

We first propose the virtual ruler approach that uses mobile beacons to eliminate

erroneous distances in the measurement step. As discussed in Chapter 3, when the

virtual ruler moves around in the deployed area, multiple distance measurements be-

tween the same pair of sensors can be obtained, among which erroneous measurements

are mixed with the correct one. We show that it is possible to identify the correct

distance measurement with statistical analysis. We use the small scale experiment to

verify the distance mirror phenomenon that is utilized by the virtual ruler approach.

After that, we evaluate the virtual ruler approach by the simulations with both indoor

configurations and random configurations. We found that the virtual ruler approach

can eliminate the majority of incorrect distance measurements when obstructions are

not densely distributed.

We further propose the upper bound approach in Chapter 4 to eliminate erroneous

distance measurements in the localization algorithms. The upper bound approach is

based on the observation that the incorrect distance measurements inferred from

radio signals or multihop approaches are always larger than its true value. Unlike

previous approaches that use least squares fitting to fit all measured distances, the
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upper bound approach views distance measurements as upper bound constraints, and

locate sensors within the intersection area of all the circular constraints. The final

localization result of the upper bound approach can be accurately pinpointed to the

small areas confined by correct distance measurements and will not be affected by

incorrect distance measurements with large errors. We conduct experiments to test

the distance measurements with radio signals in an indoor basketball court. We fur-

ther evaluate the upper bound approach in simulated environments with obstructions

and concave shapes, which shows that the upper bound approach is effective to fil-

ter incorrect distance measurements and accurately locate sensors in obstructed and

concave environments.

Packet routing is a challenging problem in wireless sensor networks because sen-

sors only have limited memory space to store small routing states. Location aware

routing has been widely suggested to realize point-to-point routing in sensor networks

because it requires small routing states comprising sensors’ positions. However, loca-

tion aware routing cannot perform well in complicated environments because its ideal

geographical model oversimplified the spatial complexity of wireless sensor networks.

First, wireless sensor networks may have concave shapes where location aware routing

may be trapped in the local minimum and fail to deliver a packet to a destination.

To solve this problem, we propose the topology aware routing that embeds a sensor

network into a Euclidean space such that the hop count distance are encoded to node

virtual coordinates. Because hop count distances can be directly inferred from nodes’

virtual coordinates, bop count distances to the destination can be accurately com-

pared between neighboring nodes, which can assist the intermediate forwarding node
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to find the right neighbor that is one hop closer to the destination. A packet can

be finally delivered from the source to the destination through consecutive hop by

hop forwarding. We evaluate the topology aware routing in various network topolo-

gies with concave shapes. Our evaluation shows that high route success rate can be

achieved with small dimensional virtual coordinates.

Location aware routing also uses the simple disc model to describe the radio chan-

nel between neighboring nodes, i.e. a pair of nodes have perfect packet reception if

they are within the radio transmission range. Based on this model, location aware

routing aims to find the shortest path comprising the least number of forwarding

hops from a source to a destination. However, in a realistic wireless sensor network,

radio signals attenuate during their transmission and can be interfered by background

noise, which leads to corrupted packets. a sender needs to retransmit the corrupted

packets to ensure they are successfully delivered to the receiver. Packets may be

retransmitted multiple times in a communication channel with weak radio signals.

This often happens in the location aware routing that tends to select forwarding hops

with long transmission range. The consequence is that excessive number of retrans-

missions are required to deliver a packet from the source to the destination along the

routing path comprising low quality links. To achieve the optimal end-to-end routing

performance, we further propose the ETX distance based greedy forwarding, which

encodes the expected number of transmissions instead of the hop count distances to

nodes virtual coordinates. With the help of the new embedding metric, the greedy

forwarding can find the routing path that uses the least number of transmissions to

successfully deliver a packet from the source to the destination. We evaluate our
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ETX distance based greedy forwarding in TOSSIM emulator, which models the radio

communication between pairwise nodes based on the empirical data measured from

the MICA2 sensors. Our evaluation shows that our approach outperforms both the

location aware routing and the shortest path routing in terms of the routing cost of

total number of transmissions to deliver a packet from the source to the destination.

Due to the environmental interference, radio packets may be lost in transmission.

Various retransmission mechanisms can be used to realize reliable data transmis-

sion. Most previous retransmission approaches fall into two categories: the sequence

based mechanism and the time out mechanism. These two mechanisms are not opti-

mal solutions for sensor networks when sensed data need to be transmitted within a

short time at low cost, because i) they cannot ensure continuous data packet forward-

ing; or ii) the acknowledgement packets incur extra overhead. Aim to realize reliable

data transmission with high throughput and low cost, we propose the receiver-centric

protocol, which utilizes the broadcast nature of radio signals and the multiple hop

forwarding of sensor networks. In the receiver centric protocol, lost packets are de-

tected from discontinued sequence numbers, and the sender is notified by overbearing

the lost sequences piggybacked to data packets. The receiver centric protocol en-

sures continuous data packet forwarding while incurs least overhead in lost packet

retransmission. We evaluate the receiver centric protocol in an experimental testbed

comprising MICA2 sensors, which shows that it can improve transmissions through-

put while incurring minimal overheard.

To minimize interference of environment, sensors are usually densely deployed

such neighboring nodes can communicate with each through short radio links. How-
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ever, radio signals can be easily interfered with other other in a densely deployed

sensor networks, which has severe impact on transmission throughput. CSMA in-

stead of TDMA MAC protocols are widely used in practical sensor networks because

the former can be easily deployed with low cost. However, channel contention can

still happen in CSMA when bursting data need to be collected in a dense sensor

network. We propose to improve the performance of CSMA by enforcing channel

access scheduling on CSMA. We extend the receiver centric protocol to utilize the

unique tree structure formed in sensed data collection. In a tree structure, multiple

children report data to the same parent, where parent is in the central position and

can be utilized to schedule channel access among multiple children. We implement

the channel access scheduling in both MICA2 and Tmote sensors, and evaluate its

performance in a real experimental testbed, which shows the transmission throughput

can be significantly improved when compared to the CSMA protocol.

8.2 Future study

All our previous study aims to improve the performance of wireless sensor networks by

centering around their geometric properties, which can only solve part of problems

in building practical wireless sensor networks. The performance of wireless sensor

networks can be improved from many other aspects, which we will explore in our

future study. We list some possible directions as below.

Integrate with hierarchical design. Our previous study assumes that sensors

can only communicate with neighbors within radio transmission range and form an ad
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hoc network topology. This is a very basic form of wireless sensor networks. Recent

development enables that certain powerful nodes called stargate can be deployed into

sensor networks. Stargates nodes are more powerful than ordinary sensors and can

communicate with each other with long range radio links. Stargate can be pointed as

the head for a group of sensors that form a small ad hoc network. How to integrate

the startgate with our proposed routing and MAC protocols to further improve the

system performance will be explored in our future study.

Investigate temporal prOperties of wireless sensor networks. Most of

our research are focused on the spatial properties of wireless sensor networks by

exploiting their geometric characters. We assume that the network topology and

the radio channels are relatively stationary. However, our experiments show that

radio communication channels may change over time, which is diffith to model and

can significantly affect experimental results. It is a challenging while practical task

to design wireless sensor networks not only can adapt to complicated environment,

but also can adapt to the changing environment. To realize this objective, intensive

experiments need to be conducted to observe the temporal properties of wireless

communications in sensor networks. Based on that, optimal design of wireless sensor

networks can be achieved by incorporate those temporal properties.

Interconnect with other networks. Sensed data can be collected by various

forms, and sensor networks can be interconnected with different type of networks. For

example, sensor networks can be directly cormected to Internet through a gateway,

with which sensed data can be accessed by Internet users. Sensor networks can

also be connected to vehicular networks and sensed data can be collected by mobile
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vehicles. Sensor networks can also be interconnected to wireless mesh networks, where

sensed data is collected through wireless mesh routers. Different interfaces need to

be developed to interconnect sensor networks to different networks. It also necessary

to develop effective algorithms to analyze and process the sensed data in the gateway

and make them easily accessible by outside world.

Develop management platform for the testbed of wireless sensor net-

works. Our experiments show that it is a challenging task to manage volume of

sensors to evaluate newly developed protocols and algorithms. In experiments, it is

often necessary to have multiple sensors to start to send data simultaneously, and

to stop the sending at the same time. It is also necessary to reconfigure and repro-

gram sensors with different protocols or algorithms while keeping the other evaluation

configurations untouched. It will be time consuming or even impossible to manually

realize these functions. We believe a testing platform with automated management

functions can facilitate to evaluate new protocols and algorithms and further benefit

future SBBI‘Ch Ol'l sensor networks.
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