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ABSTRACT

Evaluation and Comparison of Data Reduction and Source Separation

Techniques For Event Related Potentials

By

Jacob Swary

Study of event-related potentials (ERP), which measure the brain response to

specific presented stimuli with electroencephalography (EEG), is the focus of this

thesis. In the past, averaging of multiple trials has been used to evaluate ERPS. This

ignores the trial-to-trial variability of the brain’s response, and has only produced the

knowledge of certain response peaks and how they are generally related to some tasks.

Recently, attempts at extracting the actual underlying sources generated by the brain

are being made to effectively evaluate the brain’s response. A common assumption is

that the underlying sources are statistically independent, and independent component

analysis is used in this blind source separation (BSS). To avoid the assumption that

sources are independent in BSS, we are proposing to solve the problem with quadratic

time-frequency distributions of the data. In this way, the assumption that sources

are sparse in the time-frequency plane, i.e. most data points are close to zero, is

applied. Due to sparsity, methods have been developed to estimate first, a mixing

matrix, which determines the weighting of each source at each electrode, and then

the sources. The two stage approach solves for a number of sources greater than the

number of electrodes used in the EEG measurement. This two stage approach and

ICA are both applied to a set of measured ERPs and the results are compared in

this thesis. It is shown that the proposed method is more effective at extracting well

localized components in time and frequency than ICA. These components are shown

as comparable at representing the original ERP data variance with ICA.
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CHAPTER 1

INTRODUCTION

1.1 Electroencephalography

Electroencephalography (EEG) is the non-invasive process of measuring electrical

potentials from activity in the brain. Electrodes with a conducting medium are placed

at multiple locations around the scalp at fixed locations. Electrode placements are

used according to the international 10-20 setup as defined in [1]. Potentials measured

at each electrode are not necessarily due to the activity in the immediate proximity

of that electrode because of the volume conduction in the brain and across the scalp

[2]. The measured potentials are amplified, filtered, and stored for processing. An

example electrode setup, typical EEG reading, and the electrode locations of the

10-20 standard are shown in Figure 1.1.
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(a) (b) (c)

Figure 1.1. (a) An electrode array connected to a. person. (b) A graph of typical

EEG readings where each row in the graph represents the measurements from one

electrode. (c) The locations of electrodes in the 10-20 system.



Excitatory postsynaptic potentials in neurons of the brain cause electrical current

to flow through their cell membranes through the cell back through the membrane

into surrounding fluid, and inhibitory postsynaptic potentials cause current to flow

to the fluid first back to the cell. The potential created from this individual cellular

current flow cannot be measured at the scalp. However, when regions of neural tissue

in the neocortex are aligned in parallel, and there is synaptic activity over an area

of approximately 1 cm2, the potential can be measured at the scalp and can be

considered as produced by a single dipole source [3]. The potentials measured from

electrodes on the scalp are due to all such regions in the brain active at any point in

time.

In the 1920’s Hans Berger first measured the EEG in humans. Potential recordings

were initially printed out directly onto paper for visual inspection. Visual inspection

by expert neurologists taking into account the waves’ frequency, amplitude, spatial

distribution, continuous or transient patterns has been typically the main form of

EEG analysis [4]. In early attempts to provide quantitative analysis, techniques

were developed that tried to mimic the analysis of the expert neurologists, but were

only marginally successful due to the subjective nature of their analysis [5]. With

the advent of the computer, EEG measurements could be recorded in continuous

form (analog) on tape, or sampled and stored in discrete form (digital) for further

processing. The introduction of the fast-fourier transform (FFT) algorithm, spectral

analysis using the Fourier transform (FT) became a plausible analysis technique.

Before EEG, there was no way of quantifying brain activity and EEG quickly

garnered much interest. It was thought that these recordings could be used to gain

insight to the mental processes of the human mind and to make connections to brain

function and human behavior. EEG is used in many different areas, for example,

different stages of sleep can be determined [5]. EEG is used in analysis of epilepsy

to find epileptic areas and decide a patient’s suitability for surgery [6]. To ensure



 

recordings of seizures, long evaluation periods are required in this analysis, as such

the non—invasive, cheap, and portable characteristics of EEG lend it to the evaluation

over other neuroimaging techniques. EEG can be used in the objective observation

of emotion changes in diagnosis and evaluation of emotive disorders in which the pa-

tient may not be able to explain the changes [7]. Recently, Brain-Computer Interfaces

(BCI) are being developed with EEG. A BCI is used to convey messages to the sur-

rounding world not through the traditional neural pathways, but from direct electrical

signals measured from the EEG. This is a very important development for those who

lack muscle control, either by injury or disease. Because EEG is cheap, and has the

time resolution to provide rapid enough communication, its use is desired in BCIs.

Work has been done so that the BCI user can move an object on a computer screen,

or type messages by alphabet elimination, letter by letter. In the future, it is hoped

BCIs can be developed for reliable control of wheelchairs or prosthetics [8] There is

still much to be desired in using EEG to unlock the mystery of brain function.

While positron emission tomography (PET) and functional magnetic resonance

imaging (fMRI) have become popular more recently, there is still a need for effective

EEG analysis. The use of PET and fMRI provide much higher spatial resolution

of activity in the brain than is provided by EEG. However, EEG provides temporal

resolution on the order of 1 ms while fMRI is on the order of 1 s and PET 1 min [15].

Both EEG and fMRI are non-invasive techniques, but EEG can be measured from

subjects remotely.

1.2 Event Related Potentials

To gain insight to the mental process with respect to perception, memory, and at—

tention, among others, Event Related Potentials (ERP) or Evoked Potentials (EP)

are often studied. An ERP is the response in the brain specific to a present audio,

visual, or electrical stimulus, i.e., the potential measured that is directly related to



a specific event. Measurements of ERPs are taken with EEG since neural response

occurs in milliseconds and EEG has the temporal resolution to successfully capture

the response. In ERP measurement, a subject is presented with a simple stimulus and

response is required, perhaps the push of a button. This is repeated multiple times

during the experiment. The EEG is recorded through the experiment and one trial is

considered the EEG measurements time-locked around presentation of one stimulus.

TYials are repeated with enough time in between presentation of a new stimulus so

that the previous ERP response is complete, and the time between stimuli is varied

so that the subject does not develop expectation of rhythmic presentation.

ERPs are ”regarded as manifestations of specific psychological processes” [9], and

therefore are critical in the study of brain function. The main problem in ERP

measurement is that the ERP waveform is many times smaller than ongoing processes

in the brain, and so the ERP is difficult to see in a raw EEG measurement. For this

reason, ERP analysis has been dominated in the past by analysis of multiple trial

averages due to the nature of the measurements. Recently much work is being done

in finding new analysis techniques of ERPs. This thesis is focused on the field of EEG

study pertaining to ERPs. An example of an experimental setup to record ERPs is

shown in Figure 1.2.

1.3 Spectral Analysis of EEG

Early study of the EEG made it apparent that frequency response was an important

characteristic of the waves. Spectral activity is generally classified by the different

frequency bands. The low frequency activity from 1-3 Hz is the delta band, 4—7 Hz

is the theta band, 8-13 Hz is alpha, 14-30 Hz is beta, and above 30 Hz is the gamma

band. A general relaxed wakeful state consists of strong rhythmic alpha activity, with

some beta and with small arhythmic delta and theta activity. Changes in wakefulness,

different sleep stages, disease and injury all change the typical EEG activity [10]. The



 

Figure 1.2. An experimental ERP setup with visual stimulus presented on computer

screen and response required by pushing of button.

FFT can be used to analyze different frequency bands, but also autoregressive (AR)

modelling of the EEG can show the spectral characteristics of the recorded waves.

The EEG wave can be represented by an AR model as follows:

x<n> = urn) — a<1)x<n -1>— a<2>m<n — 2) — - - - — a<p>w<n — p). (1.1)

where :r(n) is the data sequence, a(n) are the AR parameters, p is the AR order,

and w(n) is assumed to be white noise with flat power spectrum and is the error in

prediction. The z-transform of equation 1.1 is:

= W(Z)

1+ a(1)z’1 + a(2)2:—2 + - - - + a(p)z-p’

 X(z) (1.2)



W(z) is constant. The power spectrum, P(z), is the magnitude squared of equation

1.2. The poles of X (z) are the roots of its denominator:

zp+a(1)zp—1+---+a(p). (1.3)

This is evaluated on the unit circle, z = 63"”, and is factored to give:

(er — axe” — P2) - - . (ejw — Pp). (1.4)

such that Pi: z' = {1, . . . ,p} are the complex poles of X(z) The real w for which

ejw matches the phase of P,- represents the real poles of X(z), and there is a peak in

the frequency spectrum of the data at this value of w. Evaluating equation 1.2 or its

square at ejw gives signal amplitude and power respectively [11].

Spectral analysis assumes stationarity of a signal, and thus is not always accurate

of the underlying frequency contents since the EEG is very non-stationary. If the

length of data is short, the stationarity assumption may hold well enough. Due

to the transient nature of ERPs, spectral analysis is not preferred since it cannot

capture events that are localized in time. Still, it provides quality results in analysis

of the ongoing EEG processes, and has specifically been studied with regard to drug

use, injury, disease, and sleep. In general, an adult in a relaxed waking state shows

dominant alpha activity, and this activity is diminished when the state changes, either

toward alertness or drowsiness [10]. It has been shown that minor head injuries slow

the frequency of the ongoing EEG in the alpha band, shifting the spectral peak to

the left [12]. Spectral analysis has shown an upward shift in overall spectral power,

including a decrease in theta and delta bands and an increase in alpha band during

alcohol absorption, and the reverse effect in alcohol elimination [13]. During sleep,

the EEG waves are very slowly changing, and so spectral analysis is very useful in



identifying different stages of sleep.

1.4 Analysis of ERPs: Multiple Trial Average

Historically, the solution most widely used in the analysis of ERP signals has been

that of averaging multiple ERP trials of identical stimulus presentation together. The

EEG measurement of an ERP can be desribed as the ERP plus all remaining activity

as:

r(t) = s(t) + n(t), (1.5)

where r(t) is the total measured response of the trial, s(t) is the ERP, and n(t) is all

non-ERP activity. It is assumed that the ERP is deterministic and, since each trial is

identical, each ERP response will be the same. Also, n(t) is modeled as a stationary

random process. Assume N trials are recorded, the ith trial is written as:

alt) = 8(t) + Mt), (1-6)

since 5(t) is assumed deterministic, it is modeled the same over all trials, while the to-

tal response and background activity depend on the trial number, i. The background

activity is modeled such that its mean is zero and variance is 072,. By calculating

the average of the response over all trials, r(t =:(r,(t Ns(t) + n(t), the ERP

response can be magnified compared to the background activity. The signal-to—noise

ratio (SNR) of the estimated ERP becomes proportional to the number of trials av-

eraged, and so the ERP response becomes clearer with the averaging of more trials

[5].

Giving equal weight to each trial can result in some waveforms with very different

shapes due to muscle or eyeblink artifacts, or large ongoing EEG signals distorting

the final average. One attempt used to reject outliers is to compare responses and



determine a weighting scheme so that the sources are estimated as:

1 n

at) = 5 21 w.a:.-<t>, (1.7)

3:

and D = Elf-’11 10,-. A whitening filter is applied to the recordings to give 1“,;(t), and

covariance coefficients 7,- = 7%, )3le fi(t)f(t) are calculated between each filtered

recording and the average of all other recordings. The weights are then:

0 for 7,- S 0

w,- = 72' for 0 S ’7,- (18)

C for 7i > C

and C is chosen empirically, usually about 0.8 [5].

The problem with the averaging technique is that ERPs are not deterministic;

exact repetitions of the experiment will not lead to the same responses at electrodes.

From trial to trial there will be latency deviations of peaks, different amplitudes, and

different wave shapes. Deviations occur due to many factors of subject’s perfomance,

such as attention, expectation, arousal, strategy and others [14]. The average does

not truly represent an ERP due to these variations across trials and cannot reflect

changes in the subject’s state.

1.4.1 Woody Average

Considering the fact that latencies of ERPs vary from trial to trial, SNR of the

averaged ERP could be improved if the shifts in time can be detected and corrected.

The Woody average is a process that attempts latency correction [5].

The process described in section 1.4 is first used and the averaged ERP is used as a

starting template. Each of the individual ERP responses is then cross-correlated with

the template. These ERP waveforms are then shifted by the amount that their maxi-

mum cross-correlation value took place at. The total average is then recalculated and



this becomes the new template. This process is repeated until the cross-correlation

does not change significantly between the current iteration and the previous iteration.

This will provide improved waveforms in the cases where components of each ERP

signal all shift the same amount. Separate components have latency changes that

occur independent of each other. Thus, the Woody average will still blur components

of the ERP response. Further, it is possible that the Woody average will align certain

background processes that were independent in individual trials.

1.4.2 Latency Corrected Average

An attempt to improve on the Woody average is made with latency corrected average

(LCA) [5]. Peaks of different components in an ERP are aligned from trial to trial so

that the SNR of these components in the average is increased.

The mean is removed from each trial and the variance is normalized. Peaks are

located in each recording such that the magnitude of the slope on either side of the

peak exceeds a set minimum. The points of the sample mean are used in comparison

to the detected peaks. If the points of the mean and peak are of the same sign and

statistically exceed a specified confidence interval that both are from a zero mean

population, then the detected peak is considered a component, otherwise it is not.

Peaks over all trials that are of the same sign as the sample mean at that point

and between the same zero crossings of the sample mean are considered the same

component. The segments around the peaks are then used in calculating a new

mean. This mean is not a complete waveform since it is computed from discrete

components of waveforms, so interpolation must replace the empty time slots.

This is an improvement on taking the straight sample mean of responses as it

improves SNR for different ERP components, and can show additional components

than shown by just the mean. It still is not ideal. It only makes up for variations

in peak latency, nothing else. In addition, variations in the individual responses are

still all classified as one response in the end. All changes in subjects’ states are still



being ignored and an opportunity to gain more insight to mental processes is lost.

1.5 ERP Time Components

Through averaging in ERP experiments, multiple different components have been

identified related to certain tasks. The results from averaging trials under the same

conditions are found and peaks are analyzed with respect to scalp distribution, po-

larity, and latency. Components are usually identified by their polarity and latency.

For example P300 stands for a positive peak after 300 ms. The components presented

here are described in [9].

The earliest components that have been found occur within the first 100 ms of

stimulus presentation. These components change as a function of the stimulus with

regard to intesity and frequency, and can also be affected by attention. This activity is

automatic and is related to the signal picked up at the sensory site being transmitted

to the brain’s processing systems.

One common component is called the mismatch negativity (MMN). This is a

negative peak occuring around 100-200 ms after stimulus, and is beleived to occur

in the auditory cortex. This type of response is found when two different classes of

auditory stimuli are presented when the subject’s attention is on a separate task, one

class is presented more often than the other. The average is taken over all trials of

each stimulus type and the average of the rare stimulus trials is subtracted from the

average of the frequent stimulus trials, and the resulting component is the MMN.

The MMN represents a sort of mismatch detector. It is an automatic, preattentive

processing of deviant features. Because it can be recorded with a delay usually only

up to 10 seconds between stimuli, the MMN is a transient type of memory. As a

result of the two classes of stimuli differing with more than one factor, the MMN has

a larger amplitude, and so may reflect a parallel processing of multiple factors.

The N200 component is a negative peak at about 200 ms and found in either the

10



auditory or visual cortex, depending on the stimulus. This component represents a

comparison that is actively generated by the subject. It follows from a mismatch

between two stimuli, or between the stimulus and a mentally formed template. It

is different from the MMN in that the subject is paying attention to the stimulus,

and the N200 does not necessarily mean two stimuli are being presented. It appears

when the stimulus mismatches the subject’s expectancy, whether it be from previous

stimulus or a memory template. Its latency covaries with response time, so it may

be that the N200 shows the feature discrimination happening, which influences the

response time. The N200 can be seen in Figure 1.3.

A very commonly studied component is the P300, which is a positive peak around

300 ms, and is strong in the posterior scalp locations. With more than 30 years

research, there is no indication of the underlying sources contributing to the P300.

It is thought to be a summation of activity over multiple generators. Its amplitude

is affected by perceived stimulus probability, but only when the stimulus is relevant

to the task at hand. The amplitude is also directly proportional to the processing

demand of the task. The peak’s latency and reaction time increase when the task

is accuracy oriented instead of speed oriented. The latency is also longer when a

categorization task is more difficult. The P300 may reflect the updating of mental

environment models or the context in working memory. The P300 is shown in Figure

1.3.

A similar component is the Frontal P300, which instead of being strong in the

posterior electrodes, is strong in the frontal. This is caused by deviant stimuli which

are very rare and unexpected, such that there is no memory template beforehand. In

young adults, repeated presentations will shift the P300 response to the posterior. In

older adults, the Frontal P300 stays frontal with repeated presentations.

Another examined component is the N400, a negative peak around 400 ms which

is related to reading tasks. The N400 response is strong when a string of words is

11
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Figure 1.3. The P300 and N200 components can be seen in the averaged response to

the rare stimuli from this experiment.

presented one by one to form a sentence, and the last word does not make sense.

The worse fit a word is for the sentence, the stronger the response. It is only related

to semantic, not grammatical errors. The response is weaker when the word is close

semantically to what makes sense, i.e. ”drink” instead of ”eat.” It has also been

shown to be caused by metaphors, even when the subject grasps the metaphor.

The error-related negativity (ERN) is a negative component that appears when a

subject makes an error in a response task to a stimulus. For example, the subject may

have to respond with right or left hand to two types of visual or audial stimuli, this

component will show up when the subject responds with right when he/she should

respond with left, or vice versa. The ERN typically peaks around 150 ms after

subject response. Amplitude of the ERN is larger with more emphasis on accuracy

over speed. It also increases with an incorrect response differing from correct response

by more movement parameters. The ERN can be seen in tasks where there is no error

correction, as in a go-no go task, meaning it is involved in error detection as well as

12



probably error correction. It is not certain to what degree the ERN is involved in

both detection and correction, though.

These ERP components are the peaks and troughs in the waveforms that covary

in response to experiment manipulations. Each component is viewed to index some

aspect of cognitive processing. The traditional view of components relating to the

peaks and troughs is one way to define components. Another way would be as the

aspects of the ERP that covary across subjects, conditions, or locations. A third

definition of components are terms that directly correspond to the neural generating

structures. The traditional representation of components is somewhat arbitrary, as

these components may be represented as summations of the components found in

these other ways. Finding the actual underlying sources is how to reduce the compo-

nents to their most basic level. It is this way that the most insight could be gained

about the processes of the brain.

The relationship between cognitive processes and ERP activity was studied with

no reference to the underlying sources until the 90’s. The problem of solving what will

be measured at the electrodes given the sources in the brain is the forward problem,

and so solving for the sources given only the readings of the electrodes is the inverse

problem that must be solved.

1.6 Organization of Thesis

In Chapter 2, the background on common data reduction and blind source separation

(BSS) techniques are presented and discussed. Chapter 3 introduces the problem of

underdetermined blind source separation (UBSS), and a UBSS technique on the time-

frequency plane is presented. In Chapter 4, the proposed UBSS method is applied to

a multiple trial ERP data set to extract neuronal sources. The extracted neuronal

sources are compared to ICA using measures of localization, sparsity, disjointness

and variance. Chapter 5 concludes the thesis with a summary of contributions and

13

 



discussion of future work.

14



CHAPTER 2

SIGNAL PROCESSING METHODS FOR ERP COMPONENT

EXTRACTION

2. 1 Problem Statement

EEG/ERP signals are often assumed to be produced by distinct neuronal sources from

distinct locations within the brain. These sources are conducted through the brain,

skull, and scalp and create a potential measured by the electrodes. The readings at

the electrodes are assumed to be instantaneous linear mixtures of the sources in noise

following the model,

x=As+w an

with X representing the observation matrix, A the mixing matrix, S the source

matrix, and V the noise matrix. The observation matrix, X, is an Mxp matrix with

each row representing the reading at one electrode through time p, and each column,

x(t) is the array of M sensor readings at time t. The source matrix, S, is of size

NXp, where each row is the underlying source through time p, and each column, s(t)

is the source array at time t. It is assumed that the noise matrix is negligible, the

the representation becomes:

X=AS am

If a linear transform is applied to the data, X, the nature of the model is still the

same,

X=As am

where X and S are the linearly transformed representations of X and S, respectively.

In the case that the quadratic time-frequency transform that will be used in this
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thesis is applied to the data, the mixing model will be changed to,

A

x z A2s = as. (2.4)

Here, X and S represent the quadratically transformed data and source matrices,

respectively. For simplicity, equation 2.2 will always be considered the mixing equa-

tion, and it will be understood when using the quadratic transform, X, A, and S

will actually represent X, B, and S, respectively. A diagram of the mixing model is

shown in Figure 2.1.

The model could not be written in this matrix form if the mixing process were

assumed to be non-linear. Also, if the mixing matrix, A, is assumed to be time—

varying, a different matrix, A(t), would have to be specified for each x(t) and s(t).

It is assumed that the mixing process is linear and time-invariant, therefore A is

assumed to be constant, and is of size MxN. Each mixing matrix entry, [oz-j],

represents the relative strength of source j at sensor i. This also assumes negligible

delay between source activation and sensor reading. Otherwise a convolutive mixture

would be necessary, in which the readings, x(t), would be a sum of different mixing

matrices, A0, A1, . . ., multiplied by s(t),s(t — 1). .., etc. The matrix V is additive

noise with same size as X.

With only the data collected from the electrodes available, X, the goal is to extract

the underlying sources by solving for S. In general, a method must assume a certain

structure for the underlying source signals and define a corresponding cost function

for extracting the sources. In this chapter, some existing methods used in addressing

this problem, i.e. data reduction and source separation, are presented.
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Figure 2.1. (a) The diagram of the mixing model with N sources and M electrodes

(sensors). The transfer functions are simply scale factors since this is an instantaneous

mixture.

2.2 Time-Frequency Distributions

Some of the methods introduced in this chapter depend on representing a signal in

the joint time-frequency plane, so time-frequency distributions (TFDs) are introduced

here. A TFD, C(t,w), from Cohen’s class can be expressed as *[16]:

C(t,w) = /// ¢>(6,T)s(u + 12:)s*(u — %)ej(6u_6t—Tw)du d0 (17', (2.5)

 

All integrals are from —00 to 00 unless otherwise stated.
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where (15(6, 'r) is the kernel function, and s(t) is the signal.

The Short-Time Fourier Ttansform (STFT) is a simple instance of a TFD from

Cohen’s class, and can be represented as:

Sh(t,w) = /s(r)h('r — t)€_ijdT. (2.6)

The STFT involves performing Fourier Transforms on windowed data, where h(t) is

the window function and t represents its translation. A shorter duration of the win-

dow function, h(t), provides higher time resolution, but at the expense of frequency

resolution. Likewise, time resolution will suffer for increased frequency resolution.

Thus, the representation of the data with the STFT is generally smeared. Also, the

STFT representation does not necessarily maintain the time and frequency marginals,

meaning the signal energy has been misrepresented [17].

The quadratic Wigner distribution is also of Cohen’s class and is defined as follows:

we...) 2 / 3(t + 93*“ — ate-Wan (2.7)

For quadratic TFDs, the cross-terms or interference occurs when the signal is mul-

ticomponent. The cross-terms correspond to the interaction between the different

sources and do not contribute directly to the energy distribution of the individual

sources, and thus are undesirable. For this reason, reduced interference distributions

(RIDs) are used, designed using I ¢(6, 7') [<< 1 for | 67' [>> 0, that satisfy the energy

preservation and the marginals [18].

Since the distributions will be implemented in discrete-time, the TFD can be
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expressed as:

N N

TFD((n UJ‘ 11)): Z Z :1:(n+n1):1:*(n+n2)i,/1 (_:’ii_"_2,n1 _ n2)e—jw(n1—712),

2

nlz—Nn2z——N

(2.8)

where w is the discrete—time kernel in the time and time—lag domain.

Cohen’s class of distributions offer several advantages to other time-frequency

analysis methods such as uniform time and frequency resolution, energy preservation

and the marginals [16].

2.3 Data Reduction

Experimental ERP data is recorded over p time points per trial, with data available

from multiple electrodes per trial, performed over multiple trials for multiple subjects.

Each electrode reading per trial is represented as a p-dimensional observation if p

is the number of time points measured and analyzed in time, or a P-dimensional

observation if P is the number of total time-frequency points when analyzed in the

time-frequency domain. If J is the number of subjects, M the number of electrodes,

and T the number of trials, then the number of p— or P-dimensional observations

to be analyzed is J XMXT and quickly becomes a large amount of data to process.

Methods to reduce the data to a smaller number of meaningful components becomes

an issue to effectively analyze the data.

2.3.1 Principal Component Analysis

Principal Component Analysis (PCA) is widely used in signal processing and pattern

recognition applications. It is importantly used for data reduction with respect to

ERP analysis. Like trial averaging, it is run over multiple trials, but PCA will itself

extract multiple components, where averaging results in one waveform in which peaks

are analyzed from. PCA reduces the ERP measurements into multiple orthogonal
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components which covary over the trials as a result of experimental manipulations.

The principal components (PCs) may be such that a summation over different PCs

may correspond to a commonly known component, such as P300, but the PCs most

likely do not represent the underlying sources.

With observations x(t) = [1121(t), 332(t), . . . ,xM(t)]T, PCA is performed such that

M

0.0) = Z win-scat) = wfxm (2.9)

k=1

h principal component and w,- is a weight vector. The first principalwhere y,- is the 2'”

component, yl, is chosen so that its variance is maximized by choice of weight vector

WI. The variance of y1 is dependent on the orientation and norm of W1 and increases

with the norm, so W1 is constrained to Euclidean l2 norm of the weight vector,

“le2 = 1. The following yi’s are found to be orthogonal to all previous yj, j < 2',

such that the variance is maximized in the subspace orthogonal to the space spanned

by yj, j = 1,. . . ,z’ -— 1. The solution to this problem is equivalent to eigenvalue

decomposition of the data covariance matrix R.

The data covariance matrix is defined as:

1 k T

R = 7; Z x(t)x(t) . (2.10)

t=1

The eigenvectors and eigenvalues of R are then found according to:

R = VAvT (2.11)

where A is the M x M diagonal matrix with entries representing the eigenvalues in

decreasing order of magnitude A1 > A2 > > AM, and V = [v1,v2, . . . ,vM] with

columns representing the corresponding eigenvectors. The first m eigenvectors are

20



kept and used such that W1 = v1,w2 = v2, . . . ,wm = vm, and the variances of

the principal components y,- are given by the respective eigenvalues )‘i- The resulting

approximation to the original data set is:

51(1) = Z A,v,-(t). (2.12)

A threshold is chosen such that the number of principal components kept, m, is

determined. The error between x(t) and x(t) goes to zero as m approaches M, and

the eigenvalues, ZiM=m+1 A,- represent the error. A common decision rule is to set a

minimum value for each eigenvalue such that eigenvector v,- is kept if A,- > T, where

T is the threshold. Another common decision rule is to keep the eigenvectors that

2m

together explain a minimum amount of variance. That is, such that fig > T,

k=1Ak
where T is the threshold.

To be viewed as source extraction, the sources would have to be assumed to be

orthogonal in time. This is not an assumption that is often made, so this method is

not used to determine the underlying sources. Its value comes in data reduction, so

that further analysis techniques can more efficiently be applied to the data by using

the extracted components.

2.3.2 Matching Pursuit

Matching Pursuit (MP) is an algorithm that decomposes a signal linearly into a set

of functions, called time-frequency atoms, from an overcomplete dictionary. It can be

used in simplifying the representation of a particular signal via approximation.

The dictionary is composed of functions, g(t), scaled, translated, and modulated

as follows:

1 t-u

97“) = fl“
 fit3 )e , (2.13)

where s is scale, 11. translation, 5 modulation, and ”y = (s,u,£) E F. The % term
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normalizes 97(13). The dictionary, D = [when is overcomplete in that it provides

more than a sufficient basis for the signals it is to represent.

The first step in MP is choosing a function, 970, from the given dictionary, D.

This 970 is projected on the original signal, f, and R1 f is defined as the residue such

that:

f = (f. 970227,, + RU (214)

and because the residue is orthogonal to the dictionary function,

10112 =I<f.gm>12 + ”le112. (2.15)

The function, 970, must be chosen to maximize [(f, 970)] so that the residual, R1 f,

is minimized.

The second step is then to choose 971 from D. This is found by maximizing

|(R1f,970)| so that the new residue is sz and le = (le,970)970 + R2f.

These iterations are repeated likewise so at the mth iteration, the signal approxi-

mation is:

m—l

f = Z (Wigwam + WI. (2.16)

n=0

where R0 = f. As the iteration number, m —> oo, “Rmf [I2 —+ 0. The algorithm

should be run until [IRme2 < T, for a predetermined threshold, T.

The MP algorithm can offer compact representations of signals under the right

conditions, however this is dependent on the dictionary chosen. A larger library

of atoms can be chosen to better represent the dictionary at the expense of com-

putational complexity, but signal components must be reasonably approximated by

dictionary atoms. Frequency-modulated Gaussian functions, called gabor logons, give

Optimal joint time-frequency localization [20], and therefore are well suited in repre-

sentation of ERPs. MP is a greedy algorithm, so it does not necessarily provide an

22



optimal solution.

2.3.3 Principal Component Analysis and Matching Pursuit on Time-

Frequency

Using a frequency transform like the Fourier Transform obscures the time localization

of the signal, while analysis in time domain loses information about the frequencies

that constitute the signal. It has been shown that using a TFD for EEG data can

produce results not available with conventional analysis techniques [21]. Using a

TFD of Cohen’s class has the advantage over a wavelet transform (WT) that it

has constant time-frequency atoms whereas the WT suffers from low time resolution

at low frequencies and low frequency resolution at higher frequencies. Under noisy

conditions, the RID was shown to provide better separation of signal components than

using the WT [17]. The RID is chosen for signal representation for these advantages.

Because of the two-dimensional nature of a signal under a TFD, there is much more

data to be processed than when analyzing signals in time or frequency alone. It

was shown that data reduction using PCA on TFD representations of EEG data can

provide meaningful components [17].

This approach assumes time-frequency stationarity of sources. If a single source

shifts in the time-frequency plane over multiple trials, either multiple components

explaining the same source will be extracted, or the component representing the

source will be spread to cover the area of source shift.

Like in the case of time domain, to be viewed as source extraction, the sources

would have to be assumed to be orthogonal in the time-frequency plane. So again, its

value comes in data reduction, so that further analysis techniques can more efficiently

be applied to the data by using the extracted components.

Given that PCA can successfully be used in data reduction and that the extracted

components are localized in the time—frequency plane, it has been shown possible to

meaningfully reduce the amount of data further [26]. Using a dictionary of Gabor
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logons, a Matching-Pursuit (MP) algorithm is applied to components extracted with

PCA on TFDs. The resulting components were shown to represent the meaningful

variance of the original data well. Because the components are reduced to a few time

and frequency parameters, the data is reduced further than using the time—frequency

surfaces of the principal components.

2.4 Blind Source Separation

2.4.1 Independent Component Analysis

In recent years, multivariate data analysis involving decomposing the measurements

into several independent time series has become a popular way to describe the ‘source’

signals in the brain. Independent Component Analysis (ICA) solves for the unmixing

matrix W = A—1 such that the number of electrodes is at least as large as the number

of underlying sources (M _>_ N), W is full rank, the estimated sources, Y = WX,

are as independent as possible [22], and A is as described in section 2.1.

The Infomax algorithm introduced by Bell and Sejnowski [23] runs to maximize the

mutual information that the system output contains about its input. In its application

to ERPs, the estimated brain sources represent the output and the electrode readings

represent the input. Consider x to be the input vector and y the output vector where

y = g(Wx + W0) with W a mixing matrix and “'0 a bias vector. The multivariate

pdf of y is:

x

fy(Y) = ——fX() (2.17)
HI

and

P 8y 8y 7

J = det ' ' (2.18)

  
a 8.

Lisa] 5&1

The output entropy is H(y) = —E[lnfy(y)]. By plugging equation 2.17 into this
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equation the entropy becomes H(y) = E [lnlJl] — E[Infx(x)]. The term on the right,

the entropy of x, is unaffected by W, so that maximization of lnlJ I is required to

maximize [H(y)| Gradient ascent learning rules are derived as:

AW oc [WT]_1 + (1 - 2y)xT (2.19)

AWO cc 1 — 2y, (2.20)

and the rule for individual weights is therefore:

cofwz-j

Aw’j o< detW

+ $j(1— 2y,), (2.21)

where c0f is the cofactor and det is the determinant. This gradient ascent algorithm

is efficient if the pdf’s of the inputs are super-gaussian with no more than one source

being gaussian, and when the mixing matrix is not almost singular.

The process of Principal Component Analysis (PCA) can be compared with that

of ICA. They are similar, however PCA seeks out sources which are orthogonal to

each other, only relying on second order statistics, while ICA uses the less restrictive

assumption of independence and uses higher order statistics [24]. In PCA, each

progressive component explains as much variance of the data as possible, while the

variance of each component in ICA is more spread out [27].

In using ICA, it is required to have sufficient data points to represent indepen-

dence. This calls for a few times more data points than there are electrodes. It is

required to have as many electrodes as there are underlying sources in order to suc-

cessfully extract the independent sources. Also, the sources will only be successfully

separated given that the assumption of independence is true. This assumption of

independence between multiple sources in the brain is not necessarily true.
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2.4.2 Blind Source Separation on the Time-Frequency Plane

Much work is being done in BSS based on the assumptions of disjointness and sparsity

of the sources. These techniques do not assume independence of the sources, and they

are designed for the underdetermined case, that is, when there are more sources than

sensors, as described in section 3.1. Time or frequency only representations do not

provide sufficient sparsity, so use of a time-frequency transform is necessary to assume

sparse sources.

A method presented in [28] uses the time-frequency representation of the short-

time Fourier transform (STFT) for BSS. This method was proposed for speech signals

and uses masking to separate the sources. The sources are assumed to be approxi-

mately disjoint, that is approximately non-overlapping, in the time-frequency domain.

Masks are created using magnitude and phase information of the mixtures. Since the

assumption that time lag is negligible for EEG data is made, the phase informa-

tion can be ignored in application to EEG data, and in this way the method can be

extended to other time-frequency representations. This algorithm can extract more

sources than sensors, but only considers the case in which two mixtures are provided.

Sources 31(t) through sn(t) are represented in both mixtures 5121(t) and 11:2(t) at

different scales because of their different locations. The scales in the first mixture are

considered to be one, such that the mixtures can be represented as follows: '

271(t) = 81(t) + 82(t) + - - ' + Sn(t), (2.22)

:rg(t) = a131(t) + (123203) + ~ - - + ansn(t). (2.23)

The STFT of the mixtures are represented as follows:

X1(t,w) = 51(t,w) + $205,012) + - - - + Sn(t,w), (2.24)
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X2(t,w) = a181(t,w) + a282(t,w) + - - - + anSn(t,w). (2.25)

The ratio R21 is defined as

_ X2(t,w)

In this way, if the sources are completely time and frequency disjoint, only one source

will be active at any point in R21 and its value will be that of the scale of the active

source. All points at which a given source is active will result in the same ratio of

R21 giving that source’s scale. If source m is active, then R21 = am, and by creating

a mask for each different value in R21, the sources can be separated from the original

mixtures. If the sources are only approximately time and frequency disjoint, then one

source is dominant at any point. If the values of R21 are plotted in a histogram, then

there will be a peak for each source, the peaks will be located at approximately the

scale factor of each source, and all values near should belong to that source.

The second approach to BSS uses the nonlinear time-frequency distributions.

Blind source separation based on spatial time-frequency distributions achieve sep-

aration by joint diagonalization of the auto-terms in the spatial time-frequency dis-

tributions [29, 30, 31, 32].

The discrete-time implementation of Cohen’s class TFD for signal x1(t) is[16]:

00 OO

D$1$1(t,w) = Z Z ¢i(m,l)x1(t+m+l):r]’(t+m—l)e_]2wl, (2.27)

l2—w m=—OO

with t being time index and (.1) frequency index. The cross-TFD of two signals 3:1(t)

and 3:2(t) is then defined by:

00 oo

D1132“, w) = Z Z 1/1(m,l):z:1(t + m + l):1:§(t + m - 06—32”. (2.28)

lz—m mz—OO

Equations 2.27 and 2.28 are used to define the spatial time-frequency distribution

27



(STFD) matrix as:

Dxx(t, 0)) =2 2 I/J(m, l)xt + m + l)x*(t + m — l)e—2°"l. (2.29)

l=—oo m=——oo

In [29], the method is a two—step process: first the mixing matrix A is transformed

into a unitary matrix U via whitening, second U is retrieved through joint diagonal-

ization of a set of whitened data STFD matrices. Given that all source signals 3,-(t)

are mutually uncorrelated, W can be determined from R as defined in 2.10 through:

W(R — 021)wT = WAATWT = I, (2.30)

2
where a is noise variance. The whitened STFD matrix is then solved with:

Dzz(t,w) = WDxx(t,w)WT = UDSS(t,w)UT, (2.31)

with z(t) = Wx(t) the whitened data vector and U = WA is unitary. The source

signals are estimated such that s(t) = UTWx(t).

This approach facilitates separation of Gaussian sources with identical spectral

shapes but different time-frequency localization properties. However, this method

require extensive computing and a priori knowledge about the structure of the signals.

Bofill and Zibulevsky developed a two stage approach to solving this problem in

[33] under the model of equation 2.1, specifically for the case of two mixtures, M = 2.

The data is represented in the STFT domain to improve sparsity over representation

in time. Let x1(t) and 2:2(t) represent the measurements at each respective sensor at

time t. When sources are sparse, most sources contribute almost zero to the measured

mixtures at any measured point. When one source, sj(t), is strong, then, it is likely

the remaining sources are close to zero, and the measured vector, x(t), lines up in the

direction of the column of the mixing matrix, aj .In the two mixture case, a scatter
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plot of 501(t) vs. 332(15) will show a distinct direction for each source if the sources are

sufficiently sparse, and are mixed in independent directions. Using polar coordinates,

each measured data point is given a radius, It, and angle, 0t. They define a global

potential function:

©(61A) : 2 ¢()‘(0 — 6t», (2'32)

t

with

1— #711, forlal < 7r/4

05(0) = .(2.33)

0, elsewhere

Evaluating this equation around all values of 0 will give peaks along the angles of aj.

The radius, It, acts as a weight to count more reliable data for more, and /\ adjusts

angular width of the peaks. The number of peaks found serves as the estimate of

number of sources and columns of the mixing matrix. The mixing matrix is then

used to estimate the underlying sources following the same procedure outlined in

section 3.4.

Proposed in [34] is a two stage approach to BSS. It is an iterative algorithm that

first estimates the mixing matrix, and from this estimates the original sources. It is

two stages because it assumes an underdetermined case, that is there are more sources

than there are sensors. The mixtures are examined in a wavelet packet domain in

hopes to ensure sparsity.

Similar to the masking technique, this algorithm relies on sources being approx-

imately disjoint. First, the wavelet packet coefficients of observation matrix X are

calculated as X, so that there are n observations and each row represents the wavelet

packet representation of one observation and is of dimension N. Second, a ratio
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matrix is created using the wavelet packets coefficients,

:20) MN)‘

.S
’

I
2

  

i = I I I 7 (2‘34)

_ 2., 1 5: (N _

with q E 1,. . . ,n. A submatrix of X is then found:

;1<_11 21.0%>' "211 211’
iqfil) iqfiK aql aql

: ' : = s 2 s . (2-35)

1&1) 55W ) 9111 2111

1 53401) quzKl 1 _ “ql aql _    

Ideally, this submatrix will have identical columns, which would represent one column

of the mixing matrix. This would be without the presence of noise. In real conditions,

noise is present, and so the submatrix has approximately identical columns, and the

mean of these columns represents the estimation of a column of the mixing matrix.

Another such submatrix of X is found to have a different set of approximately identical

columns, and is used to estimate another column of the mixing matrix. This process

is repeated, each time estimating a column of the mixing matrix, until there are no

more unique submatrices of X. Next, q is incremented to find a new X and the

process repeats until q = 71. All estimated columns of the mixing matrix are put

together for its estimation. Redundant columns of the mixing matrix are eliminated

and a final estimate of the mixing matrix is achieved. After this linear programming

can be used to estimate the sources, an approach to this is outlined in section 3.4.

Another two stage approach like this is proposed in [35]. This approach assumes

the underdetermined case as well as sparsity. It is also proposed to use wavelet packet

in this algorithm. To estimate the mixing matrix, K-means clustering is used. The

implementation of the K-means clustering is much simpler than the iterations used
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in [34]. This algorithm is described in Chapter 3.

The method proposed in this thesis is an extension of the algorithm from [35].

Instead of working in the wavelet packet domain, it is proposed to work in the higher

resolution TFD of Cohen’s class. It is assumed that the added sparsity of using the

TFD instead of wavelet packet will provide better results and make unnecessary a

more complex algorithm.
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CHAPTER 3

UNDERDETERMINED SOURCE SEPARATION IN

TIME—FREQUENCY DOMAIN

An extension of the underdetermined blind source separation method proposed in

[35] is presented here. An overview of underdetermined blind source separation is

given first. Next, the two-stage approach used to solve the BSS problem in the

underdetermined case is presented. The first stage is to estimate the mixing matrix,

and the second is to estimate the sources.

3.1 Underdetermined Blind Source Separation

Underdetermined Blind Source Separation (UBSS) is a special case of the mixing

model presented in section 2.1 in which the number of sources is more than the

number of sensors, N > M. In this case the estimation of the mixing matrix alone is

not enough for the estimation of the underlying sources since the mixing matrix will

not be invertible like in the determined case. It is necessary to make assumptions

about the data to overcome this, and increasingly popular is assuming that the sources

are sparse in a particular representation [19, 36, 37]. For a source to be sparse, most

data points must be close to zero, so the pdf of its values must peak at zero and have

long tails. Because of this, the Laplacian distribution is often used to model the pdf

of a sparse source [33]. Representing the sensor readings in the time or frequency

domain alone does not often induce sparsity, so use of wavelet packets and TFDs

are often employed. It was shown in [38] that use of TFDs can provide more robust

separation under noisy conditions, so TFDs are used in this application. If the sources

are sparse, then they are also more likely to be non-overlapping, or approximately

disjoint, which can be used to make estimation of the mixing process easier.
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3.2 Determination of the Mixing Matrix

The mixing matrix to be solved for is A in

X = AS, (3.1)

where X is the M x P observation matrix with each row being the TFD of one

electrode, S is the N x P source matrix with each row being the TFD of one source,

and each column of both X and S represents all values at one joint time-frequency

point. The mixing matrix actually represents the element-by—element square of the

mixing matrix respresenting this mixing problem in the time domain. The number

of sources is assumed greater than the number of electrodes, N > M.

The estimation of the mixing matrix relies on a representation of the data that

renders the sources sufficiently sparse. In [35], it was proposed to work with the

wavelet packets (WP) representation to provide sparsity of sources. We propose

to work with a TFD representation because of the increased time and frequency

resolution of the data, ensuring a sparser representation. Use of WP and TFD were

compared in [38], and these results are shown in section 3.5.

Due to the sparsity of the source signals in the time-frequency domain, it is likely

that there exist many columns of S with only one nonzero entry. For instance, suppose

that slj, - -- ,SKJ. are K columns of S, where only the jth entry of each of these

columns is nonzero. For this case we assume that j will mean the first entry of each

column is nonzero. Then it follows

ASij =a1312-j i=1,--- ,K, (3.2)

with 31,-J. representing the first element of column 32-]. since it is the only active element
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in that column, and

.---, .=A .,---, .=a .,---,as ., 3.3lxlj, XKJl [81, 5K3] [1811, 1 1K3] ( )

where, xi]. is the z'jth column of X corresponding to 52-3., a1 is the first column of

A, and 51,-]. is the first entry of Sij- From equation (3.3), we see that each xi]. is

equal to al multiplied by a scalar 31,-j, which means that these K column vectors

of X, xlj, - -- ,ij, are distributed along the direction of a1. Thus, ideally after

normalization, xlj, - - - ,ij are mapped to a unique vector on the multidimensional

unit circle which is equal to al. However, in practice, the sources are likely only

approximately disjoint. That is, slj, . . . ,sKj are K columns of S with the jth entry

dominant, so that sz'j >> Spij: p 71 j, where j is constant. When more than one

source is non-zero, x1], -- ,ij are not exactly in the same direction as al, but

rather in the neighborhood of al. This means that al lies at the center of XI], -- ,

ij.

Therefore, the K-means clustering method presented in the following section can

be used to cluster the column vectors of the mixture matrix X into multiple clusters,

where the center of each cluster corresponds to one column vector of the mixing

matrix A. By doing so, an estimate of the mixing matrix A is obtained, where each

column, a.,-, is estimated by one of the resulting cluster centers.

3.3 K-means Clustering

K-means clustering is an iterative algorithm that seeks to minimize a squared-error

criterion function in order to separate a completely unknown set of data into 10 dif-

ferent groupings [39]. Suppose that x1,x2, . . . ,xn are vector observations in a data

set and make up realizations of 10 different distributions of random variables. Then

[11,112, . . . ,uk are the mean vectors of these distributions, and k-means seeks to eat—
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egorize the observations, xi, into one of the k distributions such that the squared

Euclidean distance, ”Xi — ujllz, is minimized. However, since the properties of the

dataset are unknown, 111,112,” . ,pk must be estimated first, as 111412,. . . ,fik.

As a starting point, It random samples of the data are chosen as the initial mean

estimates, 113-. The distributions are then estimated by classifying all points, x,, into

the group whose estimated mean it is closest to in the squared Euclidean sense, so

that x,- E [13- when 3' is subject to

Injin le. — 12,112. (34)

Once all data points are classified, the mean of each group is recalculated. Suppose

.7
m a

data points. The new mean is then calculated as fij = mi] 21:1 Xij- This process

mj is the number of data points in the jth distribution, and XI]. , x2j, . . . ,xm. are all

is repeated until convergence, when the estimated means do not change upon further

iterations.

3.4 Estimation of the Source Signals for 3 Given Mixing Matrix

After obtaining the estimated mixing matrix, the next stage is to estimate the source

signals. For a given mixing matrix A in equation (2.2), the source signals can be

estimated by maximizing the posterior distribution P(S[X, A) of S. In general, there

is no unique solution to this problem. Maximizing the posterior distribution is then

done such that a maximally sparse set of sources are found. Under the assumption

that the prior is Laplacian, maximizing posterior distribution can be implemented by

solving the following optimization problem [40]:

N P

minZ 2: [32-3], subject to AS = X, (3.5)

i=1j=1
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with N the number of sources, and P the number of time-frequency points. Hence,

the l1-norm

N’.P

‘hlS)==:E::E:F%jl (36)

i=1j=1

can be used as the sparsity measure. The ll norm is preferred to lo norm, which is

the actual level of sparsity, because the optimization is NP hard for lg norm but can

be solved easily for ll norm using linear programming.

It is not difficult to prove that the optimization problem (3.5) is equivalent to the

following set of P smaller scale linear programming (LP) problems:

N

min: Isijl, subject to Asj = xj forj=1,--- ,P. (3.7)

221

In this way, the contribution to the column of X at one point of time-frequency

should be dominated by one source in order to minimize the ll-norm, giving the

sparse solution.

Finally, we pr0pose the following algorithm for estimating the source signals:

Algorithm:

1. Using the collected data [21 (t), z2( t), . . . , zM(t)]T, obtain M TFDs and vectorize

each to obtain the TFD mixture X.

2. Normalize the column vectors of the TFD mixture X to obtain X.

3. Take a sufficiently large positive integer k as the number of clusters, also the

number of sources to estimate. Choose the initial points of iteration and the

distance measure criterion. In this thesis, the squared Euclidean distance is

chosen as the criterion.

4. Do K-means clustering on X followed by normalization to estimate the sub-

optimal mixing matrix A.
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5. Using the estimated mixing matrix A and the mixtures X, estimate the time-

frequency representations S by solving the set of LP problems in equation (3.7).

The result is a matrix, S, in which each row represents a vectorized TFD of an

extracted sparse component. The number of sources to be extracted is defined by the

user, and so a sufficiently large number must be chosen. It is shown in [35] that if k is

chosen larger than the actual number of sources, the ”extra” extracted sources appear

as spurious noise sources, and can be ignored. The l1 norm is used as a sparseness

measure to ensure a unique solution, and the solution will be reliable if the sources

are approximately disjoint.

3.5 Comparison Between Wavelet Packets and Time-quuency Distri-

butions

In this section, several examples will be used to illustrate the effectiveness of the

proposed approach to separate the sparse source signals from their fewer mixtures in

the time-frequency domain. The binomial kernel [16] is used for computing the TFD

since it belongs to the class of reduced interference distributions (RIDs).

Example 1: The set of observed signals are two linear combinations of four Gabor

logons. These four Gabor logons are centered at the time sample point and the

normalized frequency (30,0.7), (160,-O.7), (70,-0.4), and (120,0.1), respectively. Each

observed signal is first transformed to the time-frequency domain with I = 50 time

samples and L = 64 frequency samples. Each TFD is then vectorized to form a TFD

mixture matrix X = [X1; X2] of size 2 X 3200.

Figure 3.1 presents a scatter plot of the mixtures X (X2 vs. X1) in the time-

frequency domain. It can be seen from this plot that almost all significant data points

are distributed along four different directions, thus providing very good separability.

The separation results using the proposed approach are illustrated 'in Figure 3.2.

Figure 3.2(a) and (b) represent the two mixtures. The four extracted Gabor logon
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signals are shown in Figure 3.2(c), (d), (e), and (f). The results indicate that these

four Gabor logons can be successfully separated from their two mixtures using the

pr0posed approach based on their sparsity with an average signal to interference ratio

(SIR) of 36.1251 dB.

Example 2: Two mixtures of a chirp signal and two Gabor logons are given. The

chirp signal has a linear frequency increasing from an initial normalized frequency

of -0.2 to a normalized frequency of 0.2. The Gabor logons are the first two Gabor

logons given in Example 1. A scatter plot of the two mixtures in Figure 3.3 shows

that it is similar to the first example in that the distributions of data points belonging

to different sources are along three different directions. Since the chirp signal overlaps

with the two Gabor logons in the time domain, typical time domain separation meth-

ods can not be used to perfectly recover them. However, it is illustrated in Figure

3.4 that these three signals can be effectively extracted in the time-frequency domain

using the proposed method with an average SIR of 32.7634 dB.

Example 3: In this example, the same two mixtures of four Gabor logons given

in Example 1 are used. The effectiveness of the presented approach is compared for

TFDs and wavelet packets (WP) in the presence of noise. Haar wavelet with five

levels is used for the wavelet packet decomposition.

To show the effect of increased sparsity of TFDs, the mixtures at different levels of

white Gaussian noise are considered. 100 Monte Carlo simulations are used for each

noise level. The average mean squared error (MSE) between the extracted sources

and the original sources is calculated for both the TFD and WP. The TFD and WP

provide similar results when there is no noise. However, as the noise level increases,

the performance of the WP rapidly degrades compared to that of the TFD. The MSE

versus the signal-to-noise ratio (SNR) is shown in Figure 3.5 for both the TFD and

WP. This result shows that the RID results in a more sparse time-frequency surface

compared to the WP, which improves the robustness of BSS under noise.
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CHAPTER 4

SOURCE SEPARATION RESULTS FOR ERP SIGNALS

4.1 Data

The ERP data analyzed in this thesis was recorded at Ormond and Hazel Hunt

ERP Lab at the University of Michigan. The study consisted of 10 Subjects and

6 electrodes. The electrodes that were used in the recording are F3, F4, 02, P3,

P4, and Oz. The subjects are shown visual stimuli in the form of words related to

their particular psychopathologoy. Two sets of words are presented to each subject,

prime and target. The prime stimulus is always presented subliminally with stimulus

duration less than 5ms. One second after the prime stimulus, the target stimulus is.

presented supraliminally, i.e. the subject is aware of the stimulus. Three groups of

words are uniquely developed for each subject. One category, unpleasant word, is

the same for all patients, where each word is a generally unpleasant word, such as

’cheating’, ’cancer’, or ’lying’. The other two categories are unique to the subject’s

condition. One category is the conscious conflict category, which the words were used

by the patient to describe his/her condition. Examples could be from a subject who

suffers from a public eating phobia, such as ’swallowing’, ’cafeteria’, or ’headache’.

The final category is unconscious conflict words. Experts develop a list of words

related to the condition. Examples for the same subject are ’massaging muscle’,

’ripped apart’, or ’on my back’. In this study there are two groups for each prime

and target stimuli. The prime stimuli belong to either unconscious conflict word

or conscious conflict word categories, whereas the target stimuli belong to conscious

conflict word and unpleasant word categories. Each set of stimulus is repeated 49

times resulting in a total of 196 trials per electrode per subject. The data used in

analysis was for ls in duration upon presentation of the supraliminal stimulus, and

44



only the data from one subject was used.

4.2 Single-Trial ERP

The goal in single-trial ERP analysis is to be able to extract individual underlying

sources in the brain which are generated in a localized area. With successful source

extraction, analysis of individual responses of the brain can be performed, and the

dynamic variability of the ERP responses can be compared on a trial to trial basis. In

this way, observations can be made on all factors affecting subject’s performance. A

comparison is made between the algorithm outlined in section 3.4 and ICA as outlined

applied to the same data. Both BSS techniques are applied to all 196 trials of data

available.

In application of the two-stage approach, first, a number of sources to extract,

It, must be chosen. This value was empirically chosen, and is chosen such that it is

greater than the number of electrodes, 6. Multiple trials were run under a selection for

k. If no sources extracted appeared spurious, It was incremented, since it was shown

in [35] that choosing k larger than actual number of sources still results in successful

extraction of sources. As It increased, sources began to Show up in the results that had

only spurious activity, incrementation was stopped and k was chosen. Experiments

were done using 32 frequency bins, for which It was 8, and using 128 frequency bins,

for which k was 14 and 16.

ICA was then applied to the same data. Since only 6 mixtures are used, ICA can

only extract 6 components per trial. The results for ICA are in the time domain, so

they are converted to the time-frequency plane at the different frequency resolution

levels using 32 or 128 frequency bins for comparison.

Examples of single-trial results are shown in Figure 4.1, Figure 4.2, and Figure 4.3.

Figure 4.1 shows results of one trial when 32 frequency bins were used in the TFD,

while Figure 4.2 and Figure 4.3 each show results for one trial with 128 frequency bins.
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Similar results are obtained over all 196 trials. Using more frequency bins provides

more data points, which provides for a more robust separation so that more sources

can be extracted. This increase in data points comes at the cost of more computation

time. The sources from the proposed technique show in general less activity, i.e. more

sparsity, in the time-frequency plane than the sources from ICA. As more sources are

extracted in the prOposed technique, source representation becomes more sparse. It is,

however, difficult to compare results on the single-trial level here since the underlying

source generators are actually not known, and since a different number of components

are extracted from each technique. It is also difficult because there are 196 individual

trials to try to quantify. An attempt must be made to generalize the results.

4.3 Measures of Evaluation

In order to evaluate the performance of ICA and the proposed UBSS method, the

single-trial results are put together in their respective groups depending on stimulus

type. K—means clustering is carried out over all extracted components from the

subject and the extracted cluster centers represent similar components across all trials.

These components are then representative of the most prevalent sources extracted

throughout all the trials for each stimulus. Evaluation of these cluster centers is then

carried out in attempt to quantify the general results of ICA to those of the proposed

method.

4.3.1 Data Reduction

The results of one trial are represented by the matrix, S1), which is of size N x P.

Each component in time-frequency is first vectorized to form a vector of length P,

which is in our case equal to either 2112 or 8256. These vectors are then put into

a matrix. This represents N extracted components from trial 2', each over P time-

frequency points. For the data reduction of all results for a particular stimulus, the

extracted matrices over all trials are each appended to form a new matrix, Sn, such
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Figure 4.3. Single trial results using 128 frequency bins. (a) 6 extracted sources from

ICA. (b) 16 extracted sources from the proposed method.
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where u = {1, 2, 3, 4} represents the stimulus pair number, and éu is of size 49N x P.

Each element, 3'30), is one time-frequency point of source 71 from trial 1).

K-means clustering is then carried out on each éu where each of its rows is grouped

into one of K clusters based on its squared Euclidean distance to that cluster center as

described in section 3.3. The clustering algorithm is run 10 times to avoid randomness

in the final cluster results. We run K at 8, 10, and 12 to get an idea of how a different

number of components may affect the outcome.

The rows of S“ are then grouped by a hierarchical clustering method based on the

results of the 10 k-means runs. A matrix, R, of zeros of size 49N x 49N is created.

Each entry is updated iteratively. The entry, Tij represents how many times out of

10, row 2' of S“ was grouped into the same cluster as row j of s”. This matrix then

serves as a similarity measure, the more times two sources were grouped together by

k-means, the more similar they are. All diagonal entries, Tii: represent how many

times each source was grouped with itself. These entries are ignored because they are

all 10 and are meaningless.

A hierarchical clustering is then carried out using the similarity matrix, R, as its

distance metric. In the first step, each row of Eu is in its own cluster. The second step

then groups all rows together with a similarity value of 10 in the matrix, R. Next,

all rows with similarity of 9 are grouped. If a group already exists, then the average

similarity between one row and all rows already in the cluster is used. The next step
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will then group together a cluster with another cluster or individual row if it has the

highest similarity value remaining. If not, then all rows with similarity value of 8

are grouped together. This is repeated until the number of clusters is reduced to K.

Cluster centers are then calculated by the mean of the time—frequency components

in each cluster, and these are the components that categorize all single-trial ERP

results. An example of a set of extracted components is shown in Figure 4.4.

4.3.2 Data Variance Explained

After the extracted single trial components are reduced using clustering methods, a

comparison of component quality is then sought out. The K extracted components

from all trials of the two-stage approach must be compared with the K extracted

components from all trials of ICA. It is possible that the better representation of the

underlying activity will be able to explain more of the variance of the original data.

The extracted clusters are represented by the K x P matrix Cu, u = {1,2,3,4}.

The space spanned by these components can be found by Gram-Schmidt orthoganal-

ization, to produce the K x P orthogonal matrix Cu, u = {1, 2, 3, 4}. These

orhtogonal components are projected back onto the original electrode measurements,

Xfu, u = {1,2,3,4}, l = {1, . . . ,6}. This is calculated by:

. T

Di. = (Cuxt )2

  

(zlec9<J)x'f’<J)>2 (zlec1<J)x3’<J>>2 (z,_1cr<)z49<>)2'

: (zlec9<J>x'f"<J>>2 (zf_1c9(J)x‘9"<J)>2 (2j2102(3)$:f§l(j))2

_(Zf:963‘9(J>x1‘”<J>)2 (2519cK<J>sc3"(J>>2 (zf=le%<J>w2‘9’<J»2_

(4.2)

where each entry, dnié, is at row m and column 2) and represents the projection of

cluster m back onto trial 1) of electrode l for stimulus group u. The variance of the
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Figure 4.4. Results of component clustering over all single-trial results for stimulus

group u = 1. (a) Components extracted using ICA. (b) Components extracted using

the proposed method.



data, 2, at electrode I explained by all extracted components from stimulus group u

is then:
 

11K496

2935 2 2261315-
m=1 v=1l=1

(4.3)Zu—

The results are shown in Table 4.1. It is seen that in general more variance

is explained by the components extracted from ICA than by the two-stage approach

when 32 frequency bins are used. As resolution increases, the performance of the two—

stage approach improves with respect to ICA, and in almost all cases is better. This

does not necessarily mean that ICA is outperforming the two-stage approach in the

lower resolution, however. The two-stage approach seeks to find the sparsest sources

possible. ICA is seeking to find maximally independent sources. When comparing

an equal number of extracted components from the two methods, those with less

sparse representations (from ICA) project better back to the original measurements,

but it is likely that these components are linear sums of further reducible sources.

The extracted components must also be evaluated for time—frequency localization and

 

 

 

 

 

  
 

  
 

 

 

 

sparseness.

Table 4.1. Mean measure of l1 norm to show sparsity.

Running u=1 u=2 u=3 u=4

Conditions UBSS ICA UBSS ICA UBSS ICA UBSS ICA

k=8 K=8 0.467 0.457 0.452 0.453 0.452 0.461 0.461 0.463

k=8 K=10 0.472 0.473 0.462 0.472 0.460 0.474 0.472 0.476

k=8 K=12 0.471 0.482 0.464 0.482 0.468 0.480 0.476 0.490

k=14 K=8 0.400 0.370 0.386 0.368 0.375 0.366 0.387 0.368

k=14 K=10 0.408 0.375 0.396 0.364 0.384 0.366 0.396 0.366

k=14 K=12 0.417 0.387 0.404 0.389 0.390 0.385 0.403 0.390

k=16 K=8 0.399 0.367 0.386 0.367 0.374 0.367 0.385 0.371

k=16 K=10 0.409 0.376 0.396 0.379 0.383 0.378 0.395 0.382

k=16 K=12 0.410 0.387 0.393 0.388 0.391 0.384 0.390 0.391             
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4.3.3 Measurement of Sparsity

The level to which the extracted components are sparse, disjoint, and localized in

the time—frequency plane all speak to how close they may be to an actual underlying

source in the brain. The components obtained from the clustering method described

in the previous section are evaluated based on these factors. Sparsity will be measured

using the ll-norm, disjointness using the total inner product between the components,

and localization using a measure of entropy on the time-frequency plane.

Since a sparse component must have most of its values close to zero, the ll-norm

is a good measurement of how sparse a component is and a smaller ll-norm means

a sparser component. Each row of the extracted cluster matrix, Cu, represents one

extracted component. Thus each component’s sparsity is measured with

Z |C§‘(m)|J (44)

where 2' represents component number.

Disjointness between two components is measured by using the inner product.

A summation of all the pairwise inner products between L components represents a

total level of disjointness over all extracted components. This is computed as

P

2 Z lc§‘(m)c§‘(m)l, (4.5)
iyéj m=1

where u refers to stimulus group, and P is the number of time-frequency points.

Timefrequency localization of each component is computed using a measurement

of entropy. This is calculated as

P

— Z Ic?(m)llog2lc§‘(m)l, (4.6)

m=1
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where u refers to stimulus group, and z' is the component number, between 1 and L.

A smaller entropy corresponds to a more localized component.

The results calculated for these parameters are shown in Table 4.2, Table 4.3, and

Table 4.4. This shows that under the two-stage approach, the extracted components

are typically more sparse, localized, and disjoint than the extracted components under

ICA. This means that under the two-stage approach, the components are more likely

a closer representation of a true source. As time-frequency resolution increases, the

extracted components from the two-stage approach represent more of the original

data variance, while still remaining sparse, localized and disjoint.
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Table 4.2. Mean measure of ll norm to show sparsity.
 

 

  

 

  
 

 

 

 

 

             

Running u=1 u=2 u=3 u=4

Conditions UBSS ICA UBSS ICA UBSS ICA UBSS ICA

k=8 K=8 29.93 35.12 34.85 33.12 29.43 34.80 30.07 35.20

k=8 K=10 29.74 33.95 29.40 33.26 29.87 34.29 30.87 34.25

k=8 K=12 30.36 33.44 29.57 33.11 30.19 33.73 31.40 33.68

k=14 K=8 55.84 67.04 55.65 66.67 55.81 68.00 56.34 67.67

k=14 K=10 56.96 62.03 55.48 65.61 51.39 66.80 57.64 66.27

k=14 K=12 58.23 64.57 55.72 64.04 54.41 62.87 56.90 64.92

k=16 K=8 56.53 67.31 55.08 66.51 56.16 68.16 51.84 66.97

_ k=16 K=10 56.67 65.64 54.72 65.14 54.73 66.92 53.40 66.69

k=16 K=12 52.51 65.24 51.17 65.07 55.42 64.16 55.32 65.78  
 

Table 4.3. Mean measure of entropy to show time-frequency localization.
 

 

 

 

 

 

 

 

 
 

 

 

  

Running u=1 u=2 u=3 u=4

Conditions UBSS ICA UBSS ICA UBSS ICA UBSS ICA

k=8 K=8 162.75 193.89 190.27 181.08 159.95 191.92 163.28 194.29

k=8 K=10 161.36 186.94 159.47 183.61 162.21 187.11 167.49 188.98

k=8 K=12 164.74 184.37 160.44 182.31 164.03 185.73 170.25 185.66

k=14 K=8 360.03 433.63 358.35 430.80 354.03 438.95 362.47 437.52

k=14 K=10 366.53 396.14 356.92 423.49 319.68 430.92 370.22 428.26

k=14 K=12 374.67 417.32 358.58 413.65 339.23 401.85 366.04 418.42

k=16 K=8 364.45 435.27 355.34 429.95 361.31 439.87 329.96 433.01

k=16 K=10 365.20 424.30 352.87 421.00 352.12 432.04 340.10 430.84

k=16 K=12 331.54 421.19 325.11 418.67 356.82 411.23 356.36 424.66           
 

  

Table 4.4. Measure of disjointness by correlation between components.
 

 

 

 

 

 

 
 

 

 

 

 

           

Running u=1 u=2 u=3 u=4

Conditions UBSS ICA UBSS ICA UBSS ICA UBSS ICA

k=8 K=8 4.10 4.73 5.63 5.85 2.96 3.56 3.00 3.68

k=8 K=10 6.27 6.85 4.07 4.65 4.09 4.47 4.15 4.59

k=8 K=12 8.94 9.58 6.55 7.17 6.48 6.96 6.48 7.13

k=14 K=8 2.84 3.46 2.26 2.92 3.22 3.78 2.27 2.85

k=14 K=10 4.21 4.27 3.61 4.12 3.44 4.00 3.63 4.24

k=14 K=12 6.10 6.63 5.25 5.70 4.00 4.24 5.30 5.80

k=16 K=8 2.76 3.44 2.58 3.23 2.81 3.36 2.49 3.12

k=16 K=10 4.20 4.77 3.91 4.38 4.47 4.98 3.85 4.38

k=16 K=12 5.33 5.87 4.64 5.19 5.43 5.92 5.68 6.17  
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

This. thesis discusses the study of ERPS using EEG measurements to help understand

mental processes. A number of components have been identified in the time-domain

using the traditional method of averaging over multiple trials of ERPs and detecting

characteristic peaks. These components have been linked to general brain processes,

but lack specificity because their representation is probably the summation of multiple

different sources. Additionally, averaging over trials ignores trial-to-trial variability

and cannot detect any changes of state in the subject. For this reason, single-trial

analysis by means of BSS has become a highly researched area in its application

to ERP data. Different methods of BSS from the literature are introduced. It is

proposed to use a UBSS algorithm and apply it to ERP data using TFDs. EEG

signals have been shown to be non-stationary and this approach does not assume

stationarity unlike some other techniques. The proposed approach is also capable of

extracting more sources than sensors, where many techniques cannot do so. This is

important since the number of sources are unknown, and since many EEG setups

do not have large electrode arrays. This UBSS approach is compared to the popular

ICA algorithm when applied to the same multiple trial ERP data set. Data reduction

by clustering is performed over all single-trial results to extract components that

represent the results. These components were not shown to explain more variance of

the original data using 32 frequency bins, but performance improved with resolution.

The components were consistently more sparse using the proposed UBSS technique

than with ICA, showing that ICA probably tends to extract components that are

sums of sources, and can help explain the higher correlation value to the original

data. The UBSS technique provided components that are more localized in the time—

57



frequency plane and that are more distinct from each other than did ICA. Because

the components extracted using the UBSS technique had these desired properties and

explained more of the data variance using 128 frequency bins, the method presented in

this thesis can provide a more useful means of data reduction than using PCA or ICA.

Even in the case of lower resolution, the variance explained is comparable between

the two methods, while using the UBSS algorithm provides the desired qualities of

the extracted components.

It would be beneficial to be able to run this UBSS algorithm more efficiently, since

using TFDs increases the amount of data to examine by so much. Being able to use

higher resolution TFDs will provide more reliable results. Another problem with this

method is the arbitrary selection of how many sources to extract. It would be more

efficient to have the algorithm automatically select this number. The requirement that

the sources must be approximately disjoint limits the algorithm. If this assumption

could be relaxed, results could be more reliable since neuronal sources may not be

disjoint. Further study should be done to compare extracted sources to available

cortical data or the technique used with source localization techniques for better

understanding of how the components are generated.
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