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ABSTRACT

SPEECH WATERMARKING THROUGH PARAMETRIC

MODELING

By

Apama Gur‘z'jala

Parameter-embedded watermarking of speech is effected through

slight perturbations of parametric models of deeply-integrated dynam-

ics of the signal. This research focusses on speech watermarking tech-

niques based on linear-in-parameters speech models. Information is

embedded by modifying the linear predictor coefficients of the original

speech, subject to fidelity constraints. The modified parameters are

used to reconstruct the watermarked speech. Experiments with real

speech data are used to assess robustness and other performance prop-

erties. A particular example of watermark detector design is discussed

and performance tested.

In set-membership filtering (SMF) based parametric watermarking,

linear predictor (LP) coefficients of the original speech are modified

subject to an objective fidelity constraint. SMF is used to obtain a

hyperellipsoidal set of allowable parameter perturbations (i.e., water-

marks) subject to a constraint on the error between the watermarked



and original material. This research discusses the robustness of SMF

based watermarking to filtering, quantization and combination attacks.

An important consideration in watermark robustness is the energy of

the watermark signal (difference between watermarked and original sig-

nals). Watermarks of higher energy are obtained from perturbed LP

coefficients at the boundary of the hyperellipsoidal set. A constrained

optimization problem is solved to obtain the best watermarks for fil-

tering and quantization attacks.

Finally, a generalized framework for parametric speech watermark-

ing is presented. In addition to the LP model, other parametric repre—

sentations such as log area ratio, inverse sine, line spectrum pair, and

reflection coefficients are used for speech watermarking. An application

of perturbed parameter theory for autoregressive models is presented.

The perturbed parameter theory is used to obtain bounds on the per-

turbation of the stegosignal caused by watermarking.
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Chapter 1

Introduction

Digital media and global access to high-speed computer networks

are creating complex copyright issues for owners of legally-protected

materials [1]. A response to the unprecedented need to protect intellec-

tual property has been the emergence of an active research effort into

digital watermarking technologies. Digital watermarking is the process

of embedding data (the watermark) imperceptibly into a host signal

(the coversignal) to create a stegosignal. The term “coversignal” is

commonly used in watermarking literature [2] to denote the host sig-

nal and the term “stegosignal” is borrowed from steganography [3] to

represent the watermarked signal. The watermark is typically a pseudo-

noise sequence, or a sequence of symbols mapped from a message. A

watermark offers copyright protection by providing identifying infor-

mation which is accessible only to the owner of the material. Only a

watermarked version of copyrighted material is released to the public.



When copyright questions arise, the watermark is recovered from the

stegosignal as evidence of title. Watermarking has been argued to be

an advantageous solution to this modern copyright problem, and there

is strong evidence that the practice will be accepted by the courts as

proof of title [1].

The design of a watermarking strategy for speech involves the bal-

ancing of two principal criteria. First, embedded watermarks must be

imperceptible to the listener. That is, the stegosignal must be of high

fidelity. Second, watermarks must be robust. That is, they must be

able to survive attacks [4] - those deliberately designed to destroy or

remove them, as well as distortions inadvertently imposed upon the

watermarks by technical processes (e.g., compression) or by systemic

processes (e.g., channel noise). These fidelity and robustness criteria

are generally competing, as greater robustness requires more watermark

energy and more manipulation of the coversignal, which, in turn, lead to

noticeable distortion of the original content. Related measures of a wa-

termark’s efficacy include data payload, the number of watermark bits

per unit of time [2]. Another important requirement of a watermarking

strategy is its security, the inherent protection against unauthorized

removal, embedding or detection. A watermarking scheme generally

derives its security from secret codes or patterns (keys) that are used

to embed the watermark. Only a breach of keying strategies should
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compromise the security of a watermarking technique; public knowl-

edge of the technical method should not lesson its effectiveness.

The speech watermarking methods described in this dissertation

involve private decoding, meaning that the coversignal is required for

watermark recovery. Private decoding techniques require additional in-

formation during watermark detection and recovery. However, among

other benefits, this additional information can be used to undo cer-

tain attacks and distortion. In private decoding techniques, knowledge

of the coversignal at the detector, serves as a registration pattern to

undo any temporal or geometric distortions of the stegosignal [2]. For

example, in the case of a “cropping attack,” wherein speech samples

are randomly deleted, a dynamic programming algorithm can be used

in conjunction with the coversignal to recover the watermark from the

desynchronized stegosignal [5]. Although watermarking schemes involv-

ing public decoding (coversignal not required for watermark recovery)

are applicable in a larger set of applications, techniques involving pri-

vate decoding can be used for content tracking, broadcast monitoring,

and owner identification, in addition to copyright protection.

Robustness requirements of watermarking algorithms are applica-

tion dependent. Watermarking algorithms are broadly categorized into

robust and fragile watermarking algorithms based on the robustness

requirements. For a given application, robust watermarking algorithms



.a
l

 

 



are required to survive all intentional attacks and also distortion in—

troduced by normal processing. Fragile watermarking algorithms are

required to be selectively robust. For example, in a speech authentica-

tion application of watermarking, the embedded fragile watermarks are

required to be robust to compression, channel noise, and resampling

and fragile to content tampering due to re—embedding and changes to

acoustic information. The algorithms presented in this thesis fall under

the robust watermarking category and were developed for applications

such as content management, broadcast monitoring, and copyright pro-

tection.

Watermark embedding techniques vary widely in method and pur-

pose. Watermarks may be additive, multiplicative, or quantization-

based, and may be embedded in the time domain, or in a transform

domain. Each technical variation tends to be more robust to some forms

of attack than to others, and for this and other application-specific rea-

sons, particular strategies may be better-suited to certain tasks. The

methods reported in this dissertation are motivated by the particular

properties of speech signal [6].

Parametric watermarking is based on manipulation of inear-in-

parameters speech models. The linear prediction (LP) model is a spe-

cial case of linear-in-parameters speech models that can be used for

watermarking [6]. Generally speaking, the watermark information is
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concentrated in the few LP coefficients during the watermark embed-

ding and recovery processes, while it is dispersed temporally and spec-

trally otherwise [7]. The watermark recovery process involves least

square error (LSE) estimation [8] of modified LP coefficients, and this

further contributes to watermark robustness. Parametric watermark-

ing provides sufficient flexibility in terms of watermark selection for a

wide range of data payload, robustness, and stegosignal fidelity require-

ments.

In set-membership filtering (SMF) based parametric watermarking,

LP coefficients of the original speech are modified subject to an objec-

tive fidelity constraint. SMF is used to obtain sets of allowable pa-

rameter perturbations (i.e., watermarks) subject to a constraint on the

error between the watermarked and original material. The robustness

of SMF based watermarking to filtering, quantization and combination

attacks is studied. An important consideration in watermark robustness

is the energy of the watermark signal (difference between watermarked

and original signals). The most robust watermark is obtained from

perturbed LP coefficients at the boundary of the membership set.1 A

constrained optimization problem is solved to obtain the best water-

marks for filtering and quantization attacks.

The application that motivated the present work is the creation of

 

1This phenomenon is discussed below.



the National Gallery of the Spoken Word (NGSW), an NSF-sponsored

Digital Libraries Initiative II project. The goal of the NGSW effort is

the development and management of an extensive on—line repository of

spoken word collections, based largely on the renowned Vincent Voice

Library. Further information is available at www.1ib.msu.edu/vincent/

and in [9].

Owners of copyrighted material are often reluctant to grant permis-

sion to post such material on the internet without sufficient assurances

that their rights will be protected. Accordingly, a prime interest in the

development of the watermarking scheme is the need for robustness to

the broadest possible array of attacks. On the other hand, preserving

the audio history and authenticity of the NGSW materials requires that

robustness not come at the expense of perceptible distortion.

Although the NGSW application places few constraints on com-

putational load, parametric watermarking can be implemented in real-

time. Further, since the NGSW is a permanent, large-scale, repository

of speech data with a rich meta-data support structure, the associa-

tion of relatively detailed watermarking information with records in

the database is not impractical.





Chapter 2

Background

In the last decade many algorithms have been proposed for multi-

media watermarking. Early work emphasized watermarking algorithms

that could be universally applied to a wide spectrum of multimedia con-

tent, including images, video, and audio. This versatility was deemed

conducive to the implementation of multimedia watermarking on com-

mon hardware [10]. However, many watermarking applications, includ-

ing copyright protection for digital speech libraries [11], embedding

patient information in medical records [12,13], or television broadcast

monitoring [14], involve embedding information into a single medium.

Also, the attacks and inherent processing distortions vary depending

on the nature of the data. For example, an attack on watermarked

images may involve rotation and translation operations to disable wa-

termark detection. However, such an attack is not applicable to audio

data. Watermarking algorithms that are specifically designed for par-





ticular multimedia content can exploit well-understood properties of

that content to better satisfy the robustness, fidelity and data-payload

constraints. For example, unlike general audio, speech is characterized

by intermittent periods of voiced (periodic) and unvoiced (noise-like)

sounds. Speech signals are characterized by a relatively narrow band-

width, with most information below 4 kHz. Also, well-established an-

alytical models for speech production exist [6] which can be exploited

in the watermarking process.

2. 1 Speech watermarking

Most existing watermarking algorithms for speech can be catego-

rized into either spread-spectrum (SS) or speech synthesis based ap-

proaches. SS watermarking [10] is one of the earliest and best-known

watermarking algorithms applied to multimedia data. In SS water-

marking, a narrowband watermark is embedded into a wideband “chan-

nel” that is the coversignal. In the second main approach, watermarks

are integrated through speech synthesis. An advantage of integrating

watermarking with the coding process [15] is a reduction in computa-

tional complexity.

In this work, we adopt a new approach that has both spectrum-

spreading and integration-by-synthesis aspects, but which is fundamen—

tally different from the existing approaches. For speech signals, a para-





metric approach is naturally motivated by the extraordinary successes

in applying parametric models - in particular, the LP model - in several

key speech technology areas. The robustness of the LP model to practi-

cal anomalies occurring in coding, recognition, and other applications,

suggests that some representation of these parameters might provide

an effective basis for embedding durable watermarking data. Paramet-

ric watermarking provides sufficient flexibility in terms of watermark

selection for a wide range of data payload, robustness, and stegosignal

fidelity requirements. In the strategy described here, LP parameters

of speech are directly or indirectly modified by an added watermark

vector. The stegosignal is constructed by passing the original speech

through the modified inverse LP filter and resultant is then added to

the prediction residual of the unaltered LP model.

2.1.1 Spread spectrum watermarking

An important contribution of the work of Cox et al. [10] is the

demonstration that a watermark must be embedded in perceptually

significant components of a signal for sufficient robustness to attack.

In [10], the DCT is applied to the coversignal and the watermark is

embedded in the n (typically 1000) highest magnitude coefficients of

the DCT, not including the zero frequency component. Each value of

the watermark is drawn independently from a unit normal distribution.





SS watermarking is robust to a wide range of attacks, so it is used

as a standard against which to evaluate the robustness of parametric

watermarking in this work. For the SS algorithm used to compare per-

formance in this research, the stegosignal {yj Bil is obtained by adding

the watermark sequence {93,130 to the 1000 largest DCT coefficients

of the coversignal of 1 s duration.

372' = Y2“ + KAgia (21)

where each 9,- is independently drawn from N(0, l), and Y, and f’, are

the ith largest DCT coefficients of the cover and stegosignals, respec-

tively. The A parameter controls the stegosignal fidelity and is adjusted

to satisfy a desired fidelity constraint.

In SS signaling [16,17], the watermark message is first modulated

by a lowpass filtered pseudo-noise sequence. The resulting sequence is

shaped by the LP spectrum of the coversignal, before being added to

the coversignal. The latter measure reduces perceptual distortion. The

watermark receiver whitens the stegosignal using the inverse LP filter.

The watermark receiver requires perfect synchronization between the

whitened stegosignal and the pseudo-noise spreading sequence. These

techniques have been tested in low noise environments such as in the

presence of additive white Gaussian noise with a 20 dB SNR. However,

it is not known how such algorithms will perform under more challeng-

10
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ing channel conditions, or when subjected to deliberate attacks like

cropping, filtering, or the addition of colored noise.

2.1.2 Watermarking integrated with speech synthesis

In the approach by Hatada et al. [18], line spectrum pairs (LSP) [6]

are extracted from short-term segments of the coversignal. The LSP

parameters are selected because they correlate well with the formant

location [18]. Codebook vectors are created by applying a clustering

algorithm to the extracted LSPs. Watermarked codebook vectors are

obtained by modifying the frequency components of the original code-

book vectors. The LSPs of a particular frame are quantized by either

the watermarked or original codebooks depending on whether the frame

is to be watermarked or not. The stegosignal is synthesized using the

watermarked LSPs.

Even in the absence of watermarking, the LSPs of the original

speech and those of the synthesized speech are different. In the pres-

ence of watermarking, the difference between the original and extracted

LSPs will be even more substantial. Thus watermark detection is af-

fected even in the absence of an attack. Hence, to preserve the wa-

termark information as accurately as possible, it is necessary that the

speech frames used for embedding watermark data have very small LSP

differences with respect to the synthesized speech.

11



2.1.3 Pitch and duration modification for watermarking

Celik et al. [19] propose a speech watermarking algorithm for semi-

fragile authentication applications. In the case of semi-fragile water-

marking, robustness to selective manipulations or attacks is desired.

Celik et al. use pitch and duration modification of quasi-periodic speech

phonemes as the features for semi-fragile watermarking. The signifi-

cance of these features makes them suitable for watermarking and the

variability of these features facilitates imperceptible data embedding.

A quantization index modulation scheme is used to embed watermark

bits into these features.

The coversignal is segmented into phonemes. A phoneme is a fun-

damental unit of speech that conveys linguistic meaning [6]. Certain

classes of phonemes such as vowels, semivowels, diphthongs, and nasals

are quasi—periodic in nature. The periodicity is characterized by the

fundamental frequency or the pitch period. The pitch synchronous over-

lap and add (PSOLA) algorithm is used to parse the coversignal and

to modify the pitch and duration of the quasi-periodic phonemes [20].

The pitch periods (pp) are determined for each segment of the parsed

coversignal. The average pitch period is then computed for each seg-

ment,

P ,

wzi
p=1

l2



The average pitch period is modified to embed the mth watermark bit

(u’rm) by using dithered quantization index modulation [21],

[5:09 : Qd}(p’avg + Tl) — Tl

where Q“; is the selected quantizer and 7? is the pseudo-random dither

value. Pitch periods is then modified such that,

pp“? 2 10,1) + (9":ng " Iéavg)

The PSOLA algorithm is used to concatenate the segments and synthe-

size the stegosignal. The duration of the segments is modified for better

reproduction of the stegosignal. As necessitated by authentication ap-

plications, watermark detection does not require the original speech.

At the detector, the procedure is repeated and the modified average

pitch values are determined for each segment. Using the modified av-

erage pitch values, the watermark bits are recovered. The algorithm is

robust to distortions caused by low-bit-rate speech coding. This is be-

cause it uses features that are preserved by low-bit-rate speech coders

such as QCELP, AMR, and GSM-06.10 [22]. Robustness to coding

and compression is necessary for authentication applications. On the

other hand, the fragile watermarking algorithm is designed to detect

malicious operations such as re-embedding and changes to acoustic in-

13





formation (e. g., phonemes).

2.2 Set-membership filtering

The set-membership filtering (SMF) concept was first published by

Gollamudi et al. [23], and was more recently proposed as an innovative

solution to the design of channel equalizers for digital communication

by Nagaraj et al. [24]. SMF can be viewed as a reformulation of the

broadly-researched class of algorithms concerned with set-membership

identification (e.g. [25,26]). The application of SMF to parametric

speech watermarking in demonstrated in Chapter 4.

2.2.1 Overview of SMF

The SMF problem is stated as follows:

 

SMF PROBLEM. Given a sequence {XT E RM}:=1 of observations, a

“desired” sequence {ZT E R}:=1, and a sequence of error “tolerances”

{7,}th1 (frequently constant with 7'), find the the exact feasibility set at

time t, ”Pt Q RM which includes all vectors (filters), 0 6 RM, satisfying

7:, ___ {9| [2, _. 9%,] < 7,. for 7' e [1,t]}. (2-2)

 

l4



Note that when 7t is constant with t, say 7, = 7, then we may write

a = {6| Ilz — 2n... < v}- (2.3)

in which z is the t-vector with ith element 22:, and z is the t-vector with

ith element xfd.

The SMF problem is solved using a series of recursions which re—

turn at iteration t an hyperellipsoidal membership set, say 8,; 2) Pt, and

the ellipsoid’s center, say 6t. The recursions execute an optimization

strategy designed to tightly bound R by St in some sense. Accordingly,

the broad class of algorithms employed in the SMF problem are often

called the optimal bounding ellipsoid (OBE) algorithms [25,26]. The

OBE algorithm used in the SMF based parametric watermarking al—

gorithm is called the set-membership—weighted recursive least squares

(SM-WRLS) algorithm, but the choice of OBE methods is somewhat

arbitrary for the present application.

2.2.2 Set-membership weighted recursive least squares

This section presents an overview of the SM-WRLS algorithm for

filtering and identification applications. The SM-WRLS algorithm is

used in the SMF based parametric watermarking algorithm. In the

SMF framework it is assumed that there is an observation sequence

{xt}f‘;1, a “desired” sequence {Zr}?:1, and a sequence of error tolerances
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(7&5; [25]. The feasibility set at time t, ”Pt, includes all 6, such that

zT = BTXT subject to [2T — 2,] < ”y, for 'r = 1,2, . . . ,t. (2.4)

Let it be the tx M matrix with the ith row fix? and let 2,; be the

t-vector with the ith element \/:\_,-zi, where {x/XTfizl are a set of error

minimization weights. Then the covariance matrix is given by C3, =

5(th and on = szt. The algorithmic steps involved in implementing

SM-WRLS for either identification or filtering applications are given in

Table 2.1 [27].

2.3 Lagrange Multipliers

The method of Lagrange Multipliers is a common approach for

solving constrained optimization problems [28]. The method of La-

grange Multipliers is used to obtain optimal watermarks from the mem-

bership set for a given attack on the stegosignal. In a constrained op—

timization problem, a function needs to be maximized or minimized

subject to certain conditions or constraints. A constrained optimiza-

tion problem with the variable a: E R" is characterized by an objective

function f0(a:), inequality constraint functions fi(:c) and equality con-
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straint functions h,- (11:)

min/max f0(a:)

subject to fi(a:) S 0, for i = 1,2, . . . ,p1 (2-5)

hJ-(x) =0, for j=1,2,...,p2

In the method of Lagrange multipliers, the constraint functions are

taken into account by augmenting a weighted combination of the con—

straint functions to the objective function [28]. That is, the Lagrangian

L(:v, 51,17) is,

V P1 V P2

L(:r, A, 22) = f0(a:) + Z A,f,«(a:) + Z t,h,-(a:) (2.6)

i=1 j=1

where L : IR” x R91 x R“ —> IR, {Xi}§:1 are the Lagrange multipliers as-

sociated with the inequality constraints, and {53- E11 are the Lagrange

multipliers associated with equality constraints. The Lagrange mul-

tipliers are nonzero and those associated with inequality constraints

are also nonnegative. The method of Lagrange multipliers converts

the constrained optimization problem into an unconstrained one with

n + 191 + p2 variables.

The maxima or minima of the constrained optimization problem

occur when the gradient of the Lagrangian is zero, VL($,:‘\,17) = 0.
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That is,

V P1 V P2

v.L(x, A, i?) = 0 ¢=> VI)”, = - (Z A.v.f.- + Zvjvmhj) (2.7)

i=1 j=1

and

V

V;_L(a:, ,17)=0 4:) fi=0, for i=1,2,...,p1 (2.8)
1

ijL(a:,5\,13) = o <==> h,- = 0, for j = 1,2, . . . ,pg. (2.9)

It can also be observed that,

3L V BL V

Eff—fl: — Xi and 5);; -- V3- (210)

Equations (2.7)-(2.10) are used to obtain the optimal value of 11:. In

order to use the method of Lagrange multipliers, the objective and

constrained functions are not required to be convex.
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Table 2.1: SM-WRLS algorithm

 

 

Initialization:

C51 = P0 = 6—11, where e is small

00 = 0

A1 = 1

k0 = [Hillbil]2 + 2?, computed after step 3 for 7' = 1

Recursion: For T = 1, 2, . . . ,t

1 C(r) and €7-1(r) are updated.

0(7) 2 szT-1xT where P, = C?

674(7) 2 25¢ —— 6::le

2 Skip step 2 if r = 1. The original A: is computed by finding a

positive root of the following quadratic equation.

{(A4 —1)G2(T)})‘2

F()\) = 0 = +{[2M — 1+ cyn63,1(r)] — I‘ET_1')’TG(T)}G(T))\

+{Ml1— ”Hg—1(7)] — Hr—IG(T)7—r}

If there are two positive roots, then the larger one is used.

3 Skip step 3 if r = 1. If A; S 0, set PT = PT_1, 0, = 67-1,

Ii,- 2 KET_1 then go to step 5. Otherwise continue with step 4.

4 Update PT, 0,, and k7.

Pr—lxrxzpr—l

_1: T:PT- -' T

c, P 1 ’\ 1+A.c(~r)

 

97 = 6T—1 + )‘TPTéT—1(T)XT

A62 7
KTZK’T—l+—T T r—1( )

7.. " 1— non)

 

5 If r < t, increment r and return to Step 1.
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Chapter 3

Parametric Speech Watermarking

in the LP Domain

3. 1 Introduction

The general parametric watermarking algorithm is formulated in

the following way. Let {yn} denote the coversignal, and let {3).} be

the ultimate stegosignal. Each of these is assumed to be a real scalar

sequence over discrete-time n. It is assumed that the signals are gen-

erated according to operations of the form [29]

yn : 4574512.: $715 n) and fin = (Dir(€~na in: In), (3'1)

in which {En}, {En}, {2:7,}, and {in} are measurable vector—valued ran-

dom sequences. The operator gb is parameterized by a set 7r, the alter-

ation of which (to create parameter set if) is responsible for changing
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the operator (b to (I) and the sequences {fin} and {an} into their “tilded”

counterparts.

3.1.1 An algorithm for LP parametric watermarking

In the present study, the coversignal is assumed to be generated

by a LP model,

All

971 = Z aiyn—i +671: (32)

i=1

a special case of the first equation in (3.4). The “true” model is

determined by standard LP analysis of a (long) frame selected for wa-

termarking [6]. The sequence {fin} is the prediction residual associated

with the estimated model. The duration of the FIR linear predictor

is naturally based on the assumed order of the LP model, M, used to

initially parameterize the speech. The stegosignal is constructed using

the FIR filter model

11/!

y = Z a.y.._.- + g... (3.3)

i=1

where {iii} represents a deliberately perturbed version of the “true”

set {ai}. The algorithmic steps of the LP parameter-embedded wa-

termarking procedure appear in Table 3.1. Numerous ways in which

parametric modification can be effected — including indirectly through

changes to other speech parameters such as log area ratio (LAR) values

or parcor values — are discussed further in Chapter 5.
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Table 3.1: Watermark embedding algorithm

 

 

Let {yn}:o____oO denote a coversignal, and let {yn}:l‘__mc be the kth of

K speech frames to be watermarked. Then: For k = 1, 2, . . . ,K

1 Using the “autocorrelation method” (e.g., [6, Ch. 5]), derive

a set of LP coefficients of order M, say {ah-Ail, for the given

frame.

2 Use the LP parameters in an inverse filter configura-

tion to obtain the prediction residual on the frame,

M "l:

{5n = 9n — 22:1 aiyn—i}

n=nk

3 Modify the LP parameters in some predetermined way to

produce a new set, say {dz-HZ]. The modifications to the LP

parameters (or, equivalently, to the autocorrelation sequence

or line spectrum pairs, etc.) comprise the watermark.

4 Use the modified LP parameters as a (suboptimal) predic-

tor of the original sequence, adding the residual obtained in

Step 2 above at each n, to resynthesize the speech over the

frame, [3].. = 2,121 aiyn—i + {n} k . (To the extent that the

71:71).

watermark represents only small perturbations to the orig—

inal LP parameters, the resynthesized result is a pointwise

approximation to the coversignal over the same time frame.)

5 The sequence {yn}::’: is the kth frame of the watermarked

speech (stegosignal).

Next k.
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When watermark embedding involves direct modification of LP

coefficients, the embedding process can be interpreted as a digital filter

design problem. Equation (3.3) can be rewritten as

M M

9n = Z awn—.- + ZWiyn—i + fin, (3.4)

i=1 i=1

wherein, the watermark sequence {0.2,- {:1 constitutes the impulse re-

sponse of an Mth-order non-recursive filter. This filtered version of

original speech incorporates the watermark information. Non-recursive

filters are inherently stable and less sensitive to quantization errors.

The watermark signal, wn = zglwiywi = g, — yn has a spectrum

determined by the watermark coefficients and the coversignal. For ex-

ample, the watermark spectrum can be designed to have predominantly

lowpass, highpass or mid-band energy.

It is important to understand a key difference in the way LP mod-

eling is applied in this watermarking application relative to its conven-

tional deployment in speech coding and recognition. In these prevalent

applications, the goal is to find a set of LP coefficients that optimally

model quasi-stationary regions of speech. In parametric watermark-

ing, the LP model is used as a device to parameterize long intervals of

nonstationary speech without the intention of properly parameterizing

stationary dynamics in the waveform. Rather, the parameters are de-

rived according to the usual optimization criterion — to minimize the
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total energy in the residual [6, Ch. 5] — with the understanding that

the aggregate time-varying dynamics will be distributed between the

long-term parametric code and the residual sequence.

3.1.2 Recovering LP parameter-embedded watermarks

The algorithm for recovering the watermark from the stegosignal

appears in Table 3.2. An important step in the recovery process is the

least square error (LSE) estimation of the modified watermark coeffi-

cients, {Zia-H11, which is executed as follows. Let us consider a length N

frame of the coversignal and rewrite the stegosignal generation equa-

tion (3.3) as

M

d, = Z a,y.,_.- = 573,, with d, = 3)., — g... (3.5)

i=1

In principle, the system of equations (3.5) taken over N samples, n =

1, 2, . . . , N, is noise free and can be solved for a without error using

any consistent subset of M equations. For generality, to smooth round-

off and other errors, and to support further developments, we pose the

problem as an attempt to compute the LSE linear estimator of the “out-

put” signal, dn, given observations yn. The following normal equations

are solved,

(3,5 = cm (3.6)
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Table 3.2: Watermark recovery algorithm

For k=1,2,...,K

 

1 Subtract residual frame {5.333; from the stegosignal frame

{am This results in an estimate of the modified predicted

speech, {dn = y~n " €n}2:

2 Estimate the modified LP coefficients {in}? by computing

the least-square-error solution, say {fa-H", to the overde-

termined system of equations: d,, z 23:1 my..-“ n =

nk, . . . , 77.2,.

3 Use the parameter estimates from Step 2 to derive the cor-

responding watermark values.

Next k.   
in which C31 = 2,721 ynyg = YNYE and Cyd = 25:1 yndn = YNdiV,

where

MxN
YN=[yN yN_1 y1]ER (3.7)

T

M: [dN d,“ d1] ERNXI. (3.8)

The LSE method is based on time averages, and its performance de-

pends on the frame length used in the estimation [8]. In the stegosignal,

the watermark information is distributed in time and is present as the

watermark signal {wn},’,V=1. During recovery the watermark information

is concentrated in a few coefficients {MEL derived from an estimate

of the modified LP coefficients.
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3.1.3 Perceptual aspects of LP parametric watermarking

The watermark embedding process can be interpreted as (i) a mod-

ification to the LP model or similarly derived models, plus (ii) FIR

filtering. This section deals with the perceptual benefits of parametric

watermarking and the constraint used in this research to objectively

quantify stegosignal fidelity. Listening tests were also conducted on the

watermarked speech file available at the website [30]. The results of

these tests are discussed in detail in Section 3.2.3.

Echo embedding interpretation

The LP parametric watermarking agorithm can be interpreted as

the addition of M echoes of small amplitudes and scales. The echoes are

delayed by M units or less. Typically, echoes of delay 20 m8 or less are

imperceptible. Also, since the echoes are scaled by much smaller valued

watermark coeflicients, the louder coversignal masks some components

of the echoes. It should be noted that the technique differs from the

echo hiding method of Gruhl et al. [31], in which binary “one” and

“zero” information is encoded in the offset and delay parameters of the

echo and not in the echo amplitude.
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Stegosignal fidelity

Fidelity is a measure of perceptual similarity between the coversig-

nal and the stegosignal. The watermarking process must not affect the

fidelity of the speech beyond an application-dependent standard. A

simple and mathematically tractable measure of fidelity is the signal-to—

noise ratio (SNR), or, in the present context, coversignal-to-watermark

ratio (CWR), defined as,

E N 2
CWR : 1010g10 E—y— = 1010g10 %§‘='l—y%, (3.9)

n=1 wn

where w,, = [gn — y,,]. The CWR averages the relative distortion energy

of the coversignal over time and frequency. However, CWR is a poor

measure of speech fidelity for a wide range of distortions. The CWR is

not related to any subjective attribute of speech fidelity, and it weighs

the time domain errors equally [6]. A better measure of speech fidelity

can be obtained if the CWR is measured and averaged over short speech

frames. The resulting fidelity measure is known as segmental CWR [6],

defined as,

k]K

1 Z Z 3112
CWRseg : — 10l0g10 —;———§ , (3.10)

K j=1 z=k,._L+1 [I91 - 311]

where, k1, k2, ..., kK are the end-times for the K frames, each of which

is length L. The segmentation of the CWR assigns equal weight to the
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loud and soft portions of speech. For computing Cwmeg, the duration

of speech frames is typically 15 — 25 ms with frames of 15 ms used for

the experimental results presented in this chapter.

Some of the other objective measures of speech quality include

the Itakura distance [6], the weighted-slope spectral distance and the

cepstral distance. According to Wang et al. [32], CWRseg is a much

better correlate to the auditory experience than the other objective

measures discussed above. A simple way to control the fidelity of the

stegosignal is to scale the watermark vector, w, by a constant, say A,

before adding it to the original LP parameters (Step 3 of Table 3.1).

3. 1.4 Security issues

A watermark’s security refers to its ability to withstand attacks

designed for unauthorized removal, detection or embedding. A water—

marking technique must not rely on the secrecy of the algorithm for

its security. In parametric watermarking, a copy of the coversignal is

required for watermark recovery. The LP parameters of the stegosignal

are different from the modified LP values obtained by adding the water-

mark vector to the LP parameters of the coversignal. An attacker has

access to the stegosignal and not to the coversignal, prediction resid-

ual, frame length, and LP model order used for watermarking. Since

parametric watermarking involves the alteration of deeply-integrated
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characteristics of speech signals, the embedded watermark information

is not easily determined from the resulting stegosignals. The security

of the present watermarking technique can also be further enhanced

by randomly selecting the speech frames to be watermarked, using a

different LP model order for each watermarked frame (model order also

depends on the fidelity constraint), and by embedding psuedo random

watermark patterns. The LP parameters of the stegosignal can be eas-

ily obtained.

k .

g. = Z akg.._,. + g... (3.11)

k=1

where K is the LP model order selected by the attacker. However, the

LP parameters ({dk}) of the stegosignal are different from the modi-

fied LP coefficients {Eli} and also, {En} is different from the prediction

residual {gn}) associated with the coversignal, even if K = M.

Impact of ambiguity attacks: Ambiguity attacks are of concern to both

private and public watermarking techniques [33]. In an ambiguity at-

tack, counterfeit watermarks are identified or created by an attacker in

the stegosignal using a different watermarking scheme. The attacker

recovers his or her watermark from the stegosignal, claims rightful

ownership of the protected signal and succeeds in causing ambiguity

about the “true” owner of the stegosignal. According to Craver et

al., two necessary conditions for robustness to ambiguity attacks are

non-invertibility and non-quasi-invertibility [33]. For a watermarking
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technique to be non-invertible, it is essential that the mapping from

the watermarked signal {3),} to {(12,} and {yn} does not exist; where

{(11,} is the watermark carved out by the attacker and {31,} is the fake

original created by the attacker. Non4quasi-invertibility is a much more

stringent requirement. For a watermarking technique to be non-quasi-

invertible, it should be impossible for an attacker to create {L0,} and

{gn} from {32/7,}, which is perceptually similar to {37,} and such that {L0,}

still exists in {yn}, the true original. It is shown below that parametric

speech watermarking is non-invertible.

For an algorithm to be invertible, it should be possible for an

attacker to create a fake coversignal and a fake watermark from the

stegosignal [equation (3.3)].

K K

a. = Eating. + e. = Z (a. + mg... + g... (3.12)

k=1 k=1

where K is the model order selected by the attacker, g. = 25:1 e.g.....- + 6,,

is the fake coversignal, and {fin} is the corresponding minimum MSE

prediction residual.

An attacker can easily compute the LP coefficients and the predic-

tion residual associated with the stegosignal. Obviously, equation (3.11)

cannot be substituted by the attacker as the model for the fake cov-

ersignal and fake watermark sequence, since the fake coversignal will be
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the same as the stegosignal. On the other hand, an attacker can add a

sequence {V7,} to the stegosignal and then compute the LP coeflicients

and prediction residual.

K K

fin + 1/n = Z dk(gn-—k + l/n—k) + 6n = Z Ciky’n-k +671: (313)

k=1 1:21

The attacker can then subtract, {Vn} from {57,} to obtain the stegosig-

nal.

K ~ K

gn : Z: dktln—k + (£72. _ V72) 2 Z (dk + wkhfn—k + (£71 — V72), (3'14)

k=1 k=1

Comparing equations (3.12) and (3.14), the fake coversignal, is given by

y’,, = 2le signs. + (5],, — 14,), where {In — V", is the prediction residual.

However, from equation (3.13), the fake coversignal is g. = {in + Vn and

the minimum MSE prediction residual is in, which is different from (5’..—

z/n) and hence this is a contradiction. Thus it will be impossible for an

attacker to invert the embedding process starting with the stegosignal.

3.1.5 A detection algorithm for LP parametric watermarking

A common approach to watermark detection employs classic bi-

nary decision theory. The hypotheses are H0 : IR = I and H1 : IR =

I + w, where IR is the received signal, I is the original signal and w is

the watermark signal [34,35]. A Bayesian or Neyman—Pearson paradigm
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is followed in deriving the detection thresholds. For image watermark-

ing, the image DCT coeflicients are modeled as generalized Gaussian

in distribution [34,36]. These approaches do not consider the effect

of noise while deriving the detection threshold. Several watermark de-

tectors are based on correlation detection in the time or in the DCT

domain [37,38]. That is, the correlation between the original and re-

covered watermarks or the correlation between the original watermark

and recovered signal is compared against a threshold. Correlation de-

tectors are optimal when the watermark and noise are jointly Gaussian,

or, in case of blind detectors, when the watermarked signal and noise

are jointly Gaussian. For example, the detector presented in [2, Ch. 6],

assumes that the detector output for each bit is Gaussian distributed.

This is true for watermark patterns that are spectrally white, but this

is not the case with the watermark signal in parametric watermarking.

Hence there is a need to design a watermark detector in the parameter

domain.

This section describes a watermark detector for LP parametric

watermarking [39]. The stegosignal is distorted by additive white or

colored Gaussian noise in the time domain. The watermarks are com-

prised of (eight) non-binary orthogonal vectors of length eight. Each

of these eight vectors can be mapped to a unique symbol. For exam-

ple, each vector can be interpreted as a particular integer from the set
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{0, 1, 2,3,4,5,6, 7}. The watermark may be composed of many such

integers or symbols. In the examples in this paper, each orthogonal

watermark vector (symbol), is embedded into 0.125 seconds of speech

sampled at 16 kHz, resulting in a bit rate of 24 bits per second (bps).

The watermark vector is added to the coefficients of an eighth-order LP

model. The length of the watermark vector (and hence the predictor

model order) and the duration of speech frame can be selected arbi-

trarily, subject to constraints on stegosignal fidelity. These constraints

include an upper limit on the predictor model order, and a need to use

FIR models of small order for short speech frames ("500 samples).

Extensive experimentation by the author has shown that noise

in the parameter domain, caused by stegosignal exposure to additive

noise, is well-modeled by a Gaussian distribution. Figure 3.1(a) shows

a typical noise distribution in the LP domain when white noise (SNR 15

dB) is added to the stegosignal. The noise distribution for Fig. 3.1(a)

was obtained by conducting 1000 experiments, involving a stegosignal

of 1 s duration watermarked at CWRseg of 7 dB using a watermark

message consisting of eight orthogonal vectors, each vector embedded

into 0.125 seconds (2000 samples) of speech. When white Gaussian

noise was added to the stegosignal, the noise effects on a particular

watermark coefficient could be approximated as independent and iden-

tically distributed (i.i.d) Gaussian noise. The LP noise associated with
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a particular watermark coefficient was uncorrelated with the LP noise

for other watermark coefficients. The parameter noise samples were

also uncorrelated with the corresponding LP coefficients. It should be

noted that when the stegosignal is subjected to additive white noise,

the parameter noise asymptotically tends to zero as N —+ co (discussed

further in Section 3.2.3) and is of very low power. However, the noise

generated using the “randn” function in matlab, is not ideal white noise.

The parameter noise distribution of the stegosignal plus colored

noise is similar to that shown in Fig. 3.1(b). Colored noise was gener-

ated by lowpass filtering white noise using an IIR Butterworth filter.

The LP noise affecting any given watermark coefficient was found to be

i.i.d. Gaussian. However, a realization of noise affecting all the L = 8M

watermark coefficients was found to be correlated with the original LP

coefficients.

A solution to this problem is to normalize the watermark coef-

ficients before adding them to the original LP coefficients. That is,

instead of directly adding the watermark vector to the original LP co-

efficients (a = a + or), we obtain the modified LP coefficients as,

(ti = (12' + (oz-[a2]. (3.15)

From the estimate of the modified LP coefficients, the watermark vector
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Figure 3.1: Typical noise distribution in the LP domain for any coeffi-

cient. For Fig. 3.1(a) 15 dB white noise was added in time domain to

the stegosignal, and for Fig. 3.1(b) 15 dB colored noise was added to

the stegosignal.
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is obtained as,

 
012': la'l (3.16)

with 5 = {51,- £1: as defined in Table 3.2. However, when [ail << 1, the

recovery of watermark coefficients magnifies the noise variance in the

LP domain. To avoid this, watermark coefficients are normalized before

embedding, but only if [ail _>_ 1. For the experiments presented in the

rest of the chapter, the watermark embedding and recovery involves this

”

“selective normalization. Accordingly, Step 3 of Table 3.1 is carried

out using the following rule in the present algorithm:

a,- +wi|a,-|, if [a1] _>_1

N

az- + Luz, otherwise

The final step in the recovery algorithm (Table 3.2) involves the follow-

ing equation:

) A

Q
“

i— ail/(lad), if lat] Z 1

a, — ai, otherwise

In Table 3.3, ,u and 02 are the parameter noise mean and vari-

ance, and cra(0) is the cross-correlation between the recovered vector

and the original LP coefficients. The values of ,u, 02, cra(0) were de-

termined by conducting 1000 experiments, involving a stegosignal of
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Table 3.3: Effect of selective normalization

Noise SNR Normal 11 02 c,a(0)

(dB) -ization

White 10 no 2.849 x 10‘4 0.0517 —0.0059

White 10 complete —0.0152 4.6477 —0.0051

White 10 selective —6.2 x 10-5 0.1099 7.645 x 10-4

Color 15 no 2.3438 x 10’4 0.0049 0.0328

Color 15 complete 0.0139 0.7518 —0.0094

Color 15 selective —1.162 x 10’4 0.0071 0.0023       
 

1 s duration. The stegosignal was watermarked at CWFlS.3g of 7 dB

using a watermark message consisting of eight orthogonal vectors, each

vector embedded into 0.125 seconds (2000 samples). Selective normal-

ization of watermark coefficients significantly reduces the correlation

between noise in LP domain and the LP coefficients, especially when

the stegosignal is subjected to colored noise in the time domain (see

Table 3.3). Moreover, as the noise variance in the LP domain is re-

duced, selective normalization improves the cross-correlation between

the original and recovered watermarks compared to the complete nor-

malization case. Figures 3.2(a) and (b) also show an improvement in

the correlation coefficient values when selective normalization is used.

The watermark detection process is treated as a binary decision

problem in the presence of additive noise. Preliminary watermark de-
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Figure 3.2: Effect of complete normalization, selective normalization,

and no normalization of watermark coefficients on the correlation co-

efficient between original and recovered watermarks. In 3.2(a) the

stegosignal was distorted by white noise in the time domain, and in

3.2(b) colored noise was added to the stegosignal.
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tection experiments are used to set the hypotheses,

H1: r,=w,-+v,-, l=1,2,...,L

where {r,-},-L=1 is the set of elements in the observation vector. The null

hypothesis is that no watermark is present and only noise is transmit-

ted {v,-},L:1, while under H1, both watermark {62,-}1‘ and noise samples
i=1

{vi ,L=1 are present in additive combination. Due to selective normaliza-

tion of watermark coefficients, noise in the LP domain, v,- is distributed

as N(0, 02), when noise {Qfiil is added to the stegosignal in the time

domain such that the SNR is 31 = 1010g10 [(271]; 9,2,)/(Z,1:’=1 (3)]. For

this watermark detection problem, the expressions for false—alarm, de-

tection and missed-detection rates are well-known and are given by

(e.g., [40]), 1 L 2

PF 2 0.5 [erfc (lnr + 57'? Zi=l w,- )[ (3.17) 

fie

 

1 +1 .L_ 2—’
PD=0.5 [erfc(nT 555%;1‘“: #1)] (3.18)

PM = 1 — PD (3.19)

Here, u] = (202)”122:1 wf, 6 = (202)‘1 Zlewf and r is the detec-

tion threshold. Let r” = o2 lnr + 0.522-1’2111)? then, the decision rule
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is

H1

L >

Zriw, — T”. (3.20)

i=1 <

H0

In a practical implementation, the threshold 7'”, corresponding to an

SNR of 5'1, can be adjusted further if the actual SNR in the time

domain is determined. As an example, if the SNR were found to be

Sg = 10log10 [(2,];1 g3) / (25:1 (3)] (assuming zero-mean noise), the

threshold 7” is altered by multiplying 02 with the adjustment factor

l/fi, where ,6 = 10(51‘52l/10.

The SNR in the parameter domain is defined as, d2 2 (,11‘1 /6)2 [40].

In the present case, d 2 VIII. Hence embedded marks of greater energy

will result in improved robustness, while noise of higher variance in the

parametric domain will hinder watermark detection. The stegosignal

was subjected to additive white and colored noise, resulting in different

SNRs in the time and parameter domains. In each case, experiments

were repeated 1000 times in order to estimate the mean and variance of

the Gaussian noise affecting each watermark coefficient. Receiver op-

erating characteristics (ROC) were determined using equations (3.17)

and (3.18). It is observed in Table 3.4 that very low false-alarm rates
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Table 3.4: Estimates of SNR, d2, PD and Pp
 

 

 

 

 

 

Noise SNR (dB) d2 PD PF 7”

White 15 696.95 0.99999 4.37x10-m 6.8699

White 10 72.79 0.99994 1.37x 10-6 4.3960

Colored 7 167.29 0.99999 1.20x 10-18 5.4038

White 3 14.45 0.9987 0.215 1.6610

White 1 9.54 0.99715 0.37304 0.8388        

can be achieved using parametric watermaking with selective normal-

ization. For example, when 10 dB white noise is added to the stegosig-

nal, for a threshold 7” = 4.3960, a PD = 0.99999 and a false-alarm

rate Pp = 1.37 x 10“6 is obtained. Experiments were performed for

time domain SNRs of 1 dB and 3 dB and Pp was found to be 0.14 and

0.0033 respectively, an improvement over the results in Table 3.4. It

should be noted that for time domain SNRs below 10 dB, the resulting

stegosignals are degraded to the point of being unuseful as surrogates

for the coversignal. Comparing the SNR in the time and parameter

domains it can be observed from Table 3.4 that parametric watermark-

ing significantly boosts the SNR. The resulting parameter noise gain

suppression contributes to improved watermark detection.
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3.2 Experiments and discussion

3.2.1 Introduction

Robustness refers to the ability of the watermark to tolerate distor-

tion from any source to the extent that the quality of the coversignal is

not affected beyond a set fidelity standard, or that the watermark detec-

tion and recovery processes are not hindered. Experiments performed

to investigate the perceptual and robustness aspects of LP parametric

watermarking are presented in this section. Some of the factors affect-

ing the robustness of the present technique include the length of the

speech frame to be watermarked, the choice of watermark sequence, the

relative energy of the watermark, and the temporal locations and du-

rations of the watermarks in the stegosignal. In broader terms, water-

mark robustness also depends on the watermark embedding, recovery,

and detection algorithms.

For the experiments below, speech was watermarked using both

LP based parametric and SS watermarking algorithms. Both LP and

SS watermarking algorithms involve private decoding. In the experi-

ments presented below, the coversignal [shown in Fig. 3.3(a)] consists

of 1 s of speech from the TIMIT database [41], sampled at 16 kHz. The

sentence “She had your dark suit in greasy wash water all year.” is

uttered by a female talker. For the robustness experiments, parametric
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Figure 3.3: Plots of (a) coversignal and (b) stegosignal at CWR68g of

7.715 dB. The coversignal and the stegosignal are of 1 s duration and

sampled at 16 kHz. The speech is divided into frames of 2000 samples

and a watermark vector is embedded into each of the eight frames.
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watermarking is implemented at CWRseg’s of 7.715 dB and 10.68 dB.

SS watermarking was implemented at CWRseg’s of 7.715 dB, 10.68, 27

dB, and 30 dB. This is explained further in Section 3.2.2. The sam-

ple correlation coefficient is used as the measure of similarity between

original and recovered watermark vectors for both parametric and SS

watermarking techniques. The correlation coefficient between two ran-

dom variables 0) and r is given by

cw..(0) — E(w)E(r)

0...0,.

 , (3.21)

where cw. is the cross-correlation between to and r, E(w) and E(r) are

the expected values of w and r, and of, and of are the variances of

w and r, respectively. For sample correlation coefficient, the expected

values of w and r are replaced by the samples means m... = 7132le w,

and m. = %Zf=1r,~. And the variances, of, and of, are replaced by

sample variances of w and r given by varw = %Z,.L=1(wi — m...)2 and

var. = %Z,L:1(r,- — m1.)2, respectively. The sample cross-correlation

between to and r at lag 0 is %Z,-L=1wiri. Since the watermark vectors

are mutually orthogonal, the correlation coefficient between distinct

watermark vectors is 0.

Bit error rate is another commonly used performance measure of

similarity between the original and recovered watermarks. The bit er-

ror rate (BER) is defined as the ratio of number of bit errors to total
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Figure 3.4: Segments of cover (dotted line) and stegosignals (continuous

line) of 480 samples or of 0.03 ms duration and a CWRfieg of 7.715 dB.

The cover and stegosignals used in the robustness experiments are of 1

s duration and sampled at 16 kHz. The speech is divided into frames

of 2000 samples and a watermark vector is embedded into each of the

eight frames.
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number of bits transmitted. In this work, it is more relevant to use

correlation coefficient than BER because it is more important to char-

acterize the performance based on the detection and recovery of the

entire watermark vector rather than the individual bits or watermark

vector elements. The probability of signal or watermark vector error

is also a useful performance measure. The relation between correlation

coefficient, probability of signal error and BER can be found in [42].

In a practical implementation, a recovered vector, possibly containing

the watermark, is first sent to the detector of Section 3.1.5, which is

governed by the decision rule in equation (3.20).

For LP parametric watermarking, the speech was divided into eight

frames of 2000 samples each or 0.125 seconds duration. The watermarks

were comprised of (eight) non-binary orthogonal vectors of length eight.

In each of the speech frames, a length eight watermark vector was

embedded into to the coefficients of an eighth-order LP model, resulting

in a bit rate of 24 bits per second. For the parametric watermarking

experiments presented in this section, the watermark embedding and

recovery involved selective normalization. The resulting stegosignal

[Fig 3.3(b)] was subjected to various attacks discussed below.

For the SS algorithm, the stegosignal {37,-}; was obtained by

adding the watermark sequence {gi},iflf]0 to the 1000 largest DCT coef-
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ficients of the coversignal of 1 s duration.

372' = Y,(1 + A91),

where every g,- is independently drawn from N(0,1), and Y,- and I7,

are the ith largest DCT coeflicients of the coversignal and stegosignal,

respectively. The A parameter is adjusted to obtain a desired CW&eg.

3.2.2 Subjective perceptual tests

Although CWR66g is used as the objective measure of fidelity, lis-

tening tests were also performed to compare the watermarked speech

fidelity. Speech was watermarked using both parametric and SS algo-

rithms for CWR68g ranging from 1 dB to 40 dB.

For the robustness experiments discussed in the following section,

two implementations of LP parametric watermarking at CWRseg of

7.715 dB and 10.68 dB were used. Parameter-embedded watermarks

were inaudible at these or higher CWRseg [30]. Different CWRsegvalues

can be selected depending on the fidelity constraint for a given ap-

plication. For performance comparison, implementations of SS wa-

termarking at 7.715 dB and 10.68 dB were also used. Additionally,

listening tests were performed, to subjectively identify CWRseg’s of SS-

watermarked stegosignals, whose fidelity was comparable to the 7.715

dB and 10.68 dB implementations of parametric watermarking. This
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was imperative, as an objective measure such as CWRseg, although an

improvement over CWR, does not satisfactorily quantify all the per-

ceptual aspects of fidelity. Five subjects were asked to select the SS

watermarking implementations that sounded most similar to the 7.715

dB and the 10.68 dB implementations of LP parametric watermarking,

from a set of stegosignals with CWRSCg’s ranging from 1 dB to 40 dB.

The sounds files used in the listening tests are available at the web-

site [30]. Based on the subjective tests it was concluded that the 7.715

dB implementation of LP parametric watermarking was perceptually

similar to the 27 dB implementation of SS watermarking, and the fi-

delity of 10.68 dB implementation of LP parametric watermarking was

comparable with 30 dB implementation of SS watermarking. This, in

itself, is significant because it demonstrates the fidelity benefits that

can be achieved through parametric watermarking.

3.2.3 Watermark robustness

In this section, we analyze the robustness to common attacks of wa-

termarks inserted by LP based parametric watermarking. The stegosig-

nals used in these experiments were obtained by embedding watermarks

through direct manipulation of the LP coefficients. The SS watermark-

ing algorithm for multimedia signals [10] was used to benchmark per-

formance.
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For meaningful analysis of detection performance, it is necessary

to consider stationary segments of the coversignal and the stegosignal.

That is, segments of yn, w,,, and, hence, gm are assumed to be partial

realizations of wide-sense stationary (WSS) and ergodic random pro-

cesses. Generally, speech sequences can be considered stationary across

frames of duration 20 ms. However, the robustness experiments pre-

sented below are based on speech frames of longer duration, typically,

125 ms, in order to balance the conflicting requirements of stationar-

ity and longer frame lengths for the LSE estimation and stegosignal

fidelity. Hence, one important observation to be made based on the

experimental results is the effect of non-stationarity on watermark ro-

bustness.

Robustness to additive white noise attack

Let {77”}?=1 be a partial realization of a zero mean, uncorrelated

noise process which is added to the stegosignal samples {gn}f,"=,. Let the

corrupted stegosignal be denoted {gg},’)’=,. In this case, the “output”

signal used in the LSE problem (equation (3.5) for n E [1, N]) will be

likewise corrupted. That is, the clean signal d, is replaced by, say,

dg=gr—g.,=d.,+n.,,n=1,2,...,N. (3.22)
71.

Accordingly, the cross-correlation vector cydn [i.e., right side of normal
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equations (3.6)], but only this vector, is affected by the attack. The

LSE solution is

a" = Cglcyd. = (YNYL‘WYng', ’ (3.23)

T

where, dfv = dyv div—1 (1'17 6 RN. Equation (3.23) can be

expressed as,

a" = Cglcyd + Cglcy, = a + Cglcyn. (3.24)

The ith value of the cross-correlation term cm is given by cyn(i) =

277:1 yn_,-dn. Since the noise is uncorrelated, Cyn asymptotically as

N —> oo approaches the zero vector 0. Hence the “corrupted” cross-

correlation, Cydn, approaches cyd for large N. The watermark is there-

fore asymptotically immune to the white noise attack. In the presence

of white noise, a" is an unbiased and consistent estimator of 5 for all

N.

To verify the analysis, experiments were performed in which white

Gaussian noise resulting in different SNRs was added to speech wa-

termarked by both LP and SS algorithms. The correlation coefficients

between the original and recovered watermarks from all eight stegosig-

nal frames were determined and averaged. It is seen in Fig. 3.5 that,

at any SNR, LP parametric watermarking at 7.715 dB and 10.68 dB
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CWR60g results in higher correlation between original and recovered wa-

termarks compared to SS watermarking at CWRsegs of 7.715 dB, 10.68

dB, 27 dB or 30 dB. This improvement in the correlation coefficient

values, and hence robustness, is mainly due to the LSE—based recovery

algorithm. This level of robustness to white noise attack is sufficient for

a wide-range of watermarking applications, as the stegosignal is highly

noisy below an SNR of 15 dB (for details see [30]). The non-stationarity

of the 2000—sample watermarked speech frame can be ignored for practi-

cal applications of parametric watermarking. Also, as expected, water-

mark robustness to attack increases as the CWRseg is decreased, since

there is greater watermark energy in the same coversignal.

Robustness to colored noise attack

In the next set of experiments, the stegosignal segment was dis—

torted by the addition of a colored noise process, {7n}71:l=1- Colored noise

was generated by filtering a white noise process using a 11thorder FIR

IOWpass filter with a cut-off frequency of 0.4 (normalized) or 6400 Hz.

The distorted stegosignal frame is denoted {3232;1. As in the white

noise case, the “output” signal in the watermark recovery process is

corrupted. Instead of dn, we have access to

d7 = '7; — e[n] = dn +7,“ n = 1,2, ...,N. (3.25)
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Consequently, the cross-correlation vector in the normal equations is

altered by the attack. Because of the correlation in the noise, cyan

no longer approaches cyd asymptotically. Depending on the relative

magnitudes of the cross—correlation elements in cyd—y, the LSE estimation

of the perturbed coefficients, and hence the watermark, will be affected.

The solution to this problem is a prewhitening procedure.

In the presence of colored noise, the LSE estimation problem is

represented by the following equation,

Y71Q57 = (1N + ’YN. (3.26)

T

in which, 7N = i: 71 72 . . . 7N ] and all other quantities are defined

above. Pre—multiplying both sides of equation (3.26) by the inverse

covariance matrix of the colored noise, C;1, and rearranging the terms,

results in

5'7: (YNC;1Y1:C,)‘1YNC;1d7 = (YNC;1Y§)-1YNC;1dN. (3.27)

Thus, the estimation of the perturbed LP coeflicients is the solution

to (3.27) with Cy replaced by C; = (YNC;1YN) and cm; replaced by

CZd = YNC;1dN. Whitening requires knowledge of noise correlation

properties which are readily determined in the present application.
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The effect of colored noise on watermark robustness is represented

in Fig. 3.6. It is observed that LP parametric watermarking is fairly

robust to colored noise, even in the absence of a prewhitening operation

during the recovery process. In Fig. 3.6, the differences in performance

between parametric and SS watermarking algorithms at 7.715 and 10.68

dB is even greater than in case of white noise (Fig. 3.5). An improve-

ment in watermark robustness to colored noise attack is observed in

Fig. 3.7, where the watermark recovery process involves prewhitening.

In fact, LP parametric watermarking with prewhitening at 10.68 dB

results in better robustness than at 7.715 dB without whitening, even

though the latter outperforms SS at 7.715 dB.

Robustness to filtering

Let gf _ be the result of filtering the stegosignal. At time n,
n 11—1

3215— gn * hn — yn * hn 'l' wn * hn, (3.28)

where {hn} is the impulse response of the filter, * denotes linear con-

volution, and where we have continued to denote the watermark signal

~

wn : yn — yno

In the first analysis, it seems very reasonable that an ideal attack

would be designed to result in 37,}: % yn. This indicates that the ideal

attack filter will maximize (in some sense) the contribution of the first
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term in the sum in (3.28), and minimize the second — similar to any op—

timal filter design to remove noise.1 On the other hand, (3.28) reveals

that good watermark design requires that the watermark signal be as

spectrally similar to the coversignal as possible, so that any attack on

the watermark will also degrade the coversignal component, thereby

degrading fidelity. Since the effectiveness of an attack is constrained

by the perceptual distortion of the stegosignal, for robustness to filter-

ing attacks, it is sufficient that most of the watermark information be

present in perceptually significant components of the coversignal [10].

In general, speech signals have most of the perceptually significant com—

ponents in the low frequency spectrum, and hence watermark signals

with low frequency spectra are most likely to survive a filtering attack

- assuming that the attacker uses a rational approach which preserves

fidelity.

Watermark robustness to a 4th—order butterworth lowpass filter

for a range of cut-off frequencies is shown in Fig. 3.9. Since the water-

mark vector can be interpreted as coefficients of an FIR filter {wfif-‘il =

{w[i]},’-Zl, the magnitude response of this FIR filter (|W(Q)|) is as

shown in Fig. 3.8(a), while the magnitude response of the attack fil-

ter is shown in Fig. 3.8(b).

Watermark robustness to filtering depends on the magnitude spec-

 

1Since the attacker does not have access to the watermark signal w", truly optimal design - from

the attackcr’s point of view - is not possible.
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Figure 3.8: Plots of (a) Magnitude spectrum of the watermark coeffi-

cients, and (b) Magnitude response of the attack filter at a normalized

cut-off frequency of 0.4. A 4th-order IIR Butterworth filter was used to

test watermark robustness to lowpass filtering.
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trum of the embedded watermarks. Low-frequency and mid-frequency

watermark filters contribute to better robustness against lowpass filter-

ing. Watermark robustness can be improved further through diversity,

by repeatedly embedding watermark information [43]. Any highpass

watermark filter {whp[i]},-1Z1 can be transformed into a lowpass water-

mark {wlp[z']}£_f__1, using the relation [44]

whplz'l = (—1)”wzplil- (3.29)

Robustness is improved by embedding the “same” watermark twice, in

the original form {wfifll = {w’ [2]},1”:1 and in the frequency-translated

form w[z’] = (—1)fw’[i]. The recovered watermark that has a higher

correlation with the embedded watermark is used for watermark detec-

tion.

In order to illustrate this point, the coversignal was altered using

the watermark whose magnitude spectrum is shown in Fig. 3.10(a),

and its translated counterpart shown in Fig. 3.10(b). The resulting

stegosignals were subjected to a highpass filtering attack using a 4th-

order butterworth filter. Figures 3.11(a) and 3.11(b) show that the

transformed watermarked results in improved robustness to filtering.

Highpass filters have a deleterious effect on speech quality. Even a

cut-off frequency of 0.04 (normalized) or 640 Hz resulted in significant

distortion of the stegosignals making them unusable for typical commer-
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cial use, for example, and certainly for the digital library application

addressed here.

Robustness to cropping

In a cropping attack, arbitrary samples of the stegosignal are re-

moved. Since the parametric modeling based watermarking involves

an additive operation during the watermark embedding and recovery

processes, cropping results in desynchronization of the coversignal and

the stegosignal. However, as the present method is an informed wa-

termarking technique, the algorithm described in [5] can be used for

resynchronization of the cover and stegosignals.

In the present experiment, the stegosignal was subjected to a mod-

ified version of cropping, sometimes called the jitter attack [45]. In this

modified implementation, random samples of the stegosignal were re-

placed by zeros. A specified percentage of samples from each frame

of 2000 samples were randomly replaced by zeros. The fact that wa-

termark information is spread-out in the stegosignal, while it is con-

centrated during the recovery process involving LSE, contributes to

increased robustness of LP parametric watermarking to cropping as

shown in Fig. 3.12.
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Figure 3.10: Plots of (a) Magnitude spectrum of the original water-

mark coefficients h[n], and (b) Magnitude response of the transformed

watermark coefficient, (—1)"h[n].
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Figure 3.11: Robustness to 4th-order butterworth highpass filter. In

(a), the embedded watermark coefficients corresponded to a magnitude

spectrum shown in Fig. 3.10(a), and in (b) the watermark coefficients

were transformed using equation (3.29) and embedded.
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randomly cropped. Parameter-embedded watermarking results in im-

proved robustness to cropping.
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Table 3.5: Robustness to speech coding

 

 

 

 

 

 

 

       

Speech Bit Para Para SS SS wmkg

codec rate wmkg wmkg wmkg wmkg

7 dB 10 dB 7 dB 10 dB

k bits/s corr coef corr coef corr coef corr coef

(3.711 64 0.9990 0.9998 0.9985 0.9966

ADPCM 32 0.9889 0.9682 0.8207 0.7658

GSM 13.2 0.6584 0.5545 0.4095 0.3140

CELP 4.5 0.1488 0.1490 —0.0225 —0.0290

CELP 2.3 0.1269 0.1464 0.0209 0.0472

LPC10 2.4 0.1762 0.1762 —0.0184 —0.0470
 

 
Robustness to speech coding

Experiments were performed to study the effect of low-bit rate

speech compression on LP based parametric watermarking. The stegosig-

nal was compressed (coded), then decompressed (decoded), and the wa-

termarks were recovered from the decompressed (decoded) signal. The

correlation coefficient between the original and recovered watermarks

for different speech codecs are tabulated in Table 3.5. The attacked

stegosignals are available in the website [30]. The G711 a law, G.726

ADPCM, GSM (13.2 k bits/s), LPC10, and CELP (4.5 k bits/s) codecs

were obtained from the website [46]. The G.711 speech codec software

uses logarithmic pulse code modulation (PCM) and operates at sam—

pling frequency of 8 KHz, with 8—bits per sample to compress and de-

compress speech. The G.726 uses adaptive differential PCM technique

and is widely used in VoIP applications. The GSM full rate codec uses
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an 8th order linear prediction along with 13-bit uniform PCM. CELP

and LPC10 codecs are also based on parametric models of speech. At

4.5k bits per second or less, the attacked stegosignals are intelligible,

but are of low fidelity [30].

It is seen from Table 3.5 that the compression bit rate and CWRSCg

are the main factors influencing watermark robustness. LP parametric

watermarking outperforms SS watermarking in the presence of speech

coding for all the bits rates tested. The performance of both SS and

parametric watermarking is degraded significantly due to low bit rate

CELP, GSM and LPC10 coding. However, the quality of the de-

compressed speech is also degraded considerably for CELP, GSM and

LPC10 codecs [30]. Parameter-embedded watermarks are slightly more

robust to LPC10 coding than CELP coding at 2.3 k bits/s. Although

parametric watermarking involves perturbation of parameters of signif-

icance to speech coding, it performs better than SS watermarking in

the presence of CELP, GSM and LPC10 codecs. This is because of the

more speech-like rather than noise-like characteristic of the LP based

watermark signal. At the same time, since LP analysis is performed

over nonstationary segments of speech and synthesis is not involved in

stegosignal reconstruction, robustness to a particular speech coder is

not at the expense of the robustness to other codecs.
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Chapter 4

LP Parametric Watermarking with

a Fidelity Constraint

4.1 Introduction

The previous chapter described a speech watermarking algorithm

wherein the LP parameters of the coversignal were modified by the ad—

dition of the watermark vector that was selected independently of the

coversignal. The stegosignal was constructed using the correspondingly

perturbed LP coefficients and the exact prediction residual, {gn}§___,,

using the FIR filter a, = Z,M=13w,,_, + 5,, = aTyn + g". LP based

parametric watermarking was found to be fairly robust against a wide

variety of attacks such as addition of noise, MP3 compression, and

cropping [7]. A main reason for good robustness is that the water-

mark signal is concentrated into a parametric representation during

watermark embedding and recovery, while it is spread across the en-
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tire work otherwise. Stegosignal fidelity and watermark robustness can

be improved further if the embedded watermarks are obtained by in-

tegrating a fidelity constraint with the watermark embedding process

and this led to SMF based parametric watermarking.

4.2 SMF parametric watermarking

SMF-based parametric watermarking subject to an 600 fidelity con-

straint [29,47] represents a step toward quantifying the relationship

between the competing requirements of robustness and fidelity. The

following general problem is addressed in this research:

 

N

n=1
CONSTRAINED WATERMARKING PROBLEM. For coversignal frame {yn}

generated according to model (3.2), find the set of watermarks, such

that, for stegosignal frame {yn}::[=1 generated according to (3.3), the

following fidelity criterion is met,

Hy - Srlloo < 7 (4-1)

in which y and y are N-vect0rs with nth elements yn and g", respectively.

 

In the present work, the determination of a watermark set guaran—
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teed to satisfy a fidelity criterion is readily solved as an SMF problem

(refer Section 2.2). First, let us subtract yn from each side of equation

(3.3), negate each side, then rearrange to obtain

M

yn — 3771 2 (ya — €12) "' :aiyn—i = (ya ‘“ 6n) “' 5TYn' (4'2)

i=1

Given a coversignal {yn E RM},1,V:1, a desired stegosignal {3711 E

KHz/=1, and a maximum error tolerance '7, SMF [25] can be used to

obtain the hyperellipsoidal membership set that tightly bounds the fol—

lowing feasibility set (’PN Q RM) at time N,

’PN = {5| lly — illoo < 7}- (4-3)

in which y is the N-vector with nthelement yn, and y is the N-vector

with nthelement éTyn + fin.

The fidelity constraint can be generalized to allow for more “local”

fidelity considerations in time as the signal properties change. A fidelity

N

criterion takes the form of pointwise absolute error bounds, {7n}n=1,

on the difference between the stego— and coversignals: lyn — 1a,] < 7,,

for each n E [1, N]. Upon defining the sequence

2n:yn—€ni n=192)"'3N3 (44)

(recall that {fin} is known) and the search for the constrained water-
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mark parameters is reduced to a SMF problem as in (2.2). Applying

SMF method to the estimation of 5 as in equation (4.2) yields hyper—

ellipsoidal set of watermark (perturbed model parameter) candidates,

EN, guaranteed to contain and tightly bound the following exact set

’PN = {a 6 RM ] [2,, — aTynl < 7”, n E [1,N] }. (4.5)

The fidelity constraint is a bound on [run], where the watermark signal

is given by wn = 3],, — y,,. The hyperellipsoidal set is,

.. .. C - ~

6~ -——— {a|(a — ae(N))T-,;£-(a — aeuv» < 1}, a e s“ (4.6)

where aC(N) is the center of 8N. CN E RMXM is the covariance matrix

and CN = YNY}; where YN = M y, e RMXN. As
yN—l

shown in Table 2.2.2, It", is updated recursively for n = 1, . . . , N and the

final value is obtained as KEN. By default, the center of the hyperellipsoid

is used to construct the stegosignal (equation 3.3) and the embedded

watermark vector is w = ac(N) — a.

The watermark recovery process for SMF parametric watermarking

involves LSE estimation of the modified LP coefficients (refer Table

3.2). Hence, even in case of SMF-based watermarking, the embedded

watermarks are asymptotically (N ——+ co) immune to an additive white

noise attack [47].
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4.3 Robustness optimization

The robustness property is dependent on selection of appropri-

ate watermark solution from the hyperellipsoidal set, strength of the

embedded watermark, and watermark detection. In general, greater ro-

bustness can be obtained by embedding more energetic watermarks and

this in turn, affects stegosignal fidelity. Although, by default, the center

of the hyperellipsoid constitutes the watermark solution, in most cases

it might not be the optimal solution for a given attack. For robust—

ness analysis it is assumed that the hyperellipsoidal set EN is obtained

through the SMF filtering algorithm subjected to the fidelity constraint,

[3],, —yn| < 77,. It should be noted that the hyperellipsoid is not centered

at a, the vector of original LP coefficients. More energetic watermark

vectors are embedded by selecting perturbed LP parameters from 8N

that are as further away as possible from the original LP parameters a.

The selection of appropriate watermark solution from 8N depends on

the attack and the targeted robustness.

The SMF-based watermarking approach is especially useful in im-

proving watermark robustness against attacks whose effects vary based

on the nature of the watermark signal. For example, robustness to

a lowpass filtering attack can be improved by selecting low frequency

watermark signals.
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4.3.1 Optimal watermarks for a filtering attack

The impulse response of an attack filter is assumed to be known

and is denoted by {hn}. The stegosignal of form (equation 3.3) is to be

constructed by selecting an appropriate vector of perturbed LP coeffi-

cients from the hyperellipsoidal set EN. The corresponding watermark

vector is defined as w = s — a. Let {g5 £21 be the result of filtering the

stegosignal. That is, at time n,

[egg : 3777. * hn = y‘n * hn + wn * h”, (4.7)

where {yn} is assumed to be a stegosignal constructed from any a 6 EN

including the best (optimized) a. An ineffective attack on the stegosig—

nal will result in a filtered stegosignal with a filtered coversignal com-

ponent that is perceptually dissimilar to the original. This is because

watermark robustness is generally defined as the ability of the water—

mark to survive an attack to the extent that the speech fidelity is not

affected beyond an application-dependent criterion. Also, an attack

is ineffective if the filtered watermark signal {w,f,}"=1 approximates the

original watermark signal {wn}?,=1. The coversignal and the attack filter

{hm};1 are predetermined quantities and hence the filtered coversig-

nal component in equation (4.7) cannot be controlled by the watermark

embedding algorithm. However, the second term in (4.7) ( {w£}?=1) can
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be made to be robust against the filtering attack by selecting an ap-

propriate 5 from the set EN. The problem of selecting the “best” set

of modified LP coefficients from 8N, is now addressed.

Let Aw}; be defined as,

Awgzw

: 2K5, — ai)yn—il * (hn _— 6‘”)’

where (in is the Kronecker delta; 60 = 1 and (in = 0 for n 75 0. Clearly,

Awf, is a function of 5 for a given attack filter. Then the mean squared

error (MSE) between the filtered and original watermark signals is given

by, N

f(5)—— )2717;(=(wf — w.) . (4.8)

If (I) = 5 — a is indeed the “best” watermark vector, then the cor-

responding filtered watermark signal wf is associated with minimum

MSE. Then, 5 is obtained by solving the following constrained opti-

mization problem:

minlmize f(a) (49)

subject to 5 6 EN

The method of lagrange multipliers can be used to solve this opti-

mization problem [28]. The domain of the constraint function is the
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hyperellipsoid, which is a convex set if 5541 is a positive definite matrix.
N

4.3.2 Optimal watermarks for a quantization attack

This section deals with uniform and non-uniform scalar quantizer

attacks on watermarks. The quantizer consists of L equal or unequal

intervals [11,12, . . . ,IL]. Each interval 1;, for l = 1, 2, . . . , L is associated

with a quantization value 3:). The scalar quantization operation Q can

be expressed as,

where pg 2 2:) whenever Igg — 113)] is minimum over l = 1, 2, . . . , L.

To maximize watermark robustness to a specific quantization at-

tack, a similar constrained optimization problem to that in equation

(4.9) is solved with the objective function f(5) = %Z(wg — w,,)2,

where 2123, = 373, — y,,. In a similar way, optimal watermarks for best

robustness to a combination of filtering and quantization attacks can

be determined. The latter problem can be generalized for a combined

attack involving several distinct attacks on the stegosignal.
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4.3.3 Maximizing watermark energy

The boundary of the hyperellipsoidal set obtained by SMF considera-

tions is given by,

63 = {as — a.(N>>T%j—<a — acuv» = 1}, (4.10)

where ac(N) is the center of the hyperellipsoid. The boundary of the

hyperellipsoid is significant for the following reason. An important

factor affecting watermark robustness is the energy of the watermark

signal (wn = g, — yn). The modified LP coefficients from the boundary

of the hyperellipsoid result in the highest energy watermarks for the

corresponding fidelity constraint. Watermark robustness is also a func-

tion of the frequency content of the watermark signal. However, this

paper is mainly concerned with the effect of watermark signal energy

on watermark robustness and the “best” watermark vector is selected

accordingly. The “best” watermark vector (I) is such that the corre—

sponding, vector of modified LP coefficients 5 is from the hyperellip-

soidal boundary 8%,. The constrained optimization problem in (4.9) is

modified as follows.

minimize f (5)

(4.11)

subject to 5 E 8%,
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4.4 Experiments and discussion

Although Lagrange multipliers can be used to solve the optimiza-

tion problem in (4.9), the subsequent computational complexity might

be too costly for certain watermarking applications. Moreover, this re—

search is mainly concerned with selecting modified LP coefficients such

that the resulting watermark signal has high energy. Hence, search-

ing the hyperellipsoidal boundary at intermittent points for improved

robustness will prove to be beneficial. There is a trade-off between

the number of points selected from the hyperellipsoidal set and compu-

tational complexity. As an example, the experiments reported in this

section were executed in Matlab running on a 1.4GHz Celeron processor

with 512 MB RAM and an average run time of 5 seconds.

Experiments were performed to test the robustness of the “best”

SMF solution to filtering and quantization attacks. The coversignal

consisted of 500 samples of the vowel sound /A/ sampled at 10 kHz.

The correlation coefficient between the original and recovered water-

marks is used as a measure of robustness. A 4thorder LP model was

used for watermarking. The value of 7,, was 0.4 for all n E [1, N], and

the watermark signal was imperceptible in the resulting stegosignal.

Figure 4.1(a) shows the effect of a low pass filtering attack involving

a 4thorder lowpass Butterworth on the best SMF solution and the cen-
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Figure 4.1: Filtering attack. For Fig. 4.1(a) a 4thorder IIR Butterworth

lowpass filter was used to distort the stegosignal, and for Fig. 4.1(b) an

8‘horder FIR highpass filter was used to attack the stegosignal.
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tral estimate (default solution) of the membership set. In Fig. 4.1(b),

a highpass filtering attack was applied on the stegosignal by using an

8thorder FIR filter. The watermarks derived from the best solution (el-

lipsoid boundary) are more robust than those derived from the central

estimate of the set. It is seen from Table 4.1 that parametric water-

marking is quite robust to quantization attacks. The original coversig-

nal was quantized at 16 bits per sample. The uniform quantizer in the

attack used 3 bits per sample. A sub-optimal non-uniform quantizer

requiring 3 bits to code the quantized value was implemented by ar-

bitrarily partitioning the quantization range. Finally, Fig. 4.2 shows

the effect of both quantization and lowpass filtering on recovered wa-

termarks derived from the best and default solutions of the hyperellip-

soidal set. In almost all cases the watermarks recovered from the best

SMF solution perform significantly better than the ones recovered from

modified LP coefficients at the center of the membership set.

In applications with little prior knowledge of potential attacks, di-

versity [43] in watermark embedding is employed for improved robust-

ness. The SMF robustness optimization can be viewed in this context

for embedding multiple watermarks, each with a targeted robustness

to specific combination of attacks.
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Table 4.1: Robustness to quantization attacks
 

 

 

 

   

Type of quantizer SMF solution central estimate

corr coef corr coef

uniform 1 0.9998

Non-uniform 0.9998 0.9990
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Figure 4.2: Watermark robustness to combination of non-uniform quan-

tization and IIR lowpass filtering attacks.
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Chapter 5

Generalizations and Extensions

5.1 Introduction

In this chapter, a generalized framework for speech watermarking

based on linear-in-parametric models of speech production process is

presented. Watermarks are embedded in the LSP parameters, log area

ratio (LAR) parameters, inverse sine (IS) parameters, and reflection

coefficients (parcor coefficients) [6]. The watermark robustness and

stegosignal fidelity aspects of these alternate parametric speech models

are discussed in this chapter and compared with watermarking in the

LP domain.

The chapter also presents an application of perturbed parameter

theory to watermarking [48,49]. The perturbed parameter theory is

used for obtaining bounds on the perturbation of the stegosignal caused

by watermarking, hence in assessing the effects of the embedded water-
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marks on fidelity.

5.2 Generalized framework for parametric water-

marking

A consequence of the LP watermarking framework is that alter-

nate or related representations of LP parametric models can be used

for watermarking. These representations, including LAR, LSP, IS, and

parcor coefficients, may prove to be beneficial for watermarking in cer—

tain applications. For example, localization of watermark content in the

frequency domain is more effectively controlled through direct manip-

ulation of LSP coefficients. On the other hand, since LAR coefficients

have the highest correlation with subjective quality [50], they can be

directly altered to preserve stegosignal fidelity.

In order to obtain the LSP parameters, the Z-domain representa—

tion of the Mth order LP inverse filter is decomposed into the following

 

polynomials.

13(2) = A(Z) + z-<M+1>A(z-1) (5.1)

62(2) = A(Z) — Z‘<M+”A(Z—1) (5.2)

A(Z) = P(Z) gr Q(Z) (53)

where A(Z) = 1 — 2M, a,Z‘f, the Z—domain representation of the in—
i:
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Table 5.1: Generalized watermark embedding algorithm

 

 

n=—-oo

K speech frames to be watermarked. Then: For k = 1, 2, . . . , K

Let yn 0° denote a coversignal, and let yn "3‘: be the kth of
n m.

1 Using the “autocorrelation method” (e.g., [6, Ch. 5]), derive

a set of LP coefficients of order M, say {afigv for the given

frame.

2 Use the LP parameters in an inverse filter configura-

tion to obtain the prediction residual on the frame,

M n}.

{5n = yn _ Zizl aiyn—i}

3 Convert the LP parameters to LSP or parcor parameters and

embed the watermark vectors. Alternately, for watermark-

ing in the LAR or IS domain, convert the LP parameters to

parcor and then convert the resulting parcor parameters into

LAR or IS parameters before embedding the watermark vec-

tors. Use the modified LSP, LAR, IS, or parcor parameters

to produce a corresponding set of modified LP parameters,

say {5,}?11.

nznk

4 Use the modified LP parameters as a (suboptimal) predic-

tor of the original sequence, adding the residual obtained in

Step 2 above at each n, to resynthesize the speech over the
n!

frame, {377, = 22111 5iyn_i + 67,} k . (To the extent that the

n=n

watermark represents only small perturbations to the orig-

inal LP parameters, the resynthesized result is a pointwise

approximation to the coversignal over the same time frame.)

5 The sequence {ynmi is the kth frame of the watermarked

speech (stegosignal).

Next k.
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verse filter [6]. The zeros of the polynomials P and Q constitute the

LSP parameters. The zeros of P and Q occur in complex conjugate

pairs and hence M unique zeros are required to specify the vocal tract

model [6]. The magnitude of the zeros is unity and only the frequency

parameter is required to be represented. The LSPs represent the fre-

quency parameters. Conversion from LP domain to LSP or LSP to

LP parameters is quite simple [equations (5.1), (5.2) and (5.3)]. The

watermark embedding and recovery algorithms presented in Tables 5.1

and 5.2 include LSP to LP and LP to LSP conversions respectively, for

watermarking in the LSP domain. Since LSPs represent frequencies of

zeros lying within the unit circle, it has to be ensured that the modified

LSP parameter values are within 0 and 7r. This requirement imposes

a constraint on the strength of the embedded watermark vectors and

consequently on the energy of the watermark signal.

The reflection coefficients (It) constitute an alternate representa-

tion to LP coefficients and play an important role in speech coding

and analysis applications. The parcor coefficients are obtained as a

by-product of the Levinson-Durbin (L-D) recursion, which is used to

convert the autocorrelation values of speech to LP coefficients. Con-

version from reflection coefficients to LP coefficients is accomplished

using the algorithm in Table 5.3 [51]. LP coefficients can be converted

to reflection coefficients using the algorithm in Table 5.4 [51]. Water-
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Table 5.2: Generalized watermark recovery algorithm

 

Fork=1,2,...,K

1 Subtract residual frame (gum; from the stegosignal frame

{37.}215. This results in an estimate of the modified predicted

speech, {dn 2 3],, — {”25

2 Estimate the modified LP coefficients {5,}?! by computing

the least-square—error solution, say {tin-H”, to the overde—

termined system of equations: d,, z 22210697143 n =

I

nk,...,nk.

3 Convert the modified LP coefficients from Step 2 to modified

LSP, LAR, IS, or parcor coefficients.

4 Use the parameter estimates from Step 3 to derive the cor-

responding watermark values.

Next 19.  
 

mark information can be added to the reflection coefficients and the

resultant converted to modified LP coefficients. While embedding the

watermark, it should be ensured that [19,-] # 1 for any i, otherwise

finding the reflection coefficients is an ill-conditioned problem.

Other sets of speech parametric models for embedding watermark

information include the LAR and inverse sine parameters. The LAR

and inverse sine parameters are related to the reflection coeflicients as

shown in equations (5.4) and (5.5), respectively:

1 l-I-Kll

vzzélog =tanh‘1nl, for l=1,2,---,M. 

l—Kll
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Table 5.3: Conversion of reflection coefficients to LP coefficients

 

Let K. be a vector of M reflection coefficients.

1 Initialize the output LP vector 5 to the first element of K),

1.8., [‘61.

2 Fori=2,--- ,M, a=a+[(a,-_1,~-- ,a1)*I-c,-,It,-]. Next i.

3 The final set of LP coefficients are obtained as the final vector

5   
 

Table 5.4: Conversion of LP coefficients to reflection coefficients

Forj=M,-~ ,1,

 

1 LBL I‘Cj = aj.

2 Consider elements 1 through 3' of a. Let a = [a], - . - ,a,-] and

let _a_ = [a,-, aj_1, ' ° ',0.1].

a = (a — “Cry/(1 — It?)

  Next j.
 

2

T1: —sin-1 Hz, for l=1,2-,--- ,M. (5.5)
7r

Information can be embedded by modifying these parameters. The

modified LAR or inverse sine parameters are converted to the corre-

sponding modified reflection coeflicients, which in turn are converted

to modified LP coefficients. The stegosignal is reconstructed by follow-

ing steps 4 and 5 in Table 5.1.
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Figure 5.1: The first 100 bits of the 1000-bit binary watermark.

5.3 Experiments and discussion

Experiments were performed to compare the robustness and fi-

delity aspects of watermarking in the LSP, LAR, IS, and parcor domains

with LP watermarking. Speech was watermarked in the LP domain us-

ing the algorithm in Table 3.1. The algorithm in Table 5.1 was used

for watermarking in the LSP, LAR, IS, and parcor domains.

In the experiments presented below, the coversignal consists of

15.625 s of speech from the TIMIT database [41], sampled at 16 kHz.

The coversignal consisted of samples from ten different sentences of the

TIMIT database, uttered by a female talker. The first 24000 or 26000
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samples of the ten sentences were watermarked. A 1000—bit pseudo

random binary watermark sequence was generated [Fig 5.1]. The cov-

ersignal was divided into 125 frames of 2000 samples or 0.125 seconds

duration each. In each of the speech frames, a length eight watermark

vector was embedded into the coefficients of an eighth-order paramet—

ric model, resulting in a data payload of 64 bits per second. Very few

audio watermarking algorithms can satisfactorily trade-off robustness

and fidelity at a payload of 43 bits per second. For the LP paramet-

ric watermarking experiments presented in this section, the watermark

embedding and recovery do not involve selective normalization. The

sample correlation coefficient [equation 3.21] is used as the measure of

similarity between original and recovered watermark vectors for all the

parametric watermarking techniques.

5.3.1 Subjective perceptual tests

Parametric watermarking in LP, LAR, IS, and parcor domains was

implemented at CWRscg’s of 7.715 dB, 10.68 dB, 27 dB, and 30 dB.

LSP—based parametric watermarking was implemented at CWRseg’s of

27 dB and 30 dB. In LSP-based watermarking, the modified LSP pa-

rameters must be between 0 and if and this imposes a constraint on

watermarking at higher CWRSCg’s of 7.715 dB and 10.68 dB. Parameter—

embedded watermarks were fairly inaudible at these CWR...Cg [30].
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Although CWRSCg is used as the objective measure of fidelity, lis—

tening tests were also performed to compare the watermarked speech

fidelity. Five subjects were asked to rank the stegosignals from different

parameter-embedded watermarking schemes in terms of the perceptual

similarity to the coversignal. The sound files used in the subjective

listening tests are available at the website [30]. At CWRSeg of 7 dB,

the stegosignal from LP watermarking was found to have the highest

fidelity followed by stegosignals from LAR and IS watermarking. At

CWRscg of 7 dB, the stegosignal from parcor watermarking was found

to have the least fidelity. At CWRseg of 27 dB, the fidelity of LP,

LSP, LAR, and IS stegosignals was comparable. While, the stegosignal

fidelity of parcor watermarking was marginally worse.

5.3.2 Robustness experiments

Experiments were performed to study the robustness of LP, LSP,

LAR, IS, and parcor based watermarking algorithms to additive noise,

and speech coding. The stegosignals were subjected to white Gaussian

noise in the time domain resulting in SNRs ranging from —30 dB to 60

dB. Figure 5.2(a) shows the correlation coefficient between the 1000-bit

original and recovered watermarks for LP, LAR, IS, and parcor water-

marking at CWRseg of 7 dB. It can be observed from Fig. 5.2(a) that

parcor watermarking is least robust to additive noise. And IS water-
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marking results in better robustness than LP and LAR watermarking

at CWR60g of 7 dB. The improved robustness of LP watermarking at

7 dB CWRseg in Fig. 3.5 compared to LP watermarking in Fig. 5.2(a)

is due to selective normalization. The robustness of LP, LSP, LAR,

IS, and parcor watermarking to additive white noise at CWRseg of 27

dB is shown in Fig. 5.2(b). At 27 dB CWRSCg, LSP-based watermark-

ing results in more robust watermarks and LP watermarking without

normalization results in the least robust watermarks.

Robustness of LP, LSP, LAR, IS, and parcor watermaking to exist-

ing speech coding schemes was tested. G.711, ADPCM, GSM, CELP

and LPC10 were the speech coders used for robustness testing [22].

The original coversignal and stegosignal consisted of 256k bits per sec-

ond. The stegosignals were coded (compressed), then decoded (decom-

pressed), and the watermarks were recovered from the decoded signals.

The correlation coefficient between the original and recovered water-

marks for different speech coders are tabulated in Tables 5.5 and 5.6

for the different parametric watermarking techniques. The attacked

stegosignals are available in the website [30]. The coding bit rates of

the different speech coders are also listed in Tables 5.5 and 5.6.

It is seen from Tables 5.5 and 5.6, that all the attacked stegosig-

nals at CWRseg of 7 dB and 27 dB are highly robust to the G711 n-law

coder, except LP watermarking at 27 dB CWRSCg. LSP watermarking
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Figure 5.2: Effect of white Gaussian noise on LP, LSP, LAR, IS and

PARCOR embedded watermarks. In 5.2(a) a CWR68g of 7 dB was used

to obtain the stegosignals, and in 5.2(b) a CWRseg of 27 dB was used

to obtain the stegosignals.
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Table 5.5: Robustness to speech coding CWRGeg of 7 dB

 

 

 

 

 

 

 

       

Speech Bit LP LAR IS PARCOR

codec rate 7 dB 7 dB 7 dB 7 dB

k bits/s corr coef corr coef corr coef corr coef

G.711 64 0.9916 0.9844 0.9967 0.9962

ADPCM 32 0.6669 0.8502 0.9381 0.6746

GSM 13.2 0.0246 0.1151 0.1481 —0.0074

CELP 4.5 —0.0905 —0.0180 -0.0043 —0.0250

CELP 2.3 —0.0665 0.0043 0.0291 —0.0078

LPC10 2.4 —0.0825 —0.0266 0.0194 0.0281
 

is highly robust to G.711 n-law and G.726 ADPCM coders even at a

higher CWR,Cg of 27 dB. The robustness of all the parametric schemes

decreases for very low bit rate speech coding [13.2k to 2.3k bits per

second]. A similar trend was observed in the robustness of SS water-

marking to low bit rate speech coding in Table 3.5.

Watermark robustness to very low bit rate speech coding can be

improved by compromising watermark payload for greater robustness.

For example, error correcting stategies can be applied to watermark-

ing [52] and the watermark can be repeatedly embedded for greater

diversity [43].
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Table 5.6: Robustness to speech coding at CWRseg of 27 dB

 

 

 

 

 

 

 

       

Speech Bit LP LAR IS PARCOR LSP

codec rate 27 27 27 27 27

dB dB dB dB dB

k corr corr corr corr corr

bps coef coef coef coef coef

G.711 64 0.7767 0.9868 0.9840 0.9662 0.9966

ADPCM 32 0.0578 0.7590 0.7247 0.6212 0.8663

GSM 13.2 —0.0662 0.0225 0.0146 0.0034 0.0872

CELP 4.5 —0.0898 0.0068 0.0125 —0.0310 0.0124

CELP 2.3 —0.0639 0.0065 0.0453 —0.0357 —0.0207

LPC10 2.4 —0.0927 0.0049 —0.0176 —0.0319 —0.0217 
 

 
5.4 Perturbed parameter models in watermarking

Deller and Gulboy [48,49], determined conditions under which an

autoregressive (AR) model1 with stochastic parameters can be approx-

imated by a time-invariant one wherein the stochastic coefficients are

replaced by their mean values. In this section, the application of AR

perturbed parameter theory to LP parametric speech watermarking is

explored. We consider a general Markov equation with slightly per-

turbed parameters of the form

~

yn+1 : (E(énaynin)‘ (56)

In general, 9., is Q-vector, 5,, is a first order stationary stochastic R-

vector, and (I) is a general vector function of 5, y and n. The conditions

 

lThe AR model is the statistician’s name for an LP model driven by white noise
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under which the model in equation (5.6) is well approximated by the

following model [equation (5.7)] are given in [48,49]:

y...1= hymn), where hymn) = E[<I>(5n,y.,n)iyn,ni. (5.7)

It is shown that, if the following conditions are true with probability

one on n E [1, N]:

“(E(gnaynin) — ¢(yni 77.)“ < 6 (58)

then the models in equations (5.6) and (5.7) approximate according to,

N-l ‘

IIyn—ynll S e{1+ZK’L}, w.p.1, n6 [1,N]. (5.10)

i=1

This perturbed parameter theory is used for obtaining bounds on the

perturbation of the coversignal caused by watermarking.
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5.4.1 Time-varying AR models in watermarking

The stegosignal obtained using equation (3.3) is manipulated into

a time-varying AR model:

3

yn : éiyn—i + {n

1

e

‘l

 

(W + wi)(yn—i - fin—i) g

.. n—i + £72.

yn—i.
M
:

[0.1+ w,- +

1l
l

2

~

avail/n4 +£1.-

.
M
:

i 1

The expression for the time-varying AR coefficients {9123'} can be ma-

nipulated into the form

and = (12'an + wipn,i = ai + ai(pn,i — 1) + wipn,i,

where pm- 2 (%"—:—f) z 1. The time—varying AR parameters are com-

posed of the true parameter term, a,, and the perturbation term, a,-(pn,,-—

1) + (12,-qu

5.4.2 Application of perturbed parameter Markov equations

to watermarking

Now let us suppose that the stegosignal is constructed such that,

(ai + can,i )yn——i + £72: 2 andyn—i + gm (5'11)

”
M
:
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wi, if n is odd

where wm- = . Then the time—varying AR pa—

—w,-, if n is even

rameters are given by,

and : an,ipn,i : (ai + wn,i)pn,i- (512)

The AR(M) system is written in state space formulation as follows.

 

Let,

5,111:A yn'l'Géan) 311,5" in

+ n ( n ) (5.13)

5711 = CTyn+1

where

81ml (371,2 é:Lri.,M

An = I(M—1)x(M—1) 0 ,

0    
in : lgn-li gn-2a ' ° ° )ng‘A/IlT?

G = C :[1101° ' ' aOlTa 5n = [6”,198n,21. ' ' ian,A[]T-

The watermark coefficients ({wn,,-},1-lf__1) are such that the time-varying

AR coefficients are first order stationary with E[5m] 2 a, and [5,”- ~—

ail < L. The perturbed AR parameter theory is used for determining
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how well the AR model in equation (5.13) is approximated by the model

n :An 11+an in,”y+1 y 5 r(y ) (5.14)

yn : CTyn+1

In the above equation, A = E[An]. The vector yn is defined similarly to

the analogous vector in equation (5.13). As demonstrated in [48], it is

similarly determined that the small perturbation condition (Ifim —a,-| <

t) is equivalent to the condition (5.8) of the theorem.

||¢(5na5’nin)-¢($'mm||* = ”(An—Alirilh S llAn—Allillynlle (5-15)

According to [48, 49], the matrix norm ||.]]... is selected such that for

any square matrix A, “A”... _<_ r(A) + 6, given any 6 > 0. Here, r(A)

represents the spectral radius of the matrix A. In Lemma 5.6.10 of [53]

the matrix norm [H]... is given by

HAIL = ||DtUTAUD,“1||1 = ||(UD{1)’1A(UD{1)||1i (5-16)

in which I|.[[1 iS the maximum column sum matrix norm induced by

the 61 vector norm, and Di = diag(t,t2,t3,...,t") with t > 0 and

sufficiently large. The matrix U is obtained by the Schur decomposi-

tion of A given by A = UAUT, A being an upper triangular matrix

with the main diagonal components comprised of the eigenvalues of
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A. The vector norm compatible with the induced matrix norm [H]...

is the £1 norm since [IDtUTAUDt'lxlll g ||DtUTAUDt’1]]1||x||1 and

DtUTIUDt-1 = I, the identity matrix.

It is reasonable to assume that “fin“... is bounded by W, a non-

negative finite number. The bound on Hymn... is determined in [48,49]

and is given by,

llynll <Y0HllAkll +2 fl IlAjll IIGII*W+HG|I*W (5.17)

k:0 j=k+1

Where, Y0 = [[370]]... and “G“... = 1. Also, An as A for all n and hence it

is assumed that there exists a small number e’ (L), a function of L, such

that MARI]... S r(An) + e’ (t) Let p be the maximum pole magnitude

of the system associated with A and hence p = r(A). Similarly, let

p(n) be the pointwise maximum pole magnitude associated with An

and p(n) = r(An) [48,49]. Also, p(n) < p + on for small L and a

being a constant. Then, “An“... S p + at + e’(i). Since [fing- — a,-| < t,

[[A,, — All... _<_ f(t) for some number f(t). Hence, equation (5.17) can

be rewritten as,

n 1

||yn||. <Y0(p+at+e'())"+l/V{1+:(p’(+at+e))}=S(n).

1:1

(5.18)

Also, S(n) < 00 and S(n) < S(N) for all n E [1, N]. Hence equation
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(5.15) can be expressed as,

H‘P(5n,57mn) - ¢($'n.n)l|* S f(L)S(N) = E(N), (5-19)

with probability one. The above equation represents condition (5.8) of

the theorem. The existence of Lipschitz constant KL in equation (5.9)

can be demonstrated in a similar way as in [48,49],

((56%, n) _ $691177“) : (Ayn + G611) — (AYn + G511) : A691 — Ya)-

Hence, condition (5.9) of the theorem is given by,

ll¢(ynan) _ ¢(ynin)ll* S llAll*ll$’n ‘ynll* : (p+e)ll5’n —Ynll*i (520)

with probability one. Based on conditions (5.19) and (5.20), the norm

of the difference between the stegosignal and the coversignal is bounded

as follows.

N—l

IIS'n - yelli S (f(b)5(N)) {1+ 2(1) + BY}. (5-21)

with probability one. Experiments were performed on speech data to

determine the final bounds on the watermark signal for parameter per—

turbations. The coversignal consisted of 20 mS of the vowel sound

/A/ sampled at 10000 Hz. An 8thorder LP inverse filter was used for
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watermarking and the watermark vector was,

0) = 10'3 * [—-0.1025, —0.1234, 0.0289, —0.0429, 0.0056, ——-0.0368,

 
—0.0465, 0.0371].

By applying the perturbed parameter theory, the right-hand side of

equation (5.21) was determined to be 11.03. It was verified experimen-

tally that the 61 norm of the difference between the stegosignal and

coversignal is bounded by 11.03. A tighter upper bound would be of

greater significance to practical implementations of parametric water— i

 marking. A relatively high value of 11.03 is obtained in the right-hand L

side of (5.21) as the parameter perturbations are of higher energy than

the underlying requirement in the formulation of the theorem [condi-

tions (5.8) and (5.9)].
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Chapter 6

Conclusions

The dissertation presents a general approach to watermarking of

speech signals based on LP, LSP, LAR, IS, and PARCOR parametric

models. The dissertation focusses on embedding watermark informa-

tion by directly or indirectly modifying the long-term LP parameters

of speech. Parametric watermarking incorporates characteristics of SS

watermarking algorithms, as well as those of integration-by—synthesis

techniques. These aspects strongly influence the fidelity, security and

robustness characteristics of the technique.

Watermark recovery is treated as a system identification problem

involving LSE estimation. The watermark information is concentrated

during the embedding and recovery phases, while it is temporally and

spectrally distributed otherwise. The distributed nature of the water—

mark combined with the LSE estimation during recovery, contribute to

watermark robustness.
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The dissertation initially focussed on speech watermarking in the

LP domain. In experiments presented here, and in many others, LP

parametric watermarking has proven to be robust to most common

forms of attack. An example parametric watermark detector has been

presented to assess performance. The noise in the parameter domain

was found to be Gaussian distributed when white or colored noise was

added to the stegosignal in the time domain. By selectively normalizing

watermark coefficients to parameter magnitudes, 1/ ]a,-], whenever [ail >

1, the parameter noise affecting the watermark coefficients was rendered

independent of the original predictor coefficients. Through this selective

normalization, watermark detection can be treated as signal detection

problem in the presence of Gaussian noise. Very low false-alarm rates

are achieved.

The method of Lagrange multipliers can be used for obtaining op-

timally robust watermarks from perturbed LP coefficients selected from

the membership set. SMF optimization is however not useful against at—

tacks that are independent of the stegosignal. For applications limited

by computational complexity and where the energy of the watermark

signal is considered to be of main significance to robustness, searching

the hyperellipsoidal boundary at intermittent points results in more ro—

bust watermarks than the central estimate of the membership set. The

use of SMF in obtaining robust watermarks to filtering, quantization,
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and combination attacks is demonstrated.

The fidelity and robustness aspects of LP, LSP, LAR, IS, and par~

cor parametric watermarking algorithms were compared. It is deter-

mined that stegosignals obtained by LP and LAR watermarking are

generally associated with high fidelity even at a low CWR.seg of 7 dB.

Although LSPs cannot be watermarked at 7 dB CWRGCg, LSP-based

watermarking is highly robust to noise and G711 and G.726 codecs

even at a CWR60g of 27 dB. In general, parametric watermarking is

much less robust to CELP and LPC10 codecs compared to G.711, G.726

and GSM codecs. However, the quality of speech decompressed by low

bit rate CELP and LPC10 codecs is very low.

An application of AR perturbed parameter theory to speech water-

marking is presented and bounds are obtained on the watermark signal

for small parameter perturbations.

Parametric watermarking algorithms can be used for applications

such as content management, broadcast monitoring, owner identifica-

tion and copyright protection. Parametric watermarking is highly ro-

bust to additive noise, quantization errors, speech codecs such as G.711,

G.726, GSM, and cropping. Based the requirements of an application,

the fidelity and robustness of parameter-embedded watermarks can be

systematically adjusted.
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