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ABSTRACT

Composite Material Design and Characterization for RF Applications

By

Daniel Steven Killips

As radio frequency technology continues to evolve, understanding of the electro-

magnetic behavior of materials is increasingly significant. Applications of such ma-

terials can range from radomes in which controlled transmission is required, to radar

absorbing materials in which high loss and low reflection is a dominant factor. This

is the motivation for creating materials in which the permittivity and permeability

can be controlled depending upon the application.

The design of such materials, which will ultimately determine the effective permit-

tivity and permeability, will depend on such factors as: geometry, volume fraction,

thickness, and permittivity and permeability of the individual materials being com-

bined. Composite design using classic mixing formulae, such as Maxwell-Garnet and

Bruggeman formulations, are not valid for dense composites or ones possessing signif-

icant coupling between inclusions. Hence, more accurate homogenization techniques

are needed. For layered composites, alternating dielectric and magnetic layers sim-

ulated using the method of wave matrices for both isotropic and anisotropic layers

is both useful and efficient. For composites consisting of rod shaped inclusions, an

integral equation based formulation is utilized.

In addition to material design, care must be taken in characterization of these

materials such that the effective material properties are valid. Various characteriza—

tion methods and fixtures are used in this work to determine effective properties for

a variety of composite materials. These composites were fabricated both at Michigan

State University and at partner universities over the past several years.
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CHAPTER 1

INTRODUCTION

The motivation in this dissertation is to be capable of understanding how different

geometries of composite mixtures can effect the electromagnetic properties of materi-

als, called permittivity and permeability. Typically, an RF designer is constrained to

certain electromagnetic characteristics of materials which are available in bulk form.

A potential solution to this problem is to add an additional degree of freedom in the

design of RF devices, namely the capability to design a composite material that best

fits the application. This could range from circumstances requiring total transmis-

sion such as in the case of a radome structure generally used to protect an antenna

from the elements. Ideally, the permittivity and permeability would be designed to

be equal to each in order to provide a better impedance match to free space which

minimizes reflection. In addition, the product of the permittivity and permeability

would be designed to be as low as possible in order to reduce the index of refraction.

Another potential application would be used for antenna loading. Typically, designers

use dielectric loadings in antennas in order to reduce the overall size of the antenna.

However, the addition of dielectric materials increases the capacitance of the antenna

substrate and subsequently results in a degradation in the bandwidth. It has been

proposed by Hansen [1] that an antenna with a magneto-dielectric substrate can fur-

ther reduce the surface are of a patch antenna but also increase the bandwidth. In

this situation, the product of the permittivity and permeability would need to be as

high as possible in order to fully decrease the size of the antenna. This is just a subset

of the potential benefits of having the capability to design a composite material with

appropriate values of permittivity and permeability.

The analysis performed in this dissertation will form a foundation for the un-



derstanding of the electromagnetic properties of two—phase composite materials for

three different geometries. These geometries include; composites with spherical inclu—

sions analyzed using classical mixing laws, layered composites using method of wave

matrices for both isotropic and anisotropic layers, and composites with cylindrical

inclusions using the method of moments. It will be demonstrated how the volume

fraction and differences in permittivity and permeability between the two—phases can

be used to tune the effective permittivity and permeability of the composites. An

additional degree of freedom in the layered composites is provided based on the num-

ber of layers in the direction of propagation. The unique contribution in this work

involves analysis of the composites consisting of layers and columnar inclusions based

on the effective permittivity and permeability. In this stage of development, the

analysis is purely theoretical, however experimental verification is a crucial portion

of future work in order to further the design methodology.

This chapter provides an introduction to the concept of permittivity and perme-

ability, composites and methods of characterizing these materials. It should form a

good basis for main concepts covered in this dissertation while chapter 2 will go into

greater detail about the motivation and composite structures.

1.1 Permittivity and Permeability

The interaction of electromagnetic fields with their surrounding mediums can be de-

scribed with various concepts including polarization, susceptibility, and even conduc-

tivity to describe one type of loss mechanism. This work focuses on the parameters

permittivity and permeability which signify the dielectric and magnetic properties of

materials, respectively. Mathematically, this can be seen in (1.1), where both permit-

tivity, E and permeability, fl are in their most general form and the double overlines



indicate that these quantities are rank 2 tensors.

(1.1a)
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The vector field quantites will be referred to as follows: B and D are the magnetic

and electric flux densities, respectively, while ff and E are the magnetic and electric

field intensities, respectively. For time-harmonic fields, many materials can have

both 5 and it represented using complex scalar quantities, where p0=47r*10-7(H/m)

and £0 28.854*10—12(F/m) are the permeability and permittivity of free space.

I - II

H = How - Jur) (12a)

8=€o(€$~-j€§~’) (1.2m

+jwt is assumed for all the work done in this dissertation. TheThe time convention 6

real portion of these values represents the stored power while the imaginary portion

represents the dissipated power and the ratio of imaginary to real is referred to as

the loss tangent. It should be noted, that the quantities in paranthesis in (1.2), are

relative values and therefore are dimensionless.

The motivation of this work is to accurately calculate the permittivity and per-

meability of materials with an ultimate goal of composite design in which both it and

5 can be adjusted to better fit a particular application.

1 .2 Composites

The majority of the analysis in this work consists of two—phase composite materials,

involving dielectric-dielectric or dielectric-magnetic mixtures. These composites are

clearly inhomogeneous, meaning the values of permeability and permittivity vary with



position within the material. Therefore, homogenization of the composites is a term

that will be introduced which implies that an effective permeability and permittivity

will be used to represent an inhomogeneous mixture. The three different geometries

to be investigated are: spherical particles mixed in a background, alternating layered

structures, and finally rod shaped inclusions mixed in a background material [2]. In

the following chapters, all three of these composite geometries will be analyzed using

different methods.

The composite consisting of spherical particles has been previously analyzed [3]

using classical mixing formulae [4] and compared to experimentally obtained data.

It was shown that these mixing laws become less reliable to accurately predict the

permittivity as the volume of the particles relative to the total volume of the composite

is increased. These mixing laws are even more unrelieable in the ability to predict

permeability for even small volume fractions. One reason for this inaccuracy is due

to the fact that these classical mixing formulae do not account for particle to particle

interaction.

Next, layered composites will be analyzed using the method of wave matrices for

both isotropic and anisotropic layers. The reason for modeling anisotropic layers

is to account for the tensor permeability that is common with many ferrimagnetic

materials. The effect of layering will be investigated for both dielectric-dielectric and

dielectric-magnetic composites. It can be seen that as the volume fraction, thickness,

and constrast ratio of both permittivity and permeability are varied the homogenized

values can be predicted and controlled. This provides a good foundation for design of

composite materials for which a layered structure compliments the given application.

The final geometry to be analyzed will involve an integral equation formulation

to solve for the scattered fields due to periodically arranged cylindrical rods in a

background material. Volume fraction is shown to be the dominant factor for elec-

tromagnetic design of this composite type.



1.3 Material Characterization

Material characterization is the process of measuring some particular property of a

sample and using that value to calculate or extract the material properties. Many

characterization techniques are employed at Michigan State University, however only

two of such techniques will be discussed here as they are suflicient for the needs of

this work. The first technique involves a stripline field applicator [5] and the HP8510

Network Analyzer. A sample is inserted into the stripline and the scattering parame-

ters are measured using the Network Analyzer. The permittivity and permeability

are then extracted from the measured S-parameters using a traditional root searching

algorithm. This structure is particularly useful due to its broadband nature and the

capability to clamp the MUT (Material Under Test) into place which minimizes error

due to air gaps. Samples can be characterized using this method in the frequency

range 1GHz-18GHz.

The latter of these characterization techniques involves the E4991A Impedance

Analyzer and both dielectric and magnetic test fixtures [6]. The permittivity and

permeability are calculated from measured capacitance and inductance, respectively.

These test fixtures are operational in the frequency range 1MHz-1GHz.

These characterization techniques allow for experimental verification of composites

in a wide range of frequencies. This is a crucial contribution to the development of a

solid design method for composites used in electromagnetic applications.



CHAPTER 2

COMPOSITE BACKGROUND AND CHARACTERIZATION

2. 1 Motivation

Understanding of the electromagnetic behavior of materials continues to gain impor-

tance as radio frequency technology continues to grow [7]-[16]. These materials are

used in a wide range of applications from radomes in which controlled transmission

is required, to radar absorbing materials in which high loss and low reflection is a

dominant factor. Within this range, applications such as antenna substrates are used

to reduce antenna surface area, increase bandwidth, or modify the input impedance.

Many times, either the material with the most desirable properties is unavailable in

its bulk form or the technology is designed around a readily available material. It is

therefore advantageous to have the capability to choose the properties of the material

such that it best fits the particular application. One possible method to achieve this

design is through the use of composite materials.

Electromagnetic omposites are mixtures of two or more dissimilar materials, either

dielectric or magnetic, combined in a matter in order to control the effective permit-

tivity and permeability. The effort in determining a solid composite design can be

split into three basic activities. The first activity involves material synthesis. This

centers around creating the materials being simulated and understanding the binding

and dispersion processes involved when attempting to combine multiple materials.

The author’s contribution to this activity was to consult with the chemical engineers,

material scientists, and chemists on the tOpic of electromagnetics. However, section

2.3 has been devoted to this topic in a very broad sense to assist in the understanding

of composite design process. The next activity incorporates the computional effort

ivolved. A suitable simulation of the composite is needed for a complete understand-



ing of how the different mixtures can be modified to adjust the effective permittivity

and permeability. The simulation methods used will include classical mixing formu-

lae, analytical solutions, and computational electromagnetic techiniques. Experimen-

tal verification of these simulations is also of great importance and is the final activity

of composite design. Numerous techniques are available for characterizing materials

[17]-[26], two of them will be discussed in section 2.4. The remainder of this work is

on the analysis of three different geometries of composites illustrated in Figure 2.1.

The first of these composites consisting of spherical inclusions is discussed in the last

section of this chapter. Layered materials are investigated for isotropic materials in

Chapter 3 and anisotropic layers in Chapter 4. The final geometry with rod shaped

inclusions is examined in Chapter 5.

It has been suggested here that a composite material would be highly useful for

situations where a bulk material is not commonly found with the desired electromag—

netic properties. However, even if the desired properties are found in a bulk material,

composites could also be valuable in situations where the flexibility or conformability

of the material is of importance. Perhaps the weight of the material is an issue and

a composite material can be shown to have the same electromagnetic properties but

exhibit less density. Finally, with proper understanding of electromagnetic material

properties and composite simulation, a design method could be formulated for which

an appropriate mixture is devised that best fits the application.

2.2 Homogenization

Consider a material occupying a volume region V enclosed by a surface S as illustrated

in Figure 2.2 where the left body shows an inhomogenous material and the right body

shows an effectively homogeneous material. To a wave, the homogenized material



”looks” like it is a material occupying region V with the effective material properties.

> (2.1a)

> (2.1s)
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Equation (2.1) gives a mathematical representation of this concept where () is a

spatial average of the fields and the subscript Ieff’ stands for effective. The effec-

tive permittivity and permeability are the design goals for the composites discussed

throughout this dissertation.

2.3 Composite Synthesis

As mentioned above, composites consist of two or more dissimilar materials combined

in order to achieve some property, physical or chemical, which cannot be found in

those materials in their bulk form. The materials within a composite can be specified

by one of two categories, matrix and reinforcement [27]. The matrix phase is the

material which surrounds and supports the reinforcement phase keeping the geom-

etry fixed in position. The reinforcement phase is needed to create the necessary

parameters for the application in which the composite will be utilized. The matrix

phase is commonly a form of plastic or polymer, while the reinforcement phase can

be anything from carbon or magnetic powders and fibers to metallic rods of flakes

depending on the desired end product. Various methods can be employed in order to

process and manufacture composites. Only a few are introduced in this section and

are only be briefly summarized since the focus of this work is on the electromagnetics

of composites. The first method is hand lay-up molding where the reinforcement is

put into position and the matrix is painted layer by layer until the desired thickness

has been reached [28]. The advantages of this time consuming process is the ability

to align the fiber reinforcement materials as needed and to accomodate for irregular



shaped objects. A less time consuming process called spray-up molding uses a cutter

to chop up the fiber reinforcement which is sprayed onto a mold with a combination

of resin mist and catalyst. The mixture cures on the mold at room temperature and

is finished. An advantage besides lower time consumption is the ability to handle

large, complex objects due to the spraying operation. Compression molding uses a

hydraulic press to compress the mixture or layers created by hand lay-up at an ele-

vated temperature and help until the composite has cured. The compression allows

the mixture to be distributed properly over the entire mold giving it the ability to

mold large and fairly intricate products. Finally, injection molding involves heating

the material into a molten state then injecting it into a mold at very high pressure

where it cools to solidification. A few polymer processing techniques have been in-

troduced with a brief description in order to include all aspects of composite design.

The focus of this work however, does not involve material production and thus that

topic will be left for this section alone. Also, it should be noted that the terminology,

matrix and reinforcement, in this section was based on [27],[28] and will not be used

anywhere else in this dissertation. The corresponding terminology for matrix is either

background or environment, and inclusions for reinforcement.

2.4 Composite Characterization

Both permittivity and permeability are not values that are easily measured through

direct methods. However, it is convenient to measure other quantities such as reflec-

tion, transmission and impedance from which the permittivity and permeability can

be extracted.

2.4.1 Dielectric Test Fixture and Impedance Analyzer

The first method involves the Agilent E4991A Impedance Analyzer and 16453A Di-

electric Test Fixture [6]. The dielectric test fixture measures the admittance of the

material under test (MUT) between two electrodes within the fixture as seen in Fig-



ure 2.3 from 1MHz to 1GHz. Figure 2.3a and Figure 2.3b show the test fixture and a

close up look at the electrodes. Figure 2.3c illustrates the electric field lines between

the electrodes, including the fringing effects.

Prior to taking this measurement, a three part calibration process must be per-

formed. This includes an open measurement with the electrodes separated by a fixed

distance, a shorted measurement with the electrodes in contact with each other, and

the final measurement with a known load, e.g. Teflon. Once the calibration is com-

pleted, the measured complex admittance can be represented by (2.2).

The real part, G, is the conductance and represents dielectric loss. The imaginary

part, Cp, is the capacitance between the parallel plate electrodes and w is the angular

frequency. The effective relative permittivity of the MUT can then be calculated by

(2.3) where CO is the capacitance of an empty test fixture.

_@_.G

5r - CO JJéU (2-3)

Figure 2.4 shows the measured real and imaginary values of permittivity for a sample

of acrylic which has a known relative permittivity of e = 2.6 - 30. Also included in

the figure is a device uncertainty bar that illustrates the potential range of variation

in measurement results. This uncertainty is calculated using (2.4) where t is the

thickness of the sample in mm, f is the frequency in GHz, and Eirm is the real part

of the measured permittivity.
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The complete calibration to measurment procedure is repeated five times to ensure

consistency and accuracy of the measurements and to check that the data is well

within the uncertainty bars.

2.4.2 Magnetic Test Fixture and Impedance Analyzer

The next method involves the Agilent E4991A Impedance Analyzer and 16454A Mag-

netic Test Fixture [6]. This test fixture measures the inductance in a toroidal shaped

sample as seen in Figure 2.5 from 1MHz to 1GHz. The inductance within the fix—

ture is created from current flowing upwards through the center conductor and then

outward and down the walls of the fixture. This current loop forms a magnetic flux,

which by the right hand rule, is in the direction normal to the surface created by

that loop. Mathematically, the relationship between the inductance” and magnetic

flux density is given by (2.5), where B is the magnetic flux density vector and I is

the magnitude of the current.

”i/B‘T: i/ohO/epTriad” (2'5)

As shown in Figure 2.5, no is the height of the fixture, a is the diameter of the

inner conductor, and e is the diameter of the fixture. All of these distances are in

measured in mm,and the self inductance of an empty fixture is given by (2.6) and is

11



an important contribution to the calibration procedure.

H_0
L =
83 2’”

6

Before connecting the fixture to the test head a four part calibration process is per-

formed. This includes an open, short, 509 load, and a low-loss capacitor. Once the

test head has been properly calibrated, the fixture is attached and the self-inductance

is measured and saved completing the calibration. Now the complex impedance Z-m

of the material can be measured.

Zm = R3 + ijS (2.7)

Finally, the complex permeability can be calculated by (2.8).

_ 2’7er — jQJLss

”T — jwpohlng

 (2.8)

The inner and outer radii of the MUT are given in mm by b and c, respectively and

w = 27rf where f is the frequency in GHz. Figure 2.6 shows the measured real and

imaginary values of permittivity for a sample of acrylic which has a known relative

permeability of m- = 1 - 30. As with the dielectric measurements, Figure 2.6 has a

device uncertainty bar which is calculated using (2.9).

   
 

Allin, 0.02( 25 ) c , ( 15 )2 2
2;]; 4 hl - 1

lim [+ f h1n(C/b)uf~m + “(film +hln(C/blfli‘m f W
(2.9

2.4.3 Stripline Field Applicator

The stripline is a waveguiding structure consisting of two parallel conducting plates

with a thin conducting strip down the center. Figure 2.7 shows a side view of the

stripline and placement of the material under test. The stripline supports a Transverse

12



Electromagnetic (TEM) wave with zero frequency cutoff and the design described

herein allows for measurements over a wide range of frequencies, namely 1-18GHz.

One advantage the stripline has over similar measurement techniques using coaxial

and rectangular waveguides is the ability to clamp the material in place and minimize

air gaps. Also, the fields within the stripline are concentrated to the area surrounding

the center conductor and are well confined [5] as illustrated in Figure 2.8.

Unlike the characterization procedures discussed in 2.4.1 and 2.4.2 where permit-

tivity and permeability were determined through measured impedance, the stripline

uses measured transmission and reflection. There are three sets of measurements

needed to characterize these materials. The first set involves measuring transmission

through and reflection from an empty stripline. The next step measures the reflec-

tion from a short placed in three different locations within the stripline and the final

measurement is done with a sample inside the stripline.

One method for obtaining both permittivity and permeability involves comparing

the measured and calculated propagation constant within the material region, 6, and

reflection coefficient from the interface of the material, F, until they are identical

using a Newton’s two-dimensional complex root-searching algorithm. The subscript

”m” denotes measured values.

fi(e,ii,w) — flm(w) = 0 (2.10a)

F(e,ii,w) — I‘m(w) = 0 (2.10b)

Both [3 and I‘ can be related to permittivity and permeability using (2.11).

5 = (fix/lira: (2.11a)

r: Fm: (2.11b) 
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A technique developed by Nicholson, Ross, and Weir is used to calculate 13m and

I‘m from the measured 311 and $21 at the sample plane [5].

 

Fm (1— 22)

Sfl = 2 (2.12a)

1 — (FmZ)

.. Z (1 - Pin)
52, = ——-———-§ (2.121;)

1 — (FTnZ)

Z = 8Xp(—j/37nt3) (2.12C)

The subscript/superscript ” 3” denotes sample plane S—parameters which can be found

from the measured S-parameters at the stripline terminals using a de-embedding

technique. The sample thickness is given as t3 and the complex permittivity and

permeability are given by (2.13b).

_ E 1‘_1"
Er — ’60 (1+ P) (2.138.)

__ ,3 1+r

Finally, measured permittivity and permeability for acylic is shown in Figure 2.9 and

is in agreement with previous measurements.

2.5 Previous Work: Spherical Inclusions and Classical Mixing Rules

Composites consisting of dielectric spherical particles mixed throughout a dielectric

background have been studied for over a hundred years providing many classical

mixing laws to predict effective permittivity [4]. Several of these classical mixing

laws have been summarized and tested against experimental data using the stripline

method discussed in section 2.4.3 for magneto-dielectric composites to check for accu-

racy in predicting BOTH effective permittivity and permeability [3, 29]. A summary

of three of these classical mixing laws as well as general conclusions are provided

14



in this section. The three classical mixing laws, Maxwell-Garnett, Bruggeman, and

Coherent Potential, were chosen because of the difference in their basic philosphy

on homogenization. Figure 2.10 is a geometrical representation of a composite with

spherical inclusions where subscripts i and 6 denote inclusion and environment phases,

respectively. A necessary assumption in the derivation of the classical mixing laws is

that the spherical particles are small enough in diameter such that they approximately

obey the rules of electrostatics and magnetostatics. The maximum diameter, as de-

fined by Sihvola and Kong [30] is given by (2.14), and is appoximately proportional

to wavelength.

A
dmax e 5; (2.14)

2.5.1 Maxwell Garnett

The first and probably most widely known mixing law to be discussed is the [Maxwell

Garnett formulation for effective permittivity shown in (2.15), where f is the volume

fraction of the inclusions [31].

(52‘ - 56)

82' + 258 — f(€i — Ee)

 Eeff=€e+3fEe (2.15)

This equation is based on the polarizability of a dielectric sphere, and algebraic ma-

nipulation of the spatial averaged electric fields. This formula is assymetric in that

the inclusion phase affects the effective permittivity of the composite diflerently' than

the environment phase. This implies that the inclusion phase is considered a guest

dispersed throughout the environment which is considered a host. The guest versus

host philosophy is the foundation for the Maxwell Garnett formulation in that the

inclusions are compared against the environment.

15



2.5.2 Bruggeman

The next mixing rule is the Bruggeman formulation, (2.16), for effective pern'iittivity

of a two-phase composite [32].

(ho—EVE” +f————Ei_5€ff =
Ee+2€eff €i+2€eff (2.16)

The major difference from Maxwell-Garnett is the symmetry of the Bruggeman for-

mula which no longer employs a host versus guest philosophy. Instead, both the

inclusions and environment phases are evaluated equally against the effective proper-

ties of the homogenized composite. This allows the environment to potentially provide

the same contribution to the effective permittivity of the composite as the inclusions,

unlike Maxwell-Garnett. Essentially, both the inclusions and environment are treated

as inclusions within the entire medium. The Bruggeman formula is known by sev-

eral names; Polder van Santen, ale Loor, Béttcherr, and effective medium model

[414321436]-

2.5.3 Coherent Potential

The final mixing rule discussed in this section is the Coherent Potential formula [37]

which is seen in its most convenient form in (2.17) for spherical inclusions.

356” (2.17)
€eff =5€+fIEi _Ee)3eeff+(1-f)(5i -€e)

Unlike the previous two mixing rules which analyze the problem of a single scatterer

approximation weighted by the volume fraction of the materials, the Coherent Po-

tential formulation uses the Green’s function to represent the polarization density of

the effective medium [4].

16



2.5.4 Conclusions

All three of the classical mixing laws discussed in this section tend to predict the

same effective permittivity as the volume fraction gets very small (f § 0.3) and can

all be approximated by (2.18) [4].

Ei—Ee

— 2.1

51- + 253 ( 8)

5eff mee+3fee

Another important factor in calculating the effective permittivity is the difference in

the dielectric constant of the inclusion and environment phases. As the contrast gets

small the mixing rules tend to agree and also predict the permittivity more accurately.

The cause for this is due to the fact that the classical mixing laws do not take into

account particle to particle interaction, thus as the volume fraction is increased and

the particles become more tightly packed, these formulas will tend to deviate from

each other and from the effective permittivity. See Figure 2.11 and Figure 2.12 for a

graphical illustration of the effects of volume fraction and dielectric contrast. These

figures compare the effective permittivity of the three classical mixing laws described

in this chapter as a function of volume fraction.

When the volume fraction is low (f § 0.3), and there is not a great dielectric

contrast, all three of the classical mixing laws discussed here can be used to predict

the effective permittivity of a composite with spherical particle inclusions fairly ac-

curately. On the other hand, using these same classical mixing laws in attempting to

predict permeability through the concept of duality between the electric and magnetic

fields, the formulas were unable to yield accurate results and hence could not be used

as a tool for composite simulation and design [3]. Another important observation

in [3] and through extensive experience measuring materials with spherical magnetic

particles, is that this geometry doesn’t allow for a significant magnetization within

the composite and thus the permeability is approximately unity and therefore is es-

17



sentially non-magnetic. This is partially due to the fact that spherical ferrimagnetic

particles have a demagnetization factor of 1 /3 and hence these particles need to be

very tightly packed in order to achieve an appreciable permeability. This difficulty

is the motivation to progress to a new geometry for composite design. This new

geometry is a layered structure and is discussed in chapters 3 and 4 for isotropic

and anisotropic materials, respectively. The reason for layered composites is that it

provides a controlled geometry which can be modeled using exact methods.
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Figure 2.1. Possible Geometries for Composite Material Design
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Figure 2.2. Homogenization Illustration
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Figure 2.3. Agilent 16453A Dielectric Test Fixture [6].
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Figure 2.4. Measured permittivity of acrylic using 16453A Dielectric test fixture.
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Figure 2.5. Agilent 16454A Magnetic Test Fixture [6].
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Figure 2.7. Sideview of the stripline field applicator [5].
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Figure 2.8. Field lines within the stripline: a.) Dynamic Electric Field, b.) Dynamic

Magnetic Field.
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CHAPTER 3

ISOTROPIC LAYERED COMPOSITES

This chapter focuses on composites consisting of layered isotropic materials with a

_}

geometry given by Figure 3.1. Isotropic materials are those in which D is related to

—> —-> —->

E and B to H by complex scalar quantities such that. the field direction in each pair

is aligned [38].

(3.1a)
m
l

a
t

H
4' m
i

m
l

(3.11))

The focus of this chapter will be limited to the simulation of isotropic dielectric mate-

rials and the impact of layering on the effective permittivity of the composite. Mag-

netic materials are discussed in chapter 4. The analysis of this structure will be done

using the method of wave matrices for planar layered dielectric materials assuming a

plane wave normally incident on the interface. Although the wave matrix method is

fully capable of handling oblique incidence, normal incidence is assumed here in order

to accurately model the characterization procedure within the stripline described in

section 2.4.3. Doing so will allow the effective permittivity to be extracted from the

calculated scattering paramters using the same program as for the stripline. Also,

with normal incidence, phase matching can be achieved at each interface. Section

3.1 derives this method in detail and follows directly from Collin [39]. Using wave

matrices, a straightforward calculation of the reflection and transmission coefficients

for a layered structure can be used in the extraction of complex effective permittivity

as demonstrated in section 2.4.3 for the stripline material characterization technique.

In the design of a composite with tunable effective permittivity, there are three

main parameters of interest. The number of layers, the difference in the dielectric
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constant of the two materials (dielectric contrast ratio), and the volume fraction of

the layers will form a basis for the following analysis. To simplify the problem, the

material layers are extended to infinity in the directions parallel to the interfaces but

is finite in length in the direction perpendicular. Therefore, the analysis will proceed

for several different dielectric contrast ratios and volume fractions. The layering effect

will be examined by first holding the total thickness, d, fixed in length, while second

increasing the number of layers within the composite. Hence, the volume fraction

is kept constant. This is illustrated in Figure 3.2 where the first case involves ma-

terial A on the outside, followed by interchanging the materials such that material

B is on the outside. It will be demonstrated later that the effective permittivity is

heavily persuaded by the outer layer for composites with a small number of layers.

The permittivities of adjacent layers, A and B, are based on the dielectric contrast

ratio and are therefore real numbers independent of frequency. Since the layers are

non-dispersive, a frequency analysis is not performed here because the effective per-

mittivity would be a constant value over any frequency range in which the sample

thickness is not equal to or greater than a half wavelength. In that case, possible

resonances could potentially cause problems in the characterization process.

3.1 Wave Matrix

The wave matrix method is an exceptionally useful and simple tool for the analysis

of layered dielectrics. In the case of a normally incident plane wave, each layer can

be completely described by its material properties (8, p) and thickness. This section

begins with a derivation of reflection and transmission coefficients in terms of per-

mittivity and permeability for one interface. This is followed by the implementation

of multiple interfaces and finally the method of wave matrices.

32



3.1.1 Reflection and Transmission Coefficients

This study begins with the investigation of the reflection and transmission of a plane

wave normally incident at the interface of a planar dielectric in the same plane as the

transverse component of the wave. Figure 3.3 illustrates that when an incident wave

arrives from the left (z<0) at the dielectric interface, part of that wave is reflected and

part is transmitted. The incident and transmitted waves are shown traveling in the

positive z-direction while the reflected wave is traveling in the negative z-direction.

For this work, the time convention eth is assumed and suppressed which results in

the following representation for the fields.

73”: TifiEe ‘J'klz (3.2a)

'13": 71727.2”klz (3.2b)

it: 11733.2‘ijZ (3.2c)

The wavenumber, k, in (3.2) is dependent on frequency, permittivity and permeability

and can be represented as kz- = tum-E? where i could be either 1 or 2, and the vector

amplitude coefficients for the transverse components of the electric fields are given

by TIfE. The transverse components of the magnetic field can be written in terms of

the electric field amplitude coefficients and impedance matrices in each region.

1139: 71 AWE (3.3a)

——> 22—1 —>

~11}, = Z1 411’}; (3.3b)

——> =—1 ——+

xiii], = —22 will]? (3.3c)

The inverse of the impedance matrix (admittance matrix) is given by 7; =

051(3):? — 533)) where i is given by either 1 or 2 and the wave impedances by

77., = i/I‘i/Ei' Assuming there are no currents or charge buildup along the inter-
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face, boundary conditions imply that the tangential fields must be continuous.

aZ(2:=0)+E)T(2:=0)=Et(z=0) (3.4a)

e1
.

2(.«:=i))+?i”‘(z=(i)=Eii(z=o) (3.41))

These boundary conditions can also be represented by the transverse components

of the fields since these are tangent to the interface. Also, in the z = 0 plane, the

exponentials in (3.2) becom unity.

11733 + T112; = T171]; (3.5a)

—>i -—>,r _ -—>t

\IIH+\IIH—\IJH (3.51))

Using (3.3), the magnetic field arnplitued coefficients can be written in terms of the

transverse electric field components and (35b) becomes

=—1 81-4 51—)7. 812—1 —-)t

ZO .( _71_1pi _ Lip )= _T'_ZO .11; (3.6)

”T1 E #71 E ”7'1 E

Furthermore, the reflection coefficient, R1, into region 1 from region 2 at z = 0

is defined as the ratio of the reflected field to that of the incident field. Also, the

transmission coefficient, T21, into region 2 from region 1 is given as the ratio of the

transmitted field to the incident field.

T21 = i (3.7b)
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Using (3.7), both (3.5a) and (3.6) can be written in terms of the incident electric

i
field, \IIE.

(1+R1)\1135 = TglxiflE (3.8a)

1[ 571 En ] i 1 571 i
— ,/—— —R \IJ = — ——T ‘11 (3.8b)

770 M1 M1 1 E 710 M1 21 E

Dividing out \I/iE, this becomes two equations and two unknowns for which the re-

flection and transmission coefficients can now be solved.

R =M (3.9)

"T2 + 777']

2

T21 = ——31‘—2—— (3.10)

7772 + ”T1

Now that the reflection and transmission coefficients have been derived for a plane

wave normally incident on the interface between two isotropic materials, this discus-

sion can be extended to multiple interfaces and the method of wave matrices.

3.1.2 Wave Matrix Method

The derivation of wave matrices begins with a description of the problem seen in

Figure 3.4. A plane wave is incident from the left in the region z<0 with an amplitude

of a1 and another wave with an amplitude of b2 incident from the right in the region

z>0. For this analysis, all waves traveling in the positive z-direction will be denoted

by a, while the waves traveling in the negative z-direction will be denoted by b. The

backward traveling wave in region 1 is comprised of the reflected portion of a1 and the

transmitted portion of ()2 as seen in (3.11a). The same is true of a forward traveling

wave in region 2 given by (3.11b).

bl = R1a1+ T1202 (3.11a)

a2 = R202 + T2101 (3.11b)
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Solving for al in (3.11b) and inserting it in (3.11a), the backward traveling wave in

region 1, b1, can be written terms of the forward and backward traveling waves in

region 2. The same can be done to solve for al.

a2 R2132
a1 = —-—-——— (3.12a)

T21 T21

R1132 31
bl = (T1 ————) b2+—a (3.12b)

2 T21 T212

On the left side of (3.12) are the fields in region 1, while on the right side are the fields

in region 2 as well as the reflection and transmission coefficients which are functions of

the material properties in both regions. These equations can now be put into matrix

format as shown in (3.13).

a1 1 1 432 a2 A11 A21 a2:_T__ = (3.13)

b1 21 El T21T12-RiR2 b2 A12 A22 52

The matrix H shown above is commonly referred to as the wave-transmission chain

matrix and it relates the amplitudes of the forward and backward propagating waves

in region 1 to those in region 2. Symmetry of the problem under consideration Yields

T12 = T21 and R1 = —R2 for reflection and transmission [on either side of the

interface. Remembering also that T21 2 1+ R1 and T12 = 1 + R2 the elements in H

can be simplified into the following forms,
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-R2 R1
A = = .12 T21 T21 (314b)

R

A21 = 311 (3.14c)

T T —R R

A22 — 21 12 1 2:; (3.14.1)

T21 T21

which can be put back into a simpler matrix form.

0’1 = TI— 1 R1 “2 (3.15)

b1 21 R1 1 b2

Once multiple interfaces are incorporated, the length of each region must be taken

into consideration since the phase of the waves will change depending on the prop-

erties of each region and the distance each wave travels within the regions. This is

done by considering first a forward traveling wave ale-”fl“z and then a backward

traveling wave blejkz . For 220, the waves are simply represented by their amplitude

coefficients, however the waves at a distance 2 = 31 from the z = 0 plane are given as

a2 = ale—jkzl and b2 = blejkzl. Finally, relating the waves in region 1 to region 2

gives the following equations where kzl is the electric thickness 01 as represented in

Figure 3.5 which accounts for the phase progression of the wave in that layer.

a1 = agejkzz1=a26j01 (3.16)

bl -.= er—J'kzz1=b2e“j91 (3.17)
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This phase relationship can also be put into matrix form.

al = 636 0 02 (318)

Combining both (3.15) and (3.18) both reflection and transmission at. a single interface

as well as propagation through the layer have been included. Finally, after carrying

out the matrix multiplication, (3.20) gives the wave transmission matrix for one layer.

'9
a 1 1 R e] 0 a

b1 21 R1 1 0 63—J6 02

a1 = L 616 Hie—fl) “2 (3 20)

This gives a straightfoward method for calculating the fields at the z = 0 in terms of

material properties, layer thickness and the fields at the interface located at z = 21.

For the case of an arbitrary number of layers, (3.21) can be formed by cascading each

wave transmission matrix until finally having the fields at z = 0 in terms of the fields

at z = Zn+11

ejgi Ric-jaila1 = fi i an+1 (3 21)

. T- . 1'0- —i'0- '()1 2:1 '1. Rze 2 8 ’I, bn+1

where Ti and R7; are given by the following equations.

R,- = ————7”— "H (3.22)

772' + tit—1

2 .

T,- = —32—— (3.23)

771' + 77i—1
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3.1 .3 Scattering Matrix

This wave transmission matrix is exceptionally useful because the matrices can simply

be cascaded for each additional layer. Another useful property is the ability to convert

this final matrix into other useful quantities, such as the scattering matrix, impedance

matrix, and admittance matrix [40]. The scattering matrix is of particular interest

to this work because it relates the backward traveling waves to the forward traveling

waves as seen in (3.24). Besides, scattering parameters are the measured quantity

at practice. With the calculated S-parameters, the effective permittivity can be ex-

tracted using the same procedure as in section 2.4.3 for the stripline characterization

technique.

bl = 511 512 a1 (3 24)

b2 321 322 (12

The scattering matrix is calculated from the wave matrix using (3.25) [40].

511 = 411 + 412/770 - 421170 - A22 (3252.)

A11+ A12/770 + A2100 + A22

512 = 2(411422 - 412421) (3-25b)

411+ A12/770 + A21710 + A22

2
S :

3.25C

21 A11+412/170 +A21770 +422 ( )

-411 + A12/770 - A21710 + A22

A11+ Alz/no + A21770 + A22

 

 

 

 (3253)

For the two-port network used in this model the wave transmission matrix for each

layer can be reduced to the form seen in (3.26) [40].

A11,i = cos(6,-) (3.26a)

4122' = inosinlt’z') (3263b)

2121,,- = jnO-lsinwi) (3.26c)

A21,- = cos(6z-) (3.26d)
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3.2 Analysis and Results

Using the methods described in the previous section, the effective permittivity of

a composite comprised of layered dielectrics is investigated. More specifically, the

composition consists of two dissimilar dielectrics with differing relative permittivities

alternating such that the first layer is the same as the final layer. This last requirement

allows the system to be symmetric, a necessity of the inversion method used herein.

As the number of layers is increased the total volume of the mixture being sim-

ulated is held constant, as is the volume of each of the two dielectrics. Therefore,

different volume fractions, dielectric contrast ratios and number of layers will be an-

alyzed in order to interpret their consequence on the effective permittivity of the

composite. The fixed thickness of the composite being simulated is )1 /50 and is suffi-

ciently small enough to realize homogenization.

Figure 3.6 gives the effective permittivity for the first case in which the volume

fraction of dielectric A is 0.75 and has the lower value of permittivity. As seen in

Figure 3.2, the scattering parameters are calculated when dielectric A is on the outside

(e.g., facing the impinging waves), then again when dielectric B is on the outside.

For the situation when dielectric A is on the outside, the eflective permittivity is

seen to start at a lower value and begin to rise as the number of layers is increased

and eventually saturate to the dashed line calculated using the linear law which is

discussed below. The later situation when dielectric B is the outer later results in the

effective permittivity beginning at a higher value and lowering to the same dashed

line. For all cases in which layer A has the lower permittivity in the dielectric contrast

ratio, this trend is repeated. Figure 3.7 is the same analysis as in the previous case,

however the volume fraction of material A is 0.5, and finally Figure 3.8 illustrates the

same effects with the volume fraction of material A equal to 0.25. In each of these
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cases, six different dielectric contrast ratios are calculated ranging from 1 : 4 up to

1 : 49.

As mentioned earlier, the dashed lines in each figure are calculated using the linear

law by (3.27). This is the simplest formula for determining the effective permittivity

of a two—phase mixture where subscript A implies dielectric A, and subscript B implies

dielectric B, while the volume fraction of material A is denoted by fA, etc.

Eeff=fA€A+fBEB (3.27)

This straightforward equation assumes total homogenization and the effective per-

mittivity is purely a function of the dielectric constants and their volume fractions.

Whether the outer layer is the high or low dielectric contrast the effective permit-

tivity will eventually merge towards the value given by (3.27) as the number or layers

is increased. This implies that the effects of the layering is negligible once the layers

become extremely thin. Figure 3.6 shows that the effective permittivity can be tuned

to any value between 1.65 and 16.6, and Figure 3.8 yields an effective permittivity

range from 2.38 to 48.6. Table 3.1 summarizes these ranges for each of the dielec-

tric contrast ratios and volume fractions. These results allow for a potential design

platform for planar layered composites, and demonstrate how the different number

of layers within a composite can be used to control or tune the effective permittivity

to better fit some particular electromagnetic application. A possible reason for the

change in permittivity as the number of layers is altered is due to multiple reflections

within the composite. A material with multiple interfaces has the potential to trap

more power and hence have a greater effective permittivity at the outer edges. Or

perhaps a composite material can be designed with a certain number of layers as to

allow for greater propagation through the material or to reduce trapped power and

lower the effective permittivity. The analysis performed in this chapter for lossless
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dielectric composites based on contrast ratios and volume fractions has demonstrated

the effects of layering. However, in real-world applications the materials being used

will have some form of loss associated with the permittivity, permeability or both.

Just as the number of layers and multiple reflections can help control the effective

permittivity, they can also effect the loss of the composite. As a wave propagates

through a lossy material and is bounced back and forth, the wave will have greater

attenuation after traveling through the entire composite. This results in a greater

negative imaginary portion of permittivity. Now that the effects of layering are bet-

ter understood, it is imperative that the model be extended to include layers of actual

materials since many magnetic materials have a tensor permeability and the goal is

ultimately to design and control a composite’s permittivity and permeability. This is

done in Chapter 4 and includes loss in the analysis.
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Figure 3.1. Geometry for layered materials.
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Figure 3.2. Illustration of the analysis on layered materials when layers A and B are

swapped.
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Figure 3.4. Reflection and transmission of plane wave amplitude coefficients.

46



N
Q

Q

2
0
3

 l El
3%t
.

 

N
V

M
E
?

- -
-
-
‘
-
-
-
-

    ,2
.
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Figure 3.6. Case 1: Layer A has volume fraction 0.75.
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Figure 3.7. Case 2: Layer A has volume fraction 0.50.
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Figure 3.8. Case 3: Layer A has volume fraction 0.25.
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Dielectric Contrast Ratio

fA 1:4 1:9 1:16 1:25 1:36 1:49 Total

0.75 1.65-1.82 2.5-3.5 3.7-5.8 5.2-8.8 71-124 94-166 1.65-16.6

0.5 2-3 3.7—6.3 605-1095 9.1-16.9 12.95-24 17.5-32.5 2-32.5

0.25 238-42 485-91 8.4-16.1 13-25 1865-358 25.4-48.6 238-486
 

Table 3.1. Tunable Effective Permittivity range summary for isotropic layered com-

posites.
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CHAPTER 4

ANISOTROPIC LAYERED COMPOSITES

The purpose of this chapter is to demonstrate a method of calculating the scatter-

ing parameters of a planar, layered, anisotropic composite material. From these

S-parameters, the complex effective permittivity and permeability of the mixture is

extracted using a complex 2D Newton’s root searching algorithm as in section 2.4.3.

The S-parameters are calculated at the front and back interfaces of the layered com-

posite in order to effectively homogenize the composite. This is accomplished using

state vector and state equation formulations stemming from Maxwell’s equations

[41, 42]. In Chapter 3 the scattering parameters for isotropic dielectric layers were

determined using the method of wave matrices. This demonstrated how the num-

ber of layers, as well as the volume fractions and dielectric constants of each layer,

could be manipulated in order to achieve an effective permittivity that better suits

the application. Also, the greater the dielectric contrast ratio, the wider the range of

tunable effective permittivities will be accomplished.

In this chapter, the layered composite model is extended to include anisotropic

layers such as ferrimagnetic materials which can be comprised of ferrites or magnetic

garnets, for example. The objective is to design a layered mixture that exhibits mag-

netic behavior and achieve a tunable permeability. Ferrites are chosen because unlike

ferromagnetic compounds, ferrites or ferrimagnetic materials do not have high resis-

tivity but has anisotropy induced by an external applied field [38]. In ferrimagnetics,

the individual elements of the permeability tensor can be controlled using a static

magnetic bias field (e.g., the field from a permanent magnet) [40]. The derivation of

the reflection and transmission coefficients are introduced as well as various examples

including: narrow line-width ferrimagnetic composites, wide line-width ferrimagnetic
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composites, and double negative materials.

4.1 Background and Derivation

4.1 .1 Geometry

The geometry of the composite in this derivation is given by Figure 4.1. Just as in

chapter 3, the material extends to infinity in the x and y directions with a finite

thicknes in z. The configuration consists of three regions where region 2 contains

the anisotropy in the permeability tensor, permittivity tensor, or both. In all but

one case in this chapter, both regions 1 and 3 are considered to be free space. The

interface between regions 1 and 2 is located at z = 0 and between regions 2 and 3

at z = at. First, the reflection and transmission from an anisotropic slab is derived.

Next, the slab is partitioned into layers such that the fields at the n — 1 interface will

be calculated in terms of the fields at the n interface. Finally, this is continued until

the fields at the z = 0 interface are known in terms of the fields at the z = d interface

as seen in the preceeding chapter.

4.1.2 State Vector and State Equation Formulation

To start, the two bulk Maxwell’s equations, more specifically the two curl equations,

Faraday’s law and Ampere’s law, will be separated into their six different components

where both permittivity and permeability are rank 2 tensors. The notation used to

represent a rank 2 tensor, or matrix, will be square brackets. A rank 1 tensor, or

column vector, will be denoted by curly braces. Spatial vectors will remain using the

over-right-arrow notation.

 

v x 75’ = —jw[u]- Ti (4.1a)

5yEz - 5.2133; l #:rx Hwy #5132 Ha:

52572: — (5sz = —jw flyx Hyy #yz Hy (4.1b)

_ SUEZ! - 69533 _ L #22: My #22 J _ Hz .     
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v x fi = jw[e]-E (4.2a)
P

      

_ .1 - 7

63/112 '— 63H?! €173; Exy 5533 E1;

62H]; — (5tz : jw Eyqj Eyy Eyz Ey (42b)

_ 5$Hy - (5ny 3 L 52.1: Ezy Ezz E2 ‘

These equations can be separated into transverse, (4.3),(4.4), and longitudinal com-

ponents (4.5).

(52132: = —jw (Hyerr + #yyHy) - jwflysz + 5rEz (4-33)

In (4.3), the left side of the equation has the normal derivatives of the transverse

electric fields and the right side contains all three components of the magnetic field

along with the transverse derivatives of the longitudinal components of the electric

field. The same is true of (4.4), except the magnetic and electric fields are transposed.

dsz = jw (nyEx '1' Enyy) ‘l" jWEyzEz + (53sz (4.4a)

63Hy = ~ju) (8513:3131; + EltyEy) '- jWEszz + ($sz (4.4b)

Finally, the longitudinal fields in (4.5) can be inserted into both (4.3) and (4.4)

reducing the six components of Maxwell’s equations into four components in terms

of the transverse electric and magnetic fields only.

—1
 

 

H = , 6 E —6 E —— H + g H 4.5az 29412.2(“: 9 y 3:) ”22,0122: :1: I1 y y) ( )

1 1

jwezz Ezz

. u -—+ —) —) A —) a .

The transverse electric field, Et( r ) = Eg:( r )x + Ey( r )y, and transverse magnetlc

field, HA?) = Hg;(7’)it + Hy(?)g, can be represented in a form in which the x, y
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and z dependences are separated.

75? = Eiae‘j’ifl‘jkyy (499

1?: = H;(z)e—jk$$—jkyy (4.6b)

The reprersentation given by (4.6), illustrates how the dependence in the x and y

directions allows phase matching to be achieved at the interfaces and implies that the

transverse fields depend on their position in z. Now (4.3) and (4.4) can be put into

the matrix form seen in (4.7).

d 3i 7
it; _, = [Al' _, (4-7)

Ht Ht

This is called the state equation where the matrix [A] is a 4x4 matrix containing the

operations on the transverse components of the fields. The column vector containing

the longitudinal dependence of the transverse fields can be represented by the state

vector, {V}, in (4.8).

Exfz) '

{V} = 133/(z) (4.8)

1122(2)

L III/(Z) -

The state equation can now be represented in its compact form given by (4.9).

  

is {V} = [A] - {V} (4.9)

The z dependence from the column vector in (4.8) can be separated out and repre-

sented by (4.10).
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{V}={\Il}e)‘2= y 602 (4.10)

  l. 90 -

Now the z derivative from the state equation in (4.9) can be replaced by A which

yields the eigenvalue equation in (4.11) where [I] is the identity matrix.

([A] — A [11> - {9} = o (4.11)

The calculated eigenvalue in the representation of {V} in (4.10) denotes the propa-

gation phase and attenuation of a plane wave through region 2. The elements in [A]

are given by (4.12) in its most general form. It should be noted that in this analysis,

the plane wave is assumed to have normal incidence upon the layered composite, this

implies that km and Icy in (4.12) are zero reducing the complexity of [A]. This eigen-

value equation will solve for the fields in an anisotropic region assuming plane wave

propagation. The next section derives a solution for the fields at the interfaces of an

anisotropic slab of thickness d. This method is similar to the wave matrix method in

chapter 3 because each layer within region 2 will have a solved matrix that can be

cascaded to the solved matrices of the other layers. A non-trivial solution to (4.11)

can be obtained by setting the determinant det ([A] — /\ [1]) equal to zero and solving

the resulting characteristic polynomial of [A], for the unknown eigenvalues A. Once

the eigenvalues are determined, they can be used in (4.11) to find the corresponding

eigenvectors.
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4.1.3 Transition, Transmission, and Reflection Matrices

The transition matrix is used to describe the relationship between the fields at the

2 = 0 interface to the fields at the 2 = d interface as illustrated in Figure 4.1a.

This matrix is used to describe the transition of the fields through region 2 in terms

of material properties and layer thickness. The transition matrix, [B] is given in

mathematical form by (4.13)

{V(z = 0)} = [Bl ' {V(Z = d)} (4-13)

and is a 4x4 matrix with 2x2 submatrices given by [b] in (4.14).

[B] = [bl] 1141 (4.14)

[b3] [b4]

Also, the reflected and transmitted electric fields can be represented by (4.15) which

introduces 2x2 reflection and transmission matrices for the fields at the interfaces

2 = 0 and 2 = (1.

13(0) = [R] . E§(0) (4.15a)

13,5 (d) = [T] - E§(0) (4.15b)

The subscript ”t” implies that these are the transverse fields in the :1: and y direc-

tions, while the superscripts ”r”, ”2'”, and ”t” represent the reflected, incident, and

transmitted fields, respectively. The total field in region 1 are given by the superpo-

sition of the incident and reflected fields while the total field in region 3 consist of the

transmitted field only. Therefore the transition matrix equation given in (4.13) can
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be written by (4.17).

E; + E; = {"‘(z s 0) (4.16a)

E; = E§0‘(2 _>_ d) (4.161))

H; + H; = Htwt(2 S 0) (4.16c)

Hf = H1042 2 d) (4.16d)

_ i+r l - t 1

Ex (0) End)

EHT 0 b b Et dy. () ___ [1] [2] y() (4.17)

H1210) [b3] [b4] Had)

. fizz/+70) - 1H5“) _    
This can be multiplied out of matrix form to give the following two equations for the

electric and magnetic fields.

E110) +Ef<o> = [bu-Eu) + 221-133(4) (4123)

111(0) + F130) .—. [b3] . E; (d) + [b4] . H; (d) (4.19)

In order to reduce the number of unknowns in the above equations, the transverse

magnetic fields are represented in terms of the corresponding transverse electric field

components through wave impedance matrices.

7(0) = 1211-1130) (4.20:1)

7(0) = - [Z1] - H§(0) (4.20b)

5%) = [Z3] - HEW) (4.20c)
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0 77
[213] = 1’3 (4.21a)

-711,3 0

11

n13 = E—llg (4.21b)

’ 1,3

The wave impedances, 7713, are functions of both permittivity and permeability of

regions 1 or 3. Using (4.15) and the above impedance matrices, (4.18) can be written

entirely in terms of the incident electric field. The incident field term can be normal-

ized allowing for the solution of the reflection matrix in terms of the transmission,

transition, and impedance matrices.

—+ —)

51(0)+[R).Eg(0) = 1b11-1T1-E§<o>+1b21-[zgll-1T1-Eéw) (422411

[R] 1141-1211 +1b21- [23—1] 171 — 111 (4.221»)

The same procedure can be aplied to (4.19). Once the incident electric field term has

been normalized, the reflection matrix from above can be inserted leaving only the

transmission matrix as the unknown.

END-[3114-[Rl'E1§(0)'lzil_1=[b3l-lTl'EE(0)+[b4l'lTl'E—7t;(0)'lz3l—l

(4.23)

[T1'([b31+[b41'[z31"1) = ([211—1 - (1611-171+1b21-1231-1-1T1— 111) 1211—1)
(4.24)

The transmission matrix is given in terms of the impedance and transition matrices

in (4.25).

[T] = 2[23141511133] + lb2l + [14311211123] + lb4l'lzll)_1 (4-25)
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This transmission matrix is then inserted into the equation for the reflection matrix

in (4.22b).

1R1=<1b11abs-12314121231

-<1bl1-1Z:J.1+1b21+1112112111231+1141-1211)-1 — 111

Finally, the reflection matrix is given by the following equation in terms of impedance

and transition matrices.

[Rl =(lbll ' [23] + lb2l + [1931' [le - [Z3] + [b4] - [21])

-<1b11.1231+1b21+1b31-1z11-1Z31+1b11-1211>‘1

These reflection and transmission matrices have been derived for a homogeneous

slab of anisotropic material as shown in Figure 4.1a, and are functions of impedance

matrices which describe the isotropic surrounding regions and the transition matrix

which describes the slab.

4.1.4 Layered Media and Local Transition Matrix

Reflection and transmission have now been derived for an anisotropic slab in terms

of impedance and transition matrices for which the latter has yet to be solved. The

transition matrix represents the propagation inside region 2 between interfaces at

2 == 0 and 2 = d. In this section, region 2 is no longer an anisotropic slab, but a

layered anisotropic material. Therefore a local transition matrix, [Bn] is introduced,

which represents the fields at the interface 2 = 2n_1 to the fields at 2 = Zn within

region 2 where those interfaces surround the nth layer. This is illustrated in Figure

4.1b and mathematically given by (4.26).

{Vn—i} = [Bln ° {Vn} (4.26)
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This implies that the eigenvalue equation derived in section 4.1.2 will need to be

solved in each individual nth layer.

([471] - Anlll)°{‘1’n}= 0 (427)

Once the eigenvalues, An, and corresponding eigenvectors, {4%}, are known for each

layer the state vector is also known and given by the following representation with

coefficients {Cn } .

{vn} = {1n} «1"an- {Cn} = {‘I’n} - f (1D<zn)1> - {on} (4.28)

F eAlzn 0 0 0 l

0 e422" 0 0

f ([077, (anl) = A (429)

0 0 e 32” 0

0 0 0 6442n  _ d

The function f ([D(2n)]) is an exponential function of the diagonal eigenvalue matrix

above and has the property below.

f ([1971 (Zn—1 + anl) = f(an(Zn—1)l)'f(an(Zn)l) (430)

Using this relationship, the fields at the interface 2 = 271—1 can be written by (4.31).

{V4.1} ={wn1-f([Dn(zn_1— Z1111) - {114:1} - 12111-111011. (znm - {on}

(4.31)

Utilizing (4.28) for {Vn} into (4.31) for {Vn—I} and comparing to (4.26), an expres-

sion for the local transition matrix is obtained.

[Bnl={‘1’n}'f([Dn(Zn_1— Zn)l)’{‘1’n}_1 (4-32)
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Once all of the local transition matrices have been solved for each layer, they can

be cascaded together in order to obtain the total transition matrix which relates the

fields at the 2 = 0 interface to those at the 2 = d interface and accounts for the

interaction of the fields within the anisotropic region.

N

[B] = [1an] (4.33)

n=1

where N denotes the number of layers. Using the total transition matrix and the

impedance matrices for the surrounding regions, both reflection and transmission can

be calculated and used to extract the complex permittivity and permeability of the

layered composite as done in section 2.4.3.

4.2 Verification of Anisotropic Formulation

The solution presented here for reflection and transmission from a planar anisotropic

material is an analytical solution. However it is still useful to check the computer

program for errors either in the formulation or in the coding process. The following

three cases will verify the code and solution by comparison to propagation through

free space, reflection from PEC, and scattering from an iostrpic layered composite by

which it can be compared to the code from chapter 3.

4.2.1 Transmission through Free Space

The first check of the layered anisotropic formulation will be computed for the case

shown in Figure 4.2 where regions 1, 2, and 3 are all free space. Therefore 11,- = 110

and e,- = 50 for i=1, 2, or 3. As seen in Figure 4.3a the result is that the magnitude of

ISlll is O and |521| is 1, which implies total transmission as expected for free space.

Phase for 5'21 at z=d is given in Figure 4.2b and demonstrates phase wrap-around

occuring at 6GHz. This observation will become useful for verifcation in the following

C888.
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4.2.2 Reflection from PEC space

The next check is performed for free space in regions 1 and 2 and perfect electric

conductor (PEC) in region 3 as seen in Figure 4.4. The magnitude of the scattering

parameters is shown in Figure 4.5a and illustrates total reflection, ISHI = 1 and

'321l = 0 as expected from PEC. Also, Figure 4.5b shows the phase of 311 at 2 = 0

after the wave has traveled to 2 = d and back again. Phase wrap around occurs at

3GHz which is half the frequency location for the phase of .321 in the previous section

for the case of free space. As distance traveled is increased, the phase will take on

steeper slopes. In this situation, the wave has traveled twice the distance to get from

the PEC and back as opposed to the previous case and hence the slope of 5'11 is

twice as steep as for 321 in free space and therefore wrap—around occurse at half the

frequency. This helps to further verify that the code and formulation are working

properly.

4.2.3 Comparison with Isotropic Layers

The final check in the verification process is to simulate a composite of layered

isotropic materials and compare the results to the same simulation using the wave

matrix method described in chapter 3. The composite has 15 layers with alternating

A and B materials each having a thickness of IOU/rm. Material A has properties

of free space while material B is non-magnetic (#r = 1) with relative permittivity

of 25. Figure 4.6 shows the magnitude and phase of the scattering parameters for

both the isotropic and anisotropic analysis methods, while Figure 4.7 illustrates the

extracted permittivity and permeability values. Both methods yield the same val—

ues for S-parameters and constitutive parameters providing further verification of the

anisotropic formulation.
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4.3 Ferrimagnetic Materials with Anisotropic Permeability

4.3.1 Permeability Tensor

The purpose for including anisotropic layers is to include ferrimagnetic materials in

order to tune the effective permeability as well as permittivity. Narrow line-width

ferrites provide a good low-loss magnetic material for which the anisotropy and perme-

ability tensor elements can be controlled using a bias magnetic field. The permeability

tensor is given by (4.34) for a bias field in the x-direction [40].

  

' 1

110 0 0

[11] = 0 )u j); i -— bias (4.34)

O ——jn p

The elements in the permeability tensor are calculated by (4.35) where w = 27rf is

the operating frequency and 110 = 47r X 10—7 is the permeability of free space.

w (.1)

u = 110 (1+ ——20—Ln-§) (4.35a)

(4)0 — LU

011112

(4)0 "" (4)

Also, (.110 = #OVHO and cum = pow/Ms where H0 is the strength of the internal bias

field in oersteds and M3 = 47rM3 is the saturation magnetization in gauss. The ratio

of the spin magnetic moment to the spin angular momentum for an electron is called

the gyromagnetic ratio and is given by 7 = 1.759 x 1011 C/Kg [40]. The larmor

frequency can be calculated by f0 = 1.110 /27r = (2.8MH2/oersted)(H0 aerated) and

fm = wm/27r = (2.8MH2/oersted)(47rM3 gauss). One more thing to include in the

calculation of larmor frequency is the linewidth, AH in order to account for magnetic

losses inherent in magnetic materials. This is done by using (4.36), giving a complex
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valued larmor frequency.

.11 yAH _ 2.81MH2 oersted AH oersted
 (4.36)

4.3.2 Demagnetization Factor

The internal bias field, H0 is not only dependent on the strength of the external static

bias field Ha, but also the direction of the field due to boundary conditions at the

surface of the ferrite [40]. Continuity of the tangential magnetic fields is an example

of such boundary conditions. For a thin plate or layer, an internal bias field will be

equal to the external bias field if it is in the direction parallel to the face of the layer.

However, if Ha is in the direction normal to that face, then the internal bias field is

reduced by a designated fraction of saturation magnetization.

H0 = Ha — NMS (4.37)

This fraction is called the demagnetization factor, N. For thin plates, the demagneti-

zation factor of the normal bias field is 1, and hence the internal field is reduced by

the full saturation magnetization. The demagnetization factor can be represented by

three components, N55, Ny, and N2, such that their sum is equal to 1. These three

components represent the demagnetization factors in the x, y, and z-directions.

N3; + Ny + NZ = 1 (4.38)

The components in (4.38) are illustrated in Figure 4.8 for thin plates, thin rods, and

spheres. The three components of the internal magnetic bias field can be written as

in (4.39).
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H01. = Hag; — NxMS (4.398.)

H02: 1' Hag — szl’js (4.39C)

The choice in this analysis for a bias field in the x-dircction was motivated by the

fact that the demagnetization factor is zero in this direction and the internal bias

field is unaffected by the saturation magnetization.

4.3.3 Bias Transverse to Direction of Propagation

Assume the geometry shown in Figure 4.1a where region 2 is a ferrimagnetic material

with no variance in the x and y directions and a x—directed bias field. The incident

wave is a plane wave traveling in the zrdirection given by (4.40) where both EU and

__§

H0 are constant vectors describing the transverse dependence of the fields.

~ Oe_jkzz (4.40a)

m
1

D
1
1

73’ =

71’ = 06—1122 (4.40b)

Then the six components of the two curl Maxwell’s equations are given by the

following:
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jszy = —ja‘110Ha; (4.41a)

—jszg; —_- —jw (11Hy+j16Hz) (4.41b)

0 = —jw(—j16Hy+11Hz) (4.410)

ijHy = jweEg; (4.41d)

—jsz$ = jweEy (4.418)

0 = jweEz (4.411)

Solving (4.41d,e) for H3; and Hy and inserting them into (4.41a,b,c), then (4.41a,b)

can be written in terms of Em and Ey only as given by (4.42).

‘ 13133, = 1.121105% (4.42a)

11 (kg — 1112115) Ea; = —w25I€2Ex (4.42b)

It is evident that there are two possible solutions for the wavenumber, kg, in (4.42).

The first solution from (4.42a) which can only be obtained assuming E3; = O, is given

by (4.43).

kg = 1.1m (4.43)

This wavenumber represents that of an ordinary wave since it is unaffected by the

magnetization. Therefore the permeability is that of free space and exhibits no mag-

netic behavior. This is due to the fact that the magnetic field components perpendic-

ular to the direction of bias are zero, hence Hy = H2 = O for x directed bias fields.

The other solution for k; occurs when Ey = O for (4.42b) and is given by (4.44),

where 116 is given by (4.45).

kg = (AA/1158 (4.44)
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116 = —— (4.45)

This wavenumber and effective permeability are representative of the

extraordinary wave which is affected by the magnetization and exhibits mag-

netic behavior. This permeability is dependent on the values, 111, 0120, and cum

introduced earlier in section 4.3.1. Thus if a wave has electric polarization in the

y direction the wave is ordinary, while an x-directed electric polarized wave will

be extraordinary. This effect is termed birefringence [40]. Figure 4.9 illustrates

a plot of normalized effective permeability for an extraordinary wave as shown in

(4.45). In Figure 4.9 the wavey line indicates the ferrimagnetic resonance (FMR)

frequency which separates the region where the real part of permeability is positive

2
(11 > K2) from the region where the real part of permeability is negative (112 < K32).

Thus the effective wavenumber for an extraordinary wave, kg = “W1 will show

propagating modes for frequencies less than FMR. However, assuming negligible

loss, the effective wavenumber will become purely imaginary for frequencies above

FMR, and the waves will become evanescent. This is illustrated in Figure 4.10 for

the effective wavenumber normalized by the free space wavenumber. A final note on

FMR, as the static bias field is increased or decreased, the FMR frequency will also

increase or decrease. This is a very useful property of ferrimagnetic materials since

the permeability can be controlled.

4.4 Layered Composite of Ferrimagnetic and Dielectric Materials

This section analyzes the effects of layering on a composite consisting of alternating

biased ferrimagnetic materials with anisotropic permeability and isotropic dielectric

layers. The analysis follows the same approach as in section 3.2. The effective per-

mittivity and permeability will be calculated for three different volume fractions and

plotted versus number of layers in order to observe the effects of increased layering
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and volume fraction. The ferrimagnetic material is a magnetic garnet (Yttrium Iron

Garnet, TYIG), with 47rM3 = 2050 gauss, AH = 5 0e, er = 14 — 30.002 and is

biased by a static magnetic field in the x—direction with a field strength of 250 Oe.

The YIG material properties are taken from a Trans-tech data sheet . The dielectric

layers are Teflon with the properties 5r = 2.08 — 30.001 and 117~ == 1. The frequency

was chosen to be lGHz such that it is below FMR with a real permeability of approx-

imately 10 and the material thickness is fixed to 2mm while the number of layers is

increased for three different volume fractions. The choice of thickness was to ensure

the composite was much smaller than a wavelength for homogenization. Using the

formulation above, the reflection and transmission coeflicients are calculated for the

layered anisotropic region so that the effective permittivity and permeability may be

extracted. Figure 4.11 illustrates the effective permeability of the layered composite

for ferrite volume fractions fF = 0.75, 0.5, and 0.25, for the case when the ferrite

is the outside layer and also when the dielectric is the outside layer. Figure 4.12

illustrates the same analysis for the effective permittivity. As observed in 3.2, the

permittivity and permeability can be controlled by the number of layers and volume

fractions such that the tunable permeability range is 2.5 to 9.4 and 3.8 to 12.2 for

tunable permittivity. This is summarized in Table 4.1. In conclusion, the effects of

layering demonstrated in Chapter 3 for tunable permittivity based on volume fraction

and contrast ratio have been illustrated here for both permittivity and permeability

for physical materials that can be realizably manufactured into this form. Finally, a

method for analyzing a structure with anisotropic materials has been presented and

confirmed. This tool is used in a further analysis in the simulation of a layered comp—

soite which yields negative effective permittivity and permeability. This is described

in the following section.
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4.5 Simulation of Double Negative (DNG) Material

Double Negative (DNG) materials offer the potential for realizing interesting effects

when used in a variety of applications. A DNG material is a composite material,

or mixture, whether ordered or unordered, of two or more constitutive materials

yielding effective properties significantly different than the individual components.

The majority of these materials to date are made by embedding periodic metallic

inclusions in a polymer matrix (sometimes literally by hand assembly using laminated

boards [43]). There is some controversy regarding the behavior of such materials,

especially on the scale of the inclusions themselves; however, there is clear macroscopic

experimental evidence that some interesting behavior can be predicted if the two

constitutive properties are simultaneously negative. One of the main subjects of

controversy involves the use of periodic inclusions and whether such a composite

material really can be interpreted as being DNG [44].

In this section, the use of non-periodic solutions to achieve both negative permit-

tivity and permeability is discussed using the method derived in this chapter. The

hypothetical composite will be formed by a bilayer stack comprised of alternating

layers of narrow linewidth ferrite and suitable plasma tubes. The miniature plasma

tubes can be created using microwave applicators [45] and can exhibit the behavior

of negative permittivity for an operating frequency below the plasma frequency. Fi-

nally, the dimensions of the layers are key to homogenization: the effective materials

properties must result from a large number of layers within a single wavelength.

4.5.1 Plasma as ENG Layer

Plasmas operating below the plasma frequency (w < cap) will exhibit a negative

effective permittivity as is evident by (4.46) for the effective permittivity of a plasma.

wf)
Eeff=€0 l-E (4.46)
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Typically, the plasma frequency can be calculated by (4.47), which is a function of

number density, n, as well as charge of an electron, e = 1.6 x 10_19, mass of an

electron, m = 9.31 x 10‘31, and permittivity of free space.

.62 %
Lap 2 (___) (4.47)

60771

Once plasma is immersed in a bias field, Ha, both the plasma frequency and effective

permittivity will be altered. The plasma frequency is replaced with the upper hybrid

frequency, wh, which is a function of both plasma frequency and cyclotron frequency

[46]. The cyclotron frequency is dependent on the bias magnetic flux strength, B =

110Ha where the permeability of the plasma is taken to be that of free space.

B
we = e— (4.48)

m

Using (4.48) along with the plasma frequency the upper hybrid frequency is calculated

and inserted into the equation for effective permittivity of plasma biased by a magnetic

field.

. 2 2 2

0%
Eeff = 50 (1— 7) (4.49b)

w

(4.49a)

This effectively negative dielectric constant is illustrated in Figure 4.13 for two differ-

ent number densities and two different bias field strengths. The upper hybrid plasma

frequencies are also displayed for the different cases from left to right as vertical dashed

lines. The effective permittivity is negative for frequencies to left of the dashed lines

for the corresponding cases. As seen in Figure 4.13, increasing the number density

or bias field strength will shift 0)), higher in frequency. This will be useful for con-
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trolling the plasma permittivity when trying to simulate a double negative material.

The effective permittivity of biased plasma shown in (4.49b) and Figure 4.13 is an

approximation that allows representation of the plasma as an isotropic medium. This

is useful for quickly determining the number density and bias field strength necessary

to achieve the desired plasma properties. However, the permittivity of magnetized

plasma is anisotropic with the permittivity tensor shown in (4.50) for a bias field in

the x-direction.

  

53 0 0

[E] = 0 51 3'52 If; - bias (4.50)

0 —j52 51

The elements of the permitivity tensor are given by (4.51).

2

81 = 80 (I—(jg—C-fi) (4.513)

1.11 w 2 we 01

82 = 80 (( 1p: ()wc(/w)/2 )) (4.51b)

w?»
53 = 80 —;§ (4.510)

Ideally the plasma layer would be solely plasma, however this is not always practical.

 

Therefore, the plasma layer can be implemented using an array of tightly packed

plasma tubes or one wide plasma tube [45]. Preferably the tube or tubes would be

rectangular in shape to improve packing. The tubes are generally made with quartz,

which is used in this analysis and when referring to the plasma layer it implies that

each layer is surrounded by a thin layer of quartz. Within each plasma layer, the

quartz between adjacent plasma tubes has been neglected since it represents only

a small portion of the layer volume and contributes little to the effective material
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properties.

4.5.2 YIG as MNG Layer

The other material in this double negative composite is a narrow linewidth magnetic

garnet operated near ferrimagnetic resonance (FMR). quuencies immediately above

FMR will exhibit a negative effective permeability over a narrow frequency band as

can be seen in Figure 4.9.

4.5.3 DNG Layered Composite

Now that the individual plasma and ferrite layers have been introduced, the lay-

ered composite with negative effective permittivity and permeability can be mod-

eled through the use of the methods described in section 4.1. One layer con-

sists of the tightly packed rectangular plasma tubes with electron number density

n = 8 x 1017 (m-3) . The thickness of each plasma layer is 0.5mm and surrounding

the plasma layer is 0.1mm layers of quartz on both sides. YIG is again chosen as the

narrow line-width ferrimagnetic material with layer thickness of 0.4mm and material

properties described in section 4.3 The x-directed static bias field is chosen to be

1000e such that the plasma permittivity and the ferrite permeability will be simul-

taneously negative as shown in Figure 4.14. These values were calculated using the

effective permeability and permittivity equations given in (4.45) and (4.49b). Figure

4.15a illustrates the configuration for the first case to be analyzed. This case has the

ferrimagnetic layer first followed by the quartz-plasma-quartz layer next and contin-

ues for a total number of seven plasma and ferrimagnetic layers. As expected, this

composite yields effective constitutive parameters of a double negative material shown

in Figure 4.16. Another observation is the non-trivial less this material exhibits, ren-

dering it so lossy it will not be of very much practical use except as a narrow-band

absorber. The next case interchanges the ferrimagnetic and plasma layers as shown

in Figure 4.15b and the permittivity and permeability are displayed in Figure 4.17.
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This also yields double negative material properties along with the resulting high

loss. An interesting result in this latter case is how the real and imaginary parts of

permittivity and permeability are approximately the same around 2-2.1GHz. This

implies that this material has all the same effects as the double negative composite

however the wave impedance which is the square root of the ratio of permeability to

permittivity is nearly 1, which is that of free space.

This section discussed using the formulation in section 4.1 to synthesize a DNG

material through the use of multi-layer anisotropic structures. By using a layered

material with alternating narrow linewidth ferrimagnetic and plasma sub-wavelength

layers emerged in a static bias magnetic field, an effective double negative material

can be achieved if operated at the proper frequencies. This multilayer structure

avoided the use of transverse periodic arrays typically used to form a DNG material.

Use of wave matrices allowed for determination of the propagator matrix, which was

used to calculate the reflection and transmission matrices. This gave the 521 and

311 from which the complex permittivity and permeability of the composite could be

extracted using a two dimensional traditional root searching algorithm and was shown

to exhibit negative effective homogenized permittivity and permeability. There has

been much research into DNG materials and their applications [47, 48, 49, 50, 51, 52].

The purpose of this section is to look at alternative physical materials in the making

of such a material. It has been shown the layered composite does exhibit the effective

properties of a DNG material, although the material exhibitshigh dielectric and

magnetic loss as well as narrow bandwidth thereby limiting its practical applications.

The fundamental explanation for this behavior is the fact that a resonator is used to

achieve a negative effective permittivity (e.g. the ferrite acts like a lossy capacitive

material).
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Figure 4.1. Geometry for anisotropic layered material derivation.
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Figure 4.3. Scattering parameters for free space case.
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fF 0.25 0.5 0.75 II Total
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Eeff 3.8-6.8 6.1-10 9.2-12.1 ll 3.8-12.1

 

 

      

Table 4.1. Tunable Effective Permittivity range summary for anisotropic layered

composites.
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CHAPTER 5

COMPOSITES WITH ROD SHAPED INCLUSIONS

The purpose of this chapter is to gain insight into the possibility of a composite

material with tunable permittivity and permeability using a geometry consisting of

rods (or wires) evenly dispersed throughout a background medium. As was done in

the previous chapters, the scattering parameters are calculated at the front and back

interfaces of the composite through which the complex permittivity and permeability

can be extracted [5]. A domain integral equation formulation is employed to calculate

the unknown electric fields within the material region [53, 54, 55]. Once these fields

are known, the scattering parameters can be determined by taking the ratios of the

reflected and transmitted fields to that of the incident field. The integral equation

is solved using the method of moments with pyramidal basis functions and point

matching over a mesh of triangular cells [58, 54, 55]. Although the composite is

infinite in the y—direction, use of a periodic green’s function allows the problem to

be reduced to a unit cell. This unit cell is then replicated infinitely in the :l:y-

direction through a Floquet series [54]. However, the periodic Green’s function is

slowly converging when performing the necessary summation in the spatial domain.

Therefore a method for accelerating this calculation using the Poisson summation

formula is employed to convert the spatial summation into a spectral summation

which is more rapidly convergent [56, 57].

Once the formulation has been completed and verified against exact solutions,

the analysis will proceed using the same two materials as in the previous chapter.

These are Teflon and a narrow line-width garnet, YIG, which is biased by a static

magnetic field perpendicular to the direction of propagation. The bias field allows the

permeability of the YIG to be controlled at the desired frequency of operation, see
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section 4.3. Although YIG is an anisotropic medium, the permeability tensor can be

accurately simulated using a scalar quantity which predicts the effective permeability

and allows the ferrimagnetic material to be modeled as an isotropic material [40].

The effects on the homogenized permittivity and permeability of the composite will

be investigated by altering the volume fractions of the two materials and increasing

the number of cylinders in the direction of propagation either in a row or stagered

between adjacent layers. Finally, the effects of inserting holes, or pockets of free space,

into the composite will be examined.

5.1 Background and Derivation

5.1.1 Geometry

The geometry of the unit cell for a core—shell cylinder inside a square background is

illustrated in Figure 5.1. The two-dimensional surface, which lies in the x-y plane, is

discretized into small triangles, called facets. The composite is assumed to be finite in

the x-direction and to extend to ice in the z-direction with no z-variation (6/62: = 0).

Also, since the unit cell is replicated to :too in the y—direction, the edges at the top

and bottom of the unit cell are periodic boundaries. As will be explained further in

section 5.1.2, the vertices of each triangle are the locations of the unknown electric

field expansion functions called nodes. The fundamental geometry is designated such

that concentric cylinders are placed in a rectangular region. The radius of the outer

cylinder is chosen based on the desired volume fraction for that region. Thus for the

example given by Figure 5.1, the outer radius gives a cylinder whose volume fraction

is 0.5 implying that it occupies half of the total volume of the composite. Finally, the

radius of the inner cylinder is always chosen as half the radius of the outer cylinder

for convenience.
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5.1.2 Integral Equation

The process of calculating the scattering parameters for this type of composite is

done using an integral equation formulation for which the unknown electric field is

found using the method of moments [53, 58]. An integral equation is one in which the

unknown appears within the integral. This particular approach uses an electric field

integral equation, EFIE, to model a two-dimensional penetrable scatterer assuming a

normally incident transverse magnetic, TM, plane wave traveling in the +x-direction.

The term penetrable is used to indicate that the unit cell is inhomogeneous with

varying permittivity and permeability for which the incident wave can penetrate.

This implies that the integral equation unknowns must be calculated throughout the

entire domain as opposed to just along a particular surface, as is the case for a PEC

scatterer or homogeneous region. In the example shown in Figure 5.1, the composite

could be broken into three regions in which each region has a different permittivity

and permeability. For instance, one region could be the area exterior to the outer

cylinder, a second would be the ring-shaped area between the concentric cylinders,

while the third and final area would be the innermost cylinder.

As illustrated in Figure 5.1, the unit cell is discretized into nodes, edges, and

facets. The nodes represent the unknowns that are to be calculated and the patches

”are regions of constant permittivity and permeability while the edges separate these

regions. In many cases, the unknowns are electric or magnetic currents; however,

in the case of a penetrable scatterer it is often more convenient to represent the

unknowns in terms of the electric and/or magnetic fields. In this work, the unknowns

are the z-directed electric field as will be shown below.

Physically speaking, the incident plane wave will strike the composite and set up

polarization currents within the material. These currents then reradiate a field called

96



the scattered field. The superpostion of these two fields gives the total field.

E’tot ___ fine + 1:33ch (51)

One possible manner of representing the electric and magnetic scattered fields is in

terms of their vector potentials. More specifically, the magnetic vector potential, X,

l_)

is calculated from electric current density, J , and the electric vector potential, F,

from magnetic current density, If), through the relationship given by 5.2.

* (5.2a)
"
m
l

>
1

:1

a
1

k
l

G

:1: G (5.2b)

The symbol * is used to denote the spatial convolution where G signifies the Green’s

function. For the geometry used in this analysis, G is the two-dimensional free space

Green’s function

G = —:H32)(klrl> (5.3)

(2)
where H0 is the zero-th order Hankel function of the second kind representing an

outgoing cylindrical wave with free space wavenumber, k = cum. Combining

5.2 and 5.3 and giving the convolution in its integral form, the vector potentials

can be written by 5.4 where 77’ and 3) indicate source and observation locations,

respectively.

>
1

u f/7<r'>;,1—jH32l<k17—-p"1>dr’ (5.4a)

// R’(?’)4in32)(klr — ‘B’nd‘fi’ (Mb)"
1
1
1
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Using 5.4, the scattered electric and magnetic fields can be calculated by the following
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equation through a process known as integration-fallowed—by-differentiation [54].

‘53ch = —jkn;f — V x F (5.5)

The symbol 7} = «110/130 is the impedance of free space. Equation 5.5 represents

the scattered electric field in terms of the electric and magnetic current densities.

Using this expression in the equation for the total electric field and rearranging gives

a commonly used form of an integral equation.

it“ + 3‘an + v x 73 = Kim (5.6)

The incident field is placed on the left hand side of this equation since it is a known

quantity and for the upcoming linear algebra operations is the most convenient po—

sition. The unknowns on the right hand side of the equation are the electric and

magnetic current densities as well as the total electric field. Each of these values

are vector quantities which have three components, one for each direction in the

Cartersian coordinate system (at, y, 2).

Since the incident field is TMZ , all six of its electric and magnetic field components

may be written in terms of the z-component of the electric field. Also, a z—directed

electric field incident on a scatterer will induce surface currents that are in the z—

direction and proportional to the total z—directed electric field. Therefore, it would

be most beneficial to represent all the unknowns solely in terms of the z-directed total

electric field Ez- Note the subscript ”tot” for the total field has now been suppressed

for ease of notation. The integral equation is now reduced from a vector form to a

scalar form.

E2 + jknAz + 2. v x 75 = E?“ (5.7)

The electric and magnetic vector potentials are functions of magnetic and electric
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currents which can also be written in terms of the total electric and magnetic fields

through the following relationships.

= jw50(€7~ —- 1)? (5.8a)

a
t

k
l

= ijOWT‘ — 1)H (5.81»

where the relative permittivity and permeability are given by Er and pr, respectively.

Now using the following form of Faraday’s law, the magnetic field can be written in

terms of the electric field. This can be used in the expression for the electric vector

potential Fl through the calculation of the magnetic current density If.

—->

V X E = —jwp0prfi (5.9)

“7' _ 1v x "E’ (5.10)

#1"

 I?

Now the integral equation in 5.7 can be written entirely in terms of the total z—directed

electric field, Ez, using 5.10, 5.8b, and 5.2.

 

E2716 = E3 — 1132(51' —1)Ez * G —' 2- V X {(#Tp— 1V X 2E3) * G} (5.11)

7"

Since it is a constant within each triangular region, the relative permeability in the last

portion of the right hand side of 5.11 can be brought outside the curl operations. Also,

since the integral operations will be performed numerically, it is more efficient to move

the differentiation inside of the integral where it can be performed analytically. This

changes the current process to a differentiation-fallowed-by-z'ntegration procedure

[54]. The identity in 5.12 shows how the curl-curl operation in 5.11 can be reduced
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to a transverse laplacian operation.

_. _. 274’ A _.
VXVX A: (Vtxvtx At—Qggg‘i‘thB—f)+5(3(Vt'At)—VEA2)

(5.12)

Finally, the integral equation can be given entirely in terms of Ez in its most compact

form.

[tr -' I

#r

Egnc .—_ Ez — k2(er —1)Ez 1: G + ng2 at G (5.13)

The integral equation can now be solved for using the method of moments [58]. The

scatterer is discretized into N nodes forming a mesh of triangular facets as demon-

strated in Figure 5.1. The unknowns are expanded in terms of pyramidal basis func-

tions in which the unknown becomes a linear interpolation of its surrounding nodes.

This is illustrated in Figure 5.2 and displayed mathematically in 5.14 for a single

triangular patch with a local numbering system such that local node 1 is the nth

node of interest.

a: —:r +2: — + x —a:Bn(:c,y)= (23/3 3%) (92 313) 31(3 2)
(5.14)

(1323/3 - 93392) + 931(1/2 - 313) + y1($3 - 162)

As node n is approached the value of the basis function tends to one, and as the

other nodes are approached the basis function goes to zero. Using this basis function,

the total field within the cylinder can be given by the superposition of the unknown

electric fields multiplied by the basis function.

N

7121

Applying point matching, and inserting 5.15 into 5.13 and separating out the still
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unknown electric field coefficient, en, the following matrix equation is formed.

r y r 1

e1 E%"C($1ay1)

e2 E§”C(a¢2, 312)

[Z]<. [=1 e 1 (5.16)

    [ eN [ EfanWNwN) J
J

The impedance matrix, Z, is given by 5.17 where 5;,” is the Kronecker delta funtion

(i.e. 6;,” = 1 if n = m and is zero otherwise). If the total number of nodes is given by

N, the impedance matrix has NcrN elements since for every mth observation node

th
there is a contribution from every n source node. For instance, the entry Z25 is

the contribution of the field at node two due to the source at node five.

 

”'7" $=$m19=ym

Once the impedance matrix has been constructed, the unknown electric field coeffi-

cients, 67;, can be calculated by inverting the impedance matrix and multiplying it

by the incident field column vector.

{en} = [21—1 {E2710} (5.18)

In the process of evaluating the impedance matrix it is important to note that the

terms which perform a derivative on the basis function can be reduced from a two

dimensional convolution of the surface of each triangular patch to a one dimensional

convolution over the patch’s edges using Stoke’s theorem. This is more easily seen in
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5.11 with the curl-curl operation.

f/v x (v x 2Ez)-d§ = /A (v x 2E2) «17 (5.19)

The triangle symbol under the integrand in the right hand side is used to denote a

closed loop integral around the entire triangular surface. The pyramidal basis function

is now only differentiated once each with respect to x and y, then it is dotted with

the vector tangent to the triangle edge being integrated, (IT. The second term on

the right hand side in 5.17 is integrated over the surface of the facet and is performed

using a seven-point quadrature routine.

A final important point involves the use of the pyramidal basis functions. As the

impedance matrix is filled, the fields at node m due to the sources at node n are being

calculated as mentioned earlier. However, this basis function is slightly more complex

than in the case of pulse basis functions since the source at node n has contributions

for all its neighboring facets for which it is a vertex. Therefore, in each entry of the

impedance matrix there is a summation over all adjacent triangles at every nth source

node.

Section 5.2 will illustrate some examples of this formulation for a single circular

cylindrical rod in free space along with comparison to an exact solution of the same

problem for purposes of verification.

5.1.3 Periodic Green’s Function

The geometry being modeled is a slab with dimensions that are infinite in the y and

2 directions and has a finite thickness in the x-direction. The infinite extent in the

z—direction is accounted for by the fact that the problem is implemented in two di-

mensions (x-y plane). However, the infinite y-direction is realized through boundary

conditions inherent in the periodic Green’s function. These periodic boundary condi-

tions are sometimes referred to as Floquet harmonics. The periodic Green’s function
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with period b is given by 5.20 where the primary difference from the original Green’s

function in 5.3 is the dependence on the progressive phase shift of the incident field

in the y-direction.

 

oo .

1 2 . -77

Gp<x.y|x’,y’>=,—,3 E) H8’(k\/<x—w’>2+<y—y'—zb>2)e My” (520)
iz—oo

For the problem presented here, the incident field is propagating along the x-axis

and therefore kg = O and the exponential term at the end is equal to unity. This

periodic Green’s function may be inserted into 5.17 for the two-dimensional Green’s

function allowing for the simulation of a large (ie. infinite) structure to be reduced

to that of a unit cell. The difficulty of this method is in the slow convergence of

the periodic Green’s function which involves a spatial summation of the zero-th order

Hankel function [56, 57]. This is visually demonstrated in Figure 5.3 which shows how

oscillatory the real and imaginary parts of the hankel function can be as the argument

gets larger. The usefulness of the periodic Green’s function is greatly limited by this

slow convergence since it significantly increases the computation time in the method

of moments solution of the integral equation formulation in order to get an accurate

result. Therefore, it is desirable to find a method to accelerate this convergence.

The Green’s function in 5.20 can be seen as a response to a periodic array of phase

shifted point/line sources given by 5.21 [57].

m u .

J(:r, y) = 2: 5a — x’)e—]ky2b6(y — y’ — 1b) (5.21)

i=—oo

A method commonly referred to as the Poisson sum transformation can be applied

to this expression for current which involves taking the Fourier transform and then

its inverse [54]. The transform of the periodic array of point/line sources will give an

array of periodic current sheets [57]. Once the inverse transform has been performed,
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the resultant expression for the periodic current sources is a spectral summation

rather than a spatial summation.

1 00 fl» (5! y')_ l " " ‘-
J(J:,y) — fi . 2 6(11: — :c )6 ya (5.22)

22-00

where

27ml

Therefore the response to this expression for current is given by a new form of the

periodic Green’s function which is also a spectral summation and is proportional to

the inverse of the period.

 (5.24)

where

112—5. 1ka >192.

km = W 317' (5.25)

—j, (13,. — 15211155,. > k2

For the ”off-plane” case (x 74 :r’), as It] is increased, the wavenumber kyz' trans-

forms from positive real which represents an outgoing propagating wave to negative

imaginary which gives an evanescent wave. Therefore, as |z'| increases, the summation

in 5.24 begins to converge exponetially reducing the computational cost considerably.

However, in the ”on-plane” case (a: = $5,), the source and observation point lie on the

same current sheet, and the exponetial term with kg; disappears and the summation

is again slowly converging. There are additional/alternate approaches to accelerate

the summation and to account for the ”on-plane” situations [54, 56, 57], but as shown

in section 5.2, this method provides sufficient accuracy as long as the summation is
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given enough terms in the case when a: = :r’ .

A final consideration when using the periodic Green’s function is that the nodes

along the periodic boundaries on the top and bottom of the unit cell must be congru-

ent. The reason is that the nodes along opposite boundaries are essentially the same

node since as the unit cell is repeated in one direction or the other, the nodes that

were on the top, become the nodes on the bottom and so on. For the case of a strip

grating where a portion of the unit cell is PEC which has a surface contribution to

the convolution integral, and the other is free space, which is not being integrated,

the congruency can be easily realized. As long as that portion not being integrated

is placed at one of the periodic boundaries there will be no further steps needed.

However, if both boundaries contribute to the convolution, as is the case in this work,

than this problem can not be ignored. If nothing is done, when the operation in 5.18 is

done, the unknowns will be incorrectly calculated because the top and bottom nodes

would have been superimposed yielding inaccurate results. The solution is to create

the impedance matrix, [Z], as normal but before calculation of the unknowns using

5.18 can be performed, the nodes at either the top or bottom must be eliminated after

their contribution has been incorporated into the remaining entries of the impedance

matrix. This is best explained through a simple example, consider the following 3x3

impedance matrix and 3x1 forcing vector.

    

- , - .

All 412 413 b1

[Z]: A21 A22 A23 1 {1’}: b2 (526)

(A31 432 433_ _b3,‘

The 3x3 impedance matrix is analogous to a mesh containing three nodes. Suppose

node three is the node on the periodic boundary chosen to be eliminated. The im—

pedance matrix and forcing vector would be reduced to a 2x2 matrix and 2x1 column

vector and the contribution from node three is absorbed into the remaining entries of
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the reduced tensors.

A +A +A +A A +A[Znew] = 11 31 13 33 12 32 (5.275)

L A21+A23 A22

b1+b

{Unew} = 3 (5.27b)

b2 
Even if the situation from the strip grating example were present in which the nodes

along the periodic boundary were free space, this step could be utilized to reduce the

size of the impedance matrix and forcing vector. The reason is that there would be

no contribution from node three if it was free space and those entries would be zero.

Once the integral equation formulation in section 5.1.2 has been verified by com-

parison to the exact solution for the unit cell alone, see section 5.2, the periodic

Green’s function will be inserted in place of the two-dimensional free-space Green’s

function given by 5.3. This will give the infinite structure needed for the analysis.

5.2 Verification of IE Code

If possible, it is important that once computer code is written, it should be checked

against exact solutions to look for errors. If it is not feasible to get an exact solution for

comparison, then possibly one could obtain experimental data or even another code

which has been verified. In this section, the code implemented in this dissertation

will be compared against exact solutions for a circular cylindrical rod extending to

infinity along its axis, and an infinite planar slab. The slab extends to infinity in both

directions perpendicular to the direction of wave propagation.

5.2.1 Penetrable Cylinder

Surface currents on a penetrable cylinder in free space that extends to infinity in the

z—direction along its axis will be compared to an exact solution using the integral
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equation described in section 5.1.2. A TM2 plane wave is incident in the x—y plane

along the d) = 0 direction and is assumed to have unit amplitude. Three cases will

be calculated and compared to determine validity. These are for a purely dielectric

rod, purely magnetic rod, and a combination. of lossy dielectric and magnetic material

properties. A derivation of the exact solution for scattering from a cylinder can be

found in the appendix of [55]. The region outside the outer cylinder is set to free space

while the region within the outer cylinder is set to a homogenous material depending

on the rod material being analyzed. In all three cases the radius of the cylinder is

0.6)..

The first case to be investigated is a lossless dielectric cylinder, with relative

permittivity er = 4. Figure 5.4 illustrates the accuracy of the integral equation cal-

culations in both magnitude and phase for the surface currents along the cylinder.

This provides assurance that the geometry and mesh input information are in cor-

rect format as well as the quadrature performing the surface integration is yielding

accurate results. The next case will confirm the line integration is working correctly.

The cylinder is now a purely magnetic rod with relative permeability pr = 3.3 and

Er = 1. Again, the results shown in Figure 5.5 demonstrate good agreement with the

exact solution and verfication in the use of the line integral routine. The final test of

the code is a cylinder with both permittivity and permeability greater than one, as

well as dielectric and magnetic losses. The properties of the rod are pr = 5.1 — 30.2

and Er = 2.2 — 30.01. Figure 5.6 shows good agreement between the integral equa-

tion formulation and the exact solution. The results of the previous three tests gives

confidence in this code and its ability to accurately calculate the fields for a variety

of material types. The following section will take the verification process one step

further and ensure that the periodic green’s function is properly implemented.
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5.2.2 Infinite Slab

This section will check the validity of the periodic Green’s function when inserted

into the integral equation code which was demonstrated to yield accurate results in

section 5.2.1. The periodic green’s function allows in infinite periodic structure to

be modeled using only a unit cell the size of the structure’s period. Verification

of this capability can be accomplished through comparison of scattering parameters

for that of an infinite homogeneous slab. The exact solution for scattering from

a slab has been illustrated in both chapters 3 and 4 for isotropic and anisotropic

materials, respectively. As before, the incoming wave is TMZ and normally incident

on the planar surface. The thickness of the slab is 5mm and the material properties

are the same as those in the preceding example of a lossy magneto-dielectric rod,

pr = 5.1 - 30.2 and 81' = 2.2 — 30.01. The scattering parameters, 311 and 321,

are calculated from 1-3GHz. Figure 5.7 shows how accurate the integral equation

formulation is able to calculate the scattering from a structure with infinite one-

dimenstional periodicity.

One further test of this formulation is to extract the complex permittivitiy and

permeability from the scattering parameters of the slab using a two-dimensional New-

ton’s root searching algorithm as described section 2.4.3. The permittivity and per-

meability of the slab whose scattering parameters are given by Figure 5.7, are shown

versus frequency in Figure 5.8. The extracted values are exactly the permittivity and

permeability entered in order to calculate the scattering parameters.

The code and formulation has now been sufficiently verified, the next step is to see

the effects of various circumstances on the homogenized permittivity and permeability

of a composite involving cylindrical shaped inclusions.
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5.3 Analysis of Composite

Now that the formulation and code has been verified as being capable of handling

this analysis, the goal is to understand how this type of geometry can be used to

control and effectively tune the electromagnetic properties of a composite containing

rod shaped inclusions. The investigation will proceed using the same two materials

used in the analysis of layered anisotropic materials in chapter 4 and the frequency

will again be 1GHz. The dielectric material is Teflon with Er = 2.08 — j0.001, pr = 1

and the magnetic material is YIG with a static magnetic bias field directed along

the axis of the cylinder. The choice for this direction of the magnetic field is due

to the fact that the demagnetization factor along this axis is zero and hence does

not require a very strong field to achieve the desired magnetic properties. This is

equivalent to a bias field in the direction transverse to the wave propagation in the

layered material analysis in the previous chapters. The permeability of the magnetic

material is modeled using the extraordinary wave effective permeability from 4.45.

The permeabililty for a slab of anisotropic ferrimagnetic material with a bias field

perpendicular to the direction of propagation is caclulated using methods of chapter

4 and given in Figure 5.9 along with the permeability using 4.45. This reinforces

the possibility of representing the anisotropic magnetic material in this analysis using

a scalar value for simplicity without loss of accuracy. In the following cases, the

thickness of the composite slab is kept constant at 2mm. The effects of layering are

investigated by increasing the layers of rods from one to five layers. By varying the

radius of the cylindrical inclusions, the volume fraction effects can be illustrated. Also,

the effects of placing holes, cylinders of free space, inside the composite are analyzed

and finally for all situations the dielectric and magnetic materials are interchanged

to see those effects as well.
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5.3.1 Geometries

The mesh created for each geometry begins with a specified volume fraction for the

cylindrical inclusions. The two main choices have been 0.5 and 0.2 which implies that

the volume contained within the outermost cylindrical radius is half and one—fifth

the total composite volume, respectively. However, within each mesh is a second

concentric cylindrical ring at a radius exactly one-half that of the outer radius. This

additional radius gives the option to analyze smaller volume fractions or to attempt

any core-shell models. A consideration of the mesh will show how the actual volume

fractions differ from the specified volume fractions of 0.5 and 0.2 since the cylinders

are broken up into eight triangles as illustrated in Figure 5.1. This actually gives

a volume fraction of 0.45 and 0.18 rather than 0.5 and 0.2 respectively. Finally,

the effects of additional layers of cylinders inline with each other and staggered are

incorporated as well. Figure 5.10 - Figure 5.14 show all of the geometries created and

described in this paragraph where the values of a, b, and h are different depending

on the situation while t = 2mm in all cases.

5.3.2 Increasing Layers

The first case involves the magnetic cylinders with inclusion phase volume fraction

of 0.45 and the number of cylinders are increased from one to five. Figure 5.15 a,b

illustrates the effective permittivity and permeability for the case when the layers

are aligned such that each successive rod is directly behind the other. Figure 5.15

c,d is for the case when the rods are staggered. It is clear that there is no effect

on the composite’s electromagnetic properties when increasing the number of layers

for evenly spaced cylindrical rod-shaped inclusions. Another important observation

is the permittivity and permeability are the same whether the rods are aligned in a

straight row or whether they are staggered. These results could be the consequence

of the electrical sizes of the rods and composite structure. The thickness of the entire
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composite is only 1/150th of a free-space wavelength and the rod is still smaller

yet. The subwavelength thickness allows the properties of the material to easily

become homogenized as in the case of large number of planar layers. In comparison

to increasing planar layers, as the number of cylinders increases, wave propagation is

not impeded as dramatically since portions of the slab with cylinders are homogeneous

depending on the line of sight which would allow for easier propagation. As the planar

layers are increased the waves experience more reflections or bounces and this creates

different values for permittivity and permeability and increases loss in the case of

greater attenuation. The effect of increasing the number of cylinders was investigated

for other volume fractions and the result was always the same and therefore those

results have been left out of this work to avoid redundancy. All the following analysis

have also been performed for one, three and five layer cases but have also been left

out here for the same reason.

5.3.3 Volume Fraction

The next aspect of design to be investigated involves the effects of volume fraction.

For the case of a one cylinder layer a volume fraction of 0.45 would require an outer

cylinder radius of b = 0.8mm giving an inner radius a = 0.4mm. The volume fraction

for the outer radius of 0.8mm implies that the entire cylinder including the inner

cylinder is part of that inclusion phase. Thus the inner radius yields a volume fraction

of 0.08 for the inclusion phase. In the other case, with a volume fraction of 0.18, the

outer radius is b = 0.5mm and the inner radius becomes a = 0.252mm analogous to

a volume fraction of 0.032. Therefore, with these two meshes, four different volume

fractions can be investigated and then if the materials are interchanged, such that

Teflon becomes the cylindrical inclusion and YIG becomes the environment medium,

another four volume fractions of the magnetic material can be realized which are 0.55,

0.82, 0.92, and 0.968. The effects of volume fraction on homogenized permittivity and
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permeability have been illustrated in Figure 5.16a for increasing volume fraction. The

loss tangents are given in Figure 5.16b.

As expected, the effective permittivity and permeability increase as the volume

of YIG is increased within the composite. The permittivity increases steadily as the

volume fraction is increased. On the other hand, it seems that volume fraction has

only a slight effect on permeability when that value is below 0.45 and the rod is

YIG with a surrounding dielectric. Once the materials have been interchanged the

permeability takes a large jump from 2 to 4.3 for the a volume fraction of 0.55 then

begins to take a steady increase as the volume fraction is continuously raised. This

phenomenon also occured in Chapter 4 for the case when the YIG was the outer

layer a higher effective permeability was achieved. A possible explanation for the

large jump in permeabililty is that when the YIG is the environment it interacts

with the incoming field directly as opposed to the wave propagating through the

dielectric first and this seems to yield a greater permeability. This is evident in the

case of interchanging the YIG and Teflon material phases. However, having the YIG

as the environment gives it a planar surface, which happens to match the incident

field’s wavefront and this could have an impact on the permeability as well. It should

be noted that greater volume fractions for the cylinder were not attempted because

the cylinder would need to take on non-cylindrical shapes if the volume fraction

were going to increase in order to fit within the unit cell. This analysis illustrates

a tuneable relative permittivity from 2.8-13.9 and relative permeability from 1-10.8

based on the volume fraction of YIG versus that of Teflon. Unfortunately, for the

cylindrical geometry, as the volume fraction for YIG is increased, the magnetic loss

is also increased.

In many situations, researchers are avoiding the use of magnetics because of the

loss inherent in most magnetic materials. Therefore, much work involves purely low-

loss dielectric composites consisting of some polymer and a ceramic called alumina
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which has a dielectric constant of 10 [59]-[62]. So as an illustration, a composite

consisting of Teflon and alumina will be analyzed using this geometry over various

volume fractions. The composite will begin with an alumina cylindrical inclusion

and the Teflon background material and once a volume fraction of 0.45 is reached,

the materials will be switched as was done previously. The results are displayed in

Figure 5.17. Only the permittivity has been included in the plot since the composite

is non-magnetic. The effective permittivity for this composite takes a similar trend to

that of the YIG and Teflon previously shown and gives a tunable permittivity range

of 2.3 to 9.8 with very low loss.

5.3.4 Free-Space Inclusions

The final step in analyzing this composite is to see the effects of holes, or pockets of

free space on the permittivity and permeability. The first of four trials is just a YIG

cylinder inside Teflon, followed by replacing the innermost cylinder by Teflon which

gives a dielectric filled cylinder of YIG inside Teflon. The third trial is to remove

the innermost cylinder and replace it with free space giving a hollowed out YIG

cylinder, and finally removing the YIG altogether and filling the entire cylindrical

region with free space surrounded by Teflon. These configurations are given in Figure

5.18 with the extracted values of permittivity and permeability for the two meshes

having volume fractions of 0.45 and 0.18 are displayed in Figure 5.19 and Figure 5.20,

respectively. The permittivity seems to be effected slightly when the core of the YIG

rod is replaced with Teflon and seems unaffected by removing the Teflon and replacing

the core with free space. The final case shows a drastic drop in permittivity down to a

value just slightly less than that of Teflon by itself. This is expected because the high

contrast composite has been replaced with a very low contrast composite once the

YIG is completely removed. The permeability seems to be unaffected by the changes

made until the YIG is completely removed and the composite no longer contains any

magnetic material which gives an expected value of one for permeability.
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Now the materials are swapped as was done in the case of the volume fraction

analysis. The first of four trials is a Teflon cylinder inside a YIG background, followed

by a YIG cylinder inside the Teflon cylinder. Finally, the last two steps are to have

a hollow Teflon cylinder inside YIG and then removing the Teflon altogether giving

a YIG background with a free space cylinder inside. These geometries are given in

Figure 5.21 while the extracted permittivity and permeability are shown in Figure

5.22 and Figure 5.23 for outer radius inclusion volume fractions of 0.45 and 0.18 re-

spectively. The permeability appears to be unaffected by the different cylinders of

Teflon and free space except for the case of a Teflon rod with a YIG core which causes

a slight increase. The permittivity seems to decrease a small amount as the quantity

of free space is increased. When the YIG is used as the environment, it appears to

dominate the effective electromagnetic properties since it is the higher permittivity

and permeability in this high contrast composite. Therefore the difference in permit-

tivity and permeability for Teflon and free space does not seem to make a significant

difference and therefore could replace the Teflon if weight was an issue in the design

of a composite.

5.4 Conclusions

In this chapter, an integral equation formulation has been shown to accurately evalu-

ate a structure with infinite periodicity in one direction. The use of a periodic Green’s

function allows the mesh to be truncated to that of a unit cell the size of one period

and reduced computation time greatly. The integral equation calculation was shown

to match exact solutions for a cylinder in free space and an infinite slab of a homo—

geneous material with both complex permittivity and permeability. The analysis of

composites with rod shaped inclusions proceeded by first looking at the effects of in-

creasing the layers or number of rods within the composite. This showed a negligible

change in the effective permittivity and permeability and thus is not a good design
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tool for tuning those properties if the columnar inclusions are evenly distributed.

The next mode of analysis involved the effects of increasing volume fraction which

did yield a significant change in the permittivity and permeability and could possibly

be a method for creating a composite with the desired electromagnetic characteristics.

Finally, the last case analyzed was the effects of inserting inclusions of free-space into

the composite and it was shown that the difference was small compared to the effects

of having Teflon cylinders instead. Therefore, unless the weight of the composite is

of great concern, it may just be best to use a polymer with low dielectric constant

such as Teflon.

In conclusion, the best tool for material composite design with tunable electromag—

netic properties using this geometry is to alter the volume fraction of each material.
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Figure 5.1. Geometry and mesh for core-shell model used in IE formulation.
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Figure 5.10. Geometry and unit cell for the core—shell model with one cylinder.
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Figure 5.11. Geometry and unit cell for the core-shell model with three cylinders.
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Figure 5.12. Geometry and unit cell for the core-shell model with five cylinders.
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Figure 5.13. Geometry and unit cell for the alternating core-shell model with three

cylinders.
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Figure 5.14. Geometry and unit cell for the alternating core-shell model with five

cylinders.
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Figure 5.18. Geometry for analysis on effects of air gaps on permittivity and perme-

ability.
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Figure 5.19. Effective permittivity and permeability of composite with holes for

volume fraction of 0.45 with YIG as cylindrical inclusion.
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Figure 5.20. Effective permittivity and permeability of composite with holes for

volume fraction of 0.18 with YIG as cylindrical inclusion.
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Figure 5.22. Effective permittivity and permeability of composite with holes for

volume fraction of 0.45 with Teflon as cylindrical inclusion.
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volume fraction of 0.18 with Teflon as cylindrical inclusion.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Presented in this work is a foundation for composite material design. Using vari-

ous methods including both analytical and numerical techniques, accurate electro-

magnetic models have been formulated for three geometries of two-phase composite

materials. These geometries include: spherical inclusions, alternating layers, and

cylindrical inclusions. The following sections summarize the work done in the previ-

ous chapters on composite modeling followed by a description of future work in the

field of composite simulation and design.

6.1 Material Characterization

In this dissertation, material characterization involves the process of indirectly mea-

suring the electromagnetic properties of materials. Two of the various material char-

acterization methods employed at Michigan State University have been introduced

in section 2.3. One of the methods uses the E4991A Impedance Analyzer to mea-

sure the capacitance and inductance of materials separately in order to calculate

the complex permittivity and permeability, respectively. This allows for electromag-

netic characterization for disk-shaped materials of fairly small size (diameter< 20mm;

thickness< 3mm) in the frequency range of 100MHz-lGHz. The second method uses

a stripline field applicator and a two-dimensional root-searching algorithm to extract

the complex permittivity and permeability from the measured scattering parameters.

This characterization technique involves a stripline with a center conductor that sup-

ports a TEM wave normally incident on the material being interrogated in the fre-

quency range of 1-18GHz. This is the basis for the electromagnetic models created

in this dissertation for layered composites and composites with cylindrical inclusions

where the scattering parameters are the focus of the calculations. These calculated
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scattering parameters are used in conjunction with the root-searching algorithm to

determine the effective permittivity and permeability of the composites.

6.2 Composites and Unique Contributions

6.2.1 Composites with Spherical Inclusions

Composites with spherical inclusions have been investigated in [3] and summarized

in this work for sake of entirety. Three of the many classical mixing laws for effective

permittivity and a composite consisting of small dielectric particles dispersed through-

out a dielectric background were summarized. Based on the concept of duality, these

classical mixing laws were used to predict permeability of a magneto-dielectric com-

posite. Through experimental measurements, the author was able to show that the

classical mixing laws were capable of accurately predicting the effective permittivity

of a magneto-dielectric composite for low volume fractions (e.g. f § 0.3). However,

these mixing laws are not dependable for predicting the effective permeability nor

were they capable of determing effective permittivity for composites with high vol-

ume fractions. The reason for this is due to the lack of particle to particle interactions

in the classical mixing law formulations.

6.2.2 Composites of Alternating Layers

Using the method of wave matrices, composites consisting of alternating layers were

analyzed for both isotropic and anisotropic materials. This formulation provided an

analytic solution for the scattering paramters of a layered composite from which the

effective permittivity and permeability can be extracted using the same methods as

the stripline material characterization techniques. This fast and relatively straight-

forward process for calculating the scattering parameters provided a very useful tool

in the analysis of how the electromagnetic properties are effected by various aspects of

layered composites. The author was able to demonstrate three degrees of freedom in

the design of a layered composite with tunable permittivity and permeability. These
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degrees of design freedom include: the number of layers, the volume fractions of the

materials, and the difference in the constitutive parameters of the materials being

combined. The latter of these is termed the dielectric or magnetic contrast ratio.

Using actual materials, namely YIG and Teflon, the author showed how the effective

permittivity and permeability varied as the number of layers and the volume fraction

were increased. As a final illustration of the usefulness of this formulation, a material

exhibiting both negative permittivity and permeability was demonstrating by inter-

changing the Telfon layers with plasma tubes. By controlling the external bias field,

the permeability tensor of YIG is shown to have negative values at frequencies greater

than ferrimagnetic resonance and the permittivity tensor of the plasma yields nega-

tive effective values at frequencies below the plasma frequency. An important point

in this example is that the coalescence of these materials biased by a static magnetic

field revealed that a double-negative material (i.e. simultaneous negative permittivity

and permeability) is acheivable without the use of periodic metallic structures.

6.2.3 Composites with Cylindrical Inclusions

The final composite analyzed in this dissertation is one involving cylindrically shaped

inclusions. An integral equation formulation was utilized to model a penetrable two-

dimensional geometry. The periodicity of the composite was incorporated in the

periodic Green’s function and it was shown how the Poisson summation formula was

able to accelerate its convergence. Just as in the layered composite analysis, the ma-

terials being used to form the mixture are YIG and Teflon. The first analysis of this

composite involves increasing the number of cylinders in the direction of propagation

of the incident wave. It was shown how the number of cylinders, whether in-line or

staggered, has no change on the effective permittivity or permeability for inclusions

spaced evenly in both the directions transverse and parallel to the direction of propa-

gation. In the final portion of this section, the author demonstrated how the volume

fraction of the YIG was able to yield a tunable range of permittivity and permeabil-
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ity. An even greater permeability was achieved in the case of a YIG background with

either Teflon or free-space cylindrical inclusions. However, this configuration yielded

loss tangents on the order of 10‘2. In conclusion, the only degrees of freedom in

the design of a composite with cylindrical inclusions are the volume fraction and the

contrast ratios.

6.3 Future Work

The work presented in this dissertation formed a foundation for RF composite design

by analyzing three geometries of two-phase mixtures. In the analysis of layered com-

posite, only the case of normal incidence has been considered. This has allowed the

author to simulate the characterization technique used by the stripline field applicator

in which scattering parameters for normal incidence are used to extract permittivity

and permeability. However, the effects of propagation in the direction not parallel

to the axis of the stack of layers could yield interesting values for permittivity and

permeability. This might involve altering the root searching algorithm used in the

extraction process to account for off-normal incidence. In the calculation of the re-

flection and transmission coefficients, Snell’s law must be obeyed at each interface.

Also, in this dissertation the layered composites have consisted of mixtures of two

dissimilar materials and the effects of layering, volume fraction, and contrast ratio

have demonstrated a tunable permittivity and permeability. The use of multiple ma-

terials in various combinations could present many different results and therefore an

optimization routine for layered composites should be implemented that allows the

user to specify either a desired amount of reflection and transmission or a specific

permittivity and permeability.

In the geometry with rod shaped inclusions aligned along the z-axis, it was shown

how the volume fraction of YIG was able to alter the permittivity and permeability

of the composite. However, rather high volume fractions were a necessity for ap-
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preciable tunable permeability with the consequence of loss tangents on the order of

10—2. Future analysis of this form of geometry would involve finite length cylindrical

inclusions aligned along the z-axis, but with propagation also along the axis of the

cylinders rather than perpendicular. The initial difficulty in this work would be the

need to overcome the demagnetization factor of the rod for bias fields transverse to

the direction of propagation.

Besides further analysis on the geometries presented in this disseration, other

geometries should be investigated. One such geometry is that of hexagonal flakes

evenly dispersed throughout a background material. These flakes could improve pack-

ing and also allow for greater flexibility in a composite mixture.

Also, characterization of materials is important in the design of composites. Veri-

fication of the models could be obtained through various characterization techniques

already utilized at Michigan State University if the composites discussed could be

manufactured for testing. Finally, applications for these materials should be provided

to demonstrate their usefulness. For example, using a properly designed magneto-

dielectric material to reduce the overall size of a patch antenna while simulataneously

increasing the bandwidth.
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