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ABSTRACT
INVESTIGATION OF PYRUVATE FORMATE-LYASE AND PYRUVATE
FORMATE-LYASE ACTIVATING ENZYME
By

Jian Yang

Pyruvate formate-lyase (PFL) and pyruvate formate-lyase activating
enzyme (PFL-AE) are critical for facultative anaerobes to survive anaerobic
conditions because they represent the key step in a major anaerobic metabolic
pathway, namely glucose metabolism. PFL-AE contains a [4Fe-4S] cluster and
utilizes S-adenosylmethionine (AdoMet) to generate the catalytically essential
glycyl radical of PFL. The [4Fe-4S]" cluster of PFL-AE provides the electron
required for reductive cleavage of AdoMet and generation of an intermediate 5'-
deoxyadenosyl radical intermediate; this radical intermediate abstracts the pro-S
hydrogen of Gly734 of PFL to generate the active enzyme. The resulting
activated PFL then reversibly converts pyruvate and coenzyme A (CoA) into
formate and acetyl-CoA.

Our in vivo investigation of PFL-AE yields evidence for [2Fe-2S]** « [4Fe-
4SJ** cluster interconversions occurring in PFL-AE in growing E. coli cells, with
only [4Fe-4S] clusters present under anaerobic conditions but both cluster types
present under aerobic conditions. Such cluster interconversions may be
physiologically relevant for PFL-AE since more of the catalytically relevant [4Fe-
4S) state is produced under anaerobic culture conditions. Our results also

provide unequivocal evidence for the presence of an unusual, valence-localized



[4Fe-4SP** in PFL-AE in whole cells. Protein crystallography study in
collaboration with Drennan lab at MIT reveals the first holo and substrate-bound
structures of PFL-AE. These structures provide important insight into the possible
modes of interaction in the full physiological complex. We present herein the first
evidence for the activation of PFL-AE by potassium ion. The electronic structure
of the [4Fe-4S]" cluster, as well as the enzyme activity, changes in the presence
of K*, regardless of the presence of other components in the buffer. We also
demonstrate that the mandatory homolytic cleavage of the S-C bond of SAM can
proceed in the absence of its protein substrate PFL.

The interaction between PFL-AE and PFL employing various PFL mutants
provide no evidence for the presence of a tight complex with PFL-AE. Several
PFL cysteine mutants have been successfully constructed in an effort to
investigate the roles of two cysteines (C418 and C419) in the PFL catalytic
reaction. H/D exchange of these activated PFL cysteine mutants in D,O indicates
that C419 is not acetylated in the presence of excess pyruvate, suggesting C419
serves as a radical shuttle between G734 and C418, and that it is the C418 thiyl
radical that attacks pyruvate to initiate the PFL catalytic reaction.

MoaA, another important member of the Radical SAM superfamily, has
also been successfully cloned from E. coli genomic DNA. Subsequent
transformation produces high-yield overexpressing strain. However, the
overexpressed MoaA is found in inclusion bodies and various posttransiational
improvements do not yield soluble MoaA, therefore preventing us from further

characterizing this enzyme.
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CHAPTERI
INTRODUCTION

1.1 Iron-sulfur Clusters for Life

An iron-sulfur cluster is a structural motif found in certain
metalloproteins and is among the most versatile and ubiquitous structures found
in biological systems. It has been proposed that these metal-containing clusters
are associated with the appearance of early life on earth.

Depending on the number of irons in the iron-sulfur cluster, these
metalloproteins can be separated into three major categories (the [2Fe-2S], [3Fe-
48], and [4Fe-4S] clusters) as shown in Figure 1.1.1. These clusters consist of 2,
3, or 4 irons, with inorganic sulfide ions (2 or 4) acting as bridging ligands. The
sulfurs from protein cysteine side chains usually form additional covalent bonds
with the irons to locate these clusters in the protein. Although the most common
ligand to the iron-sulfur clusters is the side chain sulfur atom of cysteinate
residues, backbone amide or side chains from other amino acids (histidine,
serine, or aspartate) are also known to bind the irons in some iron-sulfur
clusters.? Minor modification of these common clusters and more complicated
iron-sulfur clusters can also be observed in nature, such as the [8Fe-7S] cluster

in nitrogenase and [Ni-4Fe-5S] cluster in acetyl CoA synthase > *
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Figure 1.1.1. The three major categories of iron-sulfur clusters. Irons and

bridging sulfides are shown as black balls and gray balls respectively.

A direct consequence of so many versatile structures of the iron-sulfur
clusters is the corresponding diverse chemistry in which they are involved.
Electron transfer is the first recognized and most common function of these iron-
sulfur clusters in biology. Both the irons and the sulfides of the iron-sulfur cluster
are capable of delocalizing electron density; as a result, the redox potentials of
the cluster in different proteins can be greatly modified making the cluster
suitable for mediating biological electron transfer.> ¢ One electron transfer is the
most common mode among enzymes containing [2Fe-2S), [3Fe-4S] and [4Fe-4S]
clusters, which include the arsenite oxidases, rubredoxins, rieske proteins, and
ferredoxins.”'® In contrast, two electron transfer is rare and found only in
nitrogenases, where a rearrangement of the double cubane [8Fe-78S] cluster is

involved (Scheme 1.1)."!
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Scheme 1.1.1 A rare case of the two-electron transfer process found in

nitrogenases. P°X: Oxidized form; PN: Reduced form.

Although earlier work on iron-sulfur cluster proteins was focused on
electron transfer, more recent discoveries of both new versatile structures and
novel functions of these iron-sulfur clusters have put the iron-sulfur clusters in a
much wider and promising position in biology.'*'* These new functions cover
almost the entire range of major enzymatic reactions as well as other biological '
functions and have prompted a new round of interest in these ancient structures.

Table 1.1.1 contains a few examples of these iron-sulfur proteins with “novel”

functions.



Selected Functions Cluster type Examples
Coupled
electron/proton [8Fe-7S] Nitrogenase® '°
transfer
Regulation of gene IRE-BP
9 . [2Fe-2S] and [4Fe-4S] FNR'8-20
expression 21-23
SoxR
regulation of enzyme Glutamine PRPP
] activity [4Fe-4S] amidotransferase?
Carbon monoxide
Redox catalysis [4Fe-4S] dehydrogenase25
Hydrogenase26
non-redox catalysis [4Fe-4S] Aconitase”” *° 29
Endonuclease ll|
Structural [4Fe-4S] Muty>?
Sulfur donor [2Fe-2S] BioB”" **
Substrate binding and Radical SAM
activation | [4Fe-4S] enzymes:"?’“13

Table 1.1.1. Functions and [Fe-S] cluster types of a few iron-sulfur cluster
containing enzymes.

One of the most intriguing new functions for iron-sulfur clusters has
been their involvement in the initiation of radical catalysis in the radical SAM
superfamily, which will be discussed in greater detail in the next section.

To summarize, iron-sulfur cluster containing proteins are diverse with a
relatively wide range of functions. The functions of these enzymes are closely
associated with corresponding [Fe-S] cluster structures. It will not be surprising to
see in the near future more enzymes and more novel functions discovered in this

field.



.2 Radical SAM Superfamily

In 2001, Sofia and coworkers identified a superfamily of enzymes with
645 unique sequences from 126 species using powerful bioinformatics and
information visualization methods.>® These enzymes are classified into the
Radical SAM Superfamily because they utilize S-adenosyl-methionine (AdoMet
or SAM) and catalyze radical reactions. They contain a common characteristic
CX3CX2C motif and all are proposed to generate the same radical species to
initiate individual reactions.

The actual study of many Radical SAM enzymes had started long
before and the characteristic CX3CX2C motif had been noted.** In the late 1960’s
and early 1970’s, Barker and co-workers, who had been studying lysine 2,3
aminomutase isomerase, discovered that the reaction required SAM rather than
adenosylcobalamin (AdoCbl), used by many other isomerases, to catalyze the
interconversion of L-lysine and L-B-lysine.*® Thereafter, research on other
members of the radical SAM superfamily has rapidly expanded. Scheme 1.2.1
lists reactions catalyzed by some radical SAM enzymes. Biotin synthase (BioB)
catalyzes the radical-mediated insertion of sulfur into dethiobiotin to form biotin."
32.48 | ipoate synthase (LipA) catalyzes the insertion of sulfur into octanoic acid
bound to acyl carrier protein (octanoyl-ACP) to generate lipoyl-ACP.*" ¢ Spore
photoproduct lyase (SPL) catalyzes the repair of SP dimers to thymine
monomers. ‘5 Lysine 2,3-aminomutase (LAM) catalyzes the interconversion of
L-lysine and L-B-lysine.** 3 The oxygen-independent coproporphyrinogen-li!

oxidase (HemN) catalyzes an oxygen-independent oxidation in anaerobic heme



biosynthesis.®> % Pyruvate formate lyase-activating enzyme (PFL-AE),*"*°

60-62

anaerobic ribonucleotide reductase activating enzyme (anRNR-AE), glycerol

) 63-65
’

dehydratase activating enzyme (GD-AE and benzylsuccinate synthase

activating enzyme (BssD)%¢%®

can activate their respective protein substrates by
abstracting a hydrogen from a specific glycine residue. MoaA, together with the
MoaC protein, is involved in the first step of Moco biosynthesis.®*”" ThiH,
together with the ThiG protein, is required for the biosynthesis of the thiazole
moiety of thiamine (vitamin B(1)).”>”* HydE and HydG have been recently found

to be involved in the maturation of FeFe-hydrogenase.”>"®
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Despite the fact that members of radical SAM superfamily catalyze a
variety of reactions covering almost all enzyme classifications, there are a few
common features. Firstly, they all share a highly conserved cysteine motif
CX3CXoC. (Table 1.1)336:42.4%.79 Cysteine is a naturally occurring, sulfur-
containing amino acid that has a thiol group and is found in most proteins. The
common modified forms of this residue in peptides and proteins include thiols,
thiolates, thiyl radicals, disulfides, sulfenic, sulfinic, sulfonic acids, disulfide-S-
oxides and selenodisulfides. As a result of such flexibility, cysteine can serve to
stabilize protein structure, participate in metal binding and be involved in

catalysis and redox chemistry.®

e PFL-AE 24 ITFFQGELMRELYEHNRDT
e aRNR-AE 20 VLFVTGELHKEEGEYNRST
e BssD 68 TIFLKGENYKEGFE@FHTIN
e SPL 86 IPFATGEMGHEHYGYLQTT
e BioB 47 SIKTGAEPQDEKYBPQTSR
e LipA 48 MILGAIETRREPFEDVAHG
e LAM 132 LLITDMESMYEGRHETRRRF
® HemN 53 YFHIPFEQSMEBLYEBGCSIH
e MoaA 15 IAVTPEENLDEFFEHMEFK
e ThiH 920 LYLSNY@GNSKEVYEGFQIL

Table 1.2.1. CX3CX,C conserved motif of the radical SAM superfamily.

The CX3CX2C motif in the radical SAM proteins is proposed to
coordinate an iron-sulfur cluster. However, in many cases the elucidation of the
actual form of this cluster does not come easily due to the intrinsic instability of
the iron-sulfur cluster. For example, the early studies of PFL-AE and BioB, two of
the radical SAM enzymes, show a mixture of different forms including [2Fe-2S],

[3Fe-4S], and [4Fe-4S] clusters. However, upon reduction, all the clusters are



converted into [4Fe-4S) clusters.®® Later EPR experiment done by Broderick
and coworkers correlate the consumption of the [4Fe-4S]'* of PFL-AE with
equimolar production of the organic glycyl radical of PFL, therefore suggesting
that the [4Fe-4S]'* cluster is the physiologically active species.®® Other
experiments on LAM and anRNR also show that the [4Fe-4S]"* cluster is
proportionally related to the final results of the reaction.®" % As a result, the [4Fe-
48] cluster is believed to be the catalytically active species and the different
oxidation states are associated with various stages of the reaction or with cluster
oxidation and degradation.

One interesting aspect of the radical SAM iron-sulfur cluster is the site-
differentiated coordination of the [4Fe-4S] cluster due to the insufficient number
of cysteines in the CX3CX,C motif. The [4Fe-4S] cluster consists of four irons and
four sulfides placed at the vertices of a cubane-type structure. Three of the irons
form additional covalent bonds with conserved cysteine residues while the fourth
iron does not. This fourth iron is designated as the unique iron, and is believed to
be conserved for the binding of cofactor/cosubstrate AdoMet during catalysis.
Such arrangement has been seen in aconitase, an iron-sulfur cluster containing
enzyme but not a member of radical SAM superfamily. Aconitase contains a
similar site-differentiated [4Fe-4S] cluster and uses its unique iron to coordinate
the carboxyl oxygens of the substrate citrate.®”° In contrast, the radical SAM
enzymes use their unique irons to interact the amino nitrogen and carboxyl
oxygen of AdoMet. This configuration was first discovered by Broderick, Hoffman,

and coworkers, who used ENDOR to investigate the interaction of AdoMet with



PFL-AE.®® ' This coordination of AdoMet to the unique iron was further
confirmed by several crystal structures of radical SAM enzymes, including LAM,
BioB, HemN and MoaA. % %9 92.93

A third common feature of the radical SAM enzymes is that a 5'-
deoxyadenosyl radical intermediate is believed to be involved. The radical is
extremely reactive and is generated by homolytic S-C bond cleavage in AdoMet
when AdoMet receives one electron from the coordinated [4Fe-4S]'* cluster. The
most direct evidence for the presence of this extremely reactive adenosyl radical
comes from the study of LAM, reacting with an allylic analog of AdoMet to
generate an allylically stabilized adenosyl radical intermediate 3* %
Adenosylcobalmin (AdoCbl) containing enzymes also use an adenosyl radical
intermediate, produced by the homolytic cleavage of the Co-C bond.3* 3 41-43. %6
% Scheme 1.2.2 summarizes the generation of the 5'-deoxyadenosyl radical from
AdoCbl and AdoMet.

AdoMet is a naturally occurring molecule found in all body tissues and
fluids. AdoMet acts as methyl donor in the methylation of the phospholipids,
proteins, DNA, RNA and other molecules, and is actively involved in a number of
biochemical reactions including enzymatic transmethylation, as well as
contributing to the synthesis, activation and/or metabolism of such compounds as
hormones, neurotransmitters, nucleic acids, proteins, phospholipids and certain
drugs.®*'%" The involvement of AdoMet in the radical SAM superfamily was,

however, totally unexpected.>® 34 341

10
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A common mechanism involving radical-based hydrogen atom
abstraction by the 5'-deoxyadenosyl radical intermediate, has been proposed as
the first step of all of the radical SAM reactions. The unique iron of the [4Fe-4S]
cluster coordinates the amino nitrogen and carboxyl oxygen of AdoMet to anchor
this molecule in the catalytic site; as a result of this interaction, the sulfonium of
AdoMet forms close interaction with the cluster, causing orbital overlap between
the sulfonium of AdoMet and the cluster.>® %! Therefore, an inner sphere
electron transfer pathway has been proposed to result in the homolytic scission
of the C-S bond of AdoMet. 8 59 91: 102,103 Ag 3 result of this homolytic cleavage of
the C-S bond of AdoMet, the 5'-deoxyadenosyl radical intermediate is produced.
This radical is then either consumed stoichiometricly to produce 5'-
deoxyadenosine and methionine as products (AdoMet acting as a cosubstrate) or
is regenerated at the end of the reaction (AdoMet acting as a cofactor). In the
latter case, the two transient AdoMet cleavage products, 5'-deoxyadenosine and
methionine, reform back into AdoMet after catalysis. Both routes are summarized

in Scheme 1.2.3.

12
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So far, crystal structures of four radical SAM enzymes (HemN, BioB,
MoaA, and LAM) have been solved (Figure 1.2.1). Despite the different
substrates acted on by these radical SAM enzymes and the different multimeric
forms in which they are crystallized (HemN as monomer, BioB and MoaA as
homodimer, and LAM as tetramer), they show striking similarities in the core
protein structures.>® 8 %29 |n terms of their peptide backbones, they all form a

typical TIM barrel and share a (B/a)s repeat motif in their structural cores. BioB

has two additional B/a repeats to completely close the TIM barrel; in contrast, the
other enzymes (HemN, MoaA, and LAM) form a large crescent channel along the
surface of these enzymes due to the incomplete TIM barrel. The [4Fe-4S] cluster
is located at the N terminal end of the barrels in all these structures, with three of
the irons coordinated by the highly conserved CX;CX,C motif and the unique iron
coordinated by the amino nitrogen and carboxyl oxygen of AdoMet, confirming

previous ENDOR results.% %'
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MoaA
Figure 1.2.1. Crystal structures of HemN, MoaA, BioB, and LAM. These
structures are made from PDB files (10LT, 1TV7, 1R30, and 2A5H respectively).



Figure 1.2.1. (continued) Crystal structures of HemN, MoaA, BioB, and LAM.
These structures are made from PDB files (10LT, 1TV7, 1R30, and 2A5H
respectively).



.3 Pyruvate Formate-Lyase (PFL) and Pyruvate Formate-Lyase
Activating Enzyme (PFL-AE)

E. coli contains three enzyme systems to convert the glycolysis product
pyruvate into acetyl-CoA, the latter being a key intermediate in the production of
ATP. Two systems, the pyruvate dehydrogenase multienzyme complex and
pyruvate:ferredoxin / flavodoxin oxidoreductase, function in the presence of
oxygen. The third system, the pyruvate formate-lyase, catalyses the reaction
when the environment becomes anaerobic.'%

The actual recognition of the PFL enzymatic function can be dated back
as early as 1943 by Kalnitsky and Werkman.'% PFL catalyzes the reaction of
pyruvate with CoA to formate and acetyl CoA. (Scheme 1.3.1) The reaction is fully
reversible with the forward reaction slightly favorable over the reverse reaction
(Forward: TN=770s-1, Reverse: TN=260s-1; TN=turnover number).'% The
reaction is composed of two independent steps and follows a “ping-pong”
mechanism. In the first step, the active PFL attacks pyruvate, resulting in an
intermediate acetylated PFL and formate. Then in the second step, the acetyl
group of the acetylated PFL is picked up by CoA to form acetyl CoA and the
active form PFL. The acetylated PFL is a very important intermediate and
connects these two steps. Surprisingly, this acetylated PFL intermediate is quite

stable and can be easily generated by mixing active PFL with pyruvate.'”’
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active PFL + pyruvate «—— acetyl-PFL + formate
acetylPFL  +  CoA <«——> active PFL + acetyl-CoA

Overall: pyruvate + CoA «——>» formate +  acetyl-CoA

Scheme 1.3.1. The overall reaction catalyzed by PFL including the two
independent steps.

PFL is catalytically inactive following aerobic expression and purification.
It is a homodimer with a molecular weight of 170kDa and contains no cofactors.
Several crystal structures have been published since 1999, including wild type
PFL (wt-PFL), wt-PFL with pyruvate or oxamate, wt-PFL with both pyruvate and
CoA, and PFL cysteine mutants.'®'"" Little structural difference has been found
between PFL crystallized as holoenzyme (wt-PFL) or in complex with its
substrates. These structures provide a lot of structural information, however, they
are all structures of the inactive form of PFL. The active form of PFL contains a
glycyl radical on residue G734, and as a result, the active site of PFL may adopt
a different local configuration.

The inactive form of PFL is crystallized as a homodimer forming a
nearly perfect two-fold rotation. The tight contact between the two monomers is
mainly in the helical region of residues 131-155 and 200-232. Each monomer is
assembled in an antiparallel manner from two parallel five-stranded B—sheets.
The active site residues G734, C418 and C419 are found at the tips of two
opposing hairpin loops, which are designated as the glycine loop and the
cysteine loop respectively. Both loops protrude from either the top or the bottom

surfaces of PFL into the center of this barrel. The distance between G734 Ca and
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C419 Ca, which receives the radical from G734, is 4.8A. The overall architecture
is strikingly similar to that of ribonucleotide reductases, which also contains a
glycyl radical in the active form. Pyruvate, as well as its structural analogue
oxamate, binds in the active site of each protomer with its carbonyl C 2.6A away
from C418 Sy. Interestingly, the binding of either pyruvate or oxamate causes no
significant overall structural change of PFL. Likewise, the binding of CoA, the
other substrate of PFL reaction, also makes no change to the overall structure of
PFL. The CoA molecule is found to bind at the surface of PFL with the adenine
moiety located 15A away from the active site. CoA assumes a syn glycosidic
configuration and places its pantetheine chain extending away from the active
site toward the opposing monomer. The thiol group at the tip of this pantetheine
chain is 30 A away from either active site. However, rotation around the N-
glycosidic bond will relocate the ribose-pantetheine moiety and place the thiol
group within 5 A of the active site. As a result of this movement, the thiol group of

CoA is presumably able to “fish out” the acetyl group from the acetylated PFL.
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CoA

Pyruvate
Figure 1.3.1. Cartoon representation of the PFL-dimer in complex with pyruvate

and CoA in sticks. The vicinal C418, C419, and G734 are in yellow, yellow, and
red sticks respectively. CoA and pyruvate are indicated in the figure.
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PFL has to be activated in order to perform its enzymatic function.
Activation involves hydrogen atom abstraction from G734 of PFL, and is
catalyzed by PFL-AE."'?""* Two lines of experimental evidence published by
Knappe and co-workers show that it is the pro-S hydrogen on PFL G734 that is
abstracted by the 5'-deoxyadenosyl radical intermediate, which is generated by
PFL-AE in a reaction with AdoMet.''?'"* First, the adenosyl radical intermediate
is trapped by C-adenosylation of the dehydroalanyl octapeptide mimic of the PFL
glycine loop.''* Second, when the pro-S hydrogen of the glycine loop mimic
peptides is replaced by a methyl group (e.g. a normal Ala), no hydrogen atom
abstraction occurs.'"?

Interestingly, only one of the PFL protomers can be activated at a time
even though it is a homodimer.""® Once the G734 radical is generated, it remains
very stable under strict anaerobic conditions (t;2>24hr).%® '€ This stability is
believed to result from the captodative effect, the summation of effects of
resonance electron withdrawal by the glycylcarbonyl group and resonance
electron donation by the adjacent amide nitrogen through the one electron pair.
This glycyl radical is, however, extremely susceptible to reaction with oxygen,
which results in protein cleavage.''> """ 1'® Whether there is an enzyme to
quench this glycyl radical and reduce the active form PFL back to its inactive
form to avoid this unfavorable degradation is still under investigation.''® 19120

The glycyl radical shows a doublet EPR signal (Ais,=15G) centered at
g=2.0037; the splitting of the signal is due to hyperfine coupling to the remaining

a-hydrogen of the G734 residue."'® Surprisingly, the remaining a~hydrogen of
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the G734 residue of the active PFL is in constant exchange with solvent, a rapid
hydrogen exchange reaction mediated by the free thiol group of the residue
C419.'*' EPR results have shown that the active form of PFL loses its hyperfine
coupling in D;0 in just a few minutes (t12,=5min) due to the hydrogen exchange
reaction. '?’

Although the glycyl radical is initially generated on residue G734 of PFL,
G734 is not believed to be directly involved in catalysis. Instead, G734 is able to
relay the glycyl radical to the adjacent cysteine residues to form a C418 thiyl
radical or a C419 thiyl radical. Depending on which thiyl radical is directly
involved in the homolytic cleavage of the pyruvate C-C bond, two mechanisms
have been proposed for the PFL-catalyzed reaction.'® ''® ' 12! These two
mechanisms will be discussed in detail in the following chapter.

PFL-AE is a monomeric protein containing an iron-sulfur cluster with a
molecular weight of 28 KDa; It activates PFL under strict anaerobic conditions in
the presence of AdoMet, pyruvate, and an external electron, which can be
supplied by NADPH in vivo or dithionite or photoreduced 5-deazariboflavin in
vitro."s' 122

PFL-AE was first purified aerobically from (non-overexpressing) E. coli
by Knappe and co-workers and had a broad absorbance from 310 to 550 nm
suggesting the presence of covalently bound cofactor.''® Kozarich and co-
workers overexpressed PFL-AE, however the protein was present largely in
inclusion bodies, thus necessitating complete denaturation followed by refolding

after purification. Although many divalent metals were shown to be able to bind
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this refolded protein, only Fe(ll) in the presence of DTT restored enzymatic
activity.'® The presence of thiophilic metals inhibited PFL-AE activity, leading to
a suggestion that the iron was bound in a cysteinal coordination environment. In
addition, site directed mutagenesis studies of PFL-AE identified three cysteine
residues (C29, C33, and C36) that were required for the incorporation of this
metal cofactor, ' a fact that is consistent with the later proposed CX3CX.C iron-
sulfur cluster binding motif for the radical SAM superfamily.

In an effort to avoid solubility issues and to identify the native metal
center of PFL-AE, Broderick and co-workers pursued anaerobic purification of
PFL-AE. By modifying expression and purification conditions, they were able to
identify the metal cofactor in PFL-AE as a [4Fe-4S] cluster and showed that
exogenous iron is not necessary for its enzymatic activity.®® Their initial
purification methods were performed under anaerobic conditions without DTT,
resulting in a mixture of [4Fe-4S], [3Fe-4S] and [2Fe-2S] clusters and suggesting
that PFL-AE was an iron-sulfur cluster containing protein.®2-%5 However, upon
reduction by dithionite, all clusters were converted into [4Fe-4S] clusters. To
further improve the purification, the isolation was later carried out under
anaerobic condition in the presence of DTT. In this case only [4Fe-4S]** clusters
are present and PFL-AE has the highest observed enzymatic activity.>

Although many different types of iron-sulfur clusters have been
observed in PFL-AE, only the [4Fe-4S] cluster is believed to be catalytically
relevant because only this cluster is observed under reducing conditions.® The

catalytically active species [4Fe-4S]" cluster was determined by using a “single
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turnover” experiment, in which the [4Fe-4S]"* cluster of PFL-AE produces equal
molar amount of glycyl radical on PFL.%° The [4Fe-4S]** cluster has been
proposed to be the catalytic counterpart of the [4Fe-4S]'* cluster because the
[4Fe-4S)** cluster is the concomitant product with glycyl radical generation and it
can be reactivated back into [4Fe-4S]'* cluster after the first catalytic cycle.*®
This paragraph summarizes a few key results that lead to a proposal of
the PFL-AE mechanism. First, EPR results have shown that the [4Fe4S]"* cluster
signal is greatly altered in the presence of AdoMet, suggesting the direct
interaction between AdoMet and the [4Fe-4S]"’ cluster. Second, ENDOR studies,
in which the isotopically labeled AdoMet is used to measure the binding distance
and mode to the [4Fe-4S]"* cluster, demonstrate that the amino nitrogen and
carboxylate oxygen act as ligands to the unique iron of the iron sulfur cluster and
the sulfonium of AdoMet provides orbital overlap with the cluster. Together, these
results support an inner-sphere electron transfer from the [4Fe-4S]'* cluster to
the sulfonium center of AdoMet followed by cleavage of AdoMet and formation of
the 5’-deoxyadenosyl radical. Although similar experiments can not be used
directly to probe the interaction between AdoMet with the diamagnetic [4Fe4S]**
cluster, a modified method was successfully utilized to solve this question. The
diamagnetic [4Fe-4S]?* cluster was first frozen together with AdoMet, trapping
the geometry of the [4Fe-4S]**/AdoMet complex. Cryoreduction of this frozen
solution converts the [4Fe-4S]**/AdoMet complex to the [4Fe4S]'*/AdoMet
complex, which is EPR active and can be measured by ENDOR. The resulting

data are essentially identical to that of the [4Fe-4S]'*/AdoMet complex,
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suggesting both reduced ([4Fe-4S]'*) and oxidized form ([4Fe-4S]**) of PFL-AE
have the same binding mode with AdoMet.

Currently, the mechanism for PFL activation by PFL-AE is proposed as
follows (Scheme 1.3.2).%° The [4Fe-4S]** cluster of PFL-AE, the resting state of
this enzyme under anaerobic conditions, situates AdoMet in the catalytic site of
PFL-AE by forming a classic five-member chelate ring between the unique iron of
the cluster and the methionine moiety of AdoMet. Such interaction brings the
sulfonium of AdoMet into orbital overlap with the [4Fe-4S]?* cluster. The [4Fe-
4S)"*-AdoMet complex is the product of one-electron reduction of the [4Fe-4S]**
cluster by a reducing agent (reduced flavodoxin in vivo). Surprisingly, this
complex remains quite stable until the substrate PFL is introduced into the
system. The presence of PFL induces the reaction to move forward, resulting
inner-sphere electron transfer from the [4Fe-4S]"* cluster to the sulfonium of
AdoMet to initiate the homolytic S-C bond cleavage. Methionine, one of the two
cleavage products of AdoMet, is left bound to the unique site of the oxidized
[4Fe-4S]** cluster, while the 5'-deoxyadenosyl radical intermediate, the other
AdoMet cleavage product and the universal radical throughout the radical SAM
superfamily, activates PFL by abstracting the pro-S H from its residue G734. The
catalytic cycle is then repeated upon displacement of methionine and 5'-
deoxyadenosine with a new AdoMet molecule. The activated PFL will then
catalyze the conversion of pyruvate and CoA to acetyl CoA and formate by a

mechanism that is still under debate %8 110. 111. 121,
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[4Fe-48]"

Methionine + 5'-dAdo

AdoMet
Cys ®
/ PFL-G734 PFL-G734

& FéNH, S-Ado & F&NH,
[4Fe-4S]%* [4Fe-4S]**
Scheme 1.3.2. Proposed mechanism for iron-sulfur cluster and AdoMet-

mediated radical generation catalyzed by PFL-AE.
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.4 Molybdenum Cofactor (Moco) Biosynthesis

As the only second and third row transition elements with known
biological function, Mo and W have received much attention since the
identification of their biological roles almost 75 and 25 years ago respectively.'?>
'?7 The existence of these trace elements in biological systems is known to play a
key role in the global circulation of carbon, oxygen, hydrogen, nitrogen and
sulfur.'®® These metalloenzymes exist not only in lower organisms, such as
bacteria, archaea and fungi, but also in higher organisms, like plants, animals
and even in human beings.”" '?¢'%' Since the development of modern techniques
to analyze diseases on the molecular level, more and more well known and fatal
phenomena had been associated with the malfunction of Mo and W enzymes.
Stunted growth, chlorosis of leaves as well as small narrow crinkled leaves are
the most visible damages to the plants due to the deficiency of Mo and W
enzymes.'*? In humans, by the end of year 2000, more than 80 diseases were
known to be induced by the combined malfunction of one or more Mo and W
enzymes.'® These diseases are autosomal recessive and can be found in all
races worldwide.'>* Patients having these kinds of diseases experience neonatal
seizures, severe neurological abnormalities, dislocated ocular lenses, feeding
difficulties, and dysmorphic features of the brain and head of the adult, and are
generally fatal to new born babies. '3 1%

For molybdenum enzymes, of which over 40 have been identified up to

now, all except nitrogenases contain Mo bound to a unique tricyclic pyranopterin
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containing a cis-dithiolene group in its pyran ring. This most common biological

Mo structure is called molybdenum cofactor (Moco) (Figure 1.4.1)."*’

o H S/"QO
N S
H,N” N7 >N >0 \0-P-OR
I|-i 0

Figure 1.4.1. Structure of molybdenum cofactor.
Without question, the studying of the biosynthesis of this cofactor will be

of pivotal importance, helping in the treatment of this type of diseases worldwide.
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CHAPTER I

INVESTIGATION ON THE IN VIVO STATES OF PFL-AE

.1 Introduction

The iron-sulfur cluster in purified PFL-AE has been shown to be oxygen-
sensitive, labile, and extremely sensitive to purification and handling conditions.
The first report of an iron-sulfur cluster in PFL-AE provided evidence for a
mixture of [4Fe-4S]** and [2Fe-2SJ** clusters in the enzyme as-isolated, with
reduction in the presence of AdoMet yielding a mixture of [4Fe-4S]" and [4Fe-
4S)** clusters.! Later reports showed that PFL-AE isolated under modified
conditions contained primarily [3Fe-4S]" clusters, with a mixture of [4Fe-4S]***
clusters obtained upon reduction.? The best purification, using anaerobic
conditions in the presence of DTT, yielded only the [4Fe-4S]** cluster in the
purified protein.® Although the proposed mechanism has assigned the [4Fe-4S]**
cluster to the catalytically oxidized form and the [4Fe-4S]'* clusters to the
reduced form,* little is known about the resting states of the iron-sulfur clusters in

vivo under different conditions and whether these clusters have their own specific

functions.
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In this chapter we are going to investigate the homologously
overexpressed recombinant E. coli PFL-AE in whole cells using EPR and
Méssbauer techniques. The objectives are to investigate the cluster composition
of PFL-AE in the cell under different conditions in order to understand the
relevance of different clusters present in previous in vitro studies.” % ° We also
want to understand how the cosubstrate SAM interacts with PFL-AE clusters in
vivo as well as any other possible function. The other interesting question we
want to address is how the unique iron interacts with SAM. Whether it is going to
be the same as in vitro studies.*

In 1944, Soviet physicist Yevgeniy Zavoyskiy was the first to discover
the phenomenon of electron paramagnetic resonance (EPR). Since then,
significant developments in this technique have been achieved. EPR has been
used in a wide range of studies of organic free radicals and inorganic complexes
with unpaired electrons.

The physical basics of EPR are analogous to those of nuclear magnetic
resonance (NMR). Instead of detecting nuclear spin transitions as in NMR, EPR
monitors the transition between electron spin states. When an electron is placed
inside an external magnetic field with strength By, the electron's magnetic
moment aligns itself either parallel (ms = -1/2) or antiparallel (ms = +1/2) to the
field. Each alignment is associated with a specific energy level, with the parallel
alignment corresponding to the lower energy state and the antiparallel alignment
to the higher energy. The energy separation (AE) between the two states is

depicted according to equation 11.1.1.
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AE = gepsBo, Equation 11.1.1.
where ge is the electron's so-called g-factor and pg is Bohr magneton. The
splitting of the energy levels is therefore directly proportional to the magnetic
field's strength, as shown above.
In order for the electron to transition between the two energy levels, an
amount energy equal to the difference in energy levels (AE) is required. The

energy of electromagnetic radiation (E) is defined as in equation 11.1.2.

E=hv Equation 11.1.2.
where v is the frequency of electromagnetic radiation and h is Planck's constant.
Substituting in E = hv and AE = g.usBo leads to the fundamental equation of EPR
spectroscopy (Eq. 11.1.3).

hv = gedsBo Equation 11.1.3.

Theoretically, EPR spectra can be generated by either varying the
frequency of electromagnetic radiation while holding the magnetic field constant,
or doing the reverse. In practice, it is usually the frequency that is kept fixed.
Depending on the microwave frequencies used, the spectrometers are defined
as L-band (1-2 GHz), S-band (2-4 GHz), X-Band (8-10 GHZ), Q-band (35 GHz),
and W-band (95 GHz). Among these, X-band EPR is the most commonly used in
biochemical studies.

In the case of a free electron in the external magnetic field, ge is a
constant with a value of 2.0023. However, in real systems the electron is not
solitary, but is associated with the surrounding environment, and is thus subject

to an effective field (Bex) that is the combination of the spectrometer’s applied
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magnetic field (Bo) and the local magnetic field produced by surrounding atoms
(o), as shown by equation I1.1.4.

Bett = Bo(1 - 0) Equation 11.1.4.
Therefore, the resonance condition for an electron in a given environment can be
rewritten as follows (Equation 11.1.5.):

hv = geMeBest = GeMsBo(1 - 0) Equation 11.1.5.
The quantity ge(1 - 0) is re-defined as the g-factor (g). Therefore, the final

resonance equation becomes
hv = gusBo Equation 11.1.6.

Knowledge of the g-factor for an unpaired electron can give information
about a paramagnetic center's electronic structure. The g-factor may be
anisotropic, or orientation dependent, thus providing information about the orbital
containing the electron. The line shape of the EPR spectrum can also be used to
study the interaction of an unpaired electron with its environment.

EPR is an appropriate technique to probe the electronic structures of
paramagnetic species, such as the iron-sulfur cluster of PFL-AE. The formal
oxidation states for iron in iron-sulfur clusters is generally Fe?* with S = 2 and
Fe®* with S = 5/2. For example, a typical [4Fe-4S]'* cluster contains formally 3
Fe?* and 1 Fe*. The 1 Fe*" and 1 Fe*" on the same face of the iron sulfur cluster

+2.5Fe+2.5

ferromagnetically couple, producing an Fe pair with S = 9/2. Similarly,

+2+

the other two Fe?* forms an Fe?*Fe*?* pair with S = 4. The resulting two dimer
pairs antiferromagnetically couple with each other to produce an overall spin of S

= 1/2. Similarly, a typical [4Fe-4S]** cluster, contains 2 Fe?* and 2 Fe**, exhibits

45



an overall spin of S = 0 due to antiferromagnetic coupling of the two Fe*?°Fe*?°

pairs. This cluster is EPR silent, while the [4Fe-4S]'* cluster is EPR active. EPR
can provide powerful insight into the properties of paramagnetic iron-sulfur
clusters, such as the type of the cluster, the oxidation state of the cluster, and the
surrounding environment of the cluster.®’

"Fe Mossbauer spectroscopy is another powerful and widely used
technique for examining iron-sulfur cluster containing proteins. Unlike EPR,
which can only detect paramagnetic species, Méssbauer spectroscopy takes
advantage of the recoilless nuclear gamma resonance, the transition between
the nuclear ground state and nuclear excited state. Therefore, this technique can
detect all types of the iron-sulfur clusters regardless of the oxidation state or
magnetic properties of the irons as long as the cluster is enriched with the °’Fe
isotope. Like EPR, M&ssbauer spectroscopy is also capable of differentiating the
surrounding environment of the *’Fe species and each iron-sulfur cluster can be
identified by its own characteristic spectrum. The study of the iron-sulfur clusters
of purified PFL-AE is one of the best examples regarding how well different
clusters can be assigned according to their Méssbauer spectra.> 78 In 1998,
Popescu et al successfully apply the Méssbauer spectroscopy to the in vivo
behavior of the iron-sulfur clusters of the overexpressed FNR, discovering the in
vivo interconversion of the [4Fe-4S]** and the [2Fe-2S]**.° Since then, several
iron-sulfur enzymes have been successfully studied in vivo by this technique,

including aRNR,'° BioB, """ '2 and thioredoxin reductase.'®
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To acquire a *’Fe Méssbauer absorption spectrum, a solid sample
containing *’Fe in question is exposed to a beam of gamma radiation produced
by the excited state of °’Fe (14.4 KeV). The energy of this incident gamma
radiation is then fined tuned by moving the source toward and away from the
solid sample. Because of the Doppler effect, this spectrum of gamma-rays
centered at 14.4 KeV arrives at the sample. A detector then measures the
intensity of the beam that is transmitted through the sample. In the case of a bare
"Fe nucleus, a single absorption line corresponding to the difference between
the nuclear excited state and the ground state would be observed. However, the
"Fe nucleus is usually embedded in an environment defined by interacting
atoms. The symmetry of this environment is usually lower than spherical,
tetrahedral or cubic. As a result, the degeneracy of the nuclear excited state is
lifted by the quadrupole moment interaction with this asymmetric electric field,
resulting the characteristic doublet associated with a Méssbauer spectrum. The
splitting of the excited states is called the quadrupole splitting energy (AEq), a
very important Mdssbauer factor. The other factor is the isomer shift (3), centroid
of the spectrum. It arises from the non-zero volume of the nucleus and the
electron charge density due to s-electrons within it. As a result, the isomer shift (5)
is a good indicator of the oxidation state.'

Taken together, the combination of powerful EPR and Méssbauer
spectroscopies can provide a fairly complete picture of the cluster content of

simple or complex iron-sulfur proteins. This study is designed to investigate the

47



type and properties of the iron—sulfur clusters present in homologously

expressed recombinant E. Coli PFL-AE in whole cells.
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I.2. MATERIALS AND METHODS

Photoreducing agent 5-deazariboflavin was synthesized according to
the published procedures.'® Competent cells were purchased from Novagen.
Restriction endonucleases and DNA markers were purchased from NEB.
Compass DNA purification kit was purchased from American Bioanalytical.
Wizard plus SV minipreps DNA purification system was purchased from

Promega.

1.2.1. Construction of PFL-AE Expression and Control Vectors.

The pCAL-n-EK/pflA vector (hereafter designated pTHVI47) was
constructed as previously described.? For construction of the control vector,
pTHVI47 was digested with Ndel and Hindlll. The fragments were separated on
an agarose gel, and the large fragment was purified using a Compass DNA
Purification Kit. The ends were trimmed by using the End Conversion Mix from
the PETBIue-1 Perfectly Blunt Cloning Kit; following end-conversion, the blunt
fragment was ligated to generate the control plasmid containing no pflA gene.
The control plasmid was verified by DNA fingerprinting using EcoRV and Xbal,

as well as by DNA sequencing, and was designated pJYVI119.

11.2.2. Growth, Induction, and Cycling of PFL-AE and Control Cultures.
The vectors pTHVI47 and pJYVI119 were transformed into
BL21(DE3)plysS Singles Competent Cells to generate PFL-AE expressing and

control cells, respectively. Both PFL-AE and control cells were grown overnight in
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LB at 37° C with shaking, and 5 mL of these overnight cultures were used to
inoculate 1 L of defined minimal media in a 2800 mL Fernbach flask. The PFL-
AE and control cultures were grown with shaking (250 rpm) at 37° C to an ODggo
~0.7. Atthis point, IPTG was added to both cultures to a final concentration of 1
mM. The cultures were grown for two more hours under aerobic conditions with
shaking. Both cultures were then transferred to a 4°C cold box and made
anaerobic by bubbling N, gas through for 16 hours. To make the culture aerobic
again, air was bubbled through the culture for 6 hours. Further cycling of
aerobic/anaerobic conditions simply followed the same procedure. For
preparation of Méssbauer samples, both PFL-AE and control cells were prepared
in the same way as just described except that the growth medium was enriched
with *'Fe. At specific time points after induction, or after transition from aerobic
to anaerobic or anaerobic to aerobic conditions, aliquots (15 mL for EPR and/or
60 mL for Mdssbauer) were removed for analysis by EPR and M&ssbauer

spectroscopy.

11.2.3. Preparation of Whole-Cell, Lysed-Cell, and Clear Lysate
Mé&ssbauer samples.

The aliquots taken during cycling between aerobic and anaerobic
conditions were centrifuged to collect cell paste (~0.8 g per 60 mL aliquot). The
cell pastes were resuspended in 200 mL wash buffers (50 mM NaCl, 40 mM
MOPS pH 7.0 and 22.2 mM glucose) and then centrifuged to collect the cell

paste, which was transferred to Méssbauer cups. To investigate the effect of
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SAM on the spectroscopic properties of PFL-AE in whole cells, whole cell
samples prepared as described above were resuspended in AE lysis buffer (50
mM HEPES pH 7.5, 200 mM NaCl, 5% (w/v) glycerol, 1% (w/v) Triton X-100, 10
mM MgCl,) (~0.4 g whole cell + 300 pL AE lysis buffer), and SAM was added to
2.5 mM. The sample was incubated at room temperature for 15 mins before
transferring to a Méssbauer cup and freezing in liquid nitrogen. In addition,
separate whole cell samples were resuspended in AE lysis buffer (~2 g whole
cell + 1.5 mL AE lysis buffer) and lysed by addition of lysozyme/DNAse/RNAse,
followed by addition of SAM to 2.5 mM. After incubation at room temperature for
15 min, the sample was transferred to a Méssbauer cup and flash-frozen in liquid
nitrogen. The lysed PFL-AE cells in the presence of added SAM were also
exposed to air at room temperature for various amounts of time before freezing in
liquid nitrogen. Samples of unpurified overexpressed PFL-AE in the presence of
SAM, PFL, and/or YfiD Were also made by lysis as described above, followed by
centrifugation to obtain a clear lysate. The clear lysate was mixed with SAM
(final concentration 1.7 — 1.9 mM), YfiD (final concentration 0.19 mM), or PFL
(final concentration 0.17 mM). The resulting samples were incubated at room
temperature for 30 minutes before transferring to Méssbauer cups and freezing

in liquid nitrogen.

1.2.4. Preparation of Méssbauer Samples of Purified PFL-AE.
S’Fe-labeled PFL-AE was expressed and purified as previously

described.?  To purified [*’Fe]-PFL-AE (0.64 mM in 50 mM Hepes pH 7.5, 200
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mM NaCl, and 1 mM DTT) was added ATP, ADP, AMP, 5-deoxyadenosine,
methylthioadenosine, adenine, ribose, pyruvate, formate, CoA, or Acetyl-CoA (all
at 6.4 mM final concentration). The samples were frozen in liquid nitrogen
immediately after mixing. After collecting the Mdssbauer spectra, the samples
were thawed and SAM was added to each (to 6.4 mM final concentration). The

samples were flash-frozen for collection of additional M6ssbauer spectroscopy.

11.2.5. Preparation of EPR Samples of Purified PFL-AE.

Purified PFL-AE (100 pM) in buffer containing 100 uM 5-deazariboflavin,
1 mM DTT, 100 mM Tris-HCI pH 7.6, 100 mM KCI, and 20 mM oxamate was
illuminated for 1 h at 0°C to reduce the [4Fe-4S] cluster to the 1+ state. The
reduced enzyme was then divided into 10 aliquots, and one of (ATP, ADP, AMP,
cAMP, 5'-deoxyadenosine, 2'-deoxyadenosine, adenosine, methylthioadenosine,
methionine) was added to each aliquot to 2 mM final concentration. The EPR
samples were then frozen in liquid nitrogen. After measuring the EPR spectra,
the samples were thawed and SAM was added to 2 mM final concentration

followed by flash-freezing the samples again.

11.2.6. Effects of ATP, ADP, and AMP on PFL-AE Activity Assay.

The PFL-AE activity was measured using modifications of previously
published procedures.? Anaerobic PFL-AE reaction mixes all contained in a final
volume 500 pL: 0.1 M Tris-HCI pH 7.6, 0.1 M KCI, 10 mM oxamate, 8 mM DTT,
~0.06 uM PFL-AE, ~6 uM PFL, 0.2 mM AdoMet, and 50 uM 5-deazariboflavin.
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Some assays also contained 0.2 mM ATP, ADP or AMP. For each PFL-AE
activity assay, 5-deazariboflavin was added last, in the dark, and the reaction
was initiated by illumination of the sample in an ice water bath with a 300 W
halogen bulb. At time intervals after initiation of the reaction, typically 5 to 30 min,
an aliquot (5 pL) was removed for assay of active PFL through the coupling
assay.

The coupling assay mix contained 0.1 M Tris-HCI pH 8.1, 3 mM NAD,
55 mM CoA, 0.1 mg BSA, 10 mM pyruvate, 10 mM malate, 20 units citrate
synthase, 300 units malic dehydrogenase, and 10 mM DTT in a final volume of
20 mL. To assay PFL activity, 895 pL of the coupling assay mix and 5 uL of the
PFL-AE activity mix were combined in a quartz cuvette, which was then sealed
with a septum and brought out of the chamber to monitor the production of NADH

by the increase in absorbance at 340 nm.

11.2.7. Mdéssbauer and EPR Spectroscopy.

Moéssbauer spectra were recorded in either weak-field spectrometer
equipped with a Janis 8 DT variable-temperature cryostat or a strong-field
spectrometer furnished with a Janis CNDT/SC SuperVaritemp cryostat encasing
an 8-T superconducting magnet. Both spectrometers operate in a constant
acceleration mode in a transmission geometry. The zero velocity of the spectra
refers to the centroid of a room-temperature spectrum of a metallic iron foil. EPR

spectra were recorded in a Bruker EPR spectrometer cooled to 12 K with a liquid
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He cryostat and a temperature controller from Oxford Instruments. The samples

were measured at 2 mW microwave power and 10 G modulation amplitude.
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I.3. Results and Discussion
I.3.1. Construction of Overexpressing and Control Cells.

The PFL-AE overexpression vector was constructed as previously
described, and when transformed into E. coli BL21(DE3)pLysS cells provided a
high level of overexpression of PFL-AE (Figure 11.3.1.1). A control vector was
constructed by using restriction digestion and ligation to remove the pflA gene
from the PFL-AE expression vector. This vector, when transformed into the
same E. coli strain, showed no evidence for overexpression of PFL-AE (Figure

11.3.1.1).
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Figure 11.3.1.1. Construction of PFL-AE-overexpressing and control cells.
The PFL-AE expression vector, constructed as indicated in the figure and
described in the text, was transformed into E. coli BL21(DE3)pLysS cells. The
control vector, the PFL-AE expression vector with the PFL-AE gene removed,
was transformed into the same cell line. SDS-PAGE gels showing the results of
growth and induction of the PFL-AE (left) and control (right) cells is shown.
Lanes on each gel are 1) MW standard, 2) pre-induction, and 3) 2 h post-
induction.
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11.3.2. Iron-Sulfur Cluster Interconversions in PFL-AE in Whole Cells.
Purified PFL-AE has been shown previously to undergo cluster

interconversions. An early report suggested a [2Fe-2S]** — [4Fe-4S]*"*

interconversion upon reduction of PFL-AE," while more recent results point to a

facile [3Fe-4S]" — [4Fe-4S)**"* conversion under reducing conditions, with the

2+/+ s

corresponding [4Fe-4S] [3Fe-4S]" occurring upon oxidation.? ° The

physiological relevance of these cluster conversions, if any, has yet to be
identified. PFL-AE is constitutively expressed in E. coli under both aerobic and
anaerobic growth conditions, however it activates PFL only under anaerobic
reducing conditions. Our observation of PFL-AE cluster interconversions in vitro
led us to question whether cellular redox-state-dependent cluster
interconversions might play a role in regulating PFL-AE activity. To address this
possibility, we have investigated PFL-AE cluster interconversions in E. coli cells
overexpressing PFL-AE.

Figure 11.3.2.1 and Figure 11.3.2.2 summarized the EPR spectra of both
PFL-AE and the control samples. The control cells showed very good
background information at a region between 3350 to 3450 Gauss. In comparison,
the PFL-AE cells showed not only the background signals but also the shoulder
signals at a region between 3300 to 3350 Gauss. This shoulder signal reached
its maximal strength 1hr after the PFL-AE cells were changed from anaerobic to
aerobic conditions. Interestingly, longer incubation of this culture under aerobic

conditions weakened this signal. Deconvolution (subtraction) of PFL-AE cells

from the control cells exhibited a typical [3Fe—4S]1+ cluster signal (9=2.02, 2.04).
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However, spin quantification of this difference signal accounted for only 0.3% of
the total iron-sulfur cluster present in the PFL-AE cells, suggesting the [3Fe-4S]1+
cluster is not the major species of PFL-AE in the whole cells. Most (99.7 %) of
the iron-sulfur clusters of PFL-AE were in the diamagnetic states that can not be
observed by EPR spectroscopy. In order to investigate these diamagnetic

species in vivo, Méssbauer spectroscopy was used and results will be discussed

in the next paragraph.
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2hr induction by IPTG

Immediate before induction
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Gauss
Figure 11.3.2.1. X-band EPR spectra of the control cells under different

conditions. Each sample contained ~ 0.2 g cell paste and were resuspended in
0.2 mL wash buffer (50 mM NaCl, 40 mM MOPS pH 7.0, and 22.2 mM glucose).
Conditions of measurement, T = 12 K; microwave power, 2 mW; modulation
amplitude, 10 G.
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Figure 11.3.2.2. X-band EPR spectra of the PFL-AE cells under different

conditions. Each sample contained ~ 0.2 g cell paste and were resuspended in

0.2 mL wash buffer

(50 mM NacCl, 40 mM MOPS pH 7.0, and 22.2 mM glucose).

Conditions of measurement, T = 12 K; microwave power, 2 mW,; modulation

amplitude, 10 G.
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Figure I1.3.2.3.  X-band EPR spectra substation of the PFL-AE cells from the
control cells. Both PFL-AE and the control samples have been incubated under

aerobic condition for 1 hr. This signal represents a typical [3Fe4S]1+ cluster (g =
2.02, 2.04) and accounts for only 0.3% of the total iron present in the PFL-AE
cells.

After 2 h induction under aerobic conditions, the *’Fe-Mdssbauer spectra
of E. coli cells overexpressing PFL-AE are comprised of four components,
including [4Fe-4S)?* clusters (~50% of total iron), [2Fe-2S]** clusters (~6% of
total iron), Fe(lll) (~24.5% of total iron), and Fe(ll) (~7% of total iron) (Figure
11.3.2.4). The corresponding control sample exhibits signals only for Fe(lll)
(~61% of total iron) and Fe(ll) (~41% of total iron), with no cluster signals
observed, thereby providing evidence that the cluster signals observed in the
PFL-AE cells are due solely to PFL-AE iron-sulfur clusters (Figure 11.3.2.4). After
16 hours of subsequent anaerobic incubation, the iron speciation of the PFL-AE

cells changes dramatically, such that [4Fe-4SJ?* (77% of total iron) and Fe(ll) (6%
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of total iron) are the only species observed. Further aerobic incubation resulted
in the PFL-AE cells containing again ~50% total iron as [4Fe-4S]**, 10% total iron
as [2Fe-2SJ?*, with some Fe(lll) ~15%) and Fe(ll) (8%) also present. The
corresponding control cells show some variation in the relative amount of Fe(lll)
and Fe(ll) present, with Fe(lll) increasing under aerobic growth conditions and
decreasing under anaerobic growth conditions. It should be noted that the
amount of signal attributed to Fe(ll) in the PFL-AE cells changes little in response
to the change in oxygen availability, while the amount of the Fe(lil), [2Fe-2S)*,
and [4Fe-4S)?* changes dramatically. In fact, the sum of the quantities of iron
present in these three signals in aerobic cultures (50 + 6 + 24.5 % of total iron) is
approximately equal to the amount of iron in the [4Fe-4S]** (77% of total iron)
after anaerobic incubation of the culture. This provides support for the
hypothesis that under anaerobic conditions, additional [4Fe-4S]** clusters are
assembled in PFL-AE at the expense of the [2Fe-2S]** clusters and Fe(lll)
present under aerobic growth conditions. Together, these results provide
support for oxygen-dependent cluster interconversions occurring in PFL-AE in
vivo, with a mixture of [4Fe-4S}** and [2Fe-2S]** clusters present under aerobic

growth conditions, converting to all [4Fe-4S)?* under anaerobic conditions.
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Figure 11.3.2.4. Méssbauer spectra of PFL-AE-overexpressing and control

cells under different growth conditions. The colored lines are the theoretical
simulations of component spectra that sum to a theoretical spectrum (black solid
lines overlaying experimental data) in good agreement with the experimental
data (black hatched lines). Component spectral simulations are color-coded as
non-cluster Fe(ll) (green), non-cluster Fe(lll) (orange), [2Fe-2S]?* (red), and [4Fe-
4S]?* (blue). The control cells (right) exhibit a mixture of Fe(ll) and Fe(lll) after 2 h
aerobic induction which becomes more weighted toward the ferrous state after
anaerobic incubation and more weighted to the ferric state after aerobic
incubation. No signals due to iron-sulfur cluster signals are observed. The PFL-
AE-expressing cells show, in addition to the ferrous and ferric signals, strong
signals attributed to £2Fe-2S]2‘ and [4Fe-4S]** clusters. After anaerobic
incubation, the [2Fe-2S]** cluster is no longer present, and the [4Fe-4$lz’ cluster
signal increases in intensity. After aerobic incubation, the [4Fe-4S]** cluster
signal decreases in intensity and the [2Fe-2S]** cluster signal reappears.
Spectral parameters and signal quantitation are provided in the text.
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11.3.3. Valence-Localized [4Fe-4SF* in PFL-AE in Whole Cells.

The [4Fe-4S}** cluster in PFL-AE in whole cells contains a valence-
localized Fe**-Fe®" pair, as indicated by the prominent peak at approximate +1.9
mm/s; this peak is one-half of a quadrupole doublet (8; = 0.967, AEq3 = 2.075)
assigned to a localized Fe(ll) site in the [4Fe-4S]** cluster (Figure 11.3.2.4, arrow).
The magnetic field dependence of this signal demonstrates that it arises from an
iron that is part of a diamagnetic cluster, and thus is not attributable to free Fe(ll).
The large isomer shift and quadrupole splitting, however, are indicative of an
unusual coordination environment that is not the typical FeS, environment found
in [4Fe-4S] clusters. Two other quadrupole doublets (51 = 0.431, AEq1 = 1.2, 8, =
0.428, AEq; = 0.709) arise from the [4Fe-4S]** cluster of PFL-AE in whole cells.
The first quadrupole doublet has parameters (31 = 0.431, AEqs = 1.2) consistent
with its assignment to a delocalized Fe?>*-Fe?%* pair in a [4Fe-4S]** cluster. The
second quadrupole doublet (5, = 0.428, AEq; = 0.709) we assign to the Fe** of
the valence-localized pair. The relative signal intensity of the three quadrupole
doublets (2:1:1 for 61: 82: 83) supports their assignment as the delocalized pair
and the two localized sites, respectively, and also suggests that 100% of the
[4Fe-4S]** clusters are in this valence-localized state.

The Méssbauer spectral features of the [4Fe-4S)?* cluster of PFL-AE in
whole cells are distinct from those previously reported for the purified protein.
The [4Fe-4S]** cluster of the purified protein exhibits a typical [4Fe-4S]**
Méssbauer spectrum, with site 1 (6= 0.45, AEqs = 1.15) and site 2 (6= 0.45, AEq

= 1.00) giving rise to equal-intensity quadrupole doublets, each assigned to a
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valence-delocalized Fe®**/Fe*** pair.® Additon of S-adenosylmethionine
(AdoMet) to the purified protein results in the appearance of a shoulder to the
high-field side of these quadrupole doublets. Detailed characterization of the
AdoMet-bound form of purified PFL-AE required a dual iron-isotope method, in
which the unique site of the [4Fe-4S]** cluster of PFL-AE was labeled with >’Fe,
and changes to this site alone were monitored upon addition of AdoMet. In the
absence of AdoMet, this unique site gave rise to a Méssbauer spectrum typical
for a [4Fe-4S]** cluster, with (5= 0.42, AEq: = 1.12).'® Upon addition of AdoMet,
a dramatic increase in the isomer shift (6= 0.72, AEq = 1.15) of this unique site
signaled an increase in coordination number and/or binding of more ionic ligands,
suggesting that the substrate AdoMet coordinated the unique Fe site;'
subsequent ENDOR studies provided further support for direct coordination of
AdoMet to the unique Fe site.> !’

The large isomer shift of site 3 of the [4Fe-4S}J** cluster in PFL-AE in
whole cells is indicative of not only valence-localization at that site, but also of an
unusual coordination that is atypical for Fe in an iron-sulfur cluster; the
requirement for unusual coordination implicates the unique site of the [4Fe-4S]**
cluster, which has the demonstrated ability to exchange ligands, as the valence-
localized Fe(ll) site. The large isomer shift, however, does not appear to be a

result of AdoMet binding, since AdoMet bound to the purified protein gives rise to

an isomer shift of 0.72, not 0.97, at the unique site.

11.3.4. Valence-Localized [4Fe-4SF* cluster in purified PFL-AE.
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In an effort to explore the factors associated with valence-localization in
the [4Fe-4S]** cluster, Mdssbauer spectra were obtained for purified PFL-AE in
the presence of a series of small molecules, including potential AdoMet
degradation products (methylthioadenosine, 5'-deoxyadenosine, methionine,
adenine, and ribose), substrates and products of PFL (pyruvate, formate, CoA,
and acetyl-CoA), and abundant cellular metabolites (ATP, ADP, and AMP). The
valence-localized state was produced by addition of methylthioadenosine, 5'-
deoxyadenosine, AMP, or ADP to PFL-AE, as evidenced by the appearance of a
prominent peak in the M®ossbauer spectra at approximately 2 mm/s.
Representative data for the PFL-AE/5’-dAdo sample is shown in Figure 11.3.4.1,
lower panel, with the Méssbauer spectrum of purified PFL-AE alone shown in the
upper panel for comparison. In the presence of 6.4 mM 5°-dAdo, 80% of the
PFL-AE [4Fe-4S]** cluster is in the “bound” state, with a Méssbauer spectrum
consisting of three distinct quadrupole doublets (61 = 0.443, AEq = 1.203; 6, =
0.997, AEq2 = 2.067; 83 = 0.385, AEqs = 0.518) in a 2:1:1 ratio of relative
intensities. Sites 1, 2, and 3 are assigned to a valence-delocalized Fe?**/Fe?>*
pair, a valence-localized Fe?* (the unique iron site), and a valence-localized Fe**
site, respectively. The 20% of the PFL-AE [4Fe-4S]** cluster in the unbound
state has parameters identical to that observed for the as-purified PFL-AE (81 =
0.443, AEqs = 1.203; 6, = 0.437, AEq; = 0.978). Similar results are observed
upon addition of methylthioadenosine, AMP, and ADP to purified PFL-AE,
(Figure 11.3.4.2) with a fraction of the [4Fe-4S]** exhibiting the bound state

Mdssbauer spectrum with a valence-localized site, and the remainder of the
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cluster being in the unbound state; the fraction of cluster in the bound state
varied with the identity of the small molecule and in no cases was 100%. The
remaining molecules examined for the ability to produce the valence localized
state had no significant impact on the Méssbauer spectrum of PFL-AE (Figure
11.3.4.3); it is concluded that these molecules either do not bind PFL-AE, or do
not bind in such a way as to produce a valence-localized site.

Samples prepared in parallel to those just described and then
photoreduced to the [4Fe-4S]’ state were examined by EPR spectroscopy
(Figure 11.3.4.4). The molecules that induce valence localization of the [4Fe-4S]**
of PFL-AE also induce a slight perturbation of the EPR spectrum of the [4Fe-4S]"
cluster of PFL-AE, from the normal PFL-AE/[4Fe-4S]" g values of (g|= 2.02, g1=
1.93) to new g values of the complexes (ADP(g|= 2.01, g+= 1.92); AMP(g|= 2.01,
gi= 1.91); MTAdo(g|= 2.01, g+= 1.91); 5dAdo(g|= 2.01, g+= 1.91), cAMP(g=
2.01, g+= 1.92), 2dAdo(g|= 2.01, g+= 1.92), Ado(g)= 2.01, g+= 1.90). These
results suggest that these molecules bind to and perturb the electronic structure
of the cluster. In contrast, the molecules that do not induce valence localization
as observed by Méssbauer also do not significantly perturb the EPR spectrum of
PFL-AE/[4Fe-4S]" (Figure 11.3.4.4). Subsequent addition of SAM to the PFL-
AE/small molecule samples resulted in appearance of the normal PFL-AE/[4Fe-
4S]'/AdoMet EPR spectrum (Figure 11.3.4.5), demonstrating that AdoMet is
capable of displacing any of these small molecules that do bind to PFL-AE.

Together, these results demonstrate that the valence-localized state

observed for PFL-AE in whole cells can be reproduced in the purified protein by
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addition of certain adenosyl-containing molecules, including ADP, AMP, 5'-
deoxyadenosine, and methylthioadenosine. The appearance of a valence-
localized site with a large isomer shift of approximately 0.97 mm/s can best be
explained by a change in coordination of the unique site of the [4Fe-4S]** of PFL-
AE upon addition of these molecules. It is curious that none of these molecules
contains the carboxylate and amino groups found to coordinate the unique site in
the AdoMet complexes of several radical-SAM enzymes. Whether the adenosyl
moieties coordinate the unique site, or whether their binding in a proximal pocket
somehow changes the coordination of the unique site, remains to be determined.
Regardless of the mechanism by which the valence-localization occurs, it seems
likely that an abundant intracellular molecule containing an adenosyl moiety is
responsible for the valence-localization observed in PFL-AE in whole cells. Of
the molecules that cause valence localization in the purified protein, only AMP
would be considered to be abundant in E. coli cells (estimated to be over 1
mM),'®2% and thus we consider AMP the most likely candidate for binding to PFL-

AE in whole cells and generating the valence-localized state.
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Figure 11.3.4.1. Representative Méssbauer data for the purified PFL-AE in
the absence (upper panel) and presence (lower panel) of 5’-dAdo. The colored
lines are the theoretical simulations of component spectra that sum to a
theoret<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>