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ABSTRACT

SEMI-SUPERVISED LEARNING WITH SIDE

INFORMATION: GRAPH-BASED APPROACHES

By

Yi Liu

In many real-world learning tasks, data examples are known not only by their input

patterns, but also in other forms that are often refered to as “side information”. Side

information provides additional knowledge about the data, leaving hope for machine

learning algorithms to gain more insight into the structure of data and thus perform

better. However, the usual incomplete, sparse, and noisy nature of side information

also poses challenges. This dissertation will present research work in semi—supervised

learning with side information.

Semi-supervised learning uses both labeled and unlabeled data in training. In this

work, we follow the graph-based approaches that are able to explore the underlying

structure of data by constructing a graph over data examples. Taking such an ad-

vantage of graph representation for semi-supervised learning, we propose to construct

a graph over all labeled and unlabeled data and further incorporate side informa-

tion into the graph. To effectively utilize side information against its incompleteness,

sparseness, and noise, this work adopts a common theme in formalizing graph-based

learning models, i.e., enforcing consistency over the graph. More specifically, consis-

tency is maximized among data input patterns, supervised information (if any), side

information, and predictions on the unlabeled data. Optimization approaches are

taken to carry out the consistency enforcement, with objective functions that collect

consistency measurement defined on all possible data pairs.

Solutions to three generic learning tasks are presented to illustrate the proposed

method of utilizing side information in a semi-supervised learning setting. Specifically,



we study multi-label learning with class correlation information, to meet the challenge

of a large number of classes and a small training set. To improve classification with

link information, we propose a boostng framework that is able to improve the clas-

sification accuracy of any given supervised classifiers. Another boosting framework

is also designed to boost any given clustering algorithm, with the help of pairwise

constraints over the data.

In addition, two applications in the area of information retrieval will be discussed.

In the first application, we develop a maximum coherence framework to tackle the

difficulty of query translation disambiguation in cross-language information retrieval,

with a bilingual dictionary as side information. The proposed framework will also

be explained as two-way graph partitioning. The second application is automatic

extraction of question-answer pairs from Web FAQs, where the side information comes

from human knowledge on the presentation regularity on Web FAQ pages. Correlated

label propagations over a graph constructed for each FAQ page is shown to be an

interpretation of the corresponding model.

All the semi-supervised learning models proposed for the tasks and applications

demonstrate the effectiveness of the consistency enforcement theme in exploiting side

information for semi-supervised learning. Analysis shows that the proposed models

are robust against the incompleteness, sparseness, and noise of side information, and

retain the power of utilizing both labeled and unlabeled data for training as semi-

supervised learning.
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CHAPTER 1

Introduction

Learning with inadequate amount of, or no, supervised information poses a challenge

for machine learning research. In practical domains, though supervised information

may be hard to collect, it is often the case that some certain partial supervised

information is available. This naturally leads to a question: can we learn better, if

more knowledge on the data is gained? ‘

Answering this question leads to the research topic of semi-supervised learning,

which has gained significant attention in recent years.

Semi-supervised learning, in a strict sense, refers to the family of classification

techniques in machine learning that makes use of both labeled and unlabeled data.

In a typical semi-supervised learning setting, the amount of labeled data is small

while the amount of unlabeled data is large. As its name suggests, semi-supervised

learning lies in the continuum of two ends in the spectrum of machine learning —

strictly supervised learning (with completely labeled data), and strictly unsupervised

learning (without any labeled data). Usually, some partial supervised information is

available in semi-supervised learning, which typically includes the observation of all

unlabeled data that is going to be classified into predefined categories, possibly as

well as information in other forms that do not directly provides class labels.

Data clustering is a typical unsupervised learning problem, where no supervised

information is available. The word “semi—supervised” has also been introduced to data



clustering, i.e. “semi-supervised clustering”, when partial supervised information is

available for clustering purpose.

Regardless of how the terminology evolves, the essence of semi-supervised learning

is the utilization of any knowledge gained in addition to the supervised information.

The particular interest we will show in this thesis, is the kind of additional knowledge

beyond the input patterns of the data. By input patterns, we refer to the observation

of “feature representations” (or also known as “attribute values” in literature) on all

the data. This leads to the research issue that centers this thesis work, i.e.

How can we improve semi-supervised learning, if we know anything more

than the input patterns of labeled data (if any) and unlabeled data?

The knowledge about data that is not the input patterns will be referred to as

“side information” in this thesis. Also, among all types of semi-supervised learning

work, we will focus on graph-based approaches.

In this chapter, we will first review graph-based semi-supervised learning, then

motivates the use of side information in semi-supervised learning, and briefly overview

the entire thesis work. Detailed discussions on each piece of work will be left to the

rest chapters.

1.1 Graph-based Semi-supervised Learning

1.1.1 Mathematical Definition of Graph

From a mathematical point of view, a graph is a collection of points and lines con-

necting some (possibly empty) subset of them [151]. The points of a graph are most

commonly known as graph vertices, but may also be called “nodes” or simply “points”.

Similarly, the lines connecting the vertices of a graph are most commonly known as

graph edges, but may also be called “links”, “arcs” or simply “lines”. In an undirected

graph, edges are not directional, i.e., a line from point A to point B is not distin-



guished from a line from point B to point A. However, the two directions are distinct

in a directed graph (or digraph for short). On many occasions, a weight. (usually pos—

itive) will be associated with each edge, indicating the strength of the relationship

within the corresponding vertex pair.

Formally, we can denote a graph by G(V, E), where V is the vertex set and E is

the edge set. For a finite graph G with n vertices, the adjacency matrix is defined as

a binar matrix A = a- - , with a' - = 1 denotinor there is an edge between the
y 2.] 2.] b b

nxn

i-th and the j—th vertices and ai,j =2 0 otherwise.

Introducing the weight to each edge in a graph will result in a weighted graph.

In this case the adjacency matrix (or weight matrix) becomes W = [wi’j] nxn’ with

wm- > 0 indicating the edge weight between the i-th and the j—th vertices and wi,j = 0

indicating no edge there. For an undirected graph, both the adjacency matrix and

the weight matrix are symmetric.

An important concept centering in Spectral Graph Theory is the graph Laplacian,

which has been widely used in graph-based semi-supervised learning models. With

respect to a symmetric adjacency matrix W, the graph Laplacian is defined as follows

L = D — W (1.1)

where D is a diagonal matrix D = diag(d1,d2, - -- ,dn) with di 2 ZjEV wi,j- A

normalized version of the matrices above is defined in some occasions

- 1 1

W = D_2WD_2

_1_1

L=D2LD2

I—w

The graph Laplacian L (or L) has the following properties

1. It is positive semi-definite, i.e., all the eigenvalues are non-negative;

 



2. Its minimum eigenvalue is always 0. For unnormalized graph Laplacian L,

the corresponding principal eigenvector is e = (1/fi,1/\/h,...,1/\/H)T; for

1

normalized graph Laplacian L, the corresponding principal eigenvectrn' is D28

The set of eigenvalues of the graph Laplacian L can be denoted by 0 = A0 S A1 3

- S An_1, which is also called the spectrum of L (or the graph itself). Spectral

Graph Theory tells us that the structure of a graph and its principal properties can be

deduced from its spectrum. In particular, it has been shown that the eigenvalues are

closely related to almost all major invariants of the graph, and link external properties

together ( [38, 37]). As will be shown later in the next subsection, graph Laplacian is

clearly present in a number of graph-based learning models.

1.1.2 Graph-based Semi-supervised Learning Models

Semi-supervised learning deals with the use of both labeled and unlabeled data for

training. The central idea behind nearly all semi—supervised learning algorithms is an

assumption made on the data consistency that data examples close to each other or

in the same structure are more likely to have the same label. Various semi-supervised

learning approaches differ in the way to model the structure of data and attempts

to propagate the label information from labeled examples to unlabeled ones. One

approach is to construct a graph over all the labeled and unlabeled data: each vertex

represents a data example; whenever a pair of data examples are close enough by some

similarity measurement, an edge is constructed between them with a weight propor-

tional to their similarity value. Taking this graph point of view, a number of graph-

based semi-supervised learning model can have interpretation in graph languages,

such as graph partitioning [25, 26, 87], random walk on the graph [134, 119, 70],

ranking of nodes [119, 70, 92, 144], graph approximation [104, 105], and etc..

In the rest of this subsection, we will recapitulate a few typical graph-based semi-

supervised learning models.



GRAPH MINCUTS

The graph mincuts model extends the algorithm for finding the minimal cut in a

graph to a transductive learning setup [25, 26]. The basic idea is searching for a

partition of the graph which results in a minimum sum of weights of the edges being

cut while agreeing with the labeled data. To enforce the consistency with the labeled

data, a special weighting scheme is adopted to build a graph over all the labeled

and unlabeled examples: for any pair of data examples belonging to different classes,

the edge weight indicates their similarity; for any pair of data examples belonging to

the same class, an infinite weight is assigned. In a binary case, the search for the

minimum cut amounts to the following optimization problem

- 2U :w.,.<y. - y.)
{yilxz'EX } i,j

at. 92'. = 3):,in E XL

where 3;: indicates the known labels of the labeled data.

Note that the solution gives binary labels for the unlabeled data, which can also

been proved to be optimal in another sense that it minimizes the leave—one-out cross—

validation error of the nearest-neighbor algorithm applied to the entire dataset ([25]).

To improve the robustness of the solution, a follow-up work ([26]) introduces random

noise to edge weights and results in a solution with “soft” labeling.

GAUSSIAN RANDOM FIELDS AND HARMONIC FUNCTIONS

Gaussian random fields and harmonic functions method ([173, 172, 174]) is motivated

by the assumption that the label probability should vary smoothly over the entire

graph. To enforce the label smoothness on the graph, a quadratic energy function is

‘



proposed as follows (in a binary classification case)

Elf) = 12mm 43-)?

where f = (f1, f2, . . . ,fn)T is the label probability vector defined as

6(3),:, 1) r,- is labeled

fi. =

Pr(g,- = 1|r,-) .23,- is unlabeled

The energy defined above will be small when the label probability vector varies

smoothly over the graph, which leads to the minimization of the energy function. The

minimizer f* makes the function harmonic in the sense that

yz- :13,- is labeled

(Lf*)i =

0 r,- is unlabeled

This method is also related to Gaussian Random Field because the energy function

could be used to form a Gaussian density function

p(f) oc exp[—fiE(f)]

where B is an “inverse temperature” parameter.

If we define P = D’1W and further decompose it into four blocks

P11 PIn
P =

Pul Puu

  

where Pll corresponds to the labeled data and Pan corresponds to the unlabeled

data, the final prediction is made in the following way

ya = (I - PuuYIPuzfz

To save the computation introduced by the matrix inverse, an extended work is

proposed in [174], which essentially forms a backbone graph with super-nodes created

by pre—clustering the examples.



Again the important role 1..)layed by the graph Laplacian L is witnessed: the

smoothness regularization on the graph and the harmonic nature of the energy func-

tion are both achieved through it, which suggests a close relationship to the Spectral

Graph Theory ([173]).

SPECTRAL GRAPH TRANSDUCER

Spectral Graph Transducer is another semi—supervised version of ratio—cut algorithm

originally proposed for unsupervised learning ([87]). The objective function incorpo-

rates a quadratic penalty on labeled data in addition to minimizing the graph cut

mfin fTLf + Ca —— r)TC(f — r)

sat. fTe = 0

fo = n

where the vector f is a label probability vector, and the vector r is defined as

m 475i is a positive example

Ti = 1“; xi is a negative example

0 xi is unlabeled

The matrix C = diag((:1 , C2, . . . ,cn) iS a diagonal cost matrix allowing different mis-

classification cost for each data example. The trade-off between the graph cut value

and the training error penalty is balanced through the constant c. It has been shown

that solving the optimization problem in Spectral Graph Transducer also leads to a

matrix eigen—decomposition problem ([87]).



LEARNING WITH LOCAL AND GLOBAL CONSISTENCY

The local and global consistency method ([166]) proposes the following optimization

problem

2

F' F r)

35—] wine—Yuk
l i

, 1

min — w,- - —-—

F 2 22]: ’7 \f— \fli:

where F is the label probability matrix with each column corresponding to a class,

d; = ZjeV wm- and Y is the label matrix with yi,j = 1 if the i-th example is labeled

as a member in the j—th class and 31,-,j = 0 otherwise.

The first term in the object function addresses the smoothness constraint on the

graph by the sum of local variations measured at each edge in an undirected graph;

the second term penalize the inconsistency with the labeled data.

LOCAL LAPLACIAN EMBEDDING

To learn the global manifold structure from the data, local Laplacian embedding meth-

ods propose to project the data from the original Space to a dimension reduced space.

In particular, let V = [v1, v2, . . . ,vp] be a matrix composed by the p smallest eigen-

vector of the graph Laplacian for the nearest neighbor graph built over all labeled

and unlabeled data. If we rewrite V = [if]: if; , . . . ,ile, it,- is the projected image

of x,- in the dimension reduced space.

For classification purpose, in [18] a linear classifier is learned from the labeled data

a = (VZLVLLl—IVLFLYL

where \7LL is a sub—matrix Of V that corresponds to the labeled examples. Then the

prediction for the unlabeled data x,- is made by

T~

3% = a Xi



Another manifold learning based semi—supervised learning algorithm extends the

manifold ranking function ([169]). The prediction is as follows

y* = (I — aD—lwrlny

where a is a constant that controls how much we rely on the labeled data, and y

takes a i1 value if labeled and 0 if unlabeled.

LEARNING ON DIRECTED GRAPI-Is

Recently a semi-supervised learning method is proposed based on directed graphs

[167], which extends the work in [166]. To address the data consistency, the undirected

graph is expected to be smooth in the sense that nodes lying on a densely linked

subgraph are likely to have the same label. To search for a good classifier which

results in a labeling with such smoothness on the graph, a smoothness functional is

proposed (for binary classification)

_ 1 _ . . A _ it 2

- t... A
where f = [f1, f2, . . ., fn]T is the label probability vector, L = [ll-’3'] is the graph

Laplacian over the entire data examples, and 71’ = [7r1, r2, . . . ,7rn]T iS the principal

eigenvector of the graph Laplacian L.

To find the labeling for the unlabeled data, an optimization problem is proposed

with an objective function addressing both the data smoothness enforcement and the

consistency with labeled data.

arg min Q(f) + ullf — y”

f

where the component of y takes a :l:1 value if labeled and 0 if unlabeled, and u > 0

is a constant specifying the trade—Off.

A Slightly different version Of the algorithm above is described in [168], where two

sets of smoothness functionals are defined for the data examples: one for their “hub”



scores (which accounts for outgoing links) and one for their “authority” scores (which

accounts for incoming links). TO separate the two smoothness enforcement, directed

graphs are transformed into bipartite graphs.

SPECTRAL CLUSTERINC

Spectral clustering approaches View the problem of data clusterng as a problem Of

graph partitioning. Taking 2-way graph partitioning as an example, to form two

disjoint data sets A and B from a graph G = (V, E), edges connecting these two

parts Should be removed. The degree Of dissimilarity between the partitioned parts

are captured by the notion of cat, which is defined as Cut(A, B) = Xvi€144,363 ail-J.

Generally Speaking, a good partitioning should lead to a small cut value.

Addressing different balancing concerns, there are several variants Of cut definition

which lead to the optimal partitioning in different senses. TO begin with, we define

S(A, B) = 2736A ZjEB wi,j and dA = ZiEA di- Ratio Cut addresses the balance

concern on the sizes Of partitioned graph ([68]), which leads to minimization of the

following Objective function

_ MB) S(A,B)

JRCU‘ “ W + lBl
 

Normalized Cut addresses the balance concern on the weights Of partitioned graph

([134]), which leads to minimization of

S(A, B) + S(A, B)

dA 413

 

jNCut =

Min-Max Cut addresses the balance concern between the intra—cluster weights and

inter-cluster weights in a partitioning ([49]), which leads to minimization Of

__ S(A,B) S(A,B)

JMCW ‘ S(A,A)+S(B,B)

 

By relaxing cluster memberships to real values, the above minimization problems
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can all be formulated as eigenvector problems related tO the graph Laplacian

T

jRC'ut = q Lq

T~

~7NCut Z q Lq

qTWq

qTDq

 

~71”C'at

where q is related to the relaxed cluster membership. All the above three problems

lead to finding the second eigenvector Of the graph Laplacian L or L.

2-way spectral clustering can be extended to k-way spectral clustering ([66, 115]),

whose solution is related to the top It eigenvectors Of the graph Laplacian.

1.2 Side Information

1.2.1 Motivation on Introducing Side Information

In the previous section, we briefly reviewed graph—based semi-supervised learning. All

the models mentioned there only assume the knowledge of unlabeled data, or more

specifically, the input patterns of unlabeled data. As we can see, by constructing a

graph from all the data, those models do utilize unlabeled data in training. However

on many occasions, it is hard to achieve satisfying performance, even with the knowl-

edge of input patterns Of both labeled and unlabeled data. The difficulties come from

various sources. TO name a few here

0 Very small number of training examples. As a result, not enough supervised

information can be gained.

0 Large number Of classes with skewed Size distributions. For example, it is easy

to come across hundreds Of categories in text classifications problems. Very

often, in those categories only a few major ones are Of large Sizes, while the

rest are minor categories with relatively smaller sizes. Classifiers tend to make

mistakes on those minor categories.
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(b) Dataset 1 (with true class information)

Figure 1.1. Example dataset that presents data in complicated structure. The upper

figure shows the data distributions without class information; the lower figure Shows class

lables for data examples. Without any supervised information, clustering on this dataset is

difficult, since the two spirals are hard to be separated.
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(b) Dataset 2 (with true class information)

Figure 1.2. Example dataset that presents data in complicated structure. The upper

figure shows the data distributions without class information; the lower figure shows class

lables for data examples. Without any supervised information, 2-way clustering on this

dataset is difficult, since it is hard to tell how to combine four data clouds into two clusters.
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Figure 1.3. Dataset 2 with side information.

o Complicated underlying structure of data. For example, in general a clustering

algorithm is hard to perform well when the data examples do not form compact

and well-separated clusters. Figure 1.1 and Figure 1.2 present two such cases

that will fail many clustering algorithms. It is easy to imagine, yet hard to

visualize, the existence of much more complicated structure of data in real-

world applications.

0 Noisy input patterns. AS a result, the correlations between data examples

computed from their input patterns are unreliable, so propagating information

among data examples could be error-prone.

o Incomplete data. In this situation, it is hard to reveal the entire structure of

data.

However, with a little more information known beyond the data input patterns,

the difficulty involved in the semi-supervised learning can be eased or resolved. TO

14

 



illustrate this finding, let us consider the 2-way clustering problem shown in Figure

1.2. It is easy to find that there are roughly four clouds of data points in the dataset,

but the difficult part is in what way these four clouds Should be combined into two

clusters. Suppose we know that there a few data pairs, each of them containing two

data points that should be put into the same cluster, as indicated by solid lines in

Figure 1.3. Then it is clear that the two data clusters should be formed by putting

the two clouds in the diagonal positions into one cluster.

In the above example, the extra information is only data relationships that take

only binary values, from merely four data pairs involving eight data points. Consider-

ing the input patterns Of all the data points and the relationships between all possible

data pairs, the extra information we additionally have is very Simple and small, SO

we can call it as a type of “side information”. However, the data clustering task is

greatly benefited from such side information.

1.2.2 Side Information for Semi-supervised Learning

We may find different forms of Side information in different task scenarios. Numerous

previous studies have resorted to Side information, in order to improve the perfor-

mance of learning algorithms. For example

0 The title, text annotations, or even surrounding texts are often referred as Side

information to the image representations. AS is well known, understanding

image contents is very hard due to the gap between the low-level image features

and the high-level image semantics. The textual side information will provide

additional features that help to describe the image contents. Precious work

along this line includes using textual information for image segmentation [10],

image retrieval [11, 35, 170], and image clustering [31].

0 Log data is widely gathered in web applications (such as search engine, infor-

mation filtering, online shopping, and etc.) and serves as side information for
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various purposes. User query log can be used to form a context to provide

additional information on the user’s information need, and then improve the

query model ([139, 131]) or the user model ([132]). User click-through data 1is

another important source of side information for web applications. For exam—

ple, from click-through data we can tell how Often a link from page A to page B

is actually used, which can be used to estimate the similarity between the two

pages [112], in addition to their page contents; gathering a specific user’s clicked

links can help to model the user’s interest [75, 140], as additional information

to the user’s profile.

0 User feedback can be regarded as side information for information retrieval. For

example, user ratings on a returned document help to decide its relevance to

the query. In movie recommendation websites, user ratings provide additional

information either for describing movies or describing users.

0 External linguistic resource can serve as side information for many information

retrieval applications. For example, bilingual dictionaries are widely used to

help query translation for cross-language information retrieval [2, 95, 46, 57, 76,

93, 109, 81]. WordNet [54] can be used for query expansion, word disambigua—

tion, etc., and finally improve retrieval performance [106, 147].

o For classification problems, knowledge gained about the categories can be

viewed as Side information. For example, human knowledge on the popular—

ity Of each category is always used to gain some control on the category sizes in

the classification results. In image databases such as ImageCLEF [77], there is

some text description associated with each image category, which can be used

to gain some knowledge on the relationships between categories.

 

1Click-through data refers to a type Of log which keeps record of the time, session of hyperlinks

being clicked by web users.
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o In real—world data clustering problems, it is Often possible to gather informa-

tion on whether two examples should be put in the same cluster or not (Often

called as “pairwise constraints”). For example, in speaker segmentation and

recognition, a conversation between several speakers needs to be segmented and

clustered according to the speaker identity. It may be possible to automatically

identify small segments Of Speech which are likely to be from a Single unknown

Speakers [9]. Another example would be finding lanes in GPS maps. Usually

lanes are identified by clustering a few road segments. By tracking the Signals

Of car GPS’S, continuous car-traveled segments would be considered belonging

to the same lane, and well separated car-traveled segments would be considered

belonging to different lanes [148]. These pairwise constraints, would provide

side information for clustering data examples based on their input patterns.

0 In some cases, a few identified representative data examples are available as

“seeds” for clustering. We can also view these cluster seeds as Side informa-

tion [13, 12].

One characteristic can be summarized from various forms Of side information is

that, it is capable of providing some additional knowledge about the data, but it

cannot replace the original data input patterns. In this thesis, we will refer to any

additional information on the unlabeled data beyond input patterns as “Side informa-

tion”.

Usually side information is small in amount and incomplete. However, with proper

use, side information could Significantly improve the performance of unsupervised,

supervised, or semi—supervised learning algorithms.

Side information serves as partial supervised information. Also, as mentioned in

the beginning of this chapter, we will assume the data input patterns Of all the data

(including labeled and unlabeled) is known; and in all following discussions, we will

use unlabeled data in training. For these reasons, regardless Of the original learning
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task being an unsupervised one or a supervised one, as long as side information is

used, we will refer the resulting learning method as semi-supervised learning with

side information.

Side information can be explored in a number Of different ways. FOr instance,

in probabilistic models, side information iS always represented as strong priors; in

non-probabilistic models, side information is always incorporated in distance metrics

or constraints, etc. The work presented in the thesis will focus on graph-based non-

probabilistic models.

1.3 Graph-based Semi-supervised Learning with Side Infor-

mation

Side information, depending on its form, has various interpretations in graph—based

semi-supervised learning models. These interpretations can be summarized into, but

not limited to, the following major categories

1. Additional dimensions to the node representation: more features are

found for the input pattern of part (or all) the data examples. A typical example

in this category is textual information for images, where we can append textual

feature vectors with image feature vectors to form a new image representation.

Other examples include query log for query modeling, click-through data for

user modeling, user ratings for movie recommendation, etc.

2. Constraints on the graph topology: an edge should or should not be con-

structed between two nodes. The pairwise constraints for clustering belongs to

this category, which is self-explanatory. For example, the link graph constructed

for web pages by hyperlinks falls into this category.

3. Refinement on graph edge weights: a (new) weight Of an edge is proposed.

For instance, user feedback on a returned document defines a new relevance
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score between the query and the document, i.e. a similarity value between the

query node and the document node. Click-through data for hyperlinks on a

web page also suggests a new weight for the corresponding pair of page nodes

(for example, proportional to the number of user clicks on the hyperlinks).

The variance in the roles played by Side information from a graph point of view

leads to a diversity Of ways to accommodate side information within semi-supervised

learning settings. The following is an incomplete list Of treatments of Side information

1. Data Representation Augmentation: Side information is used to form bet-

ter representation, in the hope that the underlying structure of data can be bet-

ter revealed when the augmented data representation is used for computation.

For example, in [63, 32, 120, 130, 33, 118], Side information is used to generate

additional feature dimensions for classification; in [48, 40], side information is

used to learn a new representation in the latent Space.

2. Hard Constraints: Side information is formulated into constraints that can-

not be violated. For example, constrained clustering [148, 20], constrained EM

algorithm [73] and multiple-instance learning [6] all treat Side information as

non-violable rules.

3. Soft Penalty: Any inconsistency between the learning outcome and the side

information will incur a penalty. For those models with a clear Optimization

goal, such a treatment often leads to side information being encoded as part

of the Optimization Objective function (such as a regularizer term or its equiv-

alence). Typical examples include using Side information for distance metric

learning [155, 98, 74], clustering [96, 15, 108, 16], etc..

4. Other Heuristics to Carry Out Learning Algorithms: Side information

is used to provide building blocks for other learning algorithms. For example,
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in [168, 167, 119, 70, 158, 149], side information is used to induce the graph

structure where learning algorithms over the graph can be carried out; in [27, 39]

side information is used for co—training; in [72] side information is used for

boosting.

1.4 Overview on Thesis Work

All the thesis work presented in the rest Of the chapters revolves around the topic

Of improving semi-supervised learning with side information. Due to the diversity of

learning tasks and forms of side information, we will demonstrate our efforts through

several typical learning settings and applications.

Chapter 2 discusses multi—label classification, with class correlations as side infor—

mation. TO meet the challenge Of a large number Of classes and a small Size Of training

data in multi-label classification, we propose tO utilize class correlations to link the

computation of data example similarities with their multiple class memberships. We

will also Show that the proposed multi-label learning algorithm leads to a constrained

non-negative matrix factorization formalization.

Chapter 3 focuses on binary classification, with side information in the form Of

links. Link-based classification gained significant attention in text domains, due to

the large amount of needs in classifying web pages or scientific publications, where

inter-document connections are available as hyperlinks or references. However, the

sparse and noisy nature of links causes trouble in utilizing them for classification. A

general boosting framework is proposed in this chapter that tries to make the best

use of link information against its sparseness and noise, and is able to improve any

binary classifier.

Chapter 4 presents another boosting framework for semi-supervised clustering,

with pairwise constraints as side information. In this work, side information is en-

coded intO the data representations by iteratively selecting a good direction to project.
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the original data into a low-dirnensional space. Again, the proposed framework is de-

signed as a meta-algorithm that can be applicable to any clustering algorithm, and

improve its performance with pairwise constraints.

In addition to the above generic tasks of semi-supervised learning, the thesis work

also includes two application examples. In particular, we will Show two information

retrieval tasks, where semi-supervised learning with Side information could achieve

improved performance over traditional methods. In Chapter 5, we study the problem

Of cross-language information retrieval, with bilingual dictionaries as side information.

Two models based on a maximum coherence principle are proposed, which can be

well explained as two-way partitioning of the graph induced by Side information — the

dictionary.

Another application, extracting question-answer pairs from web FAQs, is de-

scribed in Chapter 6, where side information comes from human knowledge on the

presentation regularities Of web FAQS. The model proposed in this chapter leads to a

correlated label propagation scheme over a graph built upon the text segments Of web

FAQ pages. As will be seen, properly using the Side information enables the question-

answer extraction task being performed without any human supervision, despite the

wide variety of possible contents and styles in web pages.

Finally, Chapter 7 concludes the thesis work.

Semi-supervised learning enforces the predicted labels (usually the learning goal)

to be consistent with the structure of data, while agreeing with the supervised infor-

mation (if available). This is already stated as the assumption made by all graph—

based learning algorithms in Section 1.1.2. The introduction Of Side information

should not violate this data consistency assumption. Therefore, including side infor-

mation into the consistency enforcement becomes necessary. Such an idea is common

across all the chapters that follow, in despite Of the diversity of tasks, models and

their graph interpretations that will be discussed in detail in each individual chapter.
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In summary, the semi-supervised learning models and frameworks proposed in this

thesis work all conform to the same theme: consistency is maximally enforced among

the following factors -— data input patterns, supervised information (if any), side in—

formation, and predictions on unlabeled data; invariably, Optimizaticm will be the tool

to achieve the goal Of consistency enforcement. Before going into detailed discussions

in each chapter, understanding this theme will help to reveal the connections between

all parts of the thesis work and view them as one whole piece.
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CHAPTER 2

Semi-supervised Multi—label Learning

with Class Correlations

2.1 Introduction

Multi—label learning refers to the classification problems where each example can

be assigned to multiple different classes. It has found applications in many real-

world problems. For example, text categorization is typically multi-labeled since each

document can be assigned to several predefined topics; in bioinformatics, most genes

are associated with more than one functional classes (e.g., metabolism, transcription

and protein synthesis); automatic image annotation, can also be treated as a multi-

label learning problem if we view each annotation word as a distinct class.

A straightforward approach toward multi-label learning is to decompose it into

a set of binary classification problems, one for each class. The drawback with this

approach is that it does not explore the correlation among different classes, which

often could be an important hint for deciding the class memberships. Many algorithms

have been developed to incorporate the class correlation into multi—label learning,

including [110, 52, 85, 146, 28, 59, 60, 90, 171, 164, 145, 141, 42]. But most Of

these studies are limited to a relatively small number of classes and assume that

the amount Of training data is sufficient for exploiting class correlations and training
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reliable classifiers. In contrast, the real-world application Of multi-label learning often

features a large number of classes and a relatively small size of training data. AS a

result, the amount of training data related to each class is Often sparse and insufficient

for computing class correlations and learning a reliable classifier.

However, we find that in practical, more reliable class correlations are often avail-

able as side information. For example, in text classification problem, if each category

has a description, the correlation between two classes can be derived by computing

the similarity between their descrptions; also, human knowledge about the category

topic can also be used to decide how close two categories are in terms Of their topics.

SO the problem becomes, given class correlation information, how can we improve

multi-label learning?

To address this problem, we present a novel framework for multi-label learning

that explicitly explores the correlation among different classes. Compared to the

existing approaches for multi-label learning that also explore the class correlation,

the proposed framework provides a natural means for exploring the unlabeled data

and the class correlation simultaneously, thus effective for the learning scenarios with

a large number of classes and a small Size of training data.

The key assumption behind this work is that two examples tend to have large

overlap in their assigned class memberships if they share high similarity in their

input patterns. To be more specific, consider two examples x1 and x2 that are

labeled by two sets of class labels yl and y2, respectively. We can evaluate the

Similarity between these two examples in two different ways. The first one is based

on the correlation between the input patterns of these two examples. The second one

is based on the overlap between the class labels of these two examples. We denote the

similarity based on the input patterns by Kg;(x1 , x2), and the similarity based on the

class labels by Ky(y1, y2). If the assigned class labels Y1 and y2 are appropriate for

example x1 and x2, we would expect the two similarity measurements to be similar,
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namely K33(x1, x2) % Ky(y1, y2). Based on this assumption, we can determine the

best assignment Of class labels tO the unlabeled data by minimizing the difference

between the two sets Of similarities. Clearly, this approach is able to effectively

explore the unlabeled data because the assignment Of class labels to each unlabeled

example is dependent on the assignment. of class labels of other unlabeled examples.

This approach is also able to exploit the class correlation effectively through the kernel

similarity function Ky(y1, y2).

The rest Of the chapter is structured as follows: first, we briefly review the related

work on multi-label learning and semi-supervised learning; second, we introduce the

proposed framework for multi-label learning, and a formalization based on the con-

strained non-negative matrix factorization; third, we present an efficient algorithm

to solve the related optimization problem that is based on the iterative bound opti-

mization algorithm; fourth, we present the empirical study with a text categorization

problem; finally, we conclude this study and raise some future work.

2.2 Related Work

We will first review the related work on multi-label learning, followed by a discussion

of related semi-supervised learning problem.

2.2.1 Related Work in Multi-Iabel Learning

The simplest approach toward multi-label learning is to divide it into a number of

binary classification problems [160, 86]. There are a number of disadvantages with

this approach. One is that it will not scale to a large number of classes Since a different

binary classifier has to be built for each class. Another disadvantage is that it treats

each class independently, and therefore is unable to explore the correlation among

different classes. The third disadvantage is that this approach Often will suffer from

the unbalanced data problem when the minority classes are given only a few training
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examples.

Another group of approaches toward multi-label learning is label ranking [42, 52,

127]. Instead of learning binary classifiers from labeled examples, these approaches

learn a ranking function from the labeled examples that order class labels for a given

test example according to their relevance to the example. Compared to the binary

classification approaches, the label ranking approaches are advantageous in dealing

with large numbers of classes because only a Single ranking function is learned. How-

ever, Similar to the binary classification approaches, the label ranking approaches are

usually unable to exploit the class correlation information.

In the past, a number Of studies have been devoted to exploring the class corre-

lation within the context Of multi—label learning. A generative model for multi-label

learning was proposed in [146] to explicitly incorporate the pairwise correlation be—

tween any two class labels. A maximum entropy model is proposed in [171] that

capture the pairwise class correlation by constraints. Approaches based on latent vari-

ables were proposed in [110, 164] to capture the correlation among different classes.

The study in [123] exploited the class correlation information given the hierarchi-

cal structure of classes. Unlike the previous work on multi-label learning that only

considers the correlation among different classes, in this chapter, we present a novel

framework that exploits the unlabeled data as well as the class correlation. This prop-

erty will make the proposed approach more effective than the existing approaches for

multi-label learning, particularly when the number Of classes is large and the size of

training data is small.

This work is also particularly related to the label propagation approaches for semi-

supervised learning. This is because by enforcing examples with similar input patterns

to share Similar sets of class labels, we essentially propagate the class labels through

the Similarity graph Of examples, which is the key idea of the label propagation

approaches. A number of machine learning methods have been developed recently
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for label propagation, including the Gaussian processes [152], the harmonic functions

[173], and Green functions [168]. Unlike most. of the previous work on semi—supervised

learning that is designed primarily for multi-class learning, this work is specifically

targeted on the semi-supervised multi—label learning. It effectively explores the class

correlation information when utilizing the unlabeled data. More discussion Of semi—

supervised learning can be found in [129, 172].

2.2.2 Representative Algorithms

In the following, we will recapitulate a few representative algorithms for semi-

supervised multi-label learning, as well as the non-negative matrix factorization al-

gorithm that is closely related to the model we are going to propose later.

MULTI-CLAss MULTI-LABEL PERCEPTRON ALGORITHM

Multi-class Multi—label Perceptron (MMP) algorithm extends the Perceptron algo—

rithm from Single binary output to a ranked list Of n—ary output. Specifically, for any

test example possibly belonging to one or more Of l categories, the algorithm output

will be a ranked list of the l categories, indicating the preference of assigning the test

example to those categories.

AS the Perceptron algorithm, h‘lMP n’raintains a set of l prototypes W1, - -- ,wl.

For any data example x -, wiij yields a score that will decide the ranking Of the

i-th category for this data example 233-. The procedures Of learning those prototypes

can be summarized as follows

Initialize: Set “’1 = - -- = W) = 0

Loop:

0 Get a new training data example xj 6 Rd, and its true category informa—

tion yj, which is a set of category IDs
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0 Rank the categories according to wlij, - - - ,wiTxl

o If the category ranking is not consistent. with the truth 3?]-

. A ,. __ A “f '1—
1. For Vr E yj, set M —— [[5 fit yjlws xj Z w,. xj}]

. ~ , _ - T . T .
2. For VI Q yj, sct nr — [{s G yjlws x] 3 w,. x]}]

3. Compute loss 77 = 27.717.

4. Update for r E 51,-: wr +— wr + Iglxj

5. Update for r ¢ 51,-: WT +— wr — 7+]ij

Output: W1, - -- ,wl

MMP algorithm is computationally inexpensive and it is suitable for online learn-

ing.

MULTI-LABEL INFORMED LATENT SEMANTIC INDEXING ALGORITHM

Multi-label Informed Latent Semantic Indexing (MLSI) algorithm extends the Latent

Semantic Indexing (LSI) to supervised cases [164]. In LSI, a linear mapping from the

input space to a low-dimensional latent space is found, so that the structure of the

data can be preserved as much as possible. This leads to an Optimization problem

which minimizes the reconstruction error from the latent space to the original Space.

Given supervised information in the form Of multiple labels of training examples,

MLSI proposes to preserve the structures in the input patterns Of the data, as well

as their label information, using the same set of latent variables.

Formally, let X E Rm<d denote the input matrix for n data examples, each in

(1 dimensions; let Y E Rmd denote the corresponding label indicator matrix. The

MLSI algorithm is equivalent to solve the following Optimization problem

minA,B,v (1— filllX—VAHZ +B|lY — VBII2

s.t. VTV = I
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where V E Rnx“ defines a latent space, which gives a k-dimensional projection for

both the input pattern (i.e. X) and their labels (i.e. Y); A E R“Xd and B E Rle

give the mappings from the latent space to the input space and the output space (i.e.

labels), respectively; B is a constant which balances the reconstruction errors to both

the input spaces and output Spaces. The above Optimization problem is equivalent

to the following eigenvector problem

maxveR-n vTCv

s.t. v v=1

where C = (1 — ;B)XXT + BYYT. The solution Of the latent semantic matrix

V is composed of the first k-th eigenvector of the above eigenvector problem, i.e.,

V = [v1,--o ,vk].

Note that, MLSI includes output variable Y in its Objective function. The corre-

sponding term can be rewritten as

env — VBH2 = r3 - trace[(Y — VB)T(Y —- VB)]

= a . trace[YTY — BTVTY — YTVB + (VB)TVB]

In the above, YTY can be interpretted as a class similarity matrix, computed solely

from the training data. Therefore, MLSI implicitly addresses the idea of utilizing

class correlation. However, since only training data is involved, when the training

data is small in amount, such class Similarity information could not be very reliable.

NON-NONGATIVE MATRIX FACTORIZATION

When we use a matrix to represent a graph, such as the adjacency matrix or other

variants, there is a potential computation burden when the graph has a large number

nodes and edges. A natural thought would be to approximate the matrix while

preserving as much information as possible. This is particularly useful especially

when we are more interested in understanding global structures of the data.
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Finding the optimal lit-rank approximation Of a given r-rank matrix A (k < r)

can be formulated as ( [138, 163])

B = argmin [IA—BIIF (2.1)

Rank(B)=k

Applying Singular Value Decomposition to matrix A, we have

A = UsvT

where U and V are orthonormal matrices, and S = diag(sl, 52, . . . ,Sr, 0, . . . ,0) with

31 2 32 2 ~ . - 2 Sr > 0, the solution tO the lower rank approximation problem would

be

B = deiag(sl,sg, . . .,sk)V;€r (2.2)

Highly related tO matrix approximation problem, non-negative matrix factoriza-

tion tries to approximate a matrix A with two non-negative matrix factors U and V

([104, 105])

A 8 UV

To measure the approximation quality, two cost functions are used. The first mea-

surement is the square Of Euclidean distance

2

HA — Bll = ZlAi,j — Big)

M

and the second measurement is the divergence

Am‘
D(AllB) = 2 At 3' log— - Am- + 3,,-

. . ’ Bi j ’

3,] ’

Note that the second measurement D(A|]B) is always nonnegative and reaches zero

only when Ai,j = BM holds for all (i, j) pairs.
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An iterative algorithm has been proposed to efficiently solve the problem by itera-

tively minimizing the above two cost functions. In particular, the following updating

rule minimizes the Euclidean distance [[A — UVII

Ui a f“ Ui a live. k

l l k (UV)l,k ,

U' (— Uin

2,0. Zj Uj!a

and the following updating rule minimizes the divergence D(A|]UV)

A- k

V ,__ V U; __"';__
a,k a.,k z,a

22.: (UVh'Jc

The above two rules which guarantees the two cost functions to be non-increasing

until a local Optimum is reached. To initialize the algorithm, the two matrix factors

U and V can be seeded as random non—negative matrices.

2.3 Semi-Supervised Multi-label Learning by Constrained

NMF

The following terminology and notations will be used throughout the rest Of the

chapter. Let D = (x1,x2, . . . ,xn) denote the entire dataset, where n is the total

number of examples, including both the labeled ones and the unlabeled ones. We

assume that the first "I examples are labeled ones, and their label information is

}nlxm where m is the number of classes.presented in the binary matrix T 6 {0,1

Let the Similarity Of all the examples denoted by a matrix A = [Agjlnxna where

element Az-J- : 0 represents the similarity between two examples based on their

input patterns. We denote by TU: _>_ 0 the confidence score of assigning the k—th

class label to the i-th example, and by t,- = (Ti,1,T,-,2, . . . ,Ti,,n)T the confidence

scores of assigning each class to the i—th example. Finally, the matrix T = [Ti,kln><nr

denotes the confidence scores Of assigning every class label to all examples.
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2.3.1 A Framework for Multi-label Learning

The key assumption behind this work is that two examples tend to be assigned similar

sets of class labels if they share high Similarity in the input patterns. In order to utilize

this assumption for predicting class labels, we evaluate the similarity Of two examples

in different ways, one by their input patterns and the other by their assigned class

memberships. We refer to the former as the input-based similarity, and the latter

as the class-based similarity. Then, if the class labels assigned to the examples are

consistent with their input patterns, we would expect the class-based Similarities to

be close to the input-based similarities. Since the input—based Similarities are already

given by the matrix A, the key question is how to compute the similarity of two

examples based on their class memberships. The simplest approach is to compute

the class-based Similarity between examples x,- and xj by the overlap between their

classmemberships, or tthj. The problem with this Similarity measurement is that it

treats all the classes independently and therefore is unable tO explore the correlation

among them. In particular, it will give zero Similarity whenever two examples share

no common classes. However, two examples with no common shared classes can still

be strongly related if their assigned classes have close relationship (e.g. the children-

parent relationship in the hierarchy Of class labels).

To capture the Side information Of correlation among different classes, we introduce

matrix B = [Blemxm for the class Similarities. Each element Bk,l _>_ 0 represents

the similarity between two classes. Then, instead of computing the class-based simi-

larity between two examples by the direct dot product, we compute it by a weighted

dot product, i.e., tZTBtj. Then, following the assumption stated above, we would

expect Ai,j % tJBtj if the class assignments ti and tj are appropriate for examples

32

 



x,- and xj. This leads to the following Optimization problem:

n m 2

argmin 2 AM — Z Tl,kBk,lTj,l (2.3)

T i,j=1 k,l=1

s. t. Tj‘l_>_0,j:l,...,n,l=1,...,rn

7i,k:7i.krf:17"'rnlik217"'r7n (2.4)

where the last set Of constraints is to ensure that the estimated label confidences

Tiak’s are consistent with the assigned class labels Ti’k’s for all the training examples.

Remark: It is interesting tO see that the formalization in (2.3) can also be written

as a non—negative matrix factorization problem under a linear constraint, if we ignore

the constraints coming from the training examples, i.e.,

arg min ”A — THllF

,H

S. t. Tj,l,Hj,lZO,j=1,...,Tl,l=1,...,7n

H=BTT

where I] - I] F stands for the Frobenius norm. The above problem is similar to the

standard Non—negative Matrix Factorization (NMF) problem except for the linear

constraint that restricts the matrix H to be linearly dependent on the matrix T. It

is this constraint and furthermore the constraints arising from the labeled data that.

prevent the direct application of the NMF algorithm.

One problem with the formulation in (2.3) is that since the input-based similarity

Ai,k can be any positive value, it could be significantly larger than the elements in B.

As a result, the label confidence TiJc that minimizes the objective function in (2.3)

will also be significantly larger than 1. But, to satisfy the constraints in (2.4), the

label confidence Ti,k Should be restricted to 0 or 1 Since the assigned class label THC

is binary. To resolve the conflicts between the minimizer of the objective function

in (2.3) and the binary constraints, we introduce two sets Of label confidences: the

unnormalized label confidence {Ti’k}, and the normalized label confidence {Ti,k}°
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The former can take any positive value, while the latter is positive and subject. to

the constraints of Zlgnzl Tuk = 1. We will on one hand, use the unnormalized

label confidence to minimize the difference between the class-based similarity and the

input-based Similarity, and on the other hand, use the normalized label confidence to

ensure that the predicted label confidence is consistent with the assigned class labels.

Formally, we can summarize this idea into the following Optimization problem:

n m 2 n m

- ~ 2

Mg?“ Z An * Z 73,kBk.sz.l + 0 Z 2031’ “27231) (2-5)
T,T,a i,j=1 k,l=1 3‘21 [:1

S. t. ijl,Tj,l,aj20,]—1,...,TL.i=1, ,m

m

23%J2L221, m2

#1

EA
T- =———=—,i=1,...,n,k=1,...,m

Note that in the above formalization, we introduce the term C 23":1 :l:1(Tj,l -—

cry-T”? into the objective function to enforce that. the two sets of label confidences

are consistent and only differ by a scaling factor aj for each example. Parameter C

weights the importance of the second term against the first term, and is determined

empirically.

2.4 Solving the Constrained NMF

An alternative Optimization approach is adopted to solve the constrained NMF. In

particular, we will solve the optimization problem by alternatively fixing one set of

label confidences and finding the optimal solution for another set of label confidences.

More specifically, we first fix the normalized label confidence matrix T and the

scaling factors aj’s, and search for the unnormalized label confidence Ti,j that Op-

2

timizes (2.5). To this end, we upper-bound the term (Ai,j — Zznl=1Ti,kBk,lTj,l)
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as follows

m

—TZ113;.1T

k,=ll

m Ti,kBk,sz,z A“ 'I‘B’I‘T T1kBk1T

ZW WI _—
k,l=1 7"]

[TBTTLJT2

1433+ Z (T 2 . . . .

“=1 ——kBk1T szle'J—2AZ1JTZ,kBkJTJJ)
Z

 
"' ~ ,~ ~. 23 J?

_<. Aid- + 5k; [TBT li,sz',kBk,lTj.l T4,, + $113
, =1 2, J.

m

— 2 Z Ai,jTi,kBk,lTj,l (1+10gT’lJc + log T3") - log TiJC — log T331)

k,l=1

In the above, T refers to the matrix T from the last iteration. We use the convexity

Of the quadratic function in the first step Of the derivation, and the concaveness Of

the logarithm function in the third step of the derivation. Then, we can upper-bound

the first term in the function (2.5) as

n m 2

2 AM — Z Ti,kBk,lTj,l

i,j=1 k,l=1

n 4 m

3 Z +ZITBTTJ1JITBI.1J~.I-4ZA1-leBl11T,,-,1logr1

i,j=1 z 1 J [:1

77?.

~ ~ T ~ ~ T ~

- 2413]" [TBT li,j +4 Z Ai,jT1'.leT lks’ 103 TU:

k=1

Similarly, we canupper-bound the second term in (2.5) as follows:

n m

__ 2
_(72:2:(711—2aJi3fl3r+aJi3p

j=11=1

n m T102 2

- J -

:; 02:2:TMl—21ijnflbgf +1)+ OJTN

j=1l=1 3’1

35



By combining the above two bounds, we have the upper bound for the objective

function in (2.5). Taking the derivative of the bounding function with respect to Tij

 

 

we have

T T31 n. 1 1

.7 ~ ~ ~ _
4Z[’i‘B'i‘ ], J[TB],IT”? —4Z AJJ-[TBMTJJJJ— + C(QTJJ — 2aJ73-WT55;) _ 0

Z: 1 jJI 2:1 .731

which leads to the following solution

1

__ *3 2 . ~4 . “. .CTJJ + \/C + 8UJITJJ(2VJZ + CTJlaJ)

Tj,l = (2.6) H

4Uj,l

where UJJ = {TBTTTBJJ1 and VJ, = [A'i‘B]Jl.

In the second step, we fix the unnormalized label confidence TUE and search for

the normalized label confidence T1,}? that optimizes the problem in (2.5), which leads

 to the following optimal solution:

Tl: ——T—-’——le j— Tzl+1,. n,l—1 m (27)3 —J————n , — — ,..., .

3' 21: 1 TN

0J22TJ-J,j=nl,...,n (2.8)

l=l

In summary, the iterative steps solving the optimization problem (2.5) could be

formulated as a algorithm shown in Table 2.1.

 

Step 1 Randomly initialize T and T subject to the constraints in (2.5)

Step 2 Until convergence, do

1. Fix all aj’s and T, update T using Equation (2.6)

2. Fix T, update T using Equation (2.7)

3. Fix T, update all aj’s using Equation (2.8)  
 

Table 2.1. The CNMF algorithm

2.5 Experiments and Discussions

Our experiments are designed to evaluate our proposed multi—label learning frame—

work in text categorization tasks, particularly in the case of a large number of classes
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and a small size of training data.

2.5. 1 Experiment Setup

The dataset used in our study comes from the textual data of The Eurom'sion St An—

drews Photographic Collection (ESTA) in ImageCLEF collection [77]. We randomly

pick 3456 documents, and choose the top 100 most popular ones from all the cate-

gories those picked documents belong to. On average, each document is assigned to

4.5 classes. Documents are preprocessed by the SMART system with stop words re-

moved and words stemmed, and each document is represented by a vector of weighted

term frequency.

Our proposed framework is implemented in the following way. The document

similarity Ai,j is computed as the cosine similarity between the corresponding term

frequency vectors. To compute the class similarity matrix B, we first represent each

class c by a binary vector whose elements are set to be one when the corresponding

training documents belong to the class c and zero otherwise. We then compute

the pairwise class similarity based on their vector representation using a normalized

RBF kernel. Finally, the class assignment for each test document is made by the

ranking of the label confidence scores that are obtained from the matrix T. Every

experiment is repeated 10 times by randomly re-splitting the dataset into the training

and the testing sets. The parameter C in the objective function (2.5) is set to 100.

We also varied the value of C from 20 to 200, and found that the results remain

almost unchanged. For an easy reference, we will refer to the proposed algorithm as

“CNMF”.

Since our approach only produces a ranked list of class labels for a test document,

in this study, we focus on evaluating the quality of class ranking. In particular,

for each test document, we compute the precision/recall and the F1 measurement

at each rank by comparing the ranked classes to the true class labels. Then, the
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precision/recall and the F1 measurement averaged over all the test docm‘nents is

used as the final evaluation metric.

Three baseline models are used in our study. The first one is Spectral Graph

Transducer (“SGT” for short) [87], which has been proved effective for exploring

unlabeled data. An separated SGT classifier is built for each individual document

category, and the probability values output by SGT are used to rank the class la-

bels. The second baseline model is Multi-label Informed Latent Semantic Indexing

(“MLSI” for short) [164], which maps document vectors into a low-dimensional space

that is strongly correlated with the class labels of the documents. It has been shown

empirically that MLSI is effective for exploring both the unlabeled data and the cor-

relation among classes. The last baseline model is Support Vector Machine (“SVM”

for short). A linear SVM classifier based on the term frequency vectors of the docu-

ments is built for each category independently. All the baseline models are tested by

a lO-fold experiment, using the same training/test split of the dataset as the proposed

framework.

2.5.2 Experiment Results

Figure 2.1, Figure 2.2 and Figure 2.3 show the average precision, recall, and F1

measurement, respectively, at different ranks, for both the proposed framework and

the three baseline approaches.

A comparative analysis based on the results in Figure 2.1, Figure 2.2 and Figure

2.3 lead to the following findings:

1. All four approaches show a same trend of decreasing precision and increasing

recall, when the number of labels predicted for each document increases. This

is in accordance with the usual precision-recall tradeoff. However, as a measure-

ment balancing the precision and recall, each F1 curve clearly shows a peak. As

can been seen from Figure 2.3, the F1 curve of CNMF reaches its climax when
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Figure 2.1. Classification performance (Precision) when varying the number of predicted

labels for each test example along the ranked list of class labels.
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Figure 2.2. Classification performance (Recall) when varying the number of predicted

labels for each test example along the ranked list of class labels.
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for each test example along the ranked list of class labels.
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the number of predicted labels is around 3 to 4, which is close to the average

number of labels per document. (i.e., 4.5).

. CNMF makes more significant improvement on the average recall than on the

average precision when compared to the three baseline approaches. This is re-

lated to our task scenario, which focuses on multi-label learning with a large

number of classes and a small size of training examples. Given such a sce-

nario, we would expect a number of classes that are not provided with sufficient

amount of training examples. As a result, we hypothesize that prediction on

these classes will have to rely heavily on the correlation among classes. This hy-

pothesis is partially justified by the comparison between the proposed approach,

CNMF, that exploits class correlations, and SGT or SVM, which does not.

Although CNMF and SGT achieve similar performance in precision, CNMF

performs significantly better than the SGT in terms of the average recall.

. More improvement by CNMF to the three baseline approaches is observed

when the number of training documents is 100 than when the number of training

documents is 500. This is partially due to the same reason mentioned above

— the advantage of exploiting class correlations on sparse training data. It

can also be attributed to the reason that our approach also makes use of the

correlation among the unlabeled data, which has been proved by many studies

in semi-supervised learning, for instance [173, 129, 172].

. Although MLSI is able to explore the correlation among classes, its performance

depends heavily on the appropriate choice of the number of latent variables and

the tuning parameter determining how much the indexing should be biased by

the outputs. These two parameters are usually determined by a cross valida-

tion approach and therefore could be problematic when the number of training

examples is relatively small. This problem is directly reflected in the large vari-
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ance in both precision and recall of the MLSI algorithm, which we believe it is

due to the inappropriate choice of the aforementioned two parameters given the

limited number of training examples.

2.6 Conclusions

In this chapter, we propose a novel framework to accommodate the side information

of class correlation in multi-label learning, which meets the challenging situation of

a large number of classes and a small size of training data. The advantage of our

proposed framework is that it is able to exploit the correlation among classes and the

unlabeled data. We also present an efficient algorithm to solve the related optimiza—

tion problem. Experiments show that our proposed framework performs significantly

better than the other three state-of-the—art multi-label learning techniques in text

classification tasks.
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CHAPTER 3

Semi-supervised Classification with Link

Information

3.1 Introduction

From supervised learning to semi-supervised learning, machine learning research has

witnessed the trend of exploiting the structure of unlabeled data. A typical approach

towards revealing the underlying structure of unlabeled data is through establishing

correlation between example pairs from their data representation (or feature values).

For example, many graph-based learning models construct a k-nearest neighbor graph

by choosing an appropriate distance measurement defined on the data representation

of a pair of examples, such as Local Linear Embedding [124], ISOMap [142], Laplacian

Eigenmaps [17], Manifold Learning [18] and etc.. However, many real-world datasets

already exhibit inherent correlations by entities that are interlinked with each other.

Especially in text domains, datasets features with “links” are very popular: nearly

all kinds of scientific publications are cross-referenced by each other; and the World

Wide Web is weaved by hyperlinks that connect pages. One can also find datasets

with link information in other domains, such as social networks, bioinformatics, etc.

Naturally, link information suggests certain structure underlying the dataset. For

example, an empirical study showed that the Web’s spatial locality (induced by hy-
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perlinks) mirrors its topical locality [47]. h‘lor‘eover, link information usually provides

a different view on the structure of data than that “computed” from the data rep-

resentations, since link generation often involves human interference. For example,

when a web author constructs hyperlinks, he or she can capture more sophisticated

semantic closeness between web pages that is beyond the power of state—of—the-art

text mining tools. Therefore, exploiting link information leaves the hope of gaining

more insight into the structure of data for many learning algorithms.

However, while it could be informative, link information also often presents some

annoying characteristics in practice. First, link information could be sparse, i.e.,

some data examples could be involved in no links. Second, link information are

often incomplete, i.e., one cannot always expect a link being observed wherever a

link “should” be constructed between two examples. For example, we cannot hope a

scientific publication to cite all work that is related to itself. Third, link information

tends to be noisy. One example to illustrate noise in links is the hyperlink spam

on the Web. In summary, in real-world datasets, link information is typically not a

reliable source for the structure of data. Therefore, link information is always treated

as “side information” that supplements the original data representations for learning

tasks.

Informative but unreliable, link information provides opportunity as well as chal-

lenge for semi-supervised learning. In this chapter, we will focus on classification

on datasets with link structures. Depending on how link information is incorpo-

rated into a learning algorithm, previous studies on this topic can be roughly cat-

egorized into three types of models: representation augmentation, correlation aug-

mentation and training pool augmentation. The first type modifies the representa-

tion of a data example from its neighborhood that is induced from the link struc-

ture [33, 118, 61, 63, 162, 48, 120, 130, 40]. The second type utilizes link information

to construct a graph [168, 167, 7], or derive more accurate similarity measurement.
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between data examples [32], and apply (or design) semi-supervised learning algorithm

over the graph. Essentially, link information plays the role of establishing correlation

between examples. The third type uses linked examples to augment the training set,

represented by the co-training algorithm and its variants [27, 39]. Usually a feature

based classifier and a link based classifier are applied alternatively, supplementing

each other’s training pool with its highly confident predictions.

However, the performance of all three types of models summarized above can

degrade significantly with a decreasing number of links. When links are sparse, only

a small fraction of data is involved in some link(s). No matter a model augments

the data representation, correlation or training pool, an unbalanced issue is created

between those data examples that are influenced by the links and the rest that are

not. To overcome this problem brought by the sparseness of link information, it

is desirable that the limited link information can be somehow “smoothed” over the

entire dataset.

In this chapter, we will propose a novel semi-supervised framework, termed as

“LinkBoost”, to improve classification accuracy by utilizing link information. Link-

Boost is a boosting framework: a base classifier is applied iteratively with augmented

training pool, which is updated through a minimization of inconsistency between the

class label assignments and the pairwise data similarities that is augmented by the

link information; with a series of learned weights, the classification results from all

iterations are finally combined as the final prediction. Thus the classification results

from the iteratively applied classifier with updating training pool act as a way of

propagating link information around, i.e., “smoothing” the influence of links over the

entire dataset. As a result, LinkBoost is more robust against the sparseness of link

information. Besides, as a general boosting framework, LinkBoost can be applied to

any classification algorithm. LinkBoost framework is also hybrid in the sense that it

can accommodate all three augmentations from link information on the dataset: rep-
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resentation augmentation, correlation augmentation and training pool augmentation.

The following notations will be used throughout this chapter. Let X = {xi}?:1

denote a set of n examples, where the first 77.] ones are labeled and the rest nu ones

are unlabeled, i.e. n = n] + nu. We also use x,- to represent the feature vector of

the i-th example, and use X to denote the matrix that gathers all the feature vectors

of examples, i.e., X = [x1, - -- ,xn]. Let y 2 {Eli [‘21 be the label vector, in which

{gig-:1 is given, and {Mill—7:1 is to be decided. SiJ is defined as a similarity

measurement between the i—th and the j—th examples, and a matrix is formed as

S = [8i,j]an. The link information is encoded into a matrix R = [rm-Rx”, where

TiJ = 1 if there is a link from x,- to xj and Ti,j = 0 otherwise. From the link matrix,

a co—citation matrix can be defined as C = [ci3j]an, where Ci,j = 1 if 31: 75 2', 3' such

that THC = 1:73,]: = 1, and Cz’,j = 0 otherwise 1.

3.2 Related Work

In this section, we will briefly review previous efforts in the area of link-based classi-

fication (especially in text domain), and a few semi-supervised classification models

that are closely related to this chapter, followed by a recapitulation of several repre-

sentative algorithms.

3.2.1 Link-based Classification

The most popular way of link-based classification is to augment the representation

of data examples with their neighbors. In [63, 32, 120, 130], the bag-of-words model

of documents is augmented by including words from neighboring documents, thus

creating a “virtual document” to feed into classifiers. However, the studies in [33, 118]

 

1This co—citation matrix is defined in the “co-citing” manner, i.e., two examples are correlated

if they both link to a. third example. Another way is to define co—citation matrix in a “co—cited”

manner, i.e., two examples are correlated if they are both linked from a third example. Deciding

which definition is more appropriate is domain dependent.
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suggests that incorporating words from neighboring documents sometimes leads to

performance degradation, while making use of their predicted class labels as additional

features for data representation was helpful. Later in [107], different schemes of

formulating the additional link-based features were discussed. Apart from explicitly

augmenting data representations with features or labels of linked examples, another

stream of research tries to unify content analysis with link analysis by creating new

data representation for linked data examples in the latent space [48, 40].

When links are often directional (which is true in most cases), there exists several

different criteria to identify neighborhood for a data example. The most frequently

used criteria include incoming links, outgoing links and co—citation links [107, 61,

162, 32]. Especially, the studies presented in [61, 162] suggests that different dataset

regularities may favor the use of different neighborhood identification criteria.

Rather than augmenting data representation to better explore the underlying

structure of data for semi-supervised learning, a few studies directly create a graph

structure from link information. These approaches often leads to semi-supervised

learning algorithms over graphs: an iterative relaxation labeling algorithm is pro-

posed in [7] for undirected graph; the work in [168, 167] handles directed graph by

regularizing classification functions to change slowly on densely linked subgraphs.

3.2.2 Related Semi-supervised Classification Models

A large number of models have been proposed for semi-supervised classification, which

can be broadly categorized into several types: graph-based models, margin-based

models, kernel-based models, ensemble-based models, and etc. Although only a small

fraction of models directly address the use of link information, at least two types

of models are closely related to the LinkBoost framework proposed in this chapter:

graph-based models and ensemble-based models.

Graph-based models build a connected graph on both labeled and unlabeled ex-
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amples, with each vertex representing an example and each weighted edge represent-

ing correlations between example pairs. The most well-known graph—based models

include Harmonic Functions [173, 174], Spectral Graph Transducer [87], Gaussian

Processes [4, 103, 67], Manifold Regularization [18], Label Propagation [19], etc. A

common theme shared by many graph-based semi-supervised classification models is

to find an optimal set of class labels for unlabeled examples, such that they are consis-

tent with supervised class labels from labeled examples, as well as the graph structure.

Graph Laplacian is a popular form to define an inconsistency measurement over a

set of class assignment y = {21,-} and the graph represented by a similarity matrix

S = [8233']

F(y) = $21 23-21 Sig-(y.- - 31))2 = yTLy

he above inconsistency measurement, is always combined with other components

to form an objective function for minimization. It is easy to imagine, when link

information is available, we can enforce class assignment to be consist with it, in

a similar way as graph-based models. As will be seen in Section 3.3, the proposed

LinkBoost framework uses a similar definition inconsistency measurement, except in

the form of exponential cost (to facilitate deriving a boosting algorithm) rather than

quadratic cost. Moreover, unlike most graph-based models, which are non-parametric

and do not build specific classification models, the proposed LinkBoost framework is

able to yield one classification model based on any given classification algorithm.

This is particularly useful, when the amount of unlabeled data is extremely large.

Ensemble-based models gained increasing attention in semi-supervised learning

by several successful models, such as AdaBoost [56, 55], ASSEMBLE [21] and Semi-

supervised Margin Boost (SSMB) [43]. Usually, in an iterative manner, pseudo labels

are assigned to unlabeled examples, which are then sampled for training a new su-

pervised classifier from an ensemble of them. The proposed LinkBoost framework

follows the idea of iteratively augmenting the training set, but it utilizes link infor-
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mation to obtain more reliable pseudo labels for unlabeled examples. In this sense,

LinkBoost framework combines the advantages from both graph-based models and

ensemble—based models.

3.2.3 Representative Algorithms Review

Nearly all the algorithms proposed on link-based classification make the assumption

that interlinked (or co—citation) examples are more likely to belong to the same class.

In the following, we will recapitulate a few representative algorithms proposed for

semi-supervised classification on datasets with link information.

FEATURE REPRESENTATION AUGMENTATION

In the family of feature representation augmentation algorithms, a example’s feature

set is supplemented with features from its interlinked/co-citation examples. Formally,

we can write the augmented example as

xa“g = (1 -— A)X + AMTX (3.1)

where the matrix M = R if we only want to augment an example with incoming

links, or M = R+ RT if both incoming links and outgoing links are used, or M = C

if only co—citation examples are considered for augmentation. A is a weight to put on

the augmentation from linked examples.

The augmented feature representation will be fed into an semi-supervised learning

algorithm for classification.

CO-TRAINING FOR LINK-BASED CLASSIFICATION

Co—training is first proposed in [27], in which two or possibly more learners are trained

separately on a set of examples; each learner uses a different, and ideally independent,

set of features for each example. Co—training can be naturally applied for link-based
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classification: one learner is based on the data representation, the other learner is

based on link information.

Specifically, the co—training algorithm for link-based classification can be formal-

ized as follows

Co—training for Link-based Classification

Step 1 Initialize a training pool with all training examples R = x1, - - - ,xnl.

Step 2 Iteratively apply the following two learners

0 Train a data representation based learner on current training pool R, and

apply the learner to predict labels for the rest examples. Update the

training pool R by move those examples with high prediction confidence

into it.

0 Train a link based learner on current training pool R, and apply the learner

to predict labels for the rest examples. Update the training pool R by move

those examples with high prediction confidence into it.

Until no more examples can be added into the training pool T.

ITERATIVE CLASSIFICATION ALGORITHM

Lu &. Getoor proposed an iterative classification Algorithm (ICA) in [107]. Different

from the feature representation augmentation approach, ICA augments the data rep-

resentation by a new set of features that summarize the class label statistics (from

prediction of the previous iteration) of interlinked/co—citation examples. Due to the

fact that newly introduced label feature set is different from the original feature set

in nature, two logistic regression models on both feature sets are combined to form a

prediction.

To formalize the ICA algorithm, let us introduce Z7; to represent the new feature

vector, i.e., linked examples’ label statistics, for the corresponding data example
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xi. For example, for a C-way classification problem, 2,; could be defined as a C-

dimensional vector, where a element 25,-], k counts the number of examples from those

linked with x; that belong to the k-th class.

Then the ICA algorithm can be summarized as follows

Iterative Classification Algorithm

(Bootstrap) Initially assign class to each example based on its original feature repre-

sentation Xi-

(Iteration) lteratively apply the following two learners

0 Form a new feature representation 2, for each example xi, by gathering

the label statistics based on current class assignment to linked examples.

0 Train two separate logistic regression models on both feature representa-

tions, i.e., x,- and 2,, by the following MAP estimation

PFD’IX) = Pr(¥|{xi})Pr(YI{Zi})

where

Til—+7111,

Pr<y|{x.-}) = Z 1
i=n1+1 exp(—yingi) + 1

 

TLl-i-nu

Pr(¥|{zz’}) = Z

i=nl+1

1

exp(—y.-wlz.-> + 1

 

In the above, W; and w; are two parameters for the logistic regression

model on either feature set.

0 Apply the combined logistic regression model to the test examples and

update their class assignments.

Until no updates are made on class assignments or a maximum number itera-

tions has been reached.
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3.3 LinkBoost Framework

For simplicity, here we only consider binary classification, where the label vector y

can only take values y,- = 1 or y, = —1.

As a semi-supervised framework, LinkBoost inherits the common theme from

graph-based models that consistency is enforced between the link-information induced

graph structure and the class assignment to the unlabeled data. On the other hand,

as a general framework that is able to boost any base supervise learning algorithm,

LinkBoost follows the idea of ensemble-based models that a sampling of unlabeled

examples based on predicted pseudo labels will be used to iteratively augment the

training set of the Specified supervised algorithm. In the rest of the section, we will

formalize the LinkBoost framework and derive the related algorithm.

3.3.1 Objective Function

To encode the structure of both labeled and unlabeled data, we use a Similarity matrix

S = [5,0]an to combine both the link information and the feature representation of

data examples

SiJ = (1 — a)sz’m(x,-,xj) + arm- (3.2)

Here sim(-, -) defines a Similarity measurement based on the features. For example,

we can use cosine similarity in text domain. Ti,j is an element from the link matrix R

which, more specifically, encodes all the incoming links; the link matrix R can be re-

placed with R+RT if both incoming and outgoing links are taken into consideration,

or be replaced by the co-citation matrix C if co—citation links are more appropriate

to disclose the structure of data. Making a good choice on the link matrix is usually

dependent on the regularity presented by the dataset for classification, as suggested

in [61, 162]. a is a combination weight factor, 0 S a S 1. The above similarity

definition can be viewed as using data represenatino based similarity computation to
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smooth the links, thus minizing the problem brought by the sparseness in the link

information.

We define the inconsistency, within the unlabeled data, between the class labels

nu . . .

{9;}?!—nl++1 and the SIIIlll‘dl‘lty measurement S as

Tll'l'nu

Fun 2 Z Siaj C()Sl’l(‘y.lj — 313') (3.3)

i’ij:nl+l

where cosh(-) is the hyperbolic cosine function, i.e., cosh(y,- — yj) = [exp(y,~ — 31]) +

exp(yj — y,)] / 2. When symmetric similarity measurement is considered, as in this

paper, the above inconsistency can be rewritten as

Til-+7111, ”(+7111 1

Fuu = Z 532:4 EXPO/i — yj) + 2: 581,1 exp(yj - yr)

z',j=nl+1 i,j=nl+1

TLl'l-Tlu

= 2 Sid exp(y,- — yj) (3.4)

i,j=nl+1

Also, we define the inconsistency, across the labeled and unlabeled data, between

the class labels and the similarity measurement as

nl nl+nu

Flu: Z :5 j(exp -2y7:yj) (36)

i=1 j:nl+1

Ideally, the labels decided for the unlabeled data should minimize both inconsis-

tencies stated above. This leads to the following optimization problem

y,-,i=n +l,...,n +nu
l l l

3.3.2 Boosting Algorithm

In this subsection, we will derive a boosting algorithm that solves the optimization

problem (3.6) in an iterative procedure. Specifically, given an arbitrary binary clas-

sification algorithm A, let h(t)(x) denote the classification model learned in the t-th
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iteration by this algorithm. Then the final classification model, after T iterations, is

the combination of T models learned at all iterations, i.e.

’ T

f1(1)(x) = Z a(tlli(t)(x) (3.7)

t=l

where the a“) Z O is the combination weight. Here the superscript in parenthesis

indicates the iteration number. Finally we will apply this model to predict the labels

for the unlabeled data, i.e., y,- = H(T)(x,j),i = "l + 1, . . . ,nl + nu. To derive a

boosting procedure that minimize the objective function (3.6), we need to find a

good combination weight at each iteration, so that the objection function yields a

decreased value from previous iteration.

Now we study the change of objective function from the t — 1 iteration to the t-th

iteration. TO simplify the notation, let H,- denote the class label of the i—th example

(unlabeled) predicted by the combined model from all t -— 1 iterations, and h,- denote

the same example’s predicted label at the t-th iteration. We also simplify am as a.

Now the objective function becomes

Flt) = F513,) Flat) (3.8)

= 2: Sid exp(H,;+ah,- —Hj —o'hj)

i,j=nl+1

"l nl+nu

' Z Z 8i,j€XP(-2yi(Hj+ahj))

i=1j=nl+1

Using the inequality of arithmetic and geometric means, we have

exp[a(h,- - hj)] g [exp(2ah.,-) + exp(—2ahj)] (3.9)

m
l
?
“
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. . , l

So we can bound the first term 111 (3.8), FIE-1,2 , as follows

'nl-l-Tlu

t

File) 2 Z 5i,j exp(H,j + ah; _ Hf _ Obj)

i,j=’nl+l

nl+nu

: Z .sz-J- exp(Hz- — Hj) 0Xp(a(hi " hjll

i,j=nl+1

1
E Z 28i’j exp(Hi — Hj) [exp(2(ih,j) + eXp(—2(ihj)]

i,j=nl+1

nl+nu n1+nu

1

= Z exp(2ahi) 2 531,3‘ 8XP(H2' — Hj)

nl+nu nl+nu1

+ Z exp( —2(rhj) 2% jexpf(iH— Hj)

j:771+1 Z:—Tl-21+1

n1+nu n1+nu 1

= E: exp(20zhj) Z §5j,i exp(Hj — Hi)

jznl+1 i=nl+1

nl+nu nl+nu 1

+ Z exp(—2ahj) Z 5814' exp(Hi _‘ Hj) (3-10)

In the last step above, we switched the index 2' and j in the first term for notational

convenience.

If we define

d f nl+nu 1

aj g 2 58.7.31: €Xp(Hj - Hi) (3.11)

i=nl+1

e

b,- = Z 53,-0- expw, — Hj) (3.12)

i=nl+1

then we can Simplify the bound for the F52 in (3.10) as

nl+nu

F1)? < : exp(2ahj)aj+exp(—2ahj)bj (3.13)

j=nl+l
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Similarly, we can simplify HEEL—1) as

nl+nu

Edit—1) = Z 82,) exp(Hi —Hj)

i,j=nl+1

nl+nu nl+nu1nl+nu nwl+nu1

= Z 2% jexp((iH- Hj))+ Z: 2% 3'9fo(iH— Hj)

t:—nl+1j="1+12 j:n1+1i=nl+l2

nl+nu nl+nu1nl+nu nl+nu1

= Z Z 2sJ-iexp((jH —H,-))+ Z 2% jexp((Hi— H)

j=nl+1i=nl+1j=nl+1i=nl+12

nl+nu

= Z aj+bj
(3-14)

j=nl+1

The second term in (3.8), F[(5), can be rewritten as

() nl nl-i-nu

t

Flu = Z :8 jexp( _QLZ/z'lHj'l—ahjll

i=1j=—’nl+lz

= Z: 232-3]-exp(—2%Hj)ex1)(—2Oy,jhj)

j=n1+1i=l

nl+nu "l

= Z exp(2ahj)Zsivjexp(2Hj)6(yi,—1)

j=nl+l i=1

nl+nu n,

+ 2 exp( —2-)ah)Zsijepr“2Hj)6(yi,1) (3.15)

j:nl+l i=1

In the above, we use the fact that the label for a labeled example, yi, can only be 1

or —1. And the delta function 6(a), y) = 1 if :1: = y and 6(.r, y) = 0 if :2: # y.

Again, if we define

nl

d.f -

cj :9 ZsmeprH)0(J,,1) (3.16)

i=ll

d,- “2‘ :3,Je\p(2H)6(1) (3.17)

i=1
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then we can simplify the bound for the F512) in (3.10) as

"l +nu

F182) 2 Z exp(20hj)cj+exp(—2crhj)(lj

j=nl+1

F(t’"1)

Similarly, we can simplify [u as

n) nl+nu

F(t—1)

lu = Z Z 2"“QyiHjl
i=1j=—nl+1

nl+nu "l

= Z ZsijeprH')6(1/i,— 1)+€XP(—2Hj)5(yia1)

j:nl+1i=1

Til-+7121,

= Z Cj+dj

j=nl+1

(3.18)

(3.19)

Given the above results, we can study the bound of the objective function change

from the t— 1-th iteration to the t—th iteration. However, to further simplify notations,

let us first define

 

 

 

 

{1.7 : n.l+7zu]a b

23':=nl+1 0.? J

3 bi
j — nl+nu

ijnl+1a3+b3

c-

éj : Til-PHIL] i

23':=nl+1 Cj+‘J

2 d1"
.7 _ nl+nu

E:j==nl+1 CJ+dJ

(3.20)

(3.21)

(3.22)

(3.23)



then we have

(t) W F“)
log [(11) = log filial)+log (5'11)

F ' F ' F
U1],

   

+- .

23:71:11 exp(ZQhJ-Mj + exp(—2dhj)bj

nl+nu

ijnl+1 “J + b]

|
/
\

 log

Z711 +7lu

j=nl+1exp(2ohj)cj + exp(—2alzj)dj

 

+10g n n.

23-51131 c,- + 0’2

7Ll+nu

: log 2 exp(2a-hj)&j + exp(—2o'h.j)f)j

j=nl+1

nl+nu

+ log 2 exp(2ahj)cj + exp(—2ahj)cfj

j=nl+1

1Ll+nu

S E exp(2ahj)((ij + 5]) + exp(—20h.j)(5j + dj) — 2 (3.24)

j=n1+1

In the last step above, we used the inequality

logs: 3 23—1, Vx>0 (3.25)

Furthermore, if we apply the following inequality

exp(yx) g exp(v) + exp(—'7) - 1 + 7:17, V2: 6 [—1, +1] (3.26)

we can further bound log Fft) as
F(t—1 )

3 Z (Eij + 5]) [exp(2a) + exp(—2a) - 1+ 202th

j=nl+1

+(f2j + dj) [exp(2a) + exp(—2o) — 1 — 2ahj]

nl+nu

= Z (Eij + 53- + éj + dj) [exp(2a) + exp(—2a) — 1]

 

— . Z 20hj(f)j + (17,- -— 51,-— 5,) — 2 (3.27)
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t

Now we have two upper bounds for log%, (3.24) and (3.27). Both bounds

(t). F u ‘ n , __ -, . _ , 3 __ , ,

and log F t—l) touch at a — 0, Since they all reach 0 when a — 0. Fuithermoie,

log Fit) 2 0 means F(t) 2 F071). Therefore, as 10110 as we minimize either

Hm) ..

upper bound, we can always have F(t) S F(t‘l), i.e., keeping the objective function

non-increasing in the iterative procedures.

The upper bound (3.27) is good for designing a sampling scheme for a boosting

algorithm. Specifically, to help lower such an upper bound, we expect the label value

hj (at the t iteration) to be consistent with the sign of (fij + dj — cij — 5]). This

gives us a good hint on sampling unlabeled data for training: the j-th unlabeled

example should be labeled as sign(5j + dj — (ij — 5]) and sampled with a probability

proportional to [(5, + dj — fij — 55)].

Finally, to find the optimal a, we can minimize either upper bound in (3.24) or

(3.27). Here we choose the former, because it is tighter than the other one, and also

minimizing it leads to a solution which is easier to compute. In particular, we take

the first-order derivative (w.r.t. a) of the upper bound in (3.24) and set it to zero,

 

i.e.

nl+nu nl+nu

Z exp(2ah.j)2hj(&j + 5]) — Z exp(—2ahj)2hj(5j + dj) 2 0(3.28)

j=nl+1 j=nl+1

or equivalently

nl+nu nl+nu

Z exp(2oz)(éj + Ej)6(hj,1) — Z exp(—2a)(&j + Ej)6(hj, —1)

j=nl+1 j=nl+1

nl+nu nl+nu

— Z exp(—2a)(b,- + d,)3(h,-, 1) + Z exp(2a)(bj + d,)5(h,-, —1)

j=nl+1 j=n1+1

= 0 (3.29)

Solving the above equation, we have

Tll+nu ~ __ - ~ ~ -

a _ 1 Zj=nl+l(aj + Cj)()(hj,—1)+(bj + dj)()(hj,1) (3 30)

_ _ n +n ~ ., ~ ~ '

4 z I ’“ (a,+c,-)6(h,-,1)+(b,- +dj)6(hj,—1)
j=nl+1
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Input

0 X: d x 12. matrix for the input data

0 A: given classification algorithm

Output: class labels

Algorithm

0 Compute pairwise similarity matrix S.

o Initialize H(O)(x) = 0.

o Fort=1,2,...,T

~

,3], 5,31,. using (320)—(323)

- Compute class label for each unlabeled example xj as sign(bj + dj —

aj — cj).

— Sample unlabeled examples with probability proportional to |(I3j +dj —

— Compute ii

~

aj - éj)|

— Adding sampled examples to the labeled examples, train a binary clas-

sifier h(t)(x) with the algorithm A

-— Compute the optimal am using (3.30)

— Update the classification model as H(t)(x) <— H(t_1)(x) +a(t)h.(t)(x)

o Predict class labels with the final classification model H(t)(x)
 

Figure 3.1. LinkBoost framework.

3.3.3 LinkBoost Framework Summary

The LinkBoost framework can be summarized into a meta algorithm, as shown in

Figure 3.1

As we can see, LinkBoost framework is able to take any supervised algorithm as

the base classifier. This is more useful as opposed to other link-based classification

method that design a special algorithm. Consider the situation that we find a spec-

ified classifier which works particularly well for a given domain. When we gained

more understanding on the dataset (in the form of “links”), we want to stick with

61

 



the good classifier and further improve its accuracy. This requires a framework that

is flexible enough to accommodate any classifier, and is able to evaluate its perfor-

mance (without knowing ground truth) and make adjustment. LinkBoost meets such

a requirement in the following way: it iteratively applies the classifier with a different

training set; by checking the inconsistency between current classification results and

the structure of data that. is estimated from the link information and data repre—

sentations, it generates heuristics on assigning pseudo labels to unlabeled data, thus

updating the training set; at the same time, LinkBoost estimated the appropriate

amount of trust we can put on the current prediction for final combination.

It is also worth noting that even when no link information is available, LinkBoost

can also work as a generic semi-supervised learning algorithm, by simply using the

similarity computed from data representations alone in (3.2) in Section 3.3.1.

3.4 Experiments and Analysis

In this section, we will present a few experiments to verify the proposed LinkBoost

framework. Specifically, through the experiments we try to address the following two

research questions

1. Is the propose LinkBoost framework effective in improving classification perfor-

mance with link information?

2. As a general semi-supervised boosting framework, is LinkBoost able to improve

any supervised classification algorithm?

3.4. 1 Experiment Setup

Two datasets of scientific publications will be used in our experiments: “Cora” and

“Citeseer”. We describe the two datasets here.

62



 

ID Class Name Size

Neural Networks 818

Rule Learning 180

Reinforcement Learning 217

Probabilistic Methods 426

Theory 351

Genetic Algorithms 418

Case Based 298

 

    NC
U
U
I
A
C
O
M
H

 

Table 3.1. Classes in Cora dataset.

 

 

ID Class Name Size

1 Agents 596

2 Information Retrieval 668

3 Database 701

4 Artificial Intelligence 249

5 Human-computer Interaction 508

6 Machine Learning 590      
Table 3.2. Classes in Citeseer dataset.

Cora dataset The Cora dataset consists of 2708 scientific publications classified into

one of seven classes, as shown in Table 3.1. Each publication in the dataset is

described by a 0/1-valued word vector indicating the absence/presence of the

corresponding word from the dictionary, which consists of 1433 unique words in

total. The citation network consists of 5429 links. By checking with the ground

truth class assignment of publications, we find that about 81.38% of the links

correctly indicates that the linked publication pair should be put in the same

class. Furthermore, the links are not evenly distributed across all publications.

For example, there are about 100 publications each involved in more than 10

links, while there are also 1143 publications not involved in any link.

Citeseer dataset The CiteSeer dataset consists of 3312 scientific publications classi-

fied into one of six classes, as shown in Table 3.2. Each publication in the dataset

is described by a 0/1—valued word vector indicating the absence/presence of the
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corresponding word from the dictionary, which consists of 3703 unique words in

total. The citation network consists of 4732 links. By checking with the ground

truth class assignment of publications, we find that about. 74.61% of the links

correctly indicates that the linked publication pair should be put in the same

class. Furthermore, the links are not evenly distributed across all publications.

For example, there are about 50 publications each involved in more than 10

links, while there are also 1358 publications not involved in any link.

As we can see, the link information in both datasets are sparse and noisy. Therefore,

these two datasets can be seen as representative of real-world data.

Given a supervised classification algorithm, we will apply the proposed LinkBoost

framework to boost its classification performance on the two datasets described above,

using the link information. Due to the regularity presented in the two datasets, we

will use both incoming and outgoing links to form a link matrix, i.e., in Equation (3.2)

R+ RT will be used as the link matrix to compute similarity between data examples.

And the weight factor a is set to 0.4. As mentioned before, the proposed LinkBoost

Framework can accommodate augmented feature representation, for example, from

the Feature Representation Augmentation algorithm reviewed in Section 3.2.3. In

our experiments, we implemented LinkBoost on both the original feature space, and

the augmented feature space using the algorithm mentioned in Section 3.2.3. For

notation brevity, we will refer to the former method as “LB-OR”, and the latter

one as “LB-AR”. In LB-AR, The link matrix in Equation (3.1) takes the form of

R + RT, and the weight factor A = 0.5.

To compare with the proposed LinkBoost algorithm, two baseline algorithms are

implemented. The first baseline algorithm is Feature Representation Augmentation

(“RepAug” for short). The second one is Co—training (“Cotrain” for short). Both

baseline algorithm were reviewed in Section 3.2.3.

64



Since only binary classification model is discussed in this chapter, we tested all the

possible class pairs in both datasets. For each class pair, we randomly chose 5% data

examples for training and the rest for test. Each classification was repeated 10 times

by using different randomly selected training data, and the classification accuracy

was averaged over the 10-fold experiments.

3.4.2 Robustness against Sparse Link Information

As discussed in Section 3.4.1, the link information in both Cora and Citeseer datasets

is noisy. To further verify the proposed LinkBoost algorithm and its robustness

against sparse link information, we gradually decrease the number of links being used,

and compare the classification performance of the four algorithms. Table 3.3 and

Table 3.4 give the classification accuracies on Cora dataset; Table 3.5 and Table 3.6

give the classification accuracies on Citeseer dataset. In this group of experiments,

Support Vector Machine (implemented by SVMLight software) is used as the base

supervised classification algorithm to be boosted by the LinkBoost framework.

As we can see, with all the available link information being used, LB-AR and

AugRep deliver comparable performance, while overall speaking LB-AR is slightly

better. LB-OR is suboptimal among the four methods; and Cotrain almost always

performs worst. When the number of links being used is decreasing, the performance

of all four methods degrades as expected. However, with the link information getting

even sparser gradually, the advantage of LB-AR over AugRep becomes significant,

since their performance gap enlarges. Moreover, when only 30% - 10% of links are

used, LB-OR also outperforms the AugRep. The above observations suggest that

LinkBoost is more robust against the sparseness of link information.

Comparing the performance of LB-OR and LB-AR, i.e., applying LinkBoost on

both original feature space or augmented feature space, leads to the following findings:

when 80% ~ 100% links are used, LB—AR performs better than LB-OR; however,
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Classes Model Percentage of Links Used

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

1 vs 2 AugRep .900 .898 .891 .888 .883 .875 .866 .859 .849 .841

Cotrain .836 .835 .837 .839 .841 .845 .843 .844 .844 .838

LB-OR .891 .889 .890 .890 .884 .890 .882 .886 .888 .885

LB-AR .911 .911 .905 .907 .900 .896 .897 .889 .889 .898

1 vs 3 AugRep .912 .910 .907 .902 .897 .893 .883 .873 .863 .846

Cotrain .840 .841 .840 .836 .842 .842 .839 .848 .849 .846

LB-OR .877 .882 .876 .873 .870 .869 .862 .864 .866 .864

LB-AR .911 .908 .908 .903 .895 .891 .880 .874 .869 .857

1 vs 4 AugRep .841 .835 .826 .822 .810 .798 .794 .779 .759 .748

Cotrain .732 .729 .727 .726 .728 .727 .730 .727 .735 .744

LB-OR .809 .804 .807 .806 .794 .789 .784 .772 .768 .775

LB-AR .850 .840 .836 .832 .815 .809 .802 .804 .779 .782

1 vs 5 AugRep .847 .844 .841 .832 .826 .816 .807 .790 .777 .770

Cotrain .763 .759 .753 .750 .748 .746 .747 .752 .757 .762

LB-OR .821 .814 .811 .806 .800 .802 .795 .792 .788 .786

LB—AR .846 .840 .845 .833 .824 .814 .807 .789 .784 .782

1 vs 6 AugRep .944 .941 .935 .929 .921 .909 .897 .876 .862 .861

Cotrain .833 .840 .836 .831 .835 .837 .840 .843 .849 .851

LB-OR .864 .863 .860 .857 .852 .855 .847 .844 .840 .837

LB-AR .945 .939 .932 .923 .920 .904 .891 .874 .857 .853

1 vs 7 AugRep .894 .889 .885 .877 .868 .857 .843 .828 .817 .803

Cotrain .789 .791 .789 .784 .786 .786 .786 .796 .798 .799

LB-OR .854 .849 .836 .831 .833 .833 .829 .824 .824 .821

LB-AR .899 .896 .890 .884 .876 .868 .854 .842 .841 .830

2 vs 3 AugRep .889 .879 .861 .851 .832 .802 .783 .745 .703 .705

Cotrain .755 .759 .756 .768 .761 .757 .760 .760 .735 .725

LB—OR .882 .875 .885 .868 .874 .851 .863 .846 .848 .805

LB—AR .891 .883 .869 .860 .844 .833 .830 .827 .815 .806

2 vs 4 AugRep .852 .853 .847 .839 .830 .819 .801 .788 .776 .760

Cotrain .764 .758 .754 .750 .756 .762 .759 .767 .763 .752

LB-OR .886 .887 .890 .874 .877 .877 .861 .857 .842 .850

LB-AR .942 .937 .934 .938 .920 .926 .902 .884 .893 .879

2 vs 5 AugRep .741 .732 .729 .725 .721 .710 .713 .706 .700 .687

Cotrain .689 .687 .684 .686 .689 .688 .688 .695 .698 .688

LB—OR .785 .778 .761 .766 .764 .767 .766 .744 .749 .738

LB-AR .808 .815 .807 .799 .775 .774 .756 .742 .733 .737

2 vs 6 AugRep .924 .920 .905 .889 .883 .862 .841 .825 .803 .771

Cotrain .772 .779 .780 .781 .775 .769 .769 .776 .771 .782

LB—OR .885 .884 .879 .879 .879 .862 .867 .856 .847 .831

LB-AR .934 .919 .919 .888 .896 .896 .883 .875 .859 .843

2 vs 7 AugRep .732 .733 .731 .723 .717 .703 .690 .679 .670 .654

Cotrain .650 .657 .643 .639 .654 .657 .664 .662 .665 .659

LB—OR .751 .765 .759 .757 .757 .756 .758 .757 .749 .742

LB-AR .773 .773 .767 .760 .760 .763 .734 .728 .747 .752
 

Table 3.3. Classification Accuracy Comparison on Cora Dataset (Part A).
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Classes Model Percentage of Links Used

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

3 vs 4 AugRep .940 .934 .930 .928 .912 .899 .883 .865 .846 .831

Cotrain .840 .838 .840 .836 .844 .858 .858 .859 .864 .848

LB-OR .902 .904 .895 .902 .906 .908 .897 .904 .899 .889

LB—AR .947 .944 .942 .939 .924 .921 .909 .889 .880 .862

3 vs 5 AugRep .872 .870 .862 .854 .838 .817 .804 .786 .759 .750

Cotrain .760 .749 .759 .764 .763 .763 .769 .759 .761 .763

LB-OR .831 .832 .826 .828 .812 .807 .806 .799 .778 .781

LB—AR .872 .874 .871 .853 .839 .824 .802 .799 .767 .778

3 vs 6 AugRep .903 .898 .893 .888 .879 .862 .845 .833 .805 .795

Cotrain .775 .772 .780 .785 .792 .784 .791 .785 .789 .777

LB-OR .856 .847 .844 .847 .845 .839 .839 .830 .829 .815

LB—AR .914 .901 .899 .892 .883 .862 .862 .842 .831 .823

3 vs 7 AugRep .871 .868 .862 .855 .836 .827 .808 .774 .746 .739

Cotrain .713 .724 .717 .722 .732 .743 .755 .755 .744 .740

LB-OR .797 .782 .783 .790 .784 .787 .806 .788 .800 .789

LB-AR .870 .868 .857 .850 .841 .848 .825 .804 .825 .785

4 vs 5 AugRep .899 .891 .880 .874 .864 .860 .861 .829 .819 .810

Cotrain .809 .811 .812 .803 .808 .809 .806 .818 .800 .798

LB-OR .844 .800 .818 .819 .827 .831 .831 .838 .841 .831

LB-AR .898 .893 .878 .879 .868 .859 .864 .827 .826 .794

4 vs 6 AugRep .959 .950 .948 .936 .923 .912 .892 .860 .833 .829

Cotrain .808 .805 .815 .818 .818 .816 .816 .810 .818 .806

LB-OR .923 .892 .898 .910 .915 .909 .914 .915 .919 .923

LB-AR .974 .968 .959 .947 .951 .940 .934 .925 .908 .895

4 vs 7 AugRep .904 .894 .885 .869 .855 .836 .821 .799 .774 .765

Cotrain .769 .775 .778 .774 .767 .774 .760 .770 .777 .778

LB—OR .829 .806 .799 .809 .813 .819 .810 .832 .832 .844

LB—AR .916 .893 .899 .886 .883 .874 .851 .838 .821 .811

5 vs 6 AugRep .926 .924 .919 .910 .898 .874 .851 .839 .828 .809

Cotrain .807 .802 .806 .794 .796 .796 .795 .797 .809 .798

LB—OR .836 .822 .826 .835 .840 .847 .847 .853 .862 .866

LB-AR .926 .925 .917 .911 .901 .871 .852 .844 .843 .816

5 vs 7 AugRep .812 .810 .807 .803 .796 .771 .747 .729 .713 .714

Cotrain .706 .707 .702 .705 .711 .716 .718 .712 .712 .709

LB-OR .782 .739 .745 .764 .749 .760 .769 .759 .776 .774

LB-AR .821 .821 .810 .803 .805 .788 .776 .755 .763 .743

6 vs 7 AugRep .940 .934 .929 .919 .909 .893 .875 .853 .827 .823

Cotrain .796 .779 .774 .769 .779 .774 .759 .769 .781 .789

LB-OR .846 .828 .833 .837 .831 .839 .843 .850 .843 .843

LB-AR .940 .930 .929 .918 .904 .892 .876 .859 .837 .832
 

Table 3.4. Classification Accuracy Comparison on Cora datasets (Part B).
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Classes Model Percentage of Links Used

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

1 vs 2 AugRep .939 .933 .928 .928 .921 .921 .915 .903 .906 .902

Cotrain .907 .910 .910 .909 .910 .908 .911 .911 .911 .905

LB-OR .938 .934 .933 .931 .929 .923 .927 .929 .927 .923

LB-AR .946 .942 .939 .937 .931 .932 .928 .917 .916 .909

1 vs 3 AugRep .932 .928 .916 .915 .906 .897 .887 .884 .886 .893

Cotrain .905 .905 .906 .905 .905 .906 .906 .904 .903 .902

LB-OR .921 .923 .918 .918 .916 .917 .911 .913 .906 .905

LB—AR .925 .922 .917 .916 .917 .912 .906 .908 .900 .896

1 vs 4 AugRep .785 .773 .763 .763 .760 .751 .739 .732 .732 .734

Cotrain .748 .744 .743 .742 .737 .738 .739 .739 .735 .732

LB—OR .760 .759 .756 .755 .750 .755 .751 .753 .755 .755

LB-AR .778 .772 .765 .753 .752 .747 .735 .738 .742 .742

1 vs 5 AugRep .895 .890 .881 .879 .867 .865 .853 .850 .854 .853

Cotrain .848 .852 .856 .858 .862 .858 .857 .859 .854 .851

LB-OR .859 .860 .863 .863 .860 .870 .870 .865 .856 .853

LB-AR .895 .888 .887 .881 .875 .870 .864 .865 .853 .854

1 vs 6 AugRep .904 .897 .892 .877 .860 .851 .848 .838 .834 .850

Cotrain .864 .859 .866 .865 .865 .869 .873 .873 .875 .881

LB—OR .883 .860 .863 .863 .860 .870 .870 .865 .856 .853

LB-AR .903 .898 .893 .885 .875 .875 .877 .869 .876 .882

2 vs 3 AugRep .845 .840 .838 .835 .822 .818 .803 .797 .780 .791

Cotrain .795 .798 .795 .800 .793 .794 .797 .794 .788 .787

LB-OR .807 .803 .810 .811 .803 .804 .794 .794 .797 .794

LB-AR .842 .839 .838 .836 .825 .824 .811 .796 .790 .784

2 vs 4 AugRep .787 .782 .776 .778 .778 .770 .768 .758 .757 .757

Cotrain .795 .755 .757 .753 .751 .754 .749 .746 .746 .743

LB—OR .780 .773 .777 .773 .773 .773 .773 .773 .775 .776

LB-AR .784 .782 .781 .777 .775 .774 .765 .767 .773 .774

2 vs 5 AugRep .870 .859 .854 .837 .829 .811 .799 .801 .789 .793

Cotrain .804 .808 .812 .811 .806 .806 .808 .803 .808 .805

LB-OR .841 .846 .843 .843 .845 .838 .830 .824 .817 .804

LB—AR .872 .869 .867 .856 .855 .844 .836 .822 .810 .791

 

 

 

 

 

 

 

 

      
Table 3.5. Classification Accuracy Comparison on Citeseer datasets (Part A).
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Classes Model Percentage of Links Used

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

2 vs 6 AugRep .834 .831 .828 .824 .815 .793 .769 .760 .742 .765

Cotrain .803 .801 .792 .791 .787 .784 .773 .774 .782 .781

LB-OR .791 .793 .792 .788 .783 .785 .783 .779 .775 .774

LB-AR .829 .829 .824 .819 .807 .782 .778 .765 .748 .754

3 vs 4 AugRep .766 .765 .759 .757 .756 .756 .753 .751 .750 .749

Cotrain .754 .755 .756 .753 .754 .754 .754 .752 .752 .752

LB-OR .781 .775 .771 .771 .771 .767 .769 .770 .772 .768

LB-AR .770 .773 .766 .761 .761 .759 .755 .752 .758 .767

3 vs 5 AugRep .890 .883 .869 .856 .840 .830 .823 .820 .817 .821

Cotrain .848 .852 .846 .845 .845 .844 .843 .844 .839 .831

LB-OR .887 .884 .883 .885 .884 .878 .883 .881 .875 .869

LB—AR .905 .899 .890 .885 .881 .873 .869 .866 .862 .863

3 vs 6 AugRep .874 .865 .854 .844 .839 .831 .821 .815 .803 .809

Cotrain .830 .832 .832 .837 .837 .836 .835 .834 .831 .829

LB-OR .853 .853 .849 .851 .846 .846 .839 .841 .841 .833

LB-AR .878 .870 .861 .854 .854 .844 .842 .845 .831 .835

4 vs 5 AugRep .726 .726 .721 .713 .709 .703 .705 .709 .704 .701

Cotrain .707 .705 .702 .699 .700 .700 .699 .698 .699 .703

LB-OR .726 .724 .724 .723 .719 .722 .721 .723 .726 .726

LB-AR .731 .724 .725 .725 .726 .721 .726 .721 .717 .719

4 vs 6 AugRep .713 .712 .711 .711 .710 .708 .710 .709 .709 .710

Cotrain .706 .706 .707 .706 .706 .711 .709 .710 .709 .710

LB-OR .713 .714 .711 .712 .714 .714 .711 .713 .713 .713

LB-AR .714 .711 .711 .710 .706 .705 .707 .707 .709 .712

5 vs 6 AugRep .876 .861 .851 .848 .836 .820 .809 .805 .807 .814

Cotrain .814 .817 .814 .816 .820 .824 .824 .817 .810 .810

LB-OR .862 .855 .852 .847 .852 .838 .844 .835 .831 .826

LB-AR .882 .864 .859 .862 .854 .848 .839 .835 .820 .822    
Table 3.6. Classification Accuracy Comparison on Citeseer datasets (Part B).
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when 10% - 30% links are used, LB—OR is slightly better than LB-AR. A possible

explanation to these findings is that when significant amount of data examples are

involved in links, the classification process is doubly boosted by LB-AR, both from

data representation augmentation and the training set augmentation; but when link

information are extremely sparse, the representation augmentation in a bag-of—words

manner is less reliable, compared to the training set augmention which selectively

supplements training pool with highly confident predictions. However, how to reliably

utilize extremely sparse link information needs further study.

3.4.3 Boosting Power for Supervised Algorithms

To verify the boosting power of the proposed LinkBoost framework, we apply it to

several base supervised classifiers, and compare the performance with that of the base

classifier itself. In particular, five supervised algorithms are used

0 Support Vector Machine (“svm” for short), whose performance was proved to

be among the best in many text classification applications.

0 J48 decision trees (“j48” for short).

0 HyperPipe classifier (“hpp” for short), which constructs for each category a

“hypepipe” that contains all points of that category (essentially records the

attribute bounds observed for each category). Predictions on test instances are

made according to the category that most contains the instance.

0 Simple Naive Bayes classifier (“nbs” for short).

Voted Perceptron (“vp” for short).

For “svm”, we used the SVMLight implementation. For the rest four classifiers, we

used its implementation in the Weka softwarez.

 

2http://www.cs.waikato.ac.nz/m1/weka/
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Classes SV111 LB—OR j48 LB-OR hpp LB-OR nbs LB-OR. vp LB-OR
 

 

1vs2

1vs3

1vs4

1vs5

1vs6

1vs7

2v33

2vs4

2vs5

2vs6

2vs7

3vs4

3v35

3vs6

3vs7

4v35

4v36

4vs7

5v36

5vs7

6vs7  

0.843

0.843

0.744

0.772

0.854

0.802

0.732

0.750

0.685

0.773

0.653

0.855

0.758

0.803

0.748

0.809

0.846

0.771

0.806

0.708

0.819

0.891

0.877

0.809

0.821

0.864

0.854

0.882

0.886

0.785

0.885

0.751

0.902

0.831

0.856

0.797

0.844

0.923

0.829

0.836

0.782

0.846  

0.819

0.877

0.733

0.725

0.863

0.768

0.651

0.748

0.680

0.747

0.628

0.837

0.744

0.804

0.741

0.691

0.795

0.681

0.779

0.672

0.724

0.930

0.925

0.866

0.834

0.929

0.902

0.915

0.933

0.800

0.913

0.797

0.943

0.892

0.894

0.887

0.888

0.955

0.861

0.916

0.822

0.913  

0.845

0.813

0.734

0.744

0.769

0.807

0.776

0.800

0.711

0.796

0.712

0.775

0.749

0.732

0.741

0.740

0.807

0.783

0.743

0.723

0.780

0.851

0.799

0.733

0.750

0.771

0.821

0.847

0.852

0.733

0.835

0.742

0.789

0.780

0.771

0.758

0.750

0.806

0.790

0.759

0.739

0.783  

0.853

0.822

0.749

0.767

0.756

0.803

0.772

0.810

0.719

0.791

0.690

0.785

0.736

0.736

0.723

0.750

0.766

0.753

0.743

0.708

0.728

0.892

0.849

0.796

0.799

0.820

0.859

0.892

0.897

0.769

0.887

0.767

0.876

0.841

0.834

0.826

0.806

0.895

0.844

0.857

0.804

0.834  

0.846

0.817

0.712

0.752

0.797

0.805

0.699

0.785

0.676

0.765

0.650

0.791

0.697

0.767

0.730

0.734

0.799

0.742

0.770

0.688

0.787

0.874

0.844

0.777

0.789

0.834

0.841

0.812

0.871

0.734

0.858

0.717

0.843

0.757

0.817

0.785

0.792

0.870

0.817

0.823

0.740

0.816
 

Table 3.7. Boosting classification accuracy on Cora datasets.

 

Classes svm LB—OR j48 LB—OR hpp LB-OR nbs LB-OR VP LB-OR
 

 

1vs2

lvs3

1vs4

1v55

1vs6

2vs3

2vs4

2v55

2vs6

3vs4

3vs5

3vs6

4v35

4vs6

5vs6  

0.904

0.901

0.741

0.854

0.869

0.786

0.754

0.802

0.785

0.754

0.843

0.819

0.702

0.709

0.813

0.938

0.921

0.760

0.859

0.883

0.807

0.780

0.841

0.791

0.781

0.887

0.853

0.726

0.713

0.862  

0.853

0.870

0.733

0.840

0.842

0.665

0.717

0.667

0.639

0.720

0.717

0.726

0.681

0.656

0.681

0.946

0.929

0.772

0.887

0.898

0.824

0.798

0.859

0.800

0.807

0.904

0.864

0.758

0.706

0.872  

0.785

0.790

0.737

0.749

0.754

0.705

0.777

0.763

0.720

0.768

0.791

0.760

0.724

0.706

0.766

0.865

0.838

0.747

0.796

0.803

0.773

0.776

0.809

0.738

0.777

0.842

0.796

0.713

0.704

0.804  

0.817

0.793

0.738

0.752

0.775

0.723

0.778

0.773

0.728

0.769

0.782

0.762

0.730

0.695

0.774

0.903

0.862

0.761

0.815

0.844

0.780

0.821

0.840

0.751

0.789

0.868

0.825

0.759

0.691

0.839  

0.818

0.832

0.734

0.754

0.782

0.742

0.743

0.726

0.715

0.755

0.771

0.745

0.697

0.663

0.742

0.882

0.869

0.755

0.810

0.827

0.773

0.785

0.786

0.741

0.773

0.825

0.797

0.738

0.681

0.797
 

Table 3.8. Boosting classification accuracy on Citeseer datasets.
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The original data represenation is used both in the base classifier and the

LinkBoost-boosted classifier.

Table 3.7 and Table 3.8 compare the performance of the base classifiers, and perfor-

mance of them within the LinkBoost framwork, on all class pairs in Cora and Citeseer

datasets respectively. In both tables, each column contains two sub—columns, with

the left one under the name of the base classifier giving its classifation accuracy, and

the right one under “LB-OR” giving the classification accuracy of the corresponding

base classifier within the LinkBoost framework (using original data representations).

As we can see, in most cases, LinkBoost framework is able to significantly improve the

classification accuracy. These results empirically proves the boosting power of Link-

Boost framework, i.e., it is able to improve any supervised algorithm by effectively

exploiting link information.

3.5 Conclusions

In this chapter, we propose a semi-supervised learning framework, named as “Link-

Boost”, for boosting classification performance, when side information in the form of

links are available. LinkBoost is designed to turn any supervised algorithm into a

semi—supervised one, and improve its classification performance. Experiments show

that LinkBoost is robust against the noisy and sparse nature of link information, and

it does improve the classification accuracy of several typical supervised algorithms.
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CHAPTER 4

Semi-supervised Clustering with Pairwise

Constraints

In this chapter, a novel boosting framework for semi-supervised clustering will be

described. Starting with the problem definition of semi-supervised clustering, we will

review a few major approaches in previous studies on this problem, then present our

boosting idea with formal description of the related algorithms. Experiment results

and discussions will be provided, as empirical validation. Finally, we will summarize

our work and raise a few issues for future work.

4.1 Problem Definition

Data clustering, also called unsupervised learning, is one of the key techniques in data

mining that is used to understand and mine the structure of unlabeled data. The

idea of improving clustering by side information, sometimes called semi-supervised

clustering or constrained data clustering, has received significant amount of attention

in recent studies on data clustering. Often, the side information is presented in the

form of pairwise constraints: the must-link pairs where data points should belong

to the same cluster, and the mustnot-lz'nk pairs where data points should belong to

different clusters.

Table 4.1 summarizes the notations that will be used throughout the chapter.
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71 Total number of data examples.

The number of attributes for each data example

A d—dimension vector represents the i—th data example. We

also use x,- to refer to the i-th data example.

The set of all data examples, i.e. X = {X22 ?:1.

A matrix X = (x1, . . . ,xn) that gathers the vector repre-

sentations of all the data examples.

The set of all must-link pairs of data examples.

A n x n matrix where 52+- is one when examples x,- and x]-

form a must-link pair, and zero otherwise.

The set of all mustnot—link pairs of data examples

An n x n matrix where S2— - is one when examples X, and
7

xj form a mustnot-hnk pair, and zero otherwrse.

For classification or clustering problems, c gives the number

of classes.

For classification or clustering problems, 1,- takes values

from the set {1, - -- ,c} which indicates the class label for

the i-th data example.

Table 4. 1. Notations

4.2 Review on Previous Studies

There are two major approaches to semi-supervised clustering: the approach based on

constraints satisfaction and the approach based on distance metric learning. The first

approach employs the side information to restrict the solution space, and only finds

the solution that is consistent with the pairwise constraints. The second approach

first learns a distance metric from the given pairwise constraints, and computes the

pairwise similarity using the learned distance metric. The computed similarity matrix

is then used for data clustering. In this section, we will review some major work in

both approaches, recapitulate a few selected representative algorithms, followed by a

brief summary on these previous studies.
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4.2.1 Approach Based on Constraints Satisfaction

The constraint~based approach for semi—supervised clustering utilizes the side infor—

mation to restrict the feasible solutions when deciding the cluster assignment. Early

work in this category took the side information as the hard constraints, and only con-

sidered the cluster assignments that were absolutely consistent with the given pairwise

constraints. In [148, 20], the authors proposed the constrained K-means algorithms

by adjusting the cluster memberships to be consistent with the pairwise constraints.

In [133], a generalized Expectation Maximization (EM) algorithm is proposed to in-

corporate the pairwise constraints into the EM algorithm. In particular, the cluster

assignments that are inconsistent with the constraints are excluded from the partition

function when computing the posterior probability for the cluster memberships. One

problem with treating the side information as hard constraints is that we may not

be able to find feasible solutions that are consistent with all the constraints [44]. To

overcome this problem, a number of studies view the side information as soft con-

straints. The key idea is to penalize, not to exclude, the cluster assignments that are

inconsistent with the given pairwise constraints. In [15, 108, 16], the authors present

probabilistic models for semi-supervised clustering where the pairwise constraints are

incorporated into the clustering algorithms through the Bayesian priors. In [102],

the authors modified the mixture model for data clustering by redefining the data

generation process through the introduction of hidden variables. In [14], the authors

extended the framework of semi-supervised clustering by selecting the most infor-

mative pairwise constraints to solicit the labeling information. In [45], the authors

studied semi-supervised clustering for the hierarchical clustering algorithm.

4.2.2 Approach Based on Distance Metric Learning

Another approach to semi-supervised clustering is to first learn a distance metric from

the given pairwise constraints. The pairwise similarity between any two examples is
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then computed based on the learned distance metric, and a clustering algorithm is

applied to the computed similarity matrix. The key to this approach is to effectively

learn a distance metric from the side information. Zhang et al. [165] proposed to

learn a distance metric by a linear regression model. Xing et al. [155] formulated

the distance metric learning problem as a constrained convex programming problem.

This algorithm is extended to the nonlinear case in [98] by the introduction of ker-

nels. Yang et al. [159] proposed a local distance metric algorithm that is designed to

address the problem of distance metric learning for multi-modal data distributions.

Golderberg et a1. [64] presented the neighborhood component analysis algorithm that

learns a local distance metric by extending the nearest neighbor classifier. Wein—

berger [150] presented a large margin nearest-neighbor classifier for distance metric

learning that extended the neighborhood component analysis to a maximum margin

framework. Discriminative component analysis [74] learned a distance metric by ex-

tending the relevance component analysis to effectively explore both the must-link

and the mustnot-link constraints simultaneously. In [71, 72], the authors extended

the boosting algorithms to learn a distance function from given pairwise constraints.

Schultz and Joachims [128] extended the framework of support vector machine to

learn distance metrics from the pairwise comparisons.

Finally, a few studies cluster data points by a similarity matrix that is directly

modified according to the pairwise constraints. In [96], the authors proposed to

modify the similarity matrix by linearly combining the original similarity matrix with

the pairwise constraints. Klein et al. [91] proposed to modify the similarity matrix

by propagating the pairwise constraints through the nearest neighbors.

4.2.3 Representative Algorithms

We will recapitulate a few representative algorithms proposed for semi-supervised

clustering in the following.
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CONSTRAINED K-MEANS CLUSTERING ALGORITHM

The constrained K-mcans algorithm is a modified K-Ineans algorithm, by ensuring

none of the pairwise constrained is violated during the iterative steps of the K-means

algorithm. Specifically, the constrained K-means algoritlnn can be fornmlated as

follows [148]

Input

0 X: matrix for the input data

0 8+: matrix for must»link pairs

0 8": matrix for mustnot-link pairs

Output: cluster memberships

Algorithm

Step 1 Initialize C1, . . . ,Ck as the initial cluster centers.

Step 2 For each data point 27,-, assign it to the closest cluster center Cj such that

o for all xi; not belonging to the k—th cluster, S?j 7é 1;

o for all xi, belonging to the k-th cluster, 32—j ¢ 1.

If no Cj satisfies the above rules, fail.

Step 3 Update each cluster center Cj by averaging all the data point (1, in the corre-

sponding cluster.

Step 4 Iterate through Step 2 and Step 3 until convergence.

Step 5 Return cluster memberships.

The main drawback of the above algorithm is that it can fail without yielding

a feasible solution. As the algorithm presents, if the cluster assignment (in Step

2) cannot be found to satisfy all the pairwise constraints, the algorithm will stop.

Another drawback with the constrained K-means algorithm is that. it only makes
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efforts to satisfy those “known” constraints. but does not. generalize those constraints

to the unseen data where the pairwise relationship is “unknown”.

CONSTRAINED COMPLETE-LINK CLUS'I‘ERING ALGORITHM

The data examples involved in pairwise constraints, in general, can be viewed as rep-

resentative of their local neighborhoods. Having recognized this, it. would be natural

to try to induce a set of new distance measurements over all the data examples from

the limited number of pairwise constraints. This is the basic idea of the work pre-

sented in [91], which is also formulated as acquiring prior knowledge “from instance

level constraints to space-level constraints”. Then a specific clustering algorithm

(Complete-Link clustering) is applied with the new distance measurements. The cor-

responding algorithm is named as Constrained Complete-Link (CCL) algorithm.

In CCL algorithm, the distance measurement between each pair of data exam-

ples are generated by explicitly making adjustment on an initial distance matrix

computed from the data input patterns. The adjustment is done by first imposing

the constraints, and then propagating them to the neighborhood of the constrained

examples.

For must-link constraints, imposing the constraints means setting each distance

between the must-link pair of data examples to zero. Then, the distance between all

other data example pairs are recomputed as the length of shortest path connecting

them (allowing using the “zero” length of those must-links). In this way, the must—link

gets propagated to their neighborhoods. After these distance adjustment, the triangle

inequality still holds, and the resulting distance matrix is still a valid “metric”.

For mustnot-links, imposing the constraints means setting each distance between

the mustnot-link pair of data examples to a large value. However, further propagat—

ing the mustnot-links to their neighborhood while maintaining the adjusted distance

matrix a valid “metric” will be computationally expensive. In [91], the propagation
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Of mustnot-links are not carried out explicitly by adjusting the distance matrix, but

claimed to be implicitly done in the merging step Of the following Complete—Link

clustering procedures 1.

The most notable contribution of the CCL algorithm is its efforts to generalize

the instance—level pairwise constraints tO space—level distance measurements that can

affect data examples beyond the constrained ones. As a results, it is reported in [91]

to outperform the constrained K-means algorithm in clustering.

HMRF-KMEANS ALGORITHM

Basu et al. proposed a probabilistic framework based on Hidden Markov Random

Fields (HMRFS) that combines constraints satisfaction and distance metric learn-

ing [15]. Based on this framework, a partitional clustering algorithm is designed,

which is named as HMRF-Kmeans algorithm.

Specifically, the following Hidden Markov Random Field is considered

a A hidden set Of random variables [I = {ll-”1:1, where each random variable li

takes values from the set {1, . . . , c} which is a cluster membership indicator.

0 An observable set X = {xi}?___1, where each random variable x,- is generated

from a conditional probability distribution Pr(x,;|l,;).

TO incorporate the pairwise constraints, the probability Of a particular cluster label

configuration is expressed in the following Gibbs distribution form

Pr(£) = iexpeZZI/(zym (4.1)
ji

 

1In the Complete-Link algorithm, the distance between two clusters is defined as the maximum

distance between data examples from either cluster. Therefore, if (x,,xj) forms a mustnot-link,

merging X], with x.- will result in a mustnot-link practically being constructed between xk and x,-.
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where Z1 is a normalizing factor and

f+(x,-,xj) if (x,,xj) 6 8+ but 1,- #1]-

V('i,j) = f_(x,-,xj) if (x,-,x]-) e s— but I,- = l]-

0 otherwise

Here, f+(x,-,xj) and f_(x,;,xj) are two non—negative functions that penalize the

violations of must-links and mustnot-links, respectively. The intuition behind the

above treatment is that higher probability should be assigned to a label configurations

that satisfy more pairwise constraints.

The optimal set of cluster labels for all the data example is acquired by solving

the following MAP estimation problem

Pr(£|X) or Pr(£) Pr(X|£)

Since Pr(£) is given in (4.1), we need tO decide Pr(r1’|£) to carry on the MAP esti-

mation. Assuming the set Of random variables X to be conditional independent given

the set Of hidden variables, i.e.

Pr(X|£) = H Pr(x,-|I,-) (4.2)

XiEX

we further parametrize Pr(x,-|l,) as

Pr(xz-|li) or exp(—D(xi,plz,)) (4.3)

where Mkfk = 1, - - - ,c) is the cluster representative Of the k-th cluster, and D(xi, p12.)

is a distortion measurement between the i—th data example and the li-th cluster

representative. Such distortion measurement can take various forms, such as cosine

similarity or I—divergence, etc..

Combining (4.1) - (4.3), the MAP estimation leads to the following objective

function for clustering

laungzl exp(—XXV(iai>>exp(—ZD(x.-,m,)>

i j i
maXUz'}?
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Note that the above Optimization problem is a “incomplete—data problem” since both

the set Of cluster labels {ll-[[121 and the cluster representatives {pk}z:1 are unknown

in a clustering setting, Expectation Maximization (EM) method is used to find the

solution. The EM steps can be formulated into a modified K-means algorithm (see [15]

for details).

METRIC PAIRWISE CONSTRAINED KMEANS ALGORITHM

Metric Pairwise Constrained Kmeans (MPCKmeans) is another research attempt

which tries to integrate distance metric learning into the iterative steps for cluster-

ing [24]. Again, an underlying K-means-style procedure (i.e. iteratively updating

cluster memberships and cluster representatives) is assumed for ”the clustering. The

Objective function for the related Optimization problem is

min Bx.- — m,)TAz,<x.- — #1,.) — Z) 10gdet(AI,)

i 1,

+ Z f+(xiaxj)6(li at lj) + Z f—(Xi,Xj)5(li = lj)(4-4)

(Xi,Xj)€S+ (Xi,Xj)€S_

where pk(k = 1, - -- ,c) is the cluster representative Of the k-th cluster, A]: is a

distance matrix for the k—th cluster, and f+(xz-,xj) and f_(xz-,xj) are two non-

negative functions that penalize the violations of must-links or mustnot-links.

In [24], the two penalty functions are defined in the following forms

f+<x.-,xj) = —<x.—xj>TAz,(x.-— j>+§(x.-—xj>TAI,<x.—xj>

1

f—(Xz',Xj) = §(X z.(ij.-X[;)-§(Xi-Xj)TAlJ-(Xi-Xj)

where (xbxfi ) is the maximally separated pair of the points according to the li-th

distance matrix Ali (note that we only care about f. when l,- = 1]). The function

definition of f+ allow a larger penalty imposed on violating a must-link constraints

between a pair Of distant data examples than that between a pair of close data

examples. This reflects the intuition that if two must-link examples are measured as
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far from each other by a distance metric (i.e. a large value of (x,- — leTAll-(Xz‘ — xj)

or (x,- ‘leTAlj (Xi —— 3)), we want to put more penalty for this situation so that the

corresponding distance metric can to be adjusted dramatically. A similar argument

can be found for the function definition of f_.

Note that there are four terms in the Objective function (4.4). The first term

addresses the expectation on the compactness Of the data clusters, as in the K—means

algorithm, but allowing each cluster to take different shapes; the second term regu-

larizes the learned distance matrices; the third and the fourth term try to enforce the

pairwise constraints.

Similar to the HMRF-Kmeans algorithm, EM algorithm is used to solve the Opti-

mization problem (4.4), which can be formulated into a modified Kmeans algorithm

(see [24] for details).

The main advantages Of MPCKmeans algorithm are: 1) instead of using a fixed

distance metric for clustering, it allows new distance metrics being learned during the

clustering procedures and hence improves clustering performance; 2) it allows different

distance metrics being learned for different clusters, so that clusters in different shapes

are possible to be detected. As reported in [24], MPCKmeans outperforms several

purely semi-supervised distance metric learning methods and purely semi-supervised

clustering methods in data clustering applications.

4.2.4 Summary

Although a large number Of studies have been devoted to semi-supervised clustering,

most of them focus on designing special clustering algorithms that can effectively

exploit the pairwise constraints. For instance, algorithms in [15, 108, 16] are designed

to improve the probabilistic models for data clustering by incorporating the pairwise

constraints into the priors of the probabilistic models; the constrained K-means algo-

rithm [148] exploits the pairwise constraints by adjusting the cluster memberships to
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be consistent with the given constraints. However, it is Often the case that we have a

specific clustering algorithm that is specially designed for the target domain, and we

are interested in improving the accuracy Of this clustering algorithm by the available

side information. This motivates us to design a meta-algorithm that is able to improve

any given clustering algorithm by the pairwise constraints. It is important to note

that such a meta-algorithm should not make any assumption about the underlying

clustering algorithm, so that it can be applicable to any clustering algorithm. To this

end, we propose a boosting framework for data clustering. More details will be given

in the following section.

4.3 Boosting Clustering

With pairwise constraints available, it is always desirable if we can utilize such side

information to improve clustering performance, no matter which clustering algorithm

is used. To this end, we propose a general boosting framework, termed as Boost-

Cluster. In this section, we will first illustrate the main idea of boosting clustering,

followed by a formal description on the framework, including the related Optimization

problem and solution, two variations Of the meta-algorithm for boosting, and related

discussions on the scalability issue.

Let A denote the given clustering algorithm tO be improved. In order to make

this framework general, we treat the clustering algorithm A as a black box that only

takes the data representation of all examples as its input and outputs the cluster

memberships for the given examples. Note in this work, we assume that the number

of clusters is given.

4.3.1 Main Idea

Although a number of boosting algorithms (e.g., [55]) have been successfully applied

to supervised learning, extending boosting algorithms to data clustering is signifi—
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cantly more challenging. The key difficulty is how to influence an arbitrary clustering

algorithm with the given pairwise constraints. TO overcome this challenge, we propose

to encode the side information into the data representation that is the input to the

clustering algorithm. More specifically, we will first find the subspace in which data

points Of the must-link pairs are close to each other while data points Of the mustnot-

link pairs are far apart. A new data representation is then generated by projecting

all the data points into the subspace, that is used by the given clustering algorithm

to find the appropriate cluster assignments. Furthermore, the procedure for identify-

ing the appropriate subspace based on the remaining unsatisfied constraints, and the

procedure for clustering data points using the newly generated data representation

will alternate iteratively till most of the constraints are satisfied.

Figure 4.1 illustrates the idea of iterative data projection. The data points used

in this illustration are sampled from the “scale” dataset that will be described later

in Section 4.4.1. They belong to three clusters that are labeled in Figure 4.1 by

legends A, o, and x, respectively. A partitional clustering algorithm is used in

this illustration. Sub-figure (a) shows the original data distribution projected into

a 2D space that is generated by Principle Component Analysis (PCA). We clearly

see that many data points Of the cluster x overlap heavily with the data points of

the clusters A and o, and they are difficult to be well separated. The must-link and

mustnot-link constraints are indicated in sub—figure (a) by solid lines and dotted lines,

respectively. Sub-figures (b)~(d) illustrate the projected data distributions based on

the new representations that are generated by the proposed boosting framework in

iteration 1, 2, and 7, respectively. Evidently, the data representations generated in

different iterations are helpful in separating the data points in the cluster x from

those in the other two clusters.

In practice, the whole boosting idea will work in the following way: the original

data representation and the pairwise constraints will be used as input in the proposed
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Figure 4.1. An example illustrating the idea of iterative data projections. Sub-figure (a)

shows the original data distribution, projected to the space spanned by its two principal

components; Sub-figures (b)-(d) show the data distributions based on the new representa-

tions in the projected subspaces that are generated in iteration 1, 2, and 7.

85



 

 

 

Pairwise
II data examples

c°"‘"‘”““ / d attributes a x n

Data Matrix 

Data Matrix

  

  

 

    

  

   ow at:

Rep.

In Subspace -

Clustering

Algorithm

s-dlm

Subspace

‘ Protection

  

   

d x s

Projecflon Matrix

   

Clustering

J“Siaml’mr‘ BoostCluster-E

Framework
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

 

 

Flue!

Clustering Result:

Figure 4.2. The flowchart of the BoostCluster framework.

86



boosting framework; then in a iterative manner, new data representations will be

generated and be fed into the “black-box” clustering algorithm, whose results will in

turn be used to find a subspace where data representations can be generated for the

next iteration; during the iterative process, a kernel similarity matrix gets updated.

The kernel similarity matrix, which can be seen as learned from the above boosting

procedure, incorporates the side information gathered from the pairwise constraints

and will improve the clustering performance. Figure 4.2 presents a flowchart that

illustrates the working mechanism of the boosting framework. More details will be

provided in the following subsections.

4.3.2 Objective Function

The first step in designing boosting algorithm is to construct an appropriate Objective

function. Note that, as described in the introduction section, the goal Of the boosting

algorithm is to identify the subspace that keeps the data points in the must-link

pairs close to each other, and keeps the data points from the mustnot-link pairs well

separated. To this end, we introduce the kernel similarity matrix K E Rnxn, where

K2',j _>_ 0 indicates the confidence of assigning examples X, and xj to the same cluster.

Then, our goal is to iteratively construct this kernel similarity matrix by using the

clustering algorithm A and the pairwise constraints in 8+ and 8".

Since the ideal kernel matrix K is expected to assign a large value to examples in

a must-link pair and a small value to examples in a mustnot-link pair, we propose to

minimize the following objective function:

n n

BCP —
1.3 = E: E: SJjSa,bexp(Ka’b—Ki,j) (4.5)

ileat=1

In the above, each term within the summation compares K0,1” i.e., the similarity

between two points from an mustnot-link pair, to KM, i.e., the similarity between

two data points from a must—link pair. By minimizing the Objective function in (4.5),
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we will ensure that all the data points in the must-link pairs are more similar to each

other than the data points in the mustnot-link pairs.

The objective function in (4.5) can also be written as:

n n

EBCP = Z ngcxM—Ki’j) Z Sci—.bCXMKaib) (4.6)

i,j=1 a,b=1

The above objective function is a product of two terms: the first term, i.e.,

2j- 1 S+j—exp(K2}3), measures the inconsistency between the kernel similarity ma—

trix K and] the must-link constraints; the second term, i.e., Zg,b=1 SJJ) exp(K0,1,),

measures the inconsistency between the kernel similarity matrix K and the mustnot-

link constraints. Thus, by minimizing the product of the two terms, we enforce the

kernel matrix K to be consistent with the given pairwise constraints.

Instead Of multiplying the two inconsistency measurements as in (4.6), we can also

define the Objective function to be the sum of the two terms, i.e. ,:

(1305:: S:j(exp —K,'j) +c 2 Sa—bexp(Kab) (4.7)

2',j= 1 a,=b 1

The parameter c in (4.7) balances the two inconsistency measurements. To differ-

entiate these two Objective functions, we refer to the objective function in (4.6) as

BoostCluster by product, or BCP for short, and the Objective function in (4.7) as

BoostCluster by sum, or BCS for short.

4.3.3 The BoostCluster Framework

We will first describe the efficient optimization algorithm for BCP, followed by the

algorithm for BCS.

THE BCP ALGORITHM

To boost the performance of a clustering algorithm A given a set of pairwise con-

straints, we follow the idea Of boosting algorithms by iteratively improving the ker-

nel similarity matrix K. Let K denote the current kernel similarity matrix. Let
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A E [0,1]")(7‘ denote the incremental kernel similarity matrix that is inferred from

the clustering results generated by the algorithm A. In particular, A, J- : 1 when

both x,- and xj are assigned to the same cluster and Atj = 0 otherwise. The overall

kernel matrix K’ is a linear combination Of K and A, i.e.,

K’ = K + aA (4.8)

where a 2 O is the combination weight. Then, the Objective function CBCP for the

combined kernel K’, denoted by CBCP(K’), is written as:

n n

LBCP(K’) = Z 2: SMSabexp(ch —K£’j)

ivj:1a,b=1

n n

= Z Z ijawv-“(Aria—Aux)» (4.9)

i,j=1a,b=1

where

= 3+ X)(-A") (410)
pl,] 1,].8‘ I 2,]

.

qa,b = Sgbexmh’at) (4.11)

In the above, pm- measures the inconsistency between the kernel matrix K and

the must-link pair (xi, xj), and (10,,) measures the inconsistency between K and the

mustnot-link pair (xa, xb).

We then employ the .Iensen’s inequality to Obtain an upper bound for the function

11 (4.9), i.e.,

m m

exp 2: pint,- S 2 Pi exp(.ri)

i=1 i=1

where pi 2 0,2' = 1,2,. . . ,m and 227:1 p,- = 1. Using the above inequality, an upper

bound for exp(Aab“ A- ) can be constructed as follows

  

7w]

exp(—amm- — Aw) (4.12)

A- — A +1 1 A — A- -+1

2 exp (—30 2’] 3 a,b + 3a§ + 0 x at 3 2’] )

A" —Aab+1 1 Aa,b"Ai,j+1

  

|
/
\

N 9

(
D

X

"
C (—-3cr) + E exp(3cr) + 3
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In the first step of the above derivation, we rewrite “(Amb — AM) as a summation

over the probability distribution of ((Aat — AM + 1)/3_. (AiJ — Ant + 1)/3,1/3).

Note that (AaJ) — AiJ +1) 2 0 since 0 3 Am- 3 1. Using the upper bound in (4.12),

we can now bound the Objective function Of BCP in (4.9) as follows

n Tl

£BCP(K’) = Z Z 1)i.jqa.beXI>(-O(Ai.j"Aw”

 

 

 

igzlat=1

n 'n.

exp(—30) - 1

S 3 Z Z Pi,jqa,b(Ai,j -Aa,b)

i,j=1a,b=1

exp(BO) + exp(—30) + 1 n n

+ 3 2 Zagreb
i,j=1 a,b

n n n

exp(3a) — 1

= ———3 2: A221 P232" }: qa.b — (1232' 2 Par;
z',j=1 a,b=1 a,b=1

exp(BO') + exp(—3(1) + 1 n n

+ 3 ’ Z ZPz’J‘Iai (4-13)

i,j=1 a,b

We can simplify the above expression by defining a matrix T as follows

Pm‘ (In
T. ___________________

z 22,1):1 pa,b 22,1):1 qaab

,J'

The elements in matrix T measure the inconsistency between kernel matrix K and

the pairwise constraints: a large positive value for T2j indicates that K is inconsistent

with the must-link pair (xi,xj); similarly, a large negative value for TGJJ indicates

that K is inconsistent with the mustnot-link pair (xa,xb). Using the notation Of

matrix T, the upper bound for LBCP in (4.13) becomes

 

£BCP(KI) S CBCP(K) x {lexp(3a) +e:p(—3a) + 1l _ [1 -exp(—3:)ltr(TAT)}

(4.14)
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where

n n,

BCP

5 (K) = Z Ptflw

i,j=1a,b=l

nT

”(TA ) = Z T,,,A,-,,-
z',j=1

Note that when a = 0, the right side Of (4.14) becomes [IBCP(K), i.e., the Objective

function Of the previous iteration. Thus, by minimizing the upper bound in (4.14)

with respect to a, we are guaranteed to have EBCP(K’) 3 .CB0}) (K), thus reducing

the objective function at successive iterations.

As suggested by the inequality in (4.14), to effectively reduce the Objective func-

tion LBCP, we need to maximize the term tr(TAT). We further assume that the

incremental kernel matrix A can be approximated by a linear projection of the input.

data X, i.e.,

A rs (PTX)T(PTX) = XTPPTX

where P = (p1,p2, . . . ,ps) is the projection matrix (.9 S d) with each Pi 6 Rd

specifying a different projection direction. Using the above expression, tr(TAT) can

be written as

tr(TAT) a: tr(PTXTXTP) (4.15)

If we enforce orthogonality between any two projection vectors, i.e., pgrpj = (5 (2', j ),

the optimal solution for p,- that maximizes the expression in (4.15) is the i-th max-

imum eigenvector of matrix XTXT. Let {(Ai,vi)}f:1 denote the top 3 principal

eigenvalues and eigenvectors Of matrix XTXT. Then, the optimal projection matrix

P is constructed as

P = (\/A1V1,\/A2V2,..., ASVS) (4.16)

Using the projection computed in (4.16), we generate a new data representation

as X’ = PTX. This new representation X’ will be input to the clustering algorithm
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Input

0 X: matrix for the input data

0 A: the given clustering algorithm

0 s: the number Of principal eigenvectors used for projection

0 S+: matrix for must-link pairs

0 8‘: matrix for mustnot-link pairs

Output: cluster memberships

Algorithm

0 Initialize KiJ = 0 for any i,j : 1,2,. . . ,n.

o F0rt=1,2,...,T

- Compute p1,]- and (1M using (4.10) and (4.11).

— Compute matrix T using (4.15) for BCP and using (4.23) for BCS.

- Compute the top .3 eigenvectors and eigenvalues {0‘2" Vi) 25:1 of T.

— Construct the projection matrix P using (4.16), and generate the new

data representation X’ by projecting the input data X onto P.

— Run the clustering algorithm A using the new data representation X'.

Compute the matrix A with Am- = 1 when x,- and xj are grouped

into the same cluster by A, and zero otherwise.

— Compute (1 using (4.18) for BCP and using (4.24) for BCS.

— Update the kernel similarity matrix K as

K + (1A —+ K

0 Run the clustering algorithm A with the kernel matrix K (if A does not take

a kernel similarity matrix as input, a data representation can be generated

by the first 8 + 1 eigenvectors of the matrix K).   
Figure 4.3. Boosting algorithm for BCP and BCS

A to generate new cluster memberships. The resulting cluster memberships are then

used to compute the incremental kernel matrix A.

In addition to the projection matrix P, another important question is how to

compute the Optimal oz. We can estimate the optimal a by minimizing the upper

bound in (4.14), which leads to (I = log[1 + tr(TAT)]/6. However, we can further

improve the estimation Of a by minimizing the original Objective function in (4.6),
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which is

n

CBCP(K’) : Sit-j (“Pf—Kid) Z SIT]. exp(KiJ)

23:1 i,j=1

n n

E p?" exp(—OAM) 2: (17:3. exp(aAiJ)

' i,j=1

II

N
.

.

a
, [
L

i
.

Tl 77.

Z I)zt,j5(Az',j,0) + Z Pi,j5(At,j,1)0XP(-a)

i,j=1 i,j=1

n n

x Z q,,,-5(A,,j,0) + Z q,,J-5(A,,j,1)exp(a) (4.17)

i,j=1 i,j=l

It is not difficult to show that the optimal a that maximizes the above expression is:

a 11 g ZEjzlmgflAiJJ) X EiszlquAiJfi) (418)
= — O ~ _

2j=1pi,j6(Ai,j,0) ZZj=1Qi,j0(Ai,j,1)

 
 

2

Figure 4.3 summarizes the proposed BCP (and BCS) algorithm.

DISCUSSIONS ON EFFICIENCY AND SCALABILITY

Similar to most boosting algorithms, we can show that the objective function of the

proposed BCP algorithm is reduced exponentially, as shown by the following theorem.

Theorem 1 Let A1, A2, . . . , AT be the incremental kernel matrices computed from

the clustering results by running the boosting algorithm (in Figure 4.3). Then, the

objective function after T iterations, i.e., £¥CP, is bounded as follows:

 

n n T

BCP + _

‘CT S 2 Si,j 2: Sin]. HO - 7t), (4-19)

i,j=1 i,j=1 t=1

where

W (m- vBiCt)2

(At + Btlfct + Dt)
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Change in BoostCluster Objective Function

12-

  10.8 I l .L

O 10 20 3O 4O 50

#Iterations

Figure 4.4. An example of BCP Objective function vs. number Of iterations.

At, Bt, Ct, and Dt are non-negative constants, and are computed as

TL it

At: 2 p§,j5(AE,J-.0), Bi = Z adored-,1)

i,j=l i,j=1

TI. 77.

_ t t _ t t

Ct — Z qi,j”(Ai,j’0l’ Dt — Z gaff/Air”

z'.j=1 i.j=1

where ij and qgj are computed according to (4.10) and (4.11} using the kernel

matrix K at the t-th iteration.

The above theorem can be proved directly by using the expression in (4.17) and

the expression for a in (4.18). Figure 4.4 shows the change in the BOP algorithm’s

Objective function Observed in one of our experiments. As can be seen, the Objective

function converges very fast, and becomes very flat after around 22 iterations. In our

experiments, our BCP algorithm usually converges within 25 iterations.

In terms Of analyzing the scalability Of the BCP algorithm, it is easy to find that

the most crucial step is finding the projection matrix P since it seems to involve a
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huge amount of computation cost. As in (4.15), we need to compute XTXT, which

seems to be computationally expensive, especially when the number of examples (i.e.,

n) is large. However, it is important XTXT only involves the examples used in the

pairwise constraints. This is because XTXT can also be written as:

n

XTXT = Z Tia-xix;— (4.20)

i,j =1

Since Ti,j is nonzero only when the example pair (xi, xj) are used by the constraint,

the above calculation only involves a very small portion of the entire example pairs.

Thus, XTXT can be computed efficiently as long as the number of labeled pairs is

relatively small.

After XTXT is computed, the computational cost in constructing the projection

matrix P mainly arises from computing the principal eigenvectors and eigenvalues

of XTXT, particularly when the dimensionality of the feature space is high. For

instance, for text categorization, each document is represented by a vector of over

100,000 word features, and the size Of matrix XTXT is over 100, 000 x 100,000. A

straightforward approach is to reduce the dimensionality before running the proposed

algorithm. However, most dimensionality reduction algorithms that are capable of

handling high dimensional space are unsupervised, and therefore are unable to exploit

the pairwise constraints. Here, we propose an algorithm that is able to efficiently com-

pute the eigenvectors Of XTXT when the input dimensionality is high. We first. realize

that each eigenvector of XTXT has to lie in the space that is spanned by the exam-

ples used by the constraints. More specifically, we denote by X = (5:1, 5:2, . . . ,sem)

the subset of m examples that are involved in the constraints. Then, the eigenvector

v,- can be written as a linear combination Of {59};er i.e.,

m

v,- = 2 mike), = Xwi (4.21)

kzl

More generally, we have

at

V = (v1,v2...,v3) =X(w1,w2,...,w3) =XW.
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The proof of this result can be found in Appendix A.1. We "furthermore denote by

T the pairwise constraints, where T,- j gives the pairwise constraint between x,- and
7

59. Then, wi,i = 1,2,. . .,s correspond to the first 3 principal eigenvectors of the

following generalized eigenvector problem

xTXTxwa, = A,xwa, (4.22)

Note that since XTXTXTX and XTX are matrices of m x m, the cost. Of computing

the eigenvectors is independent Of the dimensionality Of the input space. The proof

of the above result can be found in Appendix A.2.

THE BCS ALGORITHM

The derivation of the BCS algorithm is very similar to the BCP algorithm. First, we

compute the BCS Objective function for K’ = K + aA as follows:

n

B I ’ —£ CS(K) = Z 5:]- CXp(—Ki,j) ‘l‘ CSi,j eXP(Ki,j)

i,j=1

n

= Z mama-01AM)+qu,jexp(aAiJ)
i,j=1

Using the Jensen’s inequality, we have

Alaj +1 1 1— Atj

exp(—aAz-J) = exp —3a——3-—— + 303 + 0——3——

  

A' '+ 1 1 1 _ A- .

S —ZL3—— exp(—3a) + S exp(3a) + ——3—2’1

_ 1 + exp(3a) + exp(—30) A 1 — exp(—3O.)

“ 3 '- 133' 3

Similarly, the upper bound for exp(aAi‘j) is the following expression

  

1 + exp(3a) + exp(—3a) + A 1 — exp(—3(1)

eXp(aAi,j) S 3 i,j 3

Using the above inequalities, the BCS Objective function LBCS(K’ ) is upper bounded

by the following expression:
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LBCS(K’) S 1+ exp(3a-)3+ exp(-3a)£BCS(K) _ 1— ex[)(_3a)tr(T3AT)
  

where T; is defined

lTSli.j = pi,j—C(Ii’j (4.23)

Note that the above definition is similar to T in (4.15). The key difference is that pm-

and qz-J- are normalized in (4.15) while they are not in the above expression. Similar

to the BCP algorithm, we compute the top 3 principal eigenvectors of Ts to construct

the projection matrix, and the projected input data is sent to the algorithm A for

clustering. Furthermore, the Optimal oz for BCS is computed as

a _ 110g sz:1p2,j6(Ai,j71)

gCZij_1qZ,j6(Az,j71)

Figure 4.3 summarizes the BCS algorithm. Finally, we can show that the Objective

 (4.24)

function of BCS decreases exponentially, i.e.,

Theorem 2 Let A1, A2, . . . ,AT be the kernel matrices computed from the clustering

results by running the boosting algorithm (in Figure 4.3) Then, the objective function

BCS
ET

after T iterations, i.e., , is bounded as follows:

T

4:305 3 2 3+ +cSi-JH((1—7t), (4.25)

Z,j=1t1:

where

,3 = («BE—«DD?

t At+Bt+Ct+Dt

 

At, Bt, Ct, and Dt are already defined in Theorem I.

4.4 Experiments

We now present an empirical evaluation of our proposed boosting framework. In

particular, we aim to address the following four questions in our study:
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1. As a general boosting framework, is the proposed method able to improve the

performance for any given clustering algorithm?

2. How efiective is the proposed boosting framework in improving the clustering

performance by using the pairwise constraints?

3. How robust is the proposed boosting framework in improving the clustering per-

formance by using the pairwise constraints?

4. How does the BCP algorithm compare to BCS algorithm in the proposed boosting

framework?

4.4.1 Experiment Setup

To validate the claim that the proposed boosting algorithm is capable of improving

any clustering algorithm by exploiting the pairwise constraints, three typical cluster-

ing algorithms are used in our study. They are:

1. K—means algorithm [5]. It represents the family of clustering algorithms that try

to find compact and well-separated clusters. We adopted the implementation

from the Weka software2.

2. Partitional SingleLink algorithm (“SLINK” for short) [80]. It represents the

family Of the hierarchical clustering algorithms. We adopted the implementation

from the CLUTO software3

3. k—way spectral clustering (“SPEC” for short). It represents the family of spec-

tral methods for data clustering. In particular, we follow the paper [115] for the

implementation of spectral clustering.

 

2http://www.cs.waikato.ac.nz/ml/weka/

3http://glaros.dtc.umn.edu/gkhome/views/cluto
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Name #Attributes #Clusters #Examples

wdbc 30 2 569

scale 4 3 625

vowel 10 1 1 990

segmentation 19 7 2310

handwrittiendigit 256 10 4000

pendigit 16 4 4396      
Table 4.2. Datasets used in the experiments.

Six datasets drawn from the UCI machine learning repository [50] are used in our

study. Table 4.2 summarizes the information about these datasets4. As indicated

in Table 4.2, these datasets vary significantly in their sizes, number of clusters, and

number of attributes.

To evaluate the clustering performance, two measurements are used in our exper-

iments. The first measurement is normalized mutual information (NMI for short)

[15], which is defined as

2MI(X, X0)

H(X) + H(X0)

 NMI

where X0 and X denote the random variables of cluster memberships from the ground

truth and the output of clustering algorithm, respectively. MI(:r, 3]) represents the

mutual information between random variables x and y, and H(51‘) represents the

Shannon entropy of random variable x. The second measurement is Pairwise F-

measure (PWF1 for short), which is the harmonic mean of pairwise precision and

recall that are defined as follows

#pairs correctly placed in the same cluster
 

 

 

preczszon _ Total #pairs placed in the same cluster

ll #pairs correctly placed in the same cluster

reca Total #pairs actually in the same cluster

PWF1 _ 2 x precision x recall

precision + recall

 

4Note that for the “pendigit” dataset, examples in only four classes of letter “3”, “6”, “8” and “9”

are selected from a total of 10 classes because these four letters are in general difficult to distinguish.
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The PWF1 measurement defined above is closely related to the metric defined in [155]

that measures the percentage of data pairs correctly clustered together. The key

problem with the metric defined in [155] is that it. counts two types of data pairs, i.e.,

pairs of data points assigned to the same cluster and pairs of data points assigned

to different clusters, with equal importance. This is problematic because most of

the data pairs will consist of data points from different, clusters when the number of

clusters is large. A similar issue was raised in multi-class learning, and that. is why

F-measure is widely used for evaluating multi-class learning [161].

To verify the efficacy of the proposed boosting framework in exploiting the pairwise

constraints for data clustering, three baseline approaches are used:

1. Metric Pairwise Constraints K—means (MPCKmeans for short) algorithm [?,

12], which is a probabilistic framework based on Hidden Markov Random Fields.

2. Semi-supervised Kernel K—means (SSKK for short) algorithm [96], which ex-

ploits the pairwise constraints by a kernel approach and finds clusters with

nonlinear boundaries in the input data space.

3. Spectral Learning (SpectraJLearn for short) algorithm [89], which applies spec-

tral methods to learn a data representation from the pairwise constraints. The

generated data representation can therefore be used by any clustering algorithm

to identify the appropriate data clusters. The key difference between spectral

learning and our algorithm is that our algorithm generates algorithm specific

data representations by taking into account the performance of clustering algo-

rithms.

Previous studies [15, 12, 96, 89] showed that the above three algorithms deliver the

state-of-the—art performance in comparison to other semi-supervised clustering algo-

rithms such as the constrained K-means.
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+BoostCluster + K—means

+BoostCluster + SLINK

+BoostCluster + SPEC

"0"MCPKmeans

“HOH'SSKK

-£I-'SpectralLearn + K-means

-*--Spectra1Learn + SLINK

-A-'SpectralLearn + SPEC   
Figure 4.5. Legends for all algorithms in our comparative study. These legends will be

used in all the figures in this paper.

In summary, we will compare the following semi-supervised clustering algorithms

in the experiments: the three clustering algorithms (K-means, SLINK, and SPEC)

being boosted by the proposed BoostCluster framework; the same three clustering

algorithms with input from the Spectral Learning algorithm; the MPCKmeans al-

gorithm; and the SSKK algorithm. For easy identification in figures, we listed the

legends for the above algorithms to be compared, in Figure 4.5. These legends apply

to all following performance comparison figures (we will omit showing legends in those

figures due to space constraints).

Finally, in all the experiments, we vary the number of pairwise constraints from 0

to 800. Since a random sampling of data pairs tends to find many more cannot-link

pairs than the must-link pairs, in this study, we enforce an equal number of constraints

for both must-link pairs and cannot-link pairs. The numbers of eigenvectors (i.e., the

parameter s in the boosting algorithm shown in Figure 4.3) are determined empirically

as follows: 3 for the “scale” dataset, 10 for the “handwrittendigit” dataset and 5 for

the remaining 4 datasets. All the experiments in this study are repeated five times,

and the evaluation results averaged over the five trials are reported.
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4.4.2 Generality of the Boosting Framework

Figures 4.6 - 4.9 show the clustering performance, evaluated by NMI and PWF1

respectively, of the BCP algorithm of BoostCluster framework using the three clus-

tering algorithms (i.e., K-means, partitional SingleLink, and spectral clustering), the

same three clustering algorithms with input as the new data representation from the

Spectral Learning algorithm, the MPCKmeans algorithm, and the SSKK algorithm.

1. We observe that for most datasets, the BoostCluster framework is able to im-

prove the clustering performance for all the three clustering algorithms regard—

less of which evaluation metric is used. This suggests that the proposed frame—

work is effective in exploiting the pairwise constraints to improve clustering

performance. MPCKmeans algorithm and SSKK algorithm are also effective in

general, however, their clustering performance improvements are less significant,

especially for larger datasets (such as “handwrittendigit” and “pendigit”).

2. Although SpectralLearn algorithm can also be combined with any clustering al-

gorithm, in our experiments, it does not always improve the clustering algorithm

performance. For example, for “wdbc” and “handwrittendigit”, increasing the

number of pairwise constraints deteriorates clustering performance by combin-

ing SpectralLearn with any of the three clustering algorithms. Moreover, the

effect of SpectralLearning depends on the clustering algorithm. For example,

for the “pendigit” dataset, SpectralLearn improves the clustering performance

of K-means and SLINK, but degrades SPEC in general. In comparison, the

clustering performance improvement brought by the proposed BoostCluster is

substantially more stable and consistent, across different datasets and different

clustering algorithms. This can be attributed to the fact that BoostCluster is

adaptive to both clustering algorithms and datasets: in each iteration, it takes

the feedback from the result of applying the given clustering algorithm to the
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particular dataset, and decides how to adjust the kernel matrix. However, Spec-

tralLearn generates new data representations independent from the clustering

algorithm that is used.

‘. The performance of the three clustering algorithms (K-means, SLINK, and

SPEC) varies significantly across the six different datasets. For instance, for

the “vowel” dataset, “BoostCluster+K-means” algorithm performs consider-

ably worse than “BoostCluster+SPEC” algorithm. However, the performance

of “BoostCluster+K-means” algorithm for the “pendigit” dataset, is signifi-

cantly better than that of “BoostCluster+SPEC” algorithm. This result also

indicates that every clustering algorithm has its own strength, and therefore it is

important to develop a general framework that is able to boost the performance

of any clustering algorithm by the given pairwise constraints.

. The results based on the two different evaluation metrics, namely NMI

and PWF1, are inconsistent on some occasions. For instance, for the

“handwrittingdigit” dataset, according to NMI, the clustering performance of

“BoostCluster+K-means” and “BoostCluster+SLINK” appears to be similar.

However, according to PWF1, “BoostCluster+SLINK” performs noticeably bet-

ter than “BoostCluster+K-means”. The implication of this finding is the impor-

tance of evaluating clustering performance by more than one evaluation metric,

since conclusions based on the results of a single evaluation metric could be

biased.

4.4.3 Robustness of Exploiting Pairwise Constraints

Although the curves in Figure 4.6 - Figure 4.9 all display different degrees of “bumpi-

ness”, generally speaking, BoostCluster framework, SSKK and MPCKmeans deliver

a more robust performance than SpectralLearn algorithm. On the other hand, al-

though for most datasets, the performance curves of SSKK appear to be the most
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NMI (wdbc dataset)
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Figure 4.6. Clustering performance evaluated by NMI (Part A). Each graph shows the

performance of the three clustering algorithms (K-means, parititional SLINK, spectral clus-

tering) boosted by the proposed BCP algorithm, and the performance of the MPCKmeans,

SSKK and SpectralLearn algorithms.
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Figure 4.7. Clustering performance evaluated by NMI (Part B). Each graph shows the

performance of the three clustering algorithms (K—means, parititional SLINK, spectral clus-

tering) boosted by the proposed BCP algorithm, and the performance of the MPCKmeans,

SSKK and SpectralLearn algorithms.
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PWF1 (wdbc dataset)
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Figure 4.8. Clustering performance evaluated by PWF1 (Part A). Each graph shows the

performance of the three clustering algorithms (K—means, partitional SLINK, spectral clus-

tering) boosted by the proposed BCP algorithm, and the performance of the MPCKmeans,

SSKK and SpectralLearn algorithms.
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Figure 4.9. Clustering performance evaluated by PWF1 (Part B). Each graph shows the

performance of the three clustering algorithms (K-means, partitional SLINK, spectral clus-

tering) boosted by the proposed BCP algorithm, and the performance of the MPCKmeans,

SSKK and SpectralLearn algorithms.

107



smooth among all the competitors, the resultant improvement is almost always the

least noticeable among all the semi—supervised clustering algorithms.

To further evaluate the robustness of all the algorithms, we conduct experiments

with noisy pairwise constraints. We randomly select 20% of the pairwise constraints

and flip their labels (i.e., a must—link pair becomes a cannot-link pair and vice versa).

This setting reflects the scenario when the side information includes incorrect pairwise

constraints. It could happen when for instance, the pairwise constraints are derived

from the implicit user feedback (e.g., user ratings or click-through data). Thus, it is

important to develop semi-supervised clustering algorithms that are resilient to the

noisy side information.

Figure 4.10 and Figure 4.11 show the performance of all the algorithms, on three

selected datasets (i.e., “scale”, “vowel”, and “pendigit”) when 20% of the pairwise

constraints are noisy. First, by comparing Figure 4.10 - Figure 4.11 with Figures 4.6 -

Figure 4.9, it is not surprising to observe a degradation in clustering performance when

20% of the pairwise constraints are noisy. Second, we observe a general trend that a

larger number of noisy constraints tend to result in an inferior clustering performance

by MPCKmeans. This is in contrast to the results of MPCKmeans shown in Figure 4.6

— Figure 4.9 where increasing the number of pairwise constraints usually improves the

performance of clustering. This result implies that the MPCKmeans algorithm is

unable to effectively exploit the pairwise constraints for data clustering when they

are noisy. Similarly, while “SpectralLearn+K—means” and “SpectralLearn+SLINK”

are able to noticeably improve the clustering performance with increasing number of

noise-free pairwise constraints, with 20% noise in the constraints, their performance

degrades with the increasing number of constraints. In comparison, as shown in Fig—

ure 4.10 and Figure 4.11, BoostCluster framework is generally able to improve the

performance of all the three clustering algorithms with increasing number of noisy

pairwise constraints, and SSKK algorithm is also able to improve clustering perfor-
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K-means (BCP) K-means (BCS)

DATASETS NlVIf PWF1 NMI PWF1

wdbc 0.5862 0.8502 0.6360 0.8221

scale 0.3040 0.5520 0.3450 0.5645

vowel 0.2723 0.2069 0.3317 0.2565

segmentation 0.6315 0.5843 0.6013 0.5544

handwrittendigit 0.5720 0.5664 0.5435 0.5359

pendigit 0.7448 0.8140 0.7261 0. 8166

SLINK (BCP) SLINK (BCS)I

DATASETS NMI PWF1 NMI PWF1

wdbc 0.7438 0.9248 0.7971 0.9440

scale 0.5399 0.8091 0.5015 0.7839

vowel 0.2982 0.2302 0.3044 0.2599

segmentation 0.6164 0.5740 0.5765 0.5421

handwrittendigit 0.5451 0.6328 0.5300 0.5579

pendigit 0.7833 0.8654 0.7713 0.8573

SPEC (BCP) SPECLBCS)

DATASETS NMl PWF1 NMI PWFT

wdbc 0.7073 0.9038 0.6749 0.8964

scale 0.4792 0.6021 0.3818 0.6099

vowel 0.3431 0.2606 0.3417 0.2649

segmentation 0.6004 0.5559 0.5754 0.5768

handwrittendigit 0.4764 0.4306 0.4579 0.4417

pendigit 0.5912 0.6325 0.8056 0.8745  
 

 
Table 4.3. The performance comparison between the BCP algorithm and the BCS algo-

rithm, when the number of pairwise constraints is 500.

mance despite the noise in pairwise constraints. This indicates that the proposed

BoostCluster framework and the SSKK algorithm are more resilient to the noise in

the side information.

4.4.4 BCP vs. BCS

We compare the clustering performance of the BCP algorithm and the BCS algorithm

in Table 4.3 that is evaluated in both NMI and PWF1. Due to the space limitation,

we only list the evaluation results for 500 pairwise constraints. We set c = 1 in the

objective function (4.7) of the BCS algorithm.

As indicated in Table 4.3, in general the BCP and BCS algorithms deliver similar

performance, which suggests that both algorithms are effective in boosting the per—

formance of the underlying clustering algorithms. BCP is more effective than BCS for

certain datasets and clustering algorithms, and vice versa. However, it is important
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Figure 4.10. Clustering performance (NMI) with 20% noise in the pairwise constraints.

Each graph shows the performance of the three clustering algorithms (K-means, pariti—

tional SLINK, spectral clustering) boosted by the proposed BCP algorithm of BoostCluster

framework, and the performance of the MPCKmeans, SSKK and SpectralLearn algorithms.
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PWF1 (scale dataset, 20% noise)
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Figure 4.11. Clustering performance (PWF1) with 20% noise in the pairwise constraints.

Each graph shows the performance of the three clustering algorithms (K-means, pariti-

tional SLINK, spectral clustering) boosted by the proposed BCP algorithm of BoostCluster

framework, and the performance of the MPCKmeans, SSKK and SpectralLearn algorithms.
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to note that compared to BCP, BCS has an additional parameter c that can be used

to tune the boosting algorithm. Our empirical experience indicates that changing the

parameter c can lead to significant difference in the clustering performance. It would

be useful to investigate the pros and cons of the BCP and BCS algorithms, and how

to choose the parameter c in the BCS objective function wisely.

4.5 Summary

In this chapter, we have studied the problem of improving data clustering by using side

information in the form of pairwise constraints. A general boosting framework has

been proposed to improve the accuracy of any given clustering algorithm with a given

set of pairwise constraints. Such performance improvement is achieved by iteratively

finding new data representations that are consistent with both the clustering results

from previous iterations and the pairwise constraints. Empirical study shows that

our proposed boosting framework is able to improve the clustering performance of

several popular clustering algorithms by using the pairwise constraints.
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CHAPTER 5

Semi-supervised Learning for Query

Translation Disambiguation in

Dictionary-based Cross Language

Information Retrieval

5.1 Introduction

To bridge the gap between different languages, machine translation has been used

extensively in many research areas of multilingual information processing, such as

cross-language information retrieval (CLIR). In CLIR, we can either translate queries

into the language of documents or translate documents into the language of queries.

Usually, it is simpler and more efficient to translate queries because of their shorter

length. Most query translation algorithms require external linguistic resources, among

which parallel corpora and bilingual dictionaries are the most commonly used. Meth-

ods based on parallel corpora usually learn the association between words of the

source language and words of the target language, and apply the learned association

to estimate the translation of queries. Examples in this category include statistical

translation models [157, 53, 116, 94], and relevance language models [93, 101, 100].

The main drawback of these methods is that they depend critically on the availability
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of parallel bilingual corpora, which are often difficult to acquire, especially for minor

languages.

While the problem of machine learning for language translation remains tough

(either theoretically or practically), undoubtedly, bilingual dictionaries can be viewed

as side information for various multi-lingual tasks. Typically, a bilingual dictionary

provides a repository of translation pairs, usually organized in a manner that each

word (or phrase) in one language is supplied with a list of possible translation words

(or phrases) in another language. These translation pairs, to some extent, helps to

bridge (or narrow) the gap between languages. With the increasing availability of

machine readable bilingual dictionaries, dictionary-based approaches becomes more

preferable for CLIR applications, especially when other linguistic resources are scarce.

Compared to the approaches based on parallel corpora, a major disadvantage of

the bilingual dictionary based approaches is that they lack the ability in disambiguat-

ing the translation of query terms among multiple candidates. Very often, a number

of translations (which we call translation candidates in this chapter) are found in a

bilingual dictionary for a single query word, but most of them are irrelevant to the

semantic meaning of the query. Hence, it is crucial for a dictionary-based approach

to reduce the ambiguity in translating query words as much as possible. However in

CLIR, given the short length of a query, it is usually impossible to completely resolve

the translation ambiguity due to the multiple interpretation of the query. Thus, it is

also important for any dictionary-based CLIR approach to maintain the uncertainty

in translating queries when the ambiguity is hard to resolve.

In the past, several approaches [81, 57, 58, 1, 95] have been proposed to resolve the

query translation ambiguity in dictionary-based CLIR. The simplest one is to use all

the translation candidates of each query word provided by the dictionary with equal

weights [46, 95]. This amounts to no sense disambiguation when translating query

words. Other approaches try to resolve the translation ambiguity by measuring the
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coherence of a translation candidate to the entire query. Typically, the coherence score

of a translation candidate is computed using word co—occurrence statistics. Given a

query, a translation candidate of a query word is assigned with a high coherence

score when it co—occurs frequently with the translations of other query words. The

translation candidates with the highest coherence scores are selected to form the fi-

nal translation for the original query. In [46, 76, 2, 93, 95, 57], only one translation

candidate is selected for each query word; in [81, 109], a translation candidate is se—

lected when its coherence score exceeds a predefined threshold, which allows multiple

translations to be selected for each query word. We will refer to both approaches men-

tioned above as selection-based approaches, because they all have to make a binary

decision for each translation candidate regarding if it will be included in the trans-

lated query or not. Given the usually short length of queries and the large variance

existed in mapping information across different languages, such binary decisions are

usually difficult, if not impossible, to make. We call this problem the “translation

uncertainty problem”. Another problem with the selection-based approaches is

that the translation of one query word is usually determined independently from the

translations of others. This assumption is reflected in the calculation of coherence

scores. Usually, the coherence score of a translation candidate to a given query is

computed as the sum of its similarities to every translation candidate for other query

words. As a result, coherence scores are estimated independently from the choice of

translations for query words, which leads the selection of translation candidates for

different query words to be independent. We call this problem “translation in-

dependence assumption”. Although this problem has been addressed in previous

work (e. g., [57]), usually greedy approaches are applied and therefore only suboptimal

solutions can be obtained.

In this chapter, we propose a novel statistical framework for dictionary-based

CLIR. This framework will allow us to estimate the translation probabilities of query



words by maximizing the overall coherence of the translated query, which we call

“maximum coherence principle”. Particularly, the proposed framework explic-

itly addresses the two problems mentioned above: to resolve the translation uncer—

tainty problem, the proposed framework maintains the uncertainty in translating

queries through the estimation of translation probabilities of query words; to remove

the translation independence assumption, the proposed framework allows the transla-

tion probabilities of all query words to be estimated simultaneously. Furthermore, the

proposed framework is formulated as a quadratic programming problem [62], whose

global optimal solution can be found efficiently using standard optimization packages

such as Matlab. This is in contrast to several existing approaches such as the propa-

gation approach in [114], where the solution is determined by an iterative procedure,

which is not only time consuming but also sensitive to the initialization of parameters

or the stop criterion employed in the iterative procedure.

In addition to the general framework, we also present in this chapter two realiza-

tions of the proposed framework that employ different coherence measurements: the

“Maximum Coherence Model” that adopts the raw word-to-word similarity for

coherence measurement, and the “Spectral Query Translation Model” that mea-

sures the coherence score of each translation candidate based on the normalized word

similarity. As will be explained later, the Spectral Query Translation Model based

on the normalized similarity measurement, can be further explained as a graph parti-

tioning approach for query translation disambiguation, which is employed in spectral

clustering. Our empirical studies with TREC datasets have shown that both models

outperform the selection-based approaches with relative improvements ranging from

10% to 50%.
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5.2 Related Work

We first review the previous work in the selection-based approaches for query transla-

tion disambiguation, followed by the discussion of spectral clustering that is strongly

related to the proposed Spectral Query Translation l\-‘Iodel.

5.2.1 Selection-based Approaches for Query Translation Disambiguation

One of the major factors that can potentially degrade the effectiveness of dictionary-

based cross—language information retrieval is the ambiguity in translating query words

[8, 57]. In the efforts to resolve this translation ambiguity, a number of recent studies

[46, 76, 81, 2, 93, 109, 57, 95] have suggested the strategy of translation selection by

exploiting word co—occurrence patterns. Usually a similarity measurement between

two translation candidates is defined in the form of word co—occurrence statistics.

With the word similarities, we can then measure the coherence of a translation candi-

date with regard to the theme of the entire query. Only those translation candidates

with high coherence scores will be selected for the query translation.

Ideally, for each query word we should select the translation candidate(s)

that is consistent with the selected translation candidates for other query words.

Apparently, this becomes a “chicken-egg” problem since the selection of translation

candidates for one query word is determined by the translation candidates selected

for other query words. Thus, due to the computational concern, most selection-based

approaches [1, 57, 58] adopted approximate approaches that usually only produce

suboptimal solutions. In particular, for each query word, those approaches choose

the translation candidates that are consistent with all the translation candidates

provided by the dictionary for all the query words, including both the selected and

the unselected translation candidates. Formally, a translation selection strategy can

be formulated as follows:
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APPROXIMATE TRANSLATION SELECTION ALGORITHM
 

1. Given a query q8 = {qi (13, - ~ ,qfns} in the source language , for each query

word (1?, look up the dictionary for the translation candidate set S,- = {wa j}

2. For each set S,-

a For each translation candidate wf . in S -, define the similarit measure—
i y

2,]

ment between the word 11):]. and the set SI/(i’ aé i) as the sum of the
)

similarities between wf j and each word in the set Si” i.e.,

sim(w£IJ-, 52.)) = Z sim(wsz]-, wf, l) (5.1)

v r’: 68.
u2,,l 2’

where sim(wzt- j’ wzi, l) computes the word-to—word similarity.

(b) Compute the coherence score for wzt. j as

t _ ,- t
f(wi,j) — Z sam(w,-Ij, Si’) (5.2)

Viiyéi

(c) Select the word q; in S,- with the highest coherence score

t _ , , t
q,- — aIgmtax f(wi,j) (5.3)

w. .

3,]

The definition of similarity between two words in the above algorithm can take

various forms of co—occurrence statistics, such as Dice similarity (as in [1]), mutual

information (as in [81, 109]) or its variants (as in [57, 58]). In addition to selecting the

most likely translation for each query word, other selection-based approaches have

been tried, such as selecting the best N translations [46] or selecting translations

whose coherence scores exceed a predefined threshold [81, 109].

Apparently the above approximate algorithm is not ideal. In particular, the coher-

ence score for a translation is computed with regard to both selected and unselected

translations. As a result of such an approximation, translation of different query
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words are determined independently, which leads to the translation independence

problem as discussed in the introduction section. III the proposed statistical frame-

work, by formulating the problem of translation selection in a quadratic programming

form, we are able to efficiently estimate the translations of all query words simultane-

ously. Furthermore, in contrast to the selection-based approaches that make binary

decision for each translation candidate, the new framework employs soft probabilities

for representing both selected and unselected translation candidates. This is particu-

larly useful when binary decisions are hard to make, for instance, all the translation

candidates of a query word have very similar coherence scores.

5.2.2 Spectral Clustering

Spectral clustering approaches view the problem of data clustering as a problem of

graph partitioning. Each data point corresponds to a vertex in a graph. Any two

data points are connected by an edge whose weight is the similarity between the two

data points. To form data clusters, the graph is partitioned into multiple disjoint sets

such that only the edges with small weights are removed. Based on different criteria

imposed on the partitioning, there are three major variants for spectral clustering:

Ratio Cut [38], Normalized Cut [134] and Min-Max Cut [49]. In the following, we

briefly recapitulate the 2-way Normalized Cut algorithm since it is the most widely

used spectral clustering algorithm and has the closest relation to our proposed work.

Let G'(V,E;W) denote an undirected graph, where V is the vertex set, E is

the edge set, and W = (wi,j)n><n is a matrix with win 2 0 denoting the edge

weight between the i-th and the j-th vertex. Define D = diag(d1, d2, - - - ,dn), where

d,- = ZjEV win. To partition the vertex set into two disjoint sets A and B, a 2-way

Normalized Cut algorithm minimizes the following objective function:

_ S(A,B) S(A,B)

J _ (M + dB (5.4) 

where we define S(A,B) = ZiEA ZjEBwiJ as the cut value, dA = ZiEA di and
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dB = 27:6B d, as normalizing factors that. balance the size of the. two clusters. The

above objective function can be rewritten as

(lA-f-(lB ((lA+(lB)2

J= 2: Se =2 Zw < .‘i,j 1,]

iEAjEB dAdB iEAjEB d4dB (dA+dB)

 

C
"
!

C
}
!

v

If we introduce a cluster indicator vector q, with each element q, defined as

 

\/dB/ldA(dA+dB)l lfi E A

\/dA/ldB(dA + 6113)] ifi E B

 

the objective function becomes

2
J = Z (qr-(13') we)“

i,jeV

2 2
= Z ((12- +€Ij — QQIinlwiy

z‘,jeV

2
= :29i(zwi,j)— Z quqJ-u’m

iEV jeV z',jeV

2

= QZqidi—Q Z qiquiu’
iEV i,jeV

= 2qT(D—W)q (5.7)

Note that the minimizer to the above normalized cut value J is a binary vector q,

with each element ‘17; indicating the cluster membership of a vertex. Given its combi-

natorial nature, it is difficult to solve the optimization problem efficiently (NP hard).

However, if we relax the cluster memberships to real values under the constraints

qTDq = 1 (5.8)

qTDe = 0 (where e = [1, - -- ,1]T) (5.9)

the Normalized Cut algorithm can be formulated as follows:

minq qT(D — W)q (5.10)

s.t. qTDq = 1, qTDe = 0
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Furthermore, if we define a = DQq, we reach the following equivalent Optimization

problem

. ~T
1111qu q (I —D

s.t. a

Note the above problem is in the form of Rayleigh quotient, and its solution can be

found by solving the following eigenvalue system [65]

1 1

(I—D—QWD—?)q = is (5.12)

5.3 The Statistical Framework For Dictionary-based CLIR

The essential idea of the framework is to learn a set of translation probabilities for

query words from the word co—occurrence statistics that maximizes the overall co—

herence of the translated query. In the following subsections, we will describe the

components of the general statistical framework for dictionary-based cross-language

information retrieval, including uncertainty modeling, the retrieval model, translation

probabilities learning and the solution to the related optimization problem, followed

by a summary that sketches the steps of applying the proposed framework to CLIR.

5.3.1 Notation

The term “source language” and a superscript s are used when referring to the

language of queries. Similarly, the term “target language” and a superscript t are

for the language of documents. Let a query of the source language be denoted by

qs = {wiwi - -- ,wfns}, where m3 is the number of distinct words in qs. Let rk

denote the set of translation candidates provided by the dictionary for a word w]: in

the source language. The union of translation candidate sets for all the words in qs is

s

then denoted by R = U221 rk. The total number of distinct translation candidates
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for query qs, i.e., the size of R, is denoted by mt . A matrix T = [tkIj] t repre-
ms x m.

sents the part of the bilingual dictionary related to query qs. Each element tk.j in T

is 1 if the j-th word in the target language appears in the dictionary as a translation

for the k-th word in the source language, and 0 otherwise.

5.3.2 Modeling the Uncertainty in Query Translation

To address the problem of translation uncertainty, we build the statistical framework

by introducing translation probabilities. For a given query word, instead of making

binary decision for its translation candidates, we estimate the probability of translating

the query word into each translation candidate. More importantly, the translation

probabilities are estimated under the context of the entire query, namely a translation

candidate will be assigned large probability mass if it is coherent with the semantic

meaning of the entire query and vice versa.

Let kaj denote the probability of translating a word w: of the source language

into a word wj of the target language, given the context of query qs. It is defined as

Pk,j = Pr(w§-lw;2, qs) (5.13)

In order to be consistent with the dictionary T, we assume that translation probability

kaj = 0 if the word w;- does not appear in the dictionary as the translation of

word wz. In other words, kaj could be nonzero only if the word w;- is one of the

translation candidates for the word wz. This assumption can be formally expressed

by the following constraints:

Vk’ =1,...,m3, j =1,...,mt Z O S kaj S tkIj

In addition, we have a constraint

Vk = 1, ...,m3: 2 kaj =1

ng-El‘k
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to ensure that each query word has only one ideal translation given the context of

the query qs.

To simplify our notation, we further introduce the matrix P = [kaj] t to

msxm

denote all the translation probabilities for query qs. Then, the above two sets of

constraints can be rewritten as

P ' eTntXI = ems-X1 (5.14)

ongT 6m)

where e = [1, 1, . . . , 1]T.

5.3.3 The Retrieval Model

The introduction of translation probabilities kaj can be well accommodated by a

statistical retrieval model for CLIR. In particular, we estimate Pr(dt|q3), i.e., the

probability for a document (it in the target language to be relevant to a query qs in

the source language. By the Bayes’ law, this probability can be approximated as

Pr(qsldt) -Pr(dt)

Pr(q3)

The last step assumes that document prior Pr(dt) follows a uniform distribution.

Pr<dth3> = ~ Pr<q3|dt> (5.16)
 

Hence, in the following, we will compute log Pr(q3]dt), instead of log Pr(dt|qs).

To model the translation uncertainty, we rewrite the expression for log Pr(q3[dt)

as follows:

10gPr(qSIdt) = 10s / dqt Pr(qslqt)Pr(qtldt)

1

Pr(q5)

~ / dthr(qt|q3)logPr(qtld‘)

_ t s

— :(logPrUv [q )lPr(qt|q5)

wt

2 :Pr(wths) log Pr(wt|dt) (5.17)

wt

22  / dqt Pr(qslqt) (10g Pr(qt ldt) + 10s Pr(q3))
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In the second step of the above derivation we employs the Jensen’s inequality [125],

which can be viewed as the first step toward the variational approximation [79, 88]. In

the third step, we ignore the term log Pr(q5) that is independent from the document

dt, and we also switch the roles between qt and qs using the Bayes’ law (similar

to (5.16)) by assuming that the prior of the translated query qt follows a uniform

distribution, i.e. Pr(qt) is a constant. In the fourth step, () represents the mathe—

matical expectation of a random variable. To estimate Pr(wt|q3), i.e., the probability

of observing the word wt in the translation of the query qs, we decompose Pr(wt|q5)

into a summation over words in the source language:

Province) = Z Pr<wt1w8;q8)Pr(w51q3) (5.18)

wSEqs

Finally, from (5.16) - (5.18) we have

logPr(dt|q5) ~ ZZPr(wt[wS;q5)Pr(w5|q3)logPr(wt|dt) (5.19)

wt ws

Here Pr(wt|dt) is a monolingual language model for a document (it in the target

language; Pr(wt|w3;q3) is the probability for translating a query word ws into wt

given the context of query qS; and Pr(w3|q3) is a monolingual language model for

query qs in the source language, which can also be seen as the weight assigned to

the query word ws. For the sake of simplicity, an uniform distribution is assumed

for probability Pr(w3|qs). As indicated in (5.19), the key component to the above

retrieval model is how to estimate the translation probabilities Pr(wt|ws; qs).

5.3.4 Learning the Translation Probabilities

In this subsection, we will describe the essential part of the statistical framework, i.e.,

automatically learning translation probabilities from the word co-occurrence statis-

tics. We will begin with the definition of an overall coherence measurement for trans-

lating a query, followed by formulating the learning process in an optimization form.
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Using the translation probabilities introduced in the previous subsection, we can

now define a measurement for the overall coherence when translating a query qs, i.e.,

t

Co(qs; T) = E E kaj IOJ'J’ 'pk’,j’ (5.20)

V108 Eqs th Er
k ‘

Vw

k
.7

S 3

eq . t

where 0]. j’ is a pair-wise similarity that measures the correlation between two words
7

w;- and “1;" in the target language.

The above measurement is motivated by the intuition that appropriate transla-

tions of query words tend to be coherent. with each other. In other words, if w;- and

w;, are appropriate translations for words w]: and mi, respectively, we expect that

1) both translation probabilities kaj and pk; j’ are assigned large values, and in the

same time, 2) w; and w? are related by a large coherence measurement 0 Hence,
t

k,k’ '

what is implied by this intuition is that the assignment of probability kaj and pk; 3"

should be synchronized with the coherence measurement 0;. .,. This synchroniza-

,

tion is expressed in (5.20) through the multiplication of the three terms kaj, pk; j”

and 0t. .,. In particular, by maximizing the overall coherence in (5.20), we enforce

1

the consistency between the probability assignment and the coherence measurement

by assigning large values to kaj and pk, 3" only when the corresponding coherence

measurement 0:. j’ is large.

7

The similarity information (i.e., 0t. .,) can be derived from monolingual word co—

7

occurrence statistics using the metric such as information gain. The expression for

the overall coherence can be simplified using the matrix notation introduced in (5.14)

and (5.15):

Co(q5;T) = eTPOPTe (5.21)

where O = [03. t is the similarity matrix that includes the similarity mea-
,j’1mtxm

surement of any two words in the target language.
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It is important to note that the coherence measurement defined above is signifi-

cantly different from the coherence measurement defined in [58]. The key difference

between them lies in the fact that. the measurement defined in [58] is based on the

concept of translation selection, namely only the best translation candidate is chosen

for every query word. As a consequence, the resulting formalization in [58] is indeed

a combinatorial optimization problem, and therefore is difficult to solve efficiently.

By relaxing the binary choice of translation for query words to translation probabili-

ties, on one hand we resolve the difficulty in optimization, and on the other hand we

are able to explore the translation uncertainty, which could be important when the

translation ambiguities are difficult to resolve.

Now our goal is to determine the translation probabilities such that the overall

coherence is maximized. Putting together both the objective function in (5.21) and

the constraints in (5.14) and (5.15), the learning process of the query-dependent

translation probabilities can be formalized as the following optimization form

max eTPOPTe — CpeTPPTe (5.22)

PERmsxmt

8.15. P 'emtxl = emSXI

0 S P _<_ T

Notice that in the above objective function, in addition to the first term that

corresponds to the overall coherence measurement for query translation, another term

—CpeTPPTe is introduced. This additional term is called a regularizer in machine

learning, and plays the similar role as the prior in Bayesian learning [113]. Note

that eTPPTe = 2%, Zj kajpk/Ij stands for the sum of all elements in PPT,

and its maximizer is to assign uniform distributions to all translation probabilities P.

Thus, by including the regularizer in the objective function, we essentially introduce

an uninformative prior for P, i.e., without the context of a given query, we assume

that all translation candidates provided by a bilingual dictionary are equally likely
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to be selected. The regularizer approach has been widely used in many well-known

machine learning models, including the logistic regression model [117] and support

vector machines [29]. Parameter Cp is introduced to balance the trade—off between

the overall coherence measurement and the regularizer. Another important issue

with the objective function in (5.22) is the choice of similarity measurement 0. A

different similarity matrix 0 can result in rather different performance in information

retrieval. We will show two of them in the later sections. Finally, we would like to

emphasize that by solving the resulting optimization problem in (5.22), we are able

to acquire the translation probabilities of all query words simultaneously through the

computation of matrix P. This is in contrast to a number of existing approaches for

dictionary—based CLIR, where the selection of translations for individual query words

are determined either independently or by certain greedy means that usually leads to

suboptimal solutions.

5.3.5 Solving the Optimization Problem

The Optimization problem in (5.22) is in fact a quadratic programming (QP) prob—

lem [62], since we find the objective function consists exclusively of quadratic terms

with respect to the set of variables {kaj} and all the constraints are linear to those

variables. A standard QP problem has the following form

1

min —xTHx + ch

x 2

st. Ax S b

Ex 2 d

where the vector x is the unknown variable, and matrices H, A, E and vectors b,

c, d are known. In this section we will discuss how to reformulate our optimization

problem (5.22) into the standard QP form, so that. it can be easily recognized by most

of existing QP solver softwares.
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Since the standard QP form takes a vector form of the optimization variables,

we first need to rearrange the unknown variables in the matrix P (i.e. the set of

translation probabilities) as a vector; then we need to reformulate the objective func-

tion as well as all the constraints in terms of the vector representation of the set of

translation probabilities.

To begin with, we concatenate all the row vectors in the matrix P together to

form a vector, i.e.,

T

p1T Pl

P2 - P2

msxmt : _i pmsmtxl : ' (5'23)

I)"; pms

where f) is the rearranged vector, consisting exactly the same set of variables in the

matrix P.

Then, we need to reformulate the objective function in (5.22) with respect to the

vector 13, i.e. finding a matrix H such that eTPOPTe - CpeTPPTe = 131-Hf) is

satisfied. It is easy to verify that such a matrix H can be written in a succinct form

by using the kronecker product operator (8) 1as follows

msmt xmsmt

Here 1 stands for a matrix of all elements 1.

Similar procedures can be applied to reformulate the constraints in (5.22), with

the use the following matrices

T

t1 t1

t2T _ t2

msxmt 2' : a pmsmtxl = . (525)

trriis tms

- T T T
msxmsmt diag(t1 ,t2 ,. . . ’t’NLS) (5.26)

\

1Kroneclter product is also known as Matrix Direct Product. Given an m x 71. matrix A and a

P X q matrix B, their kronecker product A 81 B is an mp x nq matrix C whose (i, j)-th submatrix

is aid-B, i = 1,...,m andj=1,...,n.
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And finally the optimization problem in (5.22) can be rewritten in a standard form

of the QP problem as follows

max pTHf) (5.27)

p

s.t. Ef) = e (5.28)

Osfisn on)

where e is a vector with all elements equal to 1, and the matrices H, E and the vector

1‘) are given in (5.24) - (5.26). In our experiments, the QP package from Matlab [143]

is used to solve the above problem.

Remark: For the QP problem formulated in (5.27), the problem size appears to be

t, i.e., the product betweenlarge because the number of variables in vector q is msm

the number of unique query words and the number of distinct translation words

provided by the dictionary. However, notice that in the constraint (5.29), '13, i.e., the

upper bound of translation probabilities, is a concatenation of translation vectors t,-

obtained from T, the matrix notation of the bilingual dictionary. Given that most

query words only have a few translations, most of the elements in the matrix T will be

zeros. As a result, most elements in the upper bound vector 6 are zeros, which leads

to the zero values for the corresponding translation probabilities in q. Hence, the

number of non-zero translation probabilities in q is no more than the total number of

translations provided by the bilingual dictionary for the query words, which is usually

much smaller than the product msmt. Thus, the computation cost of the Maximum

Coherence Model is modest for real CLIR practice, if not overestimated.

5.3.6 Summary and Discussion

By putting together the uncertainty modeling, translation probability learning and

the retrieval model, we summarize the steps of applying the proposed framework to
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Step 0 Prepare a bilingual dictionary

Step 1 Compute the pair—wise similarity of all the words in the target

language that appear in the dictionary as translations

Step 2 Prepare language models for both the source language

and the target language

Step 3 When a query in the source language comes

1. Identify the candidate set of translations by the dictionary

E
0

Extract the similarity information related to the candidate set

9
°

Compute translation probabilities by solving the QP problem (5.27)

:
5

Retrieve documents according to the model in (5.19), by feeding in

the set of translation probabilities and both language models    
Figure 5.1. Steps of applying the proposed framework to Cross Lingual Information

Retrieval

CLIR in Figure 5.1. In those steps, pair-wise similarity computation and language

model preparation can all be done offline. In query time, most computation comes

from solving the QP problem, in addition to the conventional retrieval process.

It is important to note that although in this study we limit ourselves to the bag

of words approach without exploring other linguistic structures such as phrases, our

framework can essentially be generalized to the linguistic structures other than the

bag of words. This can be achieved by treating all the w; and w}: as the units in the

targeted linguistic structures, and Pr(w§-Iw]‘:) as the likelihood of translation between

the units in the new linguistic structures. We focus our discussion on word translation

mainly because of the following two concerns:

1. As mentioned in the introduction part, one of the main motivation behind our

work is to resolve the problem of CLIR when only bilingual dictionaries are

available. Since in practice most bilingual dictionaries are word-based, we focus

our study on the word—based approaches.

2. Since many user queries, particularly the ones from the \Norld Wide Web, are

less likely to be grammatically structured, we believe it is important for a robust
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CLIR framework to minimize its dependence on deep linguistic analysis of user

queries.

Despite of the above claim, we believe that given more linguistic resources avail—

able and well grammatically structured queries, our framework could be improve

by appropriately incorporating the linguistic constraints derived for the translated

queries. For example, we can incorporate the linguistic knowledge into the similarity

matrix 0; or we can introduce it into the regularizer in the optimization problem

(5.22) to make it more informative. These framework extensions will be considered

in future work.

5.4 Maximum Coherence Model

In the previous studies of selection—based approaches, several metrics have been used

for measuring the similarity between two words in the target language, i.e. the 0;. j”

including variants of mutual information [57, 81], and the Dice similarity [1, 2]. In

this model, a typical variant of mutual information (which has been used in previous

studies [58]) is used as the pair-wise similarity metric

 

Pr(w;-, wt.,)

st. ., = Pr(u.i§-,wt.,) x log t J t (5.30)

)3] J Pr(wj) x Pr(wj,)

Pr(w§) is the unigram probability for word wt-, and Pr(w§-, w?) is the joint probability

for word w; and 103., to co—occur in the same documents. Both probabilities can be

acquired by simply counting the term frequency of single words and the frequencies

of co—occurrence between two words. Note that Equation (5.30) is different from the

standard definition for mutual information in that only co-occurrence information is

used. Due to the computation concern, in Equation (5.30) the correlation between two

words when at least one of them does not occur in documents is ignored. According

to the definition in Equation (5.30), we see that two words will be regarded as similar

if they co—occur often in the document collection.
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Using matrix notation S = [5; t and substitute the coherence matrix 0
J’lmtxm

with the similarity matrix S, we have the following model

max eTPSPTe — CpeTPPTe (5.31)
PER’IRS X ”It

at. P - emtxl = emsxl

O§P§T

We call the above model “Maximum Coherence Model” since it is a straightfor-

ward implementation of the proposed framework. Parameter Cp can be determined

empirically by cross validation. Heuristically, we hope Up to be roughly in the same

scale as those elements in the matrix S, since OP is used to balance between the

similarity measurement S and regularizer I. Hence, we heuristically propose to set

GP to be proportional to the average of the elements in S, i.e.

0p = n25; Jami)?

j j’ ’

Here n is a scaling factor. In our experiments we tested different values of 77 in the

range of [0.1, 10] and chose the one with good retrieval performance.

5.5 Spectral Query Translation Model

One problem with the Maximum Coherence Model proposed in the previous section

is the difficulty in determining the value of parameter Cp. This problem arises be-

cause the two terms in objective function in (5.31), namely the overall coherence

measurement of translated query, and the regularizer, are in different scales. As a

result, we have to search for appropriate C'p empirically. In order to put the two

terms on the same scale, we introduce the concept of normalized similarity ma-

trix: for a given similarity matrix S = [ we define a diagonal matrix
t

51-,jllmtth,

D = diag(d1, d2, - -- ,dn), where dj 2 237,11 3]. 3'" Then, the normalized similarity
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matrix is S = D_%SD-’Z. Note that through this normalization procedure, we are

able to bring down the scale of matrix S to 0(1). As a result, both the coherence

term and the regularization term are on the same scale. Thus, instead of finding

appropriate 0,; empirically, we can simply set it to 1, which leads to the following

realization of the proposed framework:

T —1 —1 T T T
max e PD 28D 2P e —— e PP e (5.32)

PER’ITIS xmt

Si. P iemtX1= emsxl

0§P_<_T

We call the above model “Spectral Query Translation Model” because it can be

interpreted as a graph partitioning approach for query translation disambiguation,

which is strongly related to spectral clustering. We will further elaborate on this

interpretation in the following subsection.

5.5.1 Query Translation Disambiguation as Graph Partitioning

In order to see the relationship between graph partitioning and dictionary-based CLIR

model in (5.32), for a given query q3 and its translation candidate set R, we present

the related similarity information S through an undirected weighted graph. Each

translation candidate w]C E R is represented by a vertex. Any two translation can-

didates related to two different query words are connected by an edge if they ever

co—occur in at least one document. A non-negative weight is assigned to each edge to

indicate the similarity between the two connected words. Here we use the measure-

ment defined in Equation (5.30) as the edge weight.

With the constructed graph for a given query and its translation, we hypothesize

that the best (or the most coherent) translation of a query corresponds to the most

strongly connected component within the graph. To separate the strongly connected

component from the rest of the graph, a graph partitioning algorithm can be employed
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to divide the graph into two disjoint clusters: a cluster for strongly connected compo-

nent and a cluster for the rest of the graph. To this end, we inherit the idea from the

Normalized Cut algorithm. For the graph constructed for the translation candidate

set R, its adjacency matrix is exactly the similarity matrix S = [3; and the
,j’] mt x mt’

graph Laplacian matrix is L = D — S. Following the formalization of the Normalized

Cut algorithm [134], the optimal 2-way partitioning is found by solving the following

minimization problem

. T _ 1 _ 1

nnnv D 1ZLD 2v (5.33)

Here v = [1,1122 - ' -'vm]]T is a cluster membership indicator vector. Each element 12,-

is a binary variable with 1 indicating the corresponding word being included in the

query translation and O for not being included.

It is not difficult to see that the optimization problems in (5.32) and (5.33) are in

fact equivalent if we set

v = PTe (5.34)

or in another more explicit form

vj = 2ka
k

= Z Pr(w§-|wz,qs)Pr(w]:|qs)vms

wlscEqS

= mS-Pr(w§|q3) (5.35)

where Pr(wi]q3) takes a uniform distribution, i.e. Pr(wi|q3) = 1/m3.

What is suggested by Equation (5.34) or (5.35) is to relax the cluster indicator

213- to a soft membership instead of a binary value. This soft membership, from

the graph partitioning point of view, indicates how likely the strongly connected

component will include the particular translation candidate 1113-. Equation (5.35) links

the soft membership with the probability Pr(w§-|qs), i.e. the likelihood of including
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translation candidate w;- in the translation of query qs. Thus, the model proposed as

the optimization problem (5.32) can be perfectly explained from a graph partitioning

perspective. Note that the relaxation of a binary indicator to a soft membership

in the perspective of graph partitioning is in accordance with our introduction of

translation probabilities in the statistical framework. This is because both of them

try to address the uncertainty problem in the process of query translation.
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Figure 5.2. An example of graph partitioning perspective for query translation disam-

biguation.

Figure 5.2 gives an illustrative example of this graph partitioning perspective.

In the example, the query is composed of four Chinese words, and around each

Chinese word are its translation candidates in English provided by a Chinese—English

dictionary. The thickness of lines connecting two English words roughly represents

their similarity. The number below each English word is its translation probability

estimated from the Spectral Query Translation Model. Based on the graph repre-
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sentation in Figure 5.2, we can easily see a strongly connected component consisting

of words “independent”, “sign”, and “press”, which have been assigned with large

translation probabilities. It is important to note that Figure 5.2 only serves as

an illustration of the proposed spectral query translation model. In particular, all

translation candidates will be used in the retrieval model (see Section 5.3.3), and

their importance will be weighted by their translation probabilities determined by

the optimization algorithm.

Remark: In the above, we discuss the relationship between the Spectral Query

Translation Model and the spectral graph partitioning. However, it is worth pointing

out that the solution to the Spectral Query Translation model can not be acquired by

the eigen analysis that is used for solving spectral graph partitioning. This is because

the Spectral Query Translation model seeks for the optimal translation probabili-

ties (which leads to soft cluster memberships) that maximize the overall coherence

measurement. In contrast, most spectral graph partitioning algorithms, such as Nor-

malized Cut, search for the binary cluster memberships that minimize the graph cut.

It is such difference that leads to the quadratic programming formalization, instead

of an eigenvector problem, for the Spectral Query Translation Model.

5.5.2 Maximum Coherence vs. Spectral Graph Translation

Aside from its graph partitioning explanation, the Spectra] Query Translation Model

is advantageous to the Maximum Coherence Model in that it is able to reduce the

translation probabilities for the “common” words, which may otherwise dominate in

the final query translation. To see this, consider an element 5.7-J; in the normalized

similarity matrix S = D_%SD—%

st.
'I

gt. . = M (5.35)
10’ th t Z:mt t

. S . . . 8. .

J’=1 JJ’ J’=1 30’
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Suppose translation candidate wt- is a common word that appears frequently in the

J

t

document collection of the target language. This implies that the sum 23’}; st. ., will

11}

be large. Since most of the “common” words are less informative for the purpose of
 

document retrieval, we use the normalization factor 1/ \/Z;7}:1 8;,‘7.’ to suppress their

coherence values, which will eventually reduce the probability of including common

words in the final query translation.

Based on the above analysis, we see that the Spectral Query Translation Model

is more appealing than the Maximum Coherence Model. This is further confirmed

by our empirical studies on cross-language information retrieval presented in the next

section.

5.6 Experiments and Discussions

The goal of this experiment is to examine the effectiveness of the proposed statisti-

cal framework for cross—language information retrieval. In particular, four research

questions will be addressed in this empirical study:

1. Is the proposed statistical framework effective for cross-language information re-

trieval? To obtain a comprehensive view, we compare the Maximum Coherence

Model and the Spectral Query Translation Model to the existing selection-based

approaches using a variety of queries and documents.

2. How important is it for a query disambiguation algorithm to include transla-

tion uncertainty in its analysis? To address this question, we will examine the

importance of including translation uncertainty in cross-language information

retrieval through case studies.

3. How important is it to remove the translation independence assumption for

cross-language information retrieval? To address this question, we will exam-
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ine the impact of the translation independence assumption on cross-language

information retrieval through case studies.

4. How does the Maximum Coherence Model empirically compare to the Spectral

Query Translation Model? we will show a performance comparison between

the two models as well as a case study as empirical evidence to our previous

comparative analysis of the two models.

5.6. 1 Experiment Setup

All our experiments are retrieval of English documents using Chinese queries. The

document collections used in this experiment are from TREC ad hoc test collections,

including

AP88-89 164,835 documents from Associated Press(l988, 1989)

WSJ87—88 83,480 documents from Wall Street Journal (1987, 1988)

DOE1-2 226,087 documents from Department of Energy abstracts 2

In addition to the homogeneous collections listed above, we also test the proposed

model against heterogeneous collections that are formed by combining multiple ho-

mogeneous collections. In particular, two heterogeneous collections are created: col-

lection AP88—89 + WSJ87—88, and collection AP89 + WSJ87—88 + DOE1-2. In a

heterogeneous collection, words are more likely to carry multiple senses than words

from a homogeneous collection, which will increase the difficulty for an automatic

algorithm to disambiguate the senses of query words using the pairwise word sim-

ilarities. The SMART system [126] is used to process document collections. Each

document is first parsed into tokens with stop words removed, and then tokens are

 

2DOEl—2 collection is not used as one of the homogeneous datasets in our experiments because

DOEl-2 collection provides no relevant documents for a majority of the queries used in this ex-

periment. It is only used to create heterogeneous collections by combining with the other two

homogeneous collections.
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stemmed using the Porter algorithm. Finally, each document is represented as a bag

of stemmed words. We also implemented pivoted document length normalization

weighting scheme [135] in SMART system for the retrieval process. Since our goal

is to illustrate the advantage of the proposed statistical framework, we do not apply

more sophisticated procedures for text analysis in our experiment, such as phrase

identification.

Our queries come from a manual Chinese translation of TREC-3 ad hoc topics

(topic 151-200). To fully examine the effectiveness of the proposed models, we test it

against both the long Chinese queries and the short Chinese queries. A short Chinese

query is created by translating the “title” field of an English query into Chinese; a long

Chinese query is formed by combining the Chinese translations of both the “title” field

and the “description” field in an English query. The average length of short Chinese

queries is 9.64 Chinese characters, and 30.72 Chinese characters for long queries. For

Chinese translations, we also manually segment the sentences into words with stop

words removed, then feed them into our query translation framework. Figure 5.3

gives an example of the title field and description field (in the bottom panel), which

is used to form a Chinese query in our experiments.

Since most of the words in a short query are highly relevant to the topic of the

query, we would expect that query disambiguation approaches based on word similar-

ities will work well. The analysis of CLIR with long queries could be tricky because

of the following two conflicting aspects: (1) On one hand, a long query provides

significantly richer context than the short one in disambiguating the word sense of

translation. Therefore, we would expect that the long queries may achieve a better '

performance than the short queries in CLIR. (2) On the other hand, a long query

tends to include words either irrelevant or only slightly relevant to its topic. As a

result, even a translation word that is coherent with the translations of many query

words may not necessarily be a good candidate for selection. In our experiment, we
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<num> Number: 187

<title> Topic: Signs of the Demise of Independent

Publishing

<desc> Description:

Document must identify instances of the loss of

independence by publishers, from the sale or

merger of their business or publication, or the sale

of a significant interest in it to another person or

company.   
Translate into Chinese

  
\/

<num> Number: 187

<title> Topic: ifllf/j lll lili ill 7; [1‘1 ill? 35

<desc> Description:

5C iii: lb 3131' N ltfr .'J‘. M“E .' l 1 Jill [iii (I i i \1k 212:}: Jill M 9W}

l'i’d ti‘it‘s ‘ a )t- ' I u at 55171-13}inFETMU‘JI‘EJHT, it

MJWEKTHMMAmadMiM.

Segment Chinese sentences

and remove sto a words

 

   
      

<num> 187

<title> Topic: Kill 32‘. lllllli il'l K (M) iiEJli

<desc> Description:

‘1 .7:- “él’i its (:11) (“"919 :1: J52 liil (iii) it)“:

(22) {J'Hilft'lilli’fl (lt‘J) ii'if'ii (all) it'l- ('|') (. )(L'JZ

a) ((Ii) Wit ‘2 {2‘23 Milt] (Ill). (if/i) imi‘r'lit 1E3};

(”I“).1LilL|irmA(th) 2} ml (M) 5‘13fo (. )

Figure 5.3. An example query used in our experiments. The query is first translated from

the No. 187 in TREC-3 ad hoc topics into Chinese. It is then segmented into words with

stop words removed. The upper panel shows the original query in English; the middle panel

shows the translated Chinese query; the bottom panel shows the segmented Chinese query,

where stop words in parentheses are removed.
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will examine which factor among the two plays the major role in CLIR. Hence, a

long query may pose a more challenging problem than a short query for a translation

disambiguation algorithm based on word similarity information.

Finally, the relevance judgments for the original English queries are used as the

relevance judgments for their Chinese translations. The Chinese—English dictionary

used in our experiments comes from Linguistic Data Consortium (LDC, http://www.-

ldc.upenn.edu), which consists of translations for 53061 Chinese words. Since our

experiments do not involve the processing of English phrases, for any English phrase

that is the translation of a Chinese word, we simply treat it as a bag of words.

To evaluate the effectiveness of the proposed framework and models, we implement

two baseline models that take translation selection approaches. The first baseline

model selects the most likely translation for each query word, which we call “BSTO”.

Specifically, we follow the ”Approximate Ttanslation Selection Algorithm” described

in Section 5.2.1. The second model, which we call “ALTR”, makes no efforts for

translation disambiguation by simply including all the translations provided by the

dictionary for query words into the final query translation. Finally, for easy reference,

we use the abbreviation “MAC” for our Maximum Coherence Model and “SQT” for

our Spectral Query Translation Model. The constant Up for the regularizer term in

the Maximum Coherence Model is set to be 4 2].va 53.0., / (mt)2 based on our empirical

experience.

5.6.2 Comparison to Selection-based Approaches

Table 5.1 lists the average precision across 11 recall points for both the homogeneous

collections and the heterogeneous collections. As indicated in Table 5.1, the proposed

models (i.e., “MAC” and “SQT”) outperform the two baseline models for both short

queries and long queries across all four different collections. For the purpose of refer-

ence, we also list the results of monolingual information retrieval in the first column of
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Figure 5.4. Comparison of CLIR performance on homogeneous datasets using both short

and long queries. The upper two figures are for AP88-89 dataset, and the lower two are for

WSJ87—88 dataset. The left two figures are for short queries, and the right two are for long

queries.
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Figure 5.5. Comparison of CLIR performance on heterogeneous datasets using both short

and long queries. The upper two figures are for AP88—89 + WSJ87—88, and the lower two

are for AP89 + WSJ87-88 + DOE1—2 dataset. The left two figures are for short queries,

and the right two are for long queries.
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Table 5.1. ll-poiut average precision for both short and long queries on TREC datasets.

MLIR represents the monolingual information retrieval. The relative CLIR improvements

of MAC and SQT models over the other two baseline models are listed in the 5th, 6th, 8th

and 9th data columns.

 

 

 

    
 

 

 

[MLIR[BSTO ALTRMAC (M-B)/B (M-A)/ALSQT (S-B)/B (S-A)/A

Short Queries

AP .4112 .2331 .2241 .2959 +24.23% +32.04% .3115 +30.37% +39.05%

WSJ .3335 .1955 .2129 .2550 +30.21% +20.24% .2571 +30.77% +20.75%

AP+WSJ .4057 .2253 .2209 .2772 +23.04% +25.49% .2359 +25.90% +29.43%

AP+WSJ+DOE .3555 .1739 .1329 .2172 +24.90% +13.75% .2295 +32.03% +25.53%

Long Queries

AP .3755 .1749 .1303 .2095 +19.34% +15.25% .2425 +33.71% +34.55%

WSJ .4022 .1473 .1727 .2115 +43.17% +22.52% .2151 +45.21% +25.13%

AP+WSJ .3721 .1433 .1555 .1947 +35.37% +15.94% .2043 +49.92% +23.00%

AP+WSJ+DOE) .3299 .1122 .1411 .1575 +40.45% +11.59% .1712 +52.53% +21.33%    
 

 
Table 5.1. Furthermore, we plot the precision-recall curves for both the short queries

and the long queries in Figure 5.4 and Figure 5.5, respectively. As illustrated in

Figure 5.4 and 5.5, for all four collections the precision—recall curves of the proposed

models always stay above the curves of the other two baseline models. Based on these

results, we conclude that the proposed statistical framework performs substantially

better than the other two selection-based approaches for cross-language information

retrieval.

A further examination of results in Table 5.1 gives rise to the following observa-

tions:

1. In general, the retrieval accuracy for heterogeneous collections appears to be

worse than that for homogeneous collections. In particular, a substantial de-

crease in the average precision is observed for all four models when the collection

of DOE1-2 is included in the heterogeneous collection. This result is in accor-

dance with our previous analysis, i.e., words from heterogeneous collections are

more likely to have multiple senses, thus resulting in higher translation ambi-

guity.

2. A better retrieval is achieved for short queries than for long queries. The degra-
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(lation in performance between long queries and short queries is more significant.

for heterogeneous collections than for homogeneous collections. Usually long

queries bring rich context as well as noise. Our result. indicates that among

the two factors, the second one, i.e., long queries consists of many irrelevant

words, seems to be more influential than the first one, i.e., long queries provide

rich context for word sense disambiguation, in query translation. This result

seems to contradict the general belief that long queries tend to yield better

retrieval accuracy than the short ones given its rich context. However, it is

worth pointing out that this general belief is based on a simplified analysis and

overlooks the fact that long queries tend to include irrelevant words that could

corrupt the accuracy of query translation disambiguation. To further confirm

our hypothesis, we compare the results of the monolingual information retrieval

between long queries and short queries. we observe that the short queries in

fact outperform the long queries for three among four datasets. All the results

indicate that due to the two conflicting factors related to long queries, it is not

necessary the case that information retrieval with long queries will definitely

deliver better retrieval accuracy than short queries.

. The “BSTO” model does not consistently outperform the “ALTR” model. In

fact, for the long queries, the “ALTR” model performs better than the “BSTO”

model across all four different collections. This phenomenon can also be at-

tributed to the fact that long queries are rather noisy and likely to include

irrelevant words. This result indicates that the “BSTO” model can be sensitive

to the noises present in queries. Given that a significant amount of noise can be

present in queries, it is important to maintain the uncertainty of translation in

the retrieval process. Note that our results appear to be inconsistent with the

finding in [57]. We believe that this difference could be explained by the dif-

ference in the experiment setups. In particular, since our experiments focus on
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upheaval commotion turbulence unrest turmoil

30% 0.19931 0.19723 0.19882 0.20209 0.20255

 

  

 

intent spring motive inducement incentive

filll‘ll 0.22821 0.19645 0.30384 0.13196 0.13954

 

  

 

I acid sour sore ache

as | 0.79070 0.05422 0.07552 0.05955

 

 

Figure 5.6. Examples of translation probabilities estimated by the Maximum Coherence

Model.

CLIR with a bag of words, we did not employ any linguistic tools other than re-

moving stop words and stemming keywords. In contrast, in [57] linguistic tools

are used to identify appropriate English phrases and their Chinese translation,

which has been shown as an important factor in CLIR [8, 57]. Although phrase

analysis is important to CLIR, we believe that a generic probabilistic model is

beneficial to CLIR of any languages, particularly when linguistic resources are

scarce. Other differences between our baseline “BSTO” model and the model in

[57] include the different ways of mutual information computation and slightly

different translation selection strategies.

5.6.3 The Necessity of Including Translation Uncertainty

To demonstrate the uncertainty in query translation, in Figure 5.6, we list the trans-

lation probabilities for three Chinese words 3 that are estimated by the Maximum

Coherence Model. As we can see, a significant variance exists in the distribution

of translation probabilities across different Chinese words. The first example in the

figure shows an almost uniform distribution over all translations, while the third one

illustrates a very skewed distribution. Meanwhile, the second example provides a dis-

tribution that is neither uniform nor totally skewed. These three examples illustrate

 

3These three Chinese words are not from the same query.
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. . Selection Trans. Prob. Trans. Prob.

CH Term EN Translation (BSTO) (MA(3 (SQT)

independent 0.36208 0.46944

531172 on one's own 0.24481 0.12342

stand alone x 0.3931 1 0.40715

press x 0.33789 0.22208

11’. lili publish 0.19973 0.37477

‘ ’ put out 0.33311 0.36082

print 0.12927 0.04232

disappear x 0.34941 0.38760

ill '1'; demise 0.32035 0.32365

fade 0.33024 0.28875

symptom 0.16698 0.14468

omen 0.16155 0.09868

111.315 sign x 0.35015 0.55512

portent 0.16097 0.09279

premonition 0. 16034 0.09773
 

Original TREC Topic in English (topic 187 'title' field):

Signs of the Demise of Independent Publishing

Figure 5.7. An example of query translation, using the “BSTO” model and the Maximum

Coherence Model. (English words in italicized font are removed as stop words.)

the “translation uncertainty problem”, which we have addressed in previous sections.

Furthermore, the diversity in the distribution of translation probabilities makes it

difficult for a selection-based approach to perform well over all different cases. For

example, the “BSTO” model is able to work well for the third example but will fail

in the first one. On the other hand, the “ALTR” model would be perfect for the first

example but not for the third one. Base on the above analysis, we conclude that it

is important to capture the translation uncertainty and the diversity of translation

uncertainty in a probabilistic model.

147



5.6.4 The Impact of Translation Independence Assumption on Query Dis-

ambiguation

To illustrate the impact of the translation independence assumption on query trans—

lation disambiguation, consider the example in Figure 5.7. This query consists of

four Chinese words, and the English translations for each Chinese are provided by

the dictionary are listed in the second column. The original English query is also in-

cluded at the bottom of the figure. The English translations selected by the “BSTO”

model are listed in the third column, marked by small crosses. The translation prob—

abilities from Chinese words to their English translations estimated by the Maximum

Coherence Model and the Spectral Query Translation Model are listed in the last two

columns respectively.

Comparing to the original English query, we see that the “BSTO” model makes

incorrect translation selection for both the first and the second Chinese words. For the

first one, the correct English translation should be “independent”, instead of “stand

(alone)” 4. The better translation for the second Chinese word should be “publish”

instead of “press”. One reason for such mistakes is that in the “BSTO” model, the

coherence score of a translation is computed based on all the English translations pro—

vided by the dictionary for the Chinese words in the query. Thus, the coherence score

of one translation word is completely independent from the selection of other transla-

tions. Since both “stand” and “press” are common in English, their overall coherence

scores turn out to be larger than the coherence scores of other words, which lead them

to be selected by the “BSTO” model. In contrast, in both the Maximum Coherence

Model and the Spectral Query Translation Model, the estimation of translation prob-

abilities for one word is dependent on the estimation of translation probabilities for

other words. As a result, they are able to adjust the mistakes by assigning significant

 

4“alone” is removed as a stop word and does not count in the translation. It is listed only for

the sake of clarity.
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amounts of probability mass to the correct translations. For example, for the first

Chinese word, both models are able to assign a probability to the correct English

translation “independent” comparable to the probability assigned to the translation

“stand (alone)”.

Note that neither the Maximum Coherence Model nor the Spectral Query Trans-

lation Model is able to always assign the largest probabilities to the best translation

candidates (such as for the first Chinese word in Figure 5.7). However, in general by

maximizing the coherence of the entire translated query both models tend to shift

more probability mass to the best translation candidates, thus alleviate the mistakes

brought by those selection-based approaches originated from their false assumption

on translation independence. We believe this is one of the major advantages of these

two models over all the selection-based approaches.

5.6.5 Performance: MAC vs. SQT

1Q 1111 I encroach erode weather eat

MAC 0 0.01091 0.34901 0.14008

SQT 0.02389 0.03.139 0.34487 0.09985

 

Original TREC Topic in English (topic 188 'title' field):

Beachfront Erosion

Figure 5.8. Comparison of an example query word translation using Maximum Coherence

Model and Spectral Query 'Itanslation Model. The numbers showed in this example are

the probabilities of the translation candidates being included in the final query translation.

Table 5.1 reveals a slightly higher average precision across 11 recall points of

“SQT” model compared to “MAC” model. In Figure 5.4 and Figure 5.5 the precision-

recall curves of “SQT” model generally stays above those of “MAC” model, though

the margin is not clear sometimes. All the experiment results suggest that the Spectral

Query Translation Model is slightly better than the Maximum Coherence Model.
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This observation is in accordance with our theoretical analysis on the two models

at the end of Section 5.5. Apart. from the advantage of saving the trouble of choosing

the optimal regularizer constant Cp, the benefit of normalizing the coherence matrix

can be observed from the example presented in Figure 5.8, where we list and compare

the probabilities of including different translation candidates in the final query trans-

lation for one example query word from both models. As we can see, the common

word “eat” is assigned with a significant amount of probability mass in the Maximum

Coherence Model although it is almost irrelevant to the context of the entire query.

At the same time, the word “encroach”, which in fact is related to the theme of the

query, receives an almost zero probability (or too small to represent). As indicated

by the results listed in Figure 5.8, the Spectral Query Translation Model is able to

overcome this problem by redistributing some of the probability mass on the com-

mon word “eat” to other words. This is consistent with our previous analysis that

the Spectral Query Translation Model has a better way to estimate the translation

probabilities of common words than the Maximum Coherence Model.

5.6.6 Computational Efficiency

To examine the computational efficiency, we calculate the averaged number of seconds

that are spent by the proposed algorithms to solve the Optimization problem for each

query. All the experiments are conducted on a PC with a Pentium 4 2.8GHz CPU

and 1G RAM that runs Matlab 7.1 on a Windows system. We directly use the

quadratic programming function provided by Matlab to solve the QP problem in

the proposed algorithms for query translation disambiguation. The results are 0.027

seconds per query for short queries, and 3.014 seconds per query for long queries.

Clearly, our algorithm is sufficiently fast for short queries, but a little slow for long

queries. To improve the computational efficiency of long queries, we can first divide

a long query into a number short ones, and then translate each short query using the
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proposed framework. Since the computational complexity of quadratic programming

is 0(n3) in the worst case where n is the number of translation probabilities, by

significantly reducing the number of query words, we reduce the number of translation

probabilities, and therefore improve the computational efficiency. Note that the above

approach is based on the assumption that most of the context needed for query

translation disambiguation can be found in the neighborhood of each query word. As

a potential research issue, improving the computational efficiency for long queries is

worth further study.

5.7 Conclusions

In this chapter, we propose a novel statistical framework for cross-language infor-

mation retrieval. It utilizes word co—occurrence statistics for estimating translation

probabilities that are effective for query disambiguation. Compared to the selection—

based approaches, the merits of the framework are twofold: 1) It preserves the trans-

lation uncertainty through the estimation of translation probabilities; 2) It estimates

the translations for all query words simultaneously. Two realizations of the proposed

framework, namely the Maximum Coherence Model and the Spectral Query Transla—

tion Model, are presented based on different choices of coherence measurements. Our

analysis indicates that the Spectral Query Translation model can also be interpreted

as a graph partitioning approach for query translation disambiguation. Empirical

results under various scenarios have shown that the proposed framework is able to

perform substantially better than the existing selection-based approaches. Further

analysis indicates that the Spectral Query Translation Model is more effective and

reliable than the Maximum Coherence Model when dealing with common words.

151



CHAPTER 6

Semi-supervised Learning for Extraction

of Questions and Answers from Web FAQs

6.1 Introduction

Question-Answering is faced by a problem of a “lexical gap” [22] or a “word mis-

match” [156] between question and answers, suggesting that retrieval of candidate

documents for answer extraction should focus on documents that are similar to the

expected answer rather than on documents that are similar to the user question. Re-

cent work in Question-Answering has capitalized on existing repositories Frequently-

Asked-Question (FAQ) pages to bridge this lexical gap. FAQ pages are easily available

in large quantities on the web. They cover a wide range of topics, and thus present

an ideal resource to learn about question-answer correspondences. Large repositories

of question-answer (QA) pairs extracted from FAQ pages have been used to train

statistical translations models in order to provide an additional measure to rank can-

didate answers [22, 51, 122, 137], or to perform expansion of questions by answer

terms using various query expansion techniques [78, 121, 3, 69]. In other work, QA

repositories have been used as candidate collections for answer retrieval [30, 83, 154].

Besides Question-Answering, QA repositories have also been used in other related

information retrieval and natural language processing tasks, such as query summa-
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rization [23], semantically similar question finding [82] and knowledge representa-

tion [153, 154]. Since the performance of these applications depends heavily on the

quality of the QA repository, high-precision extraction of QA pairs is crucial in order

to provide reliable data for various deployments.

While FAQ pages abound on the web, high-precision extraction of QA pairs is

challenging because of the wildly varying markup of questions and answers across

FAQ pages. We refer to this challenge as the Across Page Diversity challenge. Across

FAQ pages on the web, the variants in QA markup range from simple paragraph

breaks to special formatting (using italics, boldface, different fonts, font sizes, colors,

etc), various types of indentations (lists, tables, etc.), special prefixes (numbers,

Q., 0:, Question:, etc), or even sophisticated images. The creative power of web

designers is displayed not only in the huge variations of QA markup, but also in the

endless variants of “noise text”, i.e., headers, navigational text, or other annotations

that display neither questions nor answers.

To illustrate the Across Page Diversity challenge, Figure 6.1 - 6.4 present four

snapshots of FAQ pages, each displaying questions and answers in their own format.

Specifically, Figure 6.1 presents two FAQ answers in sophisticated formats — one

with embedded listing structures and varying fonts, and the other with multiple

paragraphs separated by images; the other three snapshots present QA text mostly

in plain paragraphs. In Figure 6.2 two types of images prefix each FAQ question and

answer; in Figure 6.1 and Figure 6.3 only FAQ questions are marked by numbers;

Figure 6.3 uses different colors and fonts to distinguish questions and answers. Figure

6.3 includes a real FAQ question without an ending question mark (i.e. the second

question in the snapshot), while Figure 6.4 includes a fake FAQ question that does

end with a question mark (i.e., in the dashed ellipse). Also, there are various types

of noise texts that are highlighted by boxes of all shapes in the four snapshots.

The diversity of web FAQ pages pose a serious challenge in extracting high-quality
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There is a short lag period between the time you enter the

sites to be blocked and when our system begins blocking the

corresponding ads. This period should be no more than two

business days.

Back to Top

9. Are the ads blocked for all products within the Yahoo

Pubilsher Network?

Yes. Once you enter the URLs, the blocked URLs will be

applied to all products within the Yahoo! Publisher Network.

You will not need to create the list for every YPN product

Back to Top

10. Can 1 block Run-of-Network ads from appearing on my

' site?

No. we do not offer this option at this time.

Back to Top

- idn't find an answer to your question'il

Submit your inguig directm to our Customer Solution: team 
 

     

NOTICE: AI information is the confidential information of the Yahoo! Publisher Network.

Copyright © 2007 Yahoo! Inc. Al rights reserved.

: Poirc ' Terms of Sen/ice Terms and Conditions Hefn Center

  

  

 

  
ana

    

Figure 6.1. Snapshot of example web FAQ pages (1 of 4)
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Is there a limit to how much karma you can accumulate?

Yes. Karma is now capped at "Excellent" This was done to keep people from

running up insane karma scores, and then being immune from moderation.

Despite some theories to the contrary, the karma cap applies to every account.

 

Answered by: CmdrTaco

Last Modified: 1/24/02

 

It seems unfair that I can't get any more karma than

that even if I earn it.

Karma is used to remove risky users from the moderator pool, and to assign a

bonus point to users who have contributed positively to Slashdot in the past. It

is not your IQ, dick length/cup size, value as a human being, or a score in a

video game. It does not determine your worth as a Siashdot reader. It does not

cure cancer or grant you a seat on the secret spaceship that will be traveling to

Mars when the Krulls return to destroy the planet in 2012. Karma fluctuates

dramatically as users post, moderate, and meta-moderate. Don't let it bother

you. It's just a number in the database.

 

Answered by: Ondrfaco

Last Modified: 10/19/00

 

Why didn't I get karma for a Quickie or a Slashback

story?

This is a shortcoming in the code that we haven't solved yet. Essentially, the

Figure 6.2. Snapshot of example web FAQ pages (2 0f 4)
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4. How do I uninstall Google Web Accelerator?

if you decide you don't want to use Google Web Accelerator, here's how to

uninstall it

. Click on Start > Settings > Control Panel to open the Windows Control Panel.

. Click on Add or Remove Programs to open its window.

. Click on Google Web Accelerator. A Remove button will appear below the

Google Web Accelerator item.

4. Click the Remove button.

5. Close the Add or Remove Programs window and the Vlfindows Control Panel.

(
”
N
-
l

 

[The Google Web Accelerator Menu I w[W]

V J ""

1. How do I access the Google Web Accelerator menu?

 

 

You can bring up the Google Web Accelerator Menu by clicking on the Google

Web Accelerator speedometer icon in the toolbar or system tray.

  

FE) . 36.3w saved

 

Heb ' Preferences...

Preferences... Performance Data...

Performance data. .. Help >

DOO't accelerate “15 "Chit: Stop Google Web Accelerator

Stop Google Web Accelerate é;
 

Learn more about each menu item:

0 Preferences

0 Performance data

0 Stop/Start Google Web Accelerator

 

 

 

[Preferences .4 j ., A. _e . [M23
 

 

V1 . What Google Web Accelerator preferences can I set?

The Preferences menu option Opens this Web Accelerator Preferences page:

Figure 6.3. Snapshot of example web FAQ pages (3 of 4)
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{HQFEW “ .
“Lat—~31 Qlle’J/lon - Glossary of terms:

Taxes
cw... . ; Denomination

FinanciaLMgkgts i

AQQQUEJBQWQ War/ww- — Refers to the different values of

2:23,} i money. U.S. coins currently are made in the

-~-_.______ ‘ following six denominations: cent, nickel,

Went :

liasi§h§§£§

EQLKJSE

WW9. %

l §§§L§E§fi

5 Site Policies and

Notices

dime, quarter, half dollar, and dollar.

 

Quay/{on - What is the correct term for a

one-cent coin? 
I.77n.savr~ The proper term is "one cent

piece," but in common usage this coins is

often referred to as a penny or cent Many

times, even the Treasury Department and

the United States Mint use the term penny

because that is what is normally referred to

in general use by the public.

a
 

Quad/on ~Are there any plans to

remove the one-cent coin (more

popularly known as the “penny”) from

circulation?

f7ii/z.rrm?r ~ You may be interested to know

that the penny is the most widely used 
Figure 6.4. Snapshot of example web FAQ pages (4 of 4)
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QA from them. At least. three major reasons that contribute to the difficulty of the

task:

0 First, the list. of QA pairs within a FAQ page is often mixed with various amount

of noise text, such as section headings, navigational text, or annotations, that

are not part of any QA pair. Separating the text. of QA pairs from the noise

text can be difficult.

0 Second, it is usually significantly more challenging to accurately identify the

texts for answers than for questions. This is because the answer text tends to

be much longer than that of questions, and more diversified in its presentation

format and word usage.

0 Third, many questions and answers from the FAQ pages do not follow the

grammar and syntax of English rigorously, which makes it difficult to apply the

algorithms that are developed in natural language processing.

One may enumerate a few heuristic rules for identifying questions and answers

from FAQ pages, such as punctuations, listing markers, lexical cues, repeating pat-

terns, etc., as suggested in several previous studies [136, 84, 137, 99]. However, there

are two major problems with employing those heuristics-based approaches. First,

due to the large diversity in the presentation formats of questions and answers, it is

difficult, if not impossible, to come up with a comprehensive list of heuristics that

cover all the possible presentation patterns. Second, many heuristic-based approaches

tend to struggle between false positives (i.e., accuracy) and false negatives (i.e, com-

pleteness) in QA extraction. More specifically, a set of relaxed heuristic rules tend

to find more QA pairs but at the price of including noise text into the QA pairs; by

tightening the heuristic rules, we are likely to avoid the problem of including noise

text but at. the risk of missing many true QA pairs.
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Another approach toward QA extraction is to View it as a classification problem

of three classes, i.e., the class of questions, answers, and noise. we can then employ

the supervised learning algorithm to train a statistical classifier from the labeled ex-

amples. However, a key difficulty with this approach is that, due to the large variance

in the presentation formats of QAs, it is difficult for any supervised learning algo—

rithm to capture all the possible patterns from a. limited number of labeled examples.

Apparently, this difficulty originates from the Across Page Diversity. Fortunately,

while QA markup may vary widely across pages, it is generally true that within sin-

gle pages QA markup is consistent. This Within Page Consistency principle can be

viewed as “side information” - which encodes human knowledge on the fact of FAQ

page creation — to the QA extraction task. As will be shown later in this section, the

principle’s accuracy is well supported by empirical study.

The Within Page Consistency leads to the possibility of a bootstrapping approach

to QA pair extraction: various heuristics that have been proposed for QA pair extrac-

tion can be deployed to perform a high-precision labeling of a seed set of text segments

as questions, answers and noise; an optimization problem is solved that essentially

propagates the class labels of the seed segments to the text segments that share sim-

ilar HTML formats as the seeds. This optimization problem can be described in a

transductive learning setting, similar to the well-known semi-supervised learning al-

gorithm — Spectral Graph Transducer [87]. Given a large enough database of FAQ

pages, which themselves have to be extracted in a high-precision fashion, each of the

extraction steps -—labeling of seed examples, and similarity—based propagation—can

be tuned to high precision, resulting in a large database of correctly identified QA

pairs. We show in an experimental evaluation that compared to both heuristics-based

and supervised learning approaches, the proposed approach significantly improves

precision in QA extraction.

The key advantages of the proposed algorithm are
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o It takes full advantage of the heuristics discovered by the previous study of QA

extraction.

0 It is entirely unsupervised in that all the labeled examples for the semi-

supervised learning algorithm are acquired by the heuristic rules. Therefore

no human annotation is needed.

0 The extraction from one Web FAQ page is independent from any other pages,

which enables the algorithm to be carried out in a parallel manner to handle

huge amount of data from the Web.

The remaining chapter is organized as follows. In Section 6.2 we briefly review

previous work on automatic QA extraction, and the related Spectral Graph Trans-

ducer algorithm. In Section 6.4, we present a few important observations on the web

FAQs data that motivates our work. The semi-supervised learning algorithm for QA

extraction is proposed in Section 6.5. Experiments and discussions are presented in

Section 6.6. Finally, Section 6.7 concludes the work.

6.2 Related Work

6.2.1 QA Extraction from the Web

At first glance, extracting QA text from FAQ pages looks like a typical information

extraction (IE) task. In [111] a maximum entropy Markov model has been proposed,

and in [97] logical structure detection is used. While both approaches prove to be

effective in QA text extraction from Usenet FAQ files, they are domain-specific since

they rely heavily on the special format of Usenet FAQs. Although IE research have

gained significant progress towards open-domain free-text tasks (for example, seminar

announcement extraction [36]), the extraction is usually carried out as filling template

slots. Unlike seminar announcements that have a relatively fixed set of themes and
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presentation formats, QA can be a place-holder for virtually any theme or any pre-

sentation format. As a result, it is difficult to apply IE algorithms to extract QA

pairs from FAQ pages.

Most of the previous studies on QA extraction from FAQ pages [99, 136, 84, 137]

are heuristics-based approaches. In summary, four types of heuristics have proved

to be useful for identifying QA text segments in a FAQ page: (1) punctuations, (2)

HTML tags (e.g., <p>, <BR>), (3) listing markers (e.g., 0:, (1)), and (4) lexical cues

(e.g., What, How). Then rules or memory—based learning algorithms are applied to

determine whether or not a text segment is a question or an answer. However, most

previous efforts toward building a QA repository only aim at extracting FAQ ques-

tions. Only a few studies are related to extracting FAQ answers. The work reported

in [99] concentrates on the extraction of FAQ questions, and defines as answers the

region between two consecutive FAQ questions, thus ignoring the separation of QA

pairs from noise text. In [136, 84, 137], up to three consecutive sentences following

each identified question are viewed as the corresponding answer text. As already

pointed out in Section 6.1, FAQ answers are significantly more difficult to be ex-

tracted than FAQ questions due to their length and diverse presentation formats. An

important aspect that distinguishes our work from all the previous studies is that we

are aiming at complete and noise—free text of both FAQ questions and answers, which

is more challenging yet more useful for most deployments of QA repositories.

6.2.2 Review on Spectral Graph Transducer

Spectral Graph Transducer (SGT) [87] balances between fitting a model that is con-

sistent with supervised information (from labeled examples), and taking the central

assumption behind nearly all semi—supervised learning algorithms, i.e., examples are

more likely to share the same class labels if they are close to each other or in the

underlying manifold. Suppose {:r,}?=+1m is the set of data examples, with the first n
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web pages FAQ pages QA pairs

count 4 billion 795,483 10,568,160

 

      

Table 6.1. Corpus statistics of QA pair data

examples being labeled and the rest m examples as unlabeled. An (n + m) x (n + m)

matrix L is defined as the graph Laplacian that can be derived from the pairwise

similarities of all the data examples [38, 87]. Note that the graph Laplacian matrix

L captures the structure of both label and unlabeled data. A (n + m)—dimension

vector r is used to encodes the label information, where r,- = 73+ if 3:,- is a positive

example, 7*, = 7“- if x,- is a negative example, and 7‘,- = 0 if :13,- is unlabeled. f... and

7”"- are constants that depend on the priors of the two classes. Let f 6 1R" denote the

vector of predicted class labels. Spectral Graph Transducer is defined by the following

optimization problem

mfin fTLf + C(f — r)TC(f — r) (6.1)

at fTe = 0 (where e = [1, - -- ,1]T)

fo = n + m

where the matrix C = diag(c1, c2, . . . ,cn) is a diagonal cost matrix that assigns a

different misclassification cost for each labeled data example. The trade-off between

graph cut value (i.e. the first term) and training error (i.e. the second term) is

balanced through the constant c.

6.3 FAQ Page Classification

As shown in Table 6.1, the FAQ pages used in our experiment were extracted from a

4 billion page web crawl using the queries “inurl : f aq” and “inurl : faqs” to match

the tokens “faq” or “faqs” in the urls. This extraction resulted in 2.6 million web

pages (0.07% of the crawl). Since not all those pages are actually FAQs, we manually
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labeled 1,000 of those pages to train an online passive—aggressive classifier [41] in a

10—fold cross validation setup. Training was done using 19 features on URLs, question

marks and word statistics (see Appendix A3 for details), and resulted in an F1 score

of around 90% for FAQ classification. Application of the classifier to the extracted

web pages resulted in a classification of 795,483 pages as FAQ pages. Instead of going

into more details of the FAQ page classification algorithm, we will concentrate in this

paper on QA pair extraction, and present the main algorithm for QA pair extraction

from FAQ pages in followinor section.

6.4 Observations on Web FAQs Data

To better understand the challenges in extracting QA pairs from the FAQ pages, in

this section, we summarize some important observations from the web FAQs data 1

as follows

Noise Text For most FAQ pages, we often find the noise text that do not consist of

any questions or answers. These texts can appear either between two consecu-

tive QA pairs or outside the entire list of QA pairs. It is important for the QA

extractor to remove the noise text from the identified questions and answers.

Question Mark Rule Most, though not all, FAQ questions end with question

marks. This implies that the question mark is an important feature to identify

FAQ questions.

Pattern Diversity and Within Page Consistency Due to the heterogeneous

authorships of web pages, no specific text formats are consistently used across

all the FAQ pages. This implies that it could be very difficult to develop a

supervised learning algorithm that is able to capture the large diversity in the

 

1Note that there are two types of FAQ pages: one that compiles multiple QA pairs in a single

page, and the other that devotes each page to only one QA pair. We will focus on the first type

since it is dominant on the web.
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presentation patterns of QA pairs across different FAQ pages. However, within

a FAQ page, it is often the case that consistent HTML formats are used to

present questions, answers, and noise text. Moreover, the formats for present-

ing questions, answers, and others are often different and distinguishable. This

motivates us to consider a semi-supervised learning algorithm that explicitly

exploits the within page consistency.

The proposed algorithm consists of two major components, i.e., the heuristics

that are applied to identify the seed examples of FAQ questions, answers, and noise

text, and the semi-supervised learning algorithm that propagate the class labels of

the seed examples to other text segments based on the Within Page Consistency

principle. The following heuristics are used to identify the seed examples:

1. From all the text segments that end with question marks, select the ones whose

format repeats the most often and label them as FAQ questions. 2

2. From all the text segments between any two consecutive FAQ questions that

are identified by the first heuristic, select the ones whose format repeats the

most often and label them as FAQ answers.

3. If a text segment repeat itself k time in a FAQ page, all those occurrences of

the text segment will be labeled as noise text. 3 k is a predefined integer, and

is set to 4 in our experiments. And all text segments before the first question

are labeled as noise.

All the above heuristics can be seen as a simplified version of those proposed in

previous studies that are mentioned in Section 6.2.1. These rules tend to be accurate

with very small number of false positives. According to our study, these rules can

 

2Text segments of hyperlinks are excluded, to avoid the possible question lists at the top of the

many FAQ pages.

3This heuristic is designed to detect those highly repetitive noise text (such as navigational links,

e.g., “back to top”).
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achieve a precision of 96.8% in classification 4.

6.5 A Semi-supervised Learning Approach for QA Extrac-

tion

In order to exploit the Within Page Consistency principle, in the proposed approach,

we view the extraction of QA pairs from each FAQ page as an independent multi-

class classification problem, i.e., to classify each text segment in a FAQ page into

the classes of questions, answers, and noise text. The key idea behind the proposed

algorithm is to first identify a few text segments that can be classified by the specified

heuristics. The class labels of these identified segments are then propagated to the

text segments of the same web page that are similar in HTML format. In this section,

we first review the preprocessing step that divides the FAQ page into text segments,

followed by the description of the proposed semi—supervised learning algorithm for

QA extraction.

6.5.1 Web Page Preprocessing

The main purpose of preprocessing is to divide a FAQ page into text segments to

be classified. In order to exploit the Within Page Consistency principle, we need

an effective way to represent the presentation format of text segments so that the

similarity between any two text segments can be computed accurately. Since all the

web FAQS are presented in the HTML file, we propose to divide each FAQ page into

text segments based on the layout of the HTML tags, and represent the format of

each text segment by the related HTML tags. In particular, we define a tent segment

as a continuous text region that is surrounded by exactly the same pair of immediate

 

4Due to the well-known precision-recall trade-off, when the precision of those rules are tuned to

96.8%, the corresponding recall becomes very low. Therefore these rules, though can achieve high

extraction accuracy, are not suitable for complete and noise free QA extraction

 



opening and closing tags. For example, given the following HTML text

<HTML><HEAD> Title Goes Here </HEAD>

<BODY><H1> This is the heading </H1>

<P> 01: this is question 1 </P>

<P> A1: answer 1 starts here

<SPAN style="font-size: xx-small;">

some small font text </SPAN>

<TABLE><TR><TD> table cell 1 </TD></TR>

<TR><TD> table cell 2 </TD></TR></TABLE></P>

the identified text segments are: "Title Goes Here", "This is the heading",

"01: this is question 1","A1: answer 1 starts here","some small font

text", "table cell 1", "table cell 2". Given the identified text segments, the

next step is to represent the format of each segment by a sequence of HTML tags. In

particular, each text segment t,- is represented by a HTML tag sequence q,- includ-

ing all the HTML tags that surround segment t,- from outermost to innermost. For

example, for the text segment Q1: this is question 1, its HTML tag sequence

is HTML, BODY, P, while the HTML tag sequence for the text segment some small

font text is HTML, BODY, P, SPAN. Finally, given the representation of presenta-

tion format, the format similarity between two segments t,- and tj is calculated as

follows:

Simf(ti7tj) : exp(-Ad(qivqj)) (62)

where d(qi,qj) is the edit distance between the two corresponding HTML tag se-

quences qz- and qj. A is a decay factor (set to 0.1 in our experiment).

We find that there is a disadvantage of the web page division scheme we proposed

here. In particular, it will break a sentence into multiple text segments if there are

hyperlinks or highlighted terms within the sentence. To remedy this problem, we
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can detect the broken sentences from the text segments based on a few grammatical

rules. For example, a text segment ending with no punctuation and its following text

segment starting with an small-cased letter are very likely to be two broken parts

from the same sentence. We then adjust the similarity measurement as follows:

5i,j = .9t7nf(tz', tj) - biaj (6.3)

where simf is the format similarity, and bi,j is an adjustment factor from broken sen-

tence detection, i.e. bi,j takes a constant value b0 > 1 if t,- and tj are two neighboring

text segments that are detected as from the same sentence, and 1 otherwise.

6.5.2 Semi-supervised Learning for QA Extraction

The key idea of the semi-supervised learning approach is to propagate the class labels

of the text segments that are classified by the heuristics to the segments of the same

page that are similar in the presentation patterns. The idea of label propagation, as

shown in [87], is equivalent to minimizing the inconsistency between the similarity of

text segments and the class labels assigned to the segments. We can thus encode the

idea of label propagation by the following optimization problem:

Let {tfifitl denote the set of all N text segments in a FAQ page. We introduce a

probability matrix P = (PM) , where 172',j indicates the probability of assigning

Nx3

the i-th text segment to the j-th class. Here, we encode the three classes by: class 1

for FAQ questions, class 2 for FAQ answers, and class 3 for noise text. Note that for

each segment t,-

2PM = 1 (6-4)

j

For convenience, we also use pj to denote the j-th column vector in the matrix P,

i.e., P = [p1,p2, p3]. Each vector pj includes the probability of all the text segments

belonging to the corresponding class.
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To represent the class information of those seed text segments, we introduce an-

other matrix P : (pm-)ng, where 13,-,j = 1 if the i-th text segment is a seed text

segment that is classified into the j—th class by the heuristics, and 13,),- = 0 otherwise.

Similarly we can decompose the matrix P into column vectors that represent the seed

examples in each class respectively, i.e., P = [131,132,133].

Let a matrix S = (Sii’)N>< N denote a matrix of all the pairwise similarities of

the text segments, as defined in Equation (6.3). We can view the similarity matrix S

as building a weighted graph: each node represents a text segment; if the similarity

between two text segments is non-zero, the corresponding two nodes is connected by

an edge that is weighted by the similarity value. Based on a weighted graph, we can

define a normalized graph Laplacian [38]

L = I — D—ls

where D :2 diag(d1, - -- ,dN) is a diagonal matrix with each d,- = Zi’ 31,24. The

graph Laplacian includes the format similarity between any two text segments, and

will be used as the basis to exploit the Within Page Consistency principle.

Our goal is to estimate the optimal set of probabilities in the matrix P, such that if

two text segments are similar in their presentation formats, they will be assigned with '

similar probabilities to the three classes. In addition, the optimal set of probabilities

should also be consistent with the class labels that are assigned to the seed examples

by the heuristics. All these can be formulated into the following optimization problem

jlp[Tij + Cj (Pj - Pj)TAj(Pj - Pfi] (6-5)

s.t. -,1]T

p120) j=112i3

where A -J is a diagonal matrix with a diagonal element equal to 1 if corresponding
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text segment is a seed example in the j-th class and 0 otherwise. Cj is a predefined

factor that balances the two terms in the objective function.

The first term pJLJ-pj in the objective function (6.5) is exactly the normalized

graph cut [134, 87], whose minimization leads to a two-way clustering with minimum

intra—cluster connections [134]. In particular, this term can be further divided into

two parts, i.e.,

T

Pj ij = Z Sir/(Pia ’ pi’,j)2/Zsi,i’ (6'6)
/ i

i,i

Thus, by minimizing the first term, we enforce the consistency between the class label

assignment and the similarity measurement. The second term (pj — 13,-)TAJ-(pj —

13]) is a term that penalize the disagreement between the estimated probabilities

pj with 13,-, the class labels of the seed examples. Instead of formulating it as a

hard constraint in the optimization problem, we use the penalty term to ensure the

consistency between pj and 13,-. The advantage of such a treatment is that it leaves

the room for correcting labeling mistakes in the seed examples.

It is easy to find our proposed model in the expression (6.5) can be viewed as

a multi-class version of the Spectra] Graph Transducer model reviewed in Section

6.2. As pointed out before, our proposed model can be explained from the view of

label propagation: the enforcement of within page format consistency and agreement

with seed examples on all the probabilities pm- can be viewed as propagating the

labeling information from the labeled seed text segments to the unlabeled ones along

the structure of the weighted graph. Since we need to decide the probabilities of

assigning each text segment to three classes, our approach indeed has three separate

propagations, each for a different class. It is important to point out that the three

propagation processes are strongly correlated. This is because if a text segment is

assigned with a large probability for one class, the probability of assigning the text

segment to the other classes has to be small. This can be further illustrated by the
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Step 0 Divide the page into text segments and

compute their pairwise format similarity (as

described in Section 6.5.1)

Step 1 Initialize a labeled example set L by

identifying a few seed examples (as

described in Section 6.4)

Step 1.1 Solve the semi-supervised model in (6.5)

Step 1.2 Predict the class label of each text segment

  by the class with the largest probability.
 

Figure 6.5. The semi-supervised learning algorithm for extracting QA pairs from FAQ

pages

dual problem of (6.5), i.e.,

3

min A+u-+CoA"-TL+C-A-‘1A+u-+C-A-“-
“Ag? J .7 39]) ( J J) ( J J JpJ)

S.t.11j 20, j=1,2,3

where A and uj are the Lagrangian multipliers. Given the optimal solution for A and

uj, the solution for the primal problem can be written as:

pj = (L + CjAj)_1()‘ + llj + CjAjfij)

Clearly, the solutions for all pj’s are correlated through the Lagrangian multiplier

A. Finally, compared to the SGT approach, another advantage of the proposed algo-

rithm is its probabilistic nature. As we will show in our experiments, the estimated

probability does reveal the uncertainty in classifying text segments into the class of

questions, answers, or noise text.

The optimization problem (6.5) is a quadratic programming problem, and there-

fore can be solved efficiently using the standard packages. Given the estimated prob-

abilities in P, we predict the class of each text segment by the one with the largest

probability. Figure 6.5 summarizes the proposed algorithm for QA extraction.

As the final step, we need to form the QA pairs based on the class labels assigned

to the text segments in each FAQ page. To this end, we first reduce the sequence
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by removing all the text segments being labeled as “noise, text”; then in the reduced

sequence, we merge those consecutive text segments that have the same label; finally,

we pair each merged text segment being labeled as answers with its most immediate

proceeding text segment being labeled as questions, thus form a QA pair. For ex-

ample, suppose we have a sequence of text segments (represented by their IDs) and

their classes labels (represented by Q, A, 0) as follows

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

DUQQOAAOQAAOAQAAO

Then three QA pairs can be extracted from the above sequence:

QA Pair 1: Question-#3,#4; Answer-#6,#7

QA Pair 2: Question-#9; Answer-#10,#11,#13

QA Pair 3: Question-#14; Answer-#15,#16

6.6 Experiments and Discussions

6.6. 1 Experiment Setup

Our testbed includes 10,912 text segments, which forms 1303 QA pairs 5. All these

1303 QA pairs are all manually labeled, and will be used as the truth for evaluation.

Since our proposed algorithm does not need any training data, we will carry out our

proposed algorithm on all the FAQ pages, and compare the extracted QA pairs with

the truth, i.e., the manual labeled QA pairs, for evaluation.

Both precision and recall are used as evaluation metrics. They are defined as

 

E‘These text segments come from 100 FAQ pages that are randomly selected from those FAQ

pages we’ve identified from our web crawl data, as described in Section 6.3. The selection does not

favor any particular domain or page content). The size of this dataset is comparable to those used

in [99, 136, 84, 137].
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follows

Number of correctly extracted QA pairs
 Precision =

Number of extracted QA pairs

Number of correctly extracted QA pairs

Recall =
 

Number of the true QA pairs

Note that a QA pair is “correctly extracted” if and only if the corresponding question

and answer share the identical sets of text segments with those that are manually

identified as a QA pair.

Since the above evaluation metrics defined above view all the text of an QA pair

as a whole, we refer to it as evaluation by QA. Evidently, these evaluation metrics

are very “strict” in that as long as an extracted QA pair is not identical to the true

one, it won’t count as correct, no matter how small the extraction error may be. Here,

we define another set of metrics based on word counting that are relatively “looser”

compared to the evaluation by QA. Specifically, we can define

Number of correctly extracted QA words

Number of extracted QA words

Number of correctly extracted QA words

 Precision =

 R 11 =

eca Number of words in the true QA pairs

Here, a word is correctly extracted as long as it is in the true QA pairs. Note that

using this set of evaluation metrics, an extracted QA pair will have some chance to

obtain “partial credit” when it is not identical to the true one. Since the evaluation is

based on word counting, we call it as evaluation by word. Furthermore, we combine

precision and recall together and compute the F1 score that is defined as harmonic

mean of precision and recall. All the above precision/recall/F1 metrics for QA pair

extraction can be extended to evaluate the performance of extracting FAQ questions

or FAQ answers separately.

To obtain comprehensive understanding of the overall performance of the ex-

traction, two different averaging methods are used in our evaluation. In the first

averaging method, we compute the evaluation metric (i.e., precision, recall, or F 1)
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for each FAQ page, and average it across all FAQ pages. We refer to this averaging

as macro-averaging. Alternatively, we can directly compute the evaluation metrics

for all the individual QA pairs from all the FAQ pages. We refer to this method as

micro—averaging.

We implemented three baseline methods. The first two are based on heuristics,

and have been used in previous studies [99, 136, 84, 137]. Both baseline methods

6 to first identify all the questions. In the firstemploy an optimal set of heuristics

baseline method, all the text between two consecutive questions are identified as the

answers to the proceeding question? We refer to this method as “H-all”. In the

second baseline method, up to 3 sentences following each FAQ question are extracted

as the corresponding FAQ answer. We refer to this baseline method as “H-3”. The

third baseline is Support Vector Machine with precomputed kernels, which is a rep-

resentative supervised learning method. We use the 1/4 of the FAQ pages as the

training set, and the rest as the test set. The kernel is precomputed using the sim-

ilarity measurement defined in Section 6.5.1. LibSVM [34] software package is used

in our experiment. we will refer to this method as “kSVM”. Finally, we will use

“SSL” to refer to the proposed semi—supervised learning algorithm for extracting QA

pairs from FAQ pages. The constants in the optimization problem (6.5) are set as

C1 = 1, C2 = C3 -.= 0.5 from empirical experience.

6.6.2 Experiments on Verification of Side Information

We first examine the Within Page Consistency principle, namely two text segments

of the same page tend to follow the same HTML format pattern if they are in the

same class. To verify this principle, we computes two quantities for each pair of

text segments using the manually labeled FAQ page set: the similarity between the

 

6The optimal set of heuristics are identified empirically.

7For the last question in a FAQ page, up to n text segments are extracted for its answer, where

n is the average number of text segments in all previous FAQ answers.
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Figure 6.6. The probability distribution for two text segments to be in the same class

versus the format similarity between text segments

two text segments in their HTML format, and whether or not the two segments are

in the same class. Figure 6.6 summarizes the results by showing how the format

similarity between two text segments affects the probability for them to be in the

same class. The two solid lines show the results for the intra—class similarity of two

text segments within the same pages, and the two dot lines show the results for the

intra—class similarity of two text segments from different pages. It is clear that for

the text segments of the same web pages, their intra—class similarity nicely indicate

their relationship, namely the larger the similarity between two text segments, the

more likely the two segments will be classified into the same class. In contrast,

the intra—class similarity between text segments of different web pages appears to

be uninformative to their class memberships. Both dot lines in Figure 6.6 are flat
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across wide range of the similarity, and do not. show the clear trend that the larger

the similarity the higher the probability. We thus conclude that the Within Page

Consistency principle provides a piece of valid side information for our experiment

data.

6.6.3 Experiments on QA Extraction

Table 6.2 lists the precision/recall/F1 of the four different approaches for QA extrac-

tion. As shown in the table, the F1 scores of the proposed “SSL” method are always

considerably better than the three baseline models, whether using the micro—averaging

or the macro—averaging method. Especially, when using the strict evaluation metrics

“by QA”, the improvement made by the proposed algorithm is significant. Therefore,

we can conclude that our proposed “SSL” method perform better than the baseline

methods in extracting QA pairs from the FAQ pages.

Further analysis on the experiment results reveals the following findings

1. For all the four algorithms, the performance of FAQ question extraction is in

general significantly better than that of FAQ answer extraction when using the

metric of evaluation by QA. This is in accordance with the fact that answers

are more challenging to extract due to its longer length and more diversified

formats.

2. In general, for all the four extraction methods, the scores of evaluation by word

are considerably higher than the scores of evaluation by QA. This observation

implies that although the noise text mixed with the FAQ text is small in amount,

it is pervasive. This is related to the fact that there are often repeated patterns

in the FAQ pages, so an error in extracting one QA pair will be very likely to

recur when extracting other QA pairs. When the extracted QA pairs are used

in other applications as enumerated in Section 6.1, such kind of pervasive and

recurring errors could be a very annoying factor that can seriously degrade the
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By QA

micro-averaging macro-averaging

P R F1 P R F1

H-all Pair 0.5055 0.4950 0.5002 0.5089 0.4919 0.4965

Q 0.8706 0.6662 0.7548 0.8617 0.6564 0.7280

A 0.5078 0.4973 0.5025 0.5105 0.4933 0.4980

H-3 Pair 0.4704 0.3599 0.4078 0.4601 0.3532 0.3910

Q 0.8706 0.6662 0.7548 0.8617 0.6564 0.7280

A 0.4794 0.3669 0.4157 0.4681 0.3578 0.3968

kSVM Pair 0.1267 0.1696 0.1450 0.1001 0.1493 0.1189

Q 0.3029 0.2304 0.2617 0.2109 0.1923 0.1956

A 0.1323 0.1842 0.1540 0.1104 0.1569 0.1245

SSL Pair 0.8163 0.7130 0.7612 0.7698 0.6838 0.7159

Q 0.9411 0.8220 0.8775 0.9196 0.7891 0.8356

A 0.8383 0.7322 0.7816 0.7901 0.7010 0.7344

By Word

micro—averaging macro-averaging

P R F1 P R F1

H-all Pair 0.8728 0.6987 0.7761 0.8640 0.7518 0.8007

Q 0.8896 0.7156 0.7932 0.9027 0.7196 0.7535

A 0.8673 0.9051 0.8858 0.8559 0.9102 0.8680

H-3 Pair 0.9303 0.3543 0.5132 0.9137 0.4656 0.5790

Q 0.8896 0.7156 0.7932 0.9027 0.7196 0.7535

A 0.9441 0.3113 0.4682 0.9229 0.4365 0.5486

kSVM Pair 0.4930 0.4265 0.4573 0.3922 0.3729 0.3654

Q 0.5023 0.5313 0.5164 0.4238 0.4247 0.4156

A 0.5123 0.4269 0.4657 0.4323 0.3920 0.4107

SSL Pair 0.9806 0.8126 0.8887 0.9589 0.8077 0.8493

Q 0.9800 0.8163 0.8907 0.9496 0.7981 0.8590

A 0.9807 0.8727 0.9235 0.9506 0.8324 0.8827    

 

 
Table 6.2. The performance of QA extraction by four different methods. The columns of

“P”, “R” and “F1” give the precision/recall/F1 scores.
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application performance.

0
:
:

. It is interesting to observe the performance gap between the “H-all” algorithm

and the “SSL” when we use different evaluation metrics. Using the metrics of

evaluation by word, the scores of the “H-all” algorithm are high, and sometimes

close to those of the “SSL” algorithm. However when using the metrics of

evaluation by QA, the performance gap between “Hall” and “SSL” is much

larger. This phenomenon shows that instead of extracting a large number of

QA pairs with small errors, our “SSL” method is able to yield many more

complete and noise-free QA pairs, thus improving the quality of extracted QA

text.

4. When comparing the “H-all” method with “H-3” method in terms of FAQ

answer extraction 8, we observe that using the “by word” metrics, the former

approach has a much better recall, but a worse precision. This is because the

“H-all” algorithm includes all the text between two consecutive questions as the

answer, and therefore achieves a high recall. In contrast, the “H—3” algorithm

only includes the first up—to—three sentences following a question as the answer,

and therefore achieves a high precision. This result shows the interesting trade-

off between precision and recall that exists in most heuristics-based approaches.

5. The performance of “kSVM” method is extremely poor. This is not surprising,

since the precomputed kernel encodes much information about the intra—class

similarity from different pages, which is shown to be uninformative as discussed

in Section 6.6.2. This experiment implies that the large variance existing in

the presentation format from different FAQ pages is hard to be captured by a

supervised learning algorithm, given a limited number of labeled examples.

As stated before, one important advantage of the proposed algorithm is that it

 

8Their performance in extracting FAQ questions are the same because the two methods only

differ in their FAQ answer extraction strategies.

177

 



The Effectiveness of Label Probabilities

 

   

  

1~ ,. ,,,,,,,,,,,,,,, . ..... . ....... .

i------ " * * o
O . —

I
’v .7! s

9 ’, xi °~-,_-o

>‘O.8‘ \ fi _0” .

g . ‘t.’—;.

H — .~ ! b
:5 0 .7 {I _I a’ .

U 9‘ .’ I

O 0.6— -:I"\ ~_I»” . . ..

fi .5! \‘ 1

c: 0.5— X 2' +All

S +/ ,w’ '“+ Question

'80'4_ :1!” I ' '9-Amswer '

H :
. .

'8 O.3~ if .. - *-°---N01se

H _,

a.0.2—

O.l~

0 L 1 1 1 l 4' i

0.4 O. 0.8 0.9 l5 0 .6 0.7 _ _

Label Probability

Figure 6.7. The correlation between prediction accuracy and classification probability

estimated by the proposed algorithm for QA extraction

outputs not only the classification results but also the uncertainty in classification.

To examine the quality of the class probabilities that are estimated by the proposed

algorithm, for each text segment, we compute two quantities: the label probability

output by the proposed algorithm, and whether or not the predicted class label is

correct. Figure 6.7 summarizes these results by showing how the prediction accuracy

of each class is affected by the estimated label probability. Overall speaking, the larger

is the estimated probability, the higher is the prediction accuracy. We thus conclude

that the estimated label probabilities do indicate the confidence of classifying text

segments.
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6.7 Conclusions

In this paper, we study the problem of automatically extracting QA pairs from web

FAQS. We first identify the pattern diversity challenge, a key challenge in QA extrac-

tion from FAQ pages. We then present a semi-supervised learning algorithm that is

effective in exploiting the Within Page Consistency principle, the key side information

to the QA extraction task. The main advantage of the proposed algorithm is twofold:

first, the proposed algorithm is able to boost the limited knowledge by generating the

seed examples that are labeled by heuristics; second, the proposed algorithm is com—

pletely unsupervised. It predicts the class labels of text segments by propagating the

class labels of seed examples to the other text segments of the same page. Empirical

study shows that our proposed QA extraction method is able to yield more complete

and noise-free extracted QA pairs, hence improving the extraction performance sub-

stantially over heuristics-based or supervised learning approaches in previous studies.
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CHAPTER 7

Conclusions

The topic of this thesis work is semi-supervised learning with side information. In

previous chapters, three generic learning tasks and two applications are discussed in

details. The contributions, of each chapter respectively, can be summarized as follows

a In Chapter 2, we propose a constrained non-negative matrix factorization

(CNMF) model for multi-label learning with class correlations, to meet the

challenging situation of a large number of classes and a small size of training

data.

0 In Chapter 3, we propose a novel boosting framework, LinkBoost, to improve

any supervised classification algorithm with link information.

o In Chapter 4, we propose a novel boosting framework, BoostCluster, to improve

any clustering algorithm with pairwise constraints.

0 In Chapter 5, we propose a novel statistical framework, Maximum Coherence

Framework, for query translation disambiguation in cross-language information

retrieval with a bilingual dictionary.

0 In Chapter 6, we propose a semi-supervised learning model that utilizes human

knowledge on web FAQs, to automatically extract question-answer pairs from

them without human supervision.
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The role of side information played in each task and application is listed as follows

0 In CNMF model for multi-label learning, side information (in the form of class

correlations) is encoded with class labels for computing pairwise example sim-

ilarities, whose consistency with input pattern based similarities is further en-

forced.

o In LinkBoost framework for classification, side information (in the form of links)

is combined with input pattern based example similarities, whose consistency

with the pairwise relationship induced from class labels is further enforced.

o In BoostCluster framework for clustering, side information (in the form of pair-

wise constraints) is enforced to be consistent with input pattern based pairwise

similarities computation.

o In Maximum Coherence model for CLIR, side information (in the form of die-

tionaries) is used to construct a graph, over which soft class memberships are

enforced to be consistent with pairwise term similarities (or “coherence”).

o In automatic question-answer extraction from web FAQS, side information (in

the form of “within page consistency” knowledge) is used to correlate three

class label propagations over the same graph, where each label propagation can

be explained as consistency enforcement between class labels and input pattern

based similarities.

From the above, it is easy to find that consistency enforcement is a common theme

involved in the use of side information. On an abstract level, the rationale behind all

the work presented in this thesis is the assumption that data examples that are close to

each other, when judging either from their input patterns or side information, should

be predicted similarly. This is a natural extension of the data consistency assumption

underlying most graph-based learning approaches (as stated in Section 1.1.2).
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To effectively use the side information against its usual nature of sparseness, in-

completeness and noise, when incorporating side information into semi-supervised

models, we deliberately avoid formulating them as hard constraints. Instead, we

favor the use of side information in soft penalty. In this way, violation with side

information is allowed, but with a loss; minimizing the collective violation loss results

in tolerance with the noise in the side information. Also, all our proposed models in-

herit the spirit of graph-based learning that a connected graph is constructed over all

the (labeled and unlabeled) data based on their input patterns. Such a graph serves

as a good supplement to understand the underlying structure of data, wherever side

information is missing. This treatment reduces the risk brought by the incomplete-

ness and sparseness of side information. Consequently robustness is presented in all

the proposed semi-supervised learning models with side information, as suggested by

those experiments shown in previous chapters.

In all the semi—supervised models proposed in this thesis work, the theme of con-

sistency enforcement is always achieved through optimizations. A comparison among

all the objective functions in Chapter 2 through Chapter 6 will reveal a certain de—

gree of resemblance. In particular, the consistency is always formalized in a pairwise

manner, i.e., the overall consistency is decomposed into consistency measurements

defined on each pair of data examples, including labeled and unlabeled ones. Such

a formalization embodies the use of unlabeled data, and also fosters the propagation

of supervised information from labeled data to unlabeled data. Another advantage

of formalizing optimization objectives in a sum-of-pairwise manner is, by carefully

choosing the consistency measurement defined in a pair of data examples, the result-

ing optimization is often convex, thus tractable and with global optimum.

The above analysis summarizes a few nice properties in the proposed semi-

supervised models. In conclusion, the work presented in this thesis suggests a viable

approach towards semi-supervised learning with side information: enforcing consis-
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tency among data input patterns, supervised information (if any), side information,

and predictions. We believe that this approach is applicable to a wide variety of

learning tasks and application areas.
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APPENDIX A

Related Proofs and Lists

A.1 Proof of the eigenvector problem in Section 4.3.3

We show that every non—zero eigenvector Vi can be written as a linear combination

of xi,i = 1,2,. . .,m, i.e., the examples involved in the pairwise constraints. Let v

and A % 0 be an eigenvector and eigenvalue of matrix XTXT. We therefore have

XTXTV 2 Av. We further decompose v into two parts: v = v” + V1.7 where v”

represents the projection of v in the subspace spanned by {523,531, and x_L represents

the projection perpendicular to {i,-}f:,. To show v can be written as a linear

combination of {i,}f_=1, we need to Show vi = 0. To this end, we first utilize

the expression in (4.20) to calculate VIXTXT, i.e.,

m

VIXTXT = Z edge-5a; = 0T

i,j=l

We then multiply the eigen equation XTXTV = Av by VI, which leads to the

following equation

T T T 2
viXTX v = 0 = Aviv 2 A||vi||2

Since A 74 0, we have Vl = 0 and v = v“.
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A.2 Proof of the generalized eigenvector problem in Section

4.3.3

We will show that for the ith eigenvector Vi 2 KW, of XTXT, wi corresponds

to the ith eigenvector of the generalized eigenvector problem in (4.22). First, we

realize that the orthogonality condition vavj = 6 (i, j ) becomes WZTXXTWj = 62,3“

We can write the above condition for all wi,i = 1, 2, . . . , s in the matrix form, i.e.,

WTXXTW 2 I3. Second, the eigenvectors V = (v1,v2, . . . ,vs) are the optimal

solution to the following optimization problem, i.e.,

arg max tr(VTXTXTV)

VERdxs

s. t. vTv = I,

Replacing V in the above optimization problem with V 2 KW, we have

max t1‘(WTXTXTXTXW)

WeR?” X S

s t. WTxTXW = I,

It is well known that the optimal solution W to the above problem consists of the

first 5 eigenvectors of the generalized eigenvector problem in (4.22).

A.3 Features for FAQ page classification

The 19 features we used in FAQ page classification are as follows

1. Occurrence of keywords faq or f aqs in the URL host section 1

2. Number of keywords faq or f aqs in the URL query section

 

1A URL can be divided into six sections. For example in

http://www.amazon.com:83/search.html?q=trave1#marker, the protocol section is http,

the host section is ww.amazon.com, the port section is 83, the path section is /search.html, the

query section is q=travel, and the fragment section is marker.

 

 



10.

11.

12.

13.

14.

15.

16.

17.

18.

Number of keywords f aq or faqs in the URL fragment section

. Normalized position of keywords faq or faqs in the URL path section (for

example, in URL path section /education/f aq/coins/denominations . shtml,

the keyword f aq appears in the 3rd segment when counting from right to left.

Since altogether there are 4 segments, the normalized position of the faq is 3/4)

. Number of question marks in the page body text

. Number of question marks in the page title

Number of question marks in the anchor text

. Logarithm of total number of words in the whole page text

. Number of anchors with question marks

Percentage of anchors-with—question-marks in all the anchors

Ratio of question marks to words in the page body text

Ratio of question marks to words in the page title

Ratio of question marks to words in all the anchor text

Average number of words between consecutive question marks

Number of text segments in the page body text

Number of text segments (see Section 6.5.1 for definition) with question marks

in the page body text

Percentage of text-segments—with-question-marks in all the text segments

Percentage of links in all the text-segments—with-question-marks

186

 

k
l

 



19. Number of well separated text—segments—with-question-marks (two consecutive

text segments are well separated if there are at least kt words between them. In

our practice, we set I; = 3.)
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