
BULK NUCLEAR PROPERTIES FROM DYNAMICAL DESCRIPTION OF HEAVY-ION
COLLISIONS

By

Jun Hong

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Physics-Doctor of Philosophy

2016



ABSTRACT

BULK NUCLEAR PROPERTIES FROM DYNAMICAL DESCRIPTION OF HEAVY-ION
COLLISIONS

By

Jun Hong

Mapping out the equation of state (EOS) of nuclear matter is a long standing problem in nuclear

physics. Both experimentalists and theoretical physicists spare no effort in improving understand-

ing of the EOS. In this thesis, we examine observables sensitive to the EOS within the pBUU

transport model based on the Boltzmann equation. By comparing theoretical predictions with ex-

perimental data, we arrive at new constraints for the EOS. Further we propose novel promising

observables for analysis of future experimental data.

One set of observables that we examine within the pBUU model are pion yields. First, we find

that net pion yields in central heavy-ion collisions (HIC) are strongly sensitive to the momentum

dependence of the isoscalar nuclear mean field. We reexamine the momentum dependence that

is assumed in the Boltzmann equation model for the collisions and optimize that dependence to

describe the FOPI measurements of pion yields from the Au+Au collisions at different beam ener-

gies. Alas such optimized dependence yields a somewhat weaker baryonic elliptic flow than seen

in measurements.

Subsequently, we use the same pBUU model to generate predictions for baryonic elliptic flow

observable in HIC, while varying the incompressibility of nuclear matter. In parallel, we test the

sensitivity of pion multiplicity to the density dependence of EOS, and in particular to incompress-

ibility, and optimize that dependence to describe both the elliptic flow and pion yields. Upon arriv-

ing at acceptable regions of density dependence of pressure and energy, we compare our constraints

on EOS with those recently arrived at by the joint experiment and theory effort FOPI-IQMD. We

should mention that, for the more advanced observables from HIC, there remain discrepancies of

up to 30%, depending on energy, between the theory and experiment, indicating the limitations of



the transport theory.

Next, we explore the impact of the density dependence of the symmetry energy on observ-

ables, motivated by experiments aiming at constraining the symmetry energy. In contradiction to

IBUU and ImIQMD models in the literature, that claim sensitivity of net charged pion yields to the

density dependence of the symmetry energy, albeit in direction opposite from each other, we find

practically no such sensitivity in pBUU. However, we find a rather dramatic sensitivity of differ-

ential high-energy charged-pion yield ratio to that density dependence, which can be qualitatively

understood, and we propose that that differential ratio be used in future experiments to constrain

the symmetry energy.

Finally, we present Gaussian phase-space representation method for studying strongly corre-

lated systems. This approach allows to follow time evolution of quantum many-body systems with

large Hilbert spaces through stochastic sampling, provided the interactions are two-body in nature.

We demonstrate the advantage of the Gaussian phase-space representation method in coping with

the notorious numerical sign problem for fermion systems. Lastly, we discuss the difficulty in

trying to stabilize the system during its time evolution, within the Gaussian phase-space method.
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CHAPTER 1

INTRODUCTION

Exploration of bulk nuclear properties under a wide range of density and temperature is one of the

central goals of nuclear physics. Nuclear equations of state (EOS) relate different thermodynamic

characteristics of nuclear matter, such as energy or pressure with density and temperature. Nuclear

matter itself stands for an infinite uniform nucleon system at some fixed ratio of neutron to proton

density, with Coulomb interactions switched off. The EOS relations are relevant for many physical

processes, e.g. excitation of giant collective resonances[6], the dynamics in heavy ion collision

(HIC)[7], the properties of neutron stars[3], etc. In HIC, a wide range of density and temperature

is achieved in the course of system evolution, providing study grounds to understand the EOS.

In astrophysical scenarios, pressure is one important macroscopic quantity that links to the data

from HIC. For a system at net density r , proton-neutron asymmetry a = (rn�rp)/(rn+rp), and

temperature T=0, the pressure P is related to energy per nucleon E
A (r,a) with

P(r,a) = r

2 ∂

E
A (r,a)

∂r

. (1.1)

In many situations in nuclear physics, including various microscopic calculations, it is E
A (r,a)

that is arrived directly, and then the relation above is used to get the pressure.

Energy per nucleon in nuclear matter can be expanded in powers of the neutron-proton asym-

metry a of the system:
E
A
(r,a) =

E
A
(r,0)+S(r)a2 +O(a4). (1.2)

Only even powers survive in the above expression results from the fact that, nuclear interaction is

symmetric for proton and neutron. The first term E/A(r,0) represents the EOS for symmetric nu-

clear matter (SNM), which has been significantly constrained. At zero-temperature E/A = (r,0)

minimizes at -16MeV per nucleon, at normal density of r0 = 0.16fm�3. The nuclear incompress-
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ibility K is the scaled curvature of energy at normal density, following is the relation between

incompressibility and energy:

K = 9r

2 ∂

2 E
A

∂r

2 . (1.3)

Nuclear incompressibility has been determined in nonrelativistic calculations to be 240MeV ±

20MeV, by studying excitations to the Giant Monopole Resonance (GMR). However, relativistic

calculations claim a bit higher values, with K⇡250-270 MeV[8]. Nuclear incompressibility con-

clusions impact research on collective motion in HIC and research on supernovae explosions and

conversely. In this thesis, we reassess assumptions on incompressibility employed in transport for

HIC, being inspired by the recent FOPI-IQMD analysis[9].

In the second term in the expansion of energy for asymmetric matter, the coefficient S(r) is

called the symmetry energy. Different efforts have been undertaken, with moderate success at best,

to constrain the density dependence of symmetry energy at r < r0, such as using experimental data

on isospin diffusion, Pygmy dipole resonances, giant dipole resonances, etc[10, 11, 12]. For r >

r0, our knowledge about the density dependence of S definitely remains poor[13, 4]. Therefore,

EOS for asymmetric nuclear matter still has large uncertainties.

1.1 Heavy Ion Collisions

Intermediate energy (100A MeV - 2A GeV) heavy ion collisions have been a powerful tool for

extracting information on bulk properties of nuclear matter. Foremost, they remain an important

testing ground in nuclear physics for studying the EOS at high temperature and high density. Heavy

ion nominally refers to nuclei heavier than 4He, but significantly heavier nuclei are more suitable

for EOS studies. Figure 1.1 shows the schematic sketch of before and after an intermediate-energy

nuclear collision. The asymptotic distance between the centers of two nuclei about to collide, in

direction transverse to the motion, is defined as the impact parameter b.
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Figure 1.1 The before and after sketch of an intermediate energy nuclear collision.

During a collision, the region of overlap between the nuclei may reach density as high as two

to three times the normal density, depending on the incident energy and impact parameter. The

participants within that region go through complicated interactions that give rise to an excited,

nearly equilibrated system. New particles are created if relative inter-particle energies are above

the threshold; when the newly created particles travel through the medium, they further experience

re-scattering and may get reabsorbed. As time progresses, elementary particles and heavier nuclear

fragments order their motion towards a Hubble-type expansion, with a local cooling down, until

they finally fly out of the reaction region.

1.2 Pions

In subatomic world, particles interact with each other by exchanging a force carrier. Pions act

as the force carrier between nucleons (protons and neutrons). The attractive residual strong force

holds the nucleus together. In 1930, the mass of pions were predicted by Hideki Yukawa, based
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on the uncertainty principle, from measuring the range of the strong force between nucleons. He

also predicted that pions have three charge states: positive, negative and neutral. Charged pions

were discovered in 1947 in the cosmic ray interactions and the neutron pion wasn’t discovered

until accelerator experiments in 1950.

Pions are the lightest mesons and are composed of up and down quarks. The mass of charged

pions is 139.6 MeV/c2, and of neutron pion is 135.0 MeV/c2. In intermediate energy HIC, they

are the first mesons to be created as energy is raised. Charged pion ratio has been identified as a

sensitive observable to symmetry energy, and it is further studied in this thesis.

1.3 Transport theory

1.3.1 Density functional method

To understand the measurements in HIC, theoretical models are needed to follow reaction process

from contact to product detection, and to provide guidance to the underlying physics. The number

of nucleons in intermediate energy HIC range from tens to hundreds; the degrees of freedom

involved are too complicated to be treated in a full quantum mechanical manner. Transport model

has been successful in characterizing the non-equilibrium dynamics in a nuclear reaction[14, 15,

16, 17, 18, 19, 20, 21, 22, 23].

Gross features of many body quantum systems are not likely to depend on details pertaining

simultaneously to all particles in a system. Even the interaction of any individual particle with the

rest is generally not likely to depend on such details. With that in mind, one can try to approximate

the complicated many-body dynamics with a simplified one where the details of the many-body

dynamics are averaged out. One primary example, where this is employed, is the Hartree-Fock

method[24, 25]. In its basic form of the method, the two-body interactions are averaged out over

positions of all particles. If more-particle effects matter within a system, a density functional is

constructed dependent on single-particle orbitals. The characteristics of a specific ground state are

found through a minimization of that functional. In the time-dependent case, equations of motion
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are derived from a variational principle with the density functional.

In nuclear transport, the elementary dynamic quantity is the particle phase-space distribution.

With this, the density functional theory becomes the Landau theory that historically has been put

forward in the context of Fermi liquids. Within that theory simplifications in the direction of the

Hartree-Fock practice are possible, yielding in particular the Skyrme-Hartree-Fock limit where

the functional is presumed to depend on phase-space distributions only through simple spatial

densities constructed from the phase-space distributions. Optical potentials in the single-particle

description in terms of a wavefunction or a phase-space density have similar physics content and

these descriptions formally merge in the nuclear matter limit.

A functional discussed above can be used to describe the energy and density profile for the

ground state and, in a more general situation, the equation of state for an excited system. However,

there is another average aspect of interactions, in that short-range encounters between particles[26]

can abruptly change momenta of the particles and even particle existence. This obviously of utmost

importance in a dynamic situation, even when it is of marginal impact on stationary quantities. In

a description in terms of single-particle wave-function orbitals, those encounters are accounted for

in terms of imaginary part of optical potential. In the Landau theory, the short-range encounters get

described in terms of rates for processes occurring over short times and distances. Both approaches

get generalized within nonequilibrium Green’s function theory where single-particle equations

contain terms that describe propagation as well as sink and source terms.

1.3.2 Transport models

Early on, cascade model was developed to treat nucleon collisions in a fully microscopic manner,

it is able to describe inclusive energy spectrums in intermediate energy HIC [27]. The limitation to

cascade model is that it ignores the mean-field effects which are important for describing collective

motions for nuclear matter. This inspires the development of more sophisticated semi-classical

transport models later to take into account the nuclear mean field in the theories. Currently, there

are two main types of transport models used in simulating HIC dynamics.
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The Boltzmann-Uehling-Uhlenbeck (BUU) transport model utilizes Boltzmann equations to

simulate HIC dynamics, it containing both mean field and hard nucleon-nucleon collisions. The

Boltzmann equation can be derived from the Kadanoff-Baym equation [28] - it samples the quasi-

particle distribution and describes the time evolution of the ensemble. It has been very successful in

understanding the physics driving the HIC. Efforts were made to improve the model over the years.

Bertsch et al. [22] introduced quasi-particle interactions in the Boltzmann equations. Danielewicz

and Bertsch [23] introduced three-body interactions for particle formations. And the energy func-

tional method for the mean field was introduced by Danielewicz [29].

Another important type of transport model is called quantum molecular dynamic (QMD),

where individual particles are represented by a Gaussian wave packet with fixed width, the total

wave function of the system is a product of all the Gaussian wave functions. The evolution of the

coordinates and momenta for the wave packets are solved classically, following the Hamiltonian

equations of motion. Both BUU and QMD models are semi-classical, and assign momentum and

position to individual particles. The nucleon-nucleon interactions are accounted for in an effective

mean field and in residual interaction. Particles travel through the mean field, and the residual

interactions lead to collisions. Phenomenological expressions for effective nuclear interactions,

yielding the EOS, are employed in the models.

In this thesis, we use the BUU transport model developed by Danielewicz et al. [23](often

called pBUU) as our theoretical tool to study the EOS. We will elaborate on the methodology of

the BUU transport model in the following subsection.

1.3.3 Details in the BUU model

The Boltzmann equation was originally derived by L. Bolzmann in 1872 for a gas of classical

particles with binary collisions[30], later Uehling and Uhlenbeck extended the equation to quantum

gas[31]. The BUU model adopted the quasiparticle approximation from Landau theory, where

quasiparticles are the excitations of the strongly interacting system. The system can be specified

by obtaining the occupation of quasiparticle states, i.e. the phase-space distribution functions. The
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model has been developed by many theorists with different variations[32, 33, 34, 35, 36, 37, 38,

39, 40].

In what follows, we give the formulas that underline dynamics in the pBUU model. In the

energy range of interest, the species accounted for are nucleons, pions, D, N* resonances, and

light (A3) clusters. More details on the production of particles can be found in Ref. [41]. The

Boltzmann equation for stable particles has the following particular form:

∂ fX
∂ t

+
∂eX
∂~p

∂ fX
∂~r

� ∂eX
∂~r

∂ fX
∂~p

= K <
X (1⌥ fX )�K >

X fX . (1.4)

The index X above is for different species of particles, and eX is the single particle energy. The

single particle energy and momentum form a covariant vector pµ = (e,~p). The factors K < and

K >, are the feeding and removal rates, respectively, for specific momentum states, and the upper

and lower signs in their expressions are for fermions and bosons.

The propagation of particles through the nuclear mean field is accounted for on the left hand

side of the equation. On the right hand side of the equation, the elastic and inelastic interactions

are included, where particles get deflected or absorbed, new particles are formed, etc. Note that in

the collision terms, in-medium cross-sections for the nucleons are used. And Pauli blocking effects

are taken into account by examining the phase space occupation of the final states.

The rate for removal in 2-body scattering in the equation is written as:

K >
X (~p1) =

gx
g1

Z d~p2
(2p)3

g2

Z d~p01
(2p)3

g

0
1

Z d~p02
(2p)3

g

0
2
| M2X!2X 0 |2

⇥ (2p)3
d (~p1 +~p2 �~p01 �~p02)

⇥2pd (e1 + e2 � e

0
1 � e

0
2) f2(1� f 01)(1� f 02)

=
gX
g1

Z d~p2
(2p)3

g2

Z
dW⇤0 p⇤

02

4p

2
g

⇤0
1 g

⇤0
2 v⇤012

| M2X!2X 0 |2

⇥ f2(1� f 01)(1� f 02)

= gx

Z d~p2
(2p)3

Z
dW⇤0v12

ds

dW⇤0
f2(1⌥ f10)(1⌥ f20),

(1.5)

where gX is the spin degeneracy, and the stars refer to quantities in the center of mass frame.

The covariant velocity is uµ = (g,g~v), and factors are g = 1/
p

1� v2. v12 is the relative velocity
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between the incoming particles, and it is obtained through the following expression:

g1g2v12 = [� [(P ·u2)u1 � (P ·u1)U2]
2

P2 ]1/2, (1.6)

where P is the 4-momentum of the 2-body system.

The cross sections in the formulas are

ds

dW⇤0
=

p⇤
02

4p

2
g

⇤
1 g

⇤
2 v⇤12g

⇤0
1 g

⇤0
2 v⇤012

| M2x!2x0 |
2. (1.7)

|M|2 in the cross section formula represents matrix element for scattering amplitude between initial

and final states.

In pBUU model, pions are produced through the decay of D or N* resonances. The transport

equations for the resonances have a more elaborate form:

∂ fX AX
∂ t

+
∂eX
∂~p

∂ fX AX
∂~r

� ∂eX
∂~r

∂ fX AX
∂~p

= K <
X (1⌥ fX )AX �K >

X fX AX , (1.8)

where AX describes the mass distribution of the resonances, with a width of GX :

AX =
GX

(m�mX )2 +1/4GX
2 . (1.9)

The derivatives on the left hand side of the equation are taken at constant m�mX .

In pBUU model, a density functional for the net energy (Hamiltonian) of the system is con-

structed to achieve energy and momentum conservations. The single-particle energy is related to

the net energy E of the spin-symmetric system with:

eX (~p,~r, t) =
(2p)3

gX

dE
d fX (~p,~r, t)

. (1.10)

The resulting single particle energy from Eq. (1.10) is used as the input on the left hand side of

Eq. (1.4) and (1.8) .

The four components of the net energy are: a volume, surface, isospin-dependent component

and a Coulomb contribution:

E =
Z

ed~r+Es +ET +Ecoul . (1.11)
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The surface term is

Es =
a1

2r0

Z
d~r(—r)2. (1.12)

The isospin contribution is

ET =
aT
2r0

Z
d~r(rT )

2, (1.13)

where the isospin density is calculated through summing over the third isospin component of all

particles:

rT = Â
X

t3X rX (1.14)

And the Coulomb term is

Ecoul =
1

8pe0

Z
d~r

Z
d~r0

rch(~r)rch(
~r0)

|~r�~r0 |
. (1.15)

To solve the non-linear integral-differential Boltzmann equations, test particle technique is

often used to simulate the solution. The non-equilibrium time evolution of the system is simulated

through a Monte-Carlo procedure. EOS at zero temperature and the ground state of the system are

extrapolated from finite temperature behavior and the non-equilibrium states of the system through

energy density functional. In the next chapter, we will discuss in more details the expression for

the bulk energy density.
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CHAPTER 2

CONSTRAINTS ON THE MOMENTUM DEPENDENCE OF NUCLEAR MEAN FIELD

2.1 Momentum dependence of nuclear mean field

In transport theory, both momentum independent and momentum dependent mean field have been

used to describe nucleon-nucleus interactions. With the momentum independent mean field, trans-

port models were able to describe sideward flow in HIC. However, a simple density dependence in

the mean field is not sufficient to explain the momentum dependence of the elliptic flow observ-

able. Correspondingly a momentum dependent mean field was later implemented into the transport

models[42]. On the other hand, a momentum dependence in the nuclear mean field has also been

observed in nucleon-nucleus scattering experiments[43]. That is, a nucleon experiences different

interaction strength when approaching the nucleus at different momenta. When the relative mo-

mentum is zero, the nucleon feels an attractive potential with the magnitude of about 50MeV. This

attractive potential results from the sum of an attractive scalar potential and a repulsive vector po-

tential. The mean field becomes less attractive when nucleon approaches at higher momenta, and

finally repulsive at k >3-4fm�1.

The momentum dependence originates from the non-locality of individual nucleon-nucleon

interactions[44, 45], from the exchange term in the optical potential, from intrinsic energy depen-

dence in the nucleon-nucleon interactions (or time non-locality), etc. It impacts the dynamics of

nucleons in HIC and ultimately the free nucleon emission and fragment production. We can in-

vestigate the momentum dependence by studying particle differential yields, collective motion of

nucleons and stopping observables.
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2.1.1 Momentum-dependent mean field in pBUU model

In pBUU model, with a momentum independent mean field, the single-particle energies are pa-

rameterized through following expression:

eX =
q

p2 +m2
X (r)+AXU1 +T3XUT +ZX F, (2.1)

where mX (r)=mX +AX U(r), AX is the baryon number, t3X is the third component of isospin and

ZX is the charge number, for particle species X.

We take

U(x ) =
�ax +bx

n

1+(x/2.5)n�1 , (2.2)

where x = r/r0, and a, b, n are parameters that will be determined by finding the right minimum

of EOS in nuclear matter at normal density, and also by requiring the incompressibility to be

certain value. We have U1 =-a1—2(r/r0), UT =aT rT/r0, and F is the Coulomb potential. rT is

the density of the third component of isospin. The coefficients a1 and aT are the strength of the

gradient and isospin interactions. Note that in pBUU, the bulk of mean field U(r) only acts on

baryons. Pions are infrequent in the intermediate energy HIC, therefore are assumed to only be

subjected to isospin dependent part of the mean field interaction.

In the case of momentum dependent mean field, the single particle energy is parameterized in

a different form:

eX = mX +
Z p

0
d p0v⇤X +AX

⇥
r

⌦Z p1

0
d p0

∂v
∂r

+U(r)
⇤
+AXU1 +T3XUT +ZX F. (2.3)

Here, the momentum dependence has been implemented for symmetric nuclear matter, through the

parametrization of local particle velocity, in the following form[29]:

v⇤X (p,x ) =
pr

p2 +m2
X/(1+C mN

mX
AX x

(1+l p2/m2
X )

)2
. (2.4)

The two free parameters C and l are also to be fixed in calculating the minimum of the EOS.

Stable particles contribute to the total density through the following expression:

rX = gX

Z d~P
(2p)3

mX0
e(~p)

fX (~p), (2.5)
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and the density associated with resonances are

rX = gX

Z d~P
(2p)3

Z dE
2p

mX0
m

fX (~p,E)AX . (2.6)

When particle travels through the medium and is affected by a momentum-dependent mean

field, it appears to have a different mass than when moving in free space. This ’apparent mass’,

relating momentum and velocity, is called the effective mass, defined by:

m⇤ = p/v, (2.7)

where p =| ~p |, and v =|~v |. The effective mass is a convenient way to represent the momentum

dependence of the mean field and, in compare different MFs, it is common to specify the effective

mass at Fermi momentum in cold normal matter.

With the above parametrization of the momentum dependent mean field, pBUU has been suc-

cessful in describing various experimental data[23, 46]. However the model has not been tested

against measurements of pion multiplicity at incident energies near NN pion production threshold

(e.g. 400A MeV). In the following, we examine the momentum dependence on the pion production

and pion spectra in central HIC.

2.2 Pion observables

Within pBUU model, pions are produced through the decay of D or N* resonances in intermediate

energy HIC (100A MeV - 2A GeV). The charge of the produced pions follows from representing

D isospin as a superposition of nucleon and pion isospin states.

n+n $ n+D/N⇤, (2.8)

D/N⇤ $ n+p. (2.9)

To remind readers, we show here again the transport equations for D or N* resonances:

∂ fX AX
∂ t

+
∂eX
∂~p

∂ fX AX
∂~r

� ∂eX
∂~r

∂ fX AX
∂~p

= K <
X (1⌥ fX )AX �K >

X fX AX , (2.10)
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where subscript X represent different particle species, and AX describes the mass distribution of

the resonances, with a width of GX :

AX =
GX

(m�mX )2 +1/4GX
2 . (2.11)

In the above, mX is the vacuum mass for resonance particles, mD=1232 MeV/c2, mN⇤=1440

MeV/c2.

The production and absorption of pions are described through decay of the resonances and

a sequence of inverse processes. Fig. 2.1 shows net pion multiplicity obtained when using the

momentum-independent and momentum-dependent mean field in pBUU, adjusted previously to

different nuclear characteristics and data[29]. Specifically Fig. 2.1(a) shows calculations done with

momentum-independent mean field and Fig. 2.1(b) with the previous flow-optimized momentum-

dependent mean field. The data represented in the figure are from the FOPI measurements of

Au+Au central collisions (impact parameter b < 2fm) at 400A MeV, 800A MeV and 1.5A GeV[1].

As can be seen, pBUU with momentum-independent mean field overestimates, by a factor of two,

the measured multiplicities at all energies. With momentum-dependent mean field, the calculations

are consistent with data at the two higher energies, but at 400A MeV, the predicted yields are only

about half of those measured. The results of the calculations suggest that some weakening of the

momentum dependence is required in order to arrive at an agreement between the pBUU results

and FOPI data at the lowest of the beam energies. Other than momentum dependence, we explored

potential impact of in-medium changes in the p and D production rates[23, 29] consistent with

detailed balance, but we found the impact of such changes, within plausible range, to be negligible

on the final yields. Further on, the parametrization used on the right panel of Fig. 2.1 will be

referred to as v2-optimized MF.
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Figure 2.1 Pion multiplicity in central Au+Au collisions. Symbols represent data of the FOPI

Collaboration [1]. The lines represent pBUU calculations when following either the momentum-

independent MF (left panel) or the past flow-optimized momentum-dependent MF (right panel).

Solid lines are predictions for p

�, and dashed lines are predictions for p

+. The experimental error

bars are about the size of symbols.

previous parameteriza-
tion (v2-optimized MF)

new parameterization
(N

p

-adjusted MF)
C 0.643 0.300
l [1/c2] 0.948 0.400
a [MeV] 203.92 173.71
b [MeV] 65.18 68.23
n 1.4838 1.6541
K [MeV] 210 230
m*/m 0.7 0.75

Table 2.1 Parameters used in the previous and new momentum dependent MFs. In either case, the
parameters were adjusted to yield sensible nuclear incompressibility K and nucleon effective mass
m*.
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Figure 2.2 Pion multiplicity in central Au+Au collisions, as a function of beam energy. Symbols

represent data of the FOPI collaboration[1], , while lines represent the pBUU calculations with the

N
p

-adjusted momentum-dependent MF. The experimental error bars are about the size of symbols.

In the context of the discrepancy, we explored different possibilities for the momentum depen-

dence of the mean field by modifying the underlying parametrization for the local particle velocity.

We tested different density-dependencies of momentum-dependencies for the mean field, by re-

placing the factor in Eq.(2.4), linear in x , by different functions of x that reduced to 1 at saturation

density, i.e. at x ⌘ r

r0
= 1. However, we found the sensitivity of pion yields to that replace-

ment to be too meager to eliminate the discrepancy between the measured and calculated pion

yields. On the other hand, we found that a mere adjustment of the parameter values in the original

parametrization of Eq.(2.4) could reduce substantially the discrepancy between the calculated and

measured net pion yields, without overly compromising the description of measured baryonic flow
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by the model.

In what follows, we refer to the momentum-dependent mean field with the new parameters as

N
p

-adjusted MF. Parameter values for the N
p

-adjusted and previous v2-optimized MF are listed in

Table 2.1. In the table, nucleon effective mass is used conventionally to represent the momentum-

dependent mean field; C and l are the parameters that dictate the momentum dependence. The net

pion yields for the N
p

-adjusted MF are displayed, together with the data, in Fig. 2.2.

2.3 Optical potential comparison

Properties of nuclear matter and nucleon optical potentials have been also a focus for microscopic

calculations starting with elementary nucleon-nucleon interactions. Various theories such as vari-

ational method of Friedman and Pandharipande[47] and Bruckner approach[48, 49, 50, 51, 52],

have been developed to explain, in particular, the microscopic origin of the momentum depen-

dence in nuclear mean field. In data analysis, the momentum dependence has been reflected in

the need to readjust the optical potential needed to describe nucleon-nucleus scattering at different

incident energies. In testing the characteristics of the N
p

-adjusted MF, we examine the momentum

dependence of optical potentials in zero-temperature matter. For the optical potential Uopt(p), we

employ, in the relativistic context, the following operational definition:

Uopt(r, p) = e(r, p)�
q

p2 +m2. (2.12)

In the equation, e(p) is the single particle energy corresponding to momentum p. Other definitions

have been proposed in the literature. Once adopted, they just need to be used consistently.
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Figure 2.3 Optical potential in nuclear matter at different indicated densities, as a function of

momentum. Dashed and solid lines represent, respectively, the v2-optimized and N
p

-adjusted

MFs.

In Fig. 2.3 we plot the optical potentials for our two parametrizations, as a function of mo-

mentum, with different lines representing different indicated densities. The dashed and solid lines

represent, respectively, optical potentials from the v2-optimized and N
p

-adjusted MFs. The mo-

mentum dependence in N
p

-adjusted MF is indeed softened, consistent with the expectation devel-

oped on the basis of Fig. 2.3.
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Figure 2.4 Optical potential in nuclear matter at different indicated densities, as a function of nu-

cleon energy. Dashed and solid lines represent, respectively, UV14+UVII variational calculations

and our N
p

-adjusted MF.

18



Figure 2.5 Optical potential in nuclear matter at different indicated densities, as a function of nu-

cleon energy. Dashed and solid lines represent, respectively, AV14+UVII variational calculations

and our N
p

-adjusted MF.
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Figure 2.6 Optical potential in nuclear matter at different indicated densities, as a function of

nucleon momentum. Dashed and solid lines represent, respectively, Dirac-Brueckner-Hartree-Fock

calculations and our N
p

-adjusted MF.
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Figure 2.7 Optical potential in nuclear matter at different indicated densities, as a function of

nucleon energy. Dashed and solid lines represent, respectively, UV14+TNI variational calculations

and our N
p

-adjusted MF.

In [29], the momentum dependence of the optical potential from v2-optimized mean field

was compared to that found for potentials from microscopic calculations including those rely-

ing on the Urbana V14 two-body interaction combined with model VII three-body interaction, i.e.

UV14+UVII[47], AV14+UVII[47], as well as DBHF[50, 52], BBG and UV14+TNI[53, 54]. The

N
p

-adjusted MF produces optical potentials that are closest in the form and values to UV14+UVII

[47], with the respective comparison illustrated in Fig. 2.4. Similar comparisons to the other mi-

croscopic calculations can be found in figures 2.5- 2.7. In Fig. 2.4, we compare the single-particle

energy, e(p,r)�m, to UV14. The momentum dependence in this representation is implicit.
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2.4 Elliptic flow

Flow signals the multiple interactions that particles experience throughout the reaction. A larger

number of interactions leads the system closer to thermal equilibrium. Elliptic flow is a measure of

anisotropy of particle emission in HIC in azimuthal directions around the beam-line. In the past,

anisotropies of collective flow and, in particular, the elliptic flow, were used to test the characteris-

tics of MF momentum-dependence in collisions[55, 56]. .

Fig. 2.8 shows the basic geometry for a HIC[57]. The projectile beam is directed along z axis,

x axis is parallel to the impact parameter direction, x-z plane is defined as the reaction plane. The

y axis is perpendicular to the reaction plane, or points out of the reaction plane. When the impact

parameter b is not zero, there will be an almond shaped region formed where the two nuclei overlap

with each other when passing by and where violent interactions take place. This anisotropy in the

space will translate to the anisotropy in momentum space for emitted particles.

Figure 2.8 Schematic drawing of the geometry in a HIC. The beam line is along z axis, x axis is

parallel to the impact parameter direction. x-z plane is defined as the reaction plane, and y axis is

perpendicular to the reaction plane.

In experiments, the anisotropies can be observed through studying how correlated is particle
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emission in azimuthal directions. A schematic description of the particle emission process is shown

in figure 2.9. Particles within the almond shaped region are called participants, and the rest of

the particles are spectators, as they mostly continue along the beam axis, without experiencing

collisions with particles from the opposing nucleus.

Figure 2.9 Particle emission processes are shown with respect to the reaction plane. The blockage

of spectator particles leads to the out-of-plane emission in the early stage of the reactions.

A convenient way of quantifying the emission anisotropies in the theory and experiment is to

use a Fourier expansion of the particle distributions with respect to azimuthal angle:

dN
df

⇠ [1+2v1cos(f)+2v2cos(2f)+ ...], (2.13)

where v1 and v2 are known as coefficients of directed flow and elliptic flow, respectively. The value

of directed flow and elliptic flow coefficients are obtained using the following expressions:

v1 =< cos(f)>=

⌧
px
py

�
, (2.14)
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v2 =< cos(2f)>=

*
px2 � py2

px2 + py2

+
. (2.15)

Most commonly, the elliptic flow v2 is studied at midrapidity, i.e. y=0. Non-relativistically, the

rapidity y reduces to particle speed in units of c, but is more convenient in relativistic context.The

rapidity is defined with

y =
1
2

ln
E + pzc
E � pzc

, (2.16)

where E and px are in the system c.m. The coefficient v2 > 0 corresponds to in plane particle

emission and v2 < 0 corresponds to out of reaction plane emission.

Obviously when more demands are placed on the nuclear mean field, such as the proper de-

scription of total pion yields, the description of the measured elliptic flow cannot generally stay

as good as that achievable without those additional constraints. Fig. 2.10 shows the out-of to

in-reaction-plane ratio, R =
1�v2
1+v2

, for protons emitted at midrapidity from mid-peripheral Bi+Bi

collisions at 400A MeV, as a function of proton transverse momentum. The stronger the elliptic

flow, the larger the deviation of R from 1. The filled triangles in Fig. 2.10 represent the data of the

KaoS collaboration[2], while the dashed and solid lines represent, respectively, the pBUU calcu-

lations with v2-optimized and N
p

-adjusted MF (denoted as MFv2 and MFN
p , respectively, in the

figures). The two calculations describe about equally well the KaoS data at intermediate momenta,

but the v2-optimized MF is far superior at high momenta.
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Figure 2.10 Ratio of out of reaction plane to in-plane proton yields, as a function of transverse

momentum. Symbol s represent data from the measurements of the KaoS Collaboration of mid-

peripheral Bi+Bi collisions at the beam energy of 400A MeV (b ' 8.7fm) [2]. Solid line represents

pBUU calculations with the N
p

-adjusted momentum-dependent MF and dashed line represents

calculations with v2-optimized momentum-dependent MF. The indicated theoretical errors are sta-

tistical, associated with the Monte-Carlo sampling in the transport calculations.

25



Figure 2.11 Elliptic flow of particle mass A=1 particles, as a function of transverse momen-

tum. Symbols represent data from the measurements of the FOPI Collaboration of mid-peripheral

Au+Au collisions at the beam energy of 400A MeV (b ⇠ 2.0�5.3fm). The shaded region repre-

sents pBUU calculations with the N
p

-adjusted momentum-dependent MF. The indicated theoreti-

cal errors are statistical, associated with the Monte-Carlo sampling in the transport calculations.

Further comparisons were made with more recent experimental data from FOPI collaboration

displayed in Fig. 2.11-12[58]. Elliptic flow is plotted there against the transverse momentum of

the particles for Au+Au collisions at energies 400A MeV and 600A MeV. In the experiment, the

centrality of the nuclear reactions is determined through multiplicity measurements of charged par-

ticles, and M4 in the figures corresponds to the impact parameter within the range of 2.0-5.3fm.

The transverse momentum is obtained from pt =
q

px2 + py2. It is apparent that the pBUU simu-

lations fail to reproduce the experimental data for elliptic flow at 600A MeV. The difficulty in the

26



simultaneous description of high-momentum v2 and near-threshold pion yields shows that chang-

ing the momentum dependence in such a simple fashion is not enough to describe various observ-

ables. One possibility is e.g. the lack of anisotropy in the momentum dependence, for anisotropic

momentum distributions f , when employing Eq. (2.4)-(2.6). While our implementation Eq. (2.4)-

(2.6) of the mean field momentum dependence, without anisotropy, allows in practice for a higher

precision of calculations than other mean field parametrizations [59], that implementation may turn

out to be a handicap here. We already undertook steps, cf. the work of Simon and Danielewicz

[59], towards implementing anisotropy without compromising calculational precision or speed.

However, in chapter 3, we will show another resolution, which instead of only focusing on the

momentum dependence of the mean field, we investigate the competing effects of the momentum

and the density dependence. We are able to resolve the puzzle by studying a wider range of the mo-

mentum and density dependence of the mean field, and using pion and flow observable to constrain

the EOS.
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Figure 2.12 Elliptic flow of proton, as a function of transverse momentum. Symbols represent data

from the measurements of the FOPI Collaboration of mid-peripheral Au+Au collisions at the beam

energy of 600A MeV (b ⇠ 2.0�5.3fm). The shaded region represents pBUU calculations with the

N
p

-adjusted momentum-dependent MF. The indicated theoretical errors are statistical, associated

with the Monte-Carlo sampling in the transport calculations.
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Figure 2.13 Transverse rapidity distribution of protons. Rapidity values yx are scaled with the

projectile rapidity in the center-of-mass frame: yx0 = yx/yp. The transverse rapidity distribution

with respect to yxm0 is obtained with a midrapidity cut of |yz0|< 0.5. Triangles represent data from

the measurements of the FOPI Collaboration of central Au+Au collisions at the beam energy of

400A MeV (b=1fm). The squares represent pBUU calculations with the N
p

-adjusted momentum-

dependent MF.
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Figure 2.14 Transverse rapidity distribution of tritons. Rapidity values yx are scaled with the

projectile rapidity in the center-of-mass frame: yx0 = yx/yp. The transverse rapidity distribution

with respect to yxm0 is obtained with a midrapidity cut of |yz0|< 0.5. Triangles represent data from

the measurements of the FOPI Collaboration of central Au+Au collisions at the beam energy of

400A MeV (b=1fm). The squares represent pBUU calculations with the N
p

-adjusted momentum-

dependent MF.
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Figure 2.15 Transverse rapidity distribution of Helium 3. Rapidity values yx are scaled with the

projectile rapidity in the center-of-mass frame: yx0 = yx/yp. The transverse rapidity distribution

with respect to yxm0 is obtained with a midrapidity cut of |yz0|< 0.5. Triangles represent data from

the measurements of the FOPI Collaboration of central Au+Au collisions at the beam energy of

400A MeV (b=1fm). The squares represent pBUU calculations with the N
p

-adjusted momentum-

dependent MF.

As a complement to elliptic flow, we have examined the transverse rapidity distributions of

different particles. Calculations were carried out for Au+Au central collision at 400A MeV, with

the N
p

-adjusted momentum-dependent MF. Figs. 2.13-2.15 show the transverse rapidity distribu-

tion for proton, triton and Helium 3, respectively. Triangles represent measurements from FOPI

Collaboration[1], and squares represent theoretical predictions. Rapidity values yx and yz are scaled

with the projectile rapidity in the center-of-mass frame: yx0 = yx/yp,yz0 = yz/yp, where subscript
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p stands for projectile. The transverse rapidity distribution with respect to yxm0 are obtained with

a midrapidity cut of |yz0|< 0.5. We found a good agreement between pBUU calculations and data

on transverse rapidity distributions for all the particles.

2.5 Conclusions

In this chapter, we revisited the momentum-dependence of the nuclear mean field. Previously, the

mean field implemented in pBUU model has been tested against flow data only. We found here

that the momentum dependence deduced from flow alone failed to describe the pion multiplicities

near pion production threshold energies. We modified the momentum dependence to resolve the

discrepancy between theoretical prediction and experimental measurements. The improvement

in pion multiplicities, however, gave rise to a significantly inferior description of elliptic flow,

and inspired further study of both momentum and density dependence of the nuclear mean field

presented in the next chapter.
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CHAPTER 3

CONSTRAINTS ON NUCLEAR INCOMPRESSIBILITY

3.1 Introduction

Equation of state (EOS) of infinite symmetric nuclear matter, typically considered at zero tempera-

ture and expressed in terms of energy per nucleon as a function of density, E(r), is one of the most

important characteristics of nuclear matter. As the energy at the saturation density reaches a local

minimum, the first derivative there is zero: dE
dr

|
r0 = 0. In consequence, in order to describe the

equation of state when moving away from saturation point, information on the curvature of E(r)

is desired.

Expanding the energy around saturation density, one gets

E(r) = E(r0)+
1

18
K•(

r �r0
r0

)2 + ... (3.1)

Here, the incompressibility coefficient K• of symmetric nuclear matter is defined as the scaled

curvature of E
A (r):

K• = 9r

2 ∂

2E/A
∂r

2 |
r0 . (3.2)

HIC dynamics, giant collective oscillations of nuclei and supernovae explosions are all sensi-

tive, directly or indirectly, to the nuclear incompressibility. A comparison of data on isoscalar giant

monopole and dipole resonances to nonrelativistic random-phase-approximation calculations sug-

gested the incompressibility K value in the range of 220-233MeV[60, 61, 62] while comparisons

to relativistic calculations produced a stiffer EOS with K value in the range 250-270MeV[8]. The

summary conclusion from those comparisons, given some limitations in both types of calculations,

was of value for K = 240±20MeV [63].
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However, a recent reanalysis of comparisons to giant monopole resonance energies shifted the

range K• to 250 < K• < 315MeV[64]. With this, the question about the value of K• remains

somewhat open. Interestingly, if one forced a parabolic fit to energy to pass through zero energy at

zero density, the resulting incompressibility would have been K• = 18⇥16 MeV = 288 MeV. Later

in this chapter we arrive at constraints on nuclear incompressibility based on analysis of elliptic

flow in heavy-ion collisions.

3.2 Incompressibility and isoscalar Giant Monopole Resonance

The compressional mode that is most directly related to the nuclear incompressibility is the isoscalar

giant monopole resonance (IGMR). The first observation of IGMR was made in 1970s, establishing

the centroid excitation energy of 208Pb at 13.7 MeV[65]. It was subsequently found that for heavy

nuclei, such as Sn and Pb, the IGMR strength is peaked around 80A�1/3MeV [66]. Incompress-

ibility for a specific nucleus can be deduced from the IGMR energy following the relation[66, 67]:

EIGMR =

s
h̄2KA

m < r2 >
. (3.3)

Analogous to the energy for a finite nucleus, the incompressibility KA may be represented in terms

of four main contributions: the volume term K•, the surface term Ksur f , the symmetry term Ksym

and the Coulomb term KCoul [68]:

KA = K• +Ksur f A�1/3 +Ksym(N �Z)2/A2 +KCoulZ
2A�4/3, (3.4)

One can use the above relation to arrive at the incompressibility for infinite nuclear matter. In the

following context, we omit the subscript • in K• when there is no ambiguity.

3.3 Elliptic flow

In intermediate-energy HIC, mid-rapidity particles are preferentially emitted out-of rather than in

the reaction plane. This is termed squeeze-out and is tied to negative elliptic flow. The magni-
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tude of that elliptic flow tests the momentum dependence of MF acting on the particles in the

collision as was demonstrated in the previous chapter. Besides, it is also an important observ-

able probing the density dependence of the nuclear MF, which is tied to nuclear incompressibil-

ity. Figs. 3.1-3.3 demonstrate the effects of emphasized momentum-dependence and density-

dependence of nuclear mean field on elliptic flow v2 at midrapidity. The midrapidity window is

chosen as | y(0) |< 0.1, where the particle rapidity is scaled with projectile rapidity at center of

mass frame: y(0) = (y/yp)cm. v2 is plotted there against the scaled transverse momentum per nu-

cleon p(0)t = (pt/A)/(pcm
p /Ap), where pt =

q
p2

x + p2
y . Data used for reference, in the figures,

are from the FOPI measurements of the mid-peripheral Au+Au collisions at 400A MeV [58], with

the impact parameters ranging from 2.0 to 5.3fm. As the detection system does not provide iso-

tope determination, the cluster mass number was assumed to be A=2Z for all elements heavier

than H. Theoretical results were calculated with either v2-optimized MF or momentum indepen-

dent MF, and the corresponding incompressibility of, either 210MeV or 380 MeV. In particular,

the v2-optimized MF has been optimized to the impact parameter dependence of directed flow

[69, 42]and to momentum dependence of elliptic flow[29]. The two mean fields[70] yield about

the same directed flow in semicentral collisions, when that flow is integrated over transverse mo-

menta. However, elliptic flow comparisons of simulation and data for A=1-3 particles, in Figs.

3.1-3.3 shows a clear preference for the v2-optimized MF, with a lower incompressibility in pBUU

model, than momentum-independent MF with K=380 MeV. Still, the figures demonstrate that a

strong density dependence in EOS and MF may have a significant impact on the elliptic flow.

Even with no momentum dependence in MF, the stiff EOS yields elliptic flow about twice as large

in magnitude as the soft EOS.
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Figure 3.1 Elliptic flow of A=1 (proton) particles, as a function of scaled transverse momentum.

Closed dots represent data from the measurements of the FOPI Collaboration of mid-peripheral

Au+Au collisions at the beam energy of 400A MeV (b ⇠ 2.0�5.3fm). The open squares represent

pBUU calculations with the soft equation of state (K=210 MeV), which was adjusted to KaoS flow

data. The triangles represent pBUU calculations with stiff equation of state (K=380 MeV) and no

momentum dependence in MF.
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Figure 3.2 Elliptic flow of A=2 (deuteron) particles, as a function of scaled transverse momentum.

Closed dots represent data from the measurements of the FOPI Collaboration of mid-peripheral

Au+Au collisions at the beam energy of 400A MeV (b ⇠ 2.0�5.3fm). The open squares represent

pBUU calculations with the soft equation of state (K=210 MeV), which was adjusted to KaoS flow

data. The triangles represent pBUU calculations with stiff equation of state (K=380 MeV) and no

momentum dependence in MF.
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Figure 3.3 Elliptic flow of A=3 (triton and Helium 3)particles, as a function of scaled transverse

momentum. Closed dots represent data from the measurements of the FOPI Collaboration of mid-

peripheral Au+Au collisions at the beam energy of 400A MeV (b⇠ 2.0�5.3fm). The open squares

represent pBUU calculations with the soft equation of state (K=210 MeV), which was adjusted to

KaoS flow data. The triangles represent pBUU calculations with stiff equation of state (K=380

MeV) and no momentum dependence in MF.

Fig. 2.10-2.12 in the preceding chapter compared the elliptic flow from FOPI measurements

to the flow from pBUU simulations utilizing the new momentum-dependent mean field (K=230

MeV), which was fitted to observed pion multiplicities. After including the momentum depen-

dence, the K=230 MeV simulations could not reproduce anymore adequately the elliptic flow
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data. However, observations from Figs. 3.1-3.3 suggest that further investigations of the density-

dependence and momentum-dependence of the nuclear MF, might result in some reasonable com-

bination of those dependencies that would allow for a simultaneous description of pion and elliptic

flow.

3.3.1 Elliptic flow and impact parameter

Before turning to optimization of any potential details in density and momentum dependence of

MF, we examine the effect of impact parameter on elliptic flow at mid-rapidity, to understand

the potential source of uncertainties in drawn conclusions. Different impact parameters lead to

different geometries in nuclear reactions. In a central nuclear collision, the overlapping region of

the two nuclei is close to a sphere, while in mid-peripheral collisions, the overlapping region has

an almond shape. On the other hand, larger impact parameter imply fewer participant nucleons

and reduced maximal densities compared to more central collisions. These factors contribute to

producing different elliptic flows under various conditions. In Fig. 3.4, we plot the elliptic flow

from pBUU calculations, with effective mass m*/m=0.782 and incompressibility K=270 MeV, as a

function of impact parameter, for Au+Au collisions at 1.2A GeV. The smooth line approximating

the results serves to guide the eye. The magnitude of elliptic flow rises from 0 at b=0 and it

saturates at higher impact parameters.
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Figure 3.4 Proton elliptic flow as a function of impact parameter, for Au+Au collisions at 1.2A

GeV. Dots are calculation points for soft momentum dependent MF with m*/m=0.782 and K=270

MeV, the line is for guidance purpose. In absence of deformation for colliding nuclei, due to

symmetry, the elliptic flow needs to vanish at b=0. As geometry of the reaction becomes more

asymmetric with increasing impact parameter, so does the magnitude of elliptic flow. At higher

impact parameters, the flow saturates for a momentum-dependent MF.

In an experiment, the impact parameter is determined through a correlation of reaction observ-

ables, such as net particle multiplicity, with reaction centrality. Since such a correlation always

has a finite width, the experiment ends up selecting a range of impact parameters. Given that

cross section for selecting an impact parameter shrinks to 0 as impact parameter approaches 0,

the experiment is never capable of selecting very low impact parameters. Guided by cross section

considerations, for a given range of impact parameters, we select the impact parameter equal to the

quadratic mean of the largest and smallest value of impact parameter in experiment for simulations.
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This approach is assumed to be generally valid. However, we approach the issue with more cau-

tion when a particular observable, such as elliptic flow, changes rapidly, particularly nonlinearly,

within the considered region of impact parameters and we test the sensitivity of the conclusions to

the decisions on the impact parameter in our calculations.

3.3.2 Elliptic flow and effective mass

It is believed that the momentum dependence of nuclear mean field plays a dominant role in de-

termination of the flow observables. It has been mentioned in Chapter 2 that effective mass at

the Fermi surface is usually calculated to label the different momentum dependent mean field. To

illustrate the impact of effective mass on squeeze-out, we show in Fig. 3.5 the anisotropy of proton

transverse momentum distribution at midrapidity calculated with different effective mass values.

Specifically shown there are for the ratio of out of the reaction plane to in-plane proton yields calcu-

lated for Bi+Bi collision at the beam energy of 400A MeV and impact parameter of b=7.6fm. The

solid, dot-dashed and dashed lines represent pBUU calculations with effective mass m*/m=0.8,

0.7 and 0.6, respectively. The incompressibility K for those calculations was set to 270MeV. The

filled triangles in Fig. 3.5 represent, for reference, the data of the KaoS Collaboration[2]. Cal-

culation with m*=0.7m produces a stronger elliptic flow than other effective mass values, and it

is preferred by the experimental data. The momentum-dependence with m*/m=0.8 yields similar

elliptic flow as the momentum-dependence with m*/m=0.6. The non-monotonic behavior of ellip-

tic flow with changes in effective mass can be understood as a result of competing effects of the

momentum- and density-dependence of MF. For strong momentum dependence (e.g. m*/m=0.6),

the density dependence in MF, from adjusting parameters to the same nuclear incompressibility, is

weaker. During the reaction, moreover, on account of the enhanced repulsion between nucleons

with large relative momenta, nuclear matter gets less compressed. Lower maximal densities imply

fewer collisions between nucleons and slower equilibration. With less equilibration at maximal

compression, the squeeze-out signal may drop rather than increase, against naive expectations for

dropping effective mass.
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Figure 3.5 Ratio of out-of-the-reaction-plane to in-plane proton yields, as a function of transverse

momentum, in mid-peripheral Bi+Bi collisions at the beam energy of 400A MeV and impact pa-

rameter b ⇠ 7.6fm. Symbols represent data from the measurements of the KaoS Collaboration[2].

Solid, dot-dashed and dashed lines represent pBUU calculations with MFs characterized by

K=270MeV and effective mass m*/m=0.8, 0.7 and 0.6, respectively.

Within the analysis of the preceding chapter, we found a specific momentum-dependent MF

that best described the pion production in HIC, for K=210 MeV, but not flow. In order to seek a

MF within pBUU model that optimally describes a variety of observables, we have subsequently

engaged in extensive investigations of the impact of the momentum dependence in the MF.
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3.3.3 Elliptic flow and incompressibility

In this subsection we explore the dependence of the elliptic flow on nuclear incompressibility. In

Fig. 3.6 we present again the ratio of out of the reaction plane to in-plane proton yields for Bi+Bi

collision at 400A MeV, but now emphasizing sensitivity to incompressibility. The filled triangles

represent the data of the KaoS Collaboration[2]. The lines represent pBUU calculations carried

out with an effective mass of m*/m=0.7. The dot-dashed, dashed, solid and dotted lines have been

obtained for the incompressibility values of K=300, 270, 240 and 210 MeV, respectively. We can

see quite a strong impact of incompressibility on the elliptic flow.
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Figure 3.6 Ratio of out-of-the-reaction-plane to in-plane proton yields, as a function of transverse

momentum, in mid-peripheral Bi+Bi collisions at the beam energy of 400A MeV and impact pa-

rameter b ⇠ 7.6fm. Symbols represent data from the measurements of the KaoS Collaboration[2].

Dot-dashed, dashed, solid and dotted lines represent pBUU calculations with incompressibility

K=300, 270, 240 and 210MeV, respectively, with effective mass m*=0.7m.

The calculation with the highest employed incompressibility of K=300 MeV gives the strongest

flow as expected and the one with the lowest incompressibility of K=210 MeV gives the weakest.

However, similarly to the situation when changing the effective mass only, we observe a non-

monotonic behavior when changing incompressibility only within the range of values K=240-270

MeV. That behavior can again be attributed to the competing effects of momentum and density

dependence in the nuclear MF. Specifically, for a lower incompressibility such as K=240 MeV,

the nuclear matter is compressed to higher density during collisions, than for a higher incom-
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pressibility, such as K=270 MeV. The effective mass generally drops with increasing density. At

higher density the nucleons move at higher speeds and undergo more collisions that lead to a faster

equilibration. In the end, the lower in compressibility may lead to a stronger squeeze-out signal,

particularly at high momenta. We have tested that, for incompressibility higher than 300 MeV and

lower than 210 MeV, the elliptic flow monotonically increases with increasing K.

Fig. 3.6 demonstrated the sensitivity of the elliptic flow to the nuclear incompressibility, i.e.

density-dependence of nuclear MF. Observation of the significant sensitivity is important for us

as opening the possibility of simultaneously describing pion production and elliptic flow in HIC.

Clearly the density-dependence of nuclear MF can impact the collective motion of particles emerg-

ing at high transverse momenta. In the past, the collective motion was considered with a coarse

insertion or removal of momentum dependence into MF, but more subtle points of the interplay

between the momentum and density dependencies in MF were not studied.

3.4 Constraints on nuclear incompressibility from flow and pion observ-
ables

Given the strong effect of incompressibility on elliptic flow, we revisited the unsolved problem,

formulated at the end of chapter 2, of difficulty in simultaneously describing observed pion mul-

tiplicities and elliptic flow within nuclear transport theory. The sensitivity of pion yields to the

momentum dependence of nuclear MF was demonstrated in chapter 2. There we focused on

adjusting the momentum-dependence to reproduce the experimental data. In the following, we

explore the consequences of momentum-dependence and density-dependence of MF at the same

time, simultaneously varying the parametrization of local particle velocity and value of nuclear

incompressibility.

Given limits on how accurate a semiclassical transport theory can be, the variety of challenges

before experiments studying multiparticle final states and a general experience in the field, it is not

going to make sense to require more than ⇠ 20% in accuracy of describing data with the transport
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theory. When allowing for up to 20% difference between elliptic flow and pion multiplicity pre-

dictions compared to experimental data, and allowing for simultaneous variations in effective mass

and incompressibility, we arrived at a range of MF and EOS parametrizations meeting the condi-

tions. In Fig. 3.7, we show results for proton elliptic flow from the two sets of calculations that

bracket the range of EOS as far as incompressibility is concerned, K=240 MeV with m*/m=0.782,

and K=300 MeV with m*/m=0.582. The theoretical results are displayed as a function of trans-

verse momentum and compared to data from the KaoS Collaboration from Bi+Bi collisions at

b=7.6fm and either beam energy of 400A MeV (triangles) or 700A MeV (circles). Within the 20%

accuracy either EOS describes adequately data at higher pt , where elliptic flow is significant.
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Figure 3.7 Ratio of out of reaction plane to in-plane proton yields, as a function of transverse

momentum. Symbols represent data from the measurements of the KaoS Collaboration of mid-

peripheral Bi+Bi collisions at the beam energies of 400A MeV and 700MeV (b=7.6fm)[2]. Shaded

regions represent pBUU calculations with an optimal EOS for incompressibility between K=240-

300MeV.

Next, in Fig. 3.8 we compare the pBUU predictions for yields of pions, positive and negative,

respectively, in Au+Au collisions at b=1.4fm, obtained for different MFs, to the measurements

of the FOPI Collaboration at 400A MeV and 800A MeV. The data are represented there with

filled circles. The optimal range of EOS, as far as reproducing both pion multiplicity and elliptic

flow, is represented with shadowed regions. Subsequently, we show in Figs. 3.9-3.11 calculations

from two EOS, one with K=210 MeV and another with K=270 MeV (m*/m=0.75 in both cases).

The former EOS is able to reproduce only pion multiplicities but not elliptic flow; the latter EOS
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reasonably describes the elliptic flow but not pion multiplicities. These are two examples showing

that outside of our constrained range, one can describe only one of the observables at the best.

Figure 3.8 Pion multiplicity in central Au+Au collisions vs beam energy. Symbols represent data

of the FOPI Collaboration[1]. The shaded region represent pBUU calculations with the range of

nuclear equation of state fitted to elliptic flow and pion yields simultaneously.
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Figure 3.9 p

+ multiplicity in central Au+Au collisions vs beam energy. Symbols represent data of

the FOPI Collaboration[1]. Solid and dashed lines represent calculations carried out with incom-

pressibility K=210 and 270 MeV, respectively, and the effective mass m*/m=0.75 for both.
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Figure 3.10 p

� multiplicity in central Au+Au collisions. Symbols represent data of the FOPI

Collaboration[1]. Solid and dashed lines represent calculations with incompressibility K=210 and

270 MeV, respectively, both with the effective mass m*/m=0.75.

50



Figure 3.11 Ratio of out of reaction plane to in-plane proton yields, as a function of transverse

momentum. Symbols represent data from the measurements of the KaoS Collaboration of mid-

peripheral Bi+Bi collisions at the beam energy of 400A MeV (b=8.7 fm)[2]. Dashed and solid

lines represent pBUU calculations with incompressibility K=210 and 270 MeV, respectively, both

with the effective mass m*/m=0.75.

Next we turn to constraints on EOS that follow from requiring that the associated MFs produce

a sensible simultaneous agreement of theoretical predictions with both data on pion multiplicity in

central collisions and on proton elliptic flow. In the plane of energy per nucleon in cold matter vs

density we cross out the region covered by the EOS that yield simultaneous acceptable agreement

with both pion and elliptic flow data. In collisions to which the data pertain, the matter is excited.

Since we need to extrapolate to zero temperature, we broaden the region by uncertainty in extrap-

olation. We complement that uncertainty by one due to the fact that impact of different densities is
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averaged over space and time. Our final constraints are shown in Fig. 3.12 and are compared there

to the constraints arrived recently by the FOPI-IQMD Partnership analyzing elliptic flow from the

FOPI measurements. As is apparent, our constraints yield a somewhat stiffer EOS in the region of

r > 1.5r0 than the FOPI-IQMD Partnership.

Figure 3.12 Energy per nucleon for symmetric nuclear matter as a function of scaled density. The

solid lines represent constraints, upper and lower, on the energy arrived at by the FOPI-IQMD

Partnership. The shaded region represents our conclusions, with the pion yields and elliptic flow

testing the supranormal region. The vertical dashed lines show the rough density region that gets

probed by the observables in the calculations.
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Figure 3.13 Nuclear equation of state plotted as pressure in terms of scaled density. Patterned

shaded areas represent constraints deduce by comparing transport theory to data on kaon multi-

plicity and on directed and elliptic flow. The solid line on the left represents the equation of state

preferred by analysis of the recent giant monopole resonance (GMR) experiment. Dots represents

the noninteracting Fermi gas and triangles represent the relativistic mean field (RMF) model NL3.

The shaded regions, pink and blue, represent respective pressure constraints that can be deduced

when relying on either an EOS with K=240 MeV or K=300 MeV within the pBUU transport model.

The vertical dashed lines show the rough density region that gets probed by the observables in the

calculations.

In a similar manner as in extracting energy per nucleon, we extract pressure as a function of

density in nuclear matter. Our conclusions on pressure are represented in Fig. 3.13 and compared
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there to other conclusions drawn in the literature. Each of our boundary EOS yields an uncertainty

region tied to the extrapolation to zero temperature. By comparing pressure density along beam

axis and transverse directions, we estimated the error in the pressure from the difference. The

net uncertainty, when varying K, roughly corresponds to the combination of the two regions. If

eventually an independent preference emerges for one or another end of the incompressibility

range, the uncertainty region for the EOS may shrink. In addition to our own constraints, we show,

with patterned regions, the constraints arrive in the past in the literature when analyzing combined

directed and elliptic flow data and when analyzing kaon yields. The solid line represents the EOS

preferred by a recent GMR analysis. For reference we show further the pressure for the relativistic

mean field model NL3 and the pressure for a noninteracting Fermi gas, with filled triangles and

circles, respectively. The vertical dashed lines indicate the densities, from simulations, that get

probed by the observables we concentrate on. As one can see, there is good degree of overlap

between different constraints. Our constraints seem consistent with those from combined directed

and elliptic flow analysis, when extrapolated to higher densities.

3.5 Conclusion

In this chapter we tested the sensitivity of elliptic flow to nuclear incompressibility, in addition to

the sensitivity to the momentum dependence of MF. We reexamined the parametrizations of EOS

and MF in pBUU model aiming at a simultaneous description of pion yields and proton elliptic

flow, at 20% level. We have demonstrated that it is possible to describe both sets of data when

assuming the incompressibility to be within the range K=(240-300) MeV. Even though the range

of incompressibilities is wide, the range of energies per nucleon and pressures is relatively narrow

for higher densities, even when accounting for various uncertainties in drawing the conclusions.

54



CHAPTER 4

CONSTRAINTS ON SYMMETRY ENERGY AT SUPRANORMAL DENSITIES

4.1 Introduction to symmetry energy

Isospin is a quantum number introduced to provide mathematical framework for the symmetry of

strong interactions associated with the fact that up and down quark have nearly the same mass

on the scale of energies relevant for strongly interacting systems. Proton (p) and neutron (n) are

considered to be different directions for the same particle in isospin space. For two nucleons, the

existence of stable deuteron demonstrates that net isospin T = 0 np interaction is stronger than the

T = 1 nn and pp interactions. Properties of strongly interacting nuclear matter are largely affected

by the isospin structure of the system. Therefore, the symmetry energy, which is related to the n-p

imbalance in a nuclear system, has been extensively studied by nuclear physicists.

As we showed in the previous chapter, energy per nucleon in a nuclear matter can be expanded

in powers of the neutron-proton asymmetry a of the system:

E
A
(r,a) =

E
A
(r,0)+S(r)a2 +O(a4). (4.1)

The coefficient S(r) is termed as the symmetry energy. It is usually assumed that contributions

from fourth-order term are small.

It is easy to see the effect of symmetry energy in the Bethe-Weizsacker formula as well. This

semi-empirical mass formula gives a good prediction for the nuclear binding energies. Liquid drop

concepts are used for justification of the formula, and the binding energy is expressed in terms of

five main terms:

EB = aV A�asur f A2/3 �asym(N �Z)2/A�aCZ2/A1/3 +Epair. (4.2)
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Above, A is the total number of nucleons, N is the number of neutrons and Z is the number of

protons. The coefficients aV , asur f , asym, aC represents the strength of the volume term, surface

term, symmetry term, and Coulomb term, respectively. The last term represents the empirically

parametrized pairing interaction. The symmetry energy term accounts for the imbalance of the pro-

ton and neutron numbers in a nucleus. Due to its density dependence, the symmetry energy pushes

the excess protons and neutrons to the surface of the nucleus, while helping to bring the system

to the lowest energy state. Such effect is observed in the existence of neutron skin in asymmet-

ric nuclei[71]. The neutron skin thickness is directly correlated to the slope of symmetry energy

with density[13, 72, 73, 74]. Other physical properties, for instance, nuclear masses, isovector Gi-

ant Dipole Resonance[12], and multi-fragmentation in heavy ion collisions are all affected by the

nuclear symmetry energy[75, 7, 76, 77, 78, 79, 80, 81]. In astrophysical scenarios, supernova dy-

namics, proton-neutron star evolution, neutron star stability against gravitational impulsion, stellar

radii, moment of inertia, ect. are dependent on the symmetry energy as well[3, 82, 83].
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Figure 4.1 The multifaceted influence of the nuclear symmetry energy. [3]

In stable nuclei, the density in the center is about the normal density r=0.16fm�3 and it de-

creases to zero within the surface. The temperature of ground state nuclei is by definition zero.

In intermediate energy heavy ion collisions, we are probing the density region around twice the

normal density and the nuclear systems are at high temperatures. In neutron star case, the density

in the center can reach as high as nine times the normal density, while the temperature is relatively

low. To describe properties of nuclear systems in such different regions of the phase diagram, the

behavior of symmetry energy as a function of density is much needed in order to understand the

properties of various nuclear systems. Figure 4.1 is taken from ref.[3]. It lists the physics ob-

servables and theoretical methods that are important for extracting and studying the information

about the density dependence of the symmetry energy as well as its magnitude. In this chapter, we

explore sensitive observables to constrain the high density behavior of the symmetry energy.
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4.2 Motivation

As we pointed out, nuclear symmetry energy is an important quantity that directly relates to most

of the physical properties of neutron stars, isospin dynamics in HIC, etc. However, to date, density

dependence of symmetry energy at higher than normal density is not well constrained. Figure 4.2

shows a variety of theoretical expectations regarding the nuclear symmetry energy [4]. Among the

21 sets of Skyrme interactions shown, all have been chosen to fit to the basic nuclear properties

at saturation density. However, they predict very different behavior of symmetry energy beyond

the saturation density. For some of the interactions the symmetry energy monotonically increases

with density (stiff symmetry energy), while for some interactions the symmetry energy starts to

decrease at higher densities (soft symmetry energy).

Figure 4.2 Density dependence of nuclear symmetry energy for 21 sets of Skyrme interaction

parameters. Symbols represent momentum-dependent interactions in IBUU04 [4].
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With such large uncertainties in the theoretical expectations, it is important to find a sensitive

observable for experiments to constrain the behavior of symmetry energy at supranormal densities.

Pions produced in HIC generally originate from higher than normal density regions, so pions might

serve as a good probe of the high density behavior of symmetry energy.

4.3 Charged pion ratios

During intermediate stages of heavy-ion collisions, density in the overlap region of the two nuclei

can easily reach values twice as high as the saturation density. Pions are produced in that region

through production and decay of delta resonances, when the inter-nucleon energy exceeds the pion

threshold. In the pBUU transport model parametrization, apart from Coulomb interactions, pions

also feel a pion potential that depends on isospin and symmetry energy.

The isospin contribution to the energy ET in the parametrization of total energy for pBUU is

ET = 4
Z

d~r S(r)
r

2
T

r

, (4.3)

where rT = Â
X

rX t3X and t3X is the third component of isospin for species X. The symmetry-

energy factor S above can be conveniently decomposed as

S(r) = Skin0

✓
r

r0

◆2
3
+Sint(r), (4.4)

where the first r.h.s. term, with Skin0 ' 12.3MeV, represents the symmetry energy in absence of

interactions, due to Pauli principle, and the second term represents interaction contribution. In [29]

and the calculations here so far, the interaction contribution was of the simplest possible linear form

Sint0(r) = Sint0

✓
r

r0

◆
. (4.5)

However, this can be modified to a power parametrization

Sint0(r) = Sint0

✓
r

r0

◆
g

, (4.6)
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for more generality. Larger values of g produce symmetry energies rising quickly with density

around r0. Such symmetry energies are generally termed stiff. Low values of g yield symmetry

energies changing slowly around r0. These are termed soft. Description of nuclear masses requires

Sint0 ⇠ 20MeV [84, 85], best accompanied by a positive correlation between Sint0 and g .

The pion potential, as a result, is

U
p

± =⌥8 Sint0 rT
r

g�1

r

g

0
. (4.7)

Consistently with the D/N⇤ $ n+p decay, the optical potential for D resonances satisfies UD =

UN +U
p

, where UN is the optical potential for nucleons. Pion production yields consistent with

Clebsch-Gordan coefficients lead to a simple relation between primordial charged pion ratio and

neutron-proton ratio of the participants follows from consideration of the chain of processes [86]:

p

�/p

+ ⌘ 5N2 +NZ
5Z2 +NZ

⇡ (N/Z)2. (4.8)

Above relation shows a direct correlation between charged pion ratio and the isospin content in

the systems. Hence, pion observables in HIC are also very important for constraining the stiffness

of symmetry energy. Li was first to propose that charged pion ratio is a sensitive observable for high

density behavior of symmetry energy [81]. The link between the pion yield ratio and symmetry

energy turned out subsequently to be less straight forward than first proposed [81], though, with

different transport models contradicting each other, as is in particular illustrated in Fig. 4.3.

60



Figure 4.3 (Color online) Pion ratios in central Au+Au collisions, as a function of beam energy.

Data of the FOPI Collaboration are represented by filled triangles. The left panel compares pre-

dictions from IBUU and ImIQMD models to the data. The IBUU calculations employing stiff and

soft symmetry energies are represented there by filled diamonds and filled circles, respectively. The

ImIQMD employing stiff and soft symmetry energies are, on the other hand, represented there by

filled squares and crosses, respectively. The right panel compares predictions from pBUU model to

the data. Calculations employing v2-optimized MF and N
p

-adjusted MF are represented by filled

circles and filled squares, respectively. In our calculations here, the potential part of the symmetry

energy is linear in density.

Figure 4.3 displays ratios of net yields of charged pions stemming from central Au+Au colli-

sions at different beam energies. The filled triangles represent measurements of the FOPI Collab-

oration [87]. Other symbols represent results of different transport calculations. In the panel (a)

of Fig. 4.3, it is seen that, within IBUU calculations [88], a stiff symmetry energy gives rise to a

lower p

�/p

+ ratio than does a soft energy. However, the opposite is true for the ImIQMD calcu-

lations [89], as seen in the same panel, which is one of the current contradictions in the literature,
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mentioned before.

Figure 4.4 (Color online) Ratio of net charged pion yields in central Au+Au collisions at 400A

MeV and 200A MeV, as a function of the stiffness of symmetry energy g , from pBUU calculations

using N
p

-adjusted MF. The dashed region represents the 400A MeV FOPI measurement. The

theoretical errors are due to statistical sampling in the pBUU calculations.

In our own calculations, the p

�/p

+ net yield ratio is practically independent of the details in

the momentum dependence of MF, as illustrated in panel (b) of Fig. 4.3, where we show results

utilizing both v2-optimized and N
p

-adjusted MF. The results are obtained for Au+Au collisions

at b < 2fm. We use here the linear Sint , Eq. (4.6), and either set of results agrees, within statis-

tical uncertainty, with the FOPI measurements. Importantly, we further find that the net charged

pion ratio and the agreement with the measurements remain largely independent of the stiffness

of symmetry energy. That is illustrated in Fig. 4.4, where we show pBUU results obtained in
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calculations of central Au+Au collisions at 200 and 400A MeV, when changing g in the symmetry

energy Eq.(4.7).

4.4 Pion potential

One detail in pBUU that may give rise to different sensitivity to the symmetry energy for net pion

yields, than in other transport calculations, is the presence of a strong interaction potential acting

on pions and driven by isospin imbalance. The non-zero pion potential is given in Eq. 4.7. In

IBUU and ImIQMD, such strong-interaction potentials acting on pions have been lacking.

Pion-nucleus optical potential has been used to explain the existence of pionic atoms. Pionic

atoms are systems consisting of a negatively charged pion and positively charged atomic nucleus.

Because of the heavier mass, pion has smaller Bohr radius than that of the electron, providing

better tool for testing nuclear properties. While the Coulomb interaction attracts the pion to the

nucleus, the strong interaction repels the pions when the nucleus has more neutrons than protons.

Toki et al., in particular, constructed a pion potential that successfully described the deeply

bound states of pionic atoms [5]. In Fig. 4.5, the potential in pBUU, for three values of g , is

compared to that of Toki, for 197Au. Given that our potential in the form (4.8) can only represent

the so called s-wave contribution to the p-nucleus potential, we drop, in the comparison, the small

p-wave contribution to the potential of [5]. The tails are different in our potentials compared to

Toki, due to excessively abrupt changes of density in the semiclassical Thomas-Fermi model (the

T=0 limit of our transport model) in the surface region. For pions moving across a HIC zone,

however, the most important is the magnitude of the potential over regions where density changes

slowly, including nuclear interior in the ground state. In the interior, our potentials for g from 1 to

2 are within 30% from the Toki’s potential.
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Figure 4.5 (Color online) S-wave contribution to p �197 Au optical potential. Solid line represents

the work of Toki [5]. Short-dash, dotted and dash-dotted lines represent pion potentials from

pBUU parameterization for g = 0.5,1.0,2.0, respectively, in the interaction part of the symmetry

energy. Long dashed line represents the lack of corresponding potentials in the IBUU and ImIQMD

models.

The potentials of different sign for p

+ and p

�, each equal in magnitude to the difference

between neutron and proton mean fields, and also a difference in the potentials for D, may produce

enough difference in the propagation of charged pions in the pBUU relative to other models to

affect predictions.
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4.5 Differential pion ratios

While we found no sensitivity in pBUU of net charged pion yield ratios, around threshold, to S(r),

still the general idea [81] contains convincing elements. Potentially, more differential ratios of

charged pion yields could provide access to S(r) at supranormal densities. In Fig. 4.6-4.8, we

explore the sensitivity of charged-pion spectra to the stiffness of symmetry energy. The first two

figures illustrate the p

�/p

+ ratio as a function of pion c.m. energy and the third illustrates the

average c.m. energies for the charged pions. Difference in the average c.m. energies, between p

+

and p

�, is additionally plotted in Fig. 4.8, as a function of the stiffness g of the symmetry energy,

for Au+Au at 200A MeV.

65



Figure 4.6 (Color online) Charged pion ratio in central Au+Au collisions at 200A MeV, as a func-

tion of kinetic energy in the center of mass frame, for different values of the stiffness g of the

symmetry energy, from 0.5 to 2.0. The horizontal line represents the ratio of net charged pion

yields.

66



Figure 4.7 (Color online) Charged pion ratio in central 124Sn+132Sn collisions at 300A MeV, as a

function of kinetic energy in the center of mass frame, for different values of the stiffness g of the

symmetry energy, from 0.5 to 2.0.
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Figure 4.8 (Color online) Average center-of-mass kinetic energy of p

+ and p

� in central Au+Au

collisions at 200A MeV, plotted against stiffness g of the symmetry energy.

The figures display competing effects of the isospin content of the system, of Coulomb interac-

tions and of the symmetry energy. Obviously, the neutron excess generally makes negative pions

more abundant than positive, with the effect amplified by larger isospin magnitude for the pions

than for the nucleons. The long-range Coulomb interactions play the primary role in making the

p

�/p

+ ratio dependent on the energy of the emitted pions. Thus, after the pions cease to interact

strongly and move out from the reaction region, described then by primordial spectra sharing to a

degree characteristics between p

+ and p

� (and p

�), the Coulomb interactions accelerate p

+ and

decelerate p

�. The relative Coulomb push boosts the p

�/p

+ ratios at low c.m. energies, above

the overall ratio for the reactions, and lowers the ratios at high c.m. energies, see Figs. 4.6 and 4.7.

The push also gives rise to substantially higher average c.m. energies for p

+ than p

�, see Figs.

68



4.8.

Contributions to mean-field potentials associated with the symmetry energy principally act

opposite to Coulomb interactions, but they act while pions continue to rescatter, in fact with large

cross-sections due to the formation of D-resonance, down to low densities. The scattering tends to

erase the impact of different accelerations for p

+ and p

� (and for nucleons and D’s with different

isospin as well) due to the isospin-dependence of mean fields. With the scattering rates being

linear in density, the mean fields can win over the rescattering, in the low density region, if their

dependence on density is slower than linear. The low-energy part of the spectrum is generally

dominated by particles emitted from lower density regions, late in the history of the reactions.

In Figs. 4.6 and 4.7, we can see that the symmetry energy is indeed effective in countering the

effects of Coulomb enhancement of the low-energy p

�/p+ ratio, when g < 1 and the interaction

symmetry energy is large at low densities. At g > 1, the effect fizzles out. Notably excitation of

the medium suppresses the role of Pauli principle and of the associated kinetic contribution to the

symmetry energy. In Fig. 4.9, we can see that the impact of the stiffness of symmetry energy, on

p

+�p

� average-energy difference, weakens past g ⇡ 1.
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Figure 4.9 (Color online) Difference between average c.m. kinetic energy of p

+ and p

� in central

Au+Au collisions at 200A MeV, plotted against stiffness g of the symmetry energy.

With regard to the particles emitted at higher c.m. energies, that tend to stem from early stages

of the reaction and higher densities, another high-density effect of the symmetry energy comes

into play. Namely, a stiff symmetry energy pushes away the neutron-proton asymmetry from the

high-density region [25], see Fig. 4.10. With the reduction in the high-density asymmetry, the

p

�/p

+ ratio gets reduced at high c.m. energies. Thus, qualitatively a stiff symmetry energy acts

in this energy region as the relative Coulomb boost, cf. Figs. 4.6 and 4.7. With this, it becomes

possible to access the stiffness of high-density symmetry-energy through the high-energy p

�/p

+

yield ratio.
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Figure 4.10 (Color online) Ratio of neutron-to-proton numbers at supranormal net densities, r >

r0, in central Au+Au collisions at 200A MeV, as a function of time. At early times, the numbers

in the ratio are marginal, and the ratio, thus, not very meaningful.

In the earlier version[90] of this work, we also explored the p

�/p

+ yield ratio in the direction

out of the reaction plane as a probe of the symmetry energy at supranormal densities. In that direc-

tion the high-density matter is directly exposed to the vacuum. However, with a higher statistics in

the calculations, our directional signal[90] for the symmetry energy has weakened.

4.6 Isospin fractionation

As to the symmetry energy below saturation density, and comparing the symmetry energy at low

and high density, one useful probe is the isospin fractionation. Just as in nuclear ground state,
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the neutron-proton imbalance in a reaction is likely to migrate in correlation with the behavior of

the symmetry energy with density. At low density, a soft symmetry energy is higher than a stiff

symmetry energy, and at high density, the stiff symmetry energy is higher. With this, in a system

simulated with a soft symmetry energy, more of the neutron-proton imbalance is expected to be

pushed to higher density and less to lower, as compared to a system simulated with a stiff energy.

The regions of high density are more likely to contribute to emission of particles with high energy

and those of low density to emission of particles with low energy. Thus, by studying relative yields

of neutrons and protons as a function of particle energy, one may assess how symmetry energy

changes with density. In the following, we examine the n/p ratios from pBUU simulations as a

function of particle kinetic energy .

Figure 4.11 Ratio of neutron-to-proton numbers, in central Au+Au collisions at the beam energy of

200A MeV and impact parameter b=1fm, as a function of kinetic energy in center of mass frame.
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Figure 4.12 Ratio of neutron-to-proton numbers, in central 132Sn+124Sn collisions at the beam

energy of 200A MeV and impact parameter b=1fm, as a function of kinetic energy in center of

mass frame.

We simulated the central nuclear collisions of Au+Au, as well as of 132Sn+124Sn, at 200A

MeV and impact parameter of b=1fm. A soft symmetry energy with parameter g = 0.5 and a

stiff symmetry energy with parameter g = 1.75 have been chosen to test the sensitivity of n/p

ratios to the stiffness of symmetry energy. The neutron-proton ratios as a function of the kinetic

energy in center of mass frame are plotted in Fig. 4.11 for the Au+Au reactions and in Fig 4.12

for 132Sn+124Sn. We see a definite system dependence of the n/p ratios when comparing the two

figures. The net neutron-proton asymmetry a at the start of the reaction is ⇡ 0.20 for Au, and ⇡

0.22 for 124Sn+132Sn system. The n-p ratios are indeed higher for the second system, but also

they are higher than naively expected from the overall neutron-proton imbalance. This is because
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of residual regions remaining at the end of a reaction simulation, persisting at moderate subnormal

density that are going over time scales that are long compared to those for which semiclassical

transport theory is appropriate. Those regions tend to trap protons to a larger extent than neutrons

when the imbalance is present, enhancing the n-p ratio for free nucleons. The trapping itself can

depend on the symmetry energy. Also note that, with different g , n/p ratios are small compared to

the pion ratios at this energy.

Figure 4.13 Ratio of neutron-to-proton numbers, in central 132Sn+124Sn collisions at the beam

energy of 300A MeV and impact parameter b=1fm, as a function of kinetic energy in center of

mass frame.
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Figure 4.14 Ratio of neutron-to-proton numbers, in central 132Sn+124Sn collisions at the beam

energy of 300A MeV and impact parameter b=3fm, as a function of kinetic energy in center of

mass frame.

In Fig. 4.13, we show n/p ratio calculations for 132Sn+124Sn collision at higher beam energy

of 300MeV/nucleon, at the impact parameter of b=1fm. Fig. 4.12 and 4.13 together demonstrate

the dependence of n/p ratios on the beam energy. The overall fall of the n-p ratio with beam energy

may be understood in the fact that the residual remnants are smaller in size at higher beam energy,

hence the order of magnitude of the ratios for the reminder drifts towards n/p balance from the

overall system asymmetry. Fig. 4.14 shows results from a calculation of 132Sn+124Sn collision at

300MeV/nucleon, but now the calculation is at the impact parameter of b=3fm. At a higher impact

parameter, the residual region increases in size and the n-p ratio for free nucleons drifts up again.

Irrespectively of the impact parameter, beam energy, or system type, the high-energy n-p ratio is
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always flatter as a function of energy for soft symmetry energy, and the low-energy ratio is always

flatter for stiff, consistently with the expectation that the differential n-p yield ratio can be used to

assess the symmetry energy both at the high and low density.

4.7 Conclusions

With a new parameterization for momentum-dependent MF, pBUU gives a reasonable descrip-

tion of pion multiplicities in moderate-energy central HIC. The puzzling finding is that the same

parameterization of the MF momentum-dependence cannot be simultaneously used in describing

the net pion yields around threshold and the high-momentum elliptic flow of protons. One poten-

tial avenue for resolving this puzzle is in the adjustment of nuclear incompressibility as described

in Chapter 3. We compared our new momentum dependence of nucleonic optical potential with

several microscopic calculations. The modified potential is within the realm of uncertainties for

microscopic predictions, just like the previous potential.

Next, we used pion ratio observables to study the symmetry energy behavior at higher density

than normal. While IBUU and ImIQMD yield opposing sensitivities to the density dependence

of symmetry energy, for p

�/p

+ net yield ratios, we find no significant sensitivity of that ratio to

S(r) in pBUU. One factor affecting that sensitivity may be the pion optical potential in pBUU,

driven by isospin asymmetry. We examined the dependence of charged pion ratio on pion c.m.

energy in pBUU. To isolate the effect of symmetry energy at supranormal densities, we looked

at the high energy tail of the spectra—where a clear sensitivity of pion ratio to different forms of

supranormal symmetry energy is seen. Additionally, the difference of average c.m. kinetic energy

of emitted p

+ and p

� also shows a sensitivity to different symmetry energies. In Ref. [90], we

applied combined energetic and angular cuts to the pion ratios and proposed it as a new differential

observable for future experiments.

Lastly, we examined the impact of the density dependence of symmetry energy on the energy

dependence of n/p yield ratio. Depending on the energy region, both the low- and high-density
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dependence of the symmetry energy could be tested.
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CHAPTER 5

GAUSSIAN QMC METHOD

5.1 Introduction

Solving strongly correlated quantum many-body physics problems has been a challenge for the-

oretical physics. Because of the strong impact of interactions, use of perturbation theory can be

questionable in such cases. The straight brute force approaches are not practical due to dimen-

sionality and the intrinsic complexity of many-body wavefunctions. For fermionic systems, the

notorious sign problem is encountered in numerical calculations, that inhibits understanding of

many-body physics. The sign problem is encountered because fermion wavefunctions change sign

under particle interchange. In numerical calculations, integrations need then to be carried out

over functions that are highly oscillatory with positive and negative values nearly canceling each

other. It becomes numerically expensive to obtain accurate results, and sampling errors become

very large. The numerical sign problem is encountered in numerical calculations in many areas of

physics, including lattice QCD calculations of quark matter and calculations of ultra-cold atomic

Fermi gases. In condensed matter physics, the problem is encountered when tackling systems

with strongly correlated electrons. In nuclear physics, where nucleons interact with each other

through strong force, the sign problem limits application of ab-initio methods to light nuclei only.

The Gaussian phase-space representation method has been developed in the context of dynamic

and static problems in ultra-cold atomic physics[91, 92, 93]. It aims at simulating Boson and

Fermion systems from first-principles. The density matrix of a system is expanded in the Gaussian

phase-space basis that, by being overcomplete, allows for exclusively positive definite expansion

coefficients. The quantum master equation for the density matrix is next cast into the form of a

Fokker-Planck equation in the space of expansion coefficients. A Monte-Carlo sampling is used

in solving the stochastic Ito stochastic equations equivalent to the Fokker-Planck equations. The
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purpose of studying the Gaussian phase-space representation method in this thesis is to analyze the

methodology and seek opportunities for its application to problems in nuclear physics.

5.2 Phase space methods

In 1932, Wigner brought the idea of an expectation value in quantum mechanics that corresponded

to the classical probability function distribution in spatial coordinates and momenta[94]. Later,

other constructions were put forward that aimed at providing simultaneous information on space

and momentum for a system. These included the Husimi Q-function[95], P-representation[96, 97],

complex P-representation, positive-P representation[98, 99], squeezed-state expansion[100], etc.

5.2.1 Classical phase-space representations

In 1963, Glauber[96] and Sudarshan[97] independently developed an important classical phase

space method employing the coherent states as a basis for representing the density matrix of

bosonic systems:

b
r =

Z
P(~a)|~aih~a|d2M~

a. (5.1)

In the above, M is dimension, ~a is an M-mode coherent state, P(~a) can be interpreted as the

probability density. The method was later called Glauber-Sudarshan P-representation, and it was

successfully employed in the quantum laser theories. However, since the specific basis could not

describe entangled states, the application of classical phase space expansion became quite limited.

In addition, due to incompleteness of the mapping, system evolution could results in negative

values for P, incompatible with its interpretation as a probability.

5.2.2 Quantum phase-space representations

In 1980s, a positive P-representation was proposed, modified relative to original to allow for quan-

tum entanglement in the expansion basis:
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b
r =

Z
P(~a,~b )

|~b ih~a|
h~a|~b i

d2M~
ad2M~

b . (5.2)

Now the number of variables has been doubled, and off diagonal matrix elements got included

in the expansion. The coefficients in the new basis can be chosen as positive and the method

works well for Bosonic systems. However, complexity arises with fermionic coherent states in

that Grassmann numbers get employed in the basis decomposition. Coherent states have been,

in particular, used in path integrals for Fermions. The issue is that a Grassmann number is a

mathematical construction made to obey anti-commutation relations and specific algebraic rules

and it cannot be simply treated as probability.

5.3 Gaussian phase-space representation

Gaussian phase space representation uses a more generalized basis than coherent states, for both

Bosons and Fermions. The Fermion operators are represented in pairs, hence no Grassmann num-

bers are needed within the algebra.

b
r(t) =

Z
P(~l , t)L̂(~l )d~l (5.3)

where P(~l , t) is the probability distribution, L̂ is a member of the generalized basis and ~l rep-

resents the phase space coordinates. Regarding a connection to the classical phase-space repre-

sentation, L̂(~l ) corresponds to |aiha| in the founding formula, and in connection to the quantum

phase-space representation, L̂(~l ) corresponds to |b iha|. The real time or imaginary time evolution

of density matrix can be cast into a Liouville equation form:

∂

∂ t
r̂(t) = L̂( ˆ

r(t)). (5.4)

Upon insertion of the expansion of the density matrix into the Liouville equation, the partial

differential equation acquires an integro-differential form:
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Z dP(~l , t)
dt

L̂(~l )d~l =
Z

P(~l , t)L̂[L̂(~l )]d~l . (5.5)

Actions in the Liouville operator can be mapped onto operations involving expansion coefficients

(probability distribution) labeled in terms of phase-space variables, such as derivatives with respect

to the variables and multiplication by the variables, i.e. L̂. Integrating by parts and assuming van-

ishing of coefficients at infinity for a bounded system, we arrive at the following integro-differential

equations for the distribution functions P(~l , t).

Z dP(~l , t)
dt

L̂(~l )d~l =
Z

L0P(~l , t)L̂(~l )]d~l . (5.6)

For any arbitrary basis, the dynamical equation for the distribution function can be obtained:

dP(~l , t)
dt

= L0P(~l , t). (5.7)

If interactions in the system are of one-body and two-body type only, we arrive at a Fokker-Planck

equation for P(~l , t) containing only first-order and second-order derivatives.

dP(~l , t)
dt

= [�
p

Â
a=0

∂

∂la
Aa(~l )+

1
2

p

Â
a,b=0

∂

∂la

∂

∂lb
Dab(

~
l )]P(~l , t). (5.8)

The form of matrices A and D is determined during the mapping process, and they both turn

out to be positive-definite. It can be shown that there exists an Ito stochastic equation equivalent

to the above Fokker-Planck equation. As a result, the differential equation for P can be solved

via Monte-Carlo sampling of the stochastic equation within the phase-space with ~l as a coordi-

nate. Expectation values of the observables can be obtained from calculating moments of P. In

the following subsections, we describe the Gaussian phase-space representations for Bosons and

Fermions separately.

5.3.1 Gaussian phase-space representations for Bosons

For an M-mode bosonic system, â represents a column of annihilation operators, and â† a row of

creation operators. Those operators satisfies the commutation relations:
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[âi, â
†
j ] = di j. (5.9)

For convenience in manipulations, we next introduce 2M-vectors for complex numbers and

operators a and â, and a displacement operator d â:

d â = â�a =

0

B@
â

â†

1

CA�

0

B@
â

â

†

1

CA (5.10)

The general Gaussian basis can be given a quadratic form in terms of the 2M-vectors:

L̂(~l ) = Wq
|s |

: exp[�d â†
s

�1
d â/2] : (5.11)

In the above expression, :: represents normal ordering, introduced for algebraic purposes, in which

all creation operators are moved to the left of the annihilation operators. In the case of Bosons,

there is no sign changes associate with normal ordering:

: â†â := â†â, (5.12)

: ââ† := â†â. (5.13)

Normal ordering applied to an exponential function of operators implies an expansion of the expo-

nential into series and application of the normal ordering to each term in the series:

: exp(l â†â) :=
•
Â

n=0

l

n

n!
â†nân. (5.14)

The complex matrix elements in s play the role of phase-space variables that can have principally

more physical content than just the classical coordinates (~r,~p):

s =

2

64
I+n m

m+ I+nT

3

75. (5.15)

Here, n and m, m+ are complex M by M matrices, and m and m+ are two independent symmetric

matrices. With those we can put together the phase-space variables for Bosons:
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~
l = (W,a,a+,n,m,m+). (5.16)

Among the variables, W is the weight of different trajectories, of use in case of imaginary-time

evolution, a represents the eigenvalue of the annihilation operator â associated with the coherent

state |ai, â|ai= a|ai. a

+ is the conjugate to a . The matrix elements of n represent the normal

correlation between different pairs of modes; matrix elements of m are the correlations of pairs of

annihilation operators, and m+ are the correlations of pairs of creation operators.

The generality of the Gaussian basis may be reduced and, in particular, the Gaussian basis for

the positive-P representation takes on the following form:

L̂P(W,a,b ) = W |aihb⇤|
hb⇤|ai . (5.17)

Matrices (n), (m) and (m)+ are zero in this case. In this case, the mapping between the operators

actions and phase-space operations is as follows:

L̂ = W ∂

∂W
L̂, (5.18)

âL̂ = aL̂, (5.19)

â†L̂ = [b +
∂

∂a

]L̂, (5.20)

L̂â = [a +
∂

∂b

]L̂, (5.21)

L̂â† = b L̂. (5.22)
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5.3.2 Gaussian phase-space representations for Fermions

For an M single-particle modes fermionic systems, creation and annihilation operators for each

mode satisfy the anticommuntation relations:

[b̂k, b̂ j
†
] = dk j, (5.23)

[b̂k, b̂ j]+ = 0. (5.24)

The subscripts k and j here span values from 1 to M. For convenience in manipulations, we can

define an M-column vector b̂ consisting of annihilation operators, and an M-row vector b̂† of

creation operators. We can moreover define an extended vector with 2M operators as:

b̂ =

0

B@
b̂

b̂†T

1

CA (5.25)

The phase-space variables can be similarly combined into an arrow vector~l , and consequently a

member of the Gaussian operator basis can be cast into the following general form:

L̂(~l ) = W 1
N

: exp[�b̂†Sb/2] : . (5.26)

In the above, N is the factor that combines with the trace of the following Gaussian operator to 1.

The dimension of the complex matrix S is 2M ⇥ 2M, and that matrix can be expressed as

S = (s�1 �2I). (5.27)

The matrix elements of s are similarly defined and have similar physical content as in the case of

Bosons:

s =

2

64
nT � I m

m+ I�n

3

75 (5.28)
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The matrix I is defined with

I =

2

64
�I 0

0 I

3

75 (5.29)

For fermionic systems, the phase-space coordinates are

~
l = (W,n,m,m+). (5.30)

To calculate an expectation value of an operator Ô, one can use the following expression:

hÔi= Tr[Ôr̂]/Tr[r̂] =
R

P(~l , t)Tr[ÔL̂]d~l
R

P(~l , t)Wd~l
⌘ hO(~l )iP. (5.31)

5.4 Properties of Gaussian phase-space method for Fermions

Since the Gaussian phase-space representation is closely tied to the positive P representation, var-

ious desired features of the basis extend in a natural manner from one to another. For nuclear

physics more important is the fermionic case and those features are less obvious in that case.

Hence, we concentrate now on the aspects of the basis in that case. Some details relevant to the

derivation can be found in the paper by J.F. Corney [92].

5.4.1 Single-mode Gaussian operator

First, we arrive at explicit expressions for single-mode Gaussian operators. Similarly to the normal

ordering of the exponential function of Bosonic operators, the single-mode Gaussian operator for

Fermions can be represented as a sum of series:

L̂0
1(µ) =: exp[�µ b̂†b̂] :=:

•
Â

k=0

1
k!
(�µ b̂†b̂)k := 1�µ b̂†b̂. (5.32)

The Gaussian operator is left with two terms only because of the Pauli principle for Fermions and

the normal ordering applied within each term. The trace of the operator above is then 2�µ . Upon
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introducing n = (1� µ)/(2� µ), and ñ = 1� n, the normalized Gaussian operator can be next

expressed in terms of a new variable:

L̂1(n) = ñ : exp[�(2�1/µ)b̂†b̂] := ñb̂b̂† +nb̂†b̂. (5.33)

Equivalently we can write

L̂1(n) = ñ|0ih0|+n|1ih1|. (5.34)

We can see that the Gaussian basis is a complete basis for the number-conserving single-mode

Hilbert space. Within that space any density matrix can be expanded into Gaussian operators with

positive-definite coefficients.

r̂ = ñL̂1(0)+nL̂1(1). (5.35)

5.4.2 Completeness

To prove the completeness of a Gaussian phase-space basis, we first expand the density matrix

using states with definite occupations:

r̂ = Â
~n

Â
~m
|~nih~n|r̂|~mih~m|. (5.36)

Within the basis of |~nih~m|, each state can be occupied by zero or one Fermion. In total, the number-

state projector has 22M independent elements. The products of states form a complete basis for

the density operator. In fact, since that basis contains non-Hermitian matrices, it is necessaryly an

overcomplete basis. One can find non-unique expressions for the expansion of the density matrix,

as has been shown in the single-mode case.
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5.5 Free gas

A noninteracting Fermi gas in equilibrium can be naturally described using the Gaussian phase-

space representation. Thus, the Hamiltonian for free gas only contains diagonal single-particle

energy terms:

Ĥ = b̂†
w b̂. (5.37)

The evolution equation for grand canonical density matrix in inverse temperature/imaginary

time is

d
db

r̂ =�1
2
[H �µN, r̂], (5.38)

∂

∂b

r̂ =�1
2
(b̂†

w b̂r̂ + r̂ b̂†
w b̂). (5.39)

Here, b is the scaled inverse temperature T = 1/kBb , and µ is the chemical potential associated

with particle number.

The following mapping relations apply here for the thermal states:

b̂†b̂r̂ ! [nk �
∂

∂nk
(1�nk)nk]P, (5.40)

r̂ b̂†b̂ ! [nk �
∂

∂nk
(1�nk)nk]P, (5.41)

r̂ !� ∂

∂W
WP. (5.42)

In consequence, we arrive at the first-order Fokker-Planck equation:

∂P
∂b

= Â
k

wk[
∂

∂nk
(1�nk)+

∂

∂W
W]nkP. (5.43)

The above equation can be recast into the differential equation set:
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Ẇ =�Â
k

wkWnk, (5.44)

ṅk =�wknk(1�nk). (5.45)

The Fermi-Dirac distributions readily follow as a solution of the second part of the set and yield

nk =
1

ewkb +1
, (5.46)

W = W0 ’
k

e�wknkb . (5.47)

5.6 Fermi-Bose modeling

Fermi-Bose model has been historically used in condensed matter physics for simulating the for-

mation of two electrons into a bosonic Cooper pair. In the context of ultra-cold atomic physics, the

model represents dissociation of a Bose molecule into two atomic constituents (two Bosons or two

Fermions) and their reassociation. We tested the utility of the Gaussian operator representation for

studying time evolution within a model where a single-mode Boson dissociates into two two-mode

Fermions.

The Hamiltonian of the system is:

H = h̄n â†â+ h̄w(b̂†
1b̂1 + b̂†

2b̂2)+ h̄g(â†b̂1b̂2 + âb̂†
2b̂†

1). (5.48)

In the above, â† (â) is the creation (annihilation) operator for the quanta of the bosonic field, and

b̂†
i (b̂i) are creation (annihilation) operators of the fermionic single-particle energy levels in, e.g.

different spin states. The conserved combination of the atomic particle numbers is

N = 2â†â+ b̂†
1b̂1 + b̂†

2b̂2. (5.49)
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As the Hamiltonian is quadratic in the operators, higher-order products of annihilation and creation

operators will be factorized to products of the normal and anomalous densities: n1 = b̂†
1b̂1 = n2 =

b̂†
2b̂2,m = b̂1b̂2,m+ = b̂†

1b̂†
2.

We consider a uniform system in a cubic box of side L, with atomic particle density r0, and

the total number of atoms equal to N=r0L3. Applying the mean field approximation, where the

bosonic operator a(t) is replaced by a real function a(t), we can arrive at the differential equations

for the normal and anomalous densities:

dni
dt

= 2ga0Re{m}, (5.50)

dm
dt

=�2i(w �n)m+ga0(1�2ni). (5.51)

where i=1,2. The solution to the above equations are:

ni =
(ga0)

2

(ga0)2 +(w �n)2 sin2(
q

(ga0)2 +(w �n)2t), (5.52)

m =
ga0p

(ga0)2 +(w �n)2
cos(

q
(ga0)2 +(w �n)2t)sin(

q
(ga0)2 +(w �n)2t)

� i
ga0(w �n)p

(ga0)2 +(w �n)2
sin2(

q
(ga0)2 +(w �n)2t).

(5.53)

The averaged bosonic molecule numbers can be next calculated exploiting conservation of atomic

particle numbers (Eq. 5.44):

a(t)2 = N/2� (ga0)
2

(ga0)2 +(w �n)2 sin2(
q

(ga0)2 +(w �n)2t). (5.54)

On the other hand, when employing the Gaussian operator basis, the density matrix of the

system may be described in terms of six independent complex variables: (a,a+,n1,n2,m,m+).

The action of different operators can be mapped on the density operator. Applying the mapping

identities in Eq. 5.17 - Eq. 5.20, the equations of motion for these variables follow:

ṅ1 = ig(a+m�am+)�
p

in1(mW⇤
1 +m+W⇤

2 ), (5.55)

ṅ2 = ig(a+m�am+)�
p

in2(mW⇤
1 +m+W⇤

2 ), (5.56)
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ṁ =�iga(1�n1 �n2)+
p

i[�(w �n)m2W⇤
1 +n1n2W⇤

2 ], (5.57)

ṁ+ = iga

+(1�n1 �n2)+
p

i[n1n2W⇤
1 � (w �n)m2W⇤

2 ], (5.58)

ȧ =�igm�
p

iW1, (5.59)

ȧ

+ = igm++
p

iW2. (5.60)

In those equations, W1(t),W2(t) represent complex Gaussian noises that satisfy the relations:

hWi(t)Wi0(t
0)i= 0, (5.61)

hWi(t)W⇤
i0 (t

0)i= dii0d (t � t0). (5.62)

We have solved this set of Langevin equations numerically and we display the average number

of molecules as a function of time in Fig. 5.1-5.2. For simplicity, the values for the parameters

in Hamiltonian have been chosen as: g=1, a0 =
p

N/2, w � n = �0.1. The dashed lines repre-

sent analytic solution in Eq. 5.49. The difference between the Gaussian QMC method and the

analytic solution is due to non-uniformity of the bosonic field and due to finite number of bosonic

molecules. In the figure one can observe that, up to small errors that shrink as sampling is in-

creased, the method produces the expected gradual decrease of Boson molecule number towards

equilibrium. However, beyond a certain critical time, the error increases dramatically. For a given

sampling size, such a dramatic growth of error is eventually reached around a time that little de-

pends on sample size. Changing the system size or time step in the calculation have little effect on

sampling error.
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Figure 5.1 Average number of boson molecules as a function of time, in a system of single-mode

boson molecules dissociating into two two-mode fermions, from a simulation within the Gaussian

operator representation. Dashed line represent analytic solution using mean field approximation in

Eq. 5.49. The system starts with 10 molecules and no fermions. In the specific case, the number

bosonic molecules is calculated from the average 4000 trajectories. The sampling error is under

control for a short time and then grows dramatically.
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Figure 5.2 Average number of boson molecules as a function of time, in a system of single-mode

boson molecules dissociating into two two-mode fermions, from a simulation within the Gaussian

operator representation. Dashed line represent analytic solution using mean field approximation in

Eq. 5.49. The system starts with 20 molecules and no fermions. In the specific case, the number

bosonic molecules is calculated from the average 4000 trajectories. The sampling error is under

control for a short time and then grows dramatically.

A good control of the sampling error for a certain time, followed by a dramatic growth in the

error seems to be a generic feature of the Gaussian representation method. Notably, the growth in

the particular case is around the time where the system appears to reach equilibrium and equilib-

rium is expected both for the average number of molecules and fluctuation of the number around

equilibrium. Qualitatively different way of controlling sampling error for long times may be put

forward, exploiting flexibility in the stochastic realization of the evolution equations. In this con-
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text, we explored three specific stochastic gauges aiming at control of the sampling error. First

was the Fermi gauge. For Fermion operators, any term with more than two fermionic operators

vanishes on account of the Pauli principle. Correspondingly, one can add such terms to the Hamil-

tonian without affecting the physics, while altering the stochastic strategy. The second gauge we

explored was the Diffusion gauge. The freedom of choosing that gauge follows from the square

root of a matrix being non-unique. In mapping the Fokker-Planck equations onto the Ito stochastic

equations, one has to evaluate a square root of the diffusion matrix - the extra freedom in the diffu-

sion coefficients will change the stochastic noise. The third gauge we explored is the drift gauge.

The freedom of employing that gauge follows from the following.

We attempted to use the latter two gauges in order to change the noise in stochastic calculations

and extend the period over which solutions to the evolution in Gaussian operator representations

could be of utility. However, any improvements in controlling the noise for long times turned out to

be negligible. Similar difficulties have been encountered elsewhere when employing the Gaussian

representations, no matter whether a system of Fermions or Bosons was investigated.

5.7 Conclusion

In this chapter, we discussed the Gaussian phase-space representation method, which was before

discussed in the literature only in the context of either condensed matter physics or physics of

ultra-cold atomic systems. The method allows for a first-principle approach in solving quantum

many-body problems, of special benefit for strongly correlated systems. The method relies on a

general overcomplete Gaussian basis, both for Fermions and Bosons, and on expansion of the den-

sity matrix of a system within such basis has positive definite coefficients. Those coefficient can be

interpreted as positive probability weights allowing to use the Monte-Carlo sampling for solving

the time evolution. This approach in principle largely improves the efficiency in numerical calcu-

lations, and is able to deal with Hamiltonians of large dimensions that more transitional methods

cannot cope with. The method can be employed to solve imaginary time as well as real time prob-
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lems. The limitation of the method is that the system should only interact up to two-body force

to maintain the expansion coefficients positive. Abrupt divergence in the sampling error appears

to permeate the real-time evolutions in the Gaussian representations and has been illustrated here

within the Fermi-Bose model.
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CHAPTER 6

CONCLUSIONS

When parameterization of momentum-dependent MF is changed, pBUU can provide a reasonable

description of pion multiplicities in moderate-energy central HIC. The puzzling finding is that

the same parameterization of the MF momentum-dependence cannot be simultaneously used for

describing the net pion yields around threshold and the high-momentum elliptic flow of protons.

We compared our new momentum dependence of nucleonic optical potential with several micro-

scopic calculations. The modified potential is within the realm of uncertainties for microscopic

predictions, just like the previous potential.

Inspired by the recent elliptic flow analysis of the FOPI-IQMD Partnership, we studied the

density dependence of nuclear mean field to arrive at constraints on equation of state of symmetric

matter. By exploring a wider range of nuclear incompressibility and momentum-dependencies than

before, we were able to reproduce pion yields and elliptic flow simultaneously. On the basis of that

analysis we can conclude that the incompressibility K for nuclear matter is in the range of 240-

300MeV. The deduced range of energies per nucleon and pressure for nuclear matter at moderately

supranormal densities is fairly narrow and represents somewhat stiffer EOS than claimed by the

FOPI-IQMD Partnership. The deduced constraints should be of utility in astrophysical modeling

of supernova explosions and neutron stars.

Next, we used pion ratio observables to study the symmetry energy behavior at higher density

than normal. While IBUU and ImIQMD yield opposing sensitivities to the density dependence of

symmetry energy, for p

�/p

+ net yield ratios, we find no significant sensitivity for that ratio to

S(r) in pBUU. One factor affecting that sensitivity may be the pion optical potential in pBUU,

driven by isospin asymmetry. We examined the dependence of charged pion ratio on pion c.m.

energy. To isolate the effect of symmetry energy at supranormal densities, we looked at the high

energy tail of the spectra—there a clear sensitivity of pion ratio to different forms of supranormal
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symmetry energy is seen. Additionally, the difference of average c.m. kinetic energy of emitted

p

+ and p

� also shows a distinguishing power for different symmetry energies. In Ref. [90], we

applied combined energy and angular cuts to the pion ratios and proposed it as a new differential

observable for future experiments.

Finally, we explored the utility of the Gaussian phase-space representation methods for solving

quantum many-body problems. We examined the basic properties of the Gaussian operator basis,

and applications to the free gas problem and 3-mode Fermi-Bose model. We examined the use

of gauge terms for coping with sampling errors. The method in general works better for many

weakly-interacting particles than for a few strong-interacting particles. Unfortunately, the potential

advantage of the Gaussian operator method for HIC, over any other method, would be expected in

the latter limit.
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