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ABSTRACT

ASSURANCE OF ADAPTATION IN DISTRIBUTED SYSTEMS
By
Karunkumar N. Biyani

Software systems need to adapt due to changing requirements or changing environ-
ment conditions. For long-running and safety-critical applications it is highly desirable to
adapt the system without completely stopping the system. In the case of distributed sys-
tems, adaptation often requires changes to multiple processes. Typically, such adaptation
is performed by dynamically adding or removing components from multiple processes.
As a result, during adaptation, the system may consist of both changed and unchanged
processes, causing the old and the new components to overlap. This overlapping of com-
ponents during adaptation may induce cross-component communication, which may lead
to unpredictable and/or undesirable behavior during adaptation.

In order to gain confidence in adaptation in distributed systems, in this disseration, we
address the assurance requirements at various stages of adaptation development: (i) mod-
eling and verification of adaptation, (i7) testing of adaptation, (ii¢) design of components
involved in adaptation, and (iv) design of a framework that supports adaptation.

In this dissertation, we describe an approach based on adaptation lattices to model and
verify adaptation. Specifically, we present transitional-invariant lattices and transitional-
Sfaultspan lattices to verify the correctness of adaptation in absence and presence of faults,

respectively.
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Furthermore, we identify the issues that arise in an important class of adaptation,
namely, mixed-mode adaptation. Mixed-mode adaptation allows the changed and the un-
changed processes to interact during adaptation, thereby, minimizing service interruption
time and communication overhead. In this dissertation, we identify and address the chal-
lenges involved in mixed-mode adaptation. Specifically, we show how the adaptation lattice
approach can be used in the case of mixed-mode adaptation.

We also discuss an approach for testing adaptation in distributed systems. We show
how the existing approaches based on predicate detection for testing distributed systems
can be extended for testing adaptation.

We also describe component family design to build a library of adaptive components.
One aspect of the design is to build an adaptation-verified library of components in which
not only the components but also the adaptations between the components are verified.
The design applies the principle of separation of concerns to separate adapt-active parts of
the components from their core functionality. Furthermore, the component family design
integrates the framework that performs adaptation while ensuring that the adaptation logic

is separate from the core functionality of components as well as the application.
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Chapter 1

Introduction

Evolution is vital in all software systems and has been studied for decades in the context of
software maintenance and software upgrade. It is a well known fact in software engineering
that programs undergo several changes during their lifetimes. These changes are usually
performed for fixing bugs or adding new functionality that the users of the systems did not
anticipate initially at the time of original specifications.

Furthermore, software systems have become more and more pervasive with easy access
to personal computers, smartphones, and cellular and wireless networks. The challenges in
building today’s software systems include providing seamless service to user requirements
in such heterogeneous operating conditions as: device failures, transitions across wired
and wireless environments, high packet loss in wireless networks, byzantine behaviors, and
security attacks. In order to meet these challenges, software systems must be able to adapt
to environment conditions that may not be foreseen at the time of software development.

In general, software systems need to adapt (change) in response to one or more of

the following reasons: (i) discovery of errors/bugs, (ii) change in requirements, and (ii7)



change in environment. In a traditional approach, the change is usually performed by
stopping the currently running program and then installing the new version of the program.
However, stopping the system to perform the change is undesirable for a variety of reasons,
such as: () it may be simply inconvenient for users; (i7) it may lead to monetary loss, for
example, in the case of banking and e-commerce systems; or (ii7) it may be unsafe, for
example, in the case of safety critical systems such as air traffic control systems. Moreover,
in systems that need to adapt in response to frequent or transient changes in environment,
stopping the system for upgrade may not even be an option. Clearly, in all these cases, it is
highly desirable to perform the change while the system continues to operate. This type of
change is commonly referred to as dynamic adaptation. A software system that supports
dynamic adaptation is known as adaptive software.

There has been a growing interest in building adaptive softwares. An increasing num-
ber of systems are now being developed with some built-in mechanisms for adaptation that
allow for change to be done without completely stopping the system. Adaptive software
techniques (e.g., [1-10]) allow the system to modify its own functional or non-functional
behavior (e.g., its fault-tolerance, quality of service or security requirements). These modi-
fications include reconfiguration of some parameters, or addition, removal, or replacement
of application code. A survey in [11] presents various tools and techniques in building
adaptive software. Additionally, Buckley ez al. [12] has given a taxonomy in the context of
when, how, where, and what, of software change.

Numerous works in adaptation have either focused on single-process systems or in dis-
tributed systems where changes to processes are independent of each other. However, com-
paratively fewer works have addressed adaptation in distributed systems where changes to

2



multiple processes need synchronization. Moreover, behavioral verification during adap-
tation in distributed systems that require changes to multiple processes has not been ad-
equately addressed. In the next section, we discuss some of the issues in adaptation in

distributed systems.

1.1 Adaptation in Distributed Systems

In distributed systems, multiple processes need to be changed during adaptation. In such
adaptations, changes to multiple processes need to be synchronized and interactions be-
tween changed and unchanged processes need to be controlled. We refer to the system
before adaptation as the old program and to the system after adaptation as the new pro-
gram. A process before it is modified is considered as a part of the old program, and after
modification it is considered as a part of the new program. We now give the classification

of adaptation in distributed systems.

1.1.1 Classification of Adaptation

We classify adaptation in distributed systems as: (i) overlap adaptation - when the old
program and the new program overlap during adaptation, and (i¢) non-overlap adaptation
- when the old program and the new program are not present in the system simultaneously
during adaptation.

Furthermore, we classify overlap adaptation into three main categories: (i) mixed-mode
adaptation, (ii) quiescence adaptation, and (7i:) parallel adaptation. In the case of quies-

cence adaptation, which is the most common approach for adaptation in distributed sys-



tems, there is no communication allowed between the old program and the new program.
Consequently, during adaptation, changed and unchanged processes exist in the system si-
multaneously, but the processes are modified in such a way that the changed process and
the unchanged process do not communicate with each other. In contrast, in case of mixed-
mode adaptation, changed processes and unchanged processes are allowed to communicate
with each other. In the case of parallel adaptation, each node has both the changed process
and the unchanged process, but communication between changed processes and unchanged
processes is not allowed; the changed (respectively, unchanged) process at one node can
communicate with the changed (respectively, unchanged) process at another node.

To gain assurance in adaptation, formal specification and verification of adaptation is
crucial. In the context of adaptive distributed systems, there are three aspects of verifica-
tion: (i) verifying the system before adaptation, (i7) verifying the system during adapta-
tion, and (#i7) verifying the system after adaptation. While existing verification techniques
can be used to verify the system before and the system after adaptation, such techniques
cannot be applied directly to verify the system during adaptation. This is because during
adaptation the system is changing whereas existing work assumes that the system remains
unchanged. Especially, in the case of distributed systems, during adaptation the system
exhibits overlapping behavior that is not well specified.

Numerous techniques have been proposed to address various issues in formalizing
adaptation. A survey in [13] discusses various approaches based on graphs, process alge-
bras, logic and other formalisms used to specify adaptive systems. Most of the approaches
[1,2,4,5, 7, 14-20] focus on design and implementation of adaptive systems. Other ap-
proaches [21-24] address the issue of verifying adaptation. The approaches in [21-23]

4



focus on offline adaptation, whereas the approach in [24] focuses on online adaptation of
a single process system (that can also be extended to distributed systems that communi-
cate via RPC). However, none of these approaches explicitly focus on the behavior of the
system during adaptation in distributed systems.

Furthermore, mixed-mode adaptation has not received much attention, as it is normally
considered difficult. Most existing approaches avoid dealing with mixed-mode behavior
during adaptation by employing non-overlap, quiescence or parallel adaptation. Quies-
cence adaptation behaves as if the adaptation is performed by changing all processes at the
same logical time. There is overhead in performing quiescence adaptation as a large num-
ber of messages are required to enforce synchrony among processes. In contrast, mixed-
mode adaptation gives better performance in terms of service interruption time and com-
munication overhead. Nevertheless, to develop mixed-mode adaptation correctly involves
a lot of challenges.

In the rest of this chapter, we first discuss advantages of mixed-mode adaptation in
Section 1.1.2. Then, in Section 1.1.3, we identify challenges in adaptation that arise or are
exaggerated due to overlapping behavior of mixed-mode adaptation. Finally, in Section

1.2, we discuss the contributions of this research.

1.1.2 Advantages of Mixed-Mode Adaptation

We expect mixed-mode adaptation to offer the following two main advantages compared

to other types of adaptation:



e Reduced service interruption. Since individual processes need not block while
waiting for other processes during adaptation, the service interruption time is re-
duced. This is especially important when adaptation occurs frequently (in response

to changes in the environment).

¢ Low communication overhead. Since mixed-mode adaptation allows the old pro-
gram and the new program to interact during adaptation, the synchronization required
among processes during adaptation is reduced, thereby reducing the communication
overhead. This is especially important in systems that are operating on limited-power

Or resources.

We validate these advantages in this dissertation using a case study.

1.1.3 Challenges in Mixed-Mode Adaptation

The challenges in mixed-mode adaptation arise because the behavior of the old program
and the new program overlap during adaptation. These challenges also occur in other forms

of adaptation; here we discuss them in the context of mixed-mode adaptation.

e Consistency. All updates to individual processes must ensure consistency of the
whole system. In mixed-mode adaptation some interactions between the old program
and the new program during adaptation may not be acceptable. Only mixed-mode
interactions that are acceptable should be allowed to occur. For example, if process
X requires a service from process Y, then updating Y before X should be allowed
only if new process Y’ can handle the service requests from old process X (we use
notation Y’ to denote process Y after it has been changed).

6



o State-Transfer. To ensure proper mixed-mode operation, each process will need
to preserve the state during adaptation. Specifically, if component C7 is replaced by
component Cy, then the state of component (' at each process needs to be trans-
ferred to component Cy. The efficiency of state-transfer mechanisms is particularly
important in the case of mixed-mode adaptation compared to other forms of adapta-

tion.

e Assurance. To provide assurance guarantees for mixed-mode adaptation requires a
formal way to specify and verify the adaptation. In the case of mixed-mode adap-
tation, the changes cannot be specified in terms of system structure because the be-
havior of the old program and the new program overlap during adaptation. The first
challenge is in specifying the overlapping behavior. Next, there are challenges in

verification and testing of mixed-mode adaptation due to overlapping behavior.

o Reuse. There is a large amount of work done in adaptation. An approach for mixed-

mode adaptation should reuse existing adaptation techniques whenever possible.

1.2 Thesis

Based on the above motivation, in this dissertation we propose the following thesis. Our
goal is to develop an approach for assurance of adaptation that applies to both quiescence

and mixed-mode adaptations.

The lattice-based modeling helps in verifying and testing of adaptive be-

havior in distributed systems.



To defend this, we make the following contributions in this dissertation:

1. Modeling and specification of adaptive behavior. We present the concept of an
adaptation lattice to use for modeling and specifying the adaptive behavior. The
adaptation lattice approach identifies the atomic adaptations, and the behaviors of

the intermediate programs that occur during adaptation.

2. Verification of adaptive behavior. We present the concept of a transitional-
invariant lattice to use for verifying the correctness of the system during adapta-
tion. The transitional-invariant lattice approach ensures that safety is satisfied during

adaptation and that adaptation eventually terminates.

3. Fault-tolerance during adaptation. We present the concept of a transitional-
Sfaultspan lattice to use for verifying the fault-tolerance properties of the system dur-
ing adaptation. The approach can be used to verify different types of fault-tolerance
during adaptation. Also, faults considered during adaptation can be different from

the faults that the system is subjected to before or after adaptation.

4. Tradeoffs in adaptation. In order to assist the adaptation developer, we identify
tradeoffs in adaptation that are useful while designing adaptation in various contexts.
We show how concurrency during adaptation leads to increased verification complex-
ity. We also show that increased concurrency during adaptation can also increase the

communication overhead, which may not be desirable in certain systems.

5. Testing of adaptation. We use predicate detection techniques to test adaptation in

distributed systems. We identify two classes of predicates for testing adaptation: ()



adaptation-transient, and (i7) adaptation-stable. We introduce the notion of adapta-

tion vector to identify states of the intermediate programs during adaptation.

6. Component family design. We describe the design of a component family to sup-
port adaptation. The component family design integrates aspects related to decision-
making, adaptation logic, and component functionality, while maintaining a strict
separation of different concerns. Specifically, the design separates the adapt-active
parts of the component from the core functionality of the component. Moreover,
the design separates the adaptation logic from the component functionality, thereby,

simplifying the task of verifying adaptation.

Organization of the dissertation. The remainder of this dissertation is organized as
follows: We first discuss the background and related work in adaptation in Chapter 2. In
Chapter 3, we describe the adaptation lattice approach to model adaptation and adaptive
systems. In Chapter 4, we present transitional-invariant lattice to verify adaptation in the
absence of faults and discuss a case study based on message communication application
to demonstrate its use. In Chapter 5, we present transitional-faultspan lattice to verify
adaptation in the presence of faults and discuss a case study to demonstrate its use. In
Chapter 6, we present a case study of mixed-mode adaptation where we show performance
advantage of mixed-mode adaptation. We also discuss how the adaptation lattice approach
can be used to verify mixed-mode adaptation. In Chapter 8, we describe the testing of
adaptation using predicate detection techniques. In Chapter 9, we describe the component
family design to build an adaptation-verified library of components. Finally, we discuss

conclusions and future work in Chapter 10.



Chapter 2

Background and Related Work

Adaptation has been studied in various contexts, such as software change, reconfiguration,
upgrade or update, change on fly, program modification, software evolution, efc. In this
chapter, we first give an overview of some taxonomies of software adaptation and discuss
the areas in adaptation that are focus of this dissertation. Then, we review some of the

related works.

2.1 Adaptation Taxonomy

Several works [11-13, 25-27] have presented taxonomies of adaptation to categorize dif-
ferent adaptation mechanisms. In this section we discuss some of them.

One of the early works in classifying adaptation was done by Lientz and Swanson
[25] in context of software maintenance. They proposed a topology that distinguishes
between perfective, adaptive and corrective maintenance activities. This taxonomy was

further refined by Chapin et al. [26], where they classify software evolution and software
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maintenance into 12 different types: evaluative, consultive, training, updative, reformative,
adaptive, performance, preventive, groomative, enhancive, corrective and reductive. In
essence, the works in [25] and [26] categorize the adaptation activities on the basis of their
purpose (i.e., the why of software change). In our work, the reason why a software needs
to adapt is irrelevant.

In [12], Buckley et al. gave a taxonomy of adaptation that focuses on the how, when,
where, and what, of software change. This taxonomy is based on the characteristics of
adaptation mechanisms and the factors that influence these mechanisms. The adaptation
mechanisms refer to the software tools and algorithms used to perform the adaptation.
However, this taxonomy does not consider formalisms used in adaptation. Regardless, the
taxonomy is very useful in identifying and classifying various adaptation scenarios, and in
categorizing and comparing different adaptation mechanisms. In our work, we focus on
dynamic adaptation, i.e. the one performed at run-time (when of adaptation).

In [11], McKinley et al. classified adaptation into two categories, namely, param-
eter adaptation and compositional adaptation. Parameter adaptation modifies program
variables that determine behavior. In contrast, compositional adaptation exchanges algo-
rithmic or structural system components with another. Compositional adaptation provides
more flexibility in supporting a variety of changes compared to simple tuning of program
variables in case of parameter adaptation. However, compositional adaptation involves a
lot more challenge in design, implementation and verification. Although our approach in
this dissertation focuses on compositional adaptation, it can also be applied in the case of
parameter adaptation. Specifically, we consider addition, removal, or replacement of com-
ponents [28] in this dissertation. A component implements part of the desired behavior

11



of the program. Our notion of component is different from the popular usage of the term
in the development community, where a component and a class (or object) (an artifact in
object-oriented programming) are considered one and the same. According to our defini-
tion, a component can consist of more than one class, and may even be deployed at multiple
processes.

Dynamically changing software is challenging in terms of correctness, robustness, and
efficiency. Formal specification and verification is important in order to gain assurance in
adaptive software. A variety of formal specification languages have been developed to gain
a better understanding of the foundations of software change. Bradbury et al. in [13] has
given a survey of 14 formal specification approaches based on graphs, process algebras,
logic, and other formalisms. Graph-based approaches [14-16] use graph rewriting rules
to specify dynamism. Approaches in [17, 18, 29, 30] use a variety of process algebras
such as Calculus of Communicating Systems (CCS), Communicating Sequential Processes
(CSP), and w-calculus. Architectural Description Language (ADL) based approaches [19,
20, 31] model programs as components and connectors, and adaptation as reconfiguration
of connections. Generally, these approaches have focused on specifying the design of
adaptive software and changes are specified in terms of the system structure. However,
the approaches are inadequate in specifying the adaptive behavior. Approaches in [17,
18, 29, 30] are a few exceptions that have used process algebras to specify the behavior
of adaptive programs. However, these approaches suffer from the following limitations:
(?) adaptation-specific behavior of the program is not distinctly separated from the non-
adaptive behavior of the program, (i:) the approaches are appropriate to specify changes in
client-server applications, but it is not clear how it would apply to protocol changes in group

12



communication application, (i::) state-transfer is not specified explicitly, so it is not clear if
the new program behavior has to start in the initial state or can start in some arbitrary state,
(iv) the approaches are inadequate in specifying mixed-mode behavior during adaptation,
and (v) the approaches use specific type of formalisms that may potentially limit wide-
spread use and any extensions to include different types of adaptations. In our work, we

address formal specification and verification of the behavior of system during adaptation.

2.2 Related Work

In this section, we briefly review some of the previous work in the context of verifying

adaptation.

2.2.1 DYMOS

Lee presented one of the early systems to support dynamic updating called DYMOS (Dy-
namic Modification System) [32]. It supports a single programmer modifying a module-
based program dynamically (that is, without stopping its execution). In DYMOS, the pro-
grammer modifies and recompiles the source code of procedures and modules that need to
be replaced. The programmer then requests the system to change the current core image
to incorporate new code and data. New object code is inserted by a dynamic modification
process that is executed in parallel with other user processes.

DYMOS supports program written in StarMod language [33]. In the DYMOS envi-
ronment each updateable program is associated with a command interpreter, a source code

management system, a StarMod compiler and a run-time environment. The system allows
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individual procedures of a program to be changed.

In the context of ensuring correctness, Lee gave a procedure for partitioning change into
sequence of smaller changes. The decomposition is done in such a way that the program
behaves “acceptably” after each change. The decomposition approach helps in specifying
behavior between changes where the program is operating with some reduced functionality.
DYMOS does not address changes in distributed programs, however, it is important as it
is one of the early systems that studied dynamic adaptation with particular concern for
correctness. It gave some basic theoretical contributions in the context of correctness of

adaptation.

2.2.2 CONIC

Conic [9, 34, 35] is a distributed programming system that supports dynamic reconfigura-
tion of programs. A program in Conic consists of a number of processes that communicate
with each other using well-defined entry and exit ports. Conic modules (processes) do not
communicate by naming each other but by naming the ports. Thus, reconfiguration can be
done by creating instances of modules and linking entry ports of these modules with exit
ports of other instances.

The reconfiguration is done by providing a configuration change specification. The
specification specifies the creation and deletion of modules and links. The configuration
manager translates the change specification into commands to the operating system to ex-
ecute the reconfiguration operation.

In [9], Kramer and Magee gave a formal basis for dynamic reconfiguration. They

14



specify change as structural change, in terms of component creation/deletion and con-
nection/disconnection. In their model, interactions between processes are considered as
transactions. A transaction is an exchange of information between two nodes, initiated by
one of the nodes. A node is said to be in passive state if it is not currently engaged in a
transaction that it initiated and it will not initiate new transactions. A node is quiescent if it
is in passive state, is not currently engaged in servicing a transaction, and no transactions
have been or will be initiated by other nodes which require service from this node. It is
claimed that a dynamic reconfiguration will leave the system in a “consistent” state if all
the involved processes are quiescent at the time of reconfiguration.

The main limitation of using node quiescence for adaptation is that it leads to excessive
blocking during reconfiguration. Moreover, a large number of messages are required in
synchronizing all nodes to reach quiescence state. Furthermore, local states of nodes are
not considered in determining node quiescence. As a result, if local states of nodes are not
consistent at the time of adaptation (reconfiguration), then the new version of the program

will start in an inconsistent state.

2.2.3 ARGUS

Argus [36] is a programming language for building reliable distributed applications. It is
based on the CLU programming language and provides support for atomic transactions and
crash recovery. An application in Argus consists of a set of servers called guardians, that
communicate with each other using remote procedure calls.

Dynamic reconfiguration in Argus is described in [37]. Similar to Conic, the connec-
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tions between guardians can be rerouted dynamically. Guardians are made quiescent before
replacement. To reach quiescent state the guardian can either abort running transactions or
wait for them to complete. Argus suffers from the same limitations as Conic. Additionally,
the replacement system requires Argus crash recovery facilities in order to work properly,

which may make it difficult for use in other systems.

2.2.4 Online Software Version Change

Gupta and Jalote [24, 38] presented a framework for modeling changes to running programs
and use it to study the validity of an on-line change. In their notion of validity, a change
is valid if some time after the change, the process reaches a reachable state of the new
program version. Thus, there is a “transition period” following a change, after which the
the system behaves like a new program. However, it is not clear what behavior is acceptable
during the transition period.

In their work, they consider different programming language styles, including imper-
ative languages without procedures, imperative languages with procedures, and object-
oriented languages. Their work focuses on change in sequential programs. They also dis-
cuss how their approach can be extended to distributed programs where only one process is
changed. For the case where multiple processes are affected due to change, they consider a
remote procedure call based model. They stop all processes before the change which leads
to disruption of service till the change is completed. Moreover, their work does not address
validity of on-line change in a distributed system that uses unrestricted message passing

model.
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2.2.5 Model-Based Development of Adaptive Software

Zhang et al. [39—41] proposed a model-based development of dynamically adaptive soft-
ware. Their approach separates the model specifying the adaptive behavior from the model
specifying the non-adaptive behavior. They use global invariants to specify properties that
should be satisfied by adaptive programs regardless of adaptations. They enumerate differ-
ent execution domains in which the program is required to execute, and build a state-based
model in each domain. They enumerate possible adaptations of the program from one do-
main to another. Furthermore, they introduce A-LTL, an extension to linear temporal logic,
to specify an adaptation from one program to another. They present three semantics of
adaptation: one-point, guided and overlap. Similar to our goals, their work also addresses
behavioral verification during adaptation. However, they do not consider general safety
and liveness properties [42, 43] during adaptation. Their approach seems more suitable for

quiescence adaptation and its application in mixed-mode adaptation is not straightforward.

2.2.6 Others

Several other works that addressed runtime adaptation include Podus [44—46], Durra [47],
Polylith [48] and Dynamic ML [49, 50]. Similar to the limitations of the works discussed
earlier, these approaches also suffer from one or more of the following limitations: (i) apply
only to a single process change, (ii) apply only to distributed systems that communicate
via RPC, but not in the case of asynchronous message passing model, and (zi:) verify only
structural changes; do not consider behavioral verification of system during adaptation.

Other surveys of adaptation approaches can be found in [11, 38, 51, 52].
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Chapter 3

Modeling Adaptation

In this chapter, we introduce a formal model for adaptation in asynchronous programs.
We first present an informal overview of how adaptation occurs in a distributed system in
Section 3.1. Then, we use the ideas discussed in Section 3.1 to formalize the model of adap-
tation in Section 3.2. In Section 3.3, we give definitions used in formal reasoning about the
correctness of adaptation. Finally, in Section 3.4, we describe the concrete representation

of programs and adaptations using guarded commands.

3.1 Adaptation Overview

We consider compositional adaptation as one that adds, removes, or replaces a component
during adaptation. A component implements a part of the desired behavior of the system. A
component (formally defined later in the chapter) consists of one or more fractions, where
each fraction is associated with one process in the system. For the discussion in this chapter,

we assume that adaptation replaces a component; addition and removal can be considered
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as special cases of replacement.

We refer to the component that gets replaced as the old component and the component
that replaces the old component as the new component. To replace an old component with a
new component requires replacing each fraction of the old component with the correspond-
ing fraction of the new component at all processes. An adaptation in a distributed system
involves multiple steps that are executed at various processes. For example, consider a
protocol that provides encrypted communication between a sender and a receiver. Such a
protocol consists of two types of fractions, namely, encryption fraction at the sender that
encrypts the packets before sending and decryption fraction at the receiver that decrypts the
encrypted packets received from the sender. To replace such a protocol, each fraction of the
protocol needs to be replaced. Thus, the adaptation in a distributed program involves mul-
tiple steps that are executed at various processes. We consider the replacement of a fraction
at a single process as an atomic step of adaptation, and call it an atomic adaptation.

The old program, i.e., the program before adaptation uses the old component and the
new program, i.e., the program after adaptation uses the new component. An adaptation
replaces the old component with the new component, or equivalently we can say that the
adaptation replaces the old program being executed by the system with the new program.

We assume that the old program and the new program are independently correct, i.e.,
by themselves they can execute and produce acceptable behavior. The goal of verifying
adaptation is to ensure that: (7) the adaptation ends in a state from where the system satisfies
the behavior of the new program, and (i7) the (overlapping) behavior during adaptation is
acceptable (as defined by specification during adaptation).

To verify the behavior during adaptation we need to classify the states of the program
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during adaptation. The intermediate states that occur during adaptation are due to overlap-
ping of the old program and the new program. The properties satisfied by these intermediate
states may be different from the old program and the new program. Consequently, the be-
havior expected during adaptation needs to be specified separately from the old program
and the new program. For example, in the case of adaptation of encrypted communica-
tion protocol discussed above, consider the system in which the adaptation has replaced
the encryption fractions at the sender but has yet to replace the decryption fractions at the
receiver. During adaptation the sender may continue to send packets that may be buffered
at the receiver or the sender may be blocked from sending more packets until the receiver
has replaced the decryption fractions. Clearly, there are different possible behaviors during
adaptation, and the expected behavior during adaptation needs to be specified separately
from the behavior of the old program and the new program. Towards this end, we define
the notion of intermediate program.

Intermediate program. An intermediate program arises due to overlapping of behavior
of the old program and the new program. The first atomic adaptation modifies the old
program into the first intermediate program. Similarly, other atomic adaptations modify
one intermediate program into the next intermediate program. The last atomic adaptation
results in the new program. The specification during adaptation identifies the requirements
for these intermediate programs.

We now present the formal model for adaptation and adaptive systems.
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3.2 Abstract Model of Adaptation

We model a process as an automaton A represented as a tuple (S, X, §, Sp), where
e S(A) - a set of states
e X(A) - aset of actions
e §(.A) - a state-transition relation, where §(.4) C S(A) x £(A) x S(A)
e Sp(A) - a nonempty subset of S(.A) known as initial states

Each element (s, 7, s') of 6(.A) is known as a transition, where s,s’ € S(A) and 7 €
(A). If A has a transition (s, 7, s') it means that 7 is enabled in state s and executing
action = in state s will lead to state s’. A transition of the form (s, _, s’) is an abbreviation
for a transition whose source is s and target is s’, where the action that caused the transition
is not of interest.

A program consists of a set of process automata. We assume the sets of actions of
automata are disjoint. We consider asynchronous or interleaved execution for a program,
where at any time only a single process can execute its action. This approach can be viewed
as a reduction of concurrency to non-determinism, where a concurrent execution gives rise
to many possible corresponding interleaving orders. We could have used more complex
automata such as [53-55] to model concurrency, but we adopt an interleaving model as it

results in a simpler theory for specification and verification of adaptation.

3.2.1 Adaptation as a set of automata

We model an adaptation A using a 5-tuple as follows:
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T - a set of automata

e P - an automaton of the old program, P € 7

e () - an automaton of the new program, Q € 7

Ta - a set of special type of actions known as adaptive actions, LqoN( |J Z(A)) = ¢
A€l

Smap - a state mapping is a partial function ( |J S(A))xTq — ( U S(A)) that
Ael AleT

satisfies the following two properties:

i. Vs, s',na,Al,Az = S(Al),s' € S(Ag).mq € g, A1, Ay €T
((s.ma),s") € Smap = Ay # Ay, and

i. Vsl,32,s’1,s'2,1ra,A,A1,.A2 81,89 € S(.A),s'l € S(.Al),s'2 € S(Ag),
o € ¥a, A, A1, Ap €T

((Sl,ﬂ'a),sll) € Smap N ((82.7&1’)7 9l2) (S Smap = Al = A2

The old program, the new program, and all intermediate programs are modeled as au-
tomata. We also assume that the states of the automata in Z are pair-wise disjoint. Given
an adaptive action, the state mapping defines an automaton and the states of that automaton
in which the adaptive action can execute, and the resulting automaton and the state of the
resulting automaton in which the adaptive action terminates. The state mapping function
satisfies two properties. The first property ensures that executing an adaptive action results
in a change of automaton (whereas, executing an action results in a state of the same au-
tomaton). The second property states that if an adaptive action can be executed in different
states of the automaton, then it will result in an unique automaton (the resulting states may
be different, but they will be of the same automaton).
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Note that the state mapping is a partial function, as it may not be possible to perform
corresponding atomic adaptation in all states. Each element ((s, 7g), s’) of Smap can be
represented as a triplet (s, mg, s’). Similar to the state-transition relation of an automaton,
a state mapping Smgp can be defined as a subsetof ( |J S(A))xZgx( U S (A")) with

AeT AeT
the restriction that if (s, 7q, ') € Smap and (s, mq, s e Smap then s’ = s". Each element
of Smap is known as adaptive transition. If Smap has an adaptive transition (s, 7q, sy,
where s € S(A) and s’ € S(A'), it means that 7, is enabled in A and executing 74 in
state s of A will lead to state s’ of A’

Note that the range of Smap is S(.A’) and not Sy(.A’). In other words, we do not require
an adaptive action to terminate in an initial state of the resulting automaton.

Now, given the state mapping of adaptation A, we can define an automata-
transformation (partial) function §; : T x &5 — Z. We have, ((A,7g), A’) € & iff
3s,s" : s € S(A),s" € S(A) : (5,74, 8") € Smap- Each element ((A, 7a), A’) (equiva-
lently, (A, mq, A")) of 8, is known as an atomic adaptation. Thus, each atomic adaptation
is modeled as transforming one automaton to another automaton.

The automata-transformation function represents an adaptation lattice defined as fol-
lows:

Adaptation Lattice. Adaptation lattice (cf. Fig. 3.1) is a finite directed acyclic graph
in which each node is labeled with an automaton and each edge is labeled with an atomic

adaptation, such that,

1. There is a single start node P having no incoming edges. The start node is associ-

ated with the automaton representing the old program. The automata-transformation
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function (correspondingly, Smqp) satisfies the following condition:

VA, Ta - (.A, Ta, P) ¢ (sa

2. There is a single end node (Q having no outgoing edges. The end node is associ-
ated with the automaton representing the new program. The automata-transformation

function (correspondingly, Smap) satisfies the following condition:
VA. Ta - (Q Ta, A) ¢ (Sa

3. Each intermediate node R has at least one incoming edge and at least one outgo-
ing edge. It is associated with the automaton representing the intermediate program.

The automata-transformation function (correspondingly, Smqap) satisfies the follow-

ing condition:
VA: A# P:(3A 1g : (A, 7q, A) € 8g) A

VA: A# Q: (BA 7q:: (A me, A) € 8a)

A path in the lattice from the start node to the end node is called adaptation path.

Figure 3.1: An example of an adaptation lattice.
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3.2.2 Adaptation as an automaton

In the previous subsection we defined adaptation as a S-tuple. An adaptation can also be

viewed as an automaton defined as follows:

e S(A)= U {(As)|seSA)}
AeT

e 2(A)= U {(Am)|reZ(A)} U Zq
Ael

e 5(A)= U {((A53),(Am),(A5")|(s,ms)ed(A)}U
AeTl

{(("41 S): Ta, (Al, S,) l (Sv Ta, S,) € Smap}
* 50(A) € (P,S(P))

In definition of Sp(A) we use S(P), and not Sy(P), because adaptation should be able
to start at any point in the execution of P.

Modeling adaptation as an automaton allows us to verify some general properties of
adaptation not concerning any overlapping behavior. On the other hand, modeling adapta-
tion as a set of automata is important to identify individual intermediate automata during

adaptation to verify properties due to overlapping behavior of the old program and the new

program.

3.3 Adaptation Specification

In this section, we give some formal definitions used in specifying and verifying adaptive

programs. We adapt these definitions from Arora and Kulkarni [56, 57].
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Definition (State predicate). A state predicate X of A is any subset of S(.A). We say X
is true in state s if s € X.
Definition (Closure). A state predicate X of A is closed in A (respectively, 6(A), £(.A))
iff the following condition holds:

Vs, s, ((s,m,8) €6(A)) = (se X = 5 € X)
Definition (Computation). A computation of program .A (respectively, adaptation A) is

a sequence of states 0 = (s, s1, ...) satisfying the following conditions:

e For first state s( in 0, sg € Sp(.A) (respectively, Sp(A))

e Ifois infinite then Vj : j > 0: (3m = (51,7, 55) € 6(A)) (respectively, 6(A))

e If o is finite and terminates in state s;, then for all 7, there does not exist a state
s such that (s;.m,s) € 6(.A) (respectively, 6(A)),andVj : 0 < j < |o| : (37 =

(sj—1,m, 5;5) € 6(A)) (respectively, d(A))

Definition (Specification). A specification of A is a sct of computations. Given a specifi-
cation, a computation in a specification is known as an acceptable computation. Following
Alpern and Schneider [42], a specification can be decomposed into a safety specification
and a liveness specification. As shown in [58], for a rich class of specifications, safety
specification can be represented as a set of bad transitions that must not occur in program
computations.

Definition (Satisfies). A satisfies a specification if each computation of A is in the specifi-
cation. A satisfies a specification from X iff (i) X is closed in .4, and (i7) each computation

of A is in the specification and starts from a state where X is true (i.e., Sg(A4) C X).
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Definition (Invariant). The state predicate X of A is an invariant iff A satisfies the specifi-
cation from X. Note that, if X is an invariant of A, then X D S;(.A). Informally speaking,

the invariant predicate includes the set of all states reached in the “acceptable” (correct)
computations of .A. Note that the invariant predicate may include states that are not reach-
able in all computations of the program. However, computations from those states satisfy
the specification and, hence, those states may be valuable in adding recovery transitions to
provide fault tolerance [58].

Definition (Safety during adaptation). Similar to the specification of A, safety speci-
fication during adaptation A is specified as a set of bad transitions that must not occur in
computations of adaptation A.

Liveness during adaptation. We argue that the specification during adaptation should
be a safety specification. This is due to the fact that one often wants the adaptation to be
completed as quickly as possible. Hence, it is desirable not to delay adaptation to satisfy
the liveness specification during adaptation. Rather, it is desirable to guarantee that, after
adaptation, the program reaches states from where its (new) safety and liveness specifica-
tions are satisfied. Thus, the implicit liveness specification during adaptation is that the
adaptation completes. In other words, the liveness specification during adaptation is that
each intermediate program eventually executes its adaptive action. For these reasons, we

have omitted the representation of liveness specification of the program.
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3.3.1 Fault-tolerance

In this subsection we give formal definitions for specifying and verifying fault-tolerance
properties of adaptive programs. These definitions are also adapted from Arora and Kulka-
mi [56, 57].

Definition (Fault class). Let X f be a set of fault actions. A fault class F'(.4) for program
A is a subset of the set S(A) x £ x S(A). We use A[JF to denote the transitions obtained
by taking the union of the transitions in d(.A) and the transitions in F'(L4). A fault class
F(A) for adaptation A is:

U {((Avs)vﬂfv('Av 8,)) | (S% vasl) € F('A)}

Ael
Definition (Fault-span). A state predicate T is a fault-span (F'-span) of .A from invariant

Siff () S C T,and (it) T is closed in A[|F. A fault-span of a program includes the set of

states that a program can reach in the presence of faults and it is closed under the execution

of program and fault actions.
Definition (Computation in presence of faults). A computation of program .4 (respec-

tively, adaptation A) in the presence of faults is a sequence of states o = (sq, 51, -..)

satisfying the following conditions:

e For first state s() in 0, sg € Sp(A) (respectively, Sp(A))
e If o is infinite then Vj : j > 0: (37 =2 (sj_1,7,5;) € (A) U F(A)) (respectively,

6(A) U F(A))

e If o is finite and terminates in state s;, then for all m, there does not exist a state
s such that (s;,7,s) € §(A) (respectively, 6(A)),andVj : 0 < j < o] : (3 =
(8j—1,m,5;5) € 6(A) U F(A)) (respectively, 6(A) U F(A))
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o Ifoisinfinite then 3n : n > 0: (Vj : j > n: (3r = (s;_1,7.55) € 3(A))

(respectively, 6(A))

The first requirement captures that the computation begins in a initial state of the pro-
gram (respectively adaptation). The second requirement captures that in each step, either a
program (respectively, program or adaptive) transition or a fault transition is executed. The
third requirement captures that faults do not have to execute, i.e., if the program reaches
a state where only a fault transition can be executed then the fault transition need not be
executed. Finally, the fourth requirement captures that the number of fault-occurrences in
the computation is finite. This requirement is the same as that made in the previous work
[59-62] to ensure that eventually recovery can occur.
Definition (Fault-tolerance (F-tolerant)). A is F-tolerant for specification spec from S
iff the following two conditions hold: (7).4 satisfies spec from S, and (i7) there exists T
such that T is an F-span of .A from S, and every computation of A[|F starting in a state
where T is true satisfies spec.

Remark 1. Henceforth, whenever the invariant S, the program .A, and the specification
spec are clear from the context, we will omit them; thus, “T is a F-span of .A from S for
spec” abbreviates to “T is a F'-span”.

Remark 2. Different types of tolerance specifications that normally occur in practice,
namely, masking, fail-safe, and non-masking tolerance have been considered in [56-58].
In this dissertation, we assume masking fault-tolerance unless specified otherwise. The

definitions can be easily extended to consider fail-safe and non-masking tolerance during

adaptation.
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3.4 Concrete Representation

In this section, we discuss the programming notation we use to describe the system. For
brevity, we express programs using guarded commands [63, 64]. This gives a compact
representation of the program defined as automata in Section 3.2 (in terms of state space
and transitions). Translating the guarded command representation of the program to its
automata representation is straightforward, as we discuss in this section.

Furthermore, the guarded command representation is closely related to a concrete im-
plementation. Specifically, techniques for obtaining a guarded command representation
from a program written in a general purpose language, such as C, are discussed in [65].

Also, techniques for transforming a program in guarded commands into a program in gen-

eral purpose languages are discussed in [66—68].

34.1 Program

A program P is specified by a finite set of processes and channels. A process p is specified
by a set of variables and a finite set of actions. The processes in a program communicate
with one another by sending and receiving messages over unbounded channels that connect
the processes. A channel from process p to process q is denoted by a channel variable Cp 4,
which is an unbounded queue. Only process p can append an item of data to the rear of
the queue C)p 4 and only process g can delete an item at the head of the queue Cp 4. Each
variable has a predefined nonempty domain. A state of a process is obtained by assigning
each variable a value from its respective domain. The state of the channel connecting p and

q is given by the value of the queue Cp 4. The state of the program is given by the state of
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all the processes and the channels. The state space of the program P, S(P), is the set of all
possible states of P. We use s(z) to denote the value of variable z in state s, and V' (p) to
denote the set of variables of process p. A state predicate of P is a boolean expression over
process and channel variables.

Note that a state predicate may be characterized by the set of all states in which its

boolean expression is true and, therefore, is a subset of the state space of the program.

Action. An action of p is uniquely identified by a name, and is of the form

(name) : (guard) — (statement)

A guard of each action is a state predicate of P. The statement of each action is such
that its execution updates zero or more process or channel variables. The sending of a
message from p to g causes a message to be appended at the tail of the queue Cp q. The
receipt of a message from ¢ by p is modeled by removing a message from the head of the
queue Cp 4.
The set of actions of the program P, ¥(P) is given by the set of names of all the actions
of all the processes of P. Each action of p gives the set of transitions of the form (s, 7, s’)
such that the guard of action 7 is true in state s and execution of statement of 7 in s results
in state s’. Thus, the state-transition relation §(7P) is obtained from the set of actions of

all the processes of P. We say that an action of p is enabled in a state of p iff its guard

evaluates to true in that state.
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34.2 Component

A component is specified by a finite set of fractions that are involved in providing a common
functionality. Intuitively, a component implements a part of the desired behavior of the
system, such as some algorithm or protocol. A component fraction is specified by a set of
variables and a finite set of actions that are associated with a single process. A component
(respectively, fraction) is syntactically the same as a program (respectively, process), with
the only difference that some variables of the component are designated as input, whose
values are supplied by the program with which it is composed. The composition of the

component and the program is the union of the variables and actions of the component and

the program.

3.4.3 Adaptive action
An adaptive action is a special type of action, which is identified by a unique name and is

of the form

(name) : (guard) — TransformTo(p’, ®).

If the adaptive action is an action of process p, then when the statement of the adaptive
action is executed, p is replaced by p’ and state-mapping & is used to initialize the variables
of p’. Each adaptive action g gives a set of adaptive transitions of the form (s, g, s’) such
that the guard of m is true in state s of process p and execution of the statement of 7q

results in state s’ = ®(s) of process p'. The state mapping function Smap(A) is obtained

from the set of all adaptive actions.

32



From a modeling perspective, we consider that the adaptive action replaces the entire
process, even if only a small part of it is actually changed. In an actual implementation,
the adaptive action can be performed in various ways, such as by blocking execution of
some method, or by loading/unloading some class. However, for verification we need to

consider only the effect of the adaptive action. Additionally, considering each adaptive
action as a generic form of process replacement gives the developer freedom to implement

the adaptive action based on the platform and the language used.

3.4.4 State mapping

We define the following classes of state mapping P that occur during atomic adaptation:

e Identity mapping. In identity mapping, the names and the values of the variables

remain the same. Formally, V(p) C V(p/) and for all s, (®(s))(y) = s(y).

e Quasi mapping. In quasi mapping, the name of the variable of the new process is
different from that of the old process, though its value is the same as the value of
some equivalent variable in the old process state. Formally, for a variable y of V' (p'),

there exists a variable z of V(p) such that for all s, (®(s))(y) = s(z).

e [Initial mapping. In initial mapping, the variables of the new process are initialized
to some value as in the initial state of the new process. Formally, for a variable y of
V(p’), for all s, (®(s))(y) = yo, where yg € Sp(y) and Sy(y) is the set of values

from domain of y that y can take in the initial states of process p’.
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o Functional mapping. In functional mapping, the value of the variable of the new

process is some function of the values of variables of the old process.

o Arbitrary mapping. An arbitrary mapping is a special type of functional mapping,
where all variables of the new process are assigned some arbitrary value. Formally,
for a variable y of V (p’), for all s, (2(s))(y) = yg, where y; € D(y) and D(y)

denotes the domain of variable y.

o Mixed mapping. Most mappings that occur in practice are mixed mappings, in which
variables of the new process V (p’) are divided into disjoint sets, and one of the above

mappings is associated with each set.

% ”

Notation. We use “.” to denote the belongs to relation. For example, if variable v belongs
to process p, it is denoted by p.v, and action a of process p is denoted by p.a. A process p
of program P is denoted by P.p, and a fraction ¢ of component C is denoted by C.i. For

brevity, we avoid using belongs to relation if it is obvious from the context.
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Chapter 4

Verifying Adaptation in Absence of

Faults

In this chapter, we introduce the notion of transitional-invariant and transitional-invariant
lattice to verify the correctness of adaptation. We first define transitional-invariant in Sec-
tion 4.1. Next, in Section 4.2, we define transitional-invariant lattice and give a theorem to
prove correctness of adaptation. In Section 4.3, we present a case study of adaptation in the
message communication application to demonstrate the use of transitional-invariant lattice.

Finally, we discuss some of the questions raised by this work in Section 4.4.

4.1 Transitional-Invariant

As discussed in Chapter 3, the program during adaptation consists of actions of the old pro-
gram and actions of the new program. Therefore, we consider intermediate programs ob-

tained after one or more atomic adaptations. Similar to the invariants that are used to iden-
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tify “legal” program states and are closed under program execution, we define transitional-
invariants.
Definition (Transitional-invariant). Let R be an intermediate program in the adaptation
A. A transitional-invariant is a predicate that is closed in R.

Note that the actions of an intermediate program are the old program’s actions that
are not yet removed and the new program’s actions that are already added. However, the

adaptive actions do not necessarily preserve the transitional-invariant. Now, we define

transitional-invariant lattice.

4.2 Transitional-Invariant Lattice

A transitional-invariant lattice is an adaptation lattice with each node having one predicate

and that satisfies the following five conditions:

1. Safety of old program. The start node P is associated with an invariant Sp of the

program before adaptation.

2. Safety of new program. The end node ( is associated with an invariant SQ of the

program after adaptation.

3. Safety of intermediate program. Each intermediate node R is associated with a
predicate T'S i that is a transitional-invariant for any intermediate program at R (i.e.,
an intermediate program obtained by performing adaptations from the entry node to

R). Furthermore, any intermediate program at R satisfies the (safety) specification

during adaptation from T'S g.
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4. Safety of adaptive action. If a node labeled R; has an outgoing edge labeled a to
a node labeled R;, then for all adaptive transitions (s, a, s') in Smap where TS R; is
true in state s, TSRj is true in state s’. In other words, Vs, s’ : (s, a, s e Smap :
se TS R = seTs R;: Furthermore, all the adaptive transitions (s, a, s’) satisfy

the safety specification during adaptation.

5. Progress of adaptation. If a node labeled R has outgoing edges labeled
ay,ag, ..., ai to nodes labeled Ry, Ry, ..., Ry, respectively, then in all computations
of adaptation there exists a transition (s, s’) such that for some i : 1 < i < k :

s,a;,8") € Smap. Furthermore, Vs : s € TS :(Va,s' ta € Xg —{ay,...,ar}:
1 p R 1 k

(s,a, 3/) ¢ Smap)-

Correctness of adaptation. Intuitively, an adaptation is correct if the following conditions
are satisfied: If the adaptation begins in a legitimate state of the old program, then safety
during adaptation is met and the resulting state of the new program is legitimate. With this
intuition, if adaptation begins in a state where invariant of the old program is true, then we

say that adaptation is correct if:

e Adaptation terminates in a state where invariant of the new program is true
¢ During adaptation safety specification during adaptation is satisfied

o Eventually adaptation terminates

The following theorem states that finding a transitional-invariant lattice is necessary

and sufficient for proving correctness of adaptation.

37







Theorem 4.1. Given Sp as the invariant of the program before adaptation and SQ as the
invariant of the program after adaptation, the adaptation from P to Q is correct if and only
if there is a transitional-invariant lattice for the adaptation with the start node associated
with Sp and the end node associated with S).

Proof.

(=) If the transitional-invariant lattice exists, then adaptation is correct.

If the stated conditions are satisfied, then the specification of the old program is sat-
isfied when the adaptation starts. Also, the existence of the transitional-invariant lattice
during adaptation ensures that for each intermediate program that occurs during adap-
tation, the specification during adaptation is satisfied. Moreover, from the definition of
the transitional-invariant lattice, each adaptive action satisfies safety specification during
adaptation. Also, in each intermediate program eventually some adaptive action will be
executed, which ensures the liveness of adaptation. Furthermore, the last adaptive action
terminates in the invariant of the new program, from where the system satisfies the behav-
ior of the new program. Thus, the existence of the transitional-invariant lattice proves the
correctness of adaptation.

(<=) If adaptation is correct, then transitional-invariant lattice exists (proof by construction).

Let adaptation consist of n adaptive actions ay, ..., an. Consider all adaptive actions
that can occur in a state of the old program. Since the adaptation is correct, each of these
adaptive actions occur in a state of the old program where S p holds, and execution of these

adaptive actions satisfies the safety during adaptation.
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Now, consider the intermediate program I reached after execution of a;. In all com-
putations of the old program till the execution of a1, the invariant Sp is satisfied since
the old program is correct. Since the adaptation is correct, the intermediate program Iy
satisfies the specification during adaptation (otherwise, a1 is not permitted in a state of the
old program). Once a; is executed, we consider all the computations of the intermedi-
ate program 7, and identify the transitional-invariant T'S I associated with it. Similarly,
we consider all computations of the intermediate program reached after the execution of
some adaptive action other than ay in a state of the old program, and find the transitional-
invariant corresponding to that intermediate program. In this way, we construct the first
level of intermediate programs and corresponding transitional-invariants starting from the
old program.

Now, for each intermediate program at the first level we consider all possible adap-
tive actions that can occur in some state of its computations. We can then identify the
transitional-invariants at the second level in the lattice by considering all the computations
of the intermediate programs reached due to the execution of adaptive actions in the states
of the corresponding intermediate programs at first level.

In this way, we can continue to find transitional-invariants at various levels in the lattice.
Since the adaptation is correct, the atomic adaptation in each intermediate program at level

n — 1 will result in a state of the new program where S@ holds.

Thus, the correctness of adaptation proves the existence of the transitional-invariant

lattice. 0O
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4.3 Case Study: Reliable Message Communication

In this section, we present an example that illustrates how the transitional-invariant lattice

can be used to verify correctness of adaptation in the context of a simple message communi-

cation program. The communication program that we consider is an abstraction of the com-

munication aspect of the applications such as video conferencing, audio streaming, or any
distributed application where messages are transferred over wired or wireless channel. We
first describe the fault-intolerant message communication program in Section 4.3.1. Then,
we describe the FEC-based proactive component in Section 4.3.2. Next, in Section 4.3.3,
we discuss adaptation of adding the proactive component to the fault-intolerant message
communication program. In Section 4.3.3, we also identify the transitional-invariant lattice
for the adaptation. In Chapter 5, we continue with the message communication program

to discuss the adaptation of replacing the proactive component with the acknowledgment-

based reactive component.

4.3.1 Fault-Intolerant Communication Program

Specification of the communication program. An infinite queue of messages at sender
process s is to be sent to two receiver processes 71 and r via two unicast channels and
copied into corresponding infinite queues at the receivers. Faults may cause loss of mes-
sages in the channel.

The message communication program is shown in Figure 4.1. Only send and receive
actions of the program are shown, since only those actions are considered for adaptation.

Processes s, r1, and 79 maintain queues s@, r1.7Q, and r9.7Q respectively. s@Q con-
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program Py,
process s

var sQ) : queue of integer

m : integer
begin
send : —isEmpty(sQ)) — m := head(sQ);
Cs,r1 ) Cs,rg = Cs,rl om, CS,T2 om
end

process 7;[t = 1, 2]
var 7() : queue of integer

m : integer
begin
receive : —isEmpty(Cs,r;) — m :=head(Csr;);
rQ:=rQom
end

Figure 4.1: Message communication program (fault-intolerant version).
tains messages that s needs to send to r; and r9. The messages received by r; from s are
stored in r;.7Q). Let m(@ be the queue of all messages to be sent. (m@ is an auxiliary vari-
able that is used only for the proof.) Initially, sQ = m@Q. The function head(sQ) returns
the message at the front of s@, and head(sQ, k) returns k messages from the front of s@Q).
The notation sQ o d denotes the concatenation of sQ and (d).
Invariant. The invariant of the communication program is Sp = S1 A S2, where
Sl =Vi:(m; €r;.rQ Vm; € 79.7Q) = m; € mQ, and
S2=Vi:m; € mQ = (m; € sQ Y ((m; € Csry Y'm; € 11.7Q)

A (m; € Csrq Y m; € T9.7Q))).

In the above invariant, S1 indicates that messages received by the receivers are sent by the
sender. S2 indicates that a message m; is not yet sent by the sender, or it is in the channel,

or it is already received by the receiver, all exclusive.
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Notation. The symbol Y denotes exactly one operator, i.e., z Y y ¥ 2z implies exactly one of
ym y P y P y

z, y and z is true.

4.3.2 Proactive Component

The proactive component sends extra messages to the receiver, which the receiver can use to
recover from the lost messages. It consists of two types of fractions: encoder and decoder.
The encoder fraction is added at the sender process and the decoder fraction is added at
the receiver process. The encoder takes (n — k) data packets and encodes them to add k&
parity packets. It then sends the group of n (data and parity) packets. The decoder needs to
receive at least (n — k) packets of a group to decode all the data packets. This component
provides tolerance to certain message loss faults (discussed in Chapter 5).

Figure 4.2 shows the abstract version of the proactive component. The encoder and
the decoder fractions of the component are shown. The encoder fraction consists of two
actions: encode and fec_send. The decoder consists of two actions: decode and
fec_receive. These fractions are composed with the process that will use them. The
composition of a fraction and a process is done by union, which is equivalent to com-
bining the actions of the fraction and the process. We assume that appropriate renaming
is performed so that there are no inconsistencies in the definitions of the variables of the
fractions and the processes. The message communication program composed with the
proactive component is shown in Figure 4.3.

Specification of program using the proactive component. The program using the proac-

tive component satisfies the same specification as the communication program.
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Component fec

Fraction encoder

inp sQ : queue of integer
r1,79
var n,k,u,l,m : integer {initially, v = | = m = 0}
encQ : array [integer, 0..n — 1] of integer {initially, encQ = 1}
begin
encode : rrue — encQlu,0..n — 1] := fec_encode(head(sQ, n — k));
u:=u+1

[| fecsend : encQ[l,m]# L — Csr :=Csyry o {l,m,encQ[l, m]};
Cs,ro := Cs,rq 0 {l,m, encQ[l,m]};
m := (m + 1) mod n;

if m = 0 then
l=1+1
fi
end
Fraction decoder;
inp rQ : queue of integer
s
var n,k,z,y,p,m : integer {initially, p = 0}
rbufQ : array [integer, 0..n — 1] of integer {initially, rbufQ = 1}
begin
fec_receive : —isEmpty(Csr;) — z,y,m:= head(Cs,ri);
rbufQz,y] :==m

| decode : count (rbufQ[p,0.n — 1] # L) >=(n— k) —
rQ = rQ o fec_decode(rbufQ[p, 0..n — 1));
p=p+1
end

Figure 4.2: Proactive component.

Invariant. The invariant of the program using the proactive component is Sg = S1A Sp,
where
Sp =Vi:m; € mQ = (m; € sQ

Y ((m; €r1.rQ ¥ m; € data(encQ U Cs 7y Ury.10ufQ))

A (m; € r9.rQ ¥ m; € data(encQ U Cs ry UTg.1bufQ)))).
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Program Py,
process s
var : Pj1-5.var U fec.encoder.var
begin
fec.encoder.encode

[| fec.encoder.fec_send
end

process 7;[i = 1,2]
var : P;01-mi-var U fec.decoder;.var
begin
fec.decoder.fec_receive

| fec.decoder.decode
end

Figure 4.3: Message communication program (with proactive component).
We use the notation m; € data(encQ U Cs r; U r1.7bufQ) to imply that message m; can
be generated from the data in {encQ U Cs;rp U r1.7buf@Q}. In the above invariant, Sp
indicates that the message is either at the sender, or already received by the receiver, or it

can be generated from the data in the channel and the buffers at the sender and the receiver.

4.3.3 Adaptation: Addition of the Proactive Component

The adaptation of adding the proactive component converts the program shown in Figure
4.1 to the one shown in Figure 4.3. We first require an adapt-ready version of the program
Pintor as shown in Figure 4.4. (An adapt-ready program is one that is composed with
adaptive actions.j We now give the specification during adaptation of adding the proactive

component.

Specification during adaptation. The specification during adaptation is that S continues
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program Pe_;,10)
process s
var: P;.i.1.5.var
begin
Pintol-s-send
0 ay :true — TransformTo(P,
end

-ipy -5 Pay);
process r;[i = 1, 2]
var r(Q) : queue of integer
begin
Pintol-Ti-Teceive
aiy1) a1 A isEmpty(Cs r;) — transformTo('Pfec.ri,<I>a(i+1));
end

Figure 4.4: Message communication program (fault-intolerant version, adapt-ready).

to be true during adaptation.

We describe the adaptation by identifying the intermediate programs and the corre-

sponding transitional-invariants during adaptation after each atomic adaptation.

program Pa-ipl

process s
var : Pjpi,0-5.var
begin
ag :ag A ag — TransformTo(Pyec.s, Pay);
end

process ;[ = 1,2] : same as in Fig. 4.4

Figure 4.5: Intermediate program Pa_z-pl .

The execution of adaptive action aj in P,_;;,;,; results in intermediate program Pa-ipl

shown in Figure 4.5. Pa-ipl does not send any packets, but the packets that are there in
the channel can still be received by the receivers r; and ro. In the execution of P -ip)

eventually all the packets in the channel are read and no new packets are added in the
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channel from the sender to the receiver. Thus, the guards of the adaptive actions ag and

a3 eventually get enabled. The transitional-invariant of Py_;;,, is: TSy = 51 A Sg, where

S1, Sg are as defined earlier in Section 4.3.1.

program Pg_;;,,
process s : same as in Fig. 4.5
process 71 : same as in Fig. 4.3

process 79 : same as in Fig. 4.4

Figure 4.6: Intermediate program P -ipg-

Since a; and a9 occur independently, we consider both possible orderings among them.
The execution of adaptive action ag in P, -ipy results in intermediate program P -ipg
shown in Figure 4.6. In P,_;,,, receiver 71 has replaced its fraction, whereas receiver
T9 has not yet replaced its fraction and can receive any remaining packets in the channel
from s to 3. Eventually, in the execution of Pg_;p,,, the guard of adaptive action a3 gets
enabled and a3 is executed resulting in intermediate program Py _;;, "

The transitional-invariant of Py_;,, is T'Sp = S1 A S3, where
S3=Vi:m; € mQ = (m; € sQY ((m; € r1.7Q) A (m; € Csry Y'm; € 79.7Q))

A iSEmpty(Cs r() = true Ary1.70ufQ = L Ary.p=0).

program Py _; .
process s : same as in Fig. 4.5
process 7] : same as in Fig. 4.4

process 7o : same as in Fig. 4.3

Figure 4.7: Intermediate program Pa-ipg'

The execution of adaptive action a3 in Py_;p, results in intermediate program Py_;
shown in Figure 4.7. In Pg_;p,, receiver r has replaced its fraction, whereas receiver )
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has not yet replaced its fraction and can receive any remaining packets in the channel from

s to r1. Eventually, in the execution of P, the guard of adaptive action a9 gets enabled

-lps ’
and ay is executed resulting in intermediate program Pg_;y, .

The transitional-invariant of P,_;,,, is TS3 = 51 A Sy, where

ip3
Sy =Vi:m; € mQ = (m; € sQY ((m; € r9.7Q) A (m; € Csry Yy € 71.7Q))

A isEmpty(Cs ry) = true A ro.7buf@Q = L Arg.p = 0).

program Pg_;,, 4
process s : same as in Fig. 4.5

process ;[i = 1, 2| : same as in Fig. 4.3

Figure 4.8: Intermediate program P,_;,, 4

In intermediate program P_;,, 4 shown in Figure 4.8, only adaptive action a4 is enabled,
and execution of a4 results in new program P,.. The transitional-invariant of P,_;, 418
TS4 = S1 A S5, where
Ss=Vi:m; e m@Q = (m; € sQ ¥ (m; €r1.rQ N my; € r9.7Q))

A isEmpty(Csry) = true A ry.rbuf@ = L A r1y.p=0
A isEmpty(Cs ry) = true A ro.1buf@Q = L A r9.p=0.

We now give the state mappings for the adaptive actions in the adaptation that are used
in initializing the state of the new fraction at each process.

State mapping. The state mapping for each adaptive action is shown in Table 4.1. Each
adaptive action initializes the state of the new process when it is executed based on this
mapping.

Based on the description of adaptation in this section, we find the transitional-invariant

lattice as shown in Figure 4.9 for the adaptation of adding the proactive component. Thus,
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Mapping Function | Process Affected New State

g, s Identity mapping

Dq, 1 {r@, s} - Identity mapping,
{n,k,z,y,p,m, rbufQ} - Initial mapping

®ag T9 {r@Q, s} - Identity mapping,
{n,k,z,y,p,m, rbuf@} - Initial mapping

Dy s {sQ, 71,79} - Identity mapping,
{n,k,u,l,m, encQ} - Initial mapping

Table 4.1: State mappings for the adaptation.

F;'ntol .S P

Figure 4.9: Adaptation lattice for addition of proactive component.

we have the following theorem.

Theorem 4.2. The adaptation lattice of Figure 4.9 is the transitional-invariant lattice for

the adaptation of adding the proactive component. Hence, the adaptation is correct.
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4.4 Discussion

In this section, we discuss some of the questions raised by this work.

Why is the specification during adaptation a safety specification?

The specification of the application before adaptation can be arbitrary. However, during
adaptation the specification should be a safety specification. It is not desirable to delay the
adaptation to satisfy liveness during adaptation. Rather, we would expect the adaptation to
complete as quickly as possible and the new program to satisfy the safety and liveness after
adaptation. For example, consider a transaction processing system with liveness guarantees
to commit or abort. In this case, either the adaptation should not start in the middle of
the transaction, or if the adaptation can be started in the middle of the transaction then
the liveness should be met once the adaptation is completed. Thus, the implicit liveness

specification during adaptation is that adaptation completes.

How is transitional-invariant lattice constructed?

Techniques [64, 69] developed to calculate invariants of a program can also be used to find
transitional-invariants. For a given adaptation model, we can perform reachability analy-
sis for each intermediate program obtained after execution of the atomic adaptation. The
reachability computation for an intermediate program helps in identifying the transitional-
invariant for that intermediate program, and we can construct a transitional-invariant lattice
for the given adaptation. Furthermore, the techniques for dynamically discovering likely
invariants from the execution of the system such as [70—72] can be used to find transitional-

invariants for the intermediate programs in the adaptation lattice.

Can transitional-invariant lattice approach be used to verify existing adaptation tech-
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niques?

Yes, the transitional-invariant lattice approach can also be used to verify existing adapta-
tion techniques. We give an outline of how existing adaptation techniques can be verified
using transitional-invariant lattice. To verify existing adaptation approaches, we first need
to identify all atomic adaptations and the corresponding adaptive actions. We then need to
consider all possible orderings and concurrency among adaptive actions, and identify inter-
mediate programs after each adaptive action. Next, we find transitional-invariants for each

intermediate program and check if the transitional-invariants imply safety of adaptation.

Can adaptation lattice approach be used in the case of parallel adaptation?

Yes, the adaptation lattice approach can also be used to verify parallel adaptation. We dis-
cuss the use of adaptation lattice approach in the case of parallel adaptation using a simple
example. Consider a system consisting of two processes, a sender process and a receiver
process. Both processes communicate using an encryption protocol. The adaptation re-
quires that eventually the current (or, old) encryption protocol be replaced by another (or,
new) encryption protocol. The parallel adaptation adds the new encryption protocol along-
side the current encryption protocol. In other words, the sender process has two types of
fractions (for encryption) and the receiver process has two types of fractions (for decryp-
tion). All users using the sender process to send data to users at the receiver process initially
use the old encryption protocol. Once the new encryption protocol is added, some users
use the old protocol whereas some users use the new protocol. Eventually, after all users
have stopped using the old protocol, it can be removed from the system.

The adaptation lattice in this case is as shown in Figure 4.10. Program P uses the
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P,: old, new P,: old
P,: old P;: old, new

P
P,: old, new
P:: old, new

Ps. new Ps: old, new
P.: old, new P.: new

Figure 4.10: Adaptation lattice for parallel adaptation.

old protocol fractions at both the processes. Eventually, after adaptation is completed,
program Q uses the new protocol fractions at both the processes. Program P’ uses both
types of fractions at both the processes. During adaptation, program P’ can stay active for
an unbounded time. The correctness requirements for P’ are that the old (respectively, new)
fraction at the sender process communicates only with the old (respectively, new) fraction at
the receiver process. The correctness requirements for the intermediate programs between

P and P’ are that the old fraction at the sender process communicates only with the old
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fraction at the receiver process, and the communication from the new fraction at the sender
process to the receiver process is buffered. Similarly, the correctness requirements for the
intermediate programs between P’ and @ are that the new fraction at the sender process
communicates only with the new fraction at the receiver process, and no communication
occurs between the old fraction at the sender process and the old fraction at the receiver

process.
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Chapter 5

Verifying Adaptation in Presence of

Faults

In this chapter, we introduce the notion of transitional-faultspan and transitional-faultspan
lattice to verify the fault-tolerance properties during adaptation. We first define transitional-
faultspan in Section 5.1. Then, in Section 5.2, we define transitional-faultspan lattice and
give a theorem to prove the correctness of adaptation in the presence of faults. Finally, in
Section 5.4, we present a case study of adaptation in the message communication applica-

tion to demonstrate the use of transitional-faultspan lattice.

5.1 Transitional-Faultspan

Let F'p be the fault class of the old program and FgQ be the fault class of the new program.
Let Sp be an invariant and Tp be a Fp-span of the old program. Similarly, let S be an

invariant and T be a F@-span of the new program. The old program is F'p-tolerant, and
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the new program is FQ-tolerant. Let F be the fault class during adaptation.

In the context of adaptation, we define transitional-faultspans to identify the set of states
that the program can reach while performing adaptation in the presence of faults.
Definition (Transitional-faultspan). Let R be an intermediate program in the adaptation
A, and TS be a transitional-invariant of R. A transitional-faultspan (F-span) of R from
TS is a predicate T'T that satisfies following two conditions: () TS C TT, and (i) TT is
closed in R[|F.

Now, we define transitional-faultspan lattice.

5.2 Transitional-Faultspan Lattice

A transitional-faultspan (F-span) lattice is an adaptation lattice where each node is as-
sociated with two predicates, a transitional-invariant and a transitional-faultspan, and the

following conditions are satisfied:

0. Correctness in absence of faults. The adaptation lattice obtained by considering

the transitional-invariants only forms a transitional-invariant lattice.

1. Fault-tolerance of old program. The entry node P is associated with a F)p-span

Tp of the program before adaptation.

2. Fault-tolerance of new program. The exit node () is associated with a FQ-span

T of the program after adaptation.

3. Fault-tolerance of intermediate program. Each intermediate node R is associated
with a predicate TT g that is a transitional-faultspan (F'-span) from TS for any
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intermediate program at R (i.e., intermediate program obtained by performing adap-
tations from the entry node to R). Furthermore, any intermediate program at R is

F-tolerant from T'Sg.

4. Safety of adaptive action. If a node labeled R; has an outgoing edge labeled a to
a node labeled Rj, then for all adaptive transitions (s, a, s ) in Smap where TT R;

! In other words, Vs,s' : (s,a,s’) €

is true in state s, TT R; is true in state s
Smap :s € TT R; =~ seTT R;: Furthermore, all the adaptive transitions (s, a, s')

satisfies the safety specification during adaptation.

5. Progress of adaptation. If a node labeled R has outgoing edges labeled
ai,ay, ..., a tonodes Ry, Ry, ..., Ry, respectively, then in all computations of adap-
tation there exists a transition (s, s’) such that for some i : 1 < i < k : (s,0;,5') €
Smap. Furthermore, Vs : s € TT g : (Va, siaexy— {a1,....ax} : (s,q, sy ¢

Smap)-

Correctness of adaptation in presence of faults. Intuitively, an adaptation is correct in
presence of faults F' if the following conditions are satisfied: If the adaptation begins in
a legitimate state of the old program then during adaptation each intermediate program is
F'-tolerant and the resulting state of the new program is legitimate. With this intuition, if
the adaptation begins in a state where the fault-span of the old program is true, then we say

that the adaptation is correct if:

e Adaptation terminates in a state where fault-span of the new program is true

o During adaptation, each intermediate program is F'-tolerant
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e Eventually adaptation terminates

The following theorem states that finding a transitional-faultspan lattice is necessary
and sufficient for proving correctness of adaptation.
Theorem 5.1. Given Sp as the invariant of the program before adaptation, Tp as the
Jaultspan used to show that the program before adaptation is tolerant to Fp, Sq) as the
invariant of the program after adaptation, and Ty as the faultspan used to show that the
program after adaptation is tolerant to F, Q the adaptation from P to Q is correct in pres-
ence of faults F if and only if there is a transitional-faultspan (F-span) lattice for the
adaptation with start node associated with Sp and Tp, and end node associated with Sg
and Tp.
Proof.

The proof of this theorem is similar to Theorem 4.1 discussed in Chapter 4. O

5.3 Adaptation of Self-Stabilizing Programs

In this section, we consider the adaptation by Gouda et al. in [73], where the authors have
focused on adapting from one self-stabilizing [59] program into another self-stabilizing
program. We show that this is an instance of our approach where all the transitional-
faultspan predicates are true.

A program is self-stabilizing if starting from an arbitrary state it eventually recovers to
a legitimate state. Thus, in transforming from one stabilizing program to another, we can
let all the fault-spans (i.e., fault-span of the old program, fault-span of the new program
and transitional-faultspans of the intermediate programs) be true. With this approach, if the
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old program starts in any state, eventually the new program execution begins although the
state of the new program may be arbitrary. Since the new program is self-stabilizing, it will
eventually recover to legitimate states.

Note that in [73] the corresponding transitional-invariants may not exist. Specifically,
even if the old program begins in legitimate states, the new program may initially be in ille-
gitimate states before recovery takes place. Moreover, the approach in [73] allows arbitrary

behavior during adaptation and, hence, the specification during adaptation may not be met.

5.4 Case Study: Reliable Message Communication (Con-

tinued)

In this section, we continue with the example of Chapter 4. We consider the adaptation
that replaces the proactive component with the reactive component. We first discuss the
adapt-ready version of the proactive component and the faults tolerated by the proactive
component in Section 5.4.1. Next, in Section 5.4.2, we describe the acknowledgment-
based reactive component. We then discuss the adaptation of replacing the proactive com-
ponent by the reactive component in Section 5.4.3. Finally, in Section 5.4.3, we identify
the transitional-faultspan lattice to verify the correctness of this adaptation in the presence

of faults.
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5.4.1 Proactive Component

We discussed the proactive component in Chapter 4. The adapt-ready version of the proac-

tive component is shown in Figure 5.1.

Program P, ,_ fec
process s
var : Pfo..s.var
begin
fec.encoder.encode
[| fec.encoder.fec_send
[ aay :true — transformTo(Pq.ip, -5, Paa;)
end
process 7;[i = 1,2]
var : Pfe.r;.var
begin
fec.decoder.fec_receive
[| fec.decoder.decode
0 aa(;49) : aag A isEmpty(Cs r;) — transformTo(’Pack.ri,<I>aa(2.+2))
end

Figure 5.1: Message communication program (with proactive component, adapt-ready).

The specification of the program using proactive component is discussed in Chapter 4.
Additionally, it tolerates message loss faults of class F'1 (cf. Figure 5.2). Faults of class
F'1 causes a loss of up to k messages in a group. In writing the fault transitions, we use the
following auxiliary variables: m9 to denote a message m from group g, and lostCount?
to denote the number of messages lost in group g in the channel from s to r;. Initially,
Vg lostCountlg = 0. We now give the fault-span of the program using the proactive
component.

Fault-span. The F'l1-span of the program using the proactive component is Ty = SQ.
The fault-span is same as the invariant since the proactive component provides masking
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msg loss; : mJ € Cs,ri A lostCountf <k — Cs,ri = Cs,r; — mY;
lostCount‘g ++

Figure 5.2: Fault class F'1.

fault-tolerance.

5.4.2 Reactive Component

The reactive component deals with the message loss by retransmitting the lost packets. It
uses acknowledgments to confirm the receipt of messages sent by the sender, and negative
acknowledgments to confirm the loss of messages sent by the sender. It consists of aSnd
fraction at the sender and aRcv fraction at the receiver. The aSnd fraction adds a group
and a packet number in each packet. It maintains a window of size w and sends all packets
in that window to the receiver. It waits for the acknowledgment of receipt of a group
before moving the window one group forward. If it receives a negative acknowledgment
for any packet, it sends that packet again to the receiver. When the aRcv fraction at the
receiver receives a packet out of order, it waits for a few more packets before sending a
negative acknowledgment to the sender. When all packets in a group are received, it sends

an acknowledgment for that group to the sender.

msgloss; : m € Csr; — Csyp; :=Csr; — {m}

Figure 5.3: Fault class F'2.

The reactive component provides tolerance to message loss faults F'2 shown in Figure
5.3. Faults of class F'2 causes loss of messages from the channel. For simplicity, we
assume that acknowledgment messages are not lost; however, the component can be easily
extended to deal with faults that lose acknowledgments by using timeout guards.
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Component ack

Fraction aSnd

inp sQ : queue of integer
rl, r2

var  n,w,g;,p; :integer {initially, p; = g; = 0}
9a,9na,Pna : integer {initially, p; = g; = 0}
sQcopy; : queue of integer {initially, Empty}
snt; : array [0..w — 1,0..n — 1] of integer {initially 1}

param : 1=1,2

begin

copy; : isEmpty(sQcopy;) — sQcopy; := sQ
[ send; : -isEmpty(sQcopy;) A snt;[g;,p;] = L —
snt;[g;, p;] := {g;, p;, head(sQcopy;) };
Cs,r; = Cs,r; 0 snt;[g;, pil;
p; = (p; + 1) mod n;
if p; = 0 then
g; == (g; + 1) mod w
fi
[| resend; :type(Cr;s)=nack — gng,pna:=head(Cr,;s);
if snt;[gna, Pna) # L then
Cs,r,- = Cs,ri o snt;[gna,Pnal
fi
| ackrev; : type(Cr;s) = ack — gq,snt;[ga,0..n — 1] := head(Cr, s). L
end

Figure 5.4: Acknowledgment component: sender fraction.

Figures 5.4 and 5.5 shows the abstract version of the reactive component. The aSnd
fraction consists of four types of actions: copy, send, resend, ack.rcv. The aRcv
fraction consists of three types of actions: receive, deliver, and send_nack. These
fractions are composed with processes that will use them. The message communication
program composed with the reactive component is shown in Figure 5.6. We now give the
specification of the program using the reactive component.

Specification of program using the reactive component. Program using the reactive

component satisfies the same specification as the communication program (cf. Chapter 4).
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Component ack

Fraction aRcv;

inp rQ
s
var n,w,g,p : integer {initially k = ng = 0}
k,ng,m : integer {initially k = ng = 0}
rbuf@Q  : array [0..w — 1,0..n — 1] of integer {initially 1}
ug : array [0..w — 1] of boolean {initially false}
param j 0<i<w-1
begin

receive  : —isEmpty(Cs,r;) — g,p,m :=head(Cs,r,);
rbufQ|g,p], uglg] := m, true
[ deliver; :ug[j] =true — if count(rbufQ[j,0.n — 1] # 1) = n then
rQ = rQ o rbufQ[j,0..n — 1J;
rbufQ[j,0..n — 1],Cr, s := L, Cr; s 0 ack(j);
uglj], ng := false, (5 + 1) mod w
fi
[| send_mack : count(ug[0.w — 1]=true) >2 —fork=0ton — 1
if rbufQ[ng, k] = L then
Cr;,s := Cr;,s o nack(ng, k)
fi

end

Figure 5.5: Acknowledgment component: receiver fraction.
Additionally, it tolerates message loss faults /2.
Invariant. The invariant of the program using the reactive component is Sp = S1 A Sy,
where
Sp=Vi:m; e mQ =
((m; € sQcopyy Y m; € r1.7Q
Y (m; & (sQcopyy Ur1.7Q) = (m; € snty A (m; € Csry Y m; € 71.70ufQ))))
A (m; € sQcopyg ¥ m; € r9.7Q
Y (m; & (sQcopya Urg.rQ) = (m; € sntg A (m; € Cs ry Ym; € 19.70ufQ))))).

In the above invariant, S 4 indicates that for a message m, exactly one of the following
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Program P, ;.

process s
var : Paa—fec-s-var U ack.aSnd.var
param ¢ ::=1,2
begin

ack.aSnd.copy;

ack.aSnd.send;
ack.aSnd.send_again;
ack.aSnd.ack_rcv;

| man I e 3 o |

end

process 7;[i = 1,2]

begin

var : Paa—fec-Ti-var U ack.aRcv;.var
param k£ :0 <k <w-1

begin

ack.aRcv.receive
| ack.aRcv.deliver;
[| ack.aRcv.send_nack
end

Figure 5.6: Message communication program (with reactive component).

is true:

- m is at the sender, and is not yet sent

- m is received by the receiver

- m is buffered by the sender, and m is either in the channel or is buffered at the

receiver.

Fault-span. The F'2-span of the program using the reactive component is Tp = S1 ATy,
where
Tq=Vi:m; € mQ =

((m; € sQcopy1 Y m; € r1.7Q ¥ (m; & (sQcopy1 UT1.7Q) = m; € snty))
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A (m; € sQcopyg ¥ m; € ro.7Q Y (m; & (sQcopya Uro.7Q) = m; € sntg))).
In the above fault-span, T4 indicates that for a message m, exactly one of the following

is true:
- m is at the sender, and is not yet sent
- m is received by the receiver

- if m is sent by the sender and not yet received by the receiver, then m is buffered by

the sender.

5.4.3 Adaptation: Replacement of Proactive Component with Reac-
tive Component

The adaptation of replacing the proactive component with the reactive component converts
the program shown in Figure 5.1 to the one shown in Figure 5.6. We now give the specifi-
cation during adaptation for the replacement of the proactive component with the reactive
component.

Specification during adaptation. The specification during adaptation is that S continues
to be true during adaptation in presence of faults F7.

We now describe the adaptation by discovering the intermediate programs and the cor-
responding transitional-invariants and transitional-faultspans during adaptation. We iden-
tify the intermediate programs after each atomic adaptation.

The execution of adaptive action aa) in Py, . results in intermediate program

Paa-ip; shown in Figure 5.7. Py, ip, does not encode any new packets, but will send
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Program Py, ;p,,
process s
var: Py, fe-s.var
begin
fec.encoder.fec_send
[ aag : aay Al=u — transformTo(Pyq.ip,-$, Paay);
end

process 7;[i = 1,2] : same as in Fig. 5.1

Figure 5.7: Intermediate program Paa-ipl'

any remaining encoded packets. In the execution of P, eventually all the encoded

a-ipy°
packets are sent to the receivers. Thus, the guard of adaptive action aag becomes true.
The transitional-invariant of Py, jp, is: TS5 = Sg A Sg, where S is defined earlier in
Chapter 4, and

Se=(Vj:j>u:encQj,0.n—-1] =L)AL u).

In the above transitional-invariant, Sg indicates that no new packets will be encoded by the

sender. The transitional-faultspan T'T'5 of Pyq_;p, is same as TS,

Program Py, _;,,
process s
var: Py fe-s-var
begin
aas : aag A aag — transformTo(Py k-s, Paas);
end

process 7;[i = 1,2] : same as in Fig. 5.1

Figure 5.8: Intermediate program Paa-in-
The execution of aap results in intermediate program Pyq_j;, shown in Figure 5.8.

'Paa_ipz does not send any packets, but the packets that are there in the channel can still

be received by the receivers 71 and r2. In the execution of Pyq_ip, eventually all the
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packets in the channel are read and no new packets are added in the channel from sender
to receiver. Thus, the guards of the adaptive actions aag and aa4 eventually becomes true.

The transitional-invariant of P, _;,,, is: TSg = S A S7 A Sg, where S is defined earlier

-ipg
in Chapter 4, and
Sr=(Vj:73>u:encQ[j,0.n—1]=L)A(l =u),and
Sg=Vi:m; € mQ = (m; € sQ Y ((m; € r1.7Q ¥ m; € data(Cs,ry Urq.70ufQ))

A (m; € r9.7Q ¥ m; € data(Cs,ro Urg.ThufQ)))).
In the above transitional-invariant, S7 indicates that there are no encoded packets left at the
sender for sending, and Sg indicates that all packets that are sent are either received by the
receivers or are in the corresponding channels. The transitional-faultspan TT¢ of Pyq.ip,

is same as T'Sg.

Program P,_;p,
process s : same as in Fig. 5.8
process 71 : same as in Fig. 5.6

process 79 : same as in Fig. 5.1

Figure 5.9: Intermediate program Py

Since aag and aay occur independently, we consider both possible orderings between

them. The execution of adaptive action aag in P, results in intermediate program

a-ipy
Paa-ipg shown in Figure 5.9. In Pyq_ip,, receiver ry has replaced its fraction, whereas
receiver ro has not yet replaced its fraction and can receive any remaining packets in the
channel from s to r. Eventually, in the execution of Pp_;p, the guard of adaptive action
aay gets enabled and aay is executed resulting in intermediate program Pyq_jp.. The

transitional-invariant of P,,,,_;,,., is TS7 = S1 A S7 A Sg A S, where

1p3
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Sg =Vi:m; € mQ = (m; € sQ
Y(m; €r1.rQ A (m; € r9.7Q ¥ m; € data(Cs ry Uro.70ufQ)))), and
S10 = isEmpty(Cs,r;) = true Ary.rbuf@ = L.

The transitional-faultspan 7'T'7 of Paa—ip3 is same as T'S7.

Program P, _;p,,
process s : same as in Fig. 5.8
process 71 : same as in Fig. 5.1

process 79 : same as in Fig. 5.6

Figure 5.10: Intermediate program Py,_jp, -

The execution of adaptive action aay in Pgq.jp, results in intermediate program
Paa-ip, shown in Figure 5.10. In Pyq_;p, , receiver 72 has replaced its fraction, whereas
receiver 7] has not yet replaced its fraction and can receive any remaining packets in the
channel from s to ;. Eventually, in the execution of Py, the guard of adaptive ac-
tion aa3 gets enabled and aaj3 is executed resulting in intermediate program Pyq_;p,. . The

transitional-invariant of P, is TSg = S1 A S7 A S11 A S12, where

a-ipy
S11=Vi:m; € mQ = (m; € sQ

Y ((m; €r1.rQ ¥ my; € data(Cs ry Ury.mbufQ)) A m; € r9.7Q)), and
S12 = isEmpty(Cs ry) = true Arg.rbufQ = L.

The transitional-faultspan T'T'g of P, is same as T'Sg.

a-ip4

Program Py ;).
process s : same as in Fig. 5.8

process 7;[i = 1, 2] : same as in Fig. 5.6

Figure 5.11: Intermediate program Pgg_;p. .
In intermediate program Pg,_jp. shown in Figure 5.11, only adaptive action aas is
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enabled, and execution of aay results in the new program P, ;.. The transitional-invariant
of Pog-ipg is TSg = S1 A 519 A S12 A S13, where

S13=Vi:m; € mQ = (m; € sQ ¥ (m; € r1.7Q Am; € r9.7Q)).
The transitional-faultspan TTg of Pyq_jp, is same as TSg.

We now give the state mappings for the adaptive actions in the adaptation that are used
in initializing the state of the new fraction at each process.
State mapping. The state mapping for each adaptive action is shown in Table 5.1. Each

adaptive action initializes the state of the new process when it is executed based on this

mapping.
Mapping Function | Process Affected New State
®gag s Identity mapping
Daay s Identity mapping
Paag 1 {r@Q, s} - Identity mapping,

V(r1) — {rQ, s} - Initial mapping

Paay T9 {r@Q, s} - Identity mapping,
V(rq) — {r@Q, s} - Initial mapping

Daas s {s@Q, 71,79} - Identity mapping,
V(s) — {sQ,r1,72} - Initial mapping

Table 5.1: State mappings for the adaptation.

Based on the description of the adaptation in this section, we find the transitional-
faultspan (F'-span) lattice as shown in Figure 5.12 for the adaptation of replacing the proac-
tive component with the reactive component. Thus, we have the following theorem.
Theorem 5.2. The adaptation lattice of Figure 5.12 is a transitional-faultspan (F'1-span)
lattice for the adaptation of replacing the proactive component with the reactive compo-

nent. Hence, the adaptation is correct in presence of faults. O
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Figure 5.12: Adaptation lattice for replacement of proactive component with reactive com-
ponent.
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Chapter 6

Case Study: Mixed Mode Adaptation

In this chapter, we discuss the case study of mixed-mode adaptation. We study mixed-mode
adaptation in the context of protocol change as discussed in dynamically adaptable middle-
ware [1, 74, 75]. Specifically, we consider two leader election protocols and adaptation that
changes one leader election protocol to another at run-time. We replace a leader election
protocol that elects a leader based on process identification to a leader election protocol that
elects a leader based on process value, where the value of a process can be defined using
process’s battery life, its average distance to other processes, etc.

In the rest of this chapter, we first discuss the two leader election protocols in Section
6.1; we discuss the system model, protocol specifications and descriptions in this section.
Next, in Section 6.2, we discuss the adaptation of leader election protocols; we discuss
the overlap communication scenarios, state mappings and verification of the adaptation in
this section. In Section 6.3, we present the performance results of mixed-mode adaptation.

Finally, in Section 6.4, we discuss the limitations of mixed-mode adaptation.
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6.1 Leader Election Protocols

Leader election is a fundamental problem in distributed computing. The basic description
of leader election problem is stated as: eventually elect a unique leader. For example, in
the case of group communication protocols, the leader election is employed to elect a new
coordinator whenever a group coordinator fails. Numerous leader election protocols have
been proposed in the literature for a variety of applications. We discuss two versions of the
leader election protocol that is based on the termination detection protocol by Dijkstra and
Scholten [76]. The protocols discussed in this section are an abstraction of the protocol
discussed in [77]. We assume that there is another module at all (or selected) processes that
monitors the status of the leader process. A monitor process starts an instance of the leader

election protocol whenever it detects a failure of the leader.

6.1.1 System Model and Assumptions

The system consists of n processes. All processes have unique identifiers which we denote
by id. Each process maintains a variable [dr, which denotes the value of the leader that the
protocol elected, and a variable ¢, which denotes if the process is in election or not . We

make the following assumptions about the system:

e Bi-directional channel. The channels between processes are bidirectional, i.e., if the

system has a channel Cp 4 from p to g, then it also has a channel Cy p.

e Static processes. We assume that processes are static and the network is connected.
If the processes are mobile and the network suffers from partitioning, then the proto-
col can be extended as discussed in [77].
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e Process failure and reliable communication. A process or a link can fail, however,
for simplicity, we assume that while the election is going on there is no process or
link failure. We assume reliable communication, i.e., if process p sends a message m

to process g, then eventually g receives the message m.

6.1.2 Specification of Leader Election Protocols

We consider the following problem specification of the leader election protocols that we
use in this case study:
Safety: [1(i.ldr # j.ldr = i.€ V j.€)
Liveness: (1QV4,j : i.ldr = j.ldr
The safety property asserts that no two stable processes (i.e., processes not in the election)
can have different leaders. The liveness property asserts that eventually a unique leader is
elected.

We now discuss two leader election protocols, one that elects the process with the max-
imum id as the leader, and one that elects the process having the maximum value as the

leader.

6.1.3 Leader Election based on Process ID

The leader election protocol, ldrid, that elects the process with maximum :d as a leader is
shown in Figure 6.1. In addition to the safety and liveness properties discussed earlier in
Section 6.1.2, the protocol also satisfies the following liveness property:

Liveness of ldrld: O0i.ldr = maz{k | d; }. < oo},
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Component ldrld

Fraction 1
inp N : list
var startElection, €, ack : bool {initially false}
p,num,maz,ldr :integer {initially p = num = maz = 0,ldr = 1}
src{Num, Id) : (integer, 1..n) {initially (0, )}
W, chd : list {initially W, chd = ¢}
begin

startElection : —¢ A startElection —
sre,num := (num, i), num + 1;
ELECT.src := src;
forj=1tonAjeN
Ci’j.add(ELECT);
W, ack, ¢, p, mazx,chd := N, true, true, i, 1, ¢;
startElection := false
[| joinElection : ELECT(ldrld) € Cji—
C; ;- remove(ELECT);
if ~¢ V (¢ A ELECT.src > src) then
src := ELECT.src;
num := src.Num + 1;
fork=1tonA(k#jAk€N)
C; k-add(ELECT);
W, ack, e, p,maz,chd := N — {j}, true, true. j, i, ¢;
else if ¢ A src = ELECT.src then
ACK.{src, chd} := src, false;
C; j-add(ACK)

fi
[ ackToParent : e AW = ¢ A src.Id # i A ack —
ack := false;

ACK.{src,chd,id} := src, true, max;
C; p-add(ACK)

Figure 6.1: Leader election algorithm based on node Id.
which asserts that the elected leader is the process having maximum ¢d among all connected
processcs.
The protocol uses three types of messages as shown in Table 6.1. It also shows the fields

associated with each message type. The variables used by the leader election protocol are
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[ ackReceive : ¢ A ACK(ldrld) € C;; —

C; ;-remove(ACK);
if ack A src = ACK.src then
W:=W-{j}
if ACK.chd then
chd = chd + {j};
maz := MAX(ACK.id, max);
fi
fi

[| electLeader : c AW = ¢ A src.ld =i A ack —

ack, €,ldr := false, false, max;,

LD.{src,id} := src, max;

forj=1tonAj € chd
Ci’j.add(LD)

[| setLeader :e¢ A LD(ldrld) € C;; A —~ack —

Cj ;-remove(LD)
if src = LD.src then
ldr, € := LD.ld, false;
fork=1ton Ak € chd

C; k-add(LD)

fi
end
Figure 6.1: Leader election algorithm based on node Id (Continued).
shown in Table 6.2.

Message | Meaning Message Fields

ELECT |for building a spanning tree | fype : protocol type
src : computation index of the election

ACK to acknowledge the receipt| #ype : protocol type

of ELECT message src . computation index of the election

chd : denotes if the sender is a child
id : maximum id as seen by the sender

LD to announce a leader type : protocol type
src : computation index of the election
id :id of leader elected in the election

Table 6.1: Message types used in the protocol.
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Variable Type Meaning

€ bool indicates whether process is currently in election or not
ldr int(l..n) id of the leader process
num int index of the last computation that this process started

src(Num, Id) | (int,int(1..n)) | computation index of the last computation in which this
process participated

p int(1..n) parent process in last computation

ack bool indicates if ACK message is sent to parent or not

w list list of neighbors from which ACK is being awaited

C list list of my children in current computation

mazc int(l..n) maximum id among my children in current computation

Table 6.2: Variables maintained by each process in the protocol.

6.1.3.1 Description of the protocol

When the process ¢ detects the failure of the leader, it sets the value of the variable
startElection to true to start the instance of the ldrld protocol to elect a new leader.
The fraction at i begins the election by starting a diffusing computation by sending an
ELECT message to all of its neighbors. The ELECT message has a field that contains the
computation-index of the diffusing computation. When a process receives the ELECT mes-
sage, it sets the neighbor from which it first received the message as its parent. It then
propagates the ELECT message to all of its neighbors. In this way, during the first phase a
spanning tree is build.

When a fraction i receives an ELECT message from a process that is not its parent,
it immediately responds by sending an ACK message. The ACK message has a field that
identifies if the message is from a child or not, and a field that denotes the maximum id

as seen by the process. The fraction i sends an ACK message to its parent only when it
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has received ACK messages from all of its neighbors. When a fraction ¢ has received ACK
messages from all of its neighbors, it first finds the process having maximum id among all
its children. It then sends the ACK message to its parent.

When the source process that started the computation (election) receives ACK messages
from all of its neighbors, it can compute the leader by finding the process having maximum
id among all its children. It then starts a diffusing computation to forward the leader infor-
mation to all the processes.

As one or more processes can concurrently detect failure of a leader, it is possible that
more than one process can start elections independently, thereby, leading to concurrent dif-
fusing computations. To ensure correctness of the protocol, it is required that each process
participate in only one diffusing computation. This is done by associating a computation-
index to each computation. The computation-index is a pair (num, id), where id represents
the identifier of the process, and num is an integer. When a process participating in a diffus-
ing computation, receives another diffusing computation with higher computation-index, it
stops participating in the current computation in favor of the diffusing computation with
higher computation-index. Two computation-index are compared as follows:

(numy,idy) > (numg,idg) & ((nump > numy) V ((num] = numyg) A (idy > ida))).

6.1.4 Leader Election based on Process Value

The leader election protocol, ldrVal that computes the leader based on the value of a pro-
cess is shown in Figure 6.2. This protocol satisfies the following liveness property in addi-

tion to the safety and liveness properties discussed in Section 6.1.2:
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Component ldrVal

Fraction i

inp value :int
N : list

var startElection, €, ack : bool {initially false}
p, num, ldr :int {initially p = num = 0, ldr = 1}
src{Num, Id), max(Val, Id) : (int, 1..n) {initially (0, )}
N, W, chd : list {initially W, chd = o}

begin

startElection : —¢ A startElection —
sre,num := (num, i), num + 1;
ELECT.src:=1;
fork=1tonAk€EN
C; y-add(ELECT);
W, ack, €, p, max,chd := N, true, true, i, (value, 1), @;
startElection := false
[ joinElection : ELECT(ldrVal) € C;; —
Cj.;.-remove(ELECT);
if —¢ V (¢ A ELECT.src > src) then
src .= ELECT.src¢;
num = src.Num + 1;
fork=1tonA(k#jAk€EN)
C; k-add(ELECT);
W,ack,€,p,chd := N — {j}, true, true, j, ¢;
maz = (value,1);
else if ¢ A src = ELECT.src then
ACK.{src,chd} := src, false;
Ci’j.add(ACK)
fi
[| ackToParent : e AW = ¢ A src.ld # i A ack —
ack := false;
ACK.{src, chd,val,id} := src, true, maz.{Val, Id};
C; p-add(ACK)

Figure 6.2: Leader election algorithm based on node value.
Liveness of ldrVal: OO(i.ldr = j = j.value = maz{k.value | d; j < oo},
which asserts that the elected process is the process having maximum value among all

connected processes.
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[ ackReceive : e AACK(ldrVal) € Cj; Aack —
C; ;- remove(ACK);
if src = ACK.src then

W:=W -{j}
if ACK.chd then
chd = chd + {j};

fi
fi
[| electLeader : e AW = ¢ A src.ld =i A ack —
ack, e, ldr := false, false, maz.1d;
LD.{src,id} := src,maz.1d;
fork=1ton Ak € chd
Ci,k.add(LD)
(| setLeader :eALD(ldrVal) € C;; A —ack —
Cj i-remove(LD);
if src = LD.src then
ldr, e := LD.ld, false;
fork=1ton Ak e chd
Ci,k.add(LD)
fi
end

maz := MAX((ACK.val, ACK.id), max)

Figure 6.2: Leader election algorithm based on node value (Continued).

The value of a process is calculated based on the resources available at the process,

such as, battery power, CPU load, distance to other processes, and degree of the process.

The leader election protocol is independent of how the value of a process is calculated.

We assume that there is a separate component that monitors the resources at a process and

computes the value of the process; and the leader election protocol fraction at the process

has access to this value.
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6.1.4.1 Description of the protocol

The ldrVal protocol is similar to the ldr/d protocol described earlier where the leader is
computed based on the process whose id is maximum. The ldrVal protocol is different

from ldrld protocol in the following ways:

e The ldrVal protocol has an additional input variable, value that indicates the value

of the process.

e The max variable in ldrVal is represented as a pair (Val, Id) and is of type
(int,int(1..n)); maz.Id denotes the id of the process and maz. Val represents the

value of the process.

e The ACK message of ldrVal has a field, ACK.val that carries the information about
the process having maximum value among all of its children. This field is of type:
(int,int(1..n)). The equivalent field in ACK message of ldrld is ACK.id, which is of
type int. In the case where two processes have the same value, the tie is broken in

favor of the process having higher id. We have the following property:

mazry > marg < ((mary.Val > mazg.Val) V ((mazxy.Val = maxy.Val) A

mazy.ld > maxy.1d))).

6.2 Adaptation

We now consider adaptation that dynamically replaces the leader election protocol ldrld
to the leader election protocol ldrVal. When the adaptation is initiated, an instance of
ldrId can be underway, or it is also possible that no instance of ldr]d is underway. If the
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processes are not engaged in election, then replacing one leader election protocol to another
leader election protocol can be done easily; by replacing the corresponding fractions and
initializing the new fractions using initial, identity or quasi state mapping.

However, it is impossible for a process to locally determine whether other processes are
in election or not. One way to deal with this is to use a centralized control during adaptation
and/or enforce synchrony by quiescing the processes (blocking the processes from starting
new election). This type of approach causes service interruption where the leader election
service is not available till the adaptation is completed. Also, there is communication
overhead because of extra messages required for synchronization.

We consider mixed-mode adaptation that lets the old and the new protocol overlap dur-
ing adaptation. As a result, a process where the new fraction is installed, can start the elec-
tion right away without waiting for other processes to finish the adaptation. Thus, the time
for which the application is blocked or the service interruption time is reduced. Moreover,
since all processes can perform replacement of fractions independently (in parallel), there
is a little or no need for extra messages to achieve synchrony. Thus, the communication
overhead during adaptation is reduced.

The program using ldrId protocol is shown in Figure 6.3, and the program using ldrVal
protocol is shown in Figure 6.4. We first give the specification during adaptation for the
adaptation that replaces ldrId with ldrVal.

Specification during adaptation. The specification during adaptation is that the safety
property of leader election protocols as discussed in Section 6.1.2 continues to be true
during adaptation.

Adapting ldrld protocol to ldrVal protocol requires replacing each fraction of ldrid
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Program Py,
process i[i = 1,..,n]

begin
ldrld.i.startElection
ldrld.i.joinElection
ldrld.i.ackToParent
ldrld.i.ackReceive
ldrld.i.electLeader
ldrld.i.setLeader

| s B s I s Y s Y e |

end

Figure 6.3: Program using ldrld.

Program P4,y
process i[i = 1,..,7]

begin
ldrVal.i.startElection
ldrVal.i.joinElection
ldrVal.i.ackToParent
ldrVal.i.ackReceive
ldrVal.i.electLeader
ldrVal.i.setLeader

| o I s B o i} e Y o |

end

Figure 6.4: Program using ldrVal.

with the corresponding fraction of IdrVal. The replacement of fraction at each process is
an atomic adaptation and is modeled by an adaptive action. The intermediate programs that

occur during adaptation are as shown in Figure 6.5.

Program Py, 1414 — 1dr Val)
process i[i = 1,..,m;i # j]

Pigrid-t Y aa; : true — TransformTo(Pgryy,-is Paq;)
process j[j = 1,..,n;i # j]

Pldrval J

Figure 6.5: Intermediate program during adaptation from P14 to P4, vul-

In this example, the fractions of the two protocols at all processes are similar. Also, as
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discussed later in this section, the overlap communication scenarios for each intermediate
program are similar. We take advantage of this symmetry by modeling the adaptation as an
adaptive program (cf. Section 3.2.2 (adaptation as an automaton) of Chapter 3).

To model each adaptive action, we introduce two new boolean variables idActive and
valActive. We do restriction composition [58] of ldrld program with idActive, and of
ldrVal with valActive. A restriction of program P by Z is a program whose actions are
of the form Z A g — st, for each action ¢ — st of P. Thus, actions of ldrld will be
enabled only if :dActive is true, and actions of ldrVal will be enabled only if valActive
is true. Initially, when the old program is running, idActive is true and valActive is false
at each process. The adaptive action at each process atomically sets idActive to false and

valActive to true. The adaptation modeled as an adaptive program is shown in Figure 6.6.

We allow these adaptive actions to execute independently of each other. In other words,
at each process the fraction of ldrld protocol can be replaced by the fraction of ldrVal
protocol independent of other processes. During this replacement, the state of the new
fraction needs to be initialized appropriately to ensure correctness of adaptation.

Furthermore, independent replacement of fractions at various processes will lead to
a situation where during adaptation some of the processes have fractions of ldrld active
and some of the processcs have fractions of ldrVal active. This will cause overlap of
communication between the two protocols. The communication between two protocols
need to be handled appropriately to ensure correctness of adaptation.

The correctness of adaptation requires that the safety property, which asserts that two
processes not in the election cannot have different leaders, also needs to be satisfied during
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Program P41 14rval
process i[i = 1,..,n]
var idActive : bool {initially true}
valActive : bool {initially false}
ldrld.i.{var} U ldrVal.i.{var}
begin
tdActive A ldrld.i.startElection
idActive A ldrld.i.joinElection
idActive A ldrld.i.ackToParent
idActive A ldrld.i.ackReceive
idActive A ldrld.i.electLeader
idActive A ldrld.i.setLeader

valActive A ldrVal.i.startElection
valActive A ldrVal.i.joinElection
valActive A ldrVal.i.ackToParent
valActive A ldrVal.i.ackReceive
valActive A ldrVal.i.electLeader
valActive A ldrVal.i.setLeader

o R s B e B e JY s Y s Y s [ e I s cme i s i e |

aa; : idActive — 1idActive, valActive := false, true;

s = @aai(s)
discardElect : valActive A ELECT(ldrld) € C;; — C ;. remove(ELECT)
discardAck : valActive A ACK(ldrld) € C;;  — Cj ;.remove(ACK)
acceptLd  : valActive A LD(ldrld) € Cj ; — true V ldrVal.i.setLeader

| s B e I e

end

Figure 6.6: Adaptive program to adapt from Py .14 to P4, vai-

adaptation. Furthermore, when all processes have finished replacing their fractions, the
program should be in a reachable (invariant) state of the ldrVal. This is required to ensure
that once the adaptation is complete, the new program satisfies its specification.

We now describe the state mapping that we use in the adaptation, and also discuss
various overlapping communication scenarios that arise during the adaptation and how we

deal with them.
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6.2.1 State Mapping and Overlap Communication

During adaptation, a process replaces the fraction of ldr/d with the fraction of ldrVal. Since
the protocol fractions are replaced independently at each process, we need to explicitly deal
with the communication between the two protocols. A process with the old fraction may
receive a message from the process with the new fraction and vice-versa. In Table 6.3, we
show different overlap communication scenarios that can occur during adaptation and how
they are dealt. Ahy message of type ELECT from the new fraction to the old fraction is
buffered. Any message of type ELECT or ACK from the old fraction to the new fraction
is discarded. The new fraction accepts a message of type LD from the old fraction. The
scenarios where the new fraction sends a message of type ACK or LD to the old fraction do
not arise because the new fraction always discards any message of type ELECT from the
old fraction. We introduce the following actions: discardElect, discardAck, and
acceptLd as shown in Figure 6.6 to deal with overlap communication scenarios during

adaptation.

. Message Type ELECT| ACK LD
Overlap scenario

Old (ldrId) to New (ldrVal) discard | discard | accept
New (ldrVal) to Old (ldrid) buffer | NA NA

Table 6.3: Overlap communication between protocols.

To ensure correctness while dealing with overlap communication, the new fractions are
initialized using the state mapping defined in the Table 6.4. When the replacement is done,
the old fraction is in any one of the four states as described in the Table 6.4. As described

in the first case, if the old fraction is not involved in the election, then identity mapping is
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done, i.e., each variable of the new fraction is initialized to the corresponding variable of the
old fraction. In the second case, the old fraction is involved in the election, and is waiting
to receive ACK from its children. In this case, the old fraction can locally determine that
the source process has not yet elected the leader. The new fraction in this case is initialized
to its initial state, i.e., it is not taking part in election any more. The num and src variables
of the new fraction are assigned the same value as that of the old fraction. In the third case,
the fraction is waiting to receive the leader value (i.e., LD message) from the parent. In this
case, an identity mapping is done. In the last case, the process is the source of the election,
i.e., it started the election. In this case, we replace the fraction and have the new fraction
start the election again. We initialize the state of the new fraction to its initial state, and
num variable of the new fraction is initialized to the same value as that of the old fraction.
For brevity, in Figure 6.6 we show the state mapping action as s’ := ®gq ;(s). This is
equivalent to a set of assignment statements that assign values to each variable of the new

fraction using the state mapping ®qq; of Table 6.4.

(old) state s of process :
=ldrld.e

Description of (old) state s (new) state s’ of process ¢

not in election Identity mapping

ldrid.e A ldrId. W # & A
ldrld.src # 1
ldrld.e A ldrld. W = ¢

ldrid.e A ldrId. W # & A
ldrld.src =1

_

in election and waiting for
ACK from children and is not
source of election

in election and waiting for LD

in election and waiting for
ACK from children and is
source of election

{num, src} - Identity mapping;
Initial mapping

Identity mapping

{num, €} - Identity mapping;
{ldrVal.startElection := true;

- Functional mapping;
Initial mapping

Table 6.4: State mapping (Pqaq,) for each atomic adaptation aa;.

84




6.2.2 Verifying Adaptation

To verify adaptation, we need to verify all intermediate programs that occur during adap-
tation. The intermediate programs that occur during the adaptation from IldrId to ldrVal
are as shown in Figure 6.5. Since the protocol fractions and the overlap communication
scenarios are symmetrical, we modeled the adaptation as the adaptive program shown in
Figure 6.6. Thus, instead of verifying all intermediate programs, we verify the adaptive
program of Figure 6.6.
Safety of adaptive program. The safety property for the adaptive program P14 _ 14r Val
is similar to the safety property of the leader election protocols, and given as follows:
Vp1,p2 : p1,P2 € {ldrld, ldrVal} : py.ildr # pg.j.ldr = p1.i.eV po.j.c
Invariant. We establish the following invariant for the adaptive program that implies the
safety is not violated during adaptation:
I = Pg A Py A Pp A PP, where

Pp = i.idActive A j.valActive A j.c A j.ack A j.W # ¢ = ELECT(ldrVal) € Cji

P’E = j.valActiveA—j.eA(Fi: 1 € j.N : i.idActiveNj.sTc = i‘src/\i.e/\z'.ack/\C,-’j = o)

= Jk:kp=kANkeAkackNEW #£ ¢

Pr = i.idActive A j.valActive Aj.e Ajp=1iA-jack AjW =¢
= ((i.c Ad.src = j.sre A —iack AW = ¢)V
(—i.eA LD(ldrld) € C; j)V
(i.e Nack NiW # ¢ Ai.src = j.src)V

(i.c Ndack NiW # ¢ Ai.src # j.ste = j € i.W))
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Pi = i.idActive A j.valActive Ni.e AN—j.e ANi.p = jA—t.ack NiW = ¢ Ai.src = j.src

= LD(ldrld) € CjiV3k:kp=kAkeAkack NbW # ¢

In the above invariant, Pr, asserts that if process j starts an election after adapting to
ldrVal fraction, then any ELECT message that j sends to process ¢, which is still using
ldrId fraction, remains in the channel C'; ; until 7 gets adaptated. P}_,j asserts that if j was
in election and waiting for ACK(s) from its neighbor(s) when it replaced its fraction then
the source of that election is still in the election. Py, asserts that if process j was in election
and waiting for LD when it replaced its fraction and the parent of j is still using the old
fraction then one of the following is true: (i) the parent of j is also waiting for LD, (i7) the
parent of j is not in election and the channel C; ;j has a message LD( ldrId), (iii) the parent
of j is still waiting for ACK(s) from its neighbor(s), or (iv) if the parent of j has started a
new election then it will not receive ACK from j till it replaces its fraction. Pi asserts that
if a process i using the old fraction is waiting for a message LD from its parent j, and j
has completed its election and is now using the new fraction, then one of the following is
true: (i) the channel C; ; has a message LD(ldrld) which was sent by process j before it

got adapted, or (i7) the source of that election is still in the election.

6.3 Performance of Mixed-Mode Adaptation

In this section, we compare the performance of mixed-mode and quiescence adaptation. We
consider two different configurations for the following discussion: (2) a connected network

(straight line) of 5 processes and 4 edges, and (2) a connected network of 7 processes and
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11 edges. We have considered other network topologies and obtained similar results. In
this discussion, we consider adaptation from ldrld to ldrVal. We have also implemented

adaptation from ldrVal to ldrld and obtained similar performance results.

Quiescence Adaptation (Ldrid to LdrVal)
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(a) Configuration 1

Quiescence Adaptation (Ldrid to LdrVal)
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(b) Configuration 2

Figure 6.7: Quiescence adaptation.

Figure 6.7 shows the time required for quiescence adaptation to adapt from Id-based

leader election protocol to value-based leader election protocol. It shows two configura-
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tions and 5 runs for each configuration. In each run it shows the time taken by each process
for adaptation. In run number 5 of configuration 1 and run number 4 of configuration 2, the
time taken for adaptation is almost twice the average time taken by the process over other
runs. This is because when the adaptation started the instance of the leader election proto-
col is already running. The adaptation waits for the election to complete before replacing
the protocol.

Figure 6.8 shows the time required for the mixed-mode adaptation to adapt from Id-
based leader election protocol to value-based leader election protocol. It shows two config-
urations and 5 runs for each configuration; and in each run the time taken by each process
to finish the adaptation. The time taken in each run is almost the same for a given config-
uration regardless of whether the instance of leader election protocol is underway or not
when adaptation occurs.

Figure 6.9 shows the comparison between the average time taken by quiescence and
mixed-mode adaptation to adapt from Id-based leader election protocol to value-based
leader election protocol. The average time taken by quiescence adaptation is almost 8 times
that of mixed-mode adaptation in the case of configuration 1, and 6 times that of mixed-
mode adaptation in the case of configuration 2. The result is as expected, because the
quiescence adaptation sends more messages for synchronization during adaptation. Fur-
thermore, in the case of quiescence adaptation there is more processing time required at
each process during adaptation as channels and other resources used by the existing pro-
tocol at that process need to be released before the new protocol can be installed. On the
contrary, in the case of mixed-mode adaptation the new protocol is able to deal with overlap
communication and hence explicit release of channels and other resources is not necessary.
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Mixed-Mode Adaptation (Ldrid to LdrVal)

DONode 1
[Node 2
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BNode 5

(a) Configuration 1

Mixed-Mode Adaptation (Ldrld to LdrVal)

AN

(b) Configuration 2
Figure 6.8: Mixed-mode adaptation.

Figure 6.10 shows the time required for electing a leader by Id-based and value-based
leader election protocols. It is clear that both the protocols take almost the same amount of
time to do an election.

Furthermore, from Figures 6.9 and 6.10 it can be observed that time taken for quies-

cence adaptation is more than twice the time it takes for leader election. Also, the time
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Quiescence Vs. Mixed-Mode Adaptation
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Figure 6.9: Quiescence vs. mixed-mode adaptation.
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for mixed-mode adaptation is less than one-fourth of the time it takes for leader election.
Clearly, if a user at some process requests an election at the same instant when the sys-
tem decided to adapt (using quiescence adaptation), then user would notice a long delay
which could be up to twice the time it normally experiences for an election. However, if

mixed-mode adaptation is chosen, the adaptation would be almost transparent to the user.



Ldrid Vs. Ldrval
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Figure 6.10: Time for leader election protocols.

6.4 Limitations of Mixed-Mode Adaptation

One of the limitations with mixed-mode adaptation is that it requires the adaptation de-
veloper to have a deeper knowledge of the components involved in adaptation. Addition-
ally, such adaptation may require support from components themselves. Nonetheless, in

our experience, we find that components involved in mixed-mode adaptation exhibit var-

91



ious levels of mixed-mode behaviors. Consequently, based on the details available about
the components involved in adaptation, an adaptation developer can provide an appropriate
mixed-mode behavior during adaptation. However, in cases where components are not con-
ducive in the development of mixed-mode adaptation, adaptation based on system structure

such as quiescence adaptation may be more appropriate.
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Chapter 7

Tradeoffs in Adaptation

In this chapter we identify various tradeoffs that arise in developing adaptation. We iden-
tify tradeoffs in verification complexity, completion time, and communication overhead
during adaptation. Concurrent executions are generally considered faster than sequential
executions. Specifically, with respect to adaptation, we expect that concurrent execution
of atomic adaptations (if possible after considering any dependencies) would be faster than
sequential execution. However, verification complexity increases exponentially with in-
crease in concurrency, and also message communication overhead increases with increase
in concurrency. In the rest of this chapter, we first discuss tradeoff between concurrency and
verification complexity in Section 7.1. In Section 7.2, we discuss tradeoffs between concur-
rency and communication overhead. Finally, we discuss a simple casestudy to demonstrate

tradeoffs in adaptation in the publish-subscribe application.
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7.1 Concurrency v/s Verification Complexity

As discussed in Chapter 3, to verify a given adaptation, we consider all possible order-
ings of concurrent atomic adaptations. As a result, in the lattice, we have multiple paths
from start node to end node to encompass all possible orderings among concurrent atomic
adaptations. This increases the number of intermediate programs that need to be verified.
Putting concurrent atomic adaptations in various possible orderings is a potential cause
of the explosion in the size of the lattice. For example, if an adaptation consists of n
atomic adaptations that can be executed concurrently, then there are n! different orderings
and 2™ — 2 different intermediate programs. Thus, 2" — 2 transitional-invariants need to
be identified corresponding to each intermediate program. The lattice in this case is as
shown in Figure 7.1(a) for n = 3. To identify all these transitional-invariants and verify the

corresponding intermediate programs is a difficult process.

(®)

Figure 7.1: Executing three atomic adaptations.

Clearly, the specification during adaptation is satisfied, if the adaptation follows any
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path in the lattice. So instead of choosing to verify all adaptation paths, if we verify only
one path (e.g., aj, ag, ag), then the lattice would be as shown in Figure 7.1(b). For specifi-
cation during adaptation to be satisfied the adaptation must follow this path, i.e., aj should
occur before ag, and ag should occur before ag. In this case there is no concurrency
among adaptive actions during adaptation, and we are able to reduce the cost of verifica-
tion from O(2") to O(n). Specifically, for n concurrent atomic adaptations, the number of
transitional-invariants that need to be identified is reduced to n — 1.

Alternatively, we could have chosen the lattice as shown in Figure 7.1(c). In this case
the cost of verification is more compared to the lattice in Figure 7.1(b), but less compared
to the lattice in Figure 7.1(a). Also, the concurrency in the lattice in Figure 7.1(c) is more
compared to the lattice in Figure 7.1(b), but less when compared to the lattice in Figure
7.1(a).

Thus, based on the tradeoff between concurrency of adaptation and complexity of ver-
ifying that adaptation, we can choose a subgraph (sublattice) of a given lattice that has all
the properties of the lattice defined in Chapters 4 and 5. If we verify only a sublattice, we

also need to constrain the adaptation so that it follows only path of the sublattice.

7.2 Concurrency v/s Message Complexity

Many systems are limited by communication overhead and message delays. Specifically,
for wireless and mobile systems, energy-communication tradeoff may require system to
reduce communication overhead whenever possible. For designing adaptation in such sys-

tems, communication overhead should also be taken into account. In this section, we show
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how concurrency during adaptation affects the communication overhead.
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Figure 7.2: Space-time diagram of adaptation.

Consider the case where all atomic adaptations are executed concurrently. This is de-
scribed by the lattice in Figure 7.1(a), and the space-time diagram for this adaptation is
shown in Figure 7.2(a). We show only the minimum number of adaptation-specific mes-
sages in the space-time diagram. There may be other application-specific messages that
we do not consider as they are not related to adaptation. We divide adaptation into two
phases: (i) initialization phase, and (ii) synchronization phase. In the initialization phase
(denoted by IP in the figures) the initiator process that decides on the adaptation informs
other processes of this decision. In the synchronization phase (denoted by SP in the figures)
processes exchange messages to co-ordinate the execution of adaptive actions.

In Figure 7.2(a), process pg is the initiator that informs other processes to start per-
forming any steps required for adaptation. In this case, there are at least two messages
required to initiate adaptation. Now, if the adaptation were to occur according to the lattice
of Figure 7.1(b), then we can make process p; as the initiator, and the space-time diagram
would be as shown in Figure 7.2(b). In this case, we got rid of the initialization messages
that were required for the adaptation described by Figure 7.2(a). In both the cases, the min-

imum number of adaptation-specific messages required during adaptation is two. Thus, we
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did not increase any communication overhead by reducing concurrency. We now consider
another scenario where the number of messages can actually be reduced if concurrency is

reduced during adaptation.

(b)

Figure 7.3: Adaptation with concurrency.

Consider the lattice of Figure 7.3(a) that describes the adaptation consisting of four
adaptive actions a, ag, ag, and a4 occurring at processes pj, p2, p3, and p4 respectively.
Adaptive actions a; and a9 are independent of each other and can occur concurrently.
Similarly, a3 and a4 can occur concurrently. The corresponding space-time diagram is
shown in Figure 7.3(b). The minimum number of adaptation-specific messages required
during adaptation is five. Now, if were to reduce concurrency in this case, we can have
the adaptation that is described by the lattice of Figure 7.4(a), and corresponding space-
time diagram as shown in Figure 7.4(b). In this case, the minimum number of adaptation-
specific messages required is reduced to four.

Further, if we have no concurrency during adaptation as described by the lattice of

Figure 7.5(a), then the space-time diagram would be as shown in Figure 7.5(b). In this case,
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Figure 7.4: Adaptation with (reduced) concurrency.

a minimum of only three adaptation-specific messages are required during adaptation.
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Figure 7.5: Adaptation with no concurrency.

Thus, by reducing concurrency during adaptation, it is possible to reduce the number
of messages required during adaptation. However, from the space-time diagrams of Fig-
ure 7.2-7.5, it is clear that time required to complete adaptation would probably be less
when there is more concurrency during adaptation. Thus, while designing adaptation, one
should consider various factors such as concurrency during adaptation, message delays and
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communication overhead, and verification complexity.

7.3 Case Study: Publish-Subscribe Application

In this section, we illustrate the tradeoffs due to concurrent adaptive actions during adap-
tation using a simple publish-subscribe application. We consider the publish-subscribe ap-
plication with two publishers (senders) and two subscribers (receivers). Both the receivers
subscribe to receive data from both the senders. For reliable communication between pub-
lishers and subscribers we consider two protocols, namely, the proactive protocol based
on forward error correction and the reactive protocol based on acknowledgments. These

protocols are discussed earlier in Chapters 4 and 5.
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Figure 7.6: Adaptation in publish-subscribe application.
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The adaptation in publish-subscribe application replaces the proactive protocol with the
reactive protocol. The adaptation is done by first blocking the two senders. The blocking of
two senders can be done concurrently, i.e., independent of each other. We note that the local
guards of the adaptive actions that block the senders need to be true before they can be exe-
cuted. As a result, though the two adaptive actions are independent of each other, they may
not necessarily execute at the same instant during adaptation. Once the protocol fractions
at both the senders are blocked, the protocol fractions at both the receivers can be replaced
concurrently. Finally, once the receivers have replaced to the new protocol fractions, the
protocol fractions at the senders can be replaced. These replacement of fractions at the
senders can also occur concurrently. The adaptation lattice in this case is shown in Figure
7.6(a). The corresponding space-time diagram is shown in Figure 7.6(b). The verification
complexity and communication overhead can be reduced for this adaptation as discussed in
Section 7.1. Specifically, if all the adaptive actions are serialized then the space-time dia-
gram for the adaptation is as shown in Figure 7.6(c). Clearly, the communication overhead
is reduced from a minimum of 9 messages to a minimum of 5 messages. Also, the number
of intermediate programs that need to considered for verification of adaptation is reduced

from 8 to 5.
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Chapter 8

Testing Adaptation

In order to specify and verify the behavior of the system during dynamic adaptation, we
presented an approach based on adaptation lattice in Chapters 3, 4, and 5. Due to com-
plexity of the adaptive systems, the verification is often done on an abstract model of the
system. In this chapter, we present an approach for testing adaptation to gain assurance
about the implementation of adaptation.

Predicate detection is a common approach used in testing and debugging of distributed
systems, as many problems in distributed systems can be formulated as an instance of
Global Predicate Evaluation (GPE) [78). Typical properties of distributed systems such as
deadlock detection, mutual exclusion, termination and many more properties can be tested
using predicate detection techniques. Numerous approaches [78-83] have recognized a
variety of predicate classes and presented algorithms for predicate detection. In this paper,
we discuss predicate detection approach for testing adaptive systems.

Due to overlapping behavior of the old program and the new program during adaptation,

the existing algorithms for predicate detection cannot be applied directly. Specifically, these
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algorithms do not deal with the system whose code is being changed. In many cases, the
algorithms can be modified so that if any error is detected during adaptation then it can be
mapped to a particular step of adaptation that caused the error.

With this motivation, we extend the existing algorithms to test the system during adap-
tation. In particular, we classify the predicates to be detected during adaptation into two
types: (i) adaptation-stable predicates, and (ii) adaptation-transient predicates. We call
a predicate adaptation-stable if the predicate holds throughout during adaptation, and call
it adaptation-transient if it holds only in some interval during adaptation. We show how
existing algorithms can be modified to detect both these types of predicates during adapta-
tion. Furthermore, we show how we can reduce the cost of testing by testing only atomic
adaptations.

The rest of the chapter is organized as follows. In Section 8.1, we review preliminary
concepts of distributed computation, causal precedence, consistent global state and consis-
tent cut. Then, we introduce adaptation vector in Section 8.3. We also give a brief overview
of vector clocks used to track causality among events in Section 8.3. Subsequently, in Sec-
tion 8.4, we discuss algorithms to test adaptation. To reduce the cost of testing, in Section
8.5, we identify a subset of states during adaptation to do limited testing. Finally, we give

a summary of this chapter in Section 8.6.

8.1 Preliminaries

As discussed in Chapter 3, a program P consists of a set of n processes {p1.p2,...,Pn}

communicating via asynchronous messages on interprocess channels. We do not assume
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the channels to be FIFO (unless the application requires so). Furthermore, in this chapter,
we do not specify the channel states explicitly; a channel state can be constructed from con-
sidering the local states of the processes. The execution of a process consists of a sequence
of events. An event is the execution of a process action. An event is one of the three types:
local (or internal) event, send event or receive event. A action corresponding to send event
has a statement of the form: send (m) to p;. A receive event has a corresponding action
that has the following form: rcv (m) fromp; — stmts.

We now present formal definitions of distributed computation, causal precedence, con-
sistent global state and consistent cut. In this section, we consider partial order semantics
for a program.

Definition (Distributed computation). A distributed computation r of a program P de-
scribes a single execution of P by a collection of traces r[i] for each process p;. Each
r[7] is a finite alternating sequence of states and events. For example, the trace of process

0.1

p; is sje; s}e%..., where sf denotes the local state of p; immediately after event e

k
i and
s? denotes the initial state before any actions are executed. A distributed computation is

commonly depicted using a space-time diagram as shown in Figure 8.1.

1 2 3 4
€ € € €
)4 < > < 4 d
1 2 3 4
) €, € 6
py— R
P3 e * g
€3 %) €

Figure 8.1: Space-time diagram of a distributed computation.
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Formally, a distributed computation is a partially ordered set defined by the pair (E, —),
where E is the set containing all events and — is the happened-before relation [84] that
defines the causal precedence relation on events (or states). The happened-before relation
on states is defined as follows:

Definition (Causal precedence). The state s causally precedes the state ¢ (denoted as

s — t) if and only if one of the following holds:
e if s and ¢ are states on the same process and s occurred before ¢

e if action following s is the send of a message and the action before ¢ is the corre-

sponding receive
e there exists a state x such that s — zand =z — ¢.

We use the notation — to denote the causal-precedence relation for both states and
events. If for two events e and eg, neither e; — eg nor eg — e, then e and e9 are said
to be concurrent and denoted by e || es.

Not all events are relevant for testing of dynamic adaptation, and hence to simplify the
testing, we only consider a subset of events of distributed computation. Let R C E be
the set of relevant events. The poset (R, —) describes an abstraction of the distributed
computation.

Definition (Global state and cut). We defined a global state as a state of all the processes
and channels in the system. We, however, ignore the channel states and represent global
state as a n-tuple of local states (S?, ..., 557, A channel state can be constructed from the

set of all messages that have been sent but not received yet.
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A cut C associated with a global state g is a set of events, one event per process, such
that event e € C if and only if the process state immediately after event e is a part of g. A
global history H associated with the cut C' (or corresponding global state g) of P is defined
as the subset hil U...UhS", where h? is the local history of process p; containing first c;

(ie., e} 2

; ...efi) events.

Definition (Consistent cut and consistent global state). A cut C is consistent if for all
events e in the corresponding global history H, we have (e € C) A (¢ — e) = ¢’ € H.
A global state g is consistent if the cut corresponding to it is consistent. Intuitively, a
consistent global cut corresponds to a view of the run which could be obtained given the
existence of a global clock.

Given a space-time diagram, it may not always be possible to say how the global ex-
ecution actually occurred. For example, it is not clear in Figure 8.1 if a% or ag occurred
first. In other words, there are many total orders of a distributed computation 7. Thus,
several possible global executions correspond to a given distributed computation r. We call
each total order of r as an observation. In other words, a sequence of consistent global
states ggg1g293--- is an observation, where gy denotes the initial global state (s(l), . s%),
and each global state g; is obtained from previous state g; _; by some process executing
a single event. For two such global states g; _1 and g;, we say that g; 1 leads-to g;. The
set of all consistent global states of a computation along with the leads-to relation defines
a lattice of global states or computation lattice. A path in the computation lattice corre-
sponds to an observation, and each observation has a corresponding bath in the computation
lattice. Thus, the computation lattice represents the set of all possible observations of the

computation.
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Remark. In the following sections, unless mentioned otherwise, we will use global

state to mean consistent global state.

8.2 Tesﬁng

Various global properties of the system need to be tested during adaptation. Examples of
the properties that can be tested during adaptation include deadlock detection, token loss
detection, and in general monitoring. We classify the properties to be checked during adap-
tation into two categories: (i) adaptation-stable properties, and (ii) adaptation-transient
properties. If a property is to be satisfied for all states during adaptation, then it is known
as adaptation-stable property, and if a property is to be satisfied for some interval during
adaptation, then it is known as adaptation-transient property. A predicate used to specify
adaptation-stable property is known as adaptation-stable predicate, and a predicate used
to specify adaptation-transient property is known as adaptation-transient predicate. From
definition, it is easy to observe that adaptation-stable predicates are specified in terms of
variables that are not affected (added or removed) due to atomic adaptations. On the con-
trary, adaptation-transient predicates are specified in terms of variables that are affected
(added or removed) at some point during adaptation.

Given a test predicate, a predicate evaluation strategy, in general, would construct and
test every global state of the system during adaptation. General predicate testing is normally
considered impractical for reasonably big systems, as the number of global states can be
exponential in the number of processes.

While testing for arbitrary predicates may be very expensive, efficient testing is feasible
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if predicates have certain characteristics. Specifically, in [78-83], authors have identified
efficient algorithms for a variety of predicate classes such as conjunctive predicates, dis-
junctive predicates, observer-independent predicates, stable or unstable predicates. How-
ever, in context of testing adaptation, these algorithms either cannot be employed directly
or are inefficient if used directly as code of the system is changing during adaptation. In
particular, these algorithms need to be extended to classify the global states constructed
during adaptation into specific intermediate programs. Towards this end, we introduce

adaptation vector to distinguish intermediate program states.

8.3 Adaptation Vector

Adaptation vector is used to identify the intermediate program states. An adaptation vector
A is a vector of n elements, where n is the number of atomic adaptations. Each element
of the adaptation vector, denoted by A[i], is boolean valued (1 represents true, 0 represents
false); Ali] = 1 denotes execution of atomic adaptation a; in past and A[i] = 0 denotes that
atomic adaptation a; has not yet executed. For simplicity of discussion, we assume that the
adaptation consists of n atomic adaptations aj, a2, ..., an and atomic adaptation a; occurs
at process p;. Our approach can be easily extended if multiple atomic adaptations occur at
a process.

Each node of the adaptation lattice is assigned an adaptation vector. A value of [0, ..., 0]
is assigned to the start node, which denotes the old program where no atomic adaptations
have occurred. A value of [1,...,1] is assigned to the end node, which denotes the new

program reached after all atomic adaptations have occurred. If [aq, a9, ..., an| is an adap-
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tation vector, then the value of [1, 1,0, ..., 0] denotes an intermediate program reached after
execution of atomic adaptations aj and ag. Given an intermediate program and its corre-
sponding adaptation vector, we can determine what atomic adaptations occurred in the past
to reach that intermediate program. However, we cannot determine the order (or causal

precedence relation) among those atomic adaptations.

8.3.1 Implementation of Adaptation Vectors

Each process keeps its own local adaptation vector AV, which is updated as the process

learns about new atomic adaptation. The adaptation vector is maintained as follows:

e When a process p; executes its own atomic adaptation a;, it updates the adaptation

vector AV; by AV;[i] = L.

e When a process p; sends a message m to process pj, it attaches the current value of

AV; to m. This value is denoted by m.AV.

e When a process p; receives a message m from process pj, it updates its adaptation
vector value as AV; = AV; Vm.AV, where the O R operation over vectors is defined

on a component-by-component basis.

8.3.2 Implementation of Vector Clocks

A vector clock system [84, 85] is a mechanism that assigns vector timestamps to each event
such that comparing the timestamps of two events indicates the causal relation between
two events. Each vector timestamp is of size n, where n is the number of processes. Each
process p; has a vector V;[1..n] of integers, which is maintained as follows:
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e V;[1..n] is initialized to (0,0, ..., 0].

o Ife; is arelevant event, then p; increments its vector clock entry as V;[i] := V;[i] + 1.

It also associates the vector timestamp V; with the event e; which is denoted as e;.V.

e When a process p; sends a message m, it attaches the current value of V; to m. This

value is denoted by m.V

e When p; receives a message m, it updates its vector clock value as V; =
max(V;,m.V), where the maximum operator over vectors is defined on a

component-by-component basis.

Ife.V and f.V are two timestamps associated with distinct events e and f respectively,
then the fundamental property associated with vector clocks is described as follows:
Vie,f)ERxR:((e = f) ® eV < f.V), where

eV < fV = (Vk: (e VK] < fVIK]) A3k : (e VIK] < f.VIK])).

8.4 Detecting Global Predicates During Adaptation

Given a global state of the system and the value of adaptation vector in that state, we
can identify the predicates from the adaptation lattice that should be true in that state.
Adaptation-stable predicates need to be checked for all global states constructed during
adaptation. The intermediate program in which the adaptation-stable predicate was de-
tected can be easily identified from the value of adaptation vector associated with the state
in which the predicate was detected. On the other hand, adaptation-transient predicates
need to be checked only in states of the corresponding intermediate program.
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Figure 8.2: Identifying intermediate program states.

Figure 8.2 shows how each process is divided into different sections based on the value

of its adaptation vector AV. Whenever a local state sf of process p; is to be collected, the

k

state s is assigned an adaptation timestamp whose value (denoted as s.AV) is equal to the
current value of AV}.

We construct a global state as a n-tuple of local states (s1, s9, ..., sn). This global state
is a state of the intermediate program whose adaptation vector is equal to s1. AV Vs9. AV V
...V sp.AV, where

;- AV V 5. AV = [5;. AV[0] V 5;.AV[0], ..., 5;. AV [n] V 5. AV [n]]

We now discuss the algorithm for detecting weak conjunctive [79] adaptation predi-
cates. A predicate is called weak if it is true for some observation of the distributed compu-
tation, and is similar to possibly predicate in [78]. Conjunctive predicates are of the form
C1 A ... A Cn, where each C; is a local predicate. This class of predicates allow each pro-
cess to independently evaluate its local predicate. A weak conjunctive predicate is true if

and only if there exists an observation in which all conjuncts are true in some global state.

This type of predicate typically describes some bad or undesirable property; in other words,
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predicates that should never become true in the system. The algorithms discussed in this

section are extensions of algorithms in [79].

8.4.1 Detecting Adaptation-Stable Predicates

In [79] it has been shown that to detect a weak conjunctive predicate it is necessary
and sufficient to find a set of concurrent states in which local predicates are true. Let
wep = Cq A ... A Cp, denote the weak conjunctive predicate to be detected. We discuss
the centralized algorithm in which one process serves as a checker process and all other
processes involved in wcp are referred to as non-checker processes.

The algorithms for non-checker and checker processes are shown in Figures 8.3 and
8.4 respectively. Each non-checker process maintains its own v<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>