
g
m
2

«
5
0
.
.
'
7
1
.
1

.
1
1
2
:

~
.

,
’
fi

i
;

y
f
.

«
A
?
$
3
.
?
»

n
x
n
m
k
fi
a

‘
a
}
.

2
.
i
.
i

,
a
.

c
.
.

a

£
5
.
1
3
.
.
.
»

x
!

a
?

A
P
.

=
$

..
$
3
.
:

.
5
.

.
.
.
.
l
-
.
.
v
§
\
‘
l
\
i
.

.
.
u
l
n
a
r
“
.

”
.
5 :
3

Q
u
a
i
l
)
:

s
.

g
.
3

S
r

\
L
.

4
.
1
.
"
!

.
a
.

1

:
u
a
n
I
M
a
u

V
a
»
.

\

J
a
i
w
s
m
h
a
m
w
m
m
é
r

.
5
4
1
2
.

h
a
“

1
a
.
“
.
.
.

g“ ‘ UBRARY
ow Michigt. State

University

This is to certify that the

dissertation entitled

ASSURANCE OF ADAPTATION IN DISTRIBUTED

SYSTEMS

presented by

Karunkumar N. Biyani

has been accepted towards fulfillment

of the requirements for the

Doctoral degree in Computer Science and Engineering

959wIMW

Major Professor’s Signature

l2Lo3/07

Date

MSU is an affinnative-action, equal-opportunity employer

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

6/07 p:/ClRC/DateDue.indd—p.1

ASSUI

ASSURANCE OF ADAPTATION IN DISTRIBUTED SYSTEMS

By

Karunkumar N. Biyani

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science and Engineering

2007

ABSTRACT

ASSURANCE OF ADAPTATION IN DISTRIBUTED SYSTEMS

By

Karunkumar N. Biyani

Software systems need to adapt due to changing requirements or changing environ-

ment conditions. For long-running and safety-critical applications it is highly desirable to

adapt the system without completely stopping the system. In the case of distributed sys-

tems, adaptation often requires changes to multiple processes. Typically, such adaptation

is performed by dynamically adding or removing components from multiple processes.

As a result, during adaptation, the system may consist of both changed and unchanged

processes, causing the old and the new components to overlap. This overlapping of com-

ponents during adaptation may induce cross-component communication, which may lead

to unpredictable and/or undesirable behavior during adaptation.

In order to gain confidence in adaptation in distributed systems, in this disseration, we

address the assurance requirements at various stages of adaptation development: (2') mod-

eling and verification of adaptation, (ii) testing of adaptation, (iii) design of components

involved in adaptation, and (iv) design of a framework that supports adaptation.

In this dissertation, we describe an approach based on adaptation lattices to model and

verify adaptation. Specifically, we present transitional-invariant lattices and transitional-

faultspan lattices to verify the correctness of adaptation in absence and presence of faults,

respectively.

lunhcm

namely. min ..

changed proct

time and com:

ltnges inx'olx c

approach can I

We also d;

how the existii

can be extend.

We also d

One aspect 0‘

not only the

Furthermore, we identify the issues that arise in an important class of adaptation,

namely, mixed-mode adaptation. Mixed-mode adaptation allows the changed and the un-

changed processes to interact during adaptation, thereby, minimizing service interruption

time and communication overhead. In this dissertation, we identify and address the chal-

lenges involved in mixed-mode adaptation. Specifically, we show how the adaptation lattice

approach can be used in the case of mixed-mode adaptation.

We also discuss an approach for testing adaptation in distributed systems. We show

how the existing approaches based on predicate detection for testing distributed systems

can be extended for testing adaptation.

We also describe componentfamily design to build a library of adaptive components.

One aspect of the design is to build an adaptation-verified library of components in which

not only the components but also the adaptations between the components are verified.

The design applies the principle of separation of concerns to separate adapt-active parts of

the components fi'om their core functionality. Furthermore, the component family design

integrates the framework that performs adaptation while ensuring that the adaptation logic

is separate from the core functionality of components as well as the application.

© C0pyright by

KARUNKUMAR N. BIYANI

2007

To my parents and wife for their love and sacrifices

First of alj

motivation an

and guidance this dissertatit

with me and u;

I Want to t]

Dr. Philip K

Confluents an.

SCIEUCC and ;

Want I0 than}

is “my 3 W01

Llllda MOOrc

Compurcr sC

I Want to

low Specifk

heSit-«rural.

ll Zhang and

fathEr RII' \

ACKNOWLEDGMENTS

First of all I want to thank my loving Lord, Krishna, and my teacher for the inspiration,

motivation and support to pursue things the right way. I am very thankful to my advisor

and guidance committee chairperson, Dr. Sandeep S. Kulkarni, without whose guidance

this dissertation would have never completed. I specifically thank him for being patient

with me and understanding my limitations. He is a wonderful person and a great mentor.

I want to thank the other members ofmy guidance committee, Dr. Betty H. C. Cheng,

Dr. Philip K. McKinley, Dr. Laura Dillon and Dr. Jonathan I. Hall, for their helpfirl

comments and advise over the years. I also want to thank the faculty of the Computer

Science and Engineering Department at the Michigan State University. In particular, I

want to thank Dr. Abdol Esfahanian, whose teachings had a great influence on me. He

is truly a wonderful teacher, who makes learning easy and fim. I also want to thank Mrs.

Linda Moore, Mrs. Debbie Kruch, Mrs. Norma Teague and the rest of the staff of the

Computer Science and Engineering Department.

I want to thank my colleagues in Software Engineering and Network Systems Labora-

tory. Specifically, I want to thank: Bruhadeshwar (Bru) Bezawada, Umamaheswaran (Ma-

hesh) Arumugam, Ali Ebnenasir, Borzoo Bonakdarpour, Farshad Samimi, Masoud Sadjadi,

Ji Zhang and Limin Wang. I want to thank my friends and family for their encouragement

and support. No words of gratitude can ever sum up the contribution of my family: my

father Mr. Nandkishore Biyani, my mother Mrs. Santosh Biyani, and my sisters Kavita

Rathi and Rinku Malpani, towards my life. And last but not least, my special thanks to my

loving wife Kavita Biyani for all her love and sacrifices.

vi

LIST OF Flt

l Introduct 1'

1.] Adaptor;

LIST OF TAI

1.1.1 Class:;

1.1.2 Adt-a;

1.1.3 Chan-J

1-3 Thesis .

2 Backgmm
2.l .‘kdaptati.I

2.2 Related\'

2.2.1 Dle

3.2.2
COXIL

2.2.4 Onlinc
2.2.5

Mode]-

2.26 Others

3 AIOdelingil‘

31 Adaplalltt3.2 Stracu

3.2.1 Adam:

3.2.2 Adaptaz |

3? amalloyl

iii-l aull~t<s I

34.1 Oucretc [.

I -- Yogurt}

Sig Ompon

3.4‘ dapm ;. .4 State ma

:1 ‘Ierifbing
Ac

4:2 TTYirisithna

43 I age Stud}

auh‘lm.

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

1 Introduction

1.1 Adaptation in Distributed Systems

1.1.1 Classification of Adaptation

1.1.2 Advantages of Mixed-Mode Adaptation

1.1.3 Challenges in Mixed-Mode Adaptation

1.2 Thesis

2 Background and Related Work

2.1 Adaptation Taxonomy

2.2 Related Work

2.2.1 DYMOS

2.2.2 CONIC

2.2.3 ARGUS

2.2.4 Online Software Version Change

2.2.5 Model-Based Development of Adaptive Software

2.2.6 Others

3 Modeling Adaptation

3.1 Adaptation Overview

3.2 Abstract Model of Adaptation

3.2.1 Adaptation as a set of automata

3.2.2 Adaptation as an automaton

3.3 Adaptation Specification

3.3.1 Fault-tolerance

3.4 Concrete Representation

3.4.1 Program

3.4.2 Component

3.4.3 Adaptive action

3.4.4 State mapping

4 Verifying Adaptation in Absence of Faults

4.1 Transitional-Invariant

4.2 Transitional-Invariant Lattice

4.3 Case Study: Reliable Message Communication . .

4.3.1 Fault-Intolerant Communication Program

vii

OOOOOOOOOOOOOOO

OOOOOOOOOOOOOOO

10

10

13

13

14

15

16

17

17

18

18

21

21

25

25

28

30

30

32

32

33

35

35

36

4O

4O

4 3 2 Free.

5.1 Transit:

5.2 Transili

5.3 Adapts:

5.4 Case St.

5.4.] Proac-

5-4-2 RC3L‘II

5.4.3 Adapt

6.1.1 gym,

6.1.2 5pm}

6.1.3 LCadctl

Dl4 Lcade:

6‘2 Adaptati I

6.2.] State 3,

6.2.2 Verify]

6.3 PCTIOrma

64 Limitatto

7 Tradeoffs I

7.1 Concum1

7‘2 Concurrcj
7.3 Case Slut

Tesfi“g Ad

8 Prcllmjna

2 Testing

8.3 Adaptatic

8-3.1 mplcn

8.3.2 mplcn8.4
DetecunK

84'1 Detecti84.2 Detect]

2; “ling o

aplcr S

9

p0n9n9 1 odu

9 a C11

4.3.2 Proactive Component 42

4.3.3 Adaptation: Addition of the Proactive Component 44

4.4 Discussion 49

5 Verifying Adaptation in Presence of Faults 53

5.1 Transitional-Faultspan 53

5.2 Transitional-Faultspan Lattice 54

5.3 Adaptation of Self-Stabilizing Programs 56

5.4 Case Study: Reliable Message Communication (Continued) 57

5.4.1 Proactive Component 58

5.4.2 Reactive Component 59

5.4.3 Adaptation: Replacement of Proactive Component with Reactive Component 63

6 Case Study: Mixed Mode Adaptation 69

6.1 Leader Election Protocols 70

6.1.1 System Model and Assumptions 70

6.1.2 Specification of Leader Election Protocols 71

6.1.3 Leader Election based on Process ID 71

6.1.4 Leader Election based on Process Value 75

6.2 Adaptation 78

6.2.1 State Mapping and Overlap Communication 83

6.2.2 Verifying Adaptation 85

6.3 Performance of Mixed-Mode Adaptation 86

6.4 Limitations of Mixed-Mode Adaptation 91

7 Tradeoffs in Adaptation 93

7.1 Concurrency v/s Verification Complexity 94

7.2 Concurrency v/s Message Complexity 95

7.3 Case Study: Publish-Subscribe Application 99

8 Testing Adaptation 101

8. 1 Preliminaries l 02

8.2 Testing 106

8.3 Adaptation Vector 107

8.3.1 Implementation of Adaptation Vectors 108

8.3.2 Implementation of Vector Clocks 108

8.4 Detecting Global Predicates During Adaptation 109

8.4.1 Detecting Adaptation-Stable Predicates 111

8.4.2 Detecting Adaptation-Transient Predicates 113

8.5 Testing Only Atomic Adaptations 115

8.6 Chapter Summary 119

9 Component Family: Design of Adaptive Components 121

9.1 Introduction 121

9.2 Abstract Component Family 128

viii

9.2.1 Abstf'

9.3 Cwere

9.3.1 Com;

9.3.2 Com;

9.3.3 Ccm;

9.4 Case S:

9.4.] Inter:

9.4.2 Class.

9.4.3 Pc. (1'

9.5 Case 51:.

9.5.1 Comp

9.5.2 Adapt.

9.6 DISCUS>.|

9.7 Related

9.8 Summer

10 Conclusiu I

1 _

10.1 Contriht.

limos;

10-3 Future R

9.2.1 Abstract Component Structure 129

9.3 Concrete Component Family 131

9.3.1 Component Family Interfaces 133

9.3.2 Component Family Instantiation 137

9.3.3 Component Family Implementation 139

9.4 Case Study: Leader Election Component Family 146

9.4.1 Interfaces of the Family 147

9.4.2 Classes of the Family 150

9.4.3 Performance Results 152

9.5 Case study: Reliable Communication Component Family 154

9.5.1 Components of the Family 154

9.5.2 Adaptations of the Family 159

9.6 Discussion 164

9.7 Related Work 166

9.8 Summary 167

10 Conclusion and Future Work 171

10.1 Contributions 171

10.2 Future Research 174

APPENDICES 176

A Model-Checking of Adaptive Leader Election Program 177

A.1 Adaptive Leader Election Program 177

A2 Model-Checking Results 189

A21 End States 189

A22 Safety Property of Leader Election 190

A23 Liveness Property of Leader Election 192

A24 Safety Property During Adaptation 193

BIBLIOGRAPHY 195

ix

3.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

LIST OF FIGURES

An example of an adaptation lattice. 24

Message communication program (fault-intolerant version)............ 41

Proactive component................................ 43

Message communication program (with proactive component).......... 44

Message communication program (fault-intolerant version, adapt-ready). 45

Intermediate program ’P‘H'pl. 45

Intermediate program ’P 41,2. 46

Intermediate program 7304;93- 46

Intermediate program ’P 41,4. 47

Adaptation lattice for addition of proactive component. 48

Adaptation lattice for parallel adaptation. 51

Message communication program (with proactive component, adapt-ready). 58

Fault class F1. 59

Fault class F2. 59

Acknowledgment component: sender fraction................... 60

Acknowledgment component: receiver fraction.................. 61

Message communication program (with reactive component)........... 62

Intermediate program pan-i171 64

Intermediate program ’Pawim 64

Intermediate program poo-2123 65

Intermediate program Paw,“........................... 66

5.11 Intermediate program Paa_ip5

5.12 Adaptation lattice for replacement of proactive component

6.1 Leader election algorithm based on node Id.

6.2 Leader election algorithm based on node value.

6.3 Program using ldrId.

6.4 Program using ldr Val.

6.5 Intermediate program during adaptation from 731d,Id to pldr Val.........

6.6 Adaptive program to adapt from PldrId to ”PM, Val................

6.7 Quiescence adaptation.

6.8 Mixed-mode adaptation.

6.9 Quiescence vs. mixed-mode adaptation.

6.10 Time for leader election protocols.

7.1 Executing three atomic adaptations.

7.2 Space-time diagram of adaptation.

7.3 Adaptation with concurrency............................

7.4 Adaptation with (reduced) concurrency.

7.5 Adaptation with no concurrency.

7.6 Adaptation in publish-subscribe application....................

8.1 Space-time diagram of a distributed computation.

8.2 Identifying intermediate program states.

8.3 Algorithm for adaptation-stable predicate (non-checker process 190-

8.4 Algorithm for adaptation-stable predicate (checker process).

8.5 Algorithm for adaptation-transient predicates (non-checker process p,).

8.6 Algorithm for adaptation-transient predicate (checker process)..........

9.1 Reference update during adaptation.

xi

66

68

72

76

80

80

82

87

90

91

96

97

98

98

99

103

110

112

113

.116

117

124

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

9.10

9.11

9.12

9.13

9.14

9.15

9.16

9.17

9.18

An example of a component family 129

Structure of a component in a family 130

Architecture of a component family 131

Interfaces of a component family.......................... 133

Adaptation handlers. 135

An example of delegation pattern. 136

Interfaces of the leader election component family. 146

Classes of the leader election component family.................. 149

Component family performance. 153

Reliable communication component family. 154

Forward error correction component........................ 156

Acknowledgment component. 157

Forward error correction with acknowledgment: sender fraction. 158

Forward error correction with acknowledgment: receiver fraction. 159

Adaptations 1 and 2 in reliable communication component family. 160

Adaptations 3 and 4 in reliable communication component family. 161

Adaptation lattices. 162

xii

4.1

5.1

6.1

6.2

6.3

6.4

LIST OF TABLES

State mappings for the adaptation. 48

State mappings for the adaptation. 67

Message types used in the protocol. 73

Variables maintained by each process in the protocol. 74

Overlap communication between protocols. 83

State mapping ((Daai) for each atomic adaptation aaz-............... 84

xiii

Chapter 1

Introduction

Evolution is vital in all software systems and has been studied for decades in the context of

software maintenance and software upgrade. It is a well known fact in software engineering

that programs undergo several changes during their lifetimes. These changes are usually

performed for fixing bugs or adding new functionality that the users of the systems did not

anticipate initially at the time of original specifications.

Furthermore, software systems have become more and more pervasive with easy access

to personal computers, smartphones, and cellular and wireless networks. The challenges in

building today’s software systems include providing seamless service to user requirements

in such heterogeneous operating conditions as: device failures, transitions across wired

and wireless environments, high packet loss in wireless networks, byzantine behaviors, and

security attacks. In order to meet these challenges, software systems must be able to adapt

to environment conditions that may not be foreseen at the time of software development.

In general, software systems need to adapt (change) in response to one or more of

the following reasons: (i) discovery of errors/bugs, (ii) change in requirements, and (iii)

change in environment. In a traditional approach, the change is usually performed by

stopping the currently running program and then installing the new version of the program.

However, stopping the system to perform the change is undesirable for a variety ofreasons,

such as: (i) it may be simply inconvenient for users; (ii) it may lead to monetary loss, for

example, in the case of banking and e-commerce systems; or (iii) it may be unsafe, for

example, in the case of safety critical systems such as air traffic control systems. Moreover,

in systems that need to adapt in response to frequent or transient changes in environment,

stopping the system for upgrade may not even be an option. Clearly, in all these cases, it is

highly desirable to perform the change while the system continues to operate. This type of

change is commonly referred to as dynamic adaptation. A software system that supports

dynamic adaptation is known as adaptive software.

There has been a growing interest in building adaptive softwares. An increasing mun-

ber of systems are now being developed with some built-in mechanisms for adaptation that

allow for change to be done without completely stopping the system. Adaptive software

techniques (e.g., [1—10]) allow the system to modify its own functional or non-functional

behavior (e.g., its fault-tolerance, quality of service or security requirements). These modi-

fications include reconfiguration of some parameters, or addition, removal, or replacement

of application code. A survey in [11] presents various tools and techniques in building

adaptive software. Additionally, Buckley et al. [12] has given a taxonomy in the context of

when, how, where, and what, of software change.

Numerous works in adaptation have either focused on single-process systems or in dis-

tributed systems where changes to processes are independent ofeach other. However, com-

paratively fewer works have addressed adaptation in distributed systems where changes to

2

multiple processes need synchronization. Moreover, behavioral verification during adap-

tation in distributed systems that require changes to multiple processes has not been ad-

equately addressed. In the next section, we discuss some of the issues in adaptation in

distributed systems.

1.1 Adaptation in Distributed Systems

In distributed systems, multiple processes need to be changed during adaptation. In such

adaptations, changes to multiple processes need to be synchronized and interactions be-

tween changed and unchanged processes need to be controlled. We refer to the system

before adaptation as the old program and to the system after adaptation as the new pro-

gram. A process before it is modified is considered as a part of the old program, and after

modification it is considered as a part of the new program. We now give the classification

of adaptation in distributed systems.

1.1.1 Classification of Adaptation

We classify adaptation in distributed systems as: (i) overlap adaptation - when the old

program and the new program overlap during adaptation, and (ii) non-overlap adaptation

- when the old program and the new program are not present in the system simultaneously

during adaptation.

Furthermore, we classify overlap adaptation into three main categories: (i) mixed-mode

adaptation, (ii) quiescence adaptation, and (iii) parallel adaptation. In the case of quies-

cence adaptation, which is the most common approach for adaptation in distributed sys-

tems, there is no communication allowed between the old program and the new program.

Consequently, during adaptation, changed and unchanged processes exist in the system si-

multaneously, but the processes are modified in such a way that the changed process and

the unchanged process do not communicate with each other. In contrast, in case of mixed-

mode adaptation, changed processes and unchanged processes are allowed to communicate

with each other. In the case of parallel adaptation, each node has both the changed process

and the unchanged process, but communication between changed processes and unchanged

processes is not allowed; the changed (respectively, unchanged) process at one node can

communicate with the changed (respectively, unchanged) process at another node.

To gain assurance in adaptation, formal specification and verification of adaptation is

crucial. In the context of adaptive distributed systems, there are three aspects of verifica-

tion: (2') verifying the system before adaptation, (ii) verifying the system during adapta-

tion, and (iii) verifying the system after adaptation. While existing verification techniques

can be used to verify the system before and the system after adaptation, such techniques

cannot be applied directly to verify the system during adaptation. This is because during

adaptation the system is changing whereas existing work assumes that the system remains

unchanged. Especially, in the case of distributed systems, during adaptation the system

exhibits overlapping behavior that is not well specified.

Numerous techniques have been proposed to address various issues in forrnalizing

adaptation. A survey in [13] discusses various approaches based on graphs, process alge-

bras, logic and other formalisms used to specify adaptive systems. Most of the approaches

[1, 2, 4, 5, 7, 14—20] focus on design and implementation of adaptive systems. Other ap-

proaches [21—24] address the issue of verifying adaptation. The approaches in [21—23]

4

focus on offline adaptation, whereas the approach in [24] focuses on online adaptation of

a single process system (that can also be extended to distributed systems that communi-

cate via RPC). However, none of these approaches explicitly focus on the behavior of the

system during adaptation in distributed systems.

Furthermore, mixed-mode adaptation has not received much attention, as it is normally

considered difficult. Most existing approaches avoid dealing with mixed-mode behavior

during adaptation by employing non-overlap, quiescence or parallel adaptation. Quies-

cence adaptation behaves as if the adaptation is performed by changing all processes at the

same logical time. There is overhead in performing quiescence adaptation as a large num-

ber of messages are required to enforce synchrony among processes. In contrast, mixed-

mode adaptation gives better performance in terms of service interruption time and com-

munication overhead. Nevertheless, to develop mixed-mode adaptation correctly involves

a lot of challenges.

In the rest of this chapter, we first discuss advantages of mixed-mode adaptation in

Section 1.1.2. Then, in Section 1.1.3, we identify challenges in adaptation that arise or are

exaggerated due to overlapping behavior of mixed-mode adaptation. Finally, in Section

1.2, we discuss the contributions of this research.

1.1.2 Advantages of Mixed-Mode Adaptation

We expect mixed-mode adaptation to offer the following two main advantages compared

to other types of adaptation:

0 Reduced service interruption. Since individual processes need not block while

waiting for other processes during adaptation, the service interruption time is re-

duced. This is especially important when adaptation occurs frequently (in response

to changes in the environment).

0 Low communication overhead. Since mixed-mode adaptation allows the old pro-

gram and the new program to interact during adaptation, the synchronization required

among processes during adaptation is reduced, thereby reducing the communication

overhead. This is especially important in systems that are operating on limited-power

01' resources.

We validate these advantages in this dissertation using a case study.

1.1.3 Challenges in Mixed-Mode Adaptation

The challenges in mixed-mode adaptation arise because the behavior of the old program

and the new program overlap during adaptation. These challenges also occur in other forms

of adaptation; here we discuss them in the context of mixed-mode adaptation.

0 Consistency. All updates to individual processes must ensure consistency of the

whole system. In mixed-mode adaptation some interactions between the old program

and the new program during adaptation may not be acceptable. Only mixed-mode

interactions that are acceptable should be allowed to occur. For example, if process

X requires a service fi'om process Y, then updating Y before X should be allowed

only if new process Y’ can handle the service requests from old process X (we use

notation Y’ to denote process Y after it has been changed).

6

o State-fiansfer. To ensure proper mixed-mode operation, each process will need

to' preserve the state during adaptation. Specifically, if component Cl is replaced by

component 02, then the state of component Cl at each process needs to be trans-

ferred to component Cg. The efficiency of state-transfer mechanisms is particularly

important in the case of mixed-mode adaptation compared to other forms of adapta-

tion.

0 Assurance. To provide assurance guarantees for mixed-mode adaptation requires a

formal way to specify and verify the adaptation. In the case of mixed-mode adap-

tation, the changes cannot be specified in terms of system structure because the be-

havior of the old program and the new program overlap during adaptation. The first

challenge is in specifying the overlapping behavior. Next, there are challenges in

verification and testing of mixed-mode adaptation due to overlapping behavior.

0 Reuse. There is a large amount ofwork done in adaptation. An approach for mixed-

mode adaptation should reuse existing adaptation techniques whenever possible.

1.2 Thesis

Based on the above motivation, in this dissertation we propose the following thesis. Our

goal is to develop an approach for assurance of adaptation that applies to both quiescence

and mixed-mode adaptations.

The lattice-based modeling helps in verifying and testing of adaptive be-

havior in distributed systems.

To defend this, we make the following contributions in this dissertation:

1. Modeling and specification of adaptive behavior. We present the concept of an

adaptation lattice to use for modeling and specifying the adaptive behavior. The

adaptation lattice approach identifies the atomic adaptations, and the behaviors of

the intermediate programs that occur during adaptation.

2. Verification of adaptive behavior. We present the concept of a transitional-

invariant lattice to use for verifying the correctness of the system during adapta-

tion. The transitional-invariant lattice approach ensures that safety is satisfied during

adaptation and that adaptation eventually terminates.

3. Fault-tolerance during adaptation. We present the concept of a transitional-

faultspan lattice to use for verifying the fault-tolerance properties of the system dur-

ing adaptation. The approach can be used to verify different types of fault-tolerance

during adaptation. Also, faults considered during adaptation can be different from

the faults that the system is subjected to before or after adaptation.

4. Tradeoffs in adaptation. In order to assist the adaptation developer, we identify

tradeoffs in adaptation that are useful while designing adaptation in various contexts.

We show how concurrency during adaptation leads to increased verification complex-

ity. We also show that increased concurrency during adaptation can also increase the

communication overhead, which may not be desirable in certain systems.

5. Testing of adaptation. We use predicate detection techniques to test adaptation in

distributed systems. We identify two classes of predicates for testing adaptation: (i)

adaptation-transient, and (ii) adaptation-stable. We introduce the notion of adapta-

tion vector to identify states ofthe intermediate programs during adaptation.

6. Component family design. We describe the design of a componentfamily to sup-

port adaptation. The component family design integrates aspects related to decision-

making, adaptation logic, and component functionality, while maintaining a strict

separation of different concerns. Specifically, the design separates the adapt-active

parts of the component from the core functionality of the component. Moreover,

the design separates the adaptation logic from the component functionality, thereby,

simplifying the task of verifying adaptation.

Organization of the dissertation. The remainder of this dissertation is organized as

follows: We first discuss the background and related work in adaptation in Chapter 2. In

Chapter 3, we describe the adaptation lattice approach to model adaptation and adaptive

systems. In Chapter 4, we present transitional-invariant lattice to verify adaptation in the

absence of faults and discuss a case study based on message communication application

to demonstrate its use. In Chapter 5, we present transitional-faultspan lattice to verify

adaptation in the presence of faults and discuss a case study to demonstrate its use. In

Chapter 6, we present a case study ofmixed-mode adaptation where we show performance

advantage of mixed-mode adaptation. We also discuss how the adaptation lattice approach

can be used to verify mixed-mode adaptation. In Chapter 8, we describe the testing of

adaptation using predicate detection techniques. In Chapter 9, we describe the component

family design to build an adaptation-verified library of components. Finally, we discuss

conclusions and future work in Chapter 10.

Chapter 2

Background and Related Work

Adaptation has been studied in various contexts, such as software change, reconfiguration,

upgrade or update, change on fly, program modification, software evolution, etc. In this

chapter, we first give an overview of some taxonomies of software adaptation and discuss

the areas in adaptation that are focus of this dissertation. Then, we review some of the

related works.

2.1 Adaptation Taxonomy

Several works [1 1—13, 25—27] have presented taxonomies of adaptation to categorize dif-

ferent adaptation mechanisms. In this section we discuss some of them.

One of the early works in classifying adaptation was done by Lientz and Swanson

[25] in context of software maintenance. They proposed a topology that distinguishes

between perfective, adaptive and corrective maintenance activities. This taxonomy was

further refined by Chapin et al. [26], where they classify software evolution and software

10

maintenance into 12 different types: evaluative, consultive, training, updative, reforrnative,

adaptive, performance, preventive, groomative, enhancive, corrective and reductive. In

essence, the works in [25] and [26] categorize the adaptation activities on the basis of their

purpose (i.e., the why of software change). In our work, the reason why a software needs

to adapt is irrelevant.

In [12], Buckley et al. gave a taxonomy of adaptation that focuses on the how, when,

where, and what, of software change. This taxonomy is based on the characteristics of

adaptation mechanisms and the factors that influence these mechanisms. The adaptation

mechanisms refer to the software tools and algorithms used to perform the adaptation.

However, this taxonomy does not consider formalisms used in adaptation. Regardless, the

taxonomy is very useful in identifying and classifying various adaptation scenarios, and in

categorizing and comparing different adaptation mechanisms. In our work, we focus on

dynamic adaptation, i. e. the one performed at run-time (when of adaptation).

In [11], McKinley et al. classified adaptation into two categories, namely, param-

eter adaptation and compositional adaptation. Parameter adaptation modifies program

variables that determine behavior. In contrast, compositional adaptation exchanges algo-

rithmic or structural system components with another. Compositional adaptation provides

more flexibility in supporting a variety of changes compared to simple tuning of program

variables in case of parameter adaptation. However, compositional adaptation involves a

lot more challenge in design, implementation and verification. Although our approach in

this dissertation focuses on compositional adaptation, it can also be applied in the case of

parameter adaptation. Specifically, we consider addition, removal, or replacement of com-

ponents [28] in this dissertation. A component implements part of the desired behavior

11

of the program. Our notion of component is different from the popular usage of the term

in the development community, where a component and a class (or object) (an artifact in

object-oriented programming) are considered one and the same. According to our defini-

tion, a component can consist ofmore than one class, and may even be deployed at multiple

processes.

Dynamically changing software is challenging in terms of correctness, robustness, and

efficiency. Formal specification and verification is important in order to gain assurance in

adaptive software. A variety of formal specification languages have been developed to gain

a better understanding of the foundations of software change. Bradbury et al. in [13] has

given a survey of 14 formal specification approaches based on graphs, process algebras,

logic, and other formalisms. Graph-based approaches [14—16] use graph rewriting rules

to specify dynamism. Approaches in [17, 18, 29, 30] use a variety of process algebras

such as Calculus ofCommunicating Systems (CCS), Communicating Sequential Processes

(CSP), and n-calculus. Architectural Description Language (ADL) based approaches [19,

20, 31] model programs as components and connectors, and adaptation as reconfiguration

of connections. Generally, these approaches have focused on specifying the design of

adaptive software and changes are specified in terms of the system structure. However,

the approaches are inadequate in specifying the adaptive behavior. Approaches in [17,

18, 29, 30] are a few exceptions that have used process algebras to specify the behavior

of adaptive programs. However, these approaches suffer from the following limitations:

(2') adaptation-specific behavior of the program is not distinctly separated from the non-

adaptive behavior of the program, (it) the approaches are appropriate to specify changes in

client—server applications, but it is not clear how it would apply to protocol changes in group

12

communication application, (iii) state-transfer is not specified explicitly, so it is not clear if

the new program behavior has to start in the initial state or can start in some arbitrary state,

(iv) the approaches are inadequate in specifying mixed-mode behavior during adaptation,

and (v) the approaches use specific type of formalisms that may potentially limit wide-

spread use and any extensions to include different types of adaptations. In our work, we

address formal specification and verification of the behavior of system during adaptation.

2.2 Related Work

In this section, we briefly review some of the previous work in the context of verifying

adaptation.

2.2.1 DYMOS

Lee presented one of the early systems to support dynamic updating called DYMOS (Dy-

namic Modification System) [32]. It supports a single programmer modifying a module-

based program dynamically (that is, without stopping its execution). In DYMOS, the pro-

grammer modifies and recompiles the source code of procedures and modules that need to

be replaced. The programmer then requests the system to change the current core image

to incorporate new code and data. New object code is inserted by a dynamic modification

process that is executed in parallel with other user processes.

DYMOS supports program written in StarMod language [33]. In the DYMOS envi—

ronment each updateable program is associated with a command interpreter, a source code

management system, a StarMod compiler and a run-time environment. The system allows

13

D‘.

is

.u‘

Co.

110:

.1

VI"

2.

C031

don

t
n

_
.
x
i
i
-
h
u
m
p
)

r

1
.
—1.

L

J

individual procedures of a program to be changed.

In the context ofensuring correctness, Lee gave a procedure for partitioning change into

sequence of smaller changes. The decomposition is done in such a way that the program

behaves “acceptably” after each change. The decomposition approach helps in specifying

behavior between changes where the program is operating with some reduced functionality.

DYMOS does not address changes in distributed programs, however, it is important as it

is one of the early systems that studied dynamic adaptation with particular concern for

correctness. It gave some basic theoretical contributions in the context of correctness of

adaptation.

2.2.2 CONIC

Conic [9, 34, 35] is a distributed programming system that supports dynamic reconfigura-

tion ofprograms. A program in Conic consists of a number ofprocesses that communicate

with each other using well-defined entry and exit ports. Conic modules (processes) do not

communicate by naming each other but by naming the ports. Thus, reconfiguration can be

done by creating instances of modules and linking entry ports of these modules with exit

ports of other instances.

The reconfiguration is done by providing a configuration change specification. The

specification specifies the creation and deletion of modules and links. The configuration

manager translates the change specification into commands to the operating system to ex-

ecute the reconfiguration operation.

In [9], Kramer and Magee gave a formal basis for dynamic reconfiguration. They

l4

specify change as structural change, in terms of component creation/deletion and con-

nection/disconnection. In their model, interactions between processes are considered as

transactions. A transaction is an exchange of information between two nodes, initiated by

one of the nodes. A node is said to be in passive state if it is not currently engaged in a

transaction that it initiated and it will not initiate new transactions. A node is quiescent if it

is in passive state, is not currently engaged in servicing a transaction, and no transactions

have been or will be initiated by other nodes which require service fiom this node. It is

claimed that a dynamic reconfiguration will leave the system in a “consistent” state if all

the involved processes are quiescent at the time of reconfiguration.

The main limitation ofusing node quiescence for adaptation is that it leads to excessive

blocking during reconfiguration. Moreover, a large number of messages are required in

synchronizing all nodes to reach quiescence state. Furthermore, local states of nodes are

not considered in determining node quiescence. As a result, if local states of nodes are not

consistent at the time of adaptation (reconfiguration), then the new version of the program

will start in an inconsistent state.

2.2.3 ARGUS

Argus [36] is a programming language for building reliable distributed applications. It is

based on the CLU programming language and provides support for atomic transactions and

crash recovery. An application in Argus consists of a set of servers called guardians, that

communicate with each other using remote procedure calls.

Dynamic reconfiguration in Argus is described in [37]. Similar to Conic, the connec-

15

tions between guardians can be rerouted dynamically. Guardians are made quiescent before

replacement. To reach quiescent state the guardian can either abort running transactions or

wait for them to complete. Argus suffers from the same limitations as Conic. Additionally,

the replacement system requires Argus crash recovery facilities in order to work properly,

which may make it difficult for use in other systems.

2.2.4 Online Software Version Change

Gupta and Jalote [24, 38] presented a framework for modeling changes to running programs

and use it to study the validity of an on-line change. In their notion of validity, a change

is valid if some time after the change, the process reaches a reachable state of the new

program version. Thus, there is a “transition period” following a change, after which the

the system behaves like a new program. However, it is not clear what behavior is acceptable

during the transition period.

In their work, they consider different programming language styles, including imper-

ative languages without procedures, imperative languages with procedures, and object-

oriented languages. Their work focuses on change in sequential programs. They also dis-

cuss how their approach can be extended to distributed programs where only one process is

changed. For the case where multiple processes are affected due to change, they consider a

remote procedure call based model. They stop all processes before the change which leads

to disruption of service till the change is completed. Moreover, their work does not address

validity of on-line change in a distributed system that uses unrestricted message passing

model.

16

2.2.5 Model-Based Development of Adaptive Software

Zhang et al. [39—41] proposed a model-based development of dynamically adaptive soft-

ware. Their approach separates the model specifying the adaptive behavior from the model

specifying the non—adaptive behavior. They use global invariants to specify properties that

should be satisfied by adaptive programs regardless of adaptations. They enumerate differ-

ent execution domains in which the program is required to execute, and build a state-based

model in each domain. They enumerate possible adaptations of the program from one do-

main to another. Furthermore, they introduce A-LTL, an extension to linear temporal logic,

to specify an adaptation from one program to another. They present three semantics of

adaptation: one-point, guided and overlap. Similar to our goals, their work also addresses

behavioral verificatiOn during adaptation. However, they do not consider general safety

and liveness properties [42, 43] during adaptation. Their approach seems more suitable for

quiescence adaptation and its application in mixed-mode adaptation is not straightforward.

2.2.6 Others

Several other works that addressed runtime adaptation include Podus [44—46], Durra [47],

Polylith [48] and Dynamic ML [49, 50]. Similar to the limitations of the works discussed

earlier, these approaches also suffer from one or more ofthe following limitations: (2) apply

only to a single process change, (it) apply only to distributed systems that communicate

via RPC, but not in the case of asynchronous message passing model, and (iii) verify only

structural changes; do not consider behavioral verification of system during adaptation.

Other surveys of adaptation approaches can be found in [11, 38, 51, 52].

17

Chapter 3

Modeling Adaptation

In this chapter, we introduce a formal model for adaptation in asynchronous programs.

We first present an informal overview of how adaptation occurs in a distributed system in

Section 3.1. Then, we use the ideas discussed in Section 3.1 to formalize the model ofadap-

tation in Section 3.2. In Section 3.3, we give definitions used in formal reasoning about the

correctness of adaptation. Finally, in Section 3.4, we describe the concrete representation

of programs and adaptations using guarded commands.

3.1 Adaptation Overview

We consider compositional adaptation as one that adds, removes, or replaces a component

during adaptation. A component implements a part ofthe desired behavior ofthe system. A

component (formally defined later in the chapter) consists of one or morefractions, where

each fraction is associated with one process in the system. For the discussion in this chapter,

we assume that adaptation replaces a component; addition and removal can be considered

18

as special cases of replacement.

We refer to the component that gets replaced as the old component and the component

that replaces the old component as the new component. To replace an old component with a

new component requires replacing each fraction ofthe old component with the correspond-

ing fiaction of the new component at all processes. An adaptation in a distributed system

involves multiple steps that are executed at various processes. For example, consider a

protocol that provides encrypted communication between a sender and a receiver. Such a

protocol consists of two types offractions, namely, encryption fraction at the sender that

encrypts the packets before sending and decryptionfiaction at the receiver that decrypts the

encrypted packets received fiom the sender. To replace such a protocol, each fiaction ofthe

protocol needs to be replaced. Thus, the adaptation in a distributed program involves mul-

tiple steps that are executed at various processes. We consider the replacement ofa fraction

at a single process as an atomic step of adaptation, and call it an atomic adaptation.

The old program, i. e., the program before adaptation uses the old component and the

new program, i. e., the program after adaptation uses the new component. An adaptation

replaces the old component with the new component, or equivalently we can say that the

adaptation replaces the old program being executed by the system with the new program.

We assume that the old program and the new program are independently correct, i. e.,

by themselves they can execute and produce acceptable behavior. The goal of verifying

adaptation is to ensure that: (i) the adaptation ends in a state from where the system satisfies

the behavior of the new program, and (ii) the (overlapping) behavior during adaptation is

acceptable (as defined by specification during adaptation).

To verify the behavior during adaptation we need to classify the states of the program

19

during adaptation. The intermediate states that occur during adaptation are due to overlap-

ping ofthe old program and the new program. The properties satisfied by these intermediate

states may be different from the old program and the new program. Consequently, the be-

havior expected during adaptation needs to be specified separately from the old program

and the new program. For example, in the case of adaptation of encrypted communica-

tion protocol discussed above, consider the system in which the adaptation has replaced

the encryption fractions at the sender but has yet to replace the decryption fractions at the

receiver. During adaptation the sender may continue to send packets that may be buffered

at the receiver or the sender may be blocked from sending more packets until the receiver

has replaced the decryption fractions. Clearly, there are different possible behaviors during

adaptation, and the expected behavior during adaptation needs to be specified separately

from the behavior of the old program and the new program. Towards this end, we define

the notion of intermediate program.

Intermediate program. An intermediate program arises due to overlapping of behavior

of the old program and the new program. The first atomic adaptation modifies the old

program into the first intermediate program. Similarly, other atomic adaptations modify

one intermediate program into the next intermediate program. The last atomic adaptation

results in the new program. The specification during adaptation identifies the requirements

for these intermediate programs.

We now present the formal model for adaptation and adaptive systems.

20

actio

fora 1

15 not

antom,

Where

asali't

l0 mail

311mmc

reStilts ,

3.2.1

We mm

3.2 Abstract Model of Adaptation

We model a process as an automaton A represented as a tuple (S, 2, 6, So), where

o S(A) - a set of states

0 2(A) - a set of actions

0 6(A) - a state-transition relation, where 6(A) Q S(A) x 2(A) x S(A)

SO(.A) - a nonempty subset of 5(A) known as initial states

Each element (5, 7r, 5’) of 6(A) is known as a transition, where s, 3’ E S(A) and it E

2(A). If A has a transition (3, 7r, 5’) it means that 7r is enabled in state s and executing

action 1r in state .9 will lead to state 5’. A transition of the form (3, _, s’) is an abbreviation

for a transition whose source is s and target is 3’, where the action that caused the transition

is not of interest.

A program consists of a set of process automata. We assume the sets of actions of

automata are disjoint. We consider asynchronous or interleaved execution for a program,

where at any time only a single process can execute its action. This approach can be viewed

as a reduction of concurrency to non-determinism, where a concurrent execution gives rise

to many possible corresponding interleaving orders. We could have used more complex

automata such as [53—55] to model concurrency, but we adopt an interleaving model as it

results in a simpler theory for specification and verification of adaptation.

3.2.1 Adaptation as a set of automata

We model an adaptation A using a 5-tuple as follows:

21

o I — a set of automata

o P - an automaton of the old program, P E I

Q - an automaton of the new program, Q E I

Ea - a set of special type ofactions known as adaptive actions, Sam U E(A)) = (i)

AEI

Smap - a state mapping is a partial function (U S(A)) x 2a ——> (U S(A,)) that

AEI A’eI

satisfies the following two properties:

2'. Vs,s’,7ra,A1,A2 : s E 3(A1),s’ E 3(A2).na E Ea,A1,A2 E I:

((s, tra), 3’) E Smap => A1 75 A2, and

ii. V31,32,s'1,s'2,na,A,A1,A2 : 81,82 6 S(A),s'16 S(A1),s’2 E S(A2),

7Ta E 2a,A,A1,A2 E I:

((31,7ra),s’1)6 Smap /\ ((32, tra), 9’2) 6 Smap => A1: A2

The old program, the new program, and all intermediate programs are modeled as au-

tomata. We also assume that the states of the automata in I are pair-wise disjoint. Given

an adaptive action, the state mapping defines an automaton and the states ofthat automaton

in which the adaptive action can execute, and the resulting automaton and the state of the

resulting automaton in Which the adaptive action terminates. The state mapping function

satisfies two properties. The first property ensures that executing an adaptive action results

in a change of automaton (whereas, executing an action results in a state of the same au-

tomaton). The second property states that if an adaptive action can be executed in different

states ofthe automaton, then it will result in an unique automaton (the resulting states may

be different, but they will be of the same automaton).

22

Note that the state mapping is a partial fimction, as it may not be possible to perform

corresponding atomic adaptation in all states. Each element ((3, tra), 3') of Smap can be

represented as a triplet (5,1ra,s’). Similar to the state-transition relation of an automaton,

a state mapping Smap can be defined as a subset of (U S(A)) x Ba x (U S(AI)) with

A61 A’eI

”l E Smap then s’ = 3”. Each elementthe restriction that if (3, na, 8’) E Smap and (3, 7rd, 5

of Smap is known as adaptive transition. If Smap has an adaptive transition (3, ira, s’),

where s E S(A) and s’ E S(A,), it means that 7ra is enabled in A and executing 7rd in

state 3 ofA will lead to state 8' of A'.

Note that the range ofSmap is S(AI) and not SD (A’). In other words, we do not require

an adaptive action to terminate in an initial state of the resulting automaton.

Now, given the state mapping of adaptation A, we can define an automata-

transformation (partial) function 5,, : I x 23a —» I. We have, ((A, 71a), A’) 6 5,, iff

33,5’ : s E S(A),s’ E S(A') : (s, na,s') E Smap. Each element ((A,7ra),A') (equiva-

lently, (A, ira, A')) of 6a is known as an atomic adaptation. Thus, each atomic adaptation

is modeled as transforming one automaton to another automaton.

The automata-transformation fimction represents an adaptation lattice defined as fol-

lows:

Adaptation Lattice. Adaptation lattice (cf. Fig. 3.1) is a finite directed acyclic graph

in which each node is labeled with an automaton and each edge is labeled with an atomic

adaptation, such that,

1. There is a single start node P having no incoming edges. The start node is associ-

ated with the automaton representing the old program. The automata-transfonnation

23

function (correspondingly, Smap) satisfies the following condition:

VA,7Ia I: (A, Na, P) g 6a

2. There is a single end node Q having no outgoing edges. The end node is associ-

ated with the automaton representing the new program. The automata-transformation

function (correspondingly, Smap) satisfies the following condition:

VA,7ra :: (Q. ira,A) Q 6a

3. Each intermediate node R has at least one incoming edge and at least one outgo-

ing edge. It is associated with the automaton representing the intermediate program.

The automata-transformation function (correspondingly, Smap) satisfies the follow-

ing condition:

VA : A ,2 P: (3.491, :: (54271,,54) 6 6a) /\

VA=A#Q=(3A',Wa =1 (AaWaa-A’) 66a)

A path in the lattice fiom the start node to the end node is called adaptation path.

Figure 3.1: An example of an adaptation lattice.

24

3.2.2 Adaptation as an automaton

In the previous subsection we defined adaptation as a 5-tuple. An adaptation can also be

viewed as an automaton defined as follows:

- S(A)= U {(A.s)ls€S(A)}

AeI

- 2(4) = U {(44) l r E 204)} U 23.1

A61

- 6(A)= U {((A,s)=(A.r).(A,s’))Hairs-9’)66(A)}U

AEI

{((A,8),7l'a, (A’,8’) l (8277078,) E Smap}

0 S0(4) 9 (79,309))

In definition of 80(A) we use S(P), and not 80(P), because adaptation should be able

to start at any point in the execution of P.

Modeling adaptation as an automaton allows us to verify some general properties of

adaptation not concerning any overlapping behavior. On the other hand, modeling adapta-

tion as a set of automata is important to identify individual intermediate automata during

adaptation to verify properties due to overlapping behavior ofthe old program and the new

program.

3.3 Adaptation Specification

In this section, we give some formal definitions used in specifying and verifying adaptive

programs. We adapt these definitions from Arora and Kulkami [56, 57].

25

Definition (State predicate). A state predicate X ofA is any subset of S(A). We say X

istrueinstatesifs E X.

Definition (Closure). A state predicate X ofA is closed in A (respectively, 6(A), E(A))

iff the following condition holds:

Vs,s’,7r :: ((s,1r,.s’) E 6(A)) => (8 E X => 3’ E X)

Definition (Computation). A computation of program A (respectively, adaptation A) is

a sequence of states a = (so, 31, ...) satisfying the following conditions:

0 For first state 30 in a, so 6 80(A) (respectively, SO(A))

o Ifa is infinite then Vj :j > 0 : (Eltr :: (sj_1,7r,.sj) E 6(A)) (respectively, 6(A))

o If a is finite and terminates in state 3,, then for all it, there does not exist a state

5 such that (31,7r,s) E 6(A) (respectively, 6(A)), and Vj : 0 < j S |a| : (3n ::

(sj_1, 7r, Sj) E 6(A)) (respectively, 6(A))

Definition (Specification). A specification ofA is a set of computations. Given a specifi-

cation, a computation in a specification is known as an acceptable computation. Following

Alpem and Schneider [42], a specification can be decomposed into a safety specification

and a liveness specification. As shown in [58], for a rich class of specifications, safety

specification can be represented as a set of bad transitions that must not occur in program

computations.

Definition (Satisfies). A satisfies a specification if each computation ofA is in the specifi-

cation. A satisfies a specification from X iff (i) X is closed in A, and (ii) each computation

ofA is in the specification and starts from a state where X is true (i.e., 50(A) _C_ X).

26

CI

to

ah

llli

D1.

[Inn

3113;:

each 4

hahf i")

F
9
“

Definition (Invariant). The state predicate X ofA is an invariant iffA satisfies the specifi-

cation from X. Note that, ifX is an invariant ofA, then X 2 30 (A). Inforrnally speaking,

the invariant predicate includes the set of all states reached in the “acceptable” (correct)

computations of A. Note that the invariant predicate may include states that are not reach-

able in all computations of the program. However, computations from those states satisfy

the specification and, hence, those states may be valuable in adding recovery transitions to

provide fault tolerance [5 8].

Definition (Safety during adaptation). Similar to the specification of A, safety speci-

fication during adaptation A is specified as a set of bad transitions that must not occur in

computations of adaptation A.

Liveness during adaptation. We argue that the specification during adaptation should

be a safety specification. This is due to the fact that one often wants the adaptation to be

completed as quickly as possible. Hence, it is desirable not to delay adaptation to satisfy

the liveness specification during adaptation. Rather, it is desirable to guarantee that, after

adaptation, the program reaches states from where its (new) safety and liveness specifica-

tions are satisfied. Thus, the implicit liveness specification during adaptation is that the

adaptation completes. In other words, the liveness specification during adaptation is that

each intermediate program eventually executes its adaptive action. For these reasons, we

have omitted the representation of liveness specification of the program.

27

3.3.1 Fault-tolerance

In this subsection we give formal definitions for specifying and verifying fault-tolerance

properties of adaptive programs. These definitions are also adapted from Arora and Kulka-

rni [56, 57].

Definition (Fault class). Let 23f be a set of fault actions. A fault class F(A) for program

A is a subset of the set S(A) x 2f x S(A). We use A[]F to denote the transitions obtained

by taking the union of the transitions in 6(A) and the transitions in F(A). A fault class

F(A) for adaptation A is:

U {((A,3),flf,(A,8’)) l (StflerI) E F(A)}

A e I

Definition (Fault-span). A state predicate T is a fault-span (F-span) ofA from invariant

S iff (i) S g T, and (ii) T is closed in A[]F. A fault—span of a program includes the set of

states that a program can reach in the presence of faults and it is closed under the execution

ofprogram and fault actions.

Definition (Computation in presence of faults). A computation of program A (respec-

tively, adaptation A) in the presence of faults is a sequence of states a = (so, 31, ...)

satisfying the following conditions:

0 For first state 30 in a, 80 E SO(A) (respectively, SO(A))

o Ifo is infinite then Vj :j > 0 : (3n :: (sj_1,7r, 53') E 6(A) U F(A)) (respectively,

5(A) U F(Al)

o If 0' is finite and terminates in state 31, then for all it, there does not exist a state

5 such that (Sl,7l',8) E 6(A) (respectively, 6(A)), and Vj : 0 < j S |a| : (3n .:

(sj__1, 7r, 3]) E 6(A) U F(A)) (respectively, 6(A) U F(A))

28

o

o Ifais infinite then 3n : n 2 0 : (‘v’j : j > n : (3n :: (sj_1,7r,sj) E 0(A))

(respectively, 6(A))

The first requirement captures that the computation begins in a initial state of the pro-

gram (respectively adaptation). The second requirement captures that in each step, either a

program (respectively, program or adaptive) transition or a fault transition is executed. The

third requirement captures that faults do not have to execute, i.e., if the program reaches

a state where only a fault transition can be executed then the fault transition need not be

executed. Finally, the fourth requirement captures that the number of fault-occurrences in

the computation is finite. This requirement is the same as that made in the previous work

[59—62] to ensure that eventually recovery can occur.

Definition (Fault-tolerance (F-tolerant)). A is F-tolerant for specification spec from S

iff the following two conditions hold: (i)A satisfies spec from S, and (ii) there exists T

such that T is an F-span of A from S, and every computation of A[]F starting in a state

where T is true satisfies spec.

Remark 1 . Henceforth, whenever the invariant S, the program A, and the specification

spec are clear from the context, we will omit them; thus, “T is a F-span of A from S for

spec” abbreviates to “T is a F-span”.

Remark 2. Different types of tolerance specifications that normally occur in practice,

namely, masking, fail-safe, and non-masking tolerance have been considered in [56-58].

In this dissertation, we assume masking fault-tolerance unless specified otherwise. The

definitions can be easily extended to consider fail-safe and non-masking tolerance during

adaptation.

29

3.4 Concrete Representation

In this section, we discuss the programming notation we use to describe the system. For

brevity, we express programs using guarded commands [63, 64]. This gives a compact

representation of the program defined as automata in Section 3.2 (in terms of state space

and transitions). Translating the guarded command representation of the program to its

automata representation is straightforward, as we discuss in this section.

Furthermore, the guarded command representation is closely related to a concrete im-

plementation. Specifically, techniques for obtaining a guarded command representation

from a program written in a general purpose language, such as C, are discussed in [65].

Also, techniques for transforming a program in guarded commands into a program in gen-

eral purpose languages are discussed in [66—68].

3.4.] Program

A program P is specified by a finite set of processes and channels. A process p is specified

by a set of variables and a finite set of actions. The processes in a program communicate

with one another by sending and receiving messages over unbounded channels that connect

the processes. A channel from process p to process q is denoted by a channel variable CW],

which is an unbounded queue. Only process p can append an item of data to the rear of

the queue Cp,q and only process q can delete an item at the head of the queue Cp,q. Each

variable has a predefined nonempty domain. A state of a process is obtained by assigning

each variable a value from its respective domain. The state ofthe channel connecting p and

q is given by the value of the queue Cpg- The state of the program is given by the state of

30

all the processes and the channels. The state space of the program P, S(P), is the set of all

possible states of P. We use 3(a) to denote the value of variable a: in state 3, and V(p) to

denote the set of variables ofprocess p. A state predicate ofP is a boolean expression over

process and channel variables.

Note that a state predicate may be characterized by the set of all states in which its

boolean expression is true and, therefore, is a subset of the state space of the program.

Action. An action ofp is uniquely identified by a name, and is of the form

(name) : (guard) —> (statement)

A guard of each action is a state predicate of P. The statement of each action is such

that its execution updates zero or more process or channel variables. The sending of a

message from p to q causes a message to be appended at the tail of the queue CW]. The

receipt of a message from q by p is modeled by removing a message from the head of the

queue Cp,q.

The set ofactions ofthe program P, 2(P) is given by the set ofnames of all the actions

of all the processes of P. Each action ofp gives the set of transitions of the form (3, 7r, 3’)

such that the guard of action 7r is true in state 3 and execution of statement of it in 3 results

in state 3’. Thus, the state-transition relation 6(P) is obtained from the set of actions of

all the processes of P. We say that an action of p is enabled in a state of p iff its guard

evaluates to true in that state.

31

3.4.2 Component

A component is specified by a finite set offractions that are involved in providing a common

functionality. Intuitively, a component implements a part of the desired behavior of the

system, such as some algorithm or protocol. A component fraction is specified by a set of

variables and a finite set of actions that are associated with a single process. A component

(respectively, fraction) is syntactically the same as a program (respectively, process), with

the only difference that some variables of the component are designated as input, whose

values are supplied by the program with which it is composed. The composition of the

component and the program is the union of the variables and actions of the component and

the program.

3.4.3 Adaptive action

An adaptive action is a special type of action, which is identified by a unique name and is

ofthe form

(name) : (guard) —+ Transfor'mT0(p’,<I>).

If the adaptive action is an action of process p, then when the statement of the adaptive

action is executed, p is replaced by p’ and state-mapping (I) is used to initialize the variables

ofp’. Each adaptive action 1ra gives a set of adaptive transitions ofthe form (3, 7ra, s') such

that the guard of 7ra is true in state 3 of process p and execution of the statement of na

results in state 3’ = <I>(s) of process p’. The state mapping function Smap(A) is obtained

fi'om the set of all adaptive actions.

32

From a modeling perspective, we consider that the adaptive action replaces the entire

process, even if only a small part of it is actually changed. In an actual implementation,

the adaptive action can be performed in various ways, such as by blocking execution of

some method, or by loading/unloading some class. However, for verification we need to

consider only the effect of the adaptive action. Additionally, considering each adaptive

action as a generic form ofprocess replacement gives the developer freedom to implement

the adaptive action based on the platform and the language used.

3.4.4 State mapping

We define the following classes of state mapping (P that occur during atomic adaptation:

0 Identity mapping. In identity mapping, the names and the values of the variables

remain the same. Formally, V(p) g V(p') and for all s, (<I>(s))(y) : 3(3)).

0 Quasi mapping. In quasi mapping, the name of the variable of the new process is

different from that of the old process, though its value is the same as the value of

some equivalent variable in the old process state. Formally, for a variable y of V(p’),

there exists a variable a: of V(p) such that for all s, (<1)(s))(y) = s(:r).

0 Initial mapping. In initial mapping, the variables of the new process are initialized

to some value as in the initial state of the new process. Formally, for a variable y of

V(p’), for all s, (<I)(s))(y) = yo, where yo E 30(3)) and SO(y) is the set of values

from domain of y that y can take in the initial states of process p’.

33

0 Functional mapping. In functional mapping, the value of the variable of the new

process is some function of the values of variables ofthe old process.

0 Arbitrary mapping. An arbitrary mapping is a special type of functional mapping,

where all variables of the new process are assigned some arbitrary value. Formally,

for a variable y of V(p’), for all s, (<I>(s))(y) = yd, where yd E D(y) and D(y)

denotes the domain of variable y.

0 Mixedmapping. Most mappings that occur in practice are mixed mappings, in which

variables ofthe new process V(p’) are divided into disjoint sets, and one ofthe above

mappings is associated with each set.

Notation. We use “.” to denote the belongs to relation. For example, if variable 1) belongs

to process p, it is denoted by pa, and action a of process p is denoted by pa. A process p

ofprogram P is denoted by P.p, and a fraction 2' of component C is denoted by C.z'. For

brevity, we avoid using belongs to relation if it is obvious from the context.

34

Chapter 4

Verifying Adaptation in Absence of

Faults

In this chapter, we introduce the notion of transitional-invariant and transitional-invariant

lattice to verify the correctness of adaptation. We first define transitional-invariant in Sec-

tion 4.1. Next, in Section 4.2, we define transitional-invariant lattice and give a theorem to

prove correctness of adaptation. In Section 4.3, we present a case study of adaptation in the

message communication application to demonstrate the use oftransitional-invariant lattice.

Finally, we discuss some of the questions raised by this work in Section 4.4.

4.1 Transitional-Invariant

As discussed in Chapter 3, the program during adaptation consists of actions ofthe old pro-

gram and actions of the new program. Therefore, we consider intermediate programs ob-

tained after one or more atomic adaptations. Similar to the invariants that are used to iden-

35

in.

De

are

ad:

113.“.

8
4
)

L
a
)

tify “legal” program states and are closed under program execution, we define transitional-

invariants.

Definition (I‘r'ansitional-invariant). Let R be an intermediate program in the adaptation

A. A transitional-invariant is a predicate that is closed in R.

Note that the actions of an intermediate program are the old program’s actions that

are not yet removed and the new program’s actions that are already added. However, the

adaptive actions do not necessarily preserve the transitional-invariant. Now, we define

transitional-invariant lattice.

4.2 Transitional-Invariant Lattice

A transitional-invariant lattice is an adaptation lattice with each node having one predicate

and that satisfies the following five conditions:

1. Safety of old program. The start node P is associated with an invariant Sp of the

program before adaptation.

2. Safety of new program. The end node Q is associated with an invariant SQ of the

program after adaptation.

3. Safety of intermediate program. Each intermediate node R is associated with a

predicate TSR that is a transitional-invariant for any intermediate program at R (i. e.,

an intermediate program obtained by performing adaptations from the entry node to

R). Furthermore, any intermediate program at R satisfies the (safety) specification

during adaptation fiom TSR-

36

for

are 5

durii

inn

841 n

and SUI

4. Safety of adaptive action. If a node labeled R,- has an outgoing edge labeled a to

a node labeled Rj, then for all adaptive transitions (5, a, s’) in Smap where TSRt is

true in state 3, TSR]. is true in state 3’. In other words, Vs, s’ : (s, a, s’) E Smap :

s E TSR,- => 3’ E TSRj‘ Furthermore, all the adaptive transitions (3, a, s’) satisfy

the safety specification during adaptation.

5. Progress of adaptation. If a node labeled R has outgoing edges labeled

a1, a2, ..., ak to nodes labeled R1, R2, ..., Rk, respectively, then in all computations

of adaptation there exists a transition (3, s') such that for some 2' : 1 g 2'. g k :

(s,a~,s’) E Sma . Furthermore, ‘v’s : s E TS :(Va,s’ : a E Ea — a ,...,a :
2 P R 1 k

(3,21, 8') 6! Smapl-

Correctness of adaptation. Intuitively, an adaptation is correct if the following conditions

are satisfied: If the adaptation begins in a legitimate state of the old program, then safety

during adaptation is met and the resulting state of the new program is legitimate. With this

intuition, if adaptation begins in a state where invariant of the old program is true, then we

say that adaptation is correct if:

0 Adaptation terminates in a state where invariant of the new program is true

0 During adaptation safety specification during adaptation is satisfied

0 Eventually adaptation terminates

The following theorem states that finding a transitional-invariant lattice is necessary

and sufficient for proving correctness of adaptation.

37

1m

1511';

dun

131111
the :

Theorem 4.1. Given Sp as the invariant ofthe program before adaptation and SQ as the

invariant oftheprogram after adaptation, the adaptationfrom P to Q is correct ifand only

ifthere is a transitional-invariant latticefor the adaptation with the start node associated

with Sp and the end node associated with SQ.

Proof

(=>) If the transitional-invariant lattice exists, then adaptation is correct.

If the stated conditions are satisfied, then the specification of the old program is sat-

isfied when the adaptation starts. Also, the existence of the transitional-invariant lattice

during adaptation ensures that for each intermediate program that occurs during adap-

tation, the specification during adaptation is satisfied. Moreover, from the definition of

the transitional-invariant lattice, each adaptive action satisfies safety specification during

adaptation. Also, in each intermediate program eventually some adaptive action will be

executed, which ensures the liveness of adaptation. Furthermore, the last adaptive action

terminates in the invariant of the new program, from where the system satisfies the behav-

ior of the new program. Thus, the existence of the transitional-invariant lattice proves the

correctness of adaptation.

(<2) Ifadaptation is correct, then transitional-invariant lattice exists (proofby construction).

Let adaptation consist of n adaptive actions a1, ..., an. Consider all adaptive actions

that can occur in a state of the old program. Since the adaptation is correct, each of these

adaptive actions occur in a state ofthe old program where Sp holds, and execution ofthese

adaptive actions satisfies the safety during adaptation.

38

‘ 5913.133 an».

. i

. 1‘-

‘

'
3
1
:
“

V
F
!
"

I t
u
m

-
,
—

.

put

the

Sill)

01d

V(jiri

1111;:

let-c7

Now, consider the intermediate program [1 reached after execution of al. In all com-

putations of the old program till the execution of al, the invariant Sp is satisfied since

the old program is correct. Since the adaptation is correct, the intermediate program [1

satisfies the specification during adaptation (otherwise, a1 is not permitted in a state of the

old program). Once a1 is executed, we consider all the computations of the intermedi-

ate prograrn 11, and identify the transitional-invariant TS11 associated with it. Similarly,

we consider all computations of the intermediate program reached after the execution of

some adaptive action other than al in a state of the old program, and find the transitional-

invariant corresponding to that intermediate program. In this way, we construct the first

level of intermediate programs and corresponding transitional-invariants starting fi‘om the

old program.

Now, for each intermediate program at the first level we consider all possible adap-

tive actions that can occur in some state of its computations. We can then identify the

transitional-invariants at the second level in the lattice by considering all the computations

of the intermediate programs reached due to the execution of adaptive actions in the states

of the corresponding intermediate programs at first level.

In this way, we can continue to find transitional-invariants at various levels in the lattice.

Since the adaptation is correct, the atomic adaptation in each intermediate program at level

n — 1 will result in a state of the new program where SQ holds.

Thus, the correctness of adaptation proves the existence of the transitional-invariant

lattice.
E1

39

 gr

4.3 Case Study: Reliable Message Communication

In this section, we present an example that illustrates how the transitional-invariant lattice

can be used to verify correctness ofadaptation in the context ofa simple message communi-

cation program. The communication program that we consider is an abstraction ofthe com-

munication aspect of the applications such as video conferencing, audio streaming, or any

distributed application where messages are transferred over wired or wireless channel. We

first describe the fault-intolerant message communication program in Section 4.3.1. Then, we describe the FEC-based proactive component in Section 4.3.2. Next, in Section 4.3.3,

we discuss adaptation of adding the proactive component to the fault-intolerant message

communication program. In Section 4.3.3, we also identify the transitional-invariant lattice

for the adaptation. In Chapter 5, we continue with the message communication program

to discuss the adaptation of replacing the proactive component with the acknowledgment-

based reactive component.

4.3.1 Fault-Intolerant Communication Program

Specification of the communication program. An infinite queue of messages at sender

process 3 is to be sent to two receiver processes T1 and r2 via two unicast channels and

copied into corresponding infinite queues at the receivers. Faults may cause loss of mes-

sages in the channel.

The message communication program is shown in Figure 4.]. Only send and receive

actions of the program are shown, since only those actions are considered for adaptation.

Processes 3, r1, and r2 maintain queues sQ, r1.rQ, and r2.rQ respectively. sQ con-

40

program 7pintol

process 3

var sQ : queue of integer

m : integer

begin

send : pisEmpty(sQ) —+ m :2 head(sQ);

CS,TerS,T2 3: Cs,r1 0 m, 08,7‘2 0 m

end

process 7312' = 1, 2]

var rQ : queue of integer

m :integer

begin

receive : -dsEmpty(Cs,rz-) ——+ m := head(C3,rz-);

rQ :2 'rQ o m

end

Figure 4.]: Message communication program (fault-intolerant version).

tains messages that 3 needs to send to 7'1 and r2. The messages received by r,- from s are

stored in 7310. Let mQ be the queue of all messages to be sent. (mQ is an auxiliary vari-

able that is used only for the proof.) Initially, sQ = 77262. The function head(sQ) returns

the message at the front of 3Q, and head(sQ, It) returns k messages from the front of 362.

The notation 362 o d denotes the concatenation of SC) and (d).

Invariant. The invariant of the communication program is Sp = S1 /\ S2, where

51 2 Vi : (m,- E r1.rQ V m,- E r2.rQ) => mi E mQ, and

S2 2 Vi : m,- E mQ => (m,- E sQ 2 ((m2 E C3,?1 X m,- E r1.rQ)

/\ (m,- E C5”? Y m,- E r2.rQ))).

In the above invariant, S1 indicates that messages received by the receivers are sent by the

sender. S2 indicates that a message m, is not yet sent by the sender, or it is in the channel,

or it is already received by the receiver, all exclusive.

41

Notation. The s bol X denotes exact! one o erator, i. e., a:)1 X 2 im lies exact] one of
ym y P y P Y

x, y and z is true.

4.3.2 Proactive Component

The proactive component sends extra messages to the receiver, which the receiver can use to

recover from the lost messages. It consists of two types of fractions: encoder and decoder.

The encoder fraction is added at the sender process and the decoder fraction is added at

the receiver process. The encoder takes (n — k) data packets and encodes them to add I:

parity packets. It then sends the group of 71. (data and parity) packets. The decoder needs to

receive at least (it — k) packets of a group to decode all the data packets. This component

provides tolerance to certain message loss faults (discussed in Chapter 5).

Figure 4.2 shows the abstract version of the proactive component. The encoder and

the decoder fractions of the component are shown. The encoder fraction consists of two

actions: encode and fec-send. The decoder consists of two actions: decode and

fec-receive. These fractions are composed with the process that will use them. The

composition of a fi'action and a process is done by union, which is equivalent to com-

bining the actions of the fraction and the process. We assume that appropriate renaming

is performed so that there are no inconsistencies in the definitions of the variables of the

fractions and the processes. The message communication program composed with the

proactive component is shown in Figure 4.3.

Specification ofprogram using the proactive component. The program using the proac-

tive component satisfies the same specification as the communication program.

42

Component fec

Fraction encoder

inp sQ : queue of integer

7‘1,7‘2

var n, k, u, l, m : integer {initially, it = l = m = 0}

ean : array [integer, 0..n — 1] of integer {initially, ean = .L}

begin

encode : true —> ean[u, 0..n — 1] z: fec_encode(head(sQ, n —— k));

u := u + 1

[] fec_send : ean[l,m] 74 J. —) 0317'1 :2 C5,,»1 o {l,m,ean[l,m]};

Csfl‘2 :2 C33,,»2 o {l, m, ean[l, m]};

m := (m + 1) mod n;

if m = 0 then

I := l + 1

fi

end

Fraction decoder,

inp rQ : queue of integer

3

var n, k, x, y,p, m : integer {initially,p = 0}

rbqu : array [integer, 0..n — 1] of integer {initially, rbqu = I}

begin

fec_receive : —dsEmpty(Cs,7-i) —> :c, y, m :2 head(Cs,rz.);

rbqu[a:, y] := m

[] decode : count(rbqu[p,0..n — 1] 72 .1.) >= (n — k) -+

rQ := rQ o fec_decode(rbqu[p, 0..n —— 1]);

p 2: p + 1

end

Figure 4.2: Proactive component.

Invariant. The invariant of the program using the proactive component is SQ = S1 /\ Sp,

where

SF =Vi2miEmQ=>(mZ-ESQ

‘1 ((mi E r1.rQ)1 m,- E data(ean U Cs,r1 U r1.rbqu))

/\ (m,- E r2.rQ X m,- E data(ean U C33? U r2.rbrer)))).

43

Program Pfec

process 3

var: Pintol-S-Var U fec.encoder.var

begin

fec.encoder.encode

[] fec.encoder.fec.send

end

process r212” = 1, 2]

var: Pintol-Ti-Var U fec.decoder,~.var

begin

fec.decoder.fec.receive

[] fec.decoder.decode

end
Figure 4.3: Message communication program (with proactive component).

We use the notation m, E data(ean U CM1 U r1.rbqu) to imply that message m,- can

be generated from the data in {ean U Car1 U r1.rbqu}. In the above invariant, Sp

indicates that the message is either at the sender, or already received by the receiver, or it

can be generated from the data in the channel and the buffers at the sender and the receiver.

4.3.3 Adaptation: Addition of the Proactive Component

The adaptation of adding the proactive component converts the program shown in Figure

4.1 to the one shown in Figure 4.3. We first require an adapt-ready version of the program

Pintol as shown in Figure 4.4. (An adapt-ready program is one that is composed with

adaptive actions.) We now give the specification during adaptation of adding the proactive

component.

Specification during adaptation. The specification during adaptation is that S1 continues

44

program ’P -intol

process 3

var : Pintol-S-Var

begin

Pintolssend

[] a1 :true —-> TransformTo(Pa_z-p1.s,(Dal);

end

process r,[i = 1, 2]

var rQ : queue of integer

begin

pintol .rz- .receive

a(,-+1) :a1 A isEmpty(C3,7~z.) -—> transformTo(Pfec.r,-,<I>a(
241));

end

Figure 4.4: Message communication program (fault-intolerant version, adapt-ready).

to be true during adaptation.

We describe the adaptation by identifying the intermediate programs and the corre-

sponding transitional-invariants during adaptation after each atomic adaptation.

program P -2-p1

process 3

var : Pintolsvar

begin

a4 :a2 /\ a3 ——> TransformTo(Pfec.s,<I>a4);

end

 process rz-[i = 1,2] : same as in Fig. 4.4

Figure 4.5: Intermediate program Pa_z-p1.

The execution of adaptive action al in P _,-nt01 results in intermediate program P 'ipr

shown in Figure 4.5. PCH-p1 does not send any packets, but the packets that are there in

o

the channel can still be received by the receivers TI and r2. In the execution of P 4101

eventually all the packets in the channel are read and no new packets are added in the

45

u.n

channel from the sender to the receiver. Thus, the guards of the adaptive actions a2 and

a3 eventually get enabled. The transitional-invariant of Pug-1,,1 is: TS1 = 81 A 32, where

81,52 are as defined earlier in Section 4.3.1.

program P 41,2

process 3 : same as in Fig. 4.5

process r1 : same as in Fig. 4.3

 process r2 : same as in Fig. 4.4

Figure 4.6: Intermediate program P 4192.

Since a1 and a2 occur independently, we consider both possible orderings among them.

The execution of adaptive action oz in P -2-p1 results in intermediate program P 41,2

shown in Figure 4.6. In Pa_ip2, receiver r1 has replaced its fraction, whereas receiver

r2 has not yet replaced its fraction and can receive any remaining packets in the channel

from s to r2. Eventually, in the execution of Pa-z-p2, the guard of adaptive action a3 gets

enabled and a3 is executed resulting in intermediate program P041,4.

The transitional-invariant of P,”p2 is T32 = S1 /\ 33, where

S3 2 Vi : mi E mQ => (m,- E sQ X ((mz- E r1.rQ) /\ (m,- E 03,7? ‘1 m,- E r2.rQ))

/\ isEmpty(Cs,r1) = true /\ r1.rbqu = _L /\ up = 0).

program mp,

process 8 : same as in Fig. 4.5

process r1 : same as in Fig. 4.4

 process r2 : same as in Fig. 4.3

Figure 4.7: Intermediate program Pa_,-p3.

The execution of adaptive action a3 in PCH-p1 results in intermediate program P 41,3

shown in Figure 4.7. In Pa_,-p3, receiver r2 has replaced its fiaction, whereas receiver r1

46

 137m=¥—.

has not yet replaced its fraction and can receive any remaining packets in the channel from

s to r1. Eventually, in the execution ofPa,ip3, the guard ofadaptive action a2 gets enabled

and a2 is executed resulting in intermediate program Pa_ip4.

The transitional-invariant of Pa is T53 = S1 A S4, where
4123

S4 = Vi : m,- E mQ =9 (m,- E sQ _/ ((mz' E r2.rQ) A (m,- E CS”.1 X m,- E r1.rQ))

A isEmpty(C'3,7~2) = true A r2.rbqu = .1. A r2.p = 0).

program Pad-p4!

process 3 : same as in Fig. 4.5

process ri[i = 1,2] : same as in Fig. 4.3

Figure 4.8: Intermediate program P 41,4.

In intermediate program P,”-p4 shown in Figure 4.8, only adaptive action a4 is enabled,

and execution of (14 results in new program Pfec. The transitional-invariant of Pa_,;p4 is

TS4 = 81 A S5, where

S5 2 Vi. : m,- E mQ => (mi E sQ Y (mi E r1.rQ A m,- E r2.rQ))

AisEmpty(C3,1~1) = true A r1.rbqu = J. A r1.p = 0

A isEmpty(C3,T2) = true A r2.rbqu = J. A r2.p = 0.

We now give the state mappings for the adaptive actions in the adaptation that are used

in initializing the state of the new fi'action at each process.

State mapping. The state mapping for each adaptive action is shown in Table 4.1. Each

adaptive action initializes the state of the new process when it is executed based on this

mapping.

Based on the description of adaptation in this section, we find the transitional-invariant

lattice as shown in Figure 4.9 for the adaptation of adding the proactive component. Thus,

47

Mapping Function Process Affected New State

(Dal 3 Identity mapping

(1)42 r1 {rd}, 3} - Identity mapping,

{n, k, r, y, p, m, rbqu} - Initial mapping

(1)43 r2 {rQ, s} - Identity mapping,

{72, k, 2:, 21.19, m, rbqu} - Initial mapping

(12,14 3 {sQ, r1, r2} - Identity mapping,

{71, k, u, l, m, ean} - Initial mapping

Table 4.1: State mappings for the adaptation.

Pinto] : SP

Figure 4.9: Adaptation lattice for addition of proactive component.

we have the following theorem.

Theorem 4.2. The adaptation lattice ofFigure 4.9 is the transitional-invariant latticefor

the adaptation ofadding the proactive component. Hence, the adaptation is correct. 1:]

48

4.4 Discussion

In this section, we discuss some of the questions raised by this work.

Why is the specification during adaptation a safety specification?

The specification of the application before adaptation can be arbitrary. However, during

adaptation the specification should be a safety specification. It is not desirable to delay the

adaptation to satisfy liveness during adaptation. Rather, we would expect the adaptation to

complete as quickly as possible and the new program to satisfy the safety and liveness after

adaptation. For example, consider a transaction processing system with liveness guarantees

to commit or abort. In this case, either the adaptation should not start in the middle of

the transaction, or if the adaptation can be started in the middle of the transaction then

the liveness should be met once the adaptation is completed. Thus, the implicit liveness

specification during adaptation is that adaptation completes.

How is transitional-invariant lattice constructed?

Techniques [64, 69] developed to calculate invariants of a program can also be used to find

transitional-invariants. For a given adaptation model, we can perform reachability analy-

sis for each intermediate program obtained after execution of the atomic adaptation. The

reachability computation for an intermediate program helps in identifying the transitional-

invariant for that intermediate program, and we can construct a transitional-invariant lattice

for the given adaptation. Furthermore, the techniques for dynamically discovering likely

invariants from the execution ofthe system such as [70—72] can be used to find transitional-

invariants for the intermediate programs in the adaptation lattice.

Can transitional-invariant lattice approach be used to verify existing adaptation tech-

49

niques?

Yes, the transitional-invariant lattice approach can also be used to verify existing adapta-

tion techniques. We give an outline of how existing adaptation techniques can be verified

using transitional-invariant lattice. To verify existing adaptation approaches, we first need

to identify all atomic adaptations and the corresponding adaptive actions. We then need to

consider all possible orderings and concurrency among adaptive actions, and identify inter-

mediate programs after each adaptive action. Next, we find transitional-invariants for each

intermediate program and check if the transitional-invariants imply safety of adaptation.

Can adaptation lattice approach be used in the case ofparallel adaptation?

Yes, the adaptation lattice approach can also be used to verify parallel adaptation. We dis-

cuss the use of adaptation lattice approach in the case of parallel adaptation using a simple

example. Consider a system consisting of two processes, a sender process and a receiver

process. Both processes communicate using an encryption protocol. The adaptation re-

quires that eventually the current (or, old) encryption protocol be replaced by another (or,

new) encryption protocol. The parallel adaptation adds the new encryption protocol along-

side the current encryption protocol. In other words, the sender process has two types of

fiactions (for encryption) and the receiver process has two types of fractions (for decryp-

tion). All users using the sender process to send data to users at the receiver process initially

use the old encryption protocol. Once the new encryption protocol is added, some users

use the old protocol whereas some users use the new protocol. Eventually, after all users

have stopped using the old protocol, it can be removed from the system.

The adaptation lattice in this case is as shown in Figure 4.10. Program P uses the

50

P,: old, new P,: old

Pr: old Pr: old, new

P,: old, new

Pr: old, new

P3: new P.: old, new

Pr: old, new Pr: new

Figure 4.10: Adaptation lattice for parallel adaptation.

old protocol fractions at both the processes. Eventually, after adaptation is completed,

program Q uses the new protocol fractions at both the processes. Program P’ uses both

types of fractions at both the processes. During adaptation, program P' can stay active for

an unbounded time. The correctness requirements for P’ are that the old (respectively, new)

fraction at the sender process communicates only with the old (respectively, new) fi'action at

the receiver process. The correctness requirements for the intermediate programs between

P and P' are that the old fraction at the sender process communicates only with the old

51

fraction at the receiver process, and the communication from the new fraction at the sender

process to the receiver process is buffered. Similarly, the correctness requirements for the

intermediate programs between P’ and Q are that the new fraction at the sender process

communicates only with the new fraction at the receiver process, and no communication

occurs between the old fraction at the sender process and the old fraction at the receiver

process.

52

Chapter 5

Verifying Adaptation in Presence of

Faults

In this chapter, we introduce the notion of transitional-faultspan and transitional-faultspan

lattice to verify the fault-tolerance properties during adaptation. We first define transitional-

faultspan in Section 5.1. Then, in Section 5.2, we define transitional-faultspan lattice and

give a theorem to prove the correctness of adaptation in the presence of faults. Finally, in

Section 5.4, we present a case study of adaptation in the message communication applica-

tion to demonstrate the use of transitional-faultspan lattice.

5.1 Transitional-Faultspan

Let Fp be the fault class of the old program and FQ be the fault class of the new program.

Let Sp be an invariant and Tp be a Fp-span of the old program. Similarly, let SQ be an

invariant and TQ be a FQ-span of the new program. The old program is Fp-tolerant, and

53

the new program is FQ-tolerant. Let F be the fault class during adaptation.

In the context ofadaptation, we define transitional-faultspans to identify the set of states

that the program can reach while performing adaptation in the presence of faults.

Definition ('IYansitional-faultspan). Let R be an intermediate program in the adaptation

A, and TS be a transitional-invariant of R. A transitionalfaultspan (F-span) of R from

TS is a predicate TT that satisfies following two conditions: (2') TS ; TT, and (ii) TT is

closed in R[] F.

Now, we define transitional-faultspan lattice.

5.2 Transitional-Faultspan Lattice

A transitionalfaultspan (F-span) lattice is an adaptation lattice where each node is as-

sociated with two predicates, a transitional-invariant and a transitional-faultspan, and the

following conditions are satisfied:

0. Correctness in absence of faults. The adaptation lattice obtained by considering

the transitional-invariants only forms a transitional-invariant lattice.

1. Fault-tolerance of old program. The entry node P is associated with a FP-span

Tp of the program before adaptation.

2. Fault-tolerance of new program. The exit node Q is associated with a FQ-span

TQ of the program after adaptation.

3. Fault-tolerance of intermediate program. Each intermediate node B is associated

with a predicate TTR that is a transitional-faultspan (F-span) from TSR for any

54

intermediate program at R (i.e., intermediate program obtained by performing adap-

tations from the entry node to R). Furthermore, any intermediate program at R is

F-tolerant fiom TSR-

4. Safety of adaptive action. If a node labeled R1- has an outgoing edge labeled a to

a node labeled Rj, then for all adaptive transitions (3, a, s') in Smap where TTR,

'. In other words, Vs,s’ : (s,a,s’) Eis true in state 3, TTRJ- is true in state 3

Smap : s E TTR, => 3’ E TTRj' Furthermore, all the adaptive transitions (3, a, 3’)

satisfies the safety specification during adaptation.

5. Progress of adaptation. If a node labeled R has outgoing edges labeled

a1, a2, ..., ak to nodes R1, R2, ..., Rk, respectively, then in all computations of adap-

tation there exists a transition (.9, s’) such that for some 2' : 1 _<_ i S k : (s, 0.2-, s’) E

Smap. Furthermore, Vs : s E TTR : (Va,s’ : a 6 Ba — {a1,...,ak} : (s,a,s’) g!

Smap)-

Correctness of adaptation in presence of faults. Intuitively, an adaptation is correct in

presence of faults F if the following conditions are satisfied: If the adaptation begins in

a legitimate state of the old program then during adaptation each intermediate program is

F—tolerant and the resulting state of the new program is legitimate. With this intuition, if

the adaptation begins in a state where the fault-span of the old program is true, then we say

that the adaptation is correct if:

0 Adaptation terminates in a state where fault-span of the new program is true

0 During adaptation, each intermediate program is F-tolerant

55

o Eventually adaptation terminates

The following theorem states that finding a transitional-faultspan lattice is necessary

and sufficient for proving correctness of adaptation.

Theorem 5.1. Given Sp as the invariant of the program before adaptation, Tp as the

faultspan used to show that the program before adaptation is tolerant to Fp, SQ as the

invariant ofthe program after adaptation, and TQ as thefaultspan used to show that the

program after adaptation is tolerant to F62' the adaptationfrom P to Q is correct in pres-

ence offaults F if and only if there is a transitional-faultspan (F-span) lattice for the

adaptation with start node associated with Sp and Tp, and end node associated with SQ

and TQ.

Proof

The proof of this theorem is similar to Theorem 4.1 discussed in Chapter 4. E]

5.3 Adaptation of Self-Stabilizing Programs

In this section, we consider the adaptation by Gouda et al. in [73], where the authors have

focused on adapting from one self-stabilizing [59] program into another self-stabilizing

program. We show that this is an instance of our approach where all the transitional-

faultspan predicates are true.

A program is self-stabilizing if starting fi'om an arbitrary state it eventually recovers to

a legitimate state. Thus, in transforming from one stabilizing program to another, we can

let all the fault-spans (i. e., fault-span of the old program, fault-span of the new program

and transitional-faultspans ofthe intermediate programs) be true. With this approach, if the

56

old program starts in any state, eventually the new program execution begins although the

state of the new program may be arbitrary. Since the new program is self-stabilizing, it will

eventually recover to legitimate states.

Note that in [73] the corresponding transitional-invariants may not exist. Specifically,

even ifthe old program begins in legitimate states, the new program may initially be in ille-

gitimate states before recovery takes place. Moreover, the approach in [73] allows arbitrary

behavior during adaptation and, hence, the specification during adaptation may not be met.

5.4 Case Study: Reliable Message Communication (Con-

tinned)

In this section, we continue with the example of Chapter 4. We consider the adaptation

that replaces the proactive component with the reactive component. We first discuss the

adapt-ready version of the proactive component and the faults tolerated by the proactive

component in Section 5.4.1. Next, in Section 5.4.2, we describe the acknowledgment-

based reactive component. We then discuss the adaptation of replacing the proactive com-

ponent by the reactive component in Section 5.4.3. Finally, in Section 5.4.3, we identify

the transitional-faultspan lattice to verify the correctness of this adaptation in the presence

of faults.

57

C(I

5.4.1 Proactive Component

We discussed the proactive component in Chapter 4. The adapt-ready version of the proac-

tive component is shown in Figure 5.1.

Program Poo-fee

process 3

var: Pfecsvar

begin

fec.encoder.encode

fl fec.encoder.fec-send

[] aal :true -—> transformTo(Paa_z-p1.s,(Dual)

end

process 'rz-[z' = 1, 2]

var: Pfesz-yar

begin

fec.decoder.fec_receive

I] fec.decoder.decode

[] ooh-+2) : aa2 AisEmpty(Cs,7~z-) —> transformTo(’Pack.rz-,(Paa(i+2))

end

Figure 5.1: Message communication program (with proactive component, adapt-ready).

The specification of the program using proactive component is discussed in Chapter 4.

Additionally, it tolerates message loss faults of class F1 (cf. Figure 5.2). Faults of class

F1 causes a loss ofup to k messages in a group. In writing the fault transitions, we use the

following auxiliary variables: m9 to denote a message m from group 9, and lostC’ount?

to denote the number of messages lost in group g in the channel from s to ri. Initially,

Vg :: lostCounti.’ = 0. We now give the fault-span of the program using the proactive

component.

Fault-span. The F1-span of the program using the proactive component is TQ = SQ.

The fault-span is same as the invariant since the proactive component provides masking

58

a:

In

Ilt‘.

 / 3
L
I
.

'
’
1

555:.

Ctr-
‘\

mngossi : m9 6 CS,” /\ lostCountzg _<_ k —> Cs,” := Cs,” — m9;

lostCounté2 + +

Figure 5.2: Fault class F1.

fault-tolerance.

5.4.2 Reactive Component

The reactive component deals with the message loss by retransmitting the lost packets. It

uses acknowledgments to confirm the receipt of messages sent by the sender, and negative

acknowledgments to confirm the loss of messages sent by the sender. It consists of aSnd

fraction at the sender and aRcv fraction at the receiver. The aSnd fraction adds a group

and a packet number in each packet. It maintains a window of size to and sends all packets

in that window to the receiver. It waits for the acknowledgment of receipt of a group

before moving the window one group forward. If it receives a negative acknowledgment

for any packet, it sends that packet again to the receiver. When the aRcv fraction at the

receiver receives a packet out of order, it waits for a few more packets before sending a

negative acknowledgment to the sender. When all packets in a group are received, it sends

an acknowledgment for that group to the sender.

mngossz- : m 6 CS,”- -—> C3,”. :2 Cs,” — {m}

Figure 5.3: Fault class F2.

The reactive component provides tolerance to message loss faults F2 shown in Figure

5.3. Faults of class F2 causes loss of messages from the channel. For simplicity, we

assume that acknowledgment messages are not lost; however, the component can be easily

extended to deal with faults that lose acknowledgments by using timeout guards.

S9

Component ack

Fraction aSnd

inp sQ : queue of integer

r1, r2

var n, w, 92-, p,- : integer {initially, p,- = g,- = 0}

9a, gnamna 3 integer {initially, Pi = 92' = 0}

chopyz- : queue of integer {initially, Empty}

snti : array [0..w — 1, 0..n — 1] of integer {initially _L}

param i : i = 1, 2

begin

com I isEmpty(chopyz-) —+ SQCOPyz' == 8Q

U sendz- : fiisEmpty(chopyz-) A Mitt-[923197;] = _L —+

sntilgimz'] == {9231923 head(8Q60pt/z')};

C3,”. :2 Cs,” 0 snti[gi,pi];

p,- := (p,- + 1) mod n;

if p,- = 0 then

9,- := (91- + 1) mod 10

fi

[] resend,- : type(Cri,s) = nack -—+ 9nmpna :2 head(Crz.,s);

if snti [912a, pm] 524 i then

03,73- 3: 03,13; 0 sntz’lgnamna]

fi

[] ack_rcvz- : type(Cri,s) = ack —> 90,, sntz-[ga,0..n — 1] := head(C7~2-_,3), i

end

Figure 5.4: Acknowledgment component: sender fraction.

Figures 5.4 and 5.5 shows the abstract version of the reactive component. The aSnd

fraction consists of four types of actions: copy, send, resend, ack_rcv. The aRcv

fraction consists of three types of actions: receive, del ive r, and sendmack. These

fractions are composed with processes that will use them. The message communication

program composed with the reactive component is shown in Figure 5.6. We now give the

specification of the program using the reactive component.

Specification of program using the reactive component.

component satisfies the same specification as the communication program (cf. Chapter 4).

6O

Program using the reactive

Component ack

Fraction aRcvz-

inp rQ

.3

var n, to, g, p : integer {initially k 2 ng :2 0}

k, ng, m : integer {initially k = 77.9 = 0}

rbqu : array [0..w — 1, 0..n — 1] of integer {initially 1}

ug : array [0..w — 1] of boolean {initiallyfalse}

paramj :Ogigw—l

begin

receive : -uisEmpty(C3,ri) —-> g,p,m := head(Cs,7~i);

rb’ufQ19, 29], ugly] == m, true

[] deliverj : ug[j] = true —> if count(rbqu[j, O..n — 1] 7£ _L) = n then

rQ := rQ o rbquLj, 0..n — 1];

rbquLj, 0..n - 1], CTN :2 1,073”; o ack(j);

ug[j],ng :=false, (j + 1) mod to

fi

[] send_nack : count(ug[0..w — 1] = true) > 2 ——> for k = 0 to n — 1

if rbqu[ng, k] = .1. then

013,3 := 013,3 0 nack(ng, 1:)

fi

end

Figure 5.5: Acknowledgment component: receiver fiaction.

Additionally, it tolerates message loss faults F2.

Invariant. The invariant of the program using the reactive component is SR = S1 /\ SA,

where

SA=VizmiEmQ=>

((mi 6 chopy1 X m,- E r1.rQ

_/ (m2 9! (chopyl U r1.rQ) => (m,- E sntl A (m,- E 03¢1 2 mi 6 r1.rbqu))))

/\ (m,- E chopr X m,- E r2.rQ

X (mi ¢ (choprUrng) => (m,- E snt2 /\ (m,- 6 ngr2 Xmi E r2.rbqu))))).

In the above invariant, SA indicates that for a message m, exactly one of the following

61

Program 'Pack

process 5

var :Paa_fec.s.var U ack.aSnd.var

param i :z'= 1,2

begin

ack.aSndcopyz-

[] ack.aSndsendz—

[] ack.aSnd.send_again,~

[] ack.aSnd.ack.rcvz-

end

process ri[2‘ = 1,2]

begin

var : Paa_fec.r,-.var U ack.aRcvz-Nar

param k :OSksw—l

begin

ack.aRcv.receive

[] ack.aRcvdeliverk

[] ack.aRcv.send_nack

end
Figure 5.6: Message communication program (with reactive component).

is true:

- m is at the sender, and is not yet sent

- m is received by the receiver

- m is buffered by the sender, and m is either in the channel or is buffered at the

receiver.

Fault-span. The F2-span of the program using the reactive component is TR = S1 /\ TA,

where

TA=Vi:mz-EmQ=>

((mi 6 chopyl X m,- E r1.rQ Y (m,- ¢ (chopy1 U r1.rQ) : m,- E snt1))

62

/\ (mi 6 chopy2 _/ m,- E r2.rQ Y (m,- ¢ (chopy2 U r2.rQ) => m7; 6 snt2))).

In the above fault-span, TA indicates that for a message m, exactly one ofthe following

is true:

- m is at the sender, and is not yet sent

- m is received by the receiver

- if m is sent by the sender and not yet received by the receiver, then m is buffered by

the sender.

5.4.3 Adaptation: Replacement of Proactive Component with Reac-

tive Component

The adaptation of replacing the proactive component with the reactive component converts

the program shown in Figure 5.1 to the one shown in Figure 5.6. We now give the specifi-

cation during adaptation for the replacement of the proactive component with the reactive

component.

Specification during adaptation. The specification during adaptation is that S1 continues

to be true during adaptation in presence of faults F1.

We now describe the adaptation by discovering the intermediate programs and the cor-

responding transitional-invariants and transitional-faultspans during adaptation. We iden-

tify the intermediate programs after each atomic adaptation.

The execution of adaptive action aal in “Pawfec results in intermediate program

”Pawz-pl shown in Figure 5.7. ”Pawipl does not encode any new packets, but will send

63

Program ’Pawim

process .9

var: ’Paa_fec.s.var

begin

fec.encoder.fec_send

[] aag : aal AI = u —> transformTo(’Paa_Z-p2.s,(Page);

end

 process 7,-[2‘ = 1, 2] : same as in Fig. 5.1

Figure 5.7: Intermediate program poo-i191-

any remaining encoded packets. In the execution of ’Pawipl, eventually all the encoded

packets are sent to the receivers. Thus, the guard of adaptive action aag becomes true.

The transitional-invariant of ’Pawim is: TS5 = SQ A S6, where SQ is defined earlier in

Chapter 4, and

$6 = (Vj :j _>_ u : eanLj,O..n — 1] = _L) A (l S it).

In the above transitional-invariant, 36 indicates that no new packets will be encoded by the

sender. The transitional-faultspan TT5 of ’Pawipl is same as TS5.

Program ’Pawim

process 3

var : ”Paa_fec.s.var

begin

aa5 : aa3 A am; —> transformTo(73ack.s,<I>aa5);

end

 process ri[z’ = 1, 2] : same as in Fig. 5.1

Figure 5.8: Intermediate program ”Pam-1,2.

The execution of aag results in intermediate program Pam-p2 shown in Figure 5.8.

Paw,” does not send any packets, but the packets that are there in the channel can still

be received by the receivers 7‘1 and r2. In the execution of ’Pawim eventually all the

64

packets in the channel are read and no new packets are added in the channel from sender

to receiver. Thus, the guards of the adaptive actions aa3 and M4 eventually becomes true.

The transitional-invariant of ’Pa is: TS6 = 31 A S7 A SB, where 31 is defined earlier
mm

in Chapter 4, and

S7 = (Vj :j 2 u : ean[j,0..n — 1] = _L) A (l = u), and

SS 2 Vi : m,- E mQ => (m,- E 3Q 2 ((mi 6 r1.rQ X m,- E data(CS,7~1 Ur1.rbqu))

A (m,- E r2.rQ M mi 6 data(Cs,r2 U r2.rbqu)))).

In the above transitional-invariant, 57 indicates that there are no encoded packets left at the

sender for sending, and 38 indicates that all packets that are sent are either received by the

receivers or are in the corresponding channels. The transitional-faultspan TT5 of ’Pawim

is same as T56.

Program ’Pawim

process 3 : same as in Fig. 5.8

process r1 : same as in Fig. 5.6

process r2 : same as in Fig. 5.1
Figure 5.9: Intermediate program Pawim.

Since M3 and M4 occur independently, we consider both possible orderings between

them. The execution of adaptive action (103 in ”Paw,” results in intermediate program

’Pawim shown in Figure 5.9. In Paa_z-p3, receiver r1 has replaced its fraction, whereas

receiver r2 has not yet replaced its fraction and can receive any remaining packets in the

channel from s to T2. Eventually, in the execution of Pawim the guard of adaptive action

aa4 gets enabled and M4 is executed resulting in intermediate program ’Pawim. The

transitional-invariant of ’Pa is TS7 2 SI A S7 A SQ A Sm, where
a-ip3

65

Sg=VizmiEmQ=>(mZ-ESQ

_/ (m,- E r1.rQ A (mi 6 r2.rQ 2 mi 6 data(C'5,r2 U r2.rbqu)))), and

S10 2 isEmpty(Cs,r1) = true A r1.rbqu = _L.

The transitional-faultspan TT7 of ’Paa_ip3 is same as TS7.

Program poo-i124

process 3 : same as in Fig. 5.8

process r1 : same as in Fig. 5.1

process r2 : same as in Fig. 5.6
Figure 5.10: Intermediate program Pawn“.

The execution of adaptive action M4 in Puma-p2 results in intermediate program

poo-i194 shown in Figure 5 .10. In ’Paa_z-p4, receiver r2 has replaced its fraction, whereas

receiver r1 has not yet replaced its fraction and can receive any remaining packets in the

channel from s to r1. Eventually, in the execution of ’Paa_ the guard of adaptive ac-
i104

tion dog, gets enabled and (tag is executed resulting in intermediate program ’Paa_ip5. The

transitional-invariant ofPM. is TSg = S1 A S7 A S11 A 512, where
2104

$11=Vi:mz:€mQ=>(mz- ESQ

_/ ((mi 6 r1.rQ Y mi 6 data(C'S,r,~1 U r1.rbqu)) A m,- E r2.rQ)), and

312 = isEmpty(Cs,r2) = true A r2.rbqu = _L.

The transitional-faultspan TT8 of {Paar-i124 is same as TS8-

Program 7706,4105

process 3 : same as in Fig. 5.8

process 73-[2' = 1, 2] : same as in Fig. 5.6

Figure 5.11: Intermediate program 7300,4195.

In intermediate program 730,me shown in Figure 5.11, only adaptive action (105 is

66

enabled, and execution of Mg, results in the new program Pack. The transitional-invariant

of’l30a_ip5 is T89 = 51 A 510 A 512 A 513, where

313 2 Vi. : m, E mQ :> (m,- E 8Q Y (m,- E r1.rQ A mi 6 r2.rQ)).

The transitional-faultspan TT9 of Poo-i195 is same as TS9.

We now give the state mappings for the adaptive actions in the adaptation that are used

in initializing the state of the new fraction at each process.

State mapping. The state mapping for each adaptive action is shown in Table 5.1. Each

adaptive action initializes the state of the new process when it is executed based on this

mapping.

Mapping Function Process Affected New State

(Dual 3 Identity mapping

<I>aa2 3 Identity mapping

(baa3 r1 {rQ, s} - Identity mapping,

V(rl) — {rQ, s} - Initial mapping

(baa,1 r2 {rQ, s} - Identity mapping,

V(rg) - {rQ, s} - Initial mapping

(1)0115 S {8Q, 7'1 1 T2} ' Identity mapping:

V(s) — {sQ, r1, r2} - Initial mapping

Table 5.1: State mappings for the adaptation.

Based on the description of the adaptation in this section, we find the transitional-

faultspan (F—span) lattice as shown in Figure 5.12 for the adaptation ofreplacing the proac-

tive component with the reactive component. Thus, we have the following theorem.

Theorem 5.2. The adaptation lattice ofFigure 5. I2 is a transitional-faultspan (F1-span)

lattice for the adaptation of replacing the proactive component with the reactive compo-

nent. Hence, the adaptation is correct in presence offaults. D

67

SR,TR

Figure 5.12: Adaptation lattice for replacement ofproactive component with reactive com-

ponent.

68

Chapter 6

Case Study: Mixed Mode Adaptation

In this chapter, we discuss the case study ofmixed-mode adaptation. We study mixed-mode

adaptation in the context ofprotocol change as discussed in dynamically adaptable middle-

ware [1, 74, 75]. Specifically, we consider two leader election protocols and adaptation that

changes one leader election protocol to another at run-time. We replace a leader election

protocol that elects a leader based on process identification to a leader election protocol that

elects a leader based on process value, where the value of a process can be defined using

process’s battery life, its average distance to other processes, etc.

In the rest of this chapter, we first discuss the two leader election protocols in Section

6.1; we discuss the system model, protocol specifications and descriptions in this section.

Next, in Section 6.2, we discuss the adaptation of leader election protocols; we discuss

the overlap communication scenarios, state mappings and verification of the adaptation in

this section. In Section 6.3, we present the performance results of mixed-mode adaptation.

Finally, in Section 6.4, we discuss the limitations ofmixed-mode adaptation.

69

6.1 Leader Election Protocols

Leader election is a fimdamental problem in distributed computing. The basic description

of leader election problem is stated as: eventually elect a unique leader. For example, in

the case of group communication protocols, the leader election is employed to elect a new

coordinator whenever a group coordinator fails. Numerous leader election protocols have

been proposed in the literature for a variety of applications. We discuss two versions ofthe

leader election protocol that is based on the termination detection protocol by Dijkstra and

Scholten [76]. The protocols discussed in this section are an abstraction of the protocol

discussed in [77]. We assume that there is another module at all (or selected) processes that

monitors the status of the leader process. A monitor process starts an instance ofthe leader

election protocol whenever it detects a failure of the leader.

6.1.1 System Model and Assumptions

The system consists of n processes. All processes have unique identifiers which we denote

by id. Each process maintains a variable ldr, which denotes the value of the leader that the

protocol elected, and a variable 6, which denotes if the process is in election or not . We

make the following assumptions about the system:

0 Bi-directional channel. The channels between processes are bidirectional, i. e., if the

system has a channel Cpl] from p to q, then it also has a channel Cqm.

0 Static processes. We assume that processes are static and the network is connected.

If the processes are mobile and the network suffers from partitioning, then the proto-

col can be extended as discussed in [77].

70

0 Processfailure and reliable communication. A process or a link can fail, however,

for simplicity, we assume that while the election is going on there is no process or

link failure. We assume reliable communication, i. e., ifprocess p sends a message m

to process q, then eventually q receives the message m.

6.1.2 Specification of Leader Election Protocols

We consider the following problem specification of the leader election protocols that we

use in this case study:

Safety: Cl(i.ldr 7g j.ldr => ale Vj.e)

Liveness: UOVi,j : i.ldr = j.ldr

The safety property asserts that no two stable processes (i. e., processes not in the election)

can have different leaders. The liveness property asserts that eventually a unique leader is

elected.

We now discuss two leader election protocols, one that elects the process with the max-

imum id as the leader, and one that elects the process having the maximum value as the

leader.

6.1.3 Leader Election based on Process ID

The leader election protocol, 1dr]d , that elects the process with maximum id as a leader is

shown in Figure 6.1. In addition to the safety and liveness properties discussed earlier in

Section 6.1.2, the protocol also satisfies the following liveness property:

Liveness of ldrId: DOinr = max{k I dug < oo},

71

Component ldrId

Fractioni

inp N : list

var startElectz'on, e,ack : bool {initially false}

p, num, max, ldr : integer {initially p = num = max = 0, ldr = _L}

src(Num, Id) : (integer, Ln) {initially (O, 2)}

W, chd : list {initially W, chd = o}

begin

startElection : fit A startElectz’on ——>

src, num :2 (num, 2'), num + 1;

ELECT.src := src;

forj=1tonAjEN

Ci,j.add(ELECT);

W, ack,6,p,max, chd 2: N, true, true, 2', i, (f);

startElectz'on := false

fl joinElection : ELECT(ldrId) e Cjn‘ —->

Cj,i.remove(ELECT);

if fie V (e A ELECT.src > are) then

src := ELECT.src;

num := src.Num + 1;

fork=1tonA(k7éjAkEN)

Ci’k.add(ELECT);

W, ack, 6,19, max,chd := N — {7'}, true, true,j, i, (t);

else if e A src = ELECT.src then

ACK.{src, chd} := src, false;

Ci,j.add(ACK)

fi

[] ackToParent : e A W 2 g!) A src.Id 3A i A ack -—>

ack := false;

ACK.{src, chd, id} :2 src, true, max;

Ci,p.add(ACK)

Figure 6.1: Leader election algorithm based on node Id.

which asserts that the elected leader is the process having maximum id among all connected

processes.

The protocol uses three types ofmessages as shown in Table 6.1. It also shows the fields

associated with each message type. The variables used by the leader election protocol are

72

[] ackReceive : e A ACK(ldrId) e 033,- —>

Cj,z-.remove(ACK);

if ack A src = ACK.src then

W == W — {j};

if ACK.chd then

chd = chd + {j};

max := MAX(ACK.id, max);

fi

fi

[] electLeader : e A W = 05 A src.Id = i A ack ——>

ack, 6, ldr := false, false, max;

LD.{src, id} := src, max;

forj= 1tonAj Echd

Ci,j.add(LD)

[] setLeader : e /\ LD(ldrId) 6 CM A pack —+

Cj,i.remove(LD)

if src = LD.src then

ldr, 6 := LD.ld, false;

fork=1tonAk E chd

Ci’k.add(LD)

fi

end

Figure 6.]: Leader election algorithm based on node Id (Continued).

shown in Table 6.2.

Message Meaning Message Fields

ELECT for building a spanning tree type : protocol type

src : computation index of the election

ACK to acknowledge the receipt type : protocol type

of ELECT message src : computation index of the election

chd : denotes if the sender is a child

id : maximum id as seen by the sender

LD to announce a leader type : protocol type

src : computation index of the election

id : id of leader elected in the election

Table 6.1: Message types used in the protocol.

73

Variable Type Meaning

e bool indicates whether process is currently in election or not

ldr int(1..n) id of the leader process

num int index of the last computation that this process started

src(Num, Id) (int, int(1..n)) computation index of the last computation in which this

process participated

p int(1..n) parent process in last computation

ack bool indicates ifACK message is sent to parent or not

W list list of neighbors from which ACK is being awaited

C list list of my children in current computation

max int(1..n) maximum id among my children in current computation
Table 6.2: Variables maintained by each process in the protocol.

6.1.3.1 Description of the protocol

When the process i detects the failure of the leader, it sets the value of the variable

startElection to true to start the instance of the ldrId protocol to elect a new leader.

The fraction at i begins the election by starting a diffusing computation by sending an

ELECT message to all of its neighbors. The ELECT message has a field that contains the

computation-index ofthe diffusing computation. When a process receives the ELECT mes-

sage, it sets the neighbor from which it first received the message as its parent. It then

propagates the ELECT message to all of its neighbors. In this way, during the first phase a

spanning tree is build.

When a fraction 2' receives an ELECT message from a process that is not its parent,

it immediately responds by sending an ACK message. The ACK message has a field that

identifies if the message is from a child or not, and a field that denotes the maximum id

as seen by the process. The fraction i sends an ACK message to its parent only when it

74

has received ACK messages from all of its neighbors. When a fraction 2' has received ACK

messages from all of its neighbors, it first finds the process having maximum id among all

its children. It then sends the ACK message to its parent.

When the source process that started the computation (election) receives ACK messages

from all of its neighbors, it can compute the leader by finding the process having maximum

id among all its children. It then starts a diffusing computation to forward the leader infor-

mation to all the processes.

As one or more processes can concurrently detect failure of a leader, it is possible that

more than one process can start elections independently, thereby, leading to concurrent dif—

fusing computations. To ensure correctness of the protocol, it is required that each process

participate in only one diffusing computation. This is done by associating a computation-

index to each computation. The computation-index is a pair (num, id), where id represents

the identifier ofthe process, and num is an integer. When a process participating in a diffus-

ing computation, receives another diffusing computation with higher computation-index, it

stops participating in the current computation in favor of the diffusing computation with

higher computation-index. Two computation-index are compared as follows:

(num.1,id1) > (numg, idg) 4:) ((numl > numg) V ((numl 2 77.11.7722) A (idl > id2))).

6.1.4 Leader Election based on Process Value

The leader election protocol, ldr Val that computes the leader based on the value of a pro-

cess is shown in Figure 6.2. This protocol satisfies the following liveness property in addi-

tion to the safety and liveness properties discussed in Section 6.1.2:

75

Component ldr Val

Fractioni

inp value : int

N : list

var startElection, e, ack : bool {initially false}

p, num, ldr : int {initially p = num = 0, ldr = _L}

src(Num,Id),ma:r(Val,1d) : (int, 1..n) {initially (0,i)}

N, W, chd : list {initially W, chd = o}

begin

startElection : -~e A startElection —>

src, num :2 (num, i), num + 1;

ELECT.ST‘C I: i;

fork: 1tonAk E N

Ci,k.add(ELECT);

W, ack, e,p, max, chd :2 N, true, true, i, (value, i), a);

startElection := false

[] joinElection : ELECT(ldrVal) 6 CM -—>

Cj_i.remove(ELECT);

if we V (e A ELECT.src > src) then

src :2 ELECT.src;

num := src.Num + 1;

fork=1tonA(k#jAk€N)

Ci’k.add(ELECT);

W, ack, 6,1), chd := N — {j}, true, true,j, cf);

max := (value,i);

else if e A src = ELECT.src then

ACK.{src, chd} := src, false;

Ci,j.add(ACK)

fi

[] ackToParent : e A W = d) A src.Id 7e i A ack ——>

ack := false;

ACK.{src, chd, val, id} :2 src, true, max.{Val, Id};

Ci,p.add(ACK)

Figure 6.2: Leader election algorithm based on node value.

Liveness of ldrVal: D0(i.ldr =j => j.value = mar{k.value | diJc < 00},

which asserts that the elected process is the process having maximum value among all

connected processes.

76

[] ackReceive : e A ACK(ldrVal) E Cj,i A ack —>

C -,i.remove(ACK);
.7

if src = ACK.src then

W == W - {j};

if ACK.chd then

chd = chd+ {j};

maze := MAX((ACK.val, ACK.id), max)

fi

fi

[] electLeader : e A W = (15 A src.Id = i A ack —>

ack, e, ldr := false,false,ma:r.1d;

LD.{src, id} :2 src, maxid;

fork=1tonAk E chd

Ci,k.add(LD)

[] setLeader : e A LD(ldrVal) 6 CN- A pack —>

Cj,i.remove(LD);

if src = LD.src then

ldr, e := LD.ld, false;

fork: 1tonAk E chd

Ci,k.add(LD)

fi

end

Figure 6.2: Leader election algorithm based on node value (Continued).

The value of a process is calculated based on the resources available at the process,

such as, battery power, CPU load, distance to other processes, and degree of the process.

The leader election protocol is independent of how the value of a process is calculated.

We assume that there is a separate component that monitors the resources at a process and

computes the value of the process; and the leader election protocol fraction at the process

has access to this value.

77

6.1.4.1 Description of the protocol

The ldr Val protocol is similar to the ldrId protocol described earlier where the leader is

computed based on the process whose id is maximum. The ldrVal protocol is different

from ldrId protocol in the following ways:

0 The ldr Val protocol has an additional input variable, value that indicates the value

of the process.

0 The max variable in ldrVal is represented as a pair (Val, Id) and is of type

(int, int(1..n)); marld denotes the id of the process and max. Val represents the

value of the process.

0 The ACK message of ldr Val has a field, ACK.val that carries the information about

the process having maximum value among all of its children. This field is of type:

(int, int(1..n)). The equivalent field in ACK message of ldrId is ACK.id, which is of

type int. In the case where two processes have the same value, the tie is broken in

favor of the process having higher id. We have the following property:

marl > mastz <=> ((ma331.Val > ma$2.Val) V ((max1.Val = max2.Val) A

maxlld > max2.1d))).

6.2 Adaptation

We now consider adaptation that dynamically replaces the leader election protocol ldrId

to the leader election protocol ldrVal. When the adaptation is initiated, an instance of

ldrId can be underway, or it is also possible that no instance of ldrId is underway. If the

78

processes are not engaged in election, then replacing one leader election protocol to another

leader election protocol can be done easily; by replacing the corresponding fractions and

initializing the new fractions using initial, identity or quasi state mapping.

However, it is impossible for a process to locally determine whether other processes are

in election or not. One way to deal with this is to use a centralized control during adaptation

and/or enforce synchrony by quiescing the processes (blocking the processes from starting

new election). This type of approach causes service interruption where the leader election

service is not available till the adaptation is completed. Also, there is communication

overhead because of extra messages required for synchronization.

We consider mixed-mode adaptation that lets the old and the new protocol overlap dur-

ing adaptation. As a result, a process where the new fraction is installed, can start the elec-

tion right away without waiting for other processes to finish the adaptation. Thus, the time

for which the application is blocked or the service interruption time is reduced. Moreover,

since all processes can perform replacement of fractions independently (in parallel), there

is a little or no need for extra messages to achieve synchrony. Thus, the communication

overhead during adaptation is reduced.

The program using ldrId protocol is shown in Figure 6.3, and the program using ldr Val

protocol is shown in Figure 6.4. We first give the specification during adaptation for the

adaptation that replaces ldrId with ldr Val.

Specification during adaptation. The specification during adaptation is that the safety

property of leader election protocols as discussed in Section 6.1.2 continues to be true

during adaptation.

Adapting ldrId protocol to ldrVal protocol requires replacing each fraction of ldrId

79

Program pldrId

process i[i = 1, .., n]

begin

ldrId.i.startElection

ldrId.i .joinElection

ldrId. i .ackToParent

ldrId . i .ackReceive

ldrId.i.electLeader

ldrId.i.setLeader

D
E
E
D
:

end
Figure 6.3: Program using ldrId.

Program 7Dldr Val

process i[i = 1, ..,n]

begin

ldrVal.i.startElection

ldrVal.i.joinElection

ldrVal.i.ackToParent

ldr Val . i .ackReceive

ldrVal. i .electLeader

ldrVal.i.setLeader

D
E
C
I
D
E
:

 end

Figure 6.4: Program using ldr Val.

with the corresponding fraction of ldr Val. The replacement of fraction at each process is

an atomic adaptation and is modeled by an adaptive action. The intermediate programs that

occur during adaptation are as shown in Figure 6.5.

Program pip(ldrId-ldr Val)

process i[i = 1, ..,n;i 75 J]

Pldrld‘i U aaz- 2 true —* TransformT0(pldTVal'i’(Dani)

process j[j =1,..,n;i#j]

Pzdrvaz-J'
Figure 6.5: Intermediate program during adaptation from PldrId to Pldr Val-

In this example, the fractions of the two protocols at all processes are similar. Also, as

80

discussed later in this section, the overlap communication scenarios for each intermediate

program are similar. We take advantage of this symmetry by modeling the adaptation as an

adaptive program (cf. Section 3.2.2 (adaptation as an automaton) of Chapter 3).

To model each adaptive action, we introduce two new boolean variables idActive and

valActive. We do restriction composition [58] of ldrId program with idActive, and of

ldrVal with valActive. A restriction of program P by Z is a program whose actions are

of the form Z A g —-> st, for each action 9 -—> st of P. Thus, actions of ldrId will be

enabled only if idActive is true, and actions of ldrVal will be enabled only if valActive

is true. Initially, when the old program is running, idActive is true and valActive is false

at each process. The adaptive action at each process atomically sets idActive to false and

valActive to true. The adaptation modeled as an adaptive program is shown in Figure 6.6.

We allow these adaptive actions to execute independently ofeach other. In other words,

at each process the fraction of ldrId protocol can be replaced by the fraction of ldrVal

protocol independent of other processes. During this replacement, the state of the new

fraction needs to be initialized appropriately to ensure correctness of adaptation.

Furthermore, independent replacement of fractions at various processes will lead to

a situation where during adaptation some of the processes have fiactions of ldrId active

and some of the processes have fractions of ldrVal active. This will cause overlap of

communication between the two protocols. The communication between two protocols

need to be handled appropriately to ensure correctness of adaptation.

The correctness of adaptation requires that the safety property, which asserts that two

processes not in the election cannot have different leaders, also needs to be satisfied during

81

Program pldrId—ldr Val

process i[i = 1, ..,n]

var idActive :bool {initially true}

valActive : bool {initially false}

ldrId.i.{var} U ldrVal.i.{var}

begin

idActive A ldrId.i.startElection

idActive A ldrId.i.joinElection

idActive A ldrId.i.ackToParent

idActive A ldrId. i .ackReceive

idActive A ldrId . i .electLeader

idActive A ldrId.i.setLeader

valActive A ldr Val. i .startElection

valActive A ldr Val. i .joinElection

valActive A ldr Val. i .ackToParent

valActive A ldr Val. i .ackReceive

valActive A ldr Val. i .electLeader

valActive A ldrVal. i .setLeader

aaz- : idActive —-> idActive,valActive :2 false,true;

s, := (Pam-(3)

discardElect : valActive A ELECT(ldrId) e eri —> -j’i.remove(ELECT)

discardAck : valActive A ACK(ldrId) E Cj,i ——» j,i.remove(ACK)

acceptLd : valActive A LD(ldrId) e 0.7-9,- —-> true V ldrVal.i.setLeader

E
E
E
E
E
E
E

5
3
:
3
:
c
_
w

2
3
:
:

end
Figure 6.6: Adaptive program to adapt from PldrId to pldr Val-

adaptation. Furthermore, when all processes have finished replacing their fractions, the

program should be in a reachable (invariant) state of the ldr Val. This is required to ensure

that once the adaptation is complete, the new program satisfies its specification.

We now describe the state mapping that we use in the adaptation, and also discuss

various overlapping communication scenarios that arise during the adaptation and how we

deal with them.

82

6.2.1 State Mapping and Overlap Communication

During adaptation, a process replaces the fraction of ldrId with the fraction of ldr Val. Since

the protocol fractions are replaced independently at each process, we need to explicitly deal

with the communication between the two protocols. A process with the old fraction may

receive a message from the process with the new fraction and vice-versa. In Table 6.3, we

show different overlap communication scenarios that can occur during adaptation and how

they are dealt. Any message of type ELECT from the new fraction to the old fraction is

buffered. Any message of type ELECT or ACK from the old fraction to the new fraction

is discarded. The new fraction accepts a message of type LD from the old fraction. The

scenarios where the new fraction sends a message of type ACK or LD to the old fiaction do

not arise because the new fraction always discards any message of type ELECT from the

old fraction. We introduce the following actions: discardElect, discardAck, and

acceptLd as shown in Figure 6.6 to deal with overlap communication scenarios during

adaptation.

, Message Type ELECT ACK LD
Overlap scenario

Old (ldrId) to New (ldr Val) discard discard accept

New (ldr Val) to Old (ldrId) buffer NA NA

Table 6.3: Overlap communication between protocols.

To ensure correctness while dealing with overlap communication, the new fractions are

initialized using the state mapping defined in the Table 6.4. When the replacement is done,

the old fraction is in any one of the four states as described in the Table 6.4. As described

in the first case, if the old fraction is not involved in the election, then identity mapping is

83

done, i. e. , each variable ofthe new fraction is initialized to the corresponding variable ofthe

old fraction. In the second case, the old fraction is involved in the election, and is waiting

to receive ACK from its children. In this case, the old fraction can locally determine that

the source process has not yet elected the leader. The new fraction in this case is initialized

to its initial state, i. e., it is not taking part in election any more. The num and src variables

of the new fraction are assigned the same value as that of the old fraction. In the third case,

the fraction is waiting to receive the leader value (i. e., LD message) from the parent. In this

case, an identity mapping is done. In the last case, the process is the source of the election,

i. e., it started the election. In this case, we replace the fraction and have the new fi'action

start the election again. We initialize the state of the new fraction to its initial state, and

num variable of the new fraction is initialized to the same value as that ofthe old fraction.

For brevity, in Figure 6.6 we show the state mapping action as s' z: (Pam-(8)- This is

equivalent to a set of assignment statements that assign values to each variable of the new

fiaction using the state mapping (baa,- of Table 6.4.

(old) state 3 of process i Description of (old) state 3 (new) state 3’ of process i

fildrld .c not in election Identity mapping

ldrId.e A ldrId.W 5A (25 A in election and waiting for {num, src} - Identity mapping;

ldrId.src 76 i ACK from children and is not Initial mapping

source of election

ldrId.e A ldrId .W = q') in election and waiting for LD Identity mapping

ldrIde A ldrId.W sé o A in election and waiting for {n.um, e} — Identity mapping;

ldrId.src = i ACK from children and is {ldrVal.startElection := true;

source of election - Functional mapping;

L Initial mapping

Table 6.4: State mapping ((Daai) for each atomic adaptation 0a,.

84

6.2.2 Verifying Adaptation

To verify adaptation, we need to verify all intermediate programs that occur during adap-

tation. The intermediate programs that occur during the adaptation from Mr]d to ldrVal

are as shown in Figure 6.5. Since the protocol fractions and the overlap communication

scenarios are symmetrical, we modeled the adaptation as the adaptive program shown in

Figure 6.6. Thus, instead of verifying all intermediate programs, we verify the adaptive

program of Figure 6.6.

Safety ofadaptive program. The safety property for the adaptive program pldrld— 1d,. Val

is similar to the safety property of the leader election protocols, and given as follows:

Vp1,p2 :p1,p2 E {ldr1d, ldrVal} :p1.i.ldr # p2.j.ldr => plie Vp2.j.e.

Invariant. We establish the following invariant for the adaptive program that implies the

safety is not violated during adaptation:

I E PE A P]; A PL A Pi, where

PE _=_ i.idActive Aj.valActive Aj.c Aj.ack A j.VV 76 d => ELECT(ldrVal) E ij

Pg. E j.valActiveAfij.eA(3i : i E j.N : i.idActiveAj.src = i.srcAi.eAi.ackACZ-J = o)

=>Elk:k.p=kAk.eAk.ackAk.W#¢

PL E i.idActive A j.valActive Aj.e A j.p = i A -1j.acl: A j.W = (15

=> ((ic A isrc = j.src A fliack A i.W = o)V

(flieA LD(ldrId) E Ci,j)V

(is A tack A i.W 7t at A i.src = j.src)V

(it. A Lack A i.W 75 (J5 A i.src 35 j.src => j E i.VV))

85

Pi E i.idActive Aj.valActive A is A -wj.e A i.p = j A -ri.ack A i.W = qb A i.src = j.src

=> LD(ldrId) e Cjn’ v 31.: : k.p = k A lee A hack A k.W at 4')

In the above invariant, PE asserts that if process j starts an election after adapting to

ldrVal fraction, then any ELECT message that j sends to process i, which is still using

ldrId fraction, remains in the channel CM until i gets adaptated. P1,; asserts that if j was

in election and waiting for ACK(s) from its neighbor(s) when it replaced its fiaction then

the source ofthat election is still in the election. PL asserts that if process j was in election

and waiting for LD when it replaced its fraction and the parent of j is still using the old

fraction then one of the following is true: (i) the parent ofj is also waiting for LD, (ii) the

parent ofj is not in election and the channel CiJ has a message LD(ldrId), (iii) the parent

of j is still waiting for ACK(s) from its neighbor(s), or (iv) if the parent of j has started a

new election then it will not receive ACK from j till it replaces its fi'action. Pi asserts that

if a process i using the old fraction is waiting for a message LD from its parent j, and 3'

has completed its election and is now using the new fraction, then one of the following is

true: (i) the channel Cg},- has a message LD(ldrId) which was sent by process j before it

got adapted, or (ii) the source of that election is still in the election.

6.3 Performance of Mixed-Mode Adaptation

In this section, we compare the performance ofmixed-mode and quiescence adaptation. We

consider two different configurations for the following discussion: (2) a connected network

(straight line) of 5 processes and 4 edges, and (2) a connected network of 7 processes and

86

11 edges. We have considered other network topologies and obtained similar results. In

this discussion, we consider adaptation from ldrId to ldr Val. We have also implemented

adaptation from ldr Val to ldrId and obtained similar performance results.

Quiescence Adaptation (Ldrld to LdrVal)

2500 ~

2000
. .

A . DNode1

g 1500 13'; 0: Node 2

”J 3 ; a Node 3

g 1000 5 ~ ' INode4

, 5;! T5 : EINodes

5004 2:: 2:; _, -

:éi '
0 " : T l

1 2 3 4 5

Runs

(a) Configuration 1

Quiescence Adaptatlon (Ldrld to LdrVal)

2500]

.; E]

2000 '5; U Node 1

A 5; nNode 2

g E; . El Node 3

I E? nNode 4
- r

g g 5; ' 7 a Node 5

E 52 g a Node 6

E :2 a 1] Node 7

g :5 5

. . t 7 =5 5

1 2 3 4 5

Runs

(b) Configuration 2

Figure 6.7: Quiescence adaptation.

Figure 6.7 shows the time required for quiescence adaptation to adapt from Id-based

leader election protocol to value-based leader election protocol. It shows two configura-

87

tions and 5 runs for each configuration. In each run it shows the time taken by each process

for adaptation. In run number 5 of configuration 1 and run number 4 ofconfiguration 2, the

time taken for adaptation is almost twice the average time taken by the process over other

runs. This is because when the adaptation started the instance of the leader election proto-

col is already running. The adaptation waits for the election to complete before replacing

the protocol.

Figure 6.8 shows the time required for the mixed-mode adaptation to adapt from Id-

based leader election protocol to value-based leader election protocol. It shows two config-

urations and 5 runs for each configuration; and in each run the time taken by each process

to finish the adaptation. The time taken in each run is almost the same for a given config-

uration regardless of whether the instance of leader election protocol is underway or not

when adaptation occurs.

Figure 6.9 shows the comparison between the average time taken by quiescence and

mixed-mode adaptation to adapt from Id-based leader election protocol to value-based

leader election protocol. The average time taken by quiescence adaptation is almost 8 times

that of mixed-mode adaptation in the case of configuration 1, and 6 times that of mixed-

mode adaptation in the case of configuration 2. The result is as expected, because the

quiescence adaptation sends more messages for synchronization during adaptation. Fur-

thermore, in the case of quiescence adaptation there is more processing time required at

each process during adaptation as channels and other resources used by the existing pro-

tocol at that process need to be released before the new protocol can be installed. On the

contrary, in the case ofmixed-mode adaptation the new protocol is able to deal with overlap

communication and hence explicit release of channels and other resources is not necessary.

88

Mixed-Mode Adaptation (Ldrld to LdrVal)

350 -

300

A 250 [Node 1

a
E 200 El Node 2

0 EINode 3

E
|__. . = : 1! Node 4

Em Egg. , 5 . . : a Node 5

1

(a) Configuration 1

Mixed-Mode Adaptation (Ldrld to LdrVal)

300 ,

250 l 'g " BNode1
' I

A 200 ‘ :5 mN°de2

E E? :7 ; mNodes

:1504 E? E; I? ‘ 3 EINode4

E :t 55 :5 ‘ ' ENode5
I- 100 :5 .:t :5

E; :2 E? ZNodeS

50 :g E? E; nNode7
.II - I f

0 l 2., it it.

1 2 3 4 5

Runs
(b) Configuration 2

Figure 6.8: Mixed-mode adaptation.

Figure 6.10 shows the time required for electing a leader by Id-based and value-based

leader election protocols. It is clear that both the protocols take almost the same amount of

time to do an election.

Furthermore, from Figures 6.9 and 6.10 it can be observed that time taken for quies-

cence adaptation is more than twice the time it takes for leader election. Also, the time

89

Quiescence Vs. Mlxed-Mode Adaptatlon

1400

1200

i?

g 1000 a Node 1

E 800 In Node 2

E a Node 3

5: 50° Node 4

g 400 E Node 5

<

200

o <

Quiescence Mixed-Mode

(a) Configuration 1

Qulescenca Va. Mixed-Mode Adaptation

.3 I3 Node 1

E, [Mode 2

g a Node 3

p. a Node 4

g! B Node 5

9; ZNode 6

< El Node 7

Quiescence Mixed-Mode

(b) Configuration 2

Figure 6.9: Quiescence vs. mixed-mode adaptation.

for mixed-mode adaptation is less than one-fourth of the time it takes for leader election.

Clearly, if a user at some process requests an election at the same instant when the sys-

tem decided to adapt (using quiescence adaptation), then user would notice a long delay

which could be up to twice the time it normally experiences for an election. However, if

mixed-mode adaptation is chosen, the adaptation would be almost transparent to the user.

90

Ldrld Va. LdrVal

1000

950.L

A 9001
o] n

g 850. ‘DNode1

g 300]f {nNodez

I: 7501 EINode3

g 700’ INode4

; 650I ..,, ENode5

‘4 600‘

550 ~ 1‘: ,
500 I ><> . ‘ , ,‘, -. .

Ldrld LdrVal

(a) Configuration 1

Ldrld V8. LdrVal

‘DNode1

lUNodez

‘DNode3

‘EINode4

]ENode$

‘lZNodefi

@121

I

A
v
e
r
a
g
e
T
i
m
e
(
m
s
)

—
—
‘—
—
'—

_-
..-
—
'—
‘—

'—

:-

_—

_—
'—
.—
'—

'—

-
'—

—
'—

—

_—
_

/ss
/29
/:3

/22

/5E

(b) Configuration 2

Figure 6.10: Time for leader election protocols.

6.4 Limitations of Mixed-Mode Adaptation

One of the limitations with mixed-mode adaptation is that it requires the adaptation de-

veloper to have a deeper knowledge of the components involved in adaptation. Addition-

ally, such adaptation may require support from components themselves. Nonetheless, in

our experience, we find that components involved in mixed-mode adaptation exhibit var-

91

ious levels of mixed-mode behaviors. Consequently, based on the details available about

the components involved in adaptation, an adaptation developer can provide an appropriate

mixed-mode behavior during adaptation. However, in cases where components are not con-

ducive in the development ofmixed-mode adaptation, adaptation based on system structure

such as quiescence adaptation may be more appropriate.

92

Chapter 7

Tradeoffs in Adaptation

In this chapter we identify various tradeoffs that arise in developing adaptation. We iden-

tify tradeoffs in verification complexity, completion time, and communication overhead

during adaptation. Concurrent executions are generally considered faster than sequential

executions. Specifically, with respect to adaptation, we expect that concurrent execution

of atomic adaptations (if possible after considering any dependencies) would be faster than

sequential execution. However, verification complexity increases exponentially with in-

crease in concurrency, and also message communication overhead increases with increase

in concurrency. In the rest ofthis chapter, we first discuss tradeoffbetween concurrency and

verification complexity in Section 7.1. In Section 7.2, we discuss tradeoffs between concur-

rency and communication overhead. Finally, we discuss a simple casestudy to demonstrate

tradeoffs in adaptation in the publish-subscribe application.

93

7.1 Concurrency v/s Verification Complexity

As discussed in Chapter 3, to verify a given adaptation, we consider all possible order-

ings of concurrent atomic adaptations. As a result, in the lattice, we have multiple paths

from start node to end node to encompass all possible orderings among concurrent atomic

adaptations. This increases the number of intermediate programs that need to be verified.

Putting concurrent atomic adaptations in various possible orderings is a potential cause

of the explosion in the size of the lattice. For example, if an adaptation consists of n

atomic adaptations that can be executed concurrently, then there are 77.! different orderings

and 2” — 2 different intermediate programs. Thus, 2” — 2 transitional-invariants need to

be identified corresponding to each intermediate program. The lattice in this case is as

shown in Figure 7.1(a) for n = 3. To identify all these transitional-invariants and verify the

corresponding intermediate programs is a difficult process.

 (b)

Figure 7.1: Executing three atomic adaptations.

Clearly, the specification during adaptation is satisfied, if the adaptation follows any

94

path in the lattice. So instead of choosing to verify all adaptation paths, if we verify only

one path (e.g., a1, a3, a2), then the lattice would be as shown in Figure 7.1(b). For specifi-

cation during adaptation to be satisfied the adaptation must follow this path, i. e., a1 should

occur before (13, and a3 should occur before a2. In this case there is no concurrency

among adaptive actions during adaptation, and we are able to reduce the cost of verifica-

tion from 0(2") to 0(a). Specifically, for n concurrent atomic adaptations, the number of

transitional-invariants that need to be identified is reduced to n — 1.

Alternatively, we could have chosen the lattice as shown in Figure 7.1(c). In this case

the cost of verification is more compared to the lattice in Figure 7.1(b), but less compared

to the lattice in Figure 7.1(a). Also, the concurrency in the lattice in Figure 7.1(c) is more

compared to the lattice in Figure 7.1(b), but less when compared to the lattice in Figure

7.1(a).

Thus, based on the tradeoff between concurrency of adaptation and complexity of ver-

ifying that adaptation, we can choose a subgraph (sublattice) of a given lattice that has all

the properties of the lattice defined in Chapters 4 and 5. If we verify only a sublattice, we

also need to constrain the adaptation so that it follows only path of the sublattice.

7.2 Concurrency v/s Message Complexity

Many systems are limited by communication overhead and message delays. Specifically,

for wireless and mobile systems, energy—communication tradeoff may require system to

reduce communication overhead whenever possible. For designing adaptation in such sys-

tems, communication overhead should also be taken into account. In this section, we show

95

how concurrency during adaptation affects the communication overhead.

IP SP
a1 IP a] SP

pl ! : 4‘ p1 : ‘ e

,2 - .3, o p \ - ‘12 .
j X f V 2 V '

p3 t c 4 p3 \v 3 .j e

a, a,

(a) (b)

Figure 7.2: Space-time diagram of adaptation.

Consider the case where all atomic adaptations are executed concurrently. This is de-

scribed by the lattice in Figure 7.1(a), and the space-time diagram for this adaptation is

shown in Figure 7.2(a). We show only the minimum number of adaptation-specific mes-

sages in the space-time diagram. There may be other application-specific messages that

we do not consider as they are not related to adaptation. We divide adaptation into two

phases: (2') initialization phase, and (ii) synchronization phase. In the initialization phase

(denoted by IP in the figures) the initiator process that decides on the adaptation informs

other processes ofthis decision. In the synchronization phase (denoted by SP in the figures)

processes exchange messages to co-ordinate the execution of adaptive actions.

In Figure 7.2(a), process p2 is the initiator that informs other processes to start per-

forming any steps required for adaptation. In this case, there are at least two messages

required to initiate adaptation. Now, if the adaptation were to occur according to the lattice

of Figure 7.1(b), then we can make process p1 as the initiator, and the space-time diagram

would be as shown in Figure 7.2(b). In this case, we got rid of the initialization messages

that were required for the adaptation described by Figure 7.2(a). In both the cases, the min-

imum number of adaptation-specific messages required during adaptation is two. Thus, we

96

did not increase any communication overhead by reducing concurrency. We now consider

another scenario where the number of messages can actually be reduced if concurrency is

reduced during adaptation.

 (b)

Figure 7.3: Adaptation with concurrency.

Consider the lattice of Figure 7.3(a) that describes the adaptation consisting of four

adaptive actions a1, a2, a3, and a4 occurring at processes p1, p2, p3, and p4 respectively.

Adaptive actions a1 and a2 are independent of each other and can occur concurrently.

Similarly, a3 and a4 can occur concurrently. The corresponding space-time diagram is

shown in Figure 7.3(b). The minimum number of adaptation-specific messages required

during adaptation is five. Now, if were to reduce concurrency in this case, we can have

the adaptation that is described by the lattice of Figure 7.4(a), and corresponding space-

time diagram as shown in Figure 7.4(b). In this case, the minimum number of adaptation-

specific messages required is reduced to four.

Further, if we have no concurrency during adaptation as described by the lattice of

Figure 7.5(a), then the space-time diagram would be as shown in Figure 7.5(b). In this case,

97

P1

P2

‘
H
D

0
Q

f
N _
—
—
—
—
4

D

P4 (b)

Figure 7.4: Adaptation with (reduced) concurrency.

a minimum of only three adaptation-specific messages are required during adaptation.

IP SP

01
P1 : X e

p2 - :21 1

P3 . c -

a3 X

P4 Ta: e

4 (b)

Figure 7.5: Adaptation with no concurrency.

Thus, by reducing concurrency during adaptation, it is possible to reduce the number

of messages required during adaptation. However, from the space-time diagrams of Fig-

ure 7.2-7.5, it is clear that time required to complete adaptation would probably be less

when there is more concurrency during adaptation. Thus, while designing adaptation, one

should consider various factors such as concurrency during adaptation, message delays and

98

communication overhead, and verification complexity.

7.3 Case Study: Publish-Subscribe Application

In this section, we illustrate the tradeoffs due to concurrent adaptive actions during adap-

tation using a simple publish-subscribe application. We consider the publish-subscribe ap-

plication with two publishers (senders) and two subscribers (receivers). Both the receivers

subscribe to receive data from both the senders. For reliable communication between pub-

lishers and subscribers we consider two protocols, namely, the proactive protocol based

on forward error correction and the reactive protocol based on acknowledgments. These

protocols are discussed earlier in Chapters 4 and 5.

P3

P4

(b)

IP 3:2

P1 (=11 - :5- a

P2 1 c2 1 Va; a

P3 - e ‘
a3X

P4 - g

4
(C)

Figure 7.6: Adaptation in publish-subscribe application.

99

The adaptation in publish-subscribe application replaces the proactive protocol with the

reactive protocol. The adaptation is done by first blocking the two senders. The blocking of

two senders can be done concurrently, i. e. , independent ofeach other. We note that the local

guards ofthe adaptive actions that block the senders need to be true before they can be exe-

cuted. As a result, though the two adaptive actions are independent of each other, they may

not necessarily execute at the same instant during adaptation. Once the protocol fractions

at both the senders are blocked, the protocol fractions at both the receivers can be replaced

concurrently. Finally, once the receivers have replaced to the new protocol fractions, the

protocol fractions at the senders can be replaced. These replacement of fractions at the

senders can also occur concurrently. The adaptation lattice in this case is shown in Figure

76(3). The corresponding space-time diagram is shown in Figure 7.6(b). The verification

complexity and communication overhead can be reduced for this adaptation as discussed in

Section 7.1. Specifically, if all the adaptive actions are serialized then the space-time dia-

gram for the adaptation is as shown in Figure 7.6(c). Clearly, the communication overhead

is reduced fi'om a minimum of 9 messages to a minimum of 5 messages. Also, the number

of intermediate programs that need to considered for verification of adaptation is reduced

from 8 to 5.

100

Chapter 8

Testing Adaptation

In order to specify and verify the behavior of the system during dynamic adaptation, we

presented an approach based on adaptation lattice in Chapters 3, 4, and 5. Due to com-

plexity of the adaptive systems, the verification is often done on an abstract model of the

system. In this chapter, we present an approach for testing adaptation to gain assurance

about the implementation of adaptation.

Predicate detection is a common approach used in testing and debugging of distributed

systems, as many problems in distributed systems can be formulated as an instance of

Global Predicate Evaluation (GPE) [78]. Typical properties of distributed systems such as

deadlock detection, mutual exclusion, termination and many more properties can be tested

using predicate detection techniques. Numerous approaches [78—83] have recognized a

variety of predicate classes and presented algorithms for predicate detection. In this paper,

we discuss predicate detection approach for testing adaptive systems.

Due to overlapping behavior ofthe old program and the new program during adaptation,

the existing algorithms for predicate detection cannot be applied directly. Specifically, these

101

algorithms do not deal with the system whose code is being changed. In many cases, the

algorithms can be modified so that if any error is detected during adaptation then it can be

mapped to a particular step of adaptation that caused the error.

With this motivation, we extend the existing algorithms to test the system during adap-

tation. In particular, we classify the predicates to be detected during adaptation into two

types: (2') adaptation-stable predicates, and (ii) adaptation-transient predicates. We call

a predicate adaptation-stable if the predicate holds throughout during adaptation, and call

it adaptation-transient if it holds only in some interval during adaptation. We show how

existing algorithms can be modified to detect both these types of predicates during adapta-

tion. Furthermore, we show how we can reduce the cost of testing by testing only atomic

adaptations.

The rest of the chapter is organized as follows. In Section 8.1, we review preliminary

concepts of distributed computation, causal precedence, consistent global state and consis-

tent cut. Then, we introduce adaptation vector in Section 8.3. We also give a briefoverview

ofvector clocks used to track causality among events in Section 8.3. Subsequently, in Sec-

tion 8.4, we discuss algorithms to test adaptation. To reduce the cost of testing, in Section

8.5, we identify a subset of states during adaptation to do limited testing. Finally, we give

a summary of this chapter in Section 8.6.

8.1 Preliminaries

As discussed in Chapter 3, a program ’P consists of a set of n processes {p1, p2, pn}

communicating via asynchronous messages on interprocess channels. We do not assume

102

the channels to be FIFO (unless the application requires so). Furthermore, in this chapter,

we do not specify the channel states explicitly; a channel state can be constructed from con-

sidering the local states of the processes. The execution of a process consists of a sequence

of events. An event is the execution of a process action. An event is one of the three types:

local (or internal) event, send event or receive event. A action corresponding to send event

has a statement of the form: send (m) to 19,. A receive event has a corresponding action

that has the following form: rcv (m) from p,- —> stmts.

We now present formal definitions of distributed computation, causal precedence, con-

sistent global state and consistent cut. In this section, we consider partial order semantics

for a program.

Definition (Distributed computation). A distributed computation r of a program P de-

scribes a single execution of P by a collection of traces r[i] for each process pi. Each

r[i] is a finite alternating sequence of states and events. For example, the trace of process

01 12 ls:

’l
andp,- is s ..., where sf denotes the local state of p,- immediately afier event e

3? denotes the initial state before any actions are executed. A distributed computation is

commonly depicted using a space-time diagram as shown in Figure 8.1.

1 2 3 4

e1 61 31 e1

P1 ‘ ‘ ‘ ‘ r

1 2 3 4

92 92 92 32

p2 - f ‘ -

p3 - ~2 -

e e3 e3

Figure 8.1: Space-time diagram of a distributed computation.

103

Formally, a distributed computation is a partially ordered set defined by the pair (E, —>) ,

where E is the set containing all events and —> is the happened-before relation [84] that

defines the causal precedence relation on events (or states). The happened-before relation

on states is defined as follows:

Definition (Causal precedence). The state 3 causally precedes the state t (denoted as

s ——> t) if and only if one of the following holds:

0 if s and t are states on the same process and 3 occurred before t

o if action following 3 is the send of a message and the action before t is the corre-

sponding receive

a there exists a state a: such that s —+ a: and a: —> t.

We use the notation —> to denote the causal-precedence relation for both states and

events. If for two events el and e2, neither el —+ e2 nor e2 —> e1, then el and e2 are said

to be concurrent and denoted by e1 ll e2.

Not all events are relevant for testing of dynamic adaptation, and hence to simplify the

testing, we only consider a subset of events of distributed computation. Let R Q E be

the set of relevant events. The poset (R, —->) describes an abstraction of the distributed

computation.

Definition (Global state and cut). We defined a global state as a state of all the processes

and channels in the system. We, however, ignore the channel states and represent global

state as a n-tuple of local states (3?, ..., sf,"). A channel state can be constructed from the

set of all messages that have been sent but not received yet.

104

A cut C associated with a global state g is a set of events, one event per process, such

that event e E C if and only if the process state immediately after event e is a part of g. A

global history H associated with the cut C (or corresponding global state 9) ofP is defined

as the subset hi1 U U 12%", where It?i is the local history ofprocess pi containing first c,-

Definition (Consistent cut and consistent global state). A cut C is consistent if for all

events e in the corresponding global history H, we have (6 E C) A (e’ ——> e) => e' E H.

A global state 9 is consistent if the cut corresponding to it is consistent. Intuitively, a

consistent global cut corresponds to a view of the run which could be obtained given the

existence of a global clock.

Given a space-time diagram, it may not always be possible to say how the global ex-

ecution actually occurred. For example, it is not clear in Figure 8.1 if a? or a3 occurred

first. In other words, there are many total orders of a distributed computation r. Thus,

several possible global executions correspond to a given distributed computation r. We call

each total order of r as an observation. In other words, a sequence of consistent global

states 90919293... is an observation, where g0 denotes the initial global state (3?, ..., 39,),

and each global state 9; is obtained fiom previous state gz-_1 by some process executing

a single event. For two such global states Eli-1 and 92-, we say that gi_1 leads-to 92-. The

set of all consistent global states of a computation along with the leads-to relation defines

a lattice ofglobal states or computation lattice. A path in the computation lattice corre-

sponds to an observation, and each observation has a corresponding path in the computation

lattice. Thus, the computation lattice represents the set of all possible observations of the

computation.

105

Remark. In the following sections, unless mentioned otherwise, we will use global

state to mean consistent global state.

8.2 Testing

Various global properties of the system need to be tested during adaptation. Examples of

the properties that can be tested during adaptation include deadlock detection, token loss

detection, and in general monitoring. We classify the properties to be checked during adap-

tation into two categories: (i) adaptation-stable properties, and (ii) adaptation-transient

properties. If a property is to be satisfied for all states during adaptation, then it is known

as adaptation-stable property, and if a property is to be satisfied for some interval during

adaptation, then it is known as adaptation-transient property. A predicate used to specify

adaptation-stable property is known as adaptation-stable predicate, and a predicate used

to specify adaptation-transient property is known as adaptation-transientpredicate. From

definition, it is easy to observe that adaptation-stable predicates are specified in terms of

variables that are not affected (added or removed) due to atomic adaptations. On the con-

trary, adaptation-transient predicates are specified in terms of variables that are affected

(added or removed) at some point during adaptation.

Given a test predicate, a predicate evaluation strategy, in general, would construct and

test every global state ofthe system during adaptation. General predicate testing is normally

considered impractical for reasonably big systems, as the number of global states can be

exponential in the number of processes.

While testing for arbitrary predicates may be very expensive, efficient testing is feasible

106

if predicates have certain characteristics. Specifically, in [78—83], authors have identified

efficient algorithms for a variety of predicate classes such as conjunctive predicates, dis-

junctive predicates, observer-independent predicates, stable or unstable predicates. How-

ever, in context of testing adaptation, these algorithms either cannot be employed directly

or are inefficient if used directly as code of the system is changing during adaptation. In

particular, these algorithms need to be extended to classify the global states constructed

during adaptation into specific intermediate programs. Towards this end, we introduce

adaptation vector to distinguish intermediate program states.

8.3 Adaptation Vector

Adaptation vector is used to identify the intermediate program states. An adaptation vector

A is a vector of n elements, where n is the number of atomic adaptations. Each element

ofthe adaptation vector, denoted by A[i], is boolean valued (1 represents true, 0 represents

false); A[i] = 1 denotes execution ofatomic adaptation ai in past and A[i] = 0 denotes that

atomic adaptation a,- has not yet executed. For simplicity of discussion, we assume that the

adaptation consists of 7?. atomic adaptations a1, a2, ..., an and atomic adaptation a, occurs

at process 1723- Our approach can be easily extended if multiple atomic adaptations occur at

a process.

Each node of the adaptation lattice is assigned an adaptation vector. A value of [0, ..., O]

is assigned to the start node, which denotes the old program where no atomic adaptations

have occurred. A value of [1, ..., 1] is assigned to the end node, which denotes the new

program reached after all atomic adaptations have occurred. If [a1, a2, ..., an] is an adap-

107

tation vector, then the value of [1, 1,0, ..., 0] denotes an intermediate program reached after

execution of atomic adaptations a1 and a2. Given an intermediate program and its corre-

sponding adaptation vector, we can determine what atomic adaptations occurred in the past

to reach that intermediate program. However, we cannot determine the order (or causal

precedence relation) among those atomic adaptations.

8.3.1 Implementation of Adaptation Vectors

Each process keeps its own local adaptation vector AV, which is updated as the process

learns about new atomic adaptation. The adaptation vector is maintained as follows:

0 When a process p, executes its own atomic adaptation ai, it updates the adaptation

vector AV,- by AV,[i] = 1.

0 When a process p,- sends a message m to process pj, it attaches the current value of

AV, to m. This value is denoted by m.AV.

0 When a process p,- receives a message m from process pj, it updates its adaptation

vector value as AV,- 2 AV, V m.AV, where the 0R operation over vectors is defined

on a component-by-component basis.

8.3.2 Implementation of Vector Clocks

A vector clock system [84, 85] is a mechanism that assigns vector timestamps to each event

such that comparing the timestamps of two events indicates the causal relation between

two events. Each vector timestamp is of size n, where n is the number of processes. Each

process p,- has a vector V,- [1..n] of integers, which is maintained as follows:

108

o Vi[1..n] is initialized to [0,0, ...,0].

o If e,- is a relevant event, then p,- increments its vector clock entry as V,- [i] := V,- [i] + 1.

It also associates the vector timestamp V,- with the event e,- which is denoted as ei.V.

0 When a process pi sends a message m, it attaches the current value of Vi to m. This

value is denoted by m.V

0 When p,- receives a message m, it updates its vector clock value as V,- =

max(V,-, m.V), where the maximum operator over vectors is defined on a

component-by-component basis.

If e.V and f.V are two timestamps associated with distinct events e and f respectively,

then the fundamental property associated with vector clocks is described as follows:

V(e,f) E RXR : ((e —> f) 4:) e.V < f.V),where

e.V < f.V E (Vk : (e.V[lc] S f.V[k]) A 313 : (e.V[k] < f.V[k])).

8.4 Detecting Global Predicates During Adaptation

Given a global state of the system and the value of adaptation vector in that state, we

can identify the predicates from the adaptation lattice that should be true in that state.

Adaptation-stable predicates need to be checked for all global states constructed during

adaptation. The intermediate program in which the adaptation-stable predicate was de-

tected can be easily identified from the value of adaptation vector associated with the state

in which the predicate was detected. On the other hand, adaptation-transient predicates

need to be checked only in states of the corresponding intermediate program.

109

P

7
3
C
)

.
5
5
.

0

ll
1
}

$
3

é

N
S
B
N

_
x

E
S

4
’
.

l

pzeooo \ \x 010 " "111——]-—.

 p3 000 %010$]—110—]o[——’———111 1

2 3

e; e. 63 =65
Figure 8.2: Identifying intermediate program states.

Figure 8.2 shows how each process is divided into different sections based on the value

of its adaptation vector AV. Whenever a local state sf of process p,- is to be collected, the

k
state 32- is assigned an adaptation timestamp whose value (denoted as s.AV) is equal to the

current value of AV).

We construct a global state as a n-tuple of local states (31, 32, ..., sn). This global state

is a state ofthe intermediate program whose adaptation vector is equal to .31 .A V V 32 .AV V

V sn.AV, where

3)./1V V sj.AV = [si.AV[0] V sj.AV[O], ..., si.AV[n] V sj.AV[n]]

We now discuss the algorithm for detecting weak conjunctive [79] adaptation predi-

cates. A predicate is called weak if it is true for some observation ofthe distributed compu-

tation, and is similar to possibly predicate in [78]. Conjunctive predicates are of the form

C1 A A On, where each C,- is a local predicate. This class of predicates allow each pro-

cess to independently evaluate its local predicate. A weak conjunctive predicate is true if

and only if there exists an observation in which all conjuncts are true in some global state.

This type ofpredicate typically describes some bad or undesirable property; in other words,

110

predicates that should never become true in the system. The algorithms discussed in this

section are extensions of algorithms in [79].

8.4.1 Detecting Adaptation-Stable Predicates

In [79] it has been shown that to detect a weak conjunctive predicate it is necessary

and sufficient to find a set of concurrent states in which local predicates are true. Let

urcp = C1 A A Cn denote the weak conjunctive predicate to be detected. We discuss

the centralized algorithm in which one process serves as a checker process and all other

processes involved in urcp are referred to as non-checker processes.

The algorithms for non-checker and checker processes are shown in Figures 8.3 and

8.4 respectively. Each non-checker process maintains its own vector clock and adaptation

vector. The values of vector clock and adaptation vector are updated as discussed earlier in

this section. Whenever the local predicate of a process becomes true for the first time since

the most recently sent message (or the beginning of the trace), it generates a debug message

containing its vector clock and adaptation vector, and sends it to the checker process.

The checker process maintains a separate queue for each process involved in the uwcp.

Whenever a debug message is received from the process it is enqueued in the queue corre-

sponding to that process. It is assumed (for sake of efficiency) that the checker process gets

its message from any process in FIFO order. If the underlying computation is not FIFO,

the checker process can ensure FIFO property by using sequence numbers in messages.

The algorithm compares the vector clock values at the head of the queues to determine if a

consistent global state can be constructed.

1]]

process p,- (non-checker)

var V : array {initially,Vj : i 72$ j : V[j] = 0; V[i] = 1}

/* vector clock */

AV : array {initially, Vj :: AV[j] = 0}

/* adaptation vector */

firstflag : boolean {initially, firstflag = true}

/"‘ first time the local predicate is true after any send event */

local_pred : boolean expression

/* the local predicate to be tested */

D replace adaptive action {0.2-} with

(12'; AV]l] = 1

C] replace send statement {send (m) to pj} with

send (m, V, AV) to pj;

V[i], firstflag 2: V[i] + 1, true

El replace receive action {rcv (m) from pj —> stmts} with

rcv (m,m.V, m.AV) from pj —> stmts;

W = V17] = maX(Vlilam-V[J'l);

v3" : Avm = AVljl v m.Avm

El add local predicate detection action

if (local_pred = true) A firstflag then

firstflag :2 false;

send (dbg, V, AV) to p (checker process)

fi
Figure 8.3: Algorithm for adaptation-stable predicate (non-checker process Pi)-

The algorithm is initiated whenever any debug message is received from a non-checker

process. Ifthe corresponding queue is non-empty, then the message is inserted in the queue;

otherwise it is checked if the message lead to the case where the conjunctive predicate

became true. The algorithm maintains changed and newchanged variables to ensure that

only those heads of the queue are compared which have not been compared earlier. When

the while loop terminates if all the queues are non-empty, then the intermediate program

can be ascertained in which wcp was first detected.

112

process p (checker)

var q1,...,qn : queue of(V, AV)

changed, newchanged : set of {1, 2, ..., n}

Cl rcv (elem) from Pk —->

/* elem.V and elem.AV denotes the value of vector clock and adaptation vector */

insert(qk, elem);

if (head(qk) = elem) then

changed := {1:};

while (changed 7Q ab) do

newchanged := {};

for i in changed A j in {1,2, ...,n}

if (aemptvmi) /\ aempty(qj)) then

if head(q,;).V < head(qj).V then

newchanged := newchanged U {i};

fi

if head(qj).V < head(q,-).V then

newchanged z: newchanged U {j};

fi

fi

changed 2: newchanged;

for i in changed

deletehead(q,-);

od /* end while */

if Vi : nempty(qi) then

found := true;

int.program_AV :2 [V?=1 head(q,-).AV[1], ..., 52:1 head(q,-).AV[n]]

/* intermediate program in which the predicate was detected */

fi

fi

Figure 8.4: Algorithm for adaptation-stable predicate (checker process).

8.4.2 Detecting Adaptation-Transient Predicates

Consider a weak conjunctive predicate wcp that is to be checked for some intermediate

program I during adaptation. Let I be represented by the adaptation vector IAV- The

goal is to detect wcp during the interval of adaptation that corresponds to the intermediate

program I.

113

When detecting adaptation-transient predicates, the non-checker processes have to

check for local predicates only for some interval of adaptation as defined by the inter-

mediate program in which the adaptation-transient predicate is to be checked. Specifically,

each non-checker process identifies a set of local states that are potential states of the in-

termediate program I. Let the current value of adaptation vector in state 8 of process p,-

be AV), which is denoted by s.AV. We first present the following lemma in the context of

identifying potential states of an intermediate program locally at each process.

Lemma 7.1. For state 3 ofprocess pi, s.AV[i] = 0 2) Vj : j -+‘ i : AVy-[i] = 0

Proof. From definition of adaptation vector in Section 8.3, adaptive action a,- occurs at

process 1),. The lemma states that if process p,- has not performed its atomic adaptation,

then adaptation vectors at all other processes denotes the same. Also, if adaptation vectors

at all other processes denote that process p,- has not performed its atomic adaptation, then it

does not imply that p,- has not performed its atomic adaptation. The proof is apparent from

the implementation of adaptation vectors. El

We now discuss the following two cases at each process p,- to identify the potential

states of intermediate program I:

Case 1 : IAVli] = 0. This is the case where intermediate program 1 occurs before

the atomic adaptation at process p, is executed. s is a potential state of the interme-

diate program I, if s.AV V [AV 2 IAV- For example, if AV] 2 [1,1,0,...,O] and

s.AV = [1,0,0, ..., 0] then s is a potential state of intermediate program I, whereas

s.AV = [1,0, 1, ..., 0] is not a potential state of intermediate program I.

Case 2 : IAVlll = 1. This is the case where intermediate program I is reached after the

atomic adaptation at process p, is executed. From Lemma 7.1, it is clear that in this case

114

checking the condition s.AV V IAV 2 IAV is not sufficient. For example, if s.AV =

[0,0, ..., 0] then the condition is true, but atomic adaptation at process p,- is not executed

(because s.AV[i] = 0). Therefore, we also need to check that s.AV[i] = 1, i. e., atomic

adaptation at process i has executed. In other words, we also need to check for the following

condition: s.AV[i] = IAVlil-

Based on the above discussion, we modify the algorithm of Figure 8.3 for non-checker

process so it can detect adaptation—transient predicates. The modified non-checker process

algorithm is shown in Figure 8.5. In the algorithm, plist maintains a list of - predicate,

the corresponding intermediate program in which it needs to be checked, and the checker

process that is checking that predicate.

We maintain one checker process algorithm for each adaptation-transient predicate that

needs to be checked. The checker process algorithm is modified so that whenever it finds

a consistent state (i. e., all queues are non-empty) it checks the adaptation vectors to ensure

if that consistent state belongs to intermediate program I. The modified checker process

algorithm to detect adaptation transient predicate is shown in Figure 8.6.

8.5 Testing Only Atomic Adaptations

In Section 8.4, we showed how we can test predicates that have certain characteristics

during adaptation. However, if the test run is large then it increases the cost of testing. It

is, therefore, desirable if we can reduce the cost of testing by doing a partial testing on a

small subset of states rather than testing the entire run of adaptation. In this case, the states

chosen should be such that testing predicates in these states would still give reasonable

115

process p,- (non-checker)

var V : array {initially,Vj : i #j : V[j] = 0; V[i] = 1}

/* vector clock */

AV : array {initially,‘v’j :: AV[j] = 0}

/* adaptation vector */

firstflag : boolean {initially, firstflag = true}

/"‘ first time the local predicate is true after any send event */

plist (IPAV, local_pred, cp)

: array (array, boolean expression, process id)

/* local predicates to be tested */

[I] replace adaptive action {ai} with

a,; AV[Z] = 1

Cl replace send statement {send (m) to pj} with

send (m, V, AV) to pj;

V[i], firstflag := V[i] + 1,true

El replace receive action {rcv (m) from pj —> stmts} with

rcv (m,m.V,m.AV) from pj —* stmts;

w = vm = maxrvv1,m.vm>;

Vj : AV[j] = AVLj] V m.AV[j]

Cl add local predicate detection action

forp in plist

ifp.IPAv[i] = AV[i] /\ (p.IPAV V AV) = p.IPAV

Ap.local_pred = true A firstflag then

firstflag := false;

send (dbg, V, AV) to pop (checker process)

fi

Figure 8.5: Algorithm for adaptation-transient predicates (non-checker process pi).

assurance about correctness of adaptation.

With this motivation, we choose the states before and after each atomic adaptation for

testing. For adaptation to be correct, each atomic adaptation should occur in some “safe

state” of the system. Informally, each atomic adaptation should occur when the system

is ready to deal with this change. Thus, instead of checking all the states of intermediate

programs, we can check all the possible states in which the atomic adaptation could have

116

process p (checker)

var q1,...,qn : queue of(V, AV)

changed, newchanged : set of {1, 2, ..., n}

[PAV : array

/* adaptation vector of being checked */

[:1 rev (elem) from Pk -—>

/* elem.V and elem.AV denotes the value of vector clock and adaptation vector */

insert(qk, elem);

if (head(qk) = elem) then

changed := {1:};

while (changed aé (:5) do

newchanged := {};

for i in changed A j in {1,2, ..., n}

if (nemptymi) A permits/((13)) then

if head(qz').V < head(qj).V then

neurchanged :2 newchanged U {7.};

fi

if head(qj).V < head(qz-).V then

neutchanged :2 newchanged U {j};

fi

fi

changed :2 newchanged;

for i in changed

deletehead(q,-);

od; /* end while */

if Vi : nempty(q,-) then

int_program_AV := [V?:1head(qz-).AV[1],...,V?:1head(q,-).AV[72]]

if IPAV = int.program_AV then

found := true

fi

fi

fi
Figure 8.6: Algorithm for adaptation-transient predicate (checker process).

occurred (or could have lead to). Moreover, since the set ofpossible states before and after

atomic adaptations is expected to be much smaller than the set of all states it may also be

possible to check for arbitrary predicates in those states.

117

For example, consider the adaptation lattice of Figure 4.2. In this case, when atomic

adaptation a3 is executed the predicate associated with node R1 should be true, and when

a3 has completed execution the predicate associated with node Q should be true.

We now discuss how we calculate, for each atomic adaptation, the set of states in which

the atomic adaptation could have occurred. The approach to find the set of states after each

atomic adaptation is similar. We first define some notions that we borrow from Venkatesan

and Dathan [82]. A spectrum spec,- in process p,- is a sequence of consecutive states of

Pi- The first (respectively, last) event of spec,- is denoted by first,-(spec,-) (respectively,

lasti(spec,-). A state 3': in spec,- is the first state in spec,- if Vs : s E spec,- : s: —> 3.

Similarly, a state sf in spec,- is the last state in spec,- if Vs : s E spec,- : s —-> sf . Thefirst

I
consistent cut state of 5‘: at process pk, denoted by first“5‘:), is the earliest state 3k in Pk

such that 3k and sf can be in a consistent state. Similarly, the last consistent cut state of szl

at process pk, denoted by lastk(sg), is the latest state 3% in pk such that sic and s; can be

in a consistent state. For example, consider Figure 8.1 of Section 8.1. Let 527 be the state of

. -I

p,- immediately before the execution of event eg , and 3': be the one immediately after the

I

execution ofthat event. In Figure 8.1, first1(s%) = s? , and last1(s‘21) = 3%.

f = a,- be the atomic adaptation at process 1),. Let sf be the state of theNow, let e

process p,- just before the execution of atomic adaptation (2,. To identify the set of global

states in which a,- could have occurred, we need to identify the local states at all processes

that are consistent with state sf. We first identify the spectrum of states in each process that

are consistent with 5%“. Let specj(a,-) denote the spectrum of states in process pj, possibly

empty, that are consistent with state sf . We have,

specj(ai) = [firstj(sf),lastj(sf)]

118

Note that sped-(oi) = sf. We use the property ofthe vector clock to find firstj (s2.) =

l.
8.7

and lastflsf) == 55.”. If s§.V[j] = 0, i.e., no state of pj precedes sf, then I = 0;

otherwise,

sly-.VU] = sir/[J] A $371.14)] < sf.V[j], and

(sE-"zVM g sf.V[i]) A ((8? = final_statej) V (s?+1.V[i] > sf.V[i]))

We use final_statej to denote the state in which process pj terminates.

In this manner, we can find the spectra spec1(ai), ..., specn(ai) at processes p1, ..., pn

respectively. Since the trace is typically small, it may be possible to construct all possible

consistent states from these spectra. This allows us to check even arbitrary predicates in

all possible states in which atomic adaptation could have occurred. Furthermore, given

all these spectra we can use the algorithms from Venkatesan and Dathan [82] to test for

different types of predicates using intersection ofthese spectra. Moreover, if the predicates

are of certain types, we can also use algorithms discussed in Section 8.5 on the collected

trace for each atomic adaptation.

8.6 Chapter Summary

In this chapter, we discussed testing of adaptation in distributed systems using predicate

detection. We identified two classes of predicates, namely adaptation-stable and adapta-

tion-transient predicates, that occur during adaptation. We introduced adaptation vector to

identify intermediate program states in testing dynamic adaptation.

Furthermore, to reduce the cost of testing, we identified a subset of states to do limited

testing of adaptation. Specifically, instead of checking for all intermediate program states,

119

we presented an approach to test the system before and after each atomic adaptation. We

discussed an approach to calculate spectra at each process consistent with the state before

(or after) each atomic adaptation. We can use the existing algorithms for predicate detection

on this smaller trace.

 t
-

120

Chapter 9

Component Family: Design of Adaptive

Components

In this chapter, we discuss component family design to support runtime adaptation. We

first discuss, in Section 9.1, the issues that arise in developing compositional adaptation.

Then, in Section 9.2, we present the abstract design of component family. In Section 9.3,

we discuss the concrete design of component family. Next, in Sections 9.4 and 9.5, we

illustrate the use of component family using the case studies. We discuss some questions

related to component family design in Section 9.6. In Section 9.7, we discuss the related

work and finally, in Section 9.8, we summarize the advantages of component family.

9.1 Introduction

In compositional adaptation, which is the primary focus of this dissertation, some algo-

rithmic or structural parts of the system are added, removed or replaced at runtime. Com-

121

positional adaptation enables an application to adopt new algorithms and strategies for

addressing concerns that were not known at the time the original application is developed.

Typically, in the case of compositional adaptation, separations of concerns principle

[64, 86] is employed to separate the adaptation concern. The separation of concerns is an

ubiquitous software engineering principle which states that for a given problem different

kinds of concerns should be identified and separated to cope with complexity and achieve

robustness, adaptability, maintainability and reusability. In other words, it states that soft-

ware should be decomposed in such a way that different aspects of the problem are solved

in well-separated modules or parts of the software. Consequently, adaptive applications

are designed to separate the functionality that gets adapted from rest of the application.

In object-oriented programming, separated concerns are modeled as objects and classes,

while in structural programming these concerns are modeled as functions or procedures.

We argue that these two programming paradigms are not adequate to model concerns that

spread across multiple processes. For example, in the case of adaptive distributed systems,

functionality that gets adapted may involve changes to multiple processes across the sys-

tem. To deal with this we consider component-based paradigm, where the basic unit of

concerns are components [28, 87].

A component is defined as follows : “a component is an executable unit of code that

provides physical black-box encapsulation of related services. Its services can only be ac-

cessed through a consistent, published interface that includes an interaction standard. A

component must be capable of being connected to other components (through a commu-

nications interface) to form a larger group” [87]. Although objects or procedures form

the underlying fabric of software solutions, it are components that provide the effective

122

granularity to model adaptive systems. In other words, object-oriented programming or

structural programming may be used to realize component-based systems. Thus, composi-

tional adaptation can be considered as addition, removal or replacement of components.

Existing approaches to building adaptive software have some notion of a component,

which is similar to the one defined above. In many of the approaches, the term component

refers to a replaceable class or object [88]. However, in our approach, a component can

consist of several objects and these objects may be spread across different processes of a

system. Regardless of how a component is defined, adaptive software needs some mecha-

nisms for examining and understanding the state of its components (introspection) and also

some mechanisms to modify the components (intercession). There are three main issues

that occur while developing introspection and intercession mechanisms for compositional

adaptation:

0 Reference update. As shown in Figure 9.1, when a component is replaced (respec-

tively, added or removed) the references pointing to the component need to be up-

dated. Specifically, when an old component is exchanged for a new component it

is necessary to update all the references to the old component such that they refer

to the new component. This is important to ensure that the system is not left in an

inconsistent state after component replacement. A common solution to this prob-

lem is achieved through indirection, which allows decoupling of an application. The

standard practice ofprogramming to an interface [89] is useful in achieving this indi-

rection. This allows an application to access a component while ensuring that access

methods are not coupled to the implementation of the component.

123

/

[Reference]

Old 1

Component]

gy

(a) Incorrect/incomplete update (b) Correct/complete update

Figure 9.1: Reference update during adaptation.

0 State transfer. When a component is replaced, the state of the old component needs

to be transferred to the new component. This is necessary for performance as well

as correctness reasons. It is not optimal to let the new component start from initial

state, as the new component may have to do the computations again which the old

component already performed. Moreover, in some cases it may be incorrect to have

the new component start fiom an arbitrary initial state. If two components are to be

interchanged at runtime, then mechanisms to extract the state from the old component

and inject the equivalent state into the new component need to be considered.

Synchronization. When a component is added, removed or replaced, it is important

to control the access to the component during the change. For example, once the

state of the old component is extracted for transfer to the new component, the appli-

cation should not modify the old component as it would lead to unexpected results.

It is necessary to have proper intra—process and inter-process synchronization during

adaptation, as lack of synchronization can lead to undesirable and incorrect behavior.

We now consider the three main limitations concerning most ofthe existing approaches

for building adaptive software:

124

1. Tight coupling. Most adaptive softwares have an entity that is normally categorized

as aflamework or a composer, whose goal is to perform adaptation related steps. In

other words, it primarily deals with the above three issues, namely, reference update,

state transfer and synchronization. Most approaches to adaptive software are tightly

coupled in terms of components that are adapted and framework that performs adap-

tation. Specifically, the frameworks are either not reusable with other components

and applications, or the role of the framework is not clearly defined. Many times

the introspection and intercession related steps are tightly coupled with the compo-

nent functionality. These kind of couplings leads to the following four problems: (i)

makes the verification of adaptation difficult, (ii) restricts independent development

of components, (ii) restricts reuse of component and framework, and (iv) modifying

introspection and intercession mechanisms are difficult.

2. Large number of adaptations. There are several components available for a given

functional requirement. For example, to provide reliable communication one can use

a proactive component based on forward error correction or a reactive component

based on acknowledgments. The main motivation for adaptation is to provide an

appropriate component for a given functionality. Now, consider the scenario where

there are n different components that provide similar interface and fiinctionality, and

the choice of the component depends on application requirements and environment

conditions. In this case, there are n(n — 1) possible adaptations among these com-

ponents. Considering the fact that each adaptation needs to address introspection

and intercession issues and also leads to the four problems related to tight coupling,

125

identifying all these adaptations is a difficult and unfeasible task. Moreover, if the

developer of the component wants to expose the details of that component to only a

subset of developers of other components then adaptation between that component

and the remaining components may not be possible.

. Unanticipated components. While developing adaptations among existing com-

ponents, it is difficult to anticipate new components those would be developed later.

Furthermore, while developing a new component one does not know about all the

existing components that can potentially be replaced by the new component. More-

over, for the case where one does not know the details of some components, it is

impossible to provide assurance for adaptations to and from those components. As

there is a growing need to build systems that are autonomic in nature, it is desirable

to build applications that can support the use of unanticipated components with little

or no human intervention while still being able to guarantee assurance of adaptation.

To overcome above limitations, we introduce the notion of componentfamily — a sys-

tematic and extensible repository of components that provide similar functionality. There

are two main aspects to component family: (i) overall design ofthe library of components,

and (ii) design of individual components in the library. The overall design of component

family is based on the ideas of program families as proposed by Pamas [90] for the study

of reusable software. We first list the design goals for component family and then give a

formal definition of component family:

1. Adaptation ready. The components should be designed with adaptation in mind. In

other words, components should provide additional methods required during adapta-

126

tion. For example, the components discussed in [3, 91] provide checkstate function

to check state of the component for safety, block to temporarily block the component

operations, etc.

2. Separation of adaptation logic. The adaptation logic should be separate from the

core functionality of components, thereby, simplifying specification and verification

of adaptation. The application developer is primarily concerned with using com-

ponent functionality and should not have to deal with details of adaptation among

components.

3. Replaceable adaptation logic. Adaptation from one component to another can be

done in multiple ways. The design should support easy replacement of adaptation

logic. For example, as discussed in Chapter 6, replacing one component by another

can be done either using quiescence adaptation or mixed-mode adaptation. Clearly,

the adaptation logic should be modeled separately and should be easy to replace.

4. Language and platform neutral. The design should be independent of any partic-

ular language or platform so that component family can be implemented in different

languages on a variety of platforms.

5. Application independent. The design should be applicable to components from

different domains.

6. Extensible. The design should be extensible so that new components that are devel-

oped later can be easily integrated into the family.

127

Considering the above goals, we first discuss the abstract design of a component family

and then describe the concrete representation of the family.

9.2 Abstract Component Family

Definition. A component family is a strongly connected directed graph, say (V, E), where

(i) each vertex in V denotes a component, (ii) all components have similar interfaces and

syntactically one component in the family can be replaced by another, and (iii) Each arc

(v1, v2) 6 E denotes that there exists an adaptation from v1 to ’02.

We illustrate a component family in Figure 9.2. Consider the subgraph consisting of

vertices A, B, C, and D, which represents the four components in the family. Direct adap-

tations are defined for each arc in this graph. The arc from A to D denotes that there exists

an adaptation from A to D. In other words, arc (A, D) implies that there is a corresponding

adaptation lattice (as discussed in Chapter 3) that defines the adaptation from A to D. We

say that arc (A, D) is a verified are if verified adaptation from A to D exists. Otherwise

stated, there exists a transitional-invariant or transitional-faultspan lattice corresponding to

the adaptation from A to D.

Furthermore, as shown in the Figure 9.2, there exists a path from component A to

component B, which implies that there exists a sequence of adaptations through which A

can be replaced by B. Such a path exists from A to D, from D to C, and from C to B.

128

 D C ’

Figure 9.2: An example of a component family

9.2.] Abstract Component Structure

As discussed earlier in this section, in order to keep a graph of component family strongly

connected, we need at least two adaptations associated with each component, such that one

adaptation is to the component and one adaptation is from the component. A component has

different adaptation related actions corresponding to different adaptations that it is involved

in. However, the part of the component that performs the actual fimctionality remains the

same irrespective of the adaptations.

Reckoning the adaptation requirements, each component in a component family is de-

signed to consist of two parts: (i) a functional part, and (ii) an adapt-active part. The

adapt-active part is involved in state-transfer and synchronization related actions that are

needed only during adaptation. In other words, functions of the adapt-active part are in-

voked only during adaptation.

Each component in a family consists of exactly one functional part. A component may

have zero or more adapt—active parts. The adapt-active part of a component corresponds

to a particular adaptation the component is involved in. A component may not have an

adapt-active part (in other words, have an empty adapt-active part), if the component does

not perform any introspection or intercession related actions during adaptation. Also, a

component may have an adapt-active part that is shared with multiple adaptations that it is

129

associated with. From an implementation perspective, depending on the adaptation that the

component is involved in, the appropriate adapt-active part corresponding to that adaptation

should be loaded before adaptation. This can be triggered internally (by some monitoring

module) or externally (by an user).

[7 F

Functional Part Functional Part F‘

Adapt-active Parts Adapt-active Parts

Aad I Ada Bbd Bob

17?— l—C_ 9

Functional Part Functional Part i”

Adapt-active Parts Adapt-active Parts

Dad] Dda]DbdiDdc Cdc L Cob

Figure 9.3: Structure of a component in a family

For example, consider the components A, B, C, and D in a component family as shown

in Figure 9.3. The component B has two adapt-active parts, Bbd and Bob The part Bbd is

used during adaptation from B to D, and the part Bcb is used during adaptation from C to

B.

The abstract design of a component family, as discussed in this section, is useful when

developing high-level abstract models of the components and adaptation. However, there

are several concerns that need to be addressed from implementation perspective while de-

veloping the component families. In the next section, we discuss the concrete representa-

tion of component family.

130

9.3 Concrete Component Family

The various architectural parts of a component family and high-level relationships among

them are shown in Figure 9.4.

[3
Decision Adaptation Adaptation

Maker Controller instantiates Handlers

D l:

8
s ..

E ~08? rd‘wa‘e :g

.9 (1° 00° 5

5 e’” :7.
S .E

j Inspects and E] [3 L

Component Initializes StateMapping

Manager delegate Components Handlers

[:1 D

Figure 9.4: Architecture of a component family

0 Components. At the core of the component family are the set of components that

provide the actual fimctionality required by the application/user. 1n the absence of

component family, the application developer uses the components directly.

0 Component Manager. To provide adaptation transparency to the application using

the components, we decouple the application from the components by introducing

an entity between the application and the components. We call this entity Com-

ponentManager. ComponentManager accepts the requests from the application and

delegates that request to the currently active component. It also controls the exchange

of information between DecisionMaker and AdaptationController.

131

0 Decision Maker. DecisionMaker decides what is the appropriate component to be

used based on the environment conditions. The entity external to the component

family may also decide on when and what to adapt. For example, a user requirement

may define the adaptation. In this case, DecisionMaker that is part of the family may

be either disabled or made to co-ordinate with the external decision maker to reach a

decision. The details ofDecisionMaker is beyond the scope of this work. The reader

is referred to [92—95] for more information on decision makers.

o Adaptation Controller. Once ComponentManager has learnt of the decision from

DecisionMaker and decided to adapt it passes that information to AdaptationCon-

troller. AdaptationControiler selects an appropriate AdaptationHandler to execute

the adaptation.

o Adaptation Handlers. Each AdaptationHandIer implements the logic for adapta-

tion. It executes tasks related to reference updates, synchronization, and state trans-

fer. Specifically, it deals with any dependency and synchronization related issues

while adding, removing, or replacing the components. It also instantiates an appro-

priate StateMappingHandIer to perform any required state transfer during adaptation.

o StateMapping Handlers. StateMappingHandlers are responsible to map the state

of the old component to the new component during component replacement. There

is a separate StateMappingHandler for each adaptation. Various mappings are dis-

cussed in Chapter 3 and StateMappingHandlers implement those mappings.

132

Doclslonlaakor] L AdaptatlonControllor

:"Appu"7caro"3": . ,
..... ‘Z---- «uses» «uses»

\ I x

\ I I

«USES» : /

\ I I

\\ T DecisionMaker T lAdaptationController

\\

\

\\

ICom onent ~b——| Com onentMana er

p ,I p g I ,1 Adaptationl-Iandlon]

/ «USES»’,”’

/ ’I,”

I ’ I

X ””

«delegates»/ , ‘ ICMAdaptReady

,’ // ‘\\ «uses»
I I ‘ \ ‘

lComponent ,/ ‘~-\

/’ «delegates» “‘\‘\

I Component I—d-fi’lAdaptReady I Statollapplngl-Iandlon

Figure 9.5: Interfaces of a component family.

9.3.1 Component Family Interfaces

Figure 9.5 shows how different parts of a component family are related to ComponentMan-

ager. It shows that ComponentManager implements four interfaces, namely, lComponent,

ICMAdaptReady, IDecisionMaker and lAdaptationController. All the functional compo-

nents in the family provide two interfaces [Component and IAdaptReady. ICMAdaptReady

interface extends IAa’aptReady interface. [Component interface specifies the core function-

ality provided by the component. IAdaptReady interface specifies adaptation-related func-

tionality provided by the component. It maps to the adapt-active parts discussed earlier

in the abstract design of component family. The application is external to the component

family and it uses [Component interface provided by ComponentManager.

ComponentManager instantiates the component that will provide the functionality re-

quested by the application. At any time, ComponentManager maintains exactly one active

instance ofsome component. It uses delegation pattern to delegate any service request from

133

the application to the active component.

ComponentManager also provides IDecisionMaker interface for use by the decision

maker. The choice of how the decision maker is implemented affects the design of IDeci-

sionMaker. The following are two main issues that need to be considered while designing

IDecisionMaker: (2') Whether the decision maker will be a part of the family or external to

the family, and (ii) In the case of a distributed system, which process will have the decision

maker. In the case where the decision maker is part of the family, ComponentManager

creates and initializes an instance ofDecisionMaker. DecisionMaker uses IDecisionMaker

interface to collect information from ComponentManager that is required to make a deci-

sion about adaptation and to inform ComponentManager of the decision.

ComponentManager also provides lAdaptationController interface that is used by

AdaptationController. ComponentManager creates and initializes an instance ofAdapta-

tionController and informs AdaptationController of the decision made by DecisionMaker.

AdaptationController uses lAdaptationController to get details about the current active

component and any other information that is required by it.

Once AdaptationController has learnt of the decision, it selects an appropriate Adap-

tationHandler that will perform the adaptation. As shown in Figure 9.6, each Adaptation-

Handler extends Abstrachaptatz’onHandler, which provides IAdaptationHandler inter-

face that is used by AdaptationController. Each AddptationHandler also instantiates an

appropriate StateMappingHandler, which performs any required state transfer to map the

state of old component to the new component.

AdaptationHandlers and StateMappingHandlers use ICMAdaptReady interface of

ComponentManager to communicate with the components to coordinate the adaptation

134

and state transfer. ComponentManager delegates the requests received from Adaptation-

Handlers and StateMappingHandIers to the active component.

I AdaptationControIlor I

\

\

\

\

\

\

AbstractAdaptafionHandler

adapt()

if F

AdaptationI-Iandlor_1 AdaptationI-Iandlor_N

adapto ' ' ' flap“)

lAdaptationHandleF—‘b

 Figure 9.6: Adaptation handlers.

We now give a brief overview of delegation pattern used by ComponentManager.

9.3.1.1I Delegation Pattern

Delegation pattern is a technique where a component outwardly expresses some behavior,

but delegates the actual responsibility ofimplementing that behavior to another component.

Delegation is a way ofextending and reusing a class by writing another class with additional

functionality that uses instances oforiginal class to provide the original functionality. Chain

of responsibility and observer pattern [89] use delegation pattern. The sample code in Java

programming language that illustrates delegation pattern is shown in Figure 9.7.

In this example, ComponentManager class has instances of two components Compo-

nentX and ComponentY. ComponentManager, ComponentX, and ComponentY all imple-

ment [Component interface. ComponentManager maintains an active instance ofone com-

ponent (which can be changed). ComponentManager can delegate the call tofoo function

to either ComponentX or componentY.

135

// Common Interface

public interface [Component {

public void foo();

}

// Component X

public class Componentx implements [Component {

public void foo() {

// Component X implementing foo

}

}

// Component Y

public class ComponentY implements lComponent {

public void foo() {

// Component Y implementing foo

}

}

// Component Manager

public class ComponentManager implements lComponent {

lComponent instance = new ComponentX();

// For Delegation to X

public void toX {

instance = new ComponentX();

}

// For Delegation to Y

public void toY {

instance = new ComponentY();

}

// foo is delegated

public void foo () {

instance.foo();

}

Figure 9.7: An example of delegation pattern.

136

9.3.2 Component Family Instantiation

In the previous subsection, we discussed the different interfaces of a component family.

In this section, we discuss instantiation of a component family. We consider two cases

depending on the type of components represented by the component family: (2') local com-

ponents, and (ii) distributed components.

We use the term local components to refer to components that are installed at a single

process, and distributed components to denote components installed across multiple pro-

cesses. Examples of adaptations involving local components include: (2') replacing local

monitoring component that monitors some environmental conditions and takes appropriate

actions, (ii) replace logging component that stores a log of events at a process. In this case,

the application of component family is relatively easy. The issues related to inter—process

synchronization do not occur in this case, as a result, AdaptationHandlers are also less

complex. We focus our discussion on distributed components as it offers more challenges

and the results in the case of distributed components can be trivially applied in the case of

local components.

We first identify the challenges during adaptation involving distributed components that

any implementation of a component family needs to address and then discuss our imple-

mentation.

o Atomicity. When a distributed component is replaced in an application, we need

to ensure atomicity. In other words, all local fractions of the distributed component

should be replaced across all or selected processes of the application or none should

be replaced.

137

_
t
'
fl
‘
l
i
l
:

_
_
.
'
l

'
l
‘

0 Minimal blocking Another challenge is that during adaptation involving a dis-

tributed component, the application should not be blocked. While it is desirable that

the adaptation of a distributed component be entirely non-blocking, it is not always

possible to do so due to dependency among component fractions. We, therefore,

require that blocking introduced during the adaptation be minimal.

0 Synchronization. To avoid interference between concurrent versions of distributed

components, some global synchronization is often required. For example, if a pro-

cess that has added a component fraction interacts with another that has not then the

results can be unpredictable.

o Transparency and noninterference. The execution of an application that is using

a distributed component should not be affected while the adaptation is underway.

The code that addresses these challenges is implemented as AdaptationHandlers in

the component family. The design of component family separates out the implementation

of AdaptationHandlers, thereby, allowing different ways to deal with these challenges.

Several implementations of adaptation logic, written by different people can be part of

the same family and an appropriate implementation can be chosen for execution based on

environment conditions and application requirements. In the next section, we discuss one

particular implementation.

Remark. For sake of brevity, we will use the term component to mean distributed

component in the rest of this chapter.

138

9.3.3 Component Family Implementation

In this subsection, we discuss an implementation of AdaptationHandler, which specifies

adaptation logic to replace one component by another. ComponentManager at one of the

process acts as initiator. DecisionMaker at the initiator process may be the only active

DecisionMaker in the system, or if there are DecisionMakers at other processes then the

DecisionMaker at the initiator process may coordinate with DecisionMakers at other pro-

cesses to decide on adaptation. Regardless, once ComponentManager at the initiator pro-

cess learns of the decision and it decides to adapt, it informs AdaptationController about it.

The AdaptationController will instantiate appropriate AdaptationHandler that will execute

the adaptation. AdaptationHandlers at different processes coordinate to execute the adap-

tation. We use a variation of distributed reset protocol [96, 97] to achieve inter-process

synchronization among component fractions. We first discuss the distributed reset protocol

in briefand then give details ofhow it is used to achieve synchronization during adaptation.

9.3.3.1 Distributed Reset Protocol

The reset subsystem in [96, 97] can be embedded in an arbitrary distributed system to allow

processes to reset the system to a given global state. In the model described in [96, 97],

each process consists ofan application module and a reset module. The application module

at any process may begin the reset operation. The fimction of a reset module is to (1) reset

the state of the application to a state that is reachable from the given global state, and (2)

inform the application module when the reset operation is complete.

Each reset operation satisfies the following two properties: (1) Every reset operation is

139

m
a
'

I
l
l
-
F .

 1
1

non-premature, i. e. , if the reset operation completes, then all processes have been reset and

the program state is reachable from the given global state, and (2) Every reset operation

eventually completes, i. e., if an application module at a process initiates a reset operation,

eventually the reset module at that process informs the application module that the reset

operation is complete. The reset solutions in [96, 97] allow the program computation to

proceed concurrently with the reset, to any extent that does not interfere with the correct-

ness of the reset.

To simplify the reset operation, the algorithms in [96, 97] maintain a rooted spanning

tree ofall non-failed processes. It uses this spanning tree to perform a difusing computation

[76] in which each process resets its state. The diffusing computation begins at the root of

the spanning tree. The root of the tree resets the state of its local application module and

initiates a reset wave that propagates along the tree towards the leaves; whenever the reset

wave reaches a process, the process resets the state of its local application module and

propagates the reset wave to its children. After the reset wave reaches a leaf, it is reflected

as a completion wave towards the root. A process propagates the completion wave to its

parent when it receives the completion wave from all its children. The reset is complete

when the root receives the completion wave from all its children.

We now discuss how the distributed reset protocol is used to replace a component across

a distributed application.

9.3.3.2 Using Distributed Reset Protocol for Adaptation

AdaptationHandlers at all the processes communicate using a variation of the distributed

reset protocol. The reset protocol consists of two waves: a reset-initialization wave, and

140

 r"
—

"
‘
.
:
‘
.
'
I
'

I
.
.
.
-
‘
l
"
-

4

a replacement wave. The replacement wave consists of two sub-waves, namely, a reset-

transition wave and a reset-completion wave. We first present the outline describing the

reset process and then explain each of the reset waves in detail. The AdaptationHandler at

the initiator process initiates the reset by sending the reset-initialization wave. In the reset-

initialization wave, all processes change to the transit state and initialize the component

fraction of the new component. Thus, in the transit state, a process has initialized the

new component fraction, although it is still using the old component fi'action. After all

processes have set themselves into the transit state, the reset-initialization wave completes

successfully. In case any process does not set itself into transit state during the reset-

initialization wave, the reset-initialization wave completes unsuccessfully. The option of

unsuccessful completion is provided to deal with the case where the processes need to

obtain their component fraction remotely and they fail to do so, or sufficient resources

are not available at a process to start the new component. If the reset-initialization wave

completes unsuccessfully, component replacement is abandoned.

Upon successful completion of the reset-initialization wave, the AdaptationHandler at

the initiator starts the replacement wave. The replacement wave begins with the reset-

transition wave from the initiator (root) towards leaves. The AdaptationHandler at each

process receiving the reset-transition wave removes the old component fiaction and adds

the new component fraction. It uses services provided by IAdaptReady interface of the

component fraction to ensure safety (correctness) of such replacement. IAdaptReady in-

terface of each component fraction provides checkState fmetion to determine the state of

the component fraction. After a leaf process has completed the replacement of its com-

ponent fraction, it sends the reset-completion wave to its parent. Further, if a non-leaf

141

process has completed the replacement of its component fiaction and it has received the

reset-completion wave from all of its children, it propagates the reset-completion wave to

its parent. The reset-completion wave eventually reaches the initiator. We allow another

reset to start once the first reset is completed (successfully or unsuccessfully). We now

explain the reset waves in detail.

Reset-initialization wave. The AdaptationHandler at the initiator initializes the reset by

sending the reset-initialization wave to all of its neighbors. The AdaptationHandler uses the

adaptation initialization protocol to communicate with other reset modules. The adaptation

initialization protocol communicates information such as the name of the component, the

location ofthe server where components are available, etc. The AdaptationHandler at each

process that receives the reset-initialization wave performs the following tasks:

1. It sets its parent to the first process from which it received the reset-initialization

wave .

2. It propagates the reset-initialization wave to all of its neighbors except its parent.

3. If a process receives the reset-initialization wave again it informs the sender of the

identity of its parent. This information is used to form a tree.

4. If the process that receives the reset-initialization wave is a leaf (i.e., no neighbor

process has set its parent to this process), it initializes the new component and sets

itself into the transit state, where it is still using the old component while waiting to

use the new component. If the process fails to initialize the new component, it sets

itself into error state. The process then communicates its state (transit or error) to its

parent.

142

5. When a process has received transit state message from all of its children, it sets itself

into transit state by initializing the new component. If it receives the error state infor-

mation from any of its children or if it fails to initialize the new component fraction,

it sends the error state message to its parent. Eventually, the root process receives

the transit state or the error state information from its children. If it receives the error

state information from any of its children, it can restart the reset-initialization wave

or abandon the component replacement based on the threshold value set for the num-

ber of reset-initialization waves that can be initiated. If the component replacement

is abandoned, other processes would be informed about it so that they can return

to normal state. If the root process receives transit state information from all of its

children, it initializes the new component and sets itself into transit state.

Reset-transition wave. When all processes are in transit state, i.e., at the successful

completion of the reset-initialization wave, the AdaptationHandler at the initiator starts

the reset-transition wave. The AdaptationHandler at each process that receives the reset-

transition wave performs the following tasks:

1. It propagates this wave to all of its children.

2. It invokes the checkState function of the component, which returns one of the three

values: safetoremove, safetoblock or unsafetoremove.

(a) If the function returns safetoremove, the AdaptationHandler requests the Com-

ponentManager to remove the old component fraction and activate the new

component. It then sets itself into the normal state.

143

_
-

X
.
.
.
“

l
.

 f
l

'
‘
H
O

(b) If the function returns safetoblock, the AdaptationHandler requests the Compo-

nentManager to block the component fraction. It periodically calls checkState

until it returns safetoremove. After a component fraction receives information

about other component fractions being removed or other application processes

being blocked, eventually, checkState function at the blocking process will re-

turn safetoremove. When that occurs, we follow case 2a.

(c) If the function returns unsafetoremove, it is periodically invoked till it returns

safetoblock or safetoremove, in which case we follow the case 2b or 2a respec-

tively.

During the transition phase, AdaptationHandler at each process will normally invoke

a sequence (zero or more) of operations provided by ICMAdaptReady interface. These

operations are invoked before or after each invocation of checkState. The details of what

operations are invoked are dependent on the adaptation logic and are specific to the appli-

cation and the component at hand. Typically, these operations are related to state transfer

and to ensure that eventually checkState function returns safetoremove.

Reset-completion wave. The transition wave is reflected towards the initiator (root)

as the reset-completion wave. The leaf process sends the reset-completion wave to its

parent after it removes the old component fraction and starts using the new component

fraction. Any non-leaf process, which completes the component fraction replacement and

receives the reset-completion wave from all of its children, sends the reset-completion wave

to its parent. Once the initiator has replaced its component fraction and received the reset-

completion wave from all of its children, the component replacement is complete.

144

9.3.3.3 Customizing Reset Protocol

In the above discussion, we laid out a general overview of how the reset protocol is used

in adaptation. However, depending on the application context, each implementation of

AdaptationHandler customizes the reset protocol. For example, depending on the compo-

nents and the application, the adaptation logic to replace the component may not require

all of the two reset waves. In the case of mixed-mode adaptation discussed in Chapter 6

we need only one reset wave. Moreover, the operations invoked at each process during

the reset waves will normally vary depending on the components at hand. Specifically, as

discussed above, during transition wave each process will invoke a sequence of operations

ofICMAdaptReady interface based on the adaptation logic.

9.3.3.4 Fault-Tolerant Reset Protocol

By treating the reset protocol discussed earlier as an intolerant application and using the

fault-tolerance components from [96, 97], we can make the reset protocol fault-tolerant.

If we were to add the fault-tolerance component from [96], the resulting protocol will

ensure that stabilizing fault-tolerance [59] is provided to faults including process/channel

failures/repairs and transients. Thus, even if these faults occur, eventually the application

will recover to a state from where subsequent component replacements will be correct.

If we were to add the fault-tolerance component from [97], in addition to the stabilizing

fault-tolerance to these faults, the resulting protocol will provide masking fault-tolerance to

process/channel failures/repairs. Thus, if only process/channel failures/repairs occur then

the component replacement will be always correct. Moreover, ifmore general faults such as

145

transients occur then the protocol will recover to a state from where subsequent component

replacements will be correct.

9.4 Case Study: Leader Election Component Family

In this section, we discuss the case study of leader election component family, which we

denote by LEFamily. LEFamily consists of components that implement leader election

protocol. In Chapter 6, we discussed the abstract model of two leader election protocols,

namely ldrId and ldrVal, and mixed-mode adaptation from ldrId to ldrVal. In this sec-

tion, we discuss the details of different interfaces and implementation of different parts of

LEFamin.

«interface»

«interface»

lComponent

«interface»

 «interface»

IDecisionMaker

 «interface» «interface»

«interface»

Figure 9.8: Interfaces of the leader election component family.

146

9.4.1 Interfaces of the Family

The interfaces ofLEFamily are shown in Figure 9.8. We now discuss the fiinctions provided

by each interface:

0 lComponent. This interface provides functions supported by leader election com-

ponents.

— initial i ze function is used by the application to initialize the leader elec-

tion component before using it. The initialization parameters that a component

needs from an application include host address and neighbor list.

— getLeader function returns the address of the leader. In our implementation,

getLeader function blocks if leader election is underway. getLeader can

also have a non-blocking implementation that will return the address of the last

known leader process.

- startElect ion function is used by the application to start the election.

— i 5 PerformingElec t ion function is used by the application to check ifthe

protocol is performing election.

0 IAdaptReady. This interface provides functions that correspond to adapt-active parts

of the component. They include functions that are used by AdaptationHandlers to

perform adaptation.

— adapt Ini t ial i ze function is used to initialize the component during adap-

tation. It uses StateMappingObject to read the state of the previous component.

147

— checkState function returns one of the three values: safetoremove, safeto-

block or unsafetoremove.

— block function blocks the component from starting a new election.

— unblock removes the block so that the component can start a new election.

- remove function releases any resources and transfers the current state of the

component to StateMappingObject.

o IAdaptReadyComponent. This interface extends [Component and IAdaptReady in-

terface. Both the leader election components in LEFamily implement this interface.

0 ICMAdaptReady. This interface extends IAdaptReady and provides additional

functions that are used by AdaptationHandlers to perform adaptation. It includes

act ivateComponent function that activates the new component (so that calls to

ComponentManager are now delegated to the new component).

0 lAdaptationController. This interface provides getCurrentComponent that is

used by AdaptationControlIer to get the current active component.

0 IDecisionMaker. This interface provides getCurrentComponent that is used

by DecisionMaker to get the current active component and not ifyDecis ion to

inform ComponentManager of the decision. The ComponentManager provides this

interface only at the initiator node (a designated node that will initiate adaptation) as

DecisionMaker is only available at the initiator node.

0 IComponentlIlanager. This interface extends lComponent, ICMAdaptReady,

lAdaptationController and IDecisionMaker interfaces. IDecisionMaker interface is

148

j lAdaptationHandler

AdaptationController AbsmctAdaptaflonHandIOr

DecisionMaker cManager: lAdaptationController """ adapt()

cManager: IDecisionMaker aHandler: lAdaptationHandler

i

QuisconceAdaptationHandler

MixodModoAdaptationHandIor

cManager: ICMAdaptReady

cManager: ICMAdaptReady

LEc°inp°"°"m'"'°" IsHandler: IStateMappingHandler IsHandIer: lStateMappingHandIer
dMaker :1 DecrsionMaker adapt() d t

aControIIer : AdaptationControIIer initWave() 3mm39,eO

aComponent : lAdaptReadyComponent transitWaveO transitWave()

in“ializeo completeWaveo : ;

startEIection() Ir i I l

getLeadero <_ _______I I i i

isPerformingElectionO I. i :

adaptlnitialize() (---------- I: ----------------- I

checkStateO g -------------1 -------------------. :

block() (— --------- . i I :

uanocko : \l/ l I

remgvd) C QuiesceneSMHandIer Mixedflodesm-Iandler

gzttivggzndmgtrfgrifiyto cManager: ICMAdaptReady cManager: ICMAdaptReady

notifyDecisiono storeStateOi storeState()

' : I IrestoreStateo restoreStateO

I l ' i (ID

I I ' I

I : IComponentManager I IStateMappingHandler : lStateMappingHandIer

l l

I : i :
I I _______ I

I I ' I

: : ' . . I
i i : ———————————————————)I StateMappmgObIectk-

l {I\ _ _ _ _’| ___________________ I

: ‘. I
I I I I

\'/ I \I/ I

r LaadarElectionld I LoaderEIectionVal

IsObj : StateMappingObject

initializeO

startElectionO

getLeader()

isPerformingElectionO

adaptlnitialize()

checkState()

block()

unblookO

remove()

IsObj : StateMappingObject

J3 lAdaptReadyComponent
1’ lAdaptReadyComponent

Figure 9.9: Classes of the leader election component family.

extended by IComponentManager only at the initiator node.

149

 '
1
'
“

V

9.4.2 Classes of the Family

The class diagram ofLEFamily is shown in Figure 9.9. It consists of the following classes:

0 LEComponentManager. This class implements [ComponentManager interface. At

the initiator node, it creates and maintains an instance of DecisionMaker. It in-

forms DecisionMaker once it starts using a new component. It also maintains an

instance of AdaptationController. At the initiator node, it informs AdaptationCon-

troller of the new component that need to be installed. At the non—initiator nodes

it creates an instance of AdaptationController, which listens on the adaptation port.

The init ial i ze function ofLEComponentManager class is used to create an in-

stance of LeaderElectionId or LeaderEIection Val. It delegates the calls received on

[Component and IAdaptReady to the active instance ofthe component.

0 LeaderElectionId. This class implements leader election protocol based on process

id. The abstract version of the protocol is discussed in Chapter 6.

o LeaderElection Val. This class implements leader election protocol based on process

value. The abstract version of the protocol is discussed in Chapter 6.

o DecisionMaker. This class is installed only at the initiator node and it notifies

LEComponentManager of the decision. In our current implementation, Decision-

Maker gets the decision (on when and what to adapt) directly from the user and

passes that decision to LEComponentManager.

o AdaptationController. This class uses strategy pattern [89] to instantiate the class

that implements the adaptation logic. It has two implementations:

150

- Initiator. At the initiator node it gets the input from ComponentManager.

Upon receiving the input, it initializes the appropriate AdaptationHandler (Qui-

escenceAdaptationHandler or MixedModeAdaptationHandler). In our current

implementation, we let the user choose the type .of adaptation. Another possi-

bility is to let AdaptationController decide itself the type of adaptation based

on some rules.

- Non-Initiator. At the non-initiator node, AdaptationController listens on the

adaptation port for requests from the other nodes. Based on initialization pa-

rameters received during reset-initialization wave, it instantiates an appropriate

AdaptationHandler.

The AdaptationController can be extended to check for the availability of the new

component, to retrieve the new component from the server, and to verify if the new

component satisfies the contract of the family. In our current implementation we

assume that the new component is available and is verified.

o AbstrachaptationHandler. In our current implementation, this class provides ab-

stract adapt function, whose behavior is defined in the derived classes. This class

can be extended to provide behaviors common to all AdaptationHandlers.

o QuiescenceAdaptationHandler. This class is derived from AbstractAdaptation-

Handler and it implements the quiescence adaptation between LeaderElectionId and

LeaderElection Val. At the initiator node, it acts as the root of the reset protocol, and

at non-initiator nodes it acts as a participant in the reset protocol.

151 ,

o MiredModeAdaptationHandler. This is similar to QuiescenceAdaptationHandler

except that it implements mixed-mode adaptation.

o QuiescenceSMHandIer. This class is used by QuiescenceAdaptationHandler to do

state mapping from LeaderElectionId to LeaderElection Val and vice-versa during

adaptation. It gets a reference to LEComponentManager from QuiescenceAdapta-

tionHandler, and also maintains StateMappingObject. It stores the state of the old

component in StateMappingObject and uses it to initialize the state of the new com-

ponent.

o MixedModeSMHandler. This class is similar to QuiescenceSMHandIer, however,

it implements the mapping required by mixed-mode adaptation.

o StateMappingObject. This class stores the state of the components during adapta-

tion. The reference to this object is passed to the old component, which stores its

current state in this object. The StateMappingHandlers use appropriate state map-

ping on this object to map the state of the old component to the new component, and

then passes the reference to this object to the new component during initialization of

the new component.

9.4.3 Performance Results

When comparing performance of adaptive systems with non-adaptive systems, it is rea-

sonable to assume that adaptive systems will have some performance overhead. When

the system is not adapting, the adaptive system is functionally equivalent to corresponding

152

.
'

non-adaptive system. Therefore, there should be little or no overhead from the mechanisms

that make non-adaptive systems adaptive.

650

‘3‘

5 600 ~
0

E lWith Family

a El Without Family

E 550 ,
>

<

500 - - '

Node 2 Node 3 Node 4 Node 5

Figure 9.10: Component family performance.

We now present experimental results to show that the component family design does

not impose any significant overhead on the use of components. The chart in Figure 9.10

shows the average time ofleader election (using ldrId component) at each node for the two

cases: (2') application using the leader election protocol directly, and (it) application using

the component family. The time of leader election is calculated from the instance when

the application makes a request for leader election. In the case of component family, the

request by application for leader election is delegated to the active component (in this case

ldrId). We observe that the time for leader election in both cases is almost similar. At three

nodes (node 1, node 2 and node 4) the time for leader election is less when component

is used directly, whereas at the other two nodes (node 3 and node 5) it is slightly more.

We conclude that overhead induced by component family is negligible. In particular, any

overhead due to delegation is within the variance of the time for leader election.

153

9.5 Case study: Reliable Communication Component

Family

In this section, we discuss the component family consisting of components that provide

reliable communication. We describe abstract version of the component family in this

section. The details ofconcrete version (interfaces and classes) are similar the case study of

Section 9.4. There are various components available for providing reliable communication.

We consider three components in this family (cf. Figure 9.11), namely, (2') forward error

correction (fec) component, (ii) acknowledgment (a ck) component, and (iii) forward

error correction with acknowledgment (fecAck) component. Components fec and ack

are similar to the proactive component discussed in Chapter 4 and the reactive component

discussed in Chapter 5, respectively. For simplicity, we discuss only one sender and one

receiver; however, the case study can be easily extended for multiple sender and multiple

receivers.

fecAck

ec ac

Figure 9.11: Reliable communication component family.

f k

9.5.1 Components of the Family

We now discuss abstract models of the components and the adaptations involved in the

component family. In Chapters 4 and 5, we gave details of these components. The com-

154

ponents discussed in this chapter have unbounded buffer, whereas the reactive component

discussed in Chapter 5 had bounded buffer. Also, while the reactive component in Chapter

5 used both acknowledgments and negative acknowledgments, ack component discussed

in this chapter uses only negative acknowledgments.

Forward Error Correction (fec) Component. fec component is used to deal with

message loss by sending extra packets. The receiver can recover the lost packets without

requesting retransmission of lost packets. fec component consists of two types of frac-

tions: encoder and decoder. The encoder fraction is added at the sender process and the

decoder fraction is added at the receiver process. The encoder takes (77. — k) data packets

and encodes them to add I: parity packets. It then sends the group of n (data and parity)

packets. The decoder needs to receive at least (n — 1:) packets of a group to decode all the

data packets. Thus, if less than 1: packets in a group are lost then the receiver can recover

the lost packets by using the extra packets from that group.

The abstract version of fec component is shown in Figure 9.12, which consists of

encoder fraction s_fec at sender process 3 and decoder fraction r_fec at receiver process

r. The encoder fraction reads the input from 3Q, encodes the input and sends it to r. The

decoder fraction receives the input from s, decodes it and delivers it to the output listener,

rQ.

Acknowledgment (a ck) Component. ack component deals with message loss by re-

transmitting the lost packets. It uses negative acknowledgments to confirm the message

loss. It consists ofthe encoder fraction at the sender and the decoder fraction at the receiver.

The encoder fraction adds a group and a packet number in each packet. If it receives a neg-

ative acknowledgment for any packet, it sends that packet again to the decoder fraction.

155

Component fec

Fraction s_fec

inp sQ : queue of integer

r

var n, k, u. l, m : integer {initially, u = l = m = 0}

ean : array [integer, O..n — 1] of integer {initially, ean = I}

begin

encode : —-isEmpty(sQ) —> ean[u, O..n —- 1] :2 fec-encode(head(sQ, n — k));

u := u + 1

fl fec.send : eanIl,m] 7é _L —> 03¢ := Cs,r 0 {l,m,ean[l,m]};

m := (m+ 1) mod n;

if m = 0 then

I := l + 1

fi

end

Fraction r_fec

inp rQ : queue of integer

3

var n, k, :r, y, p, m : integer {initially, p = 0}

rbqu : array [integer, O..n — 1] of integer {initially, rbqu = _I_}

begin ‘

fec.receive : nisEmpty(C3,r) —> :r,y.m :2 head(Cs,r);

rbquIx, y] := m

[] decode : count(rbqu[p,O..n — 1] 74 _L) >2 (n — k) -—>

rQ := rQ o fec-decode(rbqu[p, 0..n — 1]);

p := p + 1

end

Figure 9.12: Forward error correction component.

When the decoder fraction detects a packet loss it sends a negative acknowledgment to the

encoder fraction. The decoder fraction detects packet loss when it starts receiving packets

from a new group before all the packets ofthe current group are received. When all packets

in a group are received, it delivers them to the output listener.

The abstract version of ack component is shown in the Figure 9.13, which consists of

encoder fraction s_ack at sender process 3 and decoder fraction r_a ck at receiver process

156

Component ack

Fraction snack

inp 3Q : queue of integer

r

var n, g, p, gnu, pna, m : integer {initially, p = g = O}

snt : array [integer, O..n — 1] of integer {initially snt = _L}

begin

ack.send : -dsEmpty(sQ) —-> sntIg,p] 2: {g,p, head(sQ)};

03,1- 2: Cs,«,~ o sntIg,p];

p := (p+ 1) mod n;

ifp = 0 then

9 := g + 1

fi

[] resend : type(C7~,3) =nack —> gnaIPna I: head(Cr,s)§

Cs,r 3= 03,7: 0 sntlgnaapna]

end

Fraction Lack

lap 70

3

var n, k, x, y,p, m : integer {initially,p = 0}

rbqu : array [integer, 0..n — 1] of integer {initially, rbqu = _L}

begin

ack.receive : —uisEmpty(Cs,,~) —> :1:,y,m := head(C3,r);

rbqulir, :9] == m

[] deliver : count(rbqu[p, 0..n — 1] sé _L) = n -—>

rQ := 7‘62 0 rbquIp, 0..n — 1];

p := p + 1

[] sendmack : count(rbqu[p + 1,0..n — 1] 75 _L) > O -+

for k = O to n —- 1

ifrlme[p, k] = i then

CT,8 := 07330 nack(p, kt)

fi

end
Figure 9.13: Acknowledgment component.

r. Similar to fec component, the encoder fraction has 362 and r as the input parameters.

The decoder fraction has IQ and s as the input parameters.

157

_‘ I

Component fecAck

Fraction s.fecAck

inp sQ

7.

var n,k,u,l,m

ean

ackMode

begin

encode

[] resend

end

[] fecAck_send :

: queue of integer

: integer {initially, u = l = m = 0}

: array [integer, 0..n — 1] of integer {initially, ean = _L}

: boolean {initially, true}

: -IisEmpty(sQ) ——> eanIu,0..n — 1] :=

fec_encode(head(sQ, n — k));

u := u + 1

eanIl, m] yé _L ——> (73¢ 2: 03,7: 0 {lama ean[1,m]};

if ackMode = true then

snt[l,m] = {l,m,ean[l,m]};

fi

m:= (m+1)modn;

ifm=0then

l:=l+1

fl

ackMode —_-—. true /\ type(Cr,3) = nack -——>

gnarpna 3: head(Cr,s);

03,7: 3: 03,7: 0 sntlgnaapnal

"
'
l

Figure 9.14: Forward error correction with acknowledgment: sender fraction.

Forward Error Correction with Acknowledgment (fecAck) Component. fecAck

component uses both forward error correction and acknowledgments. Ifthe rate ofmessage

loss is high and more than k packets are lost in a group, then negative acknowledgments

can be used for retransmission of the lost packets. If the rate of message loss is low and

less than k packets are lost in a group, then the receiver can recover the lost packets without

requesting any retransmission.

The abstract version of fecAck component is shown in Figures 9.14 and 9.15, which

consists of s_fecAck fraction at the sender process and r_fecAck fraction at the receiver

158

Component fecAck

Fraction r_fecA ck

inp rQ : queue of integer

5

var n, k, :r, y,p, m : integer {initially,p = 0}

rbqu : array [integer, O..n — l] of integer {initially, rbqu = J_}

ackMode : boolean {initially, true}

begin

fec.receive : -dsEmpty(CS,r) —> :c,y,m :2 head(Cs,7~);

rbquIx, y] := m

[] decode : count(rbqu[p,0..n — 1] 75 .1.) >= (n — k) —+

rQ :2 rQ o fec-decode(rbqu[p, 0..n — 1]);

p := p + 1

[] send_nack : ackMode = true /\ count(rbqu[p + 1,0..n — 1] # _L) > 0 —->

for k = O to n — 1

if rbqu[p, k] = J. then

Cr”, 2: C730 nack(p, 1:)

fi

end

L
"
!
‘
3
5
.
.
-

a
s
"
-
0
1
.
5
:
‘

C
l
-
‘

Figure 9.15: Forward error correction with acknowledgment: receiver fraction.

process.

9.5.2 Adaptations of the Family

We now consider the adaptations that exist in this family as shown in Figure 9.11. There

are four adaptations that exist in this family, namely, (1) fecAck to fec, (2) fec to

fecAck, (3) fecAck to ack, and (4) ack to fecAck. The arcs in the graph are labeled

accordingly. (Note that the maximum number of possible adaptations in a family of three

components is six, and the minimum number of required adaptations to keep the graph

strongly connected is three).

The adapt-active parts of each fractions that are involved in adaptations are shown in

159

3
"
;

Adapt-active parts for adaptation 1 : fecAck to fec

Fraction: s_fecAck

“113 : true —> ack-mode :2 false

a128: 3115 Aallr —> sremove s_fecAck[n,k,u,l,m,eQ]

Fraction: r_fecAck

“111' : true -—> ack-mode := false

012,. : 3115 Aallr —-> sremove r_fecACk [n,k,p,m,rbqu]

Fraction: s_fec

c1123: 3125(s_fecAck) ——> sadd s_fec[n,k,u,l,m,eQ]

Fraction: r_fec

0121': al2r(r_fecAck) —+ sadd r-fec[n,k,p,m,rbqu]

Adapt-active parts for adaptation 2 : fec to fecAck

Fraction: s-fec

0213: true —-> sremove s_fec[n,k,u,l,m,eQ]

Fraction: r-fec

a21,. : true ——> sremove r_fec [n,k,p,m,rbqu]

Fraction: s_fecAck

0213 : 3215(s_fec) —> sadd s_fecAck [n,k,u, l,m,eQ]; ackMode :2 true

Fraction: r-fecAck

021,. : 321r(r_fec) —+ sadd r-fecAck [n, k,p,m,rbu,fQ]; ackMode := false

022,. : 3215 —> ackMode := true
Figure 9.16: Adaptations l and 2 in reliable communication component family.

Figures 9.16 and 9.17. The adapt-active parts of the fractions contain atomic adaptations

that are associated with them. The name of each atomic adaptation has three subscripts

(e.g., a133). The first subscript denotes the adaptation (of. label of the arc in Figure 9.11).

The second subscript denotes the order in the sequence ofatomic adaptations. Iftwo atomic

adaptations has the same second subscript, it means that they can be executed in any order.

The third subscript denotes the process that the atomic adaptation is associated with. For

example, atomic adaptation a133 denotes that in adaptation 1 (fecAck to fec), it is third

in the sequence of atomic adaptations and it occurs at process .9.

Adaptation 1: fecAck to fec having enhanced-primitive relationship. Consider fec

and fecAck components as shown in Figures 9.12, 9.14 and 9.15, respectively. fecAck

160

 P.n.
w
i
"
£
&
u
'
a
l

u
.

l
.
_
h

l

Adapt-active parts for adaptation 3 : fecAck to ack

Fraction: s_fecAck

c1318: true —> block encode

a333: 332r —> remove s-fecAck

Fraction: r_fecAck

a32r: 3315 A eanIl,m] = _L /\ nisEmpty(Cs,7~) —> remove r_feCACk

Fraction: s_ack

(1343: 3335 /\ a33r --> add S_aCk

Fraction: r_ack

0.337.: 832, —> add r-ack

Adapt-active parts for adaptation 4 : ack to fecAck'

Fraction: s_ack

“41.93 true -—» block send

a433: 342, —+ remove s-ack

Fraction : r_a ck

a42r: 3415 A /\ nisEmpty(C5,r) —> remove r_ack

Fraction: s_fecAck

0.443: 3435 /\ 343, —-> add S_feCACk

Fraction: r-fecAck

0.437.: 342r ——> add r-fecAck

Figure 9.17: Adaptations 3 and 4 in reliable communication component family.

component is syntactically compatible with fec and it also provides all the services that

fec provides. In this case, fecAck is an enhanced version of fec, which is a primitive

version. During the adaptation that replaces fecAck to fe c, the fractions can be changed

arbitrarily, provided (27) fecAck component is running in a primitive mode before the

adaptation begins, and (it) state of fecAck component is transferred to fec component.

As shown in Figure 9.16, first ack-mode is set to false (ans and (1117‘); as a result the

fecAck component is now running in primitive mode, i.e., in a mode compatible with

fec. Now, the fiactions can be changed arbitrarily (0.125 and a127.). There are two atomic

adaptations named a123, one associated with fraction s-fecAck and another associated

with fraction s_fec. This implies that sremove and sadd can be considered as an

161

I”

atomic action that affects both fractions s-fecAck and s_fec. Similarly, removal of

r_fec and addition of r-fecAck is done in an atomic manner. Note that sremove and

sadd carry an extra argument, which represents the state information that is transferred

from the existing component to the new component. In this case, the state of fecAck

component is transferred to fec component. The adaptation lattice corresponding to this

adaptation is shown in Figure 9.18(a).

 (a) (b)

Figure 9.18: Adaptation lattices.

Adaptation 2: fec to fecAck having primitive-enhanced relationship. As discussed

in the previous adaptation, in this case, the fractions can be changed arbitrarily, as the

components share a primitive-enhanced relationship. We need to ensure that (2') state of

fec component is transferred to fecAck component, and (it) fecAck runs in a primitive

mode till the adaptation is complete. Initially, ack_mode is set to false, so fecAck runs in

a mode that is compatible with fec. After the adaptation is complete, ack-mode is set to

true. The adaptation from fec to fecAck is as shown in Figure 9.16 and the adaptation

162

lattice corresponding to this adaptation is shown in Figure 9.18(b).

Adaptation 3: fecAck to ack. The adaptation that replaces feclick to ack is as shown

in Figure 9.17. Unlike adaptations 1 and 2, components fecAck and ack do not share

an enhanced-primitive relationship, because fecAck component is not designed to run

in ack-only mode. Specifically, fecAck.send action of fecAck is not compatible with

ack.send action of ack. Hence, fecAck component does not provide all the functionality

that ack component does. Therefore, the fractions cannot be changed arbitrarily. First,

encoder fraction s_fecAck at sender 3 needs to be blocked from encoding more packets

((2313). Once all the packets that are already encoded are sent by s, and received by receiver

r, then decoder fraction r_fecAck can be removed ((132,). After r_fecAck fraction is

removed, the removal of s_fecAck fraction ((1333) and the addition of r_ack fraction

(c1337.) can be done in any order. Finally, after s-fecAck fraction at s is removed and

r_ack fraction at r is added, encoder fraction s_ack is added at s (a343). The adaptation

lattice corresponding to this adaptation is shown in Figure 9.18(c). (Note that fecAck

and ack could be modified so that they satisfy the enhanced-primitive relationship. We

have chosen not to do so to illustrate the case where the components are not related by an

enhanced-primitive relationship.)

Adaptation 4: ack to fecAck. The adaptation that replaces ack to fecAck is similar

to adaptation 3 discussed above. Since the components do not share an enhanced-primitive

relationship, the fractions need to be changed in a specific order as shown in Figure 9.17.

The adaptation lattice corresponding to this adaptation is shown in Figure 9.18(d).

163

“
i
i
i

9.6 Discussion

In this section, we address some questions related to the component family design.

Can there be multiple adaptation paths between two components? Ifyes, then which adap-

tation path should be chosen?

Yes. There can be multiple paths between two components. In this case, additional

factors could be taken into account while deciding the appropriate path for adaptation. To

this end, for each arc, we could associate several factors, e.g. , the time or resources required

for adaptation, types of faults that could be tolerated in the adaptation. Based on the factors

associated with each are, we can compute the characteristics for different paths. These

characteristics can then be used to determine the suitable path.

How do we develop components that satisfiz the enhanced-primitive relationship?

One way to design such components is to use inheritance. Inheritance provides syn-

tactic compatibility between components. To ensure semantic compatibility, we need to

extend the inheritance relationship, such that, a derived component provides all services

that a parent component provides.

How does the componentfamily design help when adaptation involves components provid-

ing difi‘erentfunctionalities, say security and reliability?

In this case, there will be two separate component families, namely, a family of com-

ponents that provide reliability and a family of components that provide security. The

application will have to perform separate adaptations for reliability and security compo-

nents.

There may exist a scenario, although undesirable as it violates the principle of separa-

164

tion of concerns, where some component, say C, provides reliability as well as security. In

this scenario, C will be present in both the families. Now, if the application that is using C

to provide security and reliability decides to use only a security component, then the appli-

cation can perform adaptation to replace C with a security component. Also, existence of

such components could be used in adaptations where one needs to trade off between two

desirable properties such as reliability and security. Specifically, if the application were

to replace a reliability component by a security component (may be because of environ-

ment changes that require it to have security but where reliability cannot be provided due

to other constraints such as energy management) then the application could first replace the

reliability component with C and then replace C by the security component.

HOW can we perform the adaptation where some component is removed although not re-

placed by other component?

If such a scenario is desired for a particular component family then that family should

have a default component which is equivalent to having no component at all. For example,

in the context of our case study in Section 9.5, the default component would be one that

provides no recovery for lost messages. Thus, removal of a component is equivalent to

replacing that component by the default component. This approach is similar to that in [3].

How does componentfamily assist in independent development ofcomponents?

Consider a scenario, where components, say A and B, are developed for a component

family 1‘. These components can be developed independently and we can still perform

adaptation from A to B and vice-versa, even if direct adaptations were not to exist between

A and B. One way to achieve this would be if adaptations from A and B to some compo-

165

nent C and vice-versa were identified. In this case, adaptations between A and B could be

done via C. Specifically, this approach is easy to comprehend when a component family

has a primitive component and different enhanced components are developed correspond-

ing to that primitive component. The adaptation between any two enhanced components

can be done via the corresponding primitive component. Examples of such adaptation can

be found in [91].

How can componentfamily design be used to develop parallel adaptation?

To implement parallel adaptation, ComponentManager can be modified so that it main-

tains active instances ofmore than one component. It can delegate the request received fiom

the application to the appropriate component. Also, the switching algorithms discussed

in [98] for parallel adaptation of distributed agreement protocols can be implemented as

AdaptationHandlers.

9.7 Related Work

In this chapter, we introduced the notion of component family to build a systematic and

extensible library of adaptive components. The idea is based on the original notion of

program families proposed by Parnas [86, 90]. A program family is a set of programs (not

all of which necessarily have been or will ever be constructed) for which it is profitable or

usefirl to consider as a group. However, the idea ofprogram families does not address issues

related to adaptation. In this work, we try to study different components with adaptation

in mind. Moreover, we focus on components with similar fimctionalities and interfaces. In

other words, our focus is more narrow compared to the general goals for program families

166

 [‘7
’
"

where components with (slightly) different functionalities and interfaces are also studied

together (for different reasons).

In feature-oriented programming [99, 100] and software product lines [101], goals of

product lines (creating family of related programs) are addressed. Product families pro-

vides an architecture that is based on commonality and similarity. In product families,

various product variants can be derived from the basic product family, thereby, allowing

reuse of products in the family. The main focus of product lines (product families) is from

the perspective of static development and reuse. In contrast, the component family design

addresses dynamic reuse of components. The current design of component family focuses

on components having similar functionalities and interfaces. We believe that the product

family and feature-oriented programming work can be leveraged when we consider exten-

sions to the component family to build a library of adaptive components that have different

interfaces.

9.8 Summary

In this chapter, we presented a systematic and extensible component family design to build

a library of adaptive components. In summary, we discuss the following advantages:

1. Simplifying adaptation between components and enabling independent develop-

ment of new components. Consider the case where an application is using a component

from a component family .7: consisting ofn components. In this case, to provide adaptation

between any two components of a family f, we need a minimum of only n adaptations (in

this case, the graph consists of a directed cycle). When a new component is deve10ped that

167

will be a part of f, it suffices to have only two more adaptations while still keeping the

graph strongly connected. For example, if a new component E is added to the component

family shown in Figure 9.2, only two adaptations, say from C to E and fi'om E to B, are

enough to keep the graph strongly connected. Also, since every component implements

IAdaptReady interface, it becomes easy to develop adaptation between these components.

2. Simplifying verification of adaptation. To verify that the adaptation between com-

ponents is correct (e.g., by using the approach in Chapters 4 and 5), it is required that

after adaptation the component continues to correctly perform its functionality, and spec-

ification during adaptation is satisfied. The separation of adaptation logic from compo-

nent functionality simplifies the task of specifying and verifying adaptation. Moreover, the

adaptation lattice specification has a direct mapping to the implementation (Adaptation-

Handlers). Furthermore, if the number of such adaptations is low, then less verification

needs to be performed.

3. Reusability of components and adaptations. The design of component family not

only enhances the reuse of components but also promotes the reuse of adaptations between

components. For example, consider two components X and Y and that the adaptation from

X to Y exists. Now, consider a component Z and the adaptation from Z to Y. In this

case, by providing the adaptation from Z to X, the adaptation from Z to Y can be done in

two steps while reusing the adaptation that already exists from X to Y. We note that if the

direct adaptation from Z to Y were to exist, it would not necessarily be fast or simple. In

fact, there are cases, as discussed in next point, where a two (or more) step adaptation is

simpler than a direct adaptation between components.

4. Simplifying adaptation in case of an enhanced-primitive relationship among com-

168

ponents. The state—transfer and synchronization during adaptation is in general difficult

between arbitrary components. However, if one component is an enhancement of another

component, then the state-transfer and synchronization can be simplified in adaptation be-

tween those two components (cf. Section 9.5 for an example). To take advantage ofthis, we

define the enhanced-primitive relationship between components. We say that a component

A is an enhanced component of component B (respectively, component B is a primitive

component of A) iff A is syntactically and semantically compatible with B, i. e., it extends

the interface of B, and it provides all services that B provides.

Now, consider a scenario where A is an enhanced component of B and that B is be-

ing replaced by A. In this scenario, fractions of B can be replaced in an arbitrary order

by fractions of component A, as each fraction of A can provide the required service to

the remaining fractions of B. Moreover, the fractions of A can communicate with the re-

maining fiactions of B using a protocol that the latter understands. Thus, in this case, the

synchronization requirement among component fractions is relaxed, and also transferring

state to/from primitive component is easy.

In a case where two enhanced components, say C and D, are derived from the same

primitive component, say Z, the adaptation from C to D can be done in two steps; by first

replacing C by Z and then replacing Z by D. Since the adaptation for enhanced-primitive

relationship is relatively easy, the direct adaptation from C to D may not necessarily be fast

or easy. We note that the idea ofan enhanced-primitive relationship can be extended to have

a multi-level hierarchy of components, where components at a higher level are enhanced

version of components at lower level.

5. Easy replacement of adaptation logic. An adaptation from one component to another

169

component can be performed in several ways. For example, we discussed quiescence and

mixed-mode adaptations in this dissertation. Moreover, we used reset-based approach to

achieve synchronization among processes in distributed system during adaptation. How-

ever, other approaches or variations of reset protocol can be used for synchronization. The

environment conditions or resource constraints may determine which adaptation logic will

provide optimum performance. The component family design has AdaptationHandlers that

implement adaptation logic and AdaptationController can choose among different Adap-

tationHandlers that will execute the adaptation. This clear separation of adaptation logic

makes it easy to replace between different adaptation logics.

170

Chapter 10

Conclusion and Future Work

Software systems undergo adaptation for reasons that include changes in environment con-

ditions, fixing of some bugs, or changes in requirements. In the case ofdistributed systems,

adaptation causes changes to multiple processes. It is required that these changes to mul-

tiple processes be properly synchronized in order for the adaptation to provide acceptable

behavior. Furthermore, in the case of adaptation in distributed systems, the behavior of the

old program and the behavior ofthe new program may overlap causing mixed-mode behav-

ior during adaptation. To gain assurance in adaptation it is important to formally specify

and verify the behavior of the system during adaptation.

10.1 Contributions

In this dissertation, we made the following contributions:

0 We presented an approach based on adaptation lattice to model the adaptation in

distributed systems [102]. The adaptation lattice approach identifies various overlap

171

scenarios that can occur during adaptation. It classifies system during adaptation into

intermediate programs and specifies the specification for the intermediate programs.

Specifically, various properties that need to be checked during adaptation can be

specified using adaptation lattice.

We presented an approach based on transitional-invariant lattice to verify the cor-

rectness of adaptation in the absence of faults, and transitional-faultspan lattice to

verify the correctness of adaptation in the presence offaults [102]. In the transitional-

invariant lattice approach, we identify the invariants associated with the intermediate

programs to show the safety during adaptation. In the transitional-faultspan lattice

approach, we identify the invariants and the faultspans associated with the interme-

diate programs to verify the fault-tolerance properties during adaptation. The ap-

proach applies to different types of fault-tolerances, namely, failsafe, masking and

non-masking. The transitional-invariant and transitional-faultspan lattices also sat-

isfy the liveness during adaptation which states that eventually adaptation is com-

pleted.

We discussed the case study of mixed-mode adaptation using leader election proto-

cols [103]. We showed the performance benefits that can be obtained by mixed-mode

adaptation compared to quiescence adaptation. Specifically, mixed-mode adaptation

reduces the service interruption time and the communication overhead during adap-

tation. We also showed how the lattice-based approach can be used to specify and

verify mixed-mode behavior during adaptation.

a We identified the tradeoffs that occur in adaptation [104]. The tradeoff shows that

172

’
1
‘
!
t
h

a
l
l
)
.

-

increasing concurrency among adaptive actions leads to increase in verification com-

plexity. Moreover, reducing concurrency leads to decrease in communication over-

head due to adaptation. These tradeoffs should assist the adaptation developer in

choosing concurrency during adaptation based on complexity of adaptation, adapta-

tion completion time, and resource availability during adaptation.

Because of complexity, specification and verification of adaptation in distributed sys-

tems is often done on abstract model. To gain assurance in implementation, it is im-

portant that verification be supplemented by testing. In this context, we presented an

approach for testing of adaptation using predicate detection techniques [105]. We in-

troduced adaptation vector to classify intermediate program states that occur during

adaptation. We also introduce two classes ofpredicates that occur during adaptation,

namely, adaptation-stable and adaptation-transient predicates. We showed how ex-

isting techniques for predicate detection can be extended for testing adaptation.

We described componentfamily design to support adaptation and build an adaptation-

verified library of components. The components in the component family provides

adaptation-related services in addition to the core firnctionality to support adaptation.

The design ofcomponent family also separates the adaptation logic from the compo-

nent functionality, thereby, simplifying the specification, verification and implemen-

tation of the adaptation logic. The design also simplifies independent development

ofnew components and adaptation among components. In this context, we have pre-

sented some of the results of componentfamily approach in [106]. The component

family design integrates the framework for adaptation while ensuring separation of

173

adaptation logic. The framework supports both mixed-mode and quiescence adap-

tation. A preliminary design of this framework has been published in [3], and in a

recent case study in sensor networks we have used this framework [107].

10.2 Future Research

This dissertation has created the possibility of several new research directions. Some of

these are outlined below: I

 0 Automatic generation oflattices. In this dissertation, we used transitional-invariant :—

and transitional-faultspan lattice to verify adaptation. However, identifying the lat-

tice is a complex task. We would like to explore methods to generate these lattices in

a semi-automatic fashion. Specifically, considering all possible atomic adaptations,

we would like to explore approaches that can generate models of different interme-

diate programs. Also, we would like to explore approaches to identify transitional-

invariants and transitional-faultspans automatically.

0 Component family having components with varied interfaces. In the component

family design discussed in Chapter 9, we considered components having same inter-

faces. We would like to explore ways to extend the design to deal with components

having same firnctionality but (slightly) different interfaces.

0 Applying componentfamily in new domains. In this dissertation, we presented com-

ponent family design and illustrated it in context of algorithms in group communi-

cation application such as leader election protocols and reliable communication pro-

174

tocols. We would like to apply this design in other domains, such as web services,

middleware components, and other application-level components.

Runtime verification. The component family design allows new components to be

included and used in the family at runtime. Currently, we expect that verification of

adaptation involving the new component is done offline. We would like to explore

approaches to do runtime checking of new components and adaptations involving

those components. In this context, we would like to leverage the design ofcomponent

family as it separates the adaptation logic from component functionality.

175

APPENDICES

176

.
-
F
E
‘
I
U
I

‘
L
'

a
.
‘

.
.
9
.

.

Appendix A

Model-Checking of Adaptive Leader

Election Program

In this appendix, we describe the model-checking ofadaptive leader election program using

SPIN. The leader election programs are discussed in Chapter 6. The code of the adaptive

leader election program in Promela language is shown in Section A.l. In Section A.2, we

show the results of model checking safety and liveness properties of the adaptive leader

election program.

A.1 Adaptive Leader Election Program

The adaptive leader election program in promela is shown below. We consider five pro-

cesses. All processes are initially using ldrId protocol. The program should cover fol-

lowing scenarios for model-checking: (i) adaptation occurs after election, (ii) adaptation

occurs before election, (iii) adaptation occurs while election is underway, and (iv) elec-

177

tion occurs while adaptation is underway. To ensure that above scenarios are covered, we

choose two process (namely, process 3 and process 4) to start the election. As discussed in

Chapter 6, each process performs its adaptive action independent of others. All processes

perform adaptation that replaces the til-rid protocol with ldrl’hl.

#define N 5 /* number of nodes */

#define L 10 /* buffer size of channel */

/* types of messages */

mtype = { LDRID, LDRVAL, ELECT, ACK, LD };

/* structure to store neighbors for a node */

/* nL[i] (0 <= 1' < N) = true if i is a neighbor */

typedef ArrayNeighbors {

bool nL[N] = false

};

/* neighbor list for each node */

hidden ArrayNeighbors thrs[N];

/* computation index (election index) */

typedef complndex {

byte num;

byte id

};

/* defining channel structure */

typedef Arraychannels {

chan ch[N] = [L] of {mtype, mtype, complndex, byte, byte, bool

}

};

Arraychannels A[N];

hidden complndex rcvtmp;

hidden byte junkBytelD;

bool startNodes[N] = false; /* nodes that will start election

*/

byte value[N] = 0; /* value at each node */

bool ADAPT[N] = false; /* boolean variable indicating if node

is adapting */

/* for joining in a election — LDRID */

inline joinElectionld(j) {

178

protocolType 2: LDRID && thrslj —- l].nleyId-Il && A[j - l].ch[

myld — I l‘?[LDRID(ELECT, rcvsrc ,tmpbyte ,junkBytelD ,tmpbool)] —>

atomic {

A[j — l].ch[myld—1J?LDRID(ELECT, rcvsrc ,tmpbyte .junkBytelD ,

/*

/=I<

if

fi:

if

tmpbool) —>

if E then check if waiting for leader (LI) might be in

queue?) */

need to remove LD from the queue */

E && waitCount == 0 && A[p—I].ch[myld—-—|]?[LDRID(LD,

rcvtmp , ldr ,junkBytelD , tmpbool)] —>

A[p—l].ch[myld—l]?LDRID(LD, rcvtmp , ldr ,junkByteID ,

tmpbool);

else —-> skip

(!E II (E&& (rcvsrc.num > src.num || (rcvsrc.num ==

src.num && rcvsrc.id > src.id)))) —>

src.num = rcvsrc.num; src.id = rcvsrc.id;

mynum = src.num + l;

waitCount = 0;

loopvar = 1;

do

loopvar <2 N —>

if

(loopvar != j && thrs[myId—l].nL[loopvar—l])

—>

A[myld—l].ch[loopvar -—l]!LDRID(ELECT, src ,tmpbyte

,junkBytelD ,tmpbool);

wait[loopvar—l] = true;

waitCount++;

else —>

wait[loopvar—l] = false;

fi;

loopvar++;

loopvar > N —>

break

od;

if

E —> printf(”MSC:”Stoppingcoldcelection...Joiningc.

new..election\n”);

else —> printf("MSC:..Joining..new..election\n”);

fi;

ack = true; E = true; p = j: max = myld;

179

 ‘I”

E && (rcvsrc .num 2: src.num && rcvsrc.id :2 src.id)

->

A[myld— 1].ch[] — I]!LDRID(ACK, src ,tmpbyte ,junkBytelD ,

false);

:: else -> skip

fi;

}

inline ackReceiveld(j) {

protocolType == LDRID && wait[j—l] && A[j —1].ch[myld—l]?[LDRID

(ACK,rcvsrc , maxchildld ,junkByteID , isChild)] -—>

atomic {

A[j —l].ch[myld——l]?LDRID(ACK, rcvsrc , maxchildld ,junkByteID

, isChild) ->

if

E —>

if

'° ack && src.num == rcvsrc.num && src.id == rcvsrc.

id —>

wait[J—l] = false;

waitCount——;

if

" isChild —>

chd[j—l] = true;

if

max < maxchildld —> max = maxchildld;

else —> skip

fi;

else —> skip

fi;

else —> skip

fi;

else —> skip

fi;

}

/* for joining in a election - LDRVAL */

inline joinElectionVal(j) {

protocolType == IDRVAL && thrs[j —l].nL[myId—l] && A[j —l].ch[

myld —l]?[LDRVAL(ELECT, rcvsrc ,tmpVal ,tmpbool)] —>

atomic {

A[j —- l].ch[myld—l]?LDRVAL(ELECT, rcvsrc ,tmpVal ,tmpbool) ——>

/* if E then check if waiting for leader (LI) might be in

queue?) */

l 80

/* need to remove Ll) from the queue */

if

E && waitCount :2 O && Alp——l].ch[myld—l]?[LDRVAL(LD,

rcvtmp ,tmpVal ,tmpbool)] —>

A[p» l].ch[myld - I]‘lLDRVAULD, rcvtmp ,tmpVal ,tmpbool);

else —:> skip

fi;

if

(!E H (E && (rcvsrc.num > src.num || (rcvsrc.num 2:

src.num && rcvsrc.id > src.id)))) —-> W

src.num = rcvsrc.num; src.id = rcvsrc.id; i '

mynum = src.num + l; ";

waitCount = O; I

loopvar = I; 2

do
Lg

loopvar <= N —> i.

if =--'

(loopvar I: j && thrs[myId-—l].nL[loopvar—-l])

—>

A[myld — 1].ch [loopvar — l]!LDRVAI.(ELECT, src ,tmpVal

,tmpbool);

wait[loopvar—l] = true;

waitCount++;

else —>

wait[loopvar—l] = false;

fi;

loopvar++;

loopvar > N -—>

break

od;

if

E —> printf(”MSC:”Stoppingcoldcelection...Joiningc

newcelection\n”);

else —> printf(”MSC:..Joininganewcelection\n”);

fi;

ack = true; E = true; p = j;

maxVal.id = myld; maxVal.num = value[myld—l];

E && (rcvsrc.num == src.num && rcvsrc.id == src.id)

->

A[myld—l].ch[j —l]!LDRVAL(ACK, src ,tmpVal , false);

else —> skip

fi;

I81

inline ackReceiveVal (j) {

protocolTyp 2: LDRVAL && wait[j—Il && A[j —I].ch[myld—l]?[

LDRVAL(ACK,rcvsrc , tmpVal, isChild)l —>

atomic {

A[j—l].ch[myld—l]‘.’LDRVAL(ACK,rcvsrc, tmpVal, isChild) -—>

if

.. E _>

if

'° ack && src.num == rcvsrc.num && src.id == rcvsrc.

id —>

wait[j—~I] = false;

waitCount——;

if

isChild —>

chdlj—l] = true;

if

((maxVal.num < tmpVal.num) |I (maxVal.num ==

tmpVal.num && maxVal.id < tmpVal.id)) —>

maxVa|.id = tmpVal.id; maxVal.num = tmpVal.

num;

else —> skip

fi;

else —> skip

fi;

else —> skip

fi;

else —-> skip

fi;

}

inline OverlappedMessage (j) {

protocolType == LDRVAL && A[j - l].ch[myld —l]?[LDRID(rcvdMngype

, rcvsrc , tmpbyte ,junkByteID , tmpbool)] —>

atomic {

A[j - [].ch[myld-l]?LDRID(rcvdMngype , rcvsrc , tmpbyte ,

junkByteID , tmpbool);

printf(”MSC: ”Message ..from ..LDRID\n”);

if

" rcvdMngype == ELECT —>

skip;

rcvdMngype == ACK —>

skip;

rcvdMngype == LD —>

if

src .num == rcvsrc .num && src . id == rcvsrc . id —>

E = false;

182

I
F

£1171;

Idr = tmpbyte;

loopvar = I;

do

loopvar <= N —>

if

" chd[loopvar—J] —> A[nwdd»—l[ch[100pvar—l]!

LDRVALUJDAHC,ldr,junkByteH),tmpbool);

chd[loopvar—4]=false:

:: else —¢> skip

fi;

loopvar++

loopvar > NI~>

break

0d;

else —> skip

fi;

fi , }

/* defining the process */

proctype node (bool st; byte mynumber) {

bool startElection = st, E = false . ack = false, isChild =

false;

byte myld = mynumbcr, maxchildld;

byte p = O, mynum = 0, max = 0, 1dr =0;

complndex src, rcvsrc , maxVal, tmpVal;

bool wait[N] = false , chd[N] = false , tmpbool;

byte waitCount = O, loopvar, tmpbyte;

mtype protocolType = LDRID; /* initially LDRID is running */

mtype rcvdMngype;

end: do

/* LDRID .' start election */

protocolType :2 LDRID && (!E && startElection) —>

atomic {

printf(”MSC:...Starting..new..election\n”);

src .num = mynum;

src.id = myld;

mynum = mynum + l;

waitCount = 0;

loopvar = I;

do

loopvar <2 N —>

if

thrslmyId—I].nL[loopvar—l] —>

I83

A[myld -— I].ch[loopvar -— l l!l.l)RlD(ELECT. src . tmpbyte,

junkBytelD , tmpbool);

wait[loopvar—l] :2 true;

waitCount++;

else —->

wait[loopvar—l] = false;

fi;

loopvar++;

loopvar > N —>

break

od;

ack = true; E = true; p = myld; max = myld;

startElection false;

}

joinElectionId (l);

joinElectionld (2);

joinElectionId (3);

joinElectionId (4) ;

joinElectionld (5);

ackReceiveld (l);

ackReceiveId (2);

ackReceiveld(3);

ackReceiveId (4);

ackReceiveld (5);

/* LDRID : ack to parent */

'° protocolType == LDRID && E && waitCount == 0 && myld != src

.id && ack —->

atomic {

ack = false;

A[myId—l].ch[p—l]!LDRID(ACK, src ,max,junkBytelD,true);

}

/* LDRID .' elect leader */

" protocolType == LDRID && E && waitCount == 0 && myld == src

.id && ack —>

atomic {

ack = false;

E = false;

Idr = max;

loopvar = 1;

do

loopvar <= N —>

if

184

chd[loopvarml] _> Alnudd—-chhlloopvar—lllLDRHDUJ)

.src,ldr,junkByteH),tmpbool);

chd[loopvar—d] = false;

else -> skip

fi;

loopvar++

loopvar > N’—>

break

0d;

}

/* LDRID .' receive and forward leader Ir/

" protocolType :2 LDRID && E && lack && myld != src.id && A[p

—I].ch[myld—I]?[LDRID(LD, rcvsrc , 1dr ,JunkByteID ,tmpbool)] -—->

A[p—l].ch[myld—l]?LDRID(LD, rcvsrc ,ldr ,junkBytelD , tmpbool);

atomic {

if

" src.num == rcvsrc.num && src.id 2: rcvsrc.id —>

E = false;

loopvar = 1;

do

loopvar <= N «>

if

" chd[loopvar—l] —-> A[myld -—l].ch[loopvar —l]!LDRID

(LD, src , 1dr ,junkBytelD . tmpbool);

chd[loopvar—l]=false;

:: else --> skip

fi;

loopvar++

loopvar > N —>

break

od;

else -> skip

fi;

}

/* adaptive action */

ADAPT[myId-—I] && protocolType == LDRID -—>

atomic {

printf(”MSC:..Adaptingcprotocol..tocLDRVALcatcnode:z‘7cd\n”,

myld);

protocolType = LDRVAL;

/* perform state transfer actions */

if

E && waitCount I: 0 && src.id != myld —>

E = false; ack = false;

waitCount = 0; p = O; 1dr = 0;

/*

}

OverlappedMessage (l);

loopvar = I;

do

" loopvar <2 N —>

wait[loopvar-—l] = false:

chd[loopvar—I] = false;

loopvar++;

:: loopvar > N —:> break

od;

E && waitCount l: O && src.id == myld —>

E = false; ack = false;

waitCount = O; p = 0; 1dr 2 0;

loopvar = 1; n

do
.

loopvar <= N —->

I
"

i
i

[
'
1

wait[loopvar—l] = false;

chd[IOOpvar—l] = false;

loopvar++; l‘ ;

:. loopvar > N —> break E.)

0d; ..

startElection = true;

:. else -> skip

fi;

OverlappedMessage (2);

OverlappedMessage (3);

OverlappedMessage (4);

OverlappedMessage (5);

LDRVAL .' start election */

protocolType == LDRVAL&& (!E && startElection) —>

atomic {

printf(”MSC:..Startingcnewcelection\n");

src .num = mynum;

src.id = myld;

mynum = mynum + I;

waitCount = 0;

loopvar = 1;

do

loopvar <= N —>

if

°° thrs[myId—-l].nL[loopvar ——l] -—>

A[myld—l].ch[loopvar -—1]!LDRVAL(ELECT, src ,tmpVal ,

tmpbool);

wait[loopvar—l] = true;

waitCount++;

186

else —>

waitlloopvar—1| = false;

fi;

loopvar++;

loopvar > N —>

break

od;

ack = true; E = true; p = myld;

maxVal.id = myld; maxVal.num = valuelmyId--l];

startElection = false;

}

joinElectionVal (I);

joinElectionVal (2);

joinElectionVal (3);

joinElectionVal (4);

joinElectionVal (5);

ackReceiveVal(l);

ackReceiveVal (2);

ackReceiveVal (3);

ackRecerveVal (4);

ackReceiveVal (5);

/* LDRVAL .' ack to parent */

" protocolType == LDRVAL && E && waitCount == 0 && myld !=

src.id && ack —->

atomic {

ack = false;

A[myld—l].ch[p—l]!IDRVAL(ACK, src ,maxVal,true);

}

/* LDRVAL : elect leader */

" protocolType == LDRVAL && E && waitCount == 0 && myld ==

src.Id && ack -—>

atomic {

ack = false;

E = false;

1dr = maxVal.id;

loopvar = I;

do

loopvar <= N —>

if

" chd[loopvar—l] —> A[myId—l].ch[loopvar—l]!LDRVAL(

LD, src , maxVal , tmpbool);

chd[loopvar—l] = false;

else —> skip

187

fi:

Ioopvar++

loopvar > N —>

break

od:

}

/* LDRVAL : receive and forward leader a/

" protocolType == LDRVAL && E && lack && myld != src . id && A[

p—l].ch[myld—I]?[LDRVAL(LD, rcvsrc ,tmpVal ,tmpbool)] -—>

A[p——1Lch[nudd—J]?EDRVAL(LD,rcvsn:,Uanal,nnpbool);

atomic {

if

" src.num == rcvsrc .num && src.id == rcvsrc.id ->

E = false;

1dr = UanaLid;

loopvar = I;

do

loopvar <= Nt~>

if

chd[loopvar—l] ~> A[nndd-1Lch[loopvar-—IN

LDRVAL(LD,sn:,Uanal,nnpbool);

chd[loopvar—l]=false;

:: else —> skip

fi;

loopvar++

loopvar > N'“>

break

od;

else *> skip

fi;

}

od

}

/* initial process */

init {

/* defining the neighbors */

lVbhrs[O].nL[l] = true; lVbhrs[l].nL[OJ = true;

thrs[0].nL[2] = true; bflflns[2].nL[O] = true;

thrle].nL[4] = true; huflns[4].nL[O] = true;

IthrslI].nL[2] = true; lVbhrsl2].nL[I] = true;

thrsll].nL[4] = true; hflfins[4].nL[I] = true;

thrs[] nL[3] = true; lVbhrs[3].nL[2l = true;

/* processes that will start the election */

starflflodesl3] = true;

188

sHartNodesl4l = true:

value [3] = 1;

byte proc:

atomic {

proc = I;

do

proc <= N —>

if

startNodes[proc—I] —> run nodeI'true,

else —-> run node(false, proc)

fi;

proc++;

proc > N —>

break

0d;

do

" !ADAPT[O] —> ADAPT[O] = true;

IADAP'I‘H] —> ADAPTll] = true;

IADAPT[2] —-> ADAPT[2] = true;

!ADAP'T[3] —-> ADAPT[3] = true;

!ADAPT[4] —> ADAPT[4] =.true;

3} ADAPT[O]&&ADAP'I‘[1]&&ADAPT[21 && ADAPTI3] &&ADAPTI4I

-—> break,

od

A.2 Model-Checking Results

adaptive leader election program of Section A] using SPIN.

A.2.1 End States

189

proc);

In this section, we discuss results of safety and liveness properties that we verify for the

In this subsection we show the results of verifying the program for valid end states. The

valid end states for the adaptive leader election program discussed in section A] are those

in which every process that was instantiated has reached the end of its code. Specifically,

those are ones in which all process have completed the election (started by process 1) and

the adaptation (from ldrId to ldrVal). As shown in the result, there are no invalid end

states.

Bit statespace search for:

never claim -— (not selected)

assertion violations -— (disabled by —A flag)

cycle checks (disabled by —DSAFETY)

invalid end states +

State—vector 2332 byte, depth reached 1251, errors: 0

3.36632e+07 states , stored

l.l4232e+08 states , matched

1.47896e+08 transitions (= stored+matched)

5.90994e+08 atomic steps

hash factor: 1.99354 (best if > 100.)

bits set per state: 3 (—k3)

Stats on memory usage (in Megabytes):

78637.270 equivalent memory usage for states (stored*(State—

vector + overhead))

16.777 memory used for hash array (—w26)

0.360 memory used for DFS stack (—m10000)

0.623 other (proc and chan stacks)

0.017 memory lost to fragmentation

17.777 total actual memory usage

A.2.2 Safety Property of Leader Election

In this subsection, we consider the safety property which states that if any two processes are

not in election then they have the same leader. For sake of reducing redundancy, we show

the result for the case in which we verify the property for process 1 and process 2. Similar

results are obtained when we consider any two processes. The never claim describing the

190

I
'
d
.
-

fl
.

.
.
,

-
.

a
t
.

 .
.
,
-
I
A
.

'
_
'
.
.
A
Z
.
A
&
.
'
.
-
H
I
.
A
'

I
4
)

l...
_

property is shown first, which is followed by the verification result.

Never claim

#define p (node[l]:E || node[2]:E || node[l]:ldr == node[2]:ldr

)

/*

* Formula As Typed: []p

The Never Claim Below Corresponds

To The Negated Formula !([]p)

(formalizing violations of the original)

*
*

*

*/

never { /* !([]p) */

T0-init:

if

(! ((p))) -> goto accept-aH

(1) —> goto TTLJnit

fi;

accept-all:

skip

}

Verification result

Bit statespace search for:

never claim +

assertion violations + (if within scope of claim)

acceptance cycles + (fairness disabled)

invalid end states (disabled by never claim)

State—vector 2336 byte, depth reached 1383, errors: 0

3.3699lc+07 states , stored

1.09351e+08 states , matched

l.4305e+08 transitions (= stored+matched)

5.64732e+08 atomic steps

hash factor: 1.99142 (best if > 100.)

bits set per state: 3 (—k3)

Stats on memory usage (in Megabytes):

79260.243 equivalent memory usage for states (stored*(State—

vector + overhead))

8.389 memory used for hash array (-w26)

0.040 memory used for bit stack

0.320 memory used for DFS stack (—m10000)

191

0.584 other (proc and chan stacks)

0.056 memory lost to fragmentation

9.389 total actual memory usage

A.2.3 Liveness Property of Leader Election

In this subsection, we consider the liveness property which states that eventually all pro-

cesses have the same leader. The never claim describing the property is shown first, which

is followed by the verification result.

Never claim

#define p (node[l]:ldr == node[2]:ldr && node[2]:ldr == node

[3]:1dr && node[3]:ldr == node[4]:ldr && node[4]:ldr == node

[5]:ldr && node[S]:ldr == node[l]:ldr)

/:I=

=I= Formula As Typed: []<>p

* The Never Claim Below Corresponds

* To The Negated Formula !([]<>p)

* (formalizing violations of the original)

*/

never { /* !([]<>p) */

T0-init:

if

(I ((p))) —> goto accept_S4

(l) —> goto T0_init

fi;

accept_S4:

if

(I ((p))) —> goto accept-S4

fi;

Verification result

Bit statespace search for:

never claim +

assertion violations + (if within scope of claim)

acceptance cycles + (fairness disabled)

invalid end states (disabled by never claim)

192

State—vector 2336 byte, depth reached 1391, errors: 0

3.3996e+07 states , stored

1.10277e+08 states , matched

1.44273e+08 transitions (= stored+matched)

5.7067e+08 atomic steps

hash factor: 1.97402 (best if > 100.)

bits set per state: 3 (—k3)

Stats on memory usage (in Megabytes):

79958.646 equivalent memory usage for states (stored*(State—

vector + overhead))

8.389 memory used for hash array (—w26)

0.040 memory used for bit stack

0.320 memory used for DFS stack (—m10000)

0.585 other (proc and chan stacks)

0.055 memory lost to fragmentation

9.389 total actual memory usage

A.2.4 Safety Property During Adaptation

In this subsection, we consider a safety property during adaptation. The property states that

if a process using ldrVal protocol sends a message oftype ELECT to a process using ldrId

protocol, then that message is buffered. The never claim describing the property is shown

first, which is followed by the verification result.

Never claim

#define p (!(node[l]: protocolType == LDRID && node [2]:

protocolType == LDRVAL && node[2]:E && node[2]:ack && node[2]:

waitCount !=0) || (A[l].ch[0]??[LDRVAL(ELECT)]))

/*

* Formula As Typed: []p

* The Never Claim Below Corresponds

To The Negated Formula .’([]p)

(formalizing violations of the original)*
*

*/

never { /* !([]p) */

193

T0-init:

if

(I ((p))) -> goto accept_all

(1) —> goto TTLJnit

fi;

accept-all:

skip

}

Verification result

Bit statespace search for:

never claim +

assertion violations + (if within scope of claim)

acceptance cycles + (fairness disabled)

invalid end states — (disabled by never claim)

State—vector 2336 byte, depth reached 1383, errors: 0

3.3699le+07 states , stored

1.09351e+08 states , matched

l.4305e+08 transitions (= stored+matched)

5.64732e+08 atomic steps

hash factor: 1.99142 (best if > 100.)

bits set per state: 3 (—k3)

Stats on memory usage (in Megabytes):

79260.243 equivalent memory usage for states (stored*(State—

vector + overhead))

8.389 memory used for hash array (—w26)

0.040 memory used for bit stack

0.320 memory used for DFS stack (—m10000)

0.684 other (proc and chan stacks)

0.176 memory lost to fragmentation

9.609 total actual memory usage

194

BIBLIOGRAPHY

195

Bibliography

[1] W. K. Chen, M. Hiltunen, and R. Schlichting, “Constructing adaptive software in

distributed systems,” in Proceedings of the 21st International Conference on Dis-

tributed Computing Systems, pp. 635—643, April 2001.

[2] P. McKinley and U. Padmanabhan, “Design of composable proxy filters for mo-

bile computing,” in Proceedings ofthe Workshop on Wireless Networks and Mobile

Computing, 2001.

[3] S. S. Kulkarni, K. N. Biyani, and U. Arumugam, “Composing distributed fault-

tolerance components,” in Proceedings ofInternational Workshop on Principles of

Dependable Systems - PoDSy, at DSN, pp. W127—l36, June 2003.

[4] J. Hallstrom, W. Lea], and A. Arora, “Scalable evolution of highly available sys-

tems,” Transactions ofthe Institutefor Electronics, Information and Communication

Engineers, vol. E86-D, no. 10, pp. 2154-2164, 2003.

[5] B. Redmond and V. Cahill, “Supporting unanticipated dynamic adaptation of appli-

cation behavior,” in Proceedings of the European Conference on Object-Oriented

Programming (ECOOP), pp. 205—230, 2002.

[6] S. M. Sadjadi, Transparent Shaping ofExisting Software to Support Pervasive and

Autonomic Computing. PhD thesis, Michigan State University, 2004.

[7] J.-C. Fabre and T. Pcrennou, “FRIENDS: A flexible architecture for implementing

fault tolerant and secure distributed applications,” in Proceedings of the European

Dependable Computing Conference, pp. 3—20, 1996.

[8] R. Keller and U. Holzle, “Binary component adaptation,” Lecture Notes in Computer

Science, vol. 1445, 1998.

[9] J. Kramer and J. Magee, “The evolving philosophers problem: Dynamic change

management,” IEEE Transactions of Sofiware Engineering, vol. 16, no. 11,

pp. 1293—1306, 1990.

[10] N. Amano and T. Watanabe, “A software model for flexible and safe adaptation of

mobile code programs,” in Proceedings ofthe International Workshop on Principles

ofSoftware Evolution, pp. 57—61, ACM Press, 2002.

196

[11] P. McKinley, S. Sadjadi, E. Kasten, and B. Cheng, “Composing adaptive software,”

IEEE Computer, vol. 37, no. 7, pp. 56—64, 2004.

[12] J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel, “Towards a taxonomy

ofsoftware change,” Journal ofSoftware Maintenance and Evolution: Research and

Practice, 2003.

[13] J. S. Bradbury, J. R. Cordy, J. Dingel, and M. Werrnelinger, “A survey of self-

management in dynamic software architecture specifications,” in Proceedings ofthe

International Workshop on Self-Managed Systems (WOSS), 2004.

[14] D. L. Metayer, “Describing software architecture styles using graph grammers,”

IEEE Transaction on Software Engineering, vol. 24, no. 7, pp. 521—533, 1998.

[15] G. Taentzer, M. Goedicke, and T. Meyer, “Dynamic change management by dis-

tributed graph transformation: Towards configurable distributed systems,” in Pro-

ceedings of the 6th International Workshop on Theory and Application of Graph

Transformation, vol. 1764 ofLNCS, Springer, 1998.

[16] M. Werrnelinger, A. Lopes, and J. L. Fiadeiro, “A graph based architectural

(re)configuration language,” in Proceedings of the 8th European Software Engi-

neering Conference and 9th ACM SIGSOFT Symposium on the Foundatations of

Software Engineering (ESEC/FSE 2001), vol. 26 of Software Engineering Notes,

pp. 21—32, 2001.

[17] R. Allen, R. Douence, and D. Garlan, “Specifying and analyzing dynamic software

architectures,” in Proceedings of Conference on Fundamental Approaches to Soft-

ware Engineering, vol. 1382 ofLecture Notes in Computer Science (LNCS), pp. 21—

35, 1998.

[18] C. E. Cuesta, P. de la Fuente, and M. Barrio-Solarzano, “Dynamic coordination ar-

chitecture through use of reflection,” in Proceedings ofACMSymposium on Applied

Computing, pp. 134—140, ACM Press, 2001.

[19] P. Oreizy, N. Medvidovic, and R. N. Taylor, “Architecture-based runtime software

evolution,” in Proceedings ofthe 20th International Conference on Software Engi-

neering, pp. 177—186, 1998.

[20] J. Kramer, J. Magee, and M. Sloman, “Configuring distributed systems,” in Pro-

ceedings ofthe 5th Workshop on ACMSIGOPS European Workshop, pp. 1—5, ACM

Press, 1992.

[21] S. McCamant and M. D. Ernst, “Predicting problems caused by component up-

grades,” in ESEC/FSE: Proceedings of the 10th European Software Engineering

Conference and the 11th ACM SIGSOFT Symposium on the Foundations of Soft-

ware Engineering, (Helsinki, Finland), pp. 287—296, September 2003.

197

[22] L. Mariani and M. Pezzé, “A technique for verifying component-based software,”

in International Workshop on Test and Analysis of Component Based Systems,

(Barcelona, Spain), pp. 17—30, March 27—28, 2004.

[23] S. Chaki, N. Sharygina, and N. Sinha, “Verification of evolving software,” in Pro-

ceedings of the 3rd International Workshop on Specification and Verification of

Component-based Systems, pp. 55—61, 2004.

[24] D. Gupta and P. Jalote, “On-line software version change using state transfer be-

tween processes,” Software - Practice and Experience, vol. 23, no. 9, pp. 949-964,

1993.

[25] B. P. Lientz and E. B. Swanson, Software Maintenance Management: A Study ofthe

Maintenance of Computer-Application Software in 487 Data Processing Organiza-

tions. Addison-Wesley, August 1980.

[26] N. Chapin, J. Hale, K. Khan, J. Ramil, and W. G. Than, “Types of software evolution

and software maintenance,” Journal ofSoftware Maintenance andEvolution, no. 13,

pp. 3—30, 2001.

[27] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and H. C. Cheng, “A taxonomy of

compositional adaptation,” Tech. Rep. MSU-CSE-O4-l 7, Michigan State University,

May 2004.

[28] C. Szyperski, Component Software: Beyond Object-Oriented Programming.

Addison-Wesley Professional, 2nd ed., 2002.

[29] J. Kramer and J. Magee, “Analysing dynamic change in software architectures: A

case study,” in Proceedings ofIEEE International Conference on Configurable Dis-

tributed Systems, 1998.

[30] C. Canal, E. Pirnentel, and J. M. Troya, “Specification and refinement of dynamic

software architectures,” in Proceedings ofthe Working IFIP Conference on Software

Architecture, pp. 107—126, 1999.

[31] R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead, and J. E. Robbins,

“A component- and message-based architectural style for gui software,” in Proceed-

ings of the 17th International Conference on Software Engineering, pp. 295—304,

ACM Press, 1995.

[32] 1. Lee, DYMOS: A Dynamic MOdification System. PhD thesis, University of Wis-

consin, 1983.

[33] R. P. Cook, “*mod - a language for distributed programming,” IEEE Transactions

on Software Engineering, vol. 6, no. 6, pp. 563—571, 1980.

[34] J. Magee and J. Kramer, “Dynamic configuration for distributed systems,” IEEE

Transactions on Software Engineering, vol. 11, no. 4, pp. 424—436, 1985.

198

[35] J. Magee, J. Kramer, and M. Sloman, “Constructing distributed systems in conic,”

IEEE Transactions on Software Engineering, vol. 15, no. 6, 1989.

[36] B. Liskov, “Distributed programming in argus,” Communications of the ACM,

pp. 300—312, March 1988.

[37] T. Bloom, Dynamic Module Replacement in a Distributed Programming System.

PhD thesis, Massachusetts Institute of Technology, 1983.

[38] D. Gupta, On-line Software Version Change. PhD thesis, Department of Computer

Science and Engineering, Indian Institute of Technology, 1994.

[39] J. Zhang and B. Cheng, “Using temporal logic to specify adaptive program seman-

tics,” Journal ofSystems and Software (JSS), vol. 79, no. 10, pp. 1361-1369, 2006.

[40] J. Zhang and B. Cheng, “Model-based development of dynamically adaptive soft-

ware,” in Proceedings ofInternational Conference on Software Engineering, May

2006.

[41] J. Zhang, Z. Yang, B. Cheng, and P. McKinley, “Adding safeness to dynamic adap-

tation techniques,” in Proceedings ofICSE 2004 Workshop on Architecting Depend-

able Systems, (Edinburgh, Scotland, UK), May 2004.

[42] B. Alpern and F. B. Schneider, “Defining liveness,” Information Processing Letters,

vol. 21, pp. 181-185, October 1985.

[43] B. Alpern and F. B. Schneider, “Proving boolean combinations ofdeterministic prop-

erties,” in Proceedings of the Second Symposium on Logic in Computer Science,

pp. 131—137, 1987.

[44] M. E. Segal and O. Frieder, “Dynamic program updating: a software maintenance

technique for minimizing software downtime,” Software Maintenance : Research

and Practice, vol. 1, pp. 59—79, September 1989.

[45] M. E. Segal and O. Frieder, “Dynamically updating distributed software: Supporting

change in uncertain and mistrustful environments,” in Proceedings ofInternational

Conference on Software Maintenance, October 1989.

[46] M. E. Segal, “Extending dynamic program updating systems to support distributed

systems that communicate via remote evaluation,” in Proceedings of the Interna-

tional Workshop on Configurable Distributed Systems, pp. 188-199, 1991.

[47] M. R. Barbacci, D. L. Doubleday, and C. B. Weinstock, “Application level pro-

gramming,” in Proceedings ofInternational Conference on Distributed Computing

Systems, pp. 458—465, 1990.

[48] C. Hofrneister, Dynamic Reconfiguration. PhD thesis, Computer Science Depart-

ment, University of Maryland, 1993.

199

[49] S. Gihnore, D. Kirli, and C. Walton, “Dynamic ml without dynamic types,” Tech.

Rep. ECS-LFCS-97-378, Laboratory for the Foundations ofComputer Science, Uni-

versity of Edinburgh, December 1997.

[50] C. Walton, D. Kirli, and S. Gilmore, “An abstract machine for module replacement,”

tech. rep., Laboratory for the Foundations ofComputer Science, University of Edin-

burgh, June 1998.

[51] M. Hicks, Dynamic Software Updating. PhD thesis, University of Pennsylvania,

2001.

[52] M. Segal and O. Frieder, “On-the-fly program modification: Systems for dynamic

updating,” IEEE Software, pp. 53—65, March 1993.

[53] D. Peled and W. Penczek, “Using asynchronous buchi automata for efficient auto-

matic verification of concurrent systems,” in PSTV, pp. 315—330, 1995.

[54] J. Shutt and R. Rubinstein, “Self-modifying finite automata: An introduction,” in

Information Processing Letters, vol. 56, pp. 185-190, 1995.

[55] N. Lynch, Distributed Algorithms. Morgan Kaufinann, 1996.

[56] A. Arora and M. G. Gouda, “Closure and convergence: A foundation of fault-

tolerant computing,” IEEE Transactions on Software Engineering, 1993.

[57] A. Arora and S. S. Kulkarni, “Component based design of multitolerant systems,”

IEEE transactions on Software Engineering, vol. 24, pp. 63—78, January 1998.

[58] S. Kulkarni, Component-based Design ofFault Tolerance. PhD thesis, Ohio State

University, 1999.

[59] E. W. Dijkstra, “Self-stabilizing systems in spite of distributed control,” Communi-

cations ofthe ACM, vol. 17, no. 11, 1974.

[60] A. Arora and S. S. Kulkarni, “Designing masking fault-tolerance via nonmask-

ing fault-tolerance,” IEEE Transactions on Software Engineering, vol. 24, no. 6,

pp. 435—450, 1998.

[61] A. Arora and M. G. Gouda, “Closure and convergence: A foundation of fault-

tolerant computing,” IEEE Transactions on Software Engineering, vol. 19, no. 11,

pp.1015—1027,1993.

[62] G. Varghese, Self-stabilization by local checking and correction. PhD thesis,

MIT/LCS/TR-583, 1993.

[63] M. Gouda, Elements ofNetwork Protocol Desgin. John Wiley & Sons, 1998.

[64] E. W. Dijkstra, A Discipline ofProgramming. Prentice Hall, 1976.

200

[65] G. Holzrnann, “Logic verification of ansi-c code with spin,” Proceedings ofthe The

Sixth SPIN Workshop, 2000.

[66] M. G. Gouda and T. McGuire, “Correctness preserving transformations for network

protocol compilers,” Preparedfor the Workshop on New Visionsfor Software Design

and Productivity: Research and Applications, 2001 .

[67] M. Nesterenko and A. Arora, “Stabilization-preserving atomicity refinement,” Jour-

nal ofParallel and Distributed Computing, vol. 62(5), pp. 766—791 , 2002.

[68] M. Demirbas and A. Arora, “Convergence refinement,” Proceedings ofthe Interna-

tional Conference on Distributed Computing Systems, 2002.

[69] D. Gries, The Science ofProgramming. Springer-Verlag, 1981.

[70] M. D. Ernst, Dynamically Discovering Likely Program Invariants. PhD thesis, Uni-

versity of Washington Department of Computer Science and Engineering, (Seattle,

. Washington), 2000.

[71] M. Ernst, J. Cockrell, W. Griswold, and D. Notkin, “Dynamically discovering likely

program invariants to support program evolution,” in Proceedings of the Intema-

tional Conference on Software Engineering, pp. 213—224, 1999.

[72] M. Ernst, A. Czeisler, W. Griswold, and D. Notkin, “Quickly detecting relevant

program invariants,” in Proceedings of the International Conference on Software

Engineering, pp. 449—458, 2000.

[73] M. G. Gouda and T. Herman, “Adaptive programming,” IEEE Transactions on Soft-

ware Engineering, vol. 17, pp. 911—921, 1991.

[74] R. V. Renesse, K. Birman, M. Hayden, A. Vaysburd, and D. Karr, “Building adaptive

systems using ensemble,” Software - Practice & Experience, vol. 28, pp. 963-979,

July 1998.

[75] N. Sridhar, S. M. Pike, and B. W. Weide, “Dynamic module replacement in dis-

tributed protocols,” in Proceedings of the 23rd International Conference on Dis-

tributed Computing Systems, May 2003.

[76] E. W. Dijkstra and C. S. Scholten, “Termination detection for diffusing computa-

tion,” in Information Processing Letters, vol. 11, pp. 1—4, August 1980.

[77] S. Vasudevan, J. Kurose, and D. Towsley, “Design and analysis of a leader elec-

tion algorithm for mobile ad hoc networks,” in Proceedings ofthe 12th IEEE Inter-

national Conference on Network Protocols, pp. 350—360, IEEE Computer Society,

October 2004.

[78] O. Babaoglu and K. Marzullo, “Consistent global states of distributed systems: Fun-

damental concepts and mechanisms,” in Distributed Systems (S. Mullender, ed.),

pp. 55—96, Addison-Wesley, 1993.

201

[79] V. Garg and B. Waldecker, “Detection of weak unstable predicates in distributed

programs,” IEEE Transactions on Parallel and Distributed Systems, vol. 5, pp. 299—

307, March 1994.

[80] M. Chandy and L. Lamport, “Distributed snapshots: Determining global states of

distributed systems,” ACM Transactions on Computer Systems, vol. 3, pp. 63—75,

Feb 1985.

[81] R. Cooper and K. Marzullo, “Consistent detection ofglobal predicates,” Proceedings

of the ACM/ONR Workshop on Parallel and Distributed Debugging, published in

ACMSIGPLANNotices, vol. 26, no. 12, pp. 167—174, 1991.

[82] S. Venkatesan and B. Dathan, “Testing and debugging distributed programs us-

ing global predicates,” IEEE Transactions ofSoftware Engineering, vol. 21, no. 2,

pp. 163—177, 1995.

[83] V. Garg and B. Waldecker, “Detection of strong unstable predicates in distributed

programs,” IEEE Transactions on Parallel and Distributed Systems, vol. 7, no. 12,

pp. 1323—1333, 1996.

[84] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,” Com-

munications ofthe ACM, vol. 21, pp. 558—565, July 1978.

[85] F. Mattem, “Virtual time and global states of distributed systems,” in Proceedings

ofthe International Workshop on Parallel and DistributedAlgorithms, pp. 215-226,

1989.

[86] D. L. Pamas, “On the criteria to be used in decomposing systems into modules,”

Communications ofthe ACM, vol. 15, no. 12, 1972.

[87] P. Allen and S. Frost, Component-Based Developmentfor Enterprise Systems. Cam-

bridge University Press, 1998.

[88] K. Czamecki and U. Eisenecker, Generative Programming. Addison-Wesley, May

2000.

[89] E. Gamma, R. Helm, R Johnson, and J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1995.

[90] D. M. Hoffman and D. M. Weiss, eds., Software Fundamentals - Collected Papers

by David L. Parnas. Addison-Wesley, 2001.

[91] K. Biyani, “Dynamic composition of distributed components,” Master’s thesis,

Michigan State University, 2003.

[92] E. P. Kasten, An IntegratedApproach to Autonomous Computationfor Data Stream-

ing Applications. PhD thesis, Michigan State University, 2007.

[93] “IBM systems journal, special issue on autonomic computing,” 2003.

202

[94] T. Jebara and A. Pentland, “Statistical imitative learning from perceptual data,” in

Proceedings ofthe Second International Conference on Development and Learning,

pp. 191-196, June 2002.

[95] R. Laddaga, M. L. Swinson, and P. Robertson, “Seeing clearly and moving forward,”

IEEE Intelligent Systems, vol. 15, pp. 46—50, 2000.

[96] A. Arora and M. G. Gouda, “Distributed reset,” IEEE Transactions on Computers,

vol. 43, no. 9, pp. 1026-1038, 1994.

[97] S. S. Kulkarni and A. Arora, “Multitolerance in distributed reset,” Chicago Journal

ofTheoretical Computer Science, 1998.

[98] P. T. Wojciechowski and O. Riitti, Formal Methods for Open Object-Based Dis-

tributed Systems, vol. 3535 of Lecture Notes in Computer Science, ch. On Correct-

ness ofDynamic Protocol Update, pp. 275—289. Springer Berlin / Heidelberg, 2005.

[99] D. Batory, “Multi-level models in model-driven development, product lines, and

metaprogramming,” IBM Systems Journal, vol. 45, no. 3, 2006.

[100] J. Liu and D. Batory, “Automatic remodularization and optimized synthesis ofprod-

uct families,” in Generative Programming and Component Engineering (GPCE),

October 2004.

[101] P. Clements and L. Northrop, Software Product Lines. Addison Wesley, 2001.

[102] S. Kulkarni and K. Biyani, “Correctness of component-based adaptation,” in Pro-

ceedings ofInternational Symposium on Component-based Software Engineering -

CBSE, at ICSE, vol. 3054 of Lecture Notes in Computer Science, pp. 48-58, May

2004.

[103] K. Biyani and S. Kulkarni, “Mixed-mode adaptation in distributed systems: A case

study,” in Proceedings ofInternational Workshop on Software EngineeringforAdap-

tive and Self-Managing Systems - SEAMS, at ICSE, May 2007.

[104] K. Biyani and S. Kulkarni, “Concurrency tradeoffs in dynamic adaptation,” in Pro-

ceedings ofInternational Workshop on Assurance in Distributed Systems and Net-

works - ADSN, at ICDCS, July 2006.

[105] K. Biyani and S. Kulkarni, “Testing dynamic adaptation in distributed systems,” in

Proceedings ofInternational Workshop on Automation of Software Test - AST at

ICSE, May 2007.

[106] K. Biyani and S. Kulkarni, “Building component families to support adaptation,”

in Proceedings ofInternational Workshop on Design and Evolution ofAutonomic

Application Software - DEAS, at ICSE, May 2005.

[107] M. Arumugam, S. Kulkarni, and K. Biyani, “Adaptation in sensor—actuator net-

works: A case study,” in Proceedings ofthe Third International Conference on Net-

worked Sensing Systems - INSS, June 2006.

203

run; ------

IIIIIIIIIIIIIIIIIIIIIIIIIIIII

lllllllllll1|11111111111111111111111

