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ABSTRACT

SINGLE-REFERENCE COUPLED-CLUSTER METHODS

EMPLOYING MULTIREFERENCE PERTURBATION THEORY

By

Maricris D. Lodriguito

A new class of noniterative coupled cluster (CC) methods, which improve the

results of standard CC and equation-of—motion (EOM) CC calculations for ground

and excited-state potential energy surfaces along bond breaking coordinates and for

excited states dominated by two-electron transitions, is explored. The proposed ap-

proaches combine the method of moments of coupled-cluster equations (MMCC), in

which the a posteriori corrections due to higher—order correlations are added to stan-

dard CC/EOMCC energies, with the multi-reference many-body perturbation the-

ory (MRMBPT), which provides information about the most essential nondynamical

and dynamical correlation effects that are relevant to electronic quasi-degeneracies.

The newly developed variant of the MMCC theory, termed MRMBPT—corrected

MMCC (MMCC/PT), is formulated using diagrammatic methods. The performance

of the basic MMCC/PT approximations, in which inexpensive corrections due to

triples (MMCC(2,3)/PT) or triples and quadruples (MMCC(2,4)/PT) are added to

ground- and excited-state energies obtained with the CC/EOMCC singles and doubles

(CCSD/EOMCCSD) approach, is illustrated by the results of benchmark calcula-

tions including bond breaking in HF, H20, and F2, and excited states of CH+. Test

calculations reveal that the MMCC(2,3)/PT and MMCC(2,4)/PT approaches pro-

vide an accurate description of bond breaking and excited states dominated by dou-

bles, eliminating the failures of the conventional CC/EOMCC methods at larger



internuclear distances and for excited states dominated by two-electron transitions

without invoking expensive steps of high-order CC/EOMCC methods. The efficient,

general-purpose, highly vectorized implementations of the triply and quadruply ex-

cited moments of the CCSD/EOMCCSD equations, relevant to the MMCC(2,3)/PT

and MMCC(2,4)/PT approaches, are discussed and the details of the algorithm are

also presented.
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1 Introduction

Not long after the discovery of Schréidinger’s equation1 in 1926, one of the pi-

oneers of quantum mechanics, Dirac, made a widely publicized statement that “the

underlying physical laws necessary for the mathematical treatment of a large part of

physics and the whole of chemistry are thus completely known, and the difficulty is

only that the exact application of these laws leads to equations much too complicated

to be soluble” .2 Because of this statement, chemists at that time were skeptical about

the prospects of quantum theory as a way to study molecular properties. However,

what has not been publicized as broadly, in the same paper Dirac also wrote that “it

therefore becomes desirable that the approximate practical methods should be devel-

oped, which can lead to an explanation of the main features of complex atomic system

without too much computation” .2 Inspired by this less known remark and despite the

early reluctance of the chemical community, the field of quantum chemistry has un-

dergone revolutionary advances brought about in part by the advent of computers and

in part by much improved understanding of many-electron systems, particularly in

recent four decades. The tremendous improvements in accuracy and predictive power

of electronic structure methods and significant advances in the fundamental under-

standing of many-electron wavefunctions, which continues to improve every year, have

paved the way to widespread applicability of quantum-chemical methods in solving

increasingly complex chemical problems surpassing what was originally expected in

late 1920’s by a wide margin. Furthermore, because of its rigorous and predictive na-

ture, quantum chemistry has become a powerful, important tool not only for theorists



but also for experimentalists, while inspiring similar developments in computational

nuclear physics, biochemistry, molecular biology, and materials science, among others.

Nowadays, highly accurate ab initio (meaning from “first principles”) quantum

mechanical calculations for small and medium size molecular systems, with up to

20-30 light atoms, a few transition metal atoms and about 100 explicitly correlated

electrons, are routine. Theoretical calculations of the energetics and other molecular

properties of smaller molecules can often rival those obtained experimentally.

The above successes of quantum chemistry do not mean that there are no open or

challenging problems in modern electronic structure theory. Indeed, it is well known

and as further elaborated on below, the key to a successful description of chemical

systems is an accurate assessment of many-electron correlation effects. Electrons in

molecules move in a complicated, highly correlated fashion and one cannot describe

molecular properties by using a simple mean-field description which ignores electron

correlation effects, particularly in cases involving bond breakng and excited electronic

states. The least expensive ways of accurately accounting for electron correlation ef-

fects have computational steps that typically scale as ./V6 — W7 with the system size

JV and this limits the applicability of correlated methods to systems with about 100

correlated electrons (defined as electrons outside the frozen core). Thus, one of the

challenges of modern quantum chemistry is to go to systems with hundreds or thou-

sands of correlated electrons and basis functions. Another challenge is an accurate

treatment of bond breaking (reaction pathways) and excited states, particularly those

dominated by many-electron transitions, i.e. problems where a traditional description

in which one starts from a single Slater determinant and builds the electronic wave

2



functions on top of a single determinant through particle-hole excitations, and which

works for non-degenerate states of closed-shell molecules, is no longer adequate. This

thesis work addresses the latter challenge.

Considering the nature of this thesis research, which focuses on the development of

accurate new methods to describe many-electron correlation effects in cases involving

bond breaking and excited states, in this chapter, we outline some of the most popular

electron correlation methods developed over the recent years. We begin by describing

the exact solution to the Schrodinger equation in a basis set. Then, we present the

various wavefunction-based approximations to solving electronic Schriidinger equation

including correlation, presenting the advantages and disadvantages of each approach

in terms of accuracy of the predicted energies and the computational cost require-

ments.

The conceptually most straightforward method of obtaining the exact solution to

the electronic Schriidinger equation, within a given one-electron basis set, is the full

configuration interaction (full CI) approach, which solves the Hamiltonian eigenvalue

problem by including all possible Slater determinants (antisymmetrized products of

one-electron wavefunctions, i.e. spin-orbitals) of the appropriate symmetry which can

be formed from the given one-electron basis set. Examples of full CI calculations at

a few representative geometries along potential energy curves of small, few electron

molecules can be found in Refs. 3—7. Advances in algorithms and computer hardware

have made it feasible to obtain full CI potential energy curves"_27 for several few-

electron systems. There has been interest in implementing parallel full CI algorithms

on massive parallel architectures and clusters.28_3’ The largest full CI calculation

3



performed to date has been reported by Can and co-workers for the C2 molecule

using the aug-cc—pVTZ basis set without the augmented diffuse d and f functions,

which required about 65 billion Slater determinants.33 This impressive calculation

has only been made possible by employing highly efficient parallel and vector full

CI implementation as well as the dedicated availability of massive supercomputing

resources.

Indeed, there is a major problem with full CI. The factorial growth of the required

number of determinants that defines the dimension of the Hamiltonian eigenvalue

problem with the number of electrons and basis functions makes full CI calculations

feasible only for small molecules, with up to ~10 correlated electrons and with modest

basis sets. This critical drawback can be illustrated by the following example: a

small system with six correlated electrons and 100 orbitals in a basis requires ~109

configuration state functions (spin-adapted combinations of Slater determinants). An

increase of the system size to 12 correlated electrons employing 100 orbitals in a

basis set already would require ~10l7 configuration state functions. This is beyond

the capabilities of present-day computers, and is likely to remain so in many years

to come. Hence, there is a need for alternative, affordable, approximate and yet

accurate approaches in order to study the majority of chemical problems of interest.

Nevertheless, the full CI method, providing exact solutions in a basis set, is invaluable

in benchmarking approximate quantum chemical methods, helping the development

work, including the development work described in this thesis.

The simplest approach to solving the electronic Schrodinger equation is the Hartree—

Fock (H—F) approach which approximates the electronic wavefunction by a single

4



Slater determinant. The H-F method is a mean field theory;3“_37 motion of an elec-

tron in a. molecule is defined by the effective one-electron Hamiltonian (Fock operator)

which describes the average field (Coulomb and exchange terms) created by the re-

maining electrons in the system. The H—F theory can account for about 99% of the

total electronic energy. Unfortunately, it is the remaining 1% that is very important

in describing chemical phenomena, such as the breaking of chemical bonds, electronic

excitations in molecules, response and spectroscopic molecular properties, weak in-

termolecular interactions, etc. Such situations cannot be properly accounted for by

H—F theory because of the neglect of the many-electron correlation effects in the the-

ory. This necessitates going beyond the H—F theory and using more sophisticated

and computationally more demanding techniques, to reach a reasonable description

of molecular systems. In other words, an accurate description of molecular systems

requires a precise determination of many-electron correlation effects.

At this point, it is worth introducing the term “correlation energy” which is for-

mally defined as the difference between the exact energy, defined in this work as the

full CI energy, and the corresponding H—F energy, calculated in the same basis set.

The true correlation energy would require a calculation in the infinite basis set. The

infinite basis set limit can be approached by performing a sequence of calculations

with basis sets of increasing size. In the development work, one does not have to

study the infinite basis set limit to learn about the performance of new methods. The

performance of new methods in finite basis set calculations and comparisons with full

CI in the same basis sets are enough to make judgements about the usefulness of the

newly proposed approaches.



There are two types of electron correlation: dynamical and nondynamical (static).

Dynamical correlations can be regarded as short-range correlations due to electrons

instantaneously avoiding each other, particularly when they come close to each other.

On the other hand, nondynamical correlations can be treated as long-range corre—

lations which arise from the multiconfigurational character of the systems having

quasi(near)-degenerate states, as in the case of electrons constituting an electron

pair, which are separated during the bond breaking process, biradicals, and the ma-

jority of excited states. A well-balanced account of both dynamical and nondynamical

electron correlation is important to obtain a uniformly accurate description of reac-

tants, products, reaction intermediates, and transition states as well as the precise

description of electronic excitations in molecules.

There has been tremendous progress in the development of electron correlation

methods in the recent history. Here, we primarily focus on the wavefunction-based

approaches which can be divided into three main categories: (1) configuration inter-

action (CI) approaches;38_41 (2) many-body perturbation theory (MBPT);“"46 and

(3) coupled-cluster (CC) methods.“"-51 The electron correlation methods can also be

classified as single-reference and multi—reference methods. Single-reference electron-

correlation methods, from the name itself, are defined by building a correlated wave-

function through electronic excitations out of a single Slater determinant (e.g., a H—F

determinant). Multi-reference (MR) methods, on the other hand, utilize the multi-

determinantal reference wavefunction to build the desired correlated electronic state

or states. The single-reference based methods are presented first.

Of all single-reference methods, the CI approach is conceptually (but not compu-

6



tationally) the simplest. The CI wavefunctions are represented as linear combinations

of Slater determinants obtained by promoting or exciting electrons from occupied to

unoccupied orbitals, and the corresponding expansion coefficients are obtained vari-

ationally by diagonalizing the Hamiltonian matrix. One of the advantages of CI

methods is the ease of access to excited states and molecular properties other than

energy, which can be calculated as expectation values or transition matrix elements

involving the relevant CI states, and the fact that Cl energies are always the upper

bounds to the corresponding exact energies. The disadvantages of CI methods include

enormous computer costs, if one is aiming at high accuracy, and lack of size extensiv-

ity of the truncated CI approaches, which basically means that the resulting energy

of a system does not scale correctly with the system size and a loss of accuracy occurs

as the system becomes bigger. The basic CI technique, designated as CISD, which

includes all singly- and doubly-excited configurations from a H—F reference, typically

recovers ~90% of the correlation energy for small, few electron problem, as long as the

H—F determinant dominates the wavefunction.52 By including all triple and quadruple

excitations from the reference (CISDTQ), it is possible to recover nearly all of the

remaining ~10%.52 Furthermore, while the CISD method is inaccurate for excited

states and for systems away from the equilibrium geometry, the CISDTQ wavefunc-

tion recovers almost all of the correlation energy, even in those challenging situations,

as long as the number of correlated electrons is not too large,” since CISDTQ, as

any other truncated CI approach, is not size extensive. The CISDTQ method is a

high accuracy approach for smaller molecular problems, but, unfortunately, the cost

associated with a CISDTQ computation is usually prohibitively expensive due to the

7



large numbers of triply and quadruply excited determinants. The CPU operational

count associated with a single iteration of the CISDTQ calculation is 713113, where

no(n,,) is the number of ocuppied (unoccupied) orbitals in a basis set that are in-

cluded in correlated calculations. This is more or less equivalent to the ./V’0 scaling

of the CPU time with the system size J.

The second type of approach to the many-electron correlation problem, referred

to as MBPT, uses the Rayleigh-Schrodinger or some other perturbation theory to

describe correlation effects. The MBPT methods offer the following advantages: (i)

unlike the truncated CI approaches, the MBPT formulations based on Rayleigh-

Schriidinger perturbation theory provide size extensive results, i.e. no loss of accu-

racy occurs as the system size increases, (ii) low-order MBPT methods are inexpensive

while offering reliable information about the most essential correlation effects. How-

ever, MBPT methods are non—variational and the MBPT series do not always con-

verge, particularly when bond breaking is examined. Furthermore, standard MBPT

methods do not apply to excited states, although one can address this problem by

switching to multi-reference MBPT schemes as mentioned below.

The simplest and most economical MBPT method for including electron correla-

tion is the second-order Moller—Plesset (or many-body) perturbation theory (MP2)42

which typically accounts for ~80% of the correlation energy when the H—F reference

determinant dominates the wavefunction. Although, this will generally not take us

to chemical accuracy, several molecular properties, including geometries and vibra-

tional frequences, are reasonably well described by MP2. In general, MP2 energy

calculation requires noniterative steps that scale as ngnfi. Essentially, one can af-
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ford such calculations for any system for which one can afford the H—F calculation

(systems with hundreds of correlated electrons). The extension of MP2 to the fourth-

order (MP4)54 improves the electron correlation description and accounts for about

95-98% of the correlation energy in non-degenerate closed-shell cases, while requiring

noniterative steps that scale as 113713. The higher-order MP5 and MP655—58 theories

have been pursued as well in spite of the vast increase in the number of terms in-

volved. It is reasonable to infer that going to higher orders of MBPT should give

more accurate results. However, in the work of Olsen et al.,59 the authors found

out that going to higher—order MBPT for many-electron systems in extended basis

sets did not guarantee convergence, even for cases of trivial wavefunctions dominated

by a single-reference determinant which are generally assumed to produce conver-

gent MBPT series.”61 The MBPT expansions are always strongly divergent in cases

involving bond breaking, as shown, for example, by Piecuch et at.”

The third type of wavefunction-based electron correlation methods is coupled—

cluster (CC) theory, which is based on the exponential ansatz for the ground-state

wavefunction, allowing CC approaches to describe high-order correlation effects at the

low level approximation by generating the higher-order excitations in the wavefunc-

tions as products of low-order excitations. Of all approaches to the many-electron

correlation problem, the single-reference CC“.51 methods, in which the H—F wave-

function is usually chosen as the reference state, are generally considered as the best

compromise between high accuracy and relatively low computer cost. Another no-

table characteristic of CC theory is its ability to preserve size extensivity at any level

of truncation. These and other attractive features of the CC theory have inspired
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and continue to inspire significant research work on developing high accuracy meth-

ods methods which can be used as general-purpose tools by experts and non-experts

(see Refs. 21, 25, 26, 54, 63—70 for selected reviews) and this thesis research is a

contribution to this area.

In the above description, we have focused on single-reference theories, which im-

plicitly assume that a single Slater determinant (e.g., a H-F determinant) dominates

the electronic wavefunction so that one can recover the remaining part of the wave-

function through excitations of electrons to unoccupied spin-orbitals. Because of this

underlying assumption, single-reference methods have the applicability which is es-

sentially limited to non-degenerate ground states of closed- and simple open-shell

molecules near the equilibrium geometries. However, large part of the chemistry

research deals with chemical reactions, where bonds are stretched or broken, and

processes involving excited electronic states, which cannot be described by conven-

tional singlereference methods, since the corresponding wavefunctions have a sig-

nificant multideterminantal character. In particular, there have been a great deal

of interest in extending single-reference CC methods to quasi-degenerate situations,

such as molecular bond dissociation and excited states dominated by two— and other

many-electron transitions, which are very challenging because of the large nondy-

namical electron correlation effects that traditional single-reference theories cannot

capture331661675“—73 The basic ground state CC approach with singles and doubles

(CCSD)""‘—76 is accurate in describing closed-shell systems and dynamical correlation

2 4

onut
effects with relatively low computer costs that scale as 11 but fails in describing

bond breaking because it neglects the higher-than-pair (e.g., triply and quadruply

10



excited or T3 and T4) clusters. The CCSDT”:78 and CCSDTQm—82 methods, which

incorporate T3 or T3 and T4 clusters, respectively, are capable of giving an accurate

description for certain classes of systems with electronic quasi-degeneracies, in spite

of their single-reference character, since they describe correlation effects to very high

orders, often compensating for the inadequacies of single-reference description, but

the computer costs of the CCSDT and CCSDTQ calculations are extremely high,

limiting their applicability to small molecular problems with 2—3 light atoms. In

particular, the CCSDT and CCSDTQ methods require iterative steps that scale as

122113 and nfinfi, respectively, which make them applicable to systems with up to ~10

correlated electrons.

To considerably reduce the computational costs of the CCSDT, CCSDTQ, and

other high-order CC schemes, several CC approaches, in which the effects of higher-

than-doubly excited clusters is approximately included have been developed. One of

the most popular CC methods in this category is the CCSD(T)83 approach in which

the connected triply excited (T3) clusters are incorporated in a computationally ef-

ficient manner through noniterative corrections to CCSD energy derived using argu-

ments that originate from MBPT. The CCSD(T) method and its CCSD[T] analogs”5

are currently available in the majority of popular quantum chemistry software pack-

ages, enabling highly accurate ab initio calculations of useful molecular properties by

experts as well as non-experts. However, while the CCSD[T] and CCSD(T) methods

improve the description of molecular properties in the region of equilibrium geometry,

they completely fail when chemical bonds are stretched or broken.1“—27'62"””"’”’_100

The inclusion of noniterative quadruples (T4 clusters) using the arguments originating
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from MBPT, which leads to CCSD(TQf) and CCSDT(Q,) methods101 and their var-

ious modifications, further improves the results in the equilibrium region but cannot

help when the configurational quasi-degeneracy sets in.18'19:21333536168’701884‘m'92'9"'96

Similar remarks about the performance and failures of single-reference CC meth-

ods can be made when extending the discussion to excited states calculations. The

most natural extensions of the singlereference CC formalism to excited states are the

102—107 and the closely related equation-of—motionlinear-response CC theory

(EOM) CCmfi—112 and symmetry-adapted cluster configuration interaction

(SAC—CI) approaches.”3_117 The basic linear response CCSDmfi'107 and

EOMCCSD")?111 approximations, which are characterized by the manageable com-

putational steps that scale as nfinf, or JVG with the system size and the analo-

gous SAC-CISD method provide reliable information about excited states domi-

nated by one-electron transitions. Unfortunately, the linear response CCSD and

EOMCCSD methods cannot describe excited states having significant double exci-

tation components and excited-state potential energy surfaces along bond breaking

coordinateslo,2l-26,69,97,98,118—128.

High-order EOMCC methods including higher—than—double excitations, such as

the recently implemented full EOMCCSDT (EOMCC singles, doubles,

and triples)2“'125'129 and EOMCCSDTQ (EOMCC singles, doubles, triples, and

quadruples)128'130 approaches, provide an excellent description of excited states dom-

inated by <10ubles""12""128 as well as excited-state potential energy surfaces,24 but

large costs of the EOMCCSDT and EOMCCSDTQ calculations, which are defined

by the iterative steps that scale as W8 and W10 with the system size, respectively,

12

 



limit their applicability to small molecules with 2—3 light atoms and relatively small

basis sets. For this reason, a number of approximate and less expensive ways of

incorporating triple or triple and quadruple excitations in the EOMCC and lin-

ear response CC formalisms have been developed in order to make these methods

applicable to a wider range of molecular sizes. Among those are the noniterative

EOMCCSDT-n approaches and their noniterative EOMCCSD(T), EOMCCSD(T),

and EOMCCSD(T’) counterpartsflsi119 and the analogous linear-response CC meth-

ods such as CC310'121—123 and CCSDR(3),”123 which use elements of MBPT to es-

timate triples effects. All of these methods are characterized by the relatively inex-

pensive ./V7 steps of the 113713 type and all of them improve the EOMCCSD/linear

response CCSD results for excited states dominated by two—electron transitions, but

there are many cases where the results of EOMCCSDT-n, EOMCCSD(T), CC3, and

similar calculations are far from satisfactory or poor. This can be illustrated by the

large 0.4—0.5 and 0.9 eV errors in the description of the lowest 1H9 and 1A9 states

of the C2 molecule, respectively, by the EOMCCSDT-1 and CC3 approaches10 or the

failure of the CC3 and CCSDR(3) methods to provide accurate information about

excited-state potential energy surfaces along bond breaking coordinatesl2 (see also

Ref. 22 for an additional analysis).

The above problems encountered in single-reference CC/EOMCC calculations in

various cases of electronic quasi—degeneracy clearly indicate that a traditional single-

reference description is not sufficient and that more flexible models are needed. The

conventional wisdom is to turn to multi—reference approaches, in which instead of

using a single-determinantal reference state, one selects a certain number of refer-
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ence determinants to construct the appropriate zero-order wavefunction(s) adjusted

to the type of bond breaking or excited states of interest. The less intuitive and yet

potentially very useful is an idea of improved single-reference methods, which com-

pletely or largely rely on a single-determinantal reference state, while being capable

of describing at least some of the most frequent cases of electronic quasi—degeneracies.

We first overview the traditional multi-reference methods, which we classify as multi-

reference CI (MRCI), multi-reference MBPT (MRMBPT), and multi-reference CC

(MRCC) approaches.

In C1, the multi-reference formulation is typically accomplished by adopting a

more sophisticated zeroth-order reference in the form of a multiconfiguration self-

consistent field (MCSCF) wavefunction instead of using a single H—F determinant.

The basic MRCISD approach (abbreviated here as MRCI) involves single and dou-

ble excitations out of all reference determinants. The most popular MRCI schemes

using complete active space self-consistent field (CASSCF) reference wavefunctions

(CASSCF is a variant of MCSCF obtained by a distribution of a number of active elec-

trons among a number of active orbitals in all possible ways) provide potential energy

surfaces which are closely parallel to full CI surfaces, at least for small molecules. Be-

cause of this, the MRCI methods are among the most useful benchmark techniques of

quantum chemistrym'l’l'132 particularly in cases where full CI results are not available,

and among the most popular approaches to calculation of potential energy surfaces

of smaller molecular system. One of the biggest advantages of MRCI techniques, in

addition to high accuracy in calculations of potential energy surfaces, is their ability

to describe ground and excited states, near-degeneracy effects, and all kinds of open-
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shell systems. The fundamental drawback of the MRCI methods, their lack of size

extensivity, can be addressed through either the a posteriori Davidson-type energy

correctionsmmm3 or the a pn'on' refinements through suitable Hamiltonian dressing

techniques, such as the MR—average coupled pair functional (MR-ACPF)139 and MR-

average quadratic coupled cluster (MR-AQCC).1‘“”141 Neither of these propositions

is ideal, but benchmark calculations show that at least the main problems related to

inextensivity of MRCI can be addressed in this manner (see, e.g., Ref. 142). Several

other approximate extensive modifications of MRCI have been developed.1“3"l45

In addition to inextensivity, the main challenge for the MRCI methods is the fact

that the lengths of the corresponding CI wavefunction expansions and the related

computational effort rapidly increase with the system and basis set sizes. Although

several clever ideas, such as the use of the configuration selection thresholds, com-

bined with the extrapolation tecniques,138 and internal contractions of configuration

state functionsl‘w'147 have been developed to reduce the costs of MRCI calculations,

all MRCI methods are generally costly in all aspects of computing resources.”8 Even

with the substantial progress in terms of algorithms, efficient implementation, and

parallelization (cf. e.g., Refs. 146-154), practically all applications of MRCI remain

limited to relatively small molecular systems. In addition, the existing MRCI ap-

proaches are significantly more complex than other computational chemistry methods

due to several choices that the user have to make to run the MRCI calculations in

a prOper manner. This makes MRCI approaches popular among experts, but much

less popular among non-experts.

A cost effective alternative to MRCI is represented by methods based on the
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multi—reference extension of MBPT. Historically, the general MRMBPT formalisms

for quasi-degenerate and open-shell states have been formulated in the late 1960’s155

and early 1970’s,156 but much of the development work geared toward practical com-

putational schemes has been done in the last two decades. Two general categories of

MRMBPT methods are distinguished in the literature: the “perturb then diagonalize”

and the “diagonalize then perturb” approaches.’"”’*158 The “perturb then diagonalize”

approaches involve deriving the effective Hamiltonian in the multiconfigurational ref-

erence space, which in the case of the most popular second-order MRMBPT schemes

is truncated at first-order terms, and then obtaining the final energies as eigenvalues

of this operator. 155458—162 The most popular second-order “diagonalize then perturb”

methods use the first-order contributions to the Schriidinger equation to define the

perturbed wavefunctions, and then use the second-order equation to get the energy.

Various methods, particularly of the latter family, differ from one another in the

choice of the zeroth-order Hamiltonian, and other details of the algorithms used in

the computer implementation.“‘3_187 Among the most popular and widely used vari-

ants of MRMBPT are the complete active space second-order perturbation theory

(CASPT2),1"3*164 the multi-reference Moller—Plesset perturbation theory (MRMP),165

and the multi-configurational quasi-degenerate perturbation theory (MC-QDPT).174

A general difficulty of MRMBPT is the choice of the zeroth-order Hamiltonian,

which is much less straightforward than in the single-reference case. Another difficulty

concerns the choice of reference determinants. Usually, CASSCF wavefunctions are

chosen as reference functions for MRMBPT considerations. However, CASSCF often

generates too many configurations, and the size of the active space can easily outgrow
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the capacity of the present technology, causing tremendous difficulty in obtaining

converged results, which strongly vary wth the number of active electrons and orbitals

and the number of roots included in the ca.lculations.1‘”7_189 In addition, at least

some MRMBPT methods suffer from lack of size extensivity190 and intruder state

problems leading to divergent behavior. 191-193 Among the most promising approaches

to eliminate intruders, while retaining manifest size extensivity, are state-specific

MRMBPT methods that start with a multideterminantal reference space but target

one state at a time. The state-specific MRMBPT method advocated by Mukherjee et

01.177 seems particularly promising, showing smooth performance in and around the

region of intruders and reasonable accuracy.

Overall, in spite of the aforementioned problems the MRMBPT methods have

been successfully applied to many chemical and spectroscopic problems and have es-

tablished themselves as efficient techniques for treating nondynamical and leading

dynamical correlationsm":185 Compared to MRCI and genuine MRCC methods dis-

cussed below, the second-order MRMBPT approaches are much more practical. The

low-order MRMBPT approaches have a drawback that they are not as accurate as

MRCI or CC methods in describing dynamical correlation, but this can be taken care

of by combining the low-order MRMBPT theory with the CC theory, as demonstrated

in this thesis research through the MRMBPT-inspired corrections to CC energies.

The last type of multi-reference methods are the multi-reference coupled-cluster

(MRCC) approaches. The existing MRCC approaches can be classified into three

basic categories: the Fock-space (FS) or the valence-universal approaches,“'7'2'19‘1‘"196

Hilbert-space (HS) or the state-universal methods,73'197-”°5 and the state-specific or
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state—selective (SS) approaches, such as, for example, those described in Refs. 206 and

207, or SSMRCC methods based on the wavefimction ansatz described in Refs. 82 and

208, which we nowadays referred to as the active-space CC methods.""99’1°°'123'1241209—211

The FSMRCC theories employ a single valence universal exponential wave operator

to generate ground and excited states of a given system and its ions obtained by

removing active electrons one by one. Thus, they are very good for valence sys-

tems around closed-shells and differential properties, such as ionization energies and

electron affinities. The HSMRCC theories are based on the ansatz of Jeziorski and

Monkhorst, which employs different cluster operators for different reference deter-

minants, are particularly well suited for electronic quasi-degeneracies due to several

interacting states. Both the FSMRCC and HSMRCC approaches are multiroot pro-

cedures. This should be contrasted by SSMRCC theories, which treat one electronic

state at a time. We will return to the SSMRCC methods when we discuss active-space

CC approaches. With an exception to active-space methods,2“'8”99'1004231241205“211 the

MRCC approaches are greatly limited so far and no general purpose codes have been

developed due to recurring issues such as computational complexity, intruder—state

problems,212 and difficulties with retaining size extensivity in incomplete model space

considerations (cf. e.g., Refs. 213—216 for recent progress in this area). This implies

that it may be more worthwhile to focus on methods that rely, at least in part, on

a single-reference formalism. In general, single-reference methods are much easier to

implement and use than genuine MRCC approaches. Thus, it is useful to develop

new classes of single-reference CC methods that eliminate the failures of standard

CC/EOMCC approximation in the bond breaking region and for excited states hav-
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Table l: The quality of the overall description of the dynamical and nondynamical

electron correlation effects by selected wavefunction methods of quantum chemistry.

 

Type of Electron Correlations

 

 

Method Dynamical Nondynamical

MBPT(2), MP2 low-order poor

CCSD(T), CCSD(TQ), excellent poor

MRMBPT low-order excellent

MRCI excellent* excellent*

MRCC excellent excellent

 

* MRCI is not size extensive, so there is a loss of accuracy as the system

becomes larger

ing a manifestly multiconfigurational character, without involving the complexities of

the FSMRCC and HSMRCC considerations.

As shown in Table 1, MRCI and MRCC are the only methods that offer an excel-

lent treatment of both dynamical and nondynamical correlation effects. As described

earlier, these methods are computationally very expensive and very diffith to use

which greatly limits their applicability. Thus, we need alternative approaches which

are more practical than MRCI and MRCC and and which are capable of balancing

dynamical and nondynamical correlations, particularly in studies of bond breaking

and excited states having a significant configuration mixing.

One can think of two general ways of developing such approaches, at least within

the CC formalism. The first way is to improve the existing single-reference CC meth-

ods such that they can describe at least the selected classes of bond breaking and ex-

cited states in a purely “black-box” fashion, i.e. without using any elements of multi-
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reference calculation. A few ideas of this type have been proposed in recent years,

including the non-iterative single-reference CC methods based on the partitioning of

95,217—222 223—225
the similarity-transformed Hamiltonian, spin-flip CC approaches, and

renormalized CC methods.18’19:21'2"25’’"mfi-m:87""‘1981226"228 The latter approaches are

particularly successful. They are based on the idea of correcting the CC (e.g., CCSD)

or EOMCC (e.g., EOMCCSD) energies for the effects of higher-order clusters (e.g.,

triples) using expressions for the leading terms toward full CI obtained using the for-

malism of the moments of CC equations.18'19:21'2’’25126168""):87196381126’127"""f6‘229 Renor-

malized CC methods are particularly useful in calculations of single bond breaking,

reaction pathways involving biradicals, and excited states dominated by two-electron

transitions.18,19,21,22,25,26,68—70,87,95,96,98,187,188,226—236

Renormalized CC methods are very successful, enabling accurate, inexpensive

“black-box” CC calculations for some of the most frequent multi-reference situations

but there are quasi-degeneracy problems that cannot be handled in this manner.

A good example is provided by the excited states in a highly degenerate B83 sys-

tem, where one cannot obtain all excited states due to difficulties with converging

the underlying CCSD and EOMCCSD equations in some cases.237'238 In such cases

and in more general cases of electronic quasi-degeneracies, where pure “black-box”

single-reference solutions do not work, it may be useful to look for alternative ap-

proaches that mix single- and multi-reference concepts with a single mathematical

theory. One of the best and most successful examples of such theory is provided by

the active-space CC and EOMCC methods,""2732’86'88'99'"’0'124'1’5'208"mm3”241 which

can be viewed as the state—selective MRCC approaches exploiting a single-reference
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CC formalism.27182:86308339—241 These methods use active orbitals, which are normally

exploited to define reference determinants in a multi-reference calculation, to select

the dominant three-body and other higher-than-two—body clusters and excitation am-

plitudes within a standard single-reference CC or EOMCC formalism. As a result,

they offer a tremendous amount of flexibility, since one can always improve the results

by employing the active space. At the same time, they have a well-defined relationship

with higher-order single-reference CC or EOMCC methods. For example, the active-

space CC/EOMCC approach with up to triple excitations (CCSDt/EOMCCSDt)

becomes equivalent to full CCSDT/EOMCCSDT theory when all orbitals are active.

On the other hand, as demonstrated in numerous calculations by the inventors of

this method (Piecuch, Adamowicz, and co-workers) , and others who adopted active

space approaches (Bartlett, Head-Gordon, Gauss, Olsen, Krylov, Sherrill, Hirata,

and others), it is sufficient to use small numbers of active orbitals in active space

CC/EOMCC calculations to obtain extremely accurate results for bond breaking and

multideterminantal excited states. In particular, the active space EOMCC methods

lead to the virtually perfect description of the excited states of the aforementioned

Be3 system, were other methods fail.237'238

Active space CC/EOMCC methods mix single- and multi-reference CC concepts,

but one can go even one step further and mix CC and non-CC concepts, so that

the advantages of different kinds of electronic structure theory are utilized to the

utmost. One of the most successful methods in this broad category is the idea of

the externally corrected single-reference CC methods”?250 in which the T3 and T4

cluster components, instead of being calculated by solving CCSDTQ or the expen-
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sive CC equations, are obtained by a cluster analysis of the wavefunctions provided

by some external non-CC source such as the projected unrestricted Hartree-Fock

(PUHF),242'247 valence bond (VB),2“3'244 MCSCF or CASSCF,2“5—247'249 and MRCI250

wavefunctions.

The MRCI-corrected CC methods, which define the so-called reduced MRCC ap-

proaches, are particularly impressive, since the MRCI method itself is already very

accurate in applications involving potential energy surfaces along bond breaking co-

ordinates and by reading T3 and T4 clusters extracted from MRCI calculations and

solving the resulting T3 and T4—corrected CCSD equations one obtains the virtu-

ally perfect description of both dynamical and nondynamical correlations. The only

problem of reduced MRCC methods is the fact that they are currently limited to

lowest-energy electronic states of a given symmetry. Moreover, the MRCI calculation

needed to estimate T3 and T4 clusters for the subsequent CCSD calculations can be

quite expensive.

There is however, a major lesson on the success of the reduced MRCC approach

in that it is very useful to mix multi-reference theory, which can be used to provide

information about the nondynamical and leading dynamical correlation effects, with

single-reference CC theory, which gives the information about the remaining corre-

lations. The success of the reduced MRCC method has inspired the development

of the CI (MRCI)-corrected approaches expoiting the aforementioned formalism of

the method of moments of CC equations (MMCC)311153637:126627:251 (see, also, Refs.

252—254) As already mentioned, the MMCC formalism enables one to determine

the mathematical structure of terms which, when added to CC or EOMCC (e.g.,
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CCSD or EOMCCD) energies, give, in the exact limit, the exact full CI energies.

One can use the MMCC theory to design the “black-box” renormalized CC approx-

imation, which we mentioned earlier, or to develop the externally corrected MMCC

methods, such as the (MR)CI-corrected MMCC schemes, in which one uses selected

components of the (MR)CI wavefunctions to design the MMCC corrections due to

higher-order correlation effects on top of CCSD or EOMCCSD. The major advantage

of the (MR)CI—corrected MMCC schemes is their applicability to ground and excited

states, not just to lowest-energy states of a given symmetry, and high accuracy that

in some cases is even better than the results of reduced MRCC calculations?”—254

The (MR)CI-corrected MMCC methods work extremely well for single, double, or

even triple bond breaking and all kinds of excited states,”353637112“:”7'25"—254 but

they still require additional CI calculations to generate trial wavefunctions that enter

the MMCC corrections to CCSD or EOMCCSD energies. Although the main idea

of the CI-corrected MMCC methods is straightforward, the CI-corrected MMCC cal-

culations can be quite expensive if the CI calculations used in designing the MMCC

corrections use larger active orbital spaces. Undoubtedly, it would be most desirable

to examine if one could use another, less expensive, multi-reference method to gen-

erate the wavefunctions that enter the MMCC corrections, while retaining the high

accuracy of the CI—corrected MMCC calculations.

In this dissertation, we examine the possibility of replacing the relatively ex-

pensive (MR)CI-like wavefunctions in the CI-corrected (MMCC/CI) schemes by the

wavefunctions obtained in the MRMBPT calculations. As described earlier, the low-

order MRMBPT methods are known to provide a reasonable description of non-
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dynamical and leading dynamical correlation effects in the presence of electronic

quasi-degeneracies (cf., e.g., Refs. 159, 162—165, 167, 171, 173, 174, 177, 183, 184,

187, 255—259). At the same time, the computer costs of the low-order MRMBPT

(e.g., second-order) calculations are very small compared to the analogous MRCI

calculations. By combining the wavefunctions obtained in the low-order MRMBPT

calculations, which provide a reasonable description of electronic quasi-degeneracies,

with the MMCC formalism, in which these MRMBPT wavefunctions are used to de-

sign the MMCC corrections to single-reference CC or EOMCC energies, we obtain a

new class of the MRMBPT-corrected MMCC methods, referred to here and elsewhere

in this thesis as the MMCC/PT approaches.69’97'98 Just like the MMCC/CI methods,

which combine the CC and CI concepts, the MMCC/PT approaches proposed, de-

veloped, implemented, and benchmarked in this work can be viewed as the externally

corrected MMCC methods. All externally corrected MMCC methods are similar, in

the overall philosophy, to the externally corrected CC methods pioneered by Paldus

and collaborators, in which the CC and non-CC concepts are combined together to

improve the CC results in the presence of electronic quasi-degeneracies. We demon-

strate in this work that by combining the single-reference CC and EOMCC methods

with the low-order MRMBPT-like wavefunctions via noniterative MMCC/PT cor-

rections to CC or EOMCC energies, we can considerably improve the results of the

standard CC and EOMCC calculations in the bond breaking region and for excited

states dominated by two-electron transitions, while keeping the computer costs at the

low level. Thus, the MRMBPT-corrected MMCC methods provide an inexpensive al-

ternative to other CC/EOMCC and MMCC schemes, and reduced MRCC approach
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of Li and Paldus, which in the long-term may facilitate highly accurate calculations

of reaction pathways and electronic excitations in larger molecular systems.

The rest of this document is organized as follows:

In Chapter 2, we summarize the main objectives of this work.

In Chapter 3, we describe the mathematical details relevant in the understanding

and carrying out this reserach study. We outline, in particular, the single-reference

CC theory for ground states and its extension to excited states via the EOMCC

formalism. We also introduce the basic elements of the MMCC theory, in which

our MMCC/PT work is based. The existing MMCC approaches, such as the CI-

corrected methods and the selected renormalized and completely renormalized CC

methods, and basic concepts of the MRMBPT methods are described in Chapter 3

as well.

In Chapter 4 , we describe the details of the new MRMBPT-corrected MMCC

(MMCC/PT) methods. One of the key parts of the chapter is the diagrammatic

formulation and factorization of the key components of the MMCC/PT equations,

called method of moments of CC/EOMCC equations, which leads to the highly effi-

cient computer implementation of the MMCC/PT and other MMCC methods.

In Chapter 5, we present some of the benchmark calculations to illustrate the

performance of the MMCC/PT approximations developed in this work.

Lastly, in Chapter 6, we present a summary and future perspectives of this work.
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2 Project Objectives

The main objective of this dissertation is to combine the low-order multi-reference

many-body perturbation theory (MRMBPT) with coupled-cluster (CC) and equation-

of-motion CC (EOMCC) methodologies via the method of moments of CC (MMCC)

equations. The specific objectives of this work are:

A. to formulate the low-order MRMBPT approximation that can be used in the

MRMBPT-corrected MMCC (MMCC/PT) formalism.

B. to formulate the MMCC/PT approach using diagrammatic methods.

C. to efficiently implement the leading MMCC/PT approximations, termed

MMCC(2,3)/PT and MMCC(2,4)/PT, using the idea of diagram factorization

and recursively generated intermediates.

D. to benchmark the proposed MMCC/PT approaches in calculations of ground

and excited states of selected molecular systems, for which the exact, full CI

data can be generated.
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3 Theory

In this chapter, an overview of single-reference coupled-cluster (CC) theory and its

extension to excited states via the equation-of-motion (EOM) CC theory is presented.

The method of moments of CC (MMCC) equations is introduced and the existing

MMCC approximations, namely, the CI-corrected MMCC methods as well as the

selected renormalized- and completely-renormalized CC methods are discussed.

3.1 An Overview of Coupled-Cluster (CC) Theory

3.1.1 Ground-State Formalism

The single-reference CC theory is based on the exponential ansatz for the ground-

state wavefunction,

1%) = We» a eTI<I>>. (1)

where T is a particle-hole excitation operator referred to as the cluster operator and

|<I>) is the reference determinant (usually, the Hartree-Fock determinant). In the exact

CC theory, T is a sum of all many-body cluster components that one can write for a

given N-electron system,

T=ETM (2)

where the n—body cluster component T, is defined in a usual way as

1 2 . .

T,, = (H) tat"; a“1 . . . aanain . . .a,-1 , (3)
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with tiil'jfgn representing the corresponding antisymmetrized cluster amplitudes,

2'1 . . .in(a1 . . . an) referring to the single-particle states (spin-orbitals) occupied (unoc—

cupied) in the reference determinant, and aID (ap) designating the standard creation

(annihilation) operators associated with the orthonormal spin-orbitals lp). Here and

elsewhere in this dissertation, the Einstein summation convention over repeated upper

and lower indices is employed, so that the summation symbols corresponding to the

unrestricted summations over occupied and/or unoccupied spin-orbitals are omitted.

In all standard CC approximations, the many-body expansion for the cluster op-

erator T is truncated at a given excitation level mA < N (usually mA << N). The

general form of the truncated cluster operator defining a standard CC approximation

A, characterized by the excitation level mA, is

m4

T“) = Z T... (4)

n=1

An example of the standard CC approximation is the CCSD method. In this case,

mA = 2 and the cluster operator T is approximated by

T‘CCSD) = T1 +213, (5)

where

T1 = t3a“a,~ (6)

and

T2 = itgaaabaja, (7)
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are the singly and doubly excited cluster components, and tf, and t3’3 are the cor-

responding singly and doubly excited cluster amplitudes. In accordance with our

general notation, z“, j . . . (a, b. . .) are the occupied (unoccupied) spin-orbitals in the

reference determinant IQ).

In all conventional CC approximations, the cluster amplitudes

t3‘l'jjz‘n are determined by solving a coupled system of energy-independent non-linear

algebraic equations of the form:

(Q?;_;;;?IFI(A)|<I>) = 0, i1 < < in, a1 < < an, (8)

where n = 1,...,mA,

HUI) = €_T(A)H€T(A) = (H8T(A))C (9)

is the similarity-transformed Hamiltonian of the CC/EOMCC theory, subscript C des-

al...an) E

ignates the connected part of the corresponding operator expression, and Ithifl

a“l -- - awn,“ - - . a5, IQ) are the n—tuply excited determinants relative to reference IQ).

In particular, the standard CCSD equations for the singly and doubly excited cluster

amplitudes tf, and t3’3, defining T1 and T2, respectively, can be written as

<¢?|H‘CCSD)I¢) = 0. (10)

(ogtmiccsmlo) = 0, 2' < j, a < b, (11)
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where

fflCCSD) = e_T(Ccsn) HeT(ccsn) = (HeT(ccsn))C (12)

is the similarity-transformed Hamiltonian of the CCSD/EOMCCSD approach. The

explicit and computationally efficient form of H(CCSD) and other equations used in the

CC calculations, in terms of one- and two-body matrix elements of the Hamiltonian

in the normal-ordered form, fg E (pI f Iq) and 22;; E (quvIrs) — (quvIsr), respec-

tively, where f is the Fock operator and v is the operator representing the electron-

electron interaction energy, and cluster amplitudes @1111?" or, in the CCSD (mA = 2)

case, tf, and t3’3, can be derived by applying the powerful diagrammatic techniques of

many-body theory260 combined with technique of diagram factorization, which yields

highly vectorized computer codes.79’91*226 The algebraic and diagrammatic structure

of HCCSD is presented in detail in Appendix B and the factorized forms of HCCSD is

shown in Appendix C. The introduction to diagrammatic methods used in this work

is given in Appendix A.

Unlike the CI approaches, which are variational in nature, the CC energy is ob-

tained by projecting the connected cluster form of the Schriidinger equation on the

reference configuration IQ). In other words, once the system of equations, Eq. (8), is

solved for T“) or till???" (or in the CCSD case, Eqs. (10) and (11) are solved for T1

and T2 or t3 and t3’3), the CC energy corresponding to approximation A, characterized

by the excitation level mA, is calculated using the equation

E3" = <<I>IFI<A>I<I>> s<<1>IH§£ZsI<I>t <13)
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where Hg; is a “closed” part of H(A), which is represented by those diagrams

contributing to H(A) that have no external (uncontracted) Fermion lines (as opposed

to the “open” part of H(A) which is represented by the diagrams having external or

uncontracted Fermion lines).

3.1.2 Extension to Excited States via the Equation-of-Motion Formalism

(EOMCC)

The ground-state CC theory has a natural extension to excited electronic states

IQ“) via the EOMCC formalism, in which we write

|\II,,) = MP“) 5 RfleTIQ), (14)

where T is obtained in the ground-state CC calculations and R” is a linear particle-

hole excitation operator, similar to T, obtained by diagonalizing the

similarity-transformed Hamiltonian H = e’THeT in the space of excited determi-

nants IQ311‘33fgn) that typically correspond to excitations included in T.

In the following, we use a notation where p = 0 refers to the ground states while

u > 0 designates excited states. Thus, the excitation operator R3 is defined as a unit

operator for u = 0, that is, root = 0) = 1 and rillffg‘nw = 0) = 0 for n 2 1, where

roof) is a coefficient defining the zero-body of R” and rillj'gm) are the excitation

amplitudes defining the n—body components of R,, when n > 1 (see discussion below).

In this way, the EOMCC ansatz, Eq. (14), reduces to the ground—state CC ansatz,

Eq. (1), when u = 0.
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In the exact EOMCC theory, the cluster operator T and the excitation operators

R), are sums of all relevant many-body components that can be written for a given N-

electron systems. As in the ground-state case, the standard EOMCC approximations

are obtained by truncating the many-body expansion for the operator R3 at a given

excitation level mA < N, which typically is the same as the excitation level used

to define the truncated form of T. In general, when T is approximated by T“),

Eq. (4), the corresponding excitation operator R), defining the EOMCC method A is

approximated by

_ (A) A
123") _ RM, + 1233,“, (15)

where

Run = 7'00‘) 1, (16)

and the “open” part of RLA) is defined as

m4

12},pr = 2 RM, (17)

n=l

with

1 2 . .

Ru.“ = (a) ’"Zi'::.‘;‘..(u)a Manama. (18)

representing the n—body component of RLA). For instance, in the EOMCCSD theory,

which is a basic EOMCC approximation where mA is set at 2, the excitation operator

R3008!” is approximated by

RLCCSD) = 314.0 + R ,1 + R ,2, (19)
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where RM is given by Eq. (16) and

Rm = Tit“) aaai (20)

and

Run =5:1(4) aa (21)

RLCCSD), with r301) and ram) representingare the one- and two-body components of

the corresponding excitation amplitudes (1 in Eq. (16) is a unit operator).

The excitation amplitudes 1"?"’“anu() defining the excitation operator R342”, Eq.

(15), are obtained by solving the eigenvalue problem involving the

similarity-transformed Hamiltonian H(A) in the space spanned by the excited de-

terminants IQfl‘j1:3") with n = 1,. . . ,mA, i.e.

((1)01an|(H(A)RR(A) )0 l<p> = wf‘A),ri1...in (“)1

11.1” open 11,0pen0a1...an

2'1<---<z',,, a1<~~<am (22)

where

— — - - A

1153),: H<A>-H.<;:;..=H<A>—Es >1 <23)

is the “open” part of H(A), represented by the diagrams of H(A) that have external

Fermion lines, and

of,“ = Eff) — Eff” (24)

is the vertical excitation energy obtained with the EOMCC method A. In particular,
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the r301), and 73,01) amplitudes of the EOMCCSD theory and the corresponding

excitation energies 1.230080) are obtained by diagonalizing the similarity-transformed

Hamiltonian H(CCSD), Eq. (12), in the space of singly and doubly excited determi-

nants, IQ?) and IQgI’), respectively. Equation (22) alone does not provide information

about the coefficient r001) at the reference determinant IQ) in the corresponding

EOMCC excited-state wavefunction Rimeflm IQ). This coefficient is determined a

posteriori using the equation

ro(u) = (MU-1“” R“) )cl‘P)/wf.’”, (25)
Open woven

once the excitation amplitudes r3112?" ()1) defining R33)” are determined (Eq. (25) is

valid for u > 0, meaning excited states only; for )u = 0, mm = 0) = 1, as explained

above) .

3.2 Method of Moments of CC Equations (MMCC)

3.2.1 An Overview of the Exact MMCC Formalism

We are now equipped with the basic elements of the CC/EOMCC theory which

are necessary to explain the noniterative MMCC approaches to ground and excited

electronic states. In this section, we focus on the exact MMCC formalism.

As described in Section 3.1, the standard CC and EOMCC equations are obtained

by projecting HWIQ) and H(AIRLA)IQ) on the excited determinants IQflljjji?) with

n = 1, . . . , mA that correspond to the particle-hole excitations included in the cluster

operator T“) and linear excitation operator R514). The corresponding ground-state

34



CC energy is obtained by projecting HWIQ) on the reference determinant IQ). It is,

therefore, quite natural to expect that in order to correct the results of the standard

CC/EOMCC calculations employing the cluster and excitation operators truncated

at mA-body terms, the projections of HWIQ) and H(A)RI.A)IQ) on the excited de-

terminants @3122?) with n > mA, which span the orthogonal complement to the

subspace of the N-electron Hilbert space spanned by the reference determinant IQ)

and the excited determinants IQfl‘jjji?) with n = 1,. . . ,mA, have to be considered.

These projections, which are the essence of the MMCC formalism, designated by

m‘;ifim(m,4), define the generalized moments of the CC/EOMCC equations corre-

sponding to method A.

The original single-reference MMCC theory,18'19:21'22:25'2““3—70'37’98 which is partic-

ularly useful in this work, is based on a simple idea that the exact, full CI, energies

of the electronic states 11, E,“ can be recovered by adding the state-selective, non-

iterative energy corrections

(A) = _ (A)6,, _ E, E,

N n

= Z Z MIC4.0m)Miami)I<I>>/<\II..IR§.A>eT“’I4) (26)

n=mA+l k=mA+l

to the ground (p = 0) and excited (p > 0) states energies Eff” obtained in the stan-

dard CC/EOMCC calculations, such as CCSD/EOMCCSD, etc., which we continue

to designate by letter A. The alternative formulations of the MMCC theory includ-

ing the generalized MMCC formalism which applies to non—standard CC methods,%'94

the numerator-denominator—connected MMCC expansions,96 the multi-reference ex-
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tensions of MMCC,73'229’261 and the most recent biorthogonal MMCC formalism which

(18,226—228
leads to rigorously size extensive renormalized CC metho are of no use for

the MRMBPT-corrected MMCC methods and are not discussed here. The RE." and

TM) operators entering Eq. (26) are the truncated linear excitation and cluster op-

erators used in the underlying CC and EOMCC calculations, respectively, and in the

exact theory |\II,,) are the full CI states. The

Gem.) = (eT"").-. (27)

quantity is the (n — k)-body component of the wave operator eTW operator, defining

the CC method A, which is trivial to determine. The zero-body term, Co(m,4),

equals 1; the one-body term, 01(m,4), equals T1; the two-body term, 02(mA), equals

T2 + 3T1” if mA 2 2; the three-body term 03(mA) equals TIT; + 3T? if mA = 2 and

T3 + T1T2 + 3T? if mA _>_ 3, etc. The

1 2 1' ...: a a

M3,),(mA) = (Ir-l) MialfflAmA) a 1 ...a “01,, . ..a,1 (28)

operator in Eq. (26) is the particle-hole excitation operator defined through the

aforementioned generalized moments of the CC/EOMCC equations of method A,

magi-3.0,: (mA) = ((1)611ka (H(A)R3A))I(p), (29)

films]:

which represent the projections of the CC/EOMCC equations of method A on the
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excited determinants |Q,-11_'"°,kk) with k > mA that are normally disregarded in the

standard CC/EOMCC calculations. Consistent with our notation in which R“)3-0 = 1,

Eq. (29) includes the ground-state (p = 0) case as well. In this case, moments

mtiia;‘f..,(m,.) reduce to the generalized moments of the ground-state CC equations,

9113331‘“33(m,4), defining approximation A, i.e.

mfifal’kak (mA) E ”311°:ka (mil) = ((1)1113..1:kIH(A)I(p> (30)

As demonstrated, for example, in Refs. 22, 25, 26, 126, 127, the generalized mo-

ments of the CC/EOMCC equations can be calculated using the following expression:

mag-I‘kak ("l/l): ($01":'0’: I(H(Aope)n120‘) )C IQ)

11k..ik p,open

+ :(Qualuak(H(/1)R(A) )DCI‘I’)

1'1...1'jc ch—p

P=mA+l

+7.00” ”0301?..013 (mA)1 (31)

where ram) is the coefficient at the reference determinant IQ) in the many-body

expansion of RLA)IQ), defined by Eq. (25), subscripts “open,” 0, and DCrefer to open

(i.e. having external lines), connected, and disconnected parts of a given operator

expression, 0 represents the j--body component of operator 0, and 9.713131?.33 (mA)

are the generalized moments of the ground-state CC equations defined by Eq. (30).

In particular, if the goal is to recover the full CI energies E“ by correcting the

CCSD/EOMCCSD energies ELCCSD) (the mA = 2 case), then the following a posteri-
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. . CCSD
on corrections 6}. ),

N 71

65.003”) = Z 2(‘I’hICn_e(2)M1542)I<I>>/(‘I’thf.CCSD’eT‘CCSD’|<I>>. (32)

71:3 k=3

have to be added to Ef‘ccsn) energies. Here, the generalized moments WIN“ (2) of
11,111 ...an

the CCSD/EOMCCSD equations corresponding to projections of these equations on

triply, quadruply, etc., excited determinants, i.e.

931212.42) = <¢:::I(H‘CCSD’R§FCSD>)I<I>>. (33)

Mitts) = («>235 (H‘CCSD’RICCSD>)I<I>>. (34)

etc., should be evaluated. Again, H(CCSD) is the similiary—transformed Hamiltonian

of the CCSD method defined by Eq. (12) and RIPCSD) is the EOMCCSD excitation

operator described in Eq. (19).

Equation (26) defines the exact MMCC formalism for ground and excited states.

This equation can formally be derived by considering the asymmetric energy expres-

sion,

AI‘I'I = (‘1'|(H - EL")R§."’6TW|<I>>/(‘I’|R,‘.A’6TW|<I>),. (35)

referred to as the MMCC functional, which was introduced for the first time in the

original MMCC papers by Kowalski and Piecuch in Ref. 18 for the ground-state

case and Ref. 126 for the excited-state generalization. This expression satisfies the
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property

Al‘pul = Eu " Eff): (36)

where Eu is the exact, full CI, energy, if I‘ll”) is a full CI state. The details of the

derivation of Eq. (26) using functional A[\II], Eq. (35), can be found in Refs. 18 and

126 (see, also, Ref. 25).

To this point we have focused the discussion on the exact forms of the MMCC

energy expansions, Eqs. (26 and (32). However, in order to develop practical MMCC

methods based on these equations, the following two issues must be addressed. First,

the exact MMCC correCtions 63”), Eq. (26), or 630081)), Eq. (32), are represented

by complete many-body expansions including the N-body contributions, where N

is the number of electrons in a system, corresponding to all many-body compo-

nents of the wavefunctions I‘ll“) that enter Eqs. (26) and (32) (cf. the summa-

tions over 11 in Eqs. (26) and (32)). In order to use Eqs. (26) or (32) in practical

53A) or 630081)), must be truncated atcalculations, the many-body expansions for

some, preferably low, excitation level m3 > mA. This leads to the MMCC(mA, m3)

schemes.18119121'22'25'2‘5'68"7°'87*8‘3 The second issue that has to be addressed is the fact

that the waveftmctions I\II,,) entering the exact Eqs. (26) and (32) are the full CI

states, which are not normally available. To resolve this dilemma, wavefunctions

IQ") must be approximated in some way. Depending on the form of I\II,,), we can

distinguish between externally corrected MMCC methods where I\II,,) is obtained in

the non-CC (e.g., CI) calculations, and renormalized CC approaches, in which the

form of I‘IIfl) is determined using CC arguments. The CI-corrected MMCC(2,3) and
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MMCC(2,4) approaches, which are the basic CI-corrected MMCC approximations,

and the CR-CCSD(T)/CR—EOMCCSD(T) methods, which are examples of renormal-

ized CC/EOMCC approaches, are described in Section 3.3. The theoretical details

of the new variant of the MMCC theory, the MRMBPT-corrected MMCC method,

abbreviated as MMCC/PT, which is based on the idea of approximating I\II,,) by the

relatively inexpensive, low-order, MRMBPT-like expansions, and which is explored in

this dissertation, is presented in Chapter 4 and its performance is tested in Chapter

5. First, however, we discuss formal considerations that lead to all MMCC(mA,mB)

truncations.

3.2.2 An Overview of the Approximate MMCC Approaches:

The MMCC(mA,mB) Truncation

The main goal of all approximate MMCC calculations, including the CI—corrected

MMCC approaches and the renormalized and completely-renormalized methods pre-

sented in this section as well as the MRMBPT-corrected MMCC methods, which are

developed for this dissertation and discussed in Chapters 4 and 5, is to approximate

the exact corrections (5).”), Eq. (26), such that the resulting energies, defined as

MMCC _ A AE3 >_E,<,>+.s,<,>, (37)

are close to the corresponding full CI energies E“. A systematic hierarchy of ap-

proximations that allows us to achieve this goal and that are called MMCC(mA,m3)

schemes is described below.
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All MMCC(mA,m3) schemes are obtained by assuming that the CI expansions of

the ground- and excited-state wavefunctions IQ”) entering Eq. (26) do not contain

higher—than—mB-tuply excited components relative to the reference IQ), where mA <

m3 < N. This requirement reduces the summation over 11 in Eq. (26) to E . The

n=mA+l

EfiMMCC) (mA,m3), can be given the followingresulting MMCC(mA, m3) energies,

form:

ELMMCC)(mA, m8) = Eff) + 5110714, ms), (38)

where Eff) is the energy of the u—th electronic state, obtained with some standard

CC/EOMCC method A, and

6.(m...me) = Z Z (‘1’th—:.(mA)M...k(mA)l<I>)/<\I’..IR§."’6T“’|<I>>(39)
n=mA+l n=mA+l

is the relevant MMCC correction to Eff).

We restrict our discussion to the MMCC(mA,mB) schemes with mA = 2, which

enables us to correct the results of the CCSD or EOMCCSD calculations. In this

category, two schemes are particularly useful, namely, MMCC(2,3) and MMCC(2,4).

These schemes can be used to correct the results of the CCSD/EOMCCSD calcula-

tions for the effects of triple (the MMCC(2,3) case) or triple and quadruple excitations

(the MMCC(2,4) case). The MMCC(2,3) and MMCC(2,4) energy expressions are as

follows:

ELMMCC>(2, 3) = E55303”) + (‘I’thhs(2)|<I>)/<‘I'..IRE.CCSD)€T(CCS°’|<I>). (40)
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EfiMMCCJQA) = ELCCSDJ+(Wu|M».3(2)+[Mu.4(2)+T1Mu.a(2)ll¢>

/<‘I,”| R£CCSD)eT(CCSD) |¢> , (41)

where EfiCCSD) is the CCSD (u = 0) or EOMCCSD (p > 0) energy, T‘CCSD) is the

cluster operator obtained in the CCSD calculations (cf. Eq. (5)), 135.00an is the

corresponding EOMCCSD excitation operator (cf. Eq. (19); when u = 0, R(CCSDJ=

l), and My,3(2) and M#,4(2) are defined as

M“,3(2) = — DJI‘J"abe(2)a“aba°akaja,-, (42)

and

M#,4(2)= 5%,; 931”““(2) aaabacadagakajah (43)

with 911'th(2) and 931””“(2) representing the triply and quadruply excited moments

of the CCSD/EOMCCSD equations, respectively.

The explicit expression for the triply excited moment 931:1;(2), entering the

MMCC(2,3) and MMCC(2,4) approximations discussed in Sections 3.3 and 4.2 and

corresponding to the projections of the CCSD/EOMCCSD equations on the triply ex-

cited determinants |<I>fb°jk), in terms of the many-body components of the

CCSD/EOMCCSD similarity-transformed Hamiltonian Hmcsn), Eq. (12), and oper-

ator R‘CCSDJJZqEq. '(19), is

...<2>= @-“(HéCCSD)R.2)c|<1>>+<<P.jk|[H§CCSDJ(Ru.1+Rn.2)]c|<1>>

+<<I>.-,-.(HH‘CCSD’R..1>CI<I>>Mommas...<2) (44)
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where the ground-state moment 9213542), obtained by projecting the CCSD equa-

tions on triply excited determinants, is given by

mg":“(2) (q,gbcjanMTg + T1T2 + le+ lTl2T2 + §T1T22 + éTfT2)lcl‘I’>- (45)

9;“in

The analogous expression for the quadruply excited momentsim “0(2) entering the

MMCC(2,4) approximation, has the form

22221“....(2) = (<2.:.JJ;JI(H.SCCSDJR..2>CI<I>>+(<I>:;J:;JI[H£CCSDJ(H.1+H ,2)]o|<I>>

+(<I>:;J£;‘I(H§CCSDJH..1)DCI<I>> + r0002)!W“......(2) (46)

where the ground-state moment an”JJ(2,) obtained by projecting the CCSD equa-

tions on quadruply excited determinants, is expressed as

an?“......(2) = (in-‘3"? |[V~(%T2'" + lTszJ + éTé‘ + inT§)]cl<I>>- (47)

The operators H(CCSD)in Eqs. (44) and (46) represent the p-body components

of limos”) and HN = H — (<I>|H|<I>) is the Hamiltonian in the normal-ordered

form. The diagrammatic techniques of many-body theory greatly facilitate the derivar

tion of the explicit expressions for DJIJJJJ(2) and 9J1JJJJJMO) The diagrams and al-

gebraic expressions representing the triply and quadruply excited moments of the

CCSD/EOMCCSD equations, in terms of molecular intergrals fg and 11;; and clus-

z 3
ter and excitation amplitudes ti, t3, 7'9 and r3, are shown in Section 4.3 and
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Appendix B. The fully factorized expressions for mtgfibgz) and 91:33,,(2), which

can be used in the efficient implementations of all MMCC(2,3) and MMCC(2,4)

approximations, including the CI-corrected MMCC methods and the renormalized

and completely-renormalized CC approaches discussed in Section 3.3 as well as the

MRMBPT-corrected MMCC methods developed for this dissertation, are described

in Section 4.4.

3.3 The Existing MMCC(mA,mB) Approximations

Depending on the form of |\II,,) in the MMCC energy equations, the existing

MMCC(mA, m3) methods that have been developed prior to this thesis work fall into

one of the following two categories: (i) the CI-corrected MMCC(mA, m3) schemes

and (ii) the renormalized and completely renormalized CC methods for the ground-

state problem, and their excited-state completely renormalized EOMCC extensions.

We begin with the CI-corrected MMCC approaches.

3.3.1 The CI-corrected MMCC(2,3) and MMCC(2,4) Methods

In the CI-corrected MMCC(2,3) and MMCC(2,4) calculations, the wavefunc-

tions |\II,,) in Eq. (40) and (41) are replaced with the wavefunctions obtained in

the active-space CISDtJlJJJJle‘JJJJJJ251 and CISthmJ251 calculations, respectively, as

shown below:

Ef‘MMCC/CJ)(2,3) = ELCCSD) +(‘I’E‘CISDJJIMM3(2)|‘D)

Raff‘s”)IRlCCSD’eT‘°°S°’I<I>>. (48)
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virtual (31, 32, . . .)
 

unoccupied (a1, a2, . . .)
 

active (A1, A2, . . .)

____.O._.O____._

-___.O._.O_____

—H——

—H——

——o——o—

—o—o——

 

21.0th8 (11, 12, . . .)

occupied (i1,z°2,. . .)

core (11, i2, . . .)

Figure 1: The orbital classification used in the active-space CI, MRMBPT,

and the CI— and MRMBPT-corrected MMCC methods, such as MMCC(2,3)/CI,

MMCC(2,4)/CI, MMCC(2,3)/PT, and MMCC(2,4)/PT. Core, active, and virtual

orbitals are represented by solid, dashed, and dotted lines, respectively. Full and

open circles represent core and active electrons of the reference determinant IQ) (the

closed-shell reference determinant IQ) is assumed).

ELMMCC/CJJQA) = ELCCSDJ+(‘I’LCJSDJ‘JJIMmQH[Mu.4(2)+T1Mu.3(2)ll<P)

/(\IJ§.C‘SDJJJIH£FCS°JeT“’°S°’I<I>>. (49)

In order to define the relevant CISDt and CISth wavefunctions, |\II(CISD‘)) and

I‘II(CJSDJ‘1)), respectively, we follow the philosophy of multi-reference calculations, i.e.,

we first divide the available spin-orbitals into four groups (see Figure 1) of core spin-

orbitals (i1, i2, or i, j, ), active spin-orbitals occupied in reference IQ) (I1, 12,

. or I, J, .. . ), active spin-orbitals unoccupied in reference IQ) (A1, A2, or A,

B, ), and virtual spin-orbitals (a1, a2, .. . or a, b, . . . ). The choice of active spin-
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orbitals (typically, a few highest—energy occupied spin-orbitals and a few lowest-energy

unoccupied spin-orbitals) is dictated by the dominant orbital excitations in the ground

and excited states that we would like to calculate. A few examples of reasonable

choices of active orbitals in calculations involving bond breaking and excited states

are discussed in Chapter 5. Once the active orbitals are selected, the CISDt and

CISth wavefunctions are defined as follows:

IHLC‘S°JJ> =(C...o+0.1+0,2+c..,3)l<1>>. (so)

I‘IJE‘CISDJ’JJJ) = (Cmo + CAI + C ,2 + Cma + C#,4)I(I>), (51)

where

01,0 = com) 1. (52)

0.1 = c:(u> = 2cm) (53)

and

012.2 = i 301) aaabajaé = Z 031W) aaabajai (54)

i<j,a<b

are the usual reference, singly, and doubly excited contributions, respectively, to

IQLCJSDJJ) and mommy), and

012.3 = Z CIZEM) aAaJacaKaJ-a,, (55)

i<j<K,A<b<c

CM = Z cjififdm) aAaBaca‘JaLaKaJ-cu. (56)

i<j<K<L,A<B<c<d
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Thus, in the CISDt approach, used in the CI—corrected MMCC(2,3) calculations (of

Eq. (48)), the waveflmctions I\II,,) are constructed by including all singles and doubles

from IQ) and a relatively small set of internal and semi-internal triples containing at

least one active occupied and one active unoccupied spin-orbital indices defined by

Eq. (55). For the CISth approach, used for the CI—corrected MMCC(2,4) approach,

an additional relatively small set of quadruples containing at least two active occupied

and at least two active unoccupied spin—orbital indices is also required. The CI coef-

ficients defining the CISDt and CISth wavefunctions are determined variationally,

as in all CI calculations.

One of the main advantages of the CI-corrected MMCC schemes, including the

MMCC(2,3)/CI and MMCC(2,4)/CI methods, is a very good control of the qual-

ity of wavefunctions |\II,,) used to construct the noniterative corrections 6,,(mA, m3),

which is accomplished through the judicious choice of active orbitals that can al-

ways be adjusted to the type of bond-breaking or excited excited states of interest.

Another advantage of the CI-corrected MMCC methods is their relatively low com-

puter cost compared to many other approaches, which is a consequence of the fact

that it is usually sufficient to use very small active orbital spaces to obtain excellent

results.JJJJJ‘JJ’JJ‘JJJJJJ”6'12"“251 If N, (N) is the number of active orbitals occupied (unoc-

cupied) in IQ), the most expensive steps of the CISDt and CISth methods scale as

NoNungn: and Nngngnfi, respectively, which are considerable savings in the com-

puter effort compared to the 713713 and ngnfi scalings of the parent CISDT (CI singles,

doubles, and triples) and CISDTQ (CI singles, doubles, triples, and quadruples),

respectively. Furthermore, the numbers of triples and quadruples considered in the
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CISDt and CISth calculations are ~N0Nun3nfi and ~N3N3ngn?“ respectively, which

is significantly less than the numbers of all triples and quadruples if the number of ac-

tive orbitals is small. For instance, the number of triples used in the CISDt-corrected

MMCC(2,3) calculations is usually very small (no more than ~30% of all triples,

in many cases even less than that). Additionally, the CPU times required to con-

struct the relevant 6,,(2, 3) corrections are often on the order of the CPU time of a

single CCSD/EOMCCSD iteration. Similar remarks apply to the CISth-corrected

MMCC(2,4) calculations.

Thus, the CI-corrected MMCC methods can be regarded as useful approaches

to accurate calculations of ground— and excited-state potential energy surfaces. One

may contemplate, however, an idea of reducing the costs of the CISDt-corrected

MMCC(2,3) and CISth—corrected MMCC(2,4) calculations even further by replacing

the CISDt or CISth wavefunctions in the MMCC(2,3) and MMCC(2,4) expressions

by the wavefunctions obtained with low-order MRMBPT approaches, as presented in

Chapter 4.

In the next subsection, we describe an alternative to externally corrected MMCC

schemes using nothing else but the cluster and excitation operators obtained in the

CC/EOMCC calculations instead of non-CC wavefunctions to define the relevant

wavefunction |\II,,).
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3.3.2 The Renormalized and Completely Renormalized CC Methods for

Ground and Excited States

An interesting alternative to the CI-corrected MMCC methods, discussed in

Section 3.3.1, is offered by the renormalized (R) and completely renormalized (CR)

CC/EOMCC methods which can be considered as purely single-reference, “black-box”

methods based on the MMCC(mA,mB) approximations.

Let us begin with the ground-state R—CC and CR-CC methods. The R—CCSD(T)

and CR-CCSD(T) methods are examples of the MMCC(2,3) schemes, whereas the

R—CCSD(TQ) and CR—CCSD(TQ) approaches are examples of the the MMCC(2,4)

approximations. The energy formula defining CR—CCSD(T) method is

E3CR-CCSD(T)) = Eéccsn) + (\IISCCSDJTJJI Mo,3(2)|‘1’)/ (\I’IICCSDJTJJICTJCCSDJIQ). (57)

Here, again, T(CCSD) refers to the cluster operators obtained in the CCSD calculations

and Mo,3 (2) is given by Eq. (42) using the generalized moments 91:32,,(2) defined by

Eq. (44). The IQSCCSDJTJJ) wavefunction, entering Eq. (57), is a simple MBPT-like

expression

lwgCCSD‘T”) = [1 + T1 + T2 + R33’(VNT2)C + RIJJVNTIIIQ) (58)

with R33) representing the three-body component of the MBPT reduced resolvent and

VN designating the two-body part of the Hamiltonian in the normal-ordered form.

The R—CCSD(T) approach is obtained by replacing the 9123542) moments by their
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lowest-order estimates, i.e. (Qg‘ff (VNT2)CIQ). The R-CCSD(T) approach reduces

to standard CCSD(T) method when the (\II(CCSD(T))IeTJCCSDJIQ) denominator in the

R-CCSD(T) energy formula is replaced by 1.

The idea of renormalizing the CCSD(T) approach can also be extended to the

CCSD(TQ) method. Two variants of the CR-CCSD(TQ) approach, which are labeled

“a” and “b” , are mentioned here. The CR—CCSD(TQ) energy formulas can be given

in the following form213119J87v389°

ESCR—CCSD(TQ)JXJ = EéCCSD) + <w3CCSD(TQ),x)|[M0’3(2) +T1Mo,3(2)

+ Mo..(2>1Ida/(waccsn‘m’J’IeT‘°°S°’|<I>> (x = am), (59)

where

(wacCSD‘T‘J’J) = IwéccsD‘T”> + éTsz‘J’FIJ) (60)

and

(wgJJJJ<JJ>J>> =(wgJJJJ<J>>>+-;T.J(<I>>, (61>

with T2“) representing the first-order MBPT estimate of T2. The Mo,3(2) operator is

defined by Eq. (42) and Mo,4(2) is defined by Eq. (43). The R-CCSD(TQ) meth-

ods are obtained by dropping the T1M0,3(2) term in Eq. (59) and by replacing the

9313:,”(2) and M33042) moments that enter the definitions of Mo,3(2) and Mo,4(2), re-

spectively, by their lowest-order estimates. As in the case of the R—CCSD(T) method,

one can obtain the standard CCSD(TQ) approaches by replacing the overlap denom-

inator (QSCCSDJTQJ’JJJIeTJCCSDJIQ) in the R-CCSD(TQ) energy expression by 1.
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The standard CCSD(T) and CCSD(TQ) approaches and their (C)R-CCSD(T)

and (C)R—CCSD(TQ) counterparts have nearly identical computer costs. For exam-

ple, the costs of the conventional CCSD(T) calculations are 713113 in the iterative

CCSD steps and ngnfi in the noniterative steps defining the triples correction while

the CR—CCSD(T) approach scales as nan: in the iterative CCSD steps and 2nfinfi

in the noniterative triples correction part. Similar remarks aply to other R—CC and

CR—CC methods. In particular, the CR—CCSD(TQ),x approaches have computa-

tional steps that scale as 71371: in the CCSD part, 2113113 in the triples correction

parts, and 2113113 in parts that deal with the quadruples corrections. This should be

compared to the costs of conventional CCSD(TQ) calculations which are very sim-

ilar, namely, 123111 in the CCSD steps, 713113, in the (T) part, and 123712 in the (Q)

parts. As already mentioned, the renormalized CC methods, such as CR-CCSD(T)

or its recently formulated size extensive extension (not discussed here), termed CR-

CC(2,3) 30321228 are particularly useful in studies of reaction pathways involving single

bond breaking and biradicals.18’20‘2“'68—70'95J‘JJJJJJJJJJSJJJJJ‘JJJJJJJJJJJJJJ_236 They remove failures

of conventional CCSD(T), CCSD(TQ), and similar approximations without making

the calculations more complex or considerably more expensive.

The idea of renormalizing conventional CC methods via the MMCC formalism can

be extended to excited states. For example, in the CR—EOMCCSD(T)

approachJJJJ‘J’JJ‘JJJ26 which is an example of the excited-state MMCC(2,3) schemes,

the energies of ground and excited states E” are calculated as follows:

ELCR-EOMCCSD(T)) = Ef‘ccsn) + <W£CR—EOMCCSD(T))IMMQNQV
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- (CCSD)
(WIFE EOMCCSD(T))|R’(‘CCSD)eT I‘D). (62)

Depending on the specific form of the wavefunction IQIFR-EOMCCSDJT») in Eq. (62),

several variants of the CR-EOMCCSD(T) approach can be considered. Here, only

one variant called ID (the CR—EOMCCSD(T),ID method), which represents one of

the most complete versions of the CR—EOMCCSD(T) approach and which usually

provides the most accurate description of excited states compared to other variants,

is presented. The CR—EOMCCSD(T) wavefunction entering Eq. (62) is defined in

this case as

leca-EOMCCSD(T)> = P(Ru.0 + Run + R“,2 + Rp,3)eT(CCSDJIQ)

= {Run + (32.1 + Ru.oT1)

+[R,,,2 + HAITI + R,,0(T2 + §Tf)]

+[R,,,3 + R,.,2T1 + 1J2,,,,(T2 + $3)

+Ry,0(TlT2 + éTiJllll‘I’la (63)

where P is a projection operator on the subspace spanned by the reference IQ) and

all singly, doubly, and triply excited determinants. The triple excitation operator

~

RM, entering Eq. (63), is calculated as

Rug, = 313 f$(u) aaabacakajag, (64)
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where

site) = Mitre/0:22.. (65)

are the approximate values of the triple excitation amplitudes rJJJJ(;1) resulting from

the analysis of the full EOMCCSDT eigenvalue problem.22 As implied by Eq. (65),

the approximate amplitudes rim) are calculated using exactly the same set of

triply excited moments 911‘th(2) of the CCSD/EOMCCSD equations that enters

the MMCC(2,3) energy expression, Eq. (40). This greatly facilitates the computer

coding effort, since one can reuse the moments 9.113342), which are needed to con-

struct the triples correction of CR—EOMCCSD(T) anyway, to determine the rJJJJ(Iu)

amplitudes. The DJth quantities that enter Eq. (65) represent the perturbative

denominators for triple excitations, which are defined as follows:

We CCSD abc ’ CCSD abc

Diabc = E; J " (QijkIHJ )quijk

(CCSD

= (2.80080)— (nglHi ’I<I>.-,-°J:>

—<<I>JJJIHCCSD)I2..°J£>ijk

—(<I>.,°J:IH§CCSDJI<I>..JJ:> (66)

ngccsn)
where , p = 1 — 3, are the one-, two-, and three-body components of the

CCSD/EOMCCSD similarity-transformed Hamiltonian H(CCSD), respectively, and

wJCCSDJis the EOMCCSD vertical excitation energy.

One of the main advantages of the renormalized and completely renormalized

methods is the fact these methods are as easy to use as the standard “black-box”
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approaches of the CCSD(T) type while considerably improving the description of the

bond breaking region and excited states without the need to define active orbitals

or other elements of multi-reference theory. However, as mentioned earlier, there are

cases, where the degree of quasi-degeneracy is so big that one has to use elements of

multi—reference theory within the MMCC formalism. The CI—corrected MMCC meth—

ods are one possible way of incorporating multi-reference concepts into the MMCC

considerations. The MRMBPT-corrected MMCC methods developed in this work

represent another way. Brief information about the basic elements of MRMBPT is

presented next.

3.4 The Basic Elements of Multi-Reference Many-Body Per-

turbation Theory (MRMBPT)

All genuine multireference theories involve two fundamental concepts, namely,

that of the model or reference space flu and that of the wave operator U. The model

space lo,

.40 = “amt... (67)

is spanned by M determinants or configuration state functions IQ?) (p = 1, . . . , M)

that provide a reasonable zero—order description of the target space

H = “an“ <68)u=0 ’
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spanned by M quasi-degenerate eigenstates I\II,,) (u = 0, 1, . . . , M— 1) of the electronic

Hamiltonian H,

HIQ”) = EflI‘I’I‘)' (69)

In order to define the reference configurations IQp), the employed molecular orbital

basis set is partitioned into core, active, and virtual orbitals in a similar manner as

in Figure 1. The core orbitals are occupied and the virtual ones are unoccupied in

all reference configurations. The references IQ?) differ in the occupancies of active

orbitals. All possible distributions of active electrons among the active orbitals result

in a complete model or active space (CAS). The use of CAS is essential to obtain

size extensive results in the MRMBPT calculations, if the “perturb then diagonalize”

MRMBPT method, summarized below, is considered.

The wave operator U: .14, —> J! is defined as a one-to-one mapping between .240

and I that satisfies the intermediate normalization condition,

PU=R am

and the relation determining its kernel, i.e.,

UQ=0. (71)

Here, P and Q are the projection operators onto, respectively, model space [(0 and
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its orthogonal complement floi in the N-electron Hilbert space,

M

P = Z P‘JJ. P‘JJ = |<I>p><<1>pl. (72)

p=1

Q=1—P. an

Based on Eqs. (70)-(73), although, unlike P and Q, the wave operator U is not

Hermitian, U 75 Ul.

The MRMBPT wavefunctions I‘ll”) are calculated using the formula,

M on M

a.)=zc..(¢.>+z(zc..v<n>n¢.>). (74)

where U(1), U(2), etc. represent perturbative corrections to the wave operator U (ex-

pressed in terms of excited configurations from .x/(oJ', i.e., other than IQP), p=1,...,M).

These corrections describe dynamical correlation efiects.

The coefficients cw, which describe the nondynamical correlation effects, define

the zero-order states belonging to lo,

M

PPS») = ZCPHIJIJP) , (75)

In the “perturb then diagonalize” MRMBPT methods that follow the ideas described

in Ref. 155, these coefficients and the corresponding energies E” of the ground and

excited states I‘ll”), p: 0, 1, ..., M — l, are obtained by diagonalizing the effective
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Hamiltonian,

Heff = PHUP = PHP + ZPHU‘JJJP, (76)

11:1

in the model space .x/(o,

Hefl’lxpgm) = Eylwff”). (77)

In the practical implementations of such MRMBPT theories, the wave operator U is

truncated at some, preferably low, perturbation theory order n. When U is truncated

at the first-order term U(I), i.e., U = P + U(1), the second-order MRMBPT flmction

(MRMBPT(2)) is obtained; second-order since the resulting energies E” are correct

through second order).

One can considerably simplify the above considerations, which are based on the

generalized Bloch formalism,262 in which the wave operator U is determined by solving

the multiroot generalized Bloch equation262 HU = UHU (in the case of MRMBPT,

using perturbation theory), by formulating the “diagonalize then perturb” MRMBPT

methods. In those methods, one continues to use Eq. (75) to determine the zero-

order states, but the coefficients cm, of the zero-order states are obtained by diag—

onalizing the bare Hamiltonian H rather than the efl’ective Hamiltonian H“J. Per-

turbative corrections to the zero-order energies 13(0) are calculated a .posteriori in a

state-selective manner without using the multiroot generalized Bloch formalism. As

mentioned in the Introduction, several methods, including the popular CASPT2 and

MC—QDPT approaches, are in this category. The MRMBPT approach used to de-

fine the MRMBPT-corrected MMCC schemes discussed in detail in the next chapter

(Section 4.1) belongs to the category of the “diagonalize then perturb” methods as
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well.
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4 The MMCC Methods Employing Multi-Reference

Many-Body Perturbation Theory (MMCC/PT)

In this chapter, the new variant of the MMCC theory, refered to as the MRMBPT-

corrected MMCC or, for bevity, MMCC/PT, in which the full CI wavefunctions

I‘ll“) in Eqs. (26) or (39) are approximated by the wavefunctions obtained from the

low-order MRMBPT calculations, is described. The approximate MRMBPT wave—

functions used in the MMCC(mA,m3)/PT approaches implemented in this work are

discussed. Moreover, the diagrammatic formulation of the resulting MMCC(2,3)/PT

and MMCC(2,4)/PT schemes are presented. The details of the algorithm that en-

ables one to achieve a high degree of code vectorization for the generalized moments

of CC equations defining the MMCC methods are described as well.

4.1 The Multi-Reference Many-Body Perturbation Theory

Wavefunctions Used in the MMCC/PT Approaches

As in all multi-reference considerations and in analogy to the CISDt and CISth

methods discussed in Section 3.3.1, in order to define the computationally simple form

of the low-order MRMBPT waveftmctions IQLMRMBPTJ) for the MRMBPT-corrected

MMCC calculations, we begin by partitioning the molecular orbital basis set into

four groups as shown in Figure 1: core spin-orbitals (i1, i2, or i, j, ), active

spin-orbitals occupied in reference IQ) (II, 12, or I, J, ), active spin-orbitals

unoccupied in reference IQ) (A1, A2, .. . or A, B, .. . ), and virtual spin-orbitals (a1,
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a2, . . . or a, b, . . .). As in the CI—corrected MMCC schemes, reference IQ) is one of the

many reference determinants that we choose as a Fermi vacuum for the CC/EOMCC

and MMCC calculations. By distributing active electrons among active spin-orbitals

in all possible ways, we generate a certain number (designated here by M) of reference

determinants IQp) (including, of course, IQ)), which span the complete model space

or P—space .14). Then, we define the zeroth-order wavefunctions of the ground and

excited states I‘IJILPJ) of interest as linear combinations of the reference configurations

I‘l’p),

M

Wfl=2amx W)
p=l

where the coefficients Em, and the corresponding zeroth-order eigenvalues E, are ob-

tained by diagonalizing the Hamiltonian H in the model space 4%.

Once the model space #0 is defined, we introduce the Q-space which in the

MMCC/PT method pursued here is a subspace of the orthogonal complement 10*

spanned by all singly and doubly excited determinants with respect to each reference

IQ?) (p = 1, . . . , M), as is done, for example, in the MRCISD calculations. After elim-

inating the repetitions in the list of Q—space configurations, the resulting MRMBPT

wavefunctions IQLMRMBPTJ), which will eventually be used to design the MMCC/PT

(e.g. MMCC(2,3)/PT and MMCC(2,4)/PT) energy corrections, are then defined as

the linear combinations of the P-space and Q-space contributions,

M R

I‘I’IIMRMBPTJI = ZCPHIJIJPI + Z cqyqu), (79)

11:1 q=M+l
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where IQ?) (p = 1,. . . , M) are the reference determinants and I‘I’q) (q = M+l, . . . , R)

are the Q-space determinants, as expressed above. In principle, we could use any

of the existing low-order MRMBPT methods to determine the approximate values

of the coefficients cw and cm, that enter Eq. (79) and perform the correspond-

ing MMCC(mA,m3)/PT calculations. In the simplified MRMBPT model used in

the present implementation of the MMCC(2,3)/PT method69J97J98 as well as the

MMCC(2,4)/PT scheme, we evaluate the relevant coefficients cw (p = 1,. . .,M)

and Cg). (q = M + 1, . . . , R) in Eq. (79) by applying the Liiwdin-style partitioning

technique'J‘J‘JJ264 to the Hamiltonian matrix in the space spanned by the P—space and

Q-space determinants IQ?) and IQ), respectively. Thus, if C?“ and Cqu are the

column vectors of coefficients cm, with p = 1,. . . , M and cm, with q = M + 1,. . . , R,

respectively, and if pr, Hpq, qu, and H00 are the corresponding PP, PQ, QP,

and QQ blocks of the Hamiltonian, we can write the Hamiltonian eigenvalue problem

for the wavefunctions I‘IIIPJRMBPTJ), Eq. (79), in the following manner:

HPP HP CP CP

Q ’J = E, ’J . (80)

HQP Hoe Co» Co»

In other words, we obtain

HPPCPp + HPQCQp = EpCPpa (81)

HQPCPI‘ + HQQCQH = EuCQu- (82)
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If we approximate the QQ block of the Hamiltonian matrix entering Eq. (80), qu,

by the diagonal matrix elements (QQIHIQq), we can write

CQ)‘ z (Eul -- Dq)_l HQPCP)‘, (83)

or, more explicitly,

M

c,,, 8 2(3), — (<1>,|H|<1>,))-J (<1>,|H|<I>,,) cw, (q = M + 1, . . . , R), (84)

p=l

where DQ in Eq. (83) is the diagonal part of qu. In practice, we obtain the working

equation for the approximate values of the coefficients cg), (q = M + 1,. . . , R) by

replacing the energies E), and coefficients Cw (p = 1,. . . , M) in Eq. (84) by the zero—

order energies E” and coefficients 5p“, respectively, resulting from the diagonalization

of the Hamiltonian in the model space flu (diagonalization of pr; cf. Eq. (78)).

We use the resulting approximate values of the coefficients qu

M

54m = 2“?” -(ququJq))-1<JququJp)Epm (q = M + 1: - , , a R), (85)

p=l

along with the coefficients Em, obtained by diagonalizing Hpp, to define the perturbed

states of the MRMBPT theory exploited in this thesis work, which are defined as

M R

l‘i’LMRMBPT» = Zépfiiqfio) + Z 5qu¢¢1>~ (86)

p=1 q=M+l

The wavefunctions I‘IILMRMBPTJ), Eq. (86), are used instead of the exact I‘ll”) states
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in the MMCC(mA, m3) energy expressions, Eqs. (38) and (39), to define the family

of the MMCC(mA, m3)/PT approximations.

The above perturbative procedure based on the partitioning of the Hamiltonian

into the P-space and Q-space contributions equivalent to the MRCISD problem has an

advantage that we only have to consider the QP matrix elements of the Hamiltonian

(the (QqIHIQp) matrix elements) and the diagonal (QqIHIQq) matrix elements in the

process of defining I‘ll”). Another advantage of this procedure is the fact that the

zero-order states are obtained by simply diagonalizing the Hamiltonian in .210 to

obtain the relevant coefficients Ew-

We have developed computer codes for the MRMBPT model defined by Eqs.

(78), (85), and (86). In the actual construction of the MRMBPT wavefunctions

IQ“), we use a complete model space obtained by all possible distributions of ac-

tive electrons among active orbitals allowed by the spin and spatial symmetries. As

discussed earlier, we limit ourselves to the Q spaces corresponding to the MRCISD

problem. Because of the fact that we are mainly interested in the MMCC(2,3) and

MMCC(2,4) approximations and to further simplify our MRMBPT calculations, we

decided to consider only those Q-space configurations that are at most quadruply

excited with respect to the reference determinant IQ) used in the CCSD/EOMCCSD

and subsequent MMCC(2,3) and MMCC(2,4) calculations. Furthermore, the allowed

singly excited Q-space configurations from £0 to floi are:

a. core —-> active

b. core ——> virtual

c. active ——-> virtual
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and for all cases the allowed excitations are of the a —> a and 6 —> fl types, since

we are interested in the S; = 0 states (in practice, singlet states) obtained out of

the restricted Hartree-Fock (RHF) reference. Similarly, the doubly excited Q—space

configurations from .110 to JIOJ can be divided into the following eight categories:

a. core, core ——> active, active

b. core, core —-> active, virtual

c. core, core —-> virtual, virtual

(1. core, active ——+ active, active

e. core, active ——2 active, virtual

f. core, active ——> virtual, virtual

g. active, active —-> active, virtual

h. active, active ———> virtual, virtual

Again, due to the conservation of spin, the allowed Q-space double excitations are

aa —+ aa, fifi —> 66, afi —2 afi, a3 —> Ho, 60 —> Ba, and 6a —> afl, if the RHF

determinant is used as reference IQ).

We have implemented the simplified MRMBPT scheme described above and tested

its usefulness in the MMCC calculations by examining its performance in several

benchmark calculations discussed in Chapter 5. The relevant MRMBPT-corrected

MMCC(2,3) and MMCC(2,4) approaches are discussed next.
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4.2 The MRMBPT-corrected MMCC(2,3) and MMCC(2,4)

Approaches: MMCC(2,3)/PT and MMCC(2,4)/PT

As already mentioned, in this dissertation we focus on the basic MMCC(2,3)/PT

and MMCC(2,4)/PT approaches in which the CCSD/EOMCCSD energies are cor-

rected for the leading triples or triples and quadruples effects via corrections 6,,(2, 3)

and 6,,(2, 4), respectively, calculated with the MRMBPT wavefunctions IQLMRMBPTJ),

Eq. (86). In order to use the multi-reference wavefunctions I‘IILMRMBPTJ) in the

single-reference MMCC formalism, first we have to rewrite the IQLMRMBPTJ) states

in the form of CI expansions relative to the reference determinant IQ) used in the

CC/EOMCC and MMCC calculations, as shown below:

I‘I'JLMRMBPT) = (07.0 + 0...: + 02.2 + 02.3 + 02.4 + - - -)I<I>>.

where

(714,0 : 5001‘) 11

= c (u) = Z 2:.(2)
i,a

_ _ 1 _‘j

0.2 - anb(#) aa = 2: c.1(u)aa
£<j,a<b

' 1 4'1: b -t k b c
CM = 55 CancU‘) a‘Ja acakaja, = E JachJ) (1% a akajag,

i<j<k,a<b<c
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and

C4: 5—76—EJanJ;Jd(p) aaabacadalakaja,-— Z éJJJJJM01.) a‘JaJ’aca‘JagakaJ-a, (92)

i<j<k<La<b<c<d

are the corresponding particle-hole excitation operators relative to IQ) defining the

reference, singly, doubly, triply, and quadruply excited contributions to IQLMRMBPTJ)
’

respectively. In the specific case of the MMCC(2,3)/PT and MMCC(2,4)/PT approx-

imations explored in this work, we further simplify the wavefunctions IQLMRMBPTJ), in

Eq. (87), by truncating the CI expansions for the IQLMRMBPTJ) at the triply excited

determinants (the CMIQ) term) in the MMCC(2,3)/PT case and at the quadruply

excited determinants (the (714.4(1)) term) in the MMCC(2,4)/PT case. The final en-

ergy expressions for the MMCC(2,3)/PT and MMCC(2,4)/PT energies, obtained by

replacing I\II,,) in Eqs. (40) and (41) by IQLMRMBPTJ), Eq. (87), truncated at the

triply (the MMCC(2,3) case) or triply and quadruply (the MMCC(2,4) case) excited

determinants, respectively, relative to IQ), are

ELMMCC/J’TJm) =HLCCJDJ+ Z (are). 221:3,"...(2>/D.. (93)
i<j<k,a<b<c

and

ELMMCC/J’T’m) = 3.0082 + 2 (22.3.» 22:12.42)
i<j<k,a<b<c

Z IJJ'J‘(u)1(2H;'.J;J....(2)

i<j<k<La<b<c<d

+ Ache/493322.42) 40/17.. , (94)
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respectively, where the triply excited moments mtjffgbcm) are defined by Eqs. (44)

and (45) and the quadruply excited moments 931230,,(2) are defined by Eqs. (46) and

(47). The Adm/d partial antisymmetrizer is defined as

Aabc/d = 1 _ (ad) _ (bd) - (Cd), (95)

where (pq) is a usual transposition of indices p and q, and

X
P
'

|
| (@(‘MRMBP'H l RLCCSD)6T(CCSD) I‘D)

= App + Ami + Ape + 5.4.3 + Am + - -~ (96)

is the overlap denominator (\IIuIRLCCSD)eT(CCSD) IQ) entering Eq. (40), written for the

wavefunction IQ”) = IQfiMRMBPTb, Eq. (87), truncated at triples for MMCC(2,3)/PT

and at quadruples for MMCC(2,4)/PT. The Ago. A“, 574.2, [3.3, and AM contri-

butions to the denominator D”, Eq. (96), are calculated as

Ann = [5001)]. T001), (97)

A... = Elihu)? WM). (98)

5.4.2 = Z [3500]" [33m (99)
i<j,a<b

5.. = 2 [6.3le" fliitm), (100)
i<j<k,a<b<c
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and

A..4= Z IJ..J...‘J‘(u)1JB62.1..“(m (101)
i<j<k<l,a<b<c<d

where 500;), cMy)¢3,,01) E’aickM), andc4’“Mm) are the CI coefficients obtained by

rewriting the MRMBPT wavefunction, Eq. (86), in the single-reference

CI form of Eq. (87), and T001),

33.01) = (‘1’?|(Ru,1 + R.,0T1)|<I>), (102)

53,01) = <¢g§llRm2 + RMITI + Ru.0(T2 ‘l‘ éTfHI‘I’). (103)

fllbc’km) = (‘I’ajkllRmTl + Ru.1(T2 + éTf) + Ru.o(T1T2 + JéTfHI‘I’). (104)

and

3;...J’J‘m) = <<I>:J.‘-J£IJI[R..2<T2+%Tf>+R».1<TIT2+%T3 >

+R..(%T§ + $1"an + 53mm» (105)

are the coefficients at the reference determinant IQ) and singly, doubly, triply, and

quadruply excited determinants, |Q?), IQ?”), |be°jk), and |Qijabfl“), respectively, in the

CI expansion of the CCSD/EOMCCSD wavefunction RLCCSD)eT(CCSD) |Q), which can

be easily determined using the CCSD/EOMCCSD cluster and excitation amplitudes

t'‘53., T001) 7‘...(u) and r...(u)-

Although the summations over i < j < k, a < b < c in Eqs. (93) and (100)

and over i < j < k < l, a < b < c < din Eqs. (94) and (101) have the form of
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the complete summations over triples and and quadruples, respectively, in reality the

wavefunctions IQLMRMBPT», Eq. (86), contain only small subsets of all triples and

quadruples, once we rewrite each IQLMRMBPT” in the form of the singlereference CI

expansion, Eq. (87). This is a consequence of using active orbitals in designing the

MRMBPT wavefunctions IQLMRMBPTU, which limit the triple and quadruple excita-

tions relative to the reference IQ) to a small class of triple and quadruple excitations

that carry a certain number of active spin-orbital indices. Although the actual number

of triples and quadruples in the IQLMRMBPT)) wavefunctions depends on the dimen—

sion of the active space used in the MRMBPT calculations, one usually needs a small

portion of all triples and quadriples in the MMCC(2,3)/PT and MMCC(2,4)/PT

considerations. As a result of using active orbitals in the MMCC(2,3)/PT and

MMCC(2,4)/PT methods, we only need a small subset of all triexcited coefficients

633p), Eq. (104), and similarly a small subset of triply excited moments M3342),

Eqs. (44) and (45), which match the nonzero coefficients 53:01), to calculate the

MMCC(2,3)/PT energi, Eq. (93). Similarly, for the MMCC(2,4)/PT approach, one

only needs a small subset of all quadruply excited coefficients 6213“”), Eq. (105), and

a similarly small subset of all quadruply excited moments 911330119), Eqs. (46) and

(47), which match the nonzero coefficients Eflm), in the MMCC(2,4)/PT energy

expression, Eq. (94).

One of the main advantages of the MRMBPT-corrected MMCC schemes, such

as MMCC(2,3)/PT and MMCC(2,4)/PT, is their low computer cost, compared to

the already relatively inexpensive CI—corrected MMCC methods described in Section

3.3.1. As in the case of the CI—corrected MMCC approaches, such as MMCC(2,3)/CI
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and MMCC(2,4)/CI, in the MMCC(2,3)/PT and MMCC(2,4)/PT methods we have a

very good control of accuracy through active orbitals defining model space 1.3, which

can always be adjusted to the excited states or the bond breaking problem of interest,

but unlike in the MMCC/CI schemes, we do not have to solve the iterative CISDt

and CISth equations to generate the wavefunctions IQLMRMBPT)) that enter the cor-

rections 6,.(mA, m3) of the MRMBPT-corrected MMCC theories. We calculate the

relevant CI-like coefficients, such as 500;), (1(a), 3&(p), é‘gfim), and Efim), by sim-

ply converting the expressions that define the MRMBPT wavefunctions IQLMRMBPF)),

Eq. (86), into the single-reference CI form defined by Eq. (87). Thus, the main com-

puter effort for MMCC(2,3)/PT approach goes into the calculations of a small subset

of triexcited moments mime), leading to the significant reduction of the ngnfi steps

that are normally needed to calculate all moments 9313:,”(2). Likewise, the main

computer effort for MMCC(2,4)/PT approach goes into the calculations of a small

subset of quadruply excited moments 93121220,,(2). Very little effort is needed to deter-

(MRMBPT)

u )mine the wavefunctions IQ and the corresponding coefficients 5001.), 612,04),

cilia), alto), and amp).

At this point, the remaining issue that we have to address before calculating the

MMCC(2,3)/PT and MMCC(2,4)/PT energies is how to obtain the explicit algebraic

expressions for the triply and quadruply excited moments 9.1113342) and 931;:220,1(2)

It turns out that the best way to handle these quantities is through the use of the di-

agrammatic methods of the many-body theory which are described in the subsequent

section.
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4.3 Diagrammatic Formulation and Factorization of the Triply

and Quadruply Moments of the CCSD Equations

In this section, the diagrammatic derivation of the explicit equations for the triply

and quadruply excited moments of the CCSD/EOMCCSD equations, 911:1:bc(2) and

William): respectively, is presented. The procedure of diagram factorization, which

is deemed necessary to obtain highly efficient computer code, is discussed as well.

Historically, the use of diagrams originated in quantum field theory using the time-

dependent formalism. However, the time-independent formulation is sufficient in the

development of quantum chemical and other many-body methods that rely on the

time-independent Schrbdinger equation. Diagrams are a graphical representation of

Wick’s theorem, which is a basic theorem for the algebraic manipulations involving

operators in the second-quantized form. They carry information about interesting

physics (e.g., connected vs. disconnected clusters), while providing powerful tool to

derive and organize numerous mathematical expressions that almost any accurate

many-body theory generates.

The entire discussion of diagrammatic methods described in this dissertation fo-

cusses on the time-independent formulation. It is important to note that the sequence

in which the operators act (i.e. right to left in the bracket notation) is relevant; this

is indicated in the diagram by means of a so-called formal time axis as shown below:

71



Thus if we want to represent the operator product VNTI diagrammatically, we begin

with a diagrammatic representation of T1 at the bottom, followed by a diagram rep-

resenting the operator VN drawn above the T1 diagram. This bottom-top convention

is the convention we will be using throughout this dissertation. Another common

convention, which was pioneered by CiZek and Paldus, is to place the formal time

axis for the operator ordering horizontally, from right to left,

l

+—

corresponding to the way we normally write a sequence of operators acting on a func-

tion. The difference between the two arrangement is the 90° rotation of the diagrams.

The standard procedure for deriving the explicit algebraic expressions for 9.112242)

and Mazda), Eqs. (44) and (46), in terms of the individual cluster and linear ex-

citation amplitudes as well as one— and two—body integrals defining the Hamiltonian,

is to represent the formulas, as given by Eqs. (44) and (46), in a diagrammatic form,

obtain the so-called resulting diagrams by contractions of fermion lines represent-

ing the relevant creation and annihilation operators that enter the second-quantized

forms of the operators, and apply the diagrammatic rules to convert the resulting

diagrams back into algebraic language. Figure 2 shows the the basic diagrams used

to derive the equations for the generalized moments of the CCSD/EOMCCSD equa-

tions. An overview the diagrammatic methods of many-body theory, describing the

basic elements of the diagrammatic language used here, is presented in Appendix A.

The diagrammatic and algebraic structure of the one—, two-, three-, and four-body

components of the CCSD similarity-transformed Hamiltonian H‘CCSD), which are the

72



 

V VmV V V
E)— (d)

A A
(e) (T)

Figure 2: Diagrammatic representation of (a) T1 as defined by Eq. (6); (b) T2 as

defined by Eq. (7); (c) R,“ as defined by Eq. (20); (d) RM as defined by Eq. (21);

(e) FN = f;N[aPaq], and (f) VN = fivgNhPaqamr], where FN and VN are the one-

and two-body components of the Hamiltonian in the normal-ordered form (HN) and

N[ . .] stands for the normal product of the operators.

key elements for all CCSD—based methods, are shown in Appendix B.

We use the Hugenholtz (and Brandow) diagrams to derive the explicit many-body

expressions for all terms that correspond to the triply and quadruply moments of the

CCSD/EOMCCSD equations, 9362542) and 9113342), respectively. Other represen-

tations, such as that of Goldstone, could be used as well, but Hugenholtz diagrams

are best whenever we rely on the second-quantized operators using antisymmetrized

matrix elements, as is the case here. There are several methods of obtaining all re-

sulting diagrams. The usual approach, which is followed here, is to first draw all

elementary and then resulting Hugenholtz skeletons. The arrows are subsequently

added in all distinct ways to produce all the distinct resulting diagrams. In the

case of expressions for the generalized moments of CCSD equations, where we have

T(CCSD)

)CIQ) on the excited determinants lel‘.‘j_',-:"), we do not drawto project (HNe
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the diagram representing the bra state (Qfl‘finl. Instead, we draw all permissible

T(CCSD))C|Q) with n incoming and n outgoing externalresulting diagrams for (HNe

fermion lines labeled by fixed indices 2'1, . . . ,2}, and (11,. . . ,an, corresponding to the

determinant Iq’?,l.'.'.i:"> on which we project. Similar applies to moments of EOMCCSD

equations. This greatly facilitates the process of drawing the resulting diagrams and

makes the resulting diagrams less complicated.

To interpret the diagram algebraically, we conform to the following rules:

a. Each upgoing external line is labeled with a “particle” (unoccupied) spin-orbital

label a, b, c, d, and each downgoing external line with a “hole” (i.e. occu-

pied) spin-orbital label 1', j, k, l, . . . . External lines should always be labeled in

canonical sequence as a,z'; b,j; c,k; etc. The internal hole lines are labeled with

m, n, . . ., whereas the internal particle lines are labeled with e, f, .. .

b. The one-body vertex representing the one-body component FN = f:N[apaq] of

HN carries the numerical value of the Fock matrix element (pIfIq) = ,3, where

p is an outgoing line and q is an incoming line. For instance,

carries a value of matrix element f2.

0. The two—body vertex representing the two-body component VN = i—vgNIaPaqasar]

of HN carries the numerical value of the antisymmetrized interaction matrix e1-
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ement 12;; = (quvIrs) — (quvIsr) where p and q are the outgoing lines and r

and s are the incoming lines. For example,

a b

c d

carries a value of 2123' = (ablecd) — (avaIdc). In general, 1);; = —v;"q = —v;; =

er
v“.

. The one- and two—body vertices representing the T1 and T2 cluster operators

and the linear excitation vertices representing RM and RM, i.e.,

My aw, ail}! we...

carry the numerical values of the t3, t3, r34”), and ram) amplitudes, re-

spectively. The two-body amplitudes are antisymmetric so that, for example,

t3 = —t2, = 43', = t’; (similar applies to r3,(p)).

. All the spin-orbitals label are summed over “internal” lines, which are obtained

by contracting external lines of FN, VN, T1, T2, RM, and RM.

. The sign of the diagram is obtained from (——1)‘+" where l is the number of loops

and h is the number of internal hole lines.
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g. The combinatorial weight factor of the connected diagram is specified by 0%)”,

where m is the number of pairs of “equivalen ” lines. A pair of equivalent

lines is defined as being two lines originating at the same vertex and ending at

another, but also same vertex, and going in the same direction. This weight

rule is specific to a Hugenholtz representaton and lines that carry fixed labels

(such as those defining the (‘1’?1‘,IZ}?I bra states on which we project) are always

regarded as non-equivalent.

h. To maintain the full antisymmetry of a final expression for a quantity, such as

moment mega?”(mA), which is antisymmetric with respect to permutation of

indices 2'1, . . . ,in and a1, . . . , an, the algebraic expression for each diagram should

be preceded by a suitable complete or partial antisymmetrization operator,

permuting the external lines in all distinct ways.

The procedure outlined above (of, also, Appendix A) can be greatly simplified

if we realize that the generalized moments of CCSD/EOMCCSD equations, such

as 9321;42) and mil-304(2): are defined in terms of H‘CCSD). As shown in Ap-

pendix B, various many-body components of H‘CCSD) contain several diagrams of the

(FNeT‘+T’)C and (VNeT1+T’)C types, which are part of more complex diagrams repre-

senting ”$342) and armada). By treating many-body component of H‘CCSD) as

more basic diagrams, which we represent by effective vertices with wavy lines, we can

express moments M2242) and wtjffigeda) in terms of matrix elements 72:, fig, 71$,

etc. that define one-body, two-body, three-body, etc., components of the H‘CCSD). In

this way, instead of drawing large numbers of resulting diagrams corresponding to the
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original definitions of 9113342) and 911"”ehed(2) in terms of FN, VN, T1, T2, Rm], and

RM, Eqs. (44)-(47), we can draw the relatively small number of diagrams in terms

of the precomputed matrix elements of 1:1(CCSD), which serve as natural intermediates

(cf. Appendix B). All of the diagrams representing 911:1;(2), obtained in this way,

are shown in Figure 3. Note that all of the diagrams in Figure 3 have six external lines

corresponding to the projections of triply excited determinant IQ?“). The diagram
ijk

that shows up as the last term in Figure 3 is the ground-state moment 9113’:he(2)

defined in Eq. (45). The fact that we can represent the entire ground-state moment

9113,’:he(2() in this compact way is a consequence of the fact that 9113’,“eh42) can be re-

garded as one of the three-body components of H‘CCSD); the complete set of diagrams

corresponding to 9113’ehe(2) is shown in Figure 24 in Appendix B. The squared dot,

EJa,t 9113’:he(2) in Figure 3 represents the constant mm). For the quadruply excited

moments 9113’ke3ed (2), Eq. (46), all of the resulting diagrams should have eight external

lines extending to the top and corresponding to the projection onto the quadruply

excited determinant Ingfh"). We can see this in Figure 4, where all diagrams repre-

senting 19123342) are presented. Again, in analogy to 911"eh42), the diagram

W

that shows up as the last term in Figure 4 corresponds to the ground-state moment
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Figure 3: Diagrammatic representation of 9113442) using the Brandow forms of the

relevant Hugenholtz diagrams. Vertices with wavy lines correspond to many-body

components of H(CCSD). El in the last term represents r001).
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Figure 4: Diagrammatic representation of 91133340) using the Brandow forms of the

relevant Hugenholtz diagrams. As in Figure 3, vertices with wavy lines corresponds

to many-body components of HwCSD) and El represents r0(p).
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W13’Hahe42) defined byin Eq. (47), which can also be regarded as one of the four-body

components of H(CCSD) the complete set of diagrams corresponding to W1"klahed(2)

is shown in Figure 25 in Appendix B. Again, the squared dot, El, represents the

coefficient r001). All of the diagramms that represent the two-, three-, and four-body

components of H(CCSD) which enter W1"th42) and W1”Hahe42), including the ground-

state triply and quadruply moments of the CCSD equations described above, are

given in in Appendix B (see Figures 20—25). The diagrams representing the one-body

components of H(CCSD) do not show up in Figures 3 and 4 directly, but do show up

indirectly as intermediates when the diagram factorization discussed in Section 4.4,

which leads to efficient computer codes, is fully carried out (see, also, Appendix C).

Diagrams shown in Figures 3 and 4, with two-, three-, and four-body components

of H(CCSD) represented diagrammatically in Figures 2025, provide correct algebraic

expressions for moments W1”the(2) and W1"t3e42), but these expressions, if coded term

by term, do not yield efficient computer programs. In order to reduce the number of

CPU operations that are requested to calculate W1jfthe(2) andW1W1"Hahed(2) in the most

eflicient manner, one has to factorize the 911”"ahe(2) and W1""’ahe42) diagrams shownin

Figures 3 and 4, that relateW1”the(2) and W121“ahed(2) to the expensive three- and four—

body components of H(CCSD) , shown in Figures 20—25. The main ideas behind diagram

factorization that lead to considerable reduction in the number of CPU operations

characterizing the resulting many-body expressions are explained in Appendix C. We

illustrate the key steps that lead to the factorized, computationally efficient form of

W1zfth42) in Figures 5—8.

In the initial step, shown in Figure 5, we rewrite the expensive three-body matrix
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Figure 5: Factorized forms of the three-body components of H(CCSD) required in the

derivation of W1;fthe(2), expressed as products of two-body matrix elements of H(CCSD)

and T2 cluster amplitudes.



Wmm

W=WM

Ply NW

elements of H(CCSD) that enter the W132he(2) diagrams shown in Figure 3 (see diagrams

where

(f)

Figure 5: continued.

I-V in Figure 3) as tensor products of two-body matrix elements of H(CCSD) and T2

cluster amplitudes. We also rewrite diagram VI of Figure 3, which uses a four-

body component or H(CCSD), in a more explicit form in terms of VN, T2, and RN.

As results of these operations, the original diagrams shown in Figure 3 acquire a

new form shown in Figure 6. The first two diagrams in Figure 6 are in their final,

computationally efficient, form. However, diagrams IA—VI are no longer linear in

T or Rh, and represent multiple tensor products that need to be factorized further



by bringing them to a linearized (vectorized) form and reusing one— and two-body

matrix elements of H(CCSD), which are easy to generate, as much as possible. This is

accomplished in Figure 7 in three steps shown in Figure 7 (a), (b), and (c) where we

first factor out T2 vertices (Figure 7 (a) and (b)) and then group terms that have a

similar overall structure to define the final set of intermediates linear in RM and Rm

and shown in Figure 7 (c). As a result of all these operation, all of the diagrams in

Figure 3 or 6 acquire a compact, computationally, efficient form shown in Figure 8.

A similar procedure can be performed for the original diagrams representing

W13t3ed(2) shown in Figure 4. Again, by replacing the three-body matrix elements

of H(CCSD) that enter diagrams in Figure 4 (diagrams VIII and IX) by their fac-

torized analogs shown in Figure 5 and by replacing the four-body H‘CCSD) vertices

in the diagrams in Figure 4 (diagrams X—XVI) by their factorized analogs shown

in Figure 9, we obtain the set of diagram representing W133hed(2) shown in Figure

10. The factorization of non-linear diagrams in Figure 10 by factoring out common

terms, grouping diagram that have a similar struture, and reusing recursively gen-

erated one— and two-body matrix elements of H(CCSD) and other intermediates gives

the final, computationally efficient and compact form of W13:3ed(2) shown in Figure

11.

Figures 8 and 11 show the most compact, fully factorized, diagrammatic forms

of W13:he(2) and W13:3ed(2), that yield the highly efficient computer codes that are

5qu
characterized by the 113713 steps in the W133he(2) and 113113 steps in the W1”,ehee(2) case.

Figures 12-14 show the diagrams representing all recursively generated intermediates
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VI IA VIIB

Figure 6: Diagrammatic representation of W13the(2) obtained by substituting the

three-body components of H(CCSD) in Figure 3 entering diagrams I—V by their fac-

torized analogs shown in Figure 5 and by expressing the four-body component of

H(can) that defines diagram VI in terms of V”, T2, and RM.
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Figure 7: Process of diagram factorization for the nonlinear terms in W13"ehe(2) shown

in Figure 6 (diagrams IA-VI). (a) and (b) The T2 vertex is factored out. (0) Diagrams

in parenthesis in (b) that have a similar structure are grouped together to define two

intermediate vertices that are linear in RM and Rm.
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Figure 7: continued.

that are needed to calculate W13the(2) and W13"lehee(2) using diagrams shownin Figure

8 and 11. The explicit algebraic expressions for the intermediates shown in Figures

12-14 are given in Table 2. The final algebraic expressions for W13:hJ2) and W1333ed(2)

used in this work and the remaining details of the computer implementation of the

MMCC(2,3)/PT and MMCC(2,4)/PT methods are discussed next.
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(IA. IIB, NLVA)

J k c b i a i k c

I ab + E k 0' {3333333 'l" I ab H

“B. IIA IV, VB. VI)

Figure 8: Final factorized form of W13the(2) The two-body vertices marked with “=”

are defined in Figure 7 (c).

4.4 Final Equations for W13;';he(2) and W1333ed(2) and the Re-

maining Details ofthe Implementation of the MMCC(2,3)/PT

and MMCC(2,4)/PT Approaches

The final, fully factorized expression for the triply excited moments of the

CCSD/EOMCCSD equations 9313342), in terms of the amplitudes defining the

CCSD/EOMCCSD cluster and excitation operators, T1, T2, Rap, RM, and R33,

and molecular integrals f3 and 1%, obtained fi'om the diagrams shown in Figure 8,

which can be used in the highly efficient, vectorized, computer implementations of

all MMCC(2,3) approximations, including the externally corrected MMCC(2,3) and

MMCC(2,4) schemes, such as the MMCC(2,3)/PT and MMCC(2,4)/PT approaches

pursued to this work, and their CI—corrected MMCC and renormalized CC/EOMCC
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Figure 9: Factorized forms of the four-body components of H(CCSD) required in

the derivation of 931323,,(2), expressed as products of two-body matrix elements of

H(CCSD) and T2 cluster amplitudes.
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Figure 10: Diagrammatic representation of 93222040) obtained by substituting the

three- and four-body components of H(CCSD) in Figure 4 by their factorized analogs

shown in Figures 5 and 9.
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Figure 10: continued.
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Figure 11: Final factorized form of 93133,“,(2)

analogs, can be given the following compact form:

Mitch AMT}:(2) (106)

where

ab ec mcTabTitle) = AJ/J’JHeh“J’J—WJ" —-;-I,J;i:t::+1.izti5)

mc ab+gro<u><tth: — I'J’J “)1 (107)

For simplicity, we dropped the symbol u in the amplitudes 735m), rz'g‘M), and mat)

entering Eq. (107). The final, fully factorized and computationally highly efficient

expression for the quadruply excited moments of the CCSD/EOMCCSD equations
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Figure 12: One-body matrix elementsof F1(CCSD) and other one-body intermediates

needed to construct mtgfibcm) and mma).
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(d) Bf;

Figure 13: Two-body matrix elements‘of Elmo's” and other two-body intermediates

needed to construct 9.7212542) and Mfikm).
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Figure 13: continued.
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Figure 13: continued.
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Figure 13: continued.
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Figure 14: Three-body intermediates needed to construct 9312342) and Dfljftgdfl).
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(e) 125."

Figure 14: continued.

93"”“5“,,(2) obtained from the diagrams shownin Figure 11, can be written as

Wilda) = mzzttdm), (108)

where

T3“0504(2) = AW“ 1"thkl_ Aijk/l Ilijktnl++éA""/‘9fi2{§bc(2)rfiz

+%ro(u) (A‘J/‘J‘ Iiiitit —A‘J”°/' 13:11:15) . (109)

with 933’33,c(2) representing the ground-state triexcited moments of CCSD (see Table

2). The antisymmetrizers Am, AW, qu/r, qur/sa Jim/rs, qu/r/s, AW” etc. which
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enter Eqs. (106)-(109) directly or through the matrix elements of H‘CCSD), and other

intermediates that are needed to construct Eqs. (107) and (109) and that are listed

in Table 2, are defined in a usual way,

Am 5 Am =1pq _ (pq), (110)

AW 5 AW = lpqr — (W) — (PT) — (47‘) + (P47) + (PM): (111)

AP/qr ‘3 Ap/qr E Avr/p 5 AW”, = lpqr - (P9) - (1”), (112)

Amr/a 5 AW” 5 As/pqr 5 AW" = 1mm - (p3) - (<18) - (7‘3), (113)

Am/rs 5 AW” = 1pm - (pr) - (p8) - (qr) - ((18) + (mos), (114)

Am/r/s E Af/m/s __—: Ar/pq/s E Ar/s/pq E Ar/s/m
Am/r/s

= 1m -- (pr) - (p8) - (qr) - ((18) + (PTXQS) - (T8)

+ (W3) + (1987') + (m) + ((18?) - (qu8)

= qu/rs Ann (115)

AW. :- AW“ = 1W. - (pa) - (pr) - (p8) - (qr) - (<18) - (T8) + (m)

+ (487") + (W) + (1948) + (pm) + (P73) + (1284)

+ (1087‘) + (pq)(r8) + (pr)((18) + (ps)(qr) - (para)

- (pqsr) - (PTSQ) - (WIS) - (psrq) - (1984?), (116)
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with (pq), (pqr) and (pqrs) representing the cyclic permutations of two, three, and four

spin-orbital indices, respectively. As mentioned in the previous section, the explicit

spin-orbital expressions for one- and two-body matrix elements of HCCSD, 71g and 5;},

respectively, and other recursively generated intermediates entering Eqs. (107) and

(109), in terms of cluster amplitudes t; and ti’h, excitation amplitudes r; E rim) and

ri’h E raw), and molecular integrals f: and 1);, are given in Table 2.

By using the idea of recursively generated intermediates and by reusing, as much as

possible, the one and two-body matrix elements of H(CCSD) , which are generated in the

CCSD/EOMCCSD calculations that precede the calculations of moments 93:3:he(2)

and MEMO), we achieve a very high degree of code vectorization, while avoiding the

explicit construction and storing of the most expensive three- and four-body matrix

elements of FNCCSD). Since all of the expressions defining 21.113542) and 932:3“,(2)

and the corresponding recursively generated intermediates are binary tensor (matrix)

products, one can very effectively calculate 933542) and 93:3:3ed(2) and the required

intermediates with fast matrix multiplication routines available in the BLAS library.

Once the CCSD/EOMCCSD equations are solved for th, tjfh, r001), r301) and

73(11): and the relevant moments M3342) and mama) and the corresponding

coefficients my). arm), 62:0»). ditto), mu), am), my), and mm) are de

termined using Eqs. (106)-(109), MRMBPT wavefunctions, IWLMRMBP'T’), and Eqs.

(102)-(105), we construct the overlap denominators D”, as in Eqs. (96)-(101), and,

finally, the energy corrections due to triples or triples and quadruples defining the

MMCC(2,3)/PT and MMCC(2,4)/PT methods, using Eqs. (93) and (94). Our

MMCC(2,3)/PT and MMCC(2,4)/PT computer programs are interfaced with the
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RHF and integral transformation and sorting routines available in the GAMESS

package.265
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Table 2: Fixplicit algebraic expressions for one- and two-body matrix elements ele-

ments of HCCSD (designated by h) and other intermediates (designated by I or 19),

shown in Figures 12—14, used to construct the triply and quadruply excited moments

of the CCSD/EOMCCSD equations, 933342) and 933:3ed(2), respectively.

 

 

 

 

 

Ezpmssz'on“ Figure

71? ff + tgnvfif, 12 (a)

I? r2113; 12 (b)

7&2 f2 + t2”v2‘m - %t3"vf£n 4271?. 12 (C)

712 ff + $223,; + 5:;ng +1272: 12 (d)

7135 ”35 - trvfs. 13 (a)

7139 v3“ + tfvg’ 13 (b)

713 12% + 3thnh"v,°,'fn — $712?" + thnvgfn 13 (c)

71?} 12:“; + étfi‘fvfjf + tfehff — tfvfi 13 (d)

:3, ”3": + tiny; 13 (e)

317, 19;; + my; - triage” 13 (f)

“is, v35, — tjgg’; + tgvgg + twig“ — tgnl‘zjgh + §t3hmfiffm + 11;ng - 3‘2;ng 13 (g)

Eff: vi: + 13,571: + tgvff + §t§§v§j + $1933 — trfifi + mafia; 13 (h)

131‘ Aikizfirf — mm + tail: + $531.5} — AJ'Jfisgw-ghm 13 (i)

13" Eff — 1:17:71: 13 (j)

1;; hazy; - ijhrr + ififinrg" — Bgsnrggn 13 (k)

133 1037.73" - 71$"? 13 (1)

I3 ivzh’ri’) + 3.4" 71251;]; 13 (m)

1,: —v;J,:,.r;;,JJ + Egrg — my? 13 (n)

13‘: 3mg: - 3A‘jtffhf‘l-1fie 14 (a)

13: §A‘/j"l_z{,'f,t;’h‘ 14 (b)

9313342) “MAJ/“(723112: — 13:33) 14 (c)

1,11“ hfigrg — #0333;ng + #:331th 14 (d)

133* AJ/J*(§B;§r;;r - $43,513?) + AJJ/ngrrg + mtg) 14 (e)

" Summation over repeated upper and lower indices is assumed; f: = (plfIq) and

1);; = (pqlvlrs) — (pqlvlsr) are the one- and two-electron integrals in a molecular spin-

orbital basis {p} corresponding to the Fock operator (f) and the two-body part of the

Hamiltonian (1)).
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5 Numerical Examples

We illustrate the performance of the MRMBPT-corrected MMCC approaches

developed in this work by discussing the results of the benchmark MMCC(2,3)/PT

and MMCC(2,4)/PT calculations for the single bond breaking in the HF and F2

molecules, the simultaneous dissociation of both O—H bonds in the H20 molecule,

and the valence excited states of the CH‘r ion. We focus on a comparison of the

MMCC(2,3)/PT and MMCC(2,4)/PT results with a few other ways of incorporating

the triple and quadruple excitations in the CC and EOMCC formalisms, and the

exact, full CI data also obtained with GAMESS.

5.1 Bond Breaking in HF

In order to test the ability of the MRMBPT-corrected MMCC approaches to

improve the poor description of bond breaking by the standard CCSD and CCSD(T)

methods, we applied the MMCC(2,3)/PT approach to the potential energy curve of

HF. We used a double zeta (DZ) basis set,266 for which the exact, full CI energies27

and several other useful results, including, for example, the full CCSDT energies27

and their standard and completely renormalized CCSD(T) analogs,18 are available.

We also compare the MMCC(2,3)/PT results with the results of the CI-corrected

MMCC(2,3) (MMCC(2,3)/CI) calculations,251 which provide yet another way of cor-

recting the CCSD energies for the most essential effects due to triple excitations. We

focus on the triples methods because generally triply excited clusters along with the

singly and doubly excited clusters are sufficient to obtain a virtually exact description
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of single bond breaking. In all calculations reported in this work, we used the ground-

state RHF determinant as a reference |<I>). The active space employed in the CI- and

MRMBPT-corrected MMCC methods consisted of three highest-energy occupied or-

bitals, 30, hr, and 211, and the lowest-energy unoccupied orbital 40 that correlate

with valence shells of the H and F atoms. This is a natural choce of active space for

the description of bond breaking in HF, since for larger internuclear separations R1“:

the full CI wavefunction of HF is dominated by the ground-state RHF configuration,

I‘D) = l(10)2(20)2(17r)2(27r)2(30)2|, (117)

the doubly excited configuration,

|<1>') = l(10)2(20)2(11r)2(211)2(40)2I, (118)

corresponding to the (30)2 -+ (40)2 excitation, and the (30) —> (40) singly excited

configuration.

The results of our MMCC(2,3)/PT calculations for the potential energy curve of

HF are shown in Table 3. In this particular case, there is a 1.634 millihartree difference

between the CCSD and full CI energies at the equilibrium geometry, RH-F = Re,

which increases to 12.291 millihartree at R1”: = SR: (for most practical purposes,

R1“: = 5Re can be regarded as a dissociation limit). As in other cases of single bond

breaking, the large differences between the CCSD and full CI energies at larger values

of R34: are primarily caused by the absence of the connected T3 clusters in the CCSD
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Table 3: A comparison of the CC and MMCC ground-state energies with the cor-

responding full CI results obtained for a few geometries of the HF molecule with a

DZ basis set.The full CI total energies are given in hartree. The remaining energies

are reported in millihartree relative to the corresponding full CI energy values. The

non-parallelity errors (NPE), in millihartree, relative to the full CI results are given

as well.

 

 

Method R; 211., 317. 517. NPE

r1111 CIb —100.160300 —100.021733 -99.985281 —99.983293

CCSD 1.634 6.047 11.596 12.291 10.657

CCSDTb 0.173 0.855 0.957 0.431 0.784

CCSD(T)° 0.325 0.038 —24.480 —53.183 53.508

CR—CCSD(T)° 0.500 2.031 2.100 1.650 1.600

MMCC(2,3)/CI“ 1.195 2.708 3.669 3.255 2.474

MMCC(2,3)/PT“ 1.544 1.116 0.025 —0.889 2.433

 

“R, = 1.7328 bohr is the equilibrium value of the internuclear H—F distance.

b Fi‘om Ref. 27.

° Horn Ref. 18.

d From Ref. 251.

° The active space consisted of the 30, 111, 217, and 4a orbitals.

wavefunction. Indeed, the full CCSDT method, which includes T3 clusters, reduces

large errors in the CCSD results, relative to full CI, to as little as 0.173 millihartree

at RH.F = Re and 0.431 millihartree at R1“: = 5R6.

The full CCSDT approach works, but, CCSDT is a rather impractical method.

Unfortunately, the much more practical CCSD(T) approach completely fails at large

internuclear separations RH-p. Indeed, the small, 0.325 millihartree, error in the

results of the CCSD(T) calculations at R34: = Re increases (in absolute value) to

24.480 millihartree at R1142 = 31‘?e and 53.183 millihartree at R114: = 512.. (cf. Table

3). As shown, for example, in Refs. 18, 21, 25—27, 87, the CCSD(T) potential energy

curve lies significantly below the full CI curve at larger internuclear separations and
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is characterized by an unphysical hump in the region of intermediate Rwy values.

The CR-CCSD(T) approach, which is one of the “black-box” variants of the

MMCC theory, considerably improves the results of the CCSD(T) calculations, elim-

inating the unphysical hump on the CCSD(T) curve and reducing the 53.183 milli-

hartree error in the CCSD(T) results at RH-p = 5R... to 1.650 millihartree.18J25J26J87

The errors in the CR-CCSD(T) energies, relative to full CI, do not exceed 2.1 mil-

lihartree over the entire range of R1”: values. The CI-corrected MMCC(2,3) ap-

proach, employing the 30, 177, Zn, and 4a orbitals as active orbitals, provides similar

improvements""*""’J87‘251 (see Table 3).

As shown in Table 3, the MMCC(2,3)/PT calculations employing the same set

of 30, hr, 21r, and 40 active orbitals as used in the more expensive MMCC(2,3)/CI

calculations reported, for example, in Ref. 251, provide the results which are better

in the R1”: > Re region than the already very good results of the CR-CCSD(T) and

MMCC(2,3)/CI calculations. In particular, the MMCC(2,3)/PT approach reduces

the large errors in the CCSD(T) results at R34: = 3& and R1“: = 51?.2 to small errors

that do not exceed 1 millihartree. The signed errors in the MMCC(2,3)/PT results

vary between 1.544 millihartree at RH-F = Re and —0.889 millihartree at RIM-.1 =

5R... The overall qualities of the MMCC(2,3)/PT and MMCC(2,3)/CI results, as

measured by the corresponding NPE values, are quite similar, Indeed the NPE values

characterizing the MMCC(2,3)/PT and MMCC(2,3)/CI calculations are 2.433 and

2.474 millihartree, respectively. An obvious issue that may need further attention is

the the quality of the MMCC(2,3)/PT energy at R1“: = Re, which is only slightly

better than that obtained with CCSD. This is related to the fact that we use the
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ground-state RHF orbitals and a small active space which is designed to describe the

most essential nondynamical correlation effects in the region of larger H—F distances.

The suitable orbital optimization scheme would have to be developed to improve the

results of the MMCC(2,3)/PT calculations at 123.15 = Re. One possiblity could be to

use CASSCF orbitals.

5.2 Bond Breaking in F2

We now turn to the more challenging case of single bond breaking in F2. The

results for the F2 molecule, as described by the cc-pVDZ basis set,267 are shown in

Table 4. Again, the ground-state RHF determinant was used as a reference. In the

post-RHF calculations, the lowest two orbitals were kept frozen. The active space used

in the MRMBPT-corrected MMCC calculation consisted of the five highest-energy

occupied orbitals, 309, hr“, 277", 17rg, and 2119, as well as the lowest-energy unoccupied

orbital, 30“. No CI-corrected MMCC and full CI calculations were performed for this

system, so we have to rely on the full CCSDT energies, reported in Ref. 88, to assess

the performance of the MMCC(2,3)/PT approach.

In this case, the CCSDT energies can serve as the reference values, since it is well

known that the full CCSDT approach provides an excellent description of a single

a-bond breaking (the previously discussed case of the HF molecule was an illustration

of this statement). As one can see, the CCSD approach provides very poor results at

all values of the F—F distance RF_F, even at the equilibrium geometry Re, where the

difl’erence between the CCSD and CCSDT energies is already 9.485 millihartree.
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The CCSD results become even worse for larger values of Rpup. In fact, even the

relatively small stretches of the F—F bond, such as R1221: = 1.5Rc, lead to very large,

> 30 millihartree errors in the CCSD energies relative to full CCSDT. The failure of

the CCSD approach illustrates the important role played by the triply excited clusters

in describing the F2 molecule. The CCSD(T) method is very successful at describing

the effects due to triply excited clusters at the equilibrium geometry, reducing the

large error in the CCSD result relative to full CCSDT to 0.248 millihartree but,

unfortunately, the CCSD(T) approach completely fails at larger F—F distances, where

the unsigned errors in the CCSD(T) energies become as large as 39.348 millihartree

at REL]? = 5R...

The MRMBPT-corrected MMCC theory, explored in this dissertation, dramati-

cally improve the CCSD and CCSD(T) results. As shown in Table 4, the

MMCC(2,3)/PT method employing the small active space described above reduces

the 9.485 millihartree error in the CCSD energy relative to CCSDT at Rp.p = Re

to 3.725 millihartree. In contrast to CCSD(T), the MMCC(2,3)/PT method remain

accurate in the bond breaking region. It is capable of producing the results of nearly

CCSDT quality along the entire potential energy curve of F2 from RIP-F = 0.75126 to

RIP-F = 511;. The largest error relative to CCSDT characterizing the MMCC(2,3)/PT

calculations along the whole curve is 5.618 millihartree. Even more striking is the fact

that the NPE value characterizing the MMCC(2,3)/PT energies (calculated relative

to the full CCSDT results) is only 2.698 millihartree, demonstrating the ability of the

relatively inexpensive MMCC(2,3)/PT approach to produce potential energy curves

that accurately mimic the full CCSDT potential curve. The MMCC(2,3)/PT methods
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seem to perform better in this regard than the CR—CCSD(T) which work reasonably

well at larger F-F separations, but are characterized by somewhat larger NPE values.

Only the recently developed size extensive modification of CR-CCSD(T), termed

CRCC(2,3), shows the NPE error similar to that observed in the MMCC(2,3)/PT

calculations.98

5.3 Double Dissociation in H20

5.3.1 The DZ basis set

Similar improvements in the relatively poor CCSD and CCSD(T) results are

observed when the MMCC(2,3)/PT approach is applied to the simultaneous dissoci-

ation of both O—H bonds in H20. As explained in Ref. 86 (cf., also, Ref. 251), in this

case, a reasonable choice of active orbitals, which is needed to obtain a fairly uniform

description of the equilibrium and bond breaking regions, is provided by the 1b1, 3a1,

lbg, 401, 2b1, and 2b2 orbitals. We used these orbitals to determine the MRMBPT-like

wavefunctions that enter the MMCC/PT corrections to CCSD energies. Since double

bond dissociations are characterized by significant quadruple effects, in addition to

large effects due to triples, we also performed the MMCC(2,4)/PT calculations to ex-

plore the effects of quadruples. The simultaneous stretching or breaking of both O—H

bonds in water provides us with an example of a situation, where both T3 and their

T4 counterparts are sizable and difficult to describe with the approximate CCSDT

and CCSDTQ approaches.

As shown in Table 5, the MMCC(2,3)/PT method employing a small set of the
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Table 5: A comparison of the CC and MMCC ground-state energies with the corre-

sponding full CI results obtained for the equilibrium and two displaced geometries of

the H20 molecule with the DZ basis set. The'full CI total energies are given in hartree.

The remaining energies are reported in millihartree relative to the corresponding full

CI energy values.

 

 

Method R,a 1.512,,b 2R,b

11111 CI —76.157866“ —76.014521" —75.905247b

CCSD 1.790 5.590 9.333

CCSD’I‘ 0.434 1.473 —2.211

CCSD(T)d 0.574 1.465 -—7.699

CR-CCSD(T)d 0.738 2.534 1.830

MMCC(2,3)/019f 0.811 2.407 1.631

MMCC(2,3)/PTf 1.265 2.174 0.335

CCSDTQ‘ 0.015 0.141 0.108

CCSD(TQ)“ 0.166 0.094 —5.914

CR—CCSD(TQ),ath 0.195 0.905 1.461

CR—CCSD(TQ),b‘ 0.195 0.836 2.853

MMCC(2,4)/C18f 0.501 0.942 2.416

MMCC(2,4)/PTf 1.069 0.380 —1.815

 

“ The equilibrium geometry and full CI result from Ref. 268.

b The geometry and full CI result from Ref. 53.

c From Ref. 77.

d Rom Ref. 18.

° From Ref. 251.

f The active space consisted of the lbl, 3a1, lb;, 401, 2b1, and 202 orbitals.

3 From Ref. 80.

h The “a” variant of the completely renormalized CCSD(TQ) method. The results

are from Ref. 25.

i The “b” variant of the completely renormalized CCSD(TQ) method. The results

are from Ref. 25.
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lbl, 3a], 1b2, 4a1, flu, and 2b: active orbitals reduces the 9.333 and 7.699 milli-

hartree unsigned errors in the CCSD and CCSD(T) results at R041 = 2R, (R03

is the O—H distance and Re is the equilibrium value of 30-11) to 0.335 millihartree.

The overall description of the simultaneous stretching of both O—H bonds in H20

by the MMCC(2,3)/PT approach, which produces the relatively small errors that

do not exceed 2.2 millihartree in the entire R0}; = Re — 2R9 region, is very good.

The CR—CCSD(T) and MMCC(2,3)/CI methods (the active orbital space used in

the MMCC(2,3)/CI calculations, which were originally reported in Ref. 251, was the

same as that used in the present MMCC(2,3)/PT calculations) provide similar results.

We also examined the effect of quadruples on the MMCC/PT results by considering

higher-order MMCC corrections to CCSD energies employing the selected triples and

quadruples contributions relative to the RHF determinant |<I>) that originate from the

low-order MRMBPT waveftmctions |\II).MRMBPD), Eq. (86). The MMCC(2,4)/PT

method reduces the error of MMCC(2,3)/PT at R0.“ = 1.5R.a further from 2.174

to 0.380 millihartree. However, the MMCC(2,4)/PT overestimates the ground-state

energies of the H20 molecule at R0}; = 2Re by 1.815 millihartree. We believe this is

due to the simplified version of the MRMBPT theory used in this work. Clearly, it is

encouraging to observe that the inexpensive MMCC calculations, in which the simple

MRMBPT-like wavefunctions IQLMRMBPTB, Eq. (86), truncated at triple excitations

relative to the RHF determinant |<I>), are inserted into the MMCC(2,3) energy cor-

rections, provide a much better overall description of bond breaking in H20 than the

standard CCSD and CCSD(T) approaches.
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Table 6: A comparison of various CC ground-state energies obtained for the H20

molecule, as described by the cc-pVDZ basis set, at the equilibrium geometry and

several non-equilibrium geometries obtained by stretching the O—H bonds, while keep-

ing the H-O—H angle fixed. The spherical components of the d orbitals were used.

In all post-RHF calculations, all electrons were correlated. The full CI total energies

are given in hartree. The remaining energies are reported in millihartree relative to

the corresponding full CI energies.

 

 

Method Re“ 151?.8 21?... 2.5R.z 3Re

FullCIb -76.241860 —76.072348 -75.951665 -75.917991 —75.911946

CCSD 3.744 10.043 22.032 20.307 10.849

CCSDT” 0.493 1.423 —1.405 —24.752 —40.126

CCSD(T)b 0.658 1.631 —3.820 -42.564 —90.512

CR-CCSD(T)° 1.025 3.355 7.252 -2.270 —15.040

MMCC(2,3)/PTd 2.780 3.329 4.251 —7.607 —21.456

 

‘ The equilibrium value of the O—H distance Re equals 1.84345 bohr and the H-

O-H bond angle is fixed at 110.6°. For further details of the equilibrium and non-

equilibrium geometries used in this work, see Ref. 9.

b Rom Ref. 9.

c From Ref. 95.

d The active space consisted of the 101, 1b2, 3m, 4m, 202, 5m, and 3b2 orbitals.

5.3.2 The cc—pVDZ basis set

To explore the effect of basis set as well as to examine the performance of

MRMBPT-corrected MMCC theory in a somewhat more complete scan of the poten-

tial energy surface of the doubly dissociating H20 molecule, we tested our methods

on the H20 system as described by the cc-pVDZ basis set.

Though the CCSDT method provides an excellent description of the equilibrium

region, producing an error relative to full CI of only 0.493 millihartree at R041 = Be,

it completely fails at larger O—H separations (R041 > 2Re), where the errors in the

CCSDT energies grow up to 40.126 millihartree at R0.“ = 3B,. These results show
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that even the full inclusion of T3 clusters is not sufficient to guarantee the proper

description of the double dissociation of water if we go to very large stretches of both

O—H bonds. As both O—H bonds in H20 are simultaneously stretched, the effects of

triples as well as quadruples (T4 clusters) become very important due to a significant

increase of a multi-reference character of the ground-state electronic wavefunction.

The MMCC(2,3)/PT approach provides a very good description of the O—H stretches

up to R0}; = 217,, reducing the 10.043 and 22.032 millihartree errors in the CCSD

results at R041 = 1.5122 and R0.“ = 2R.” respectively, to 3.329 and 4.251 millihartree.

The errors in the MMCC(2,3)/PT results increase as we enter the R041 > 2Re region,

where quadruples (neglected in the MMCC(2,3)/PT calculations) become important,

but it is more it is also interesting to compare the errors relative to full CI produced by

the MMCC(2,3)/PT approach with the errors produced by the full CCSDT method.

As one can see in Table 6, the use of the MRMBPT-like wavefunction in determining

the ground-state triples correction 60(2, 3) of the MMCC(2,3)/PT approach seems to

reduce the degree of the failure of the CCSDT method in the R0.“ > 2Re region.

5.4 Excited States of CH+

One of the main advantages of the MMCC/PT formalism is that we can study

ground as well as excited states. In principle, for a given M-dimensional model space

91%, we can calculate up to M different MRMBPT wavefunctions I‘I-ILMRMBPT”, Eqs.

(86) or (87), which represent the approximate forms of ground and excited states I‘D")

that enter the MMCC (e.g., MMCC(2,3)) corrections to CC and EOMCC (e.g., CCSD

114



and EOMCCSD) energies. If we have an a priori knowledge about the dominant or-

bital excitations that define the excited states of interest (and the leading EOMCCSD

amplitudes r; and ri’h may help us in this regard), we can use the corresponding or-

bitals as active orbitals for the MRMBPT and subsequent MMCC/PT calculations.

There is, of course, an issue of matching the MRMBPT wavefunctions IQLMRMBPT»,

Eq. (86) or (87), with the corresponding EOMCC states EweTM) |<I>) (in the case of

the MMCC(2,3)/PT calculations, the EOMCCSD states RLCCSD)eT(CCSD)I<I>)), so that

we read the correct wavefunctions I‘IILMRMBPT)) into the MMCC corrections 6“), but

this issue can be resolved by constructing, for example, the overlaps of all zero-order

states |Q),”), Eq. (78), obtained by diagonalizing the Hamiltonian in the model

space lo, with all EOMCC states R(A)eT‘)|<I>) of interest. In most cases, only

one specific zero-order state |Q),”) gives a large overlap with a given EOMCC state

RM)eTW|<I>). If there are two or more states |Q),”) that form similar overlaps with

a given EOMCC state RuneT‘)|<I>), we can calculate the more complete MRMBPT

wavefunctions lfifiMRMBPrU, Eq. (86) or (87), that correspond to these zero-order

states |\I').P)) and search for the I‘IILMRMBPT)) state that gives the maximum overlap

with a given EOMCC state EweTM)|<I>). The resulting overlap enters the MMCC

correction 63A) anyway (see, e.g., the overlap denominator (\IILMRMBPTHRLMeTWkP)

in Eq. (26)), and we can see now that the same denominator serves as a very im-

portant diagnostic for matching the EOMCC states RWeT”) |<I>) and the MRMBPT

wavefunctions IIIILMRMBPT» for the purpose of determining the corresponding energy

corrections 6),"). In the specific case of the MMCC(2,3)/PT approach tested in this
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work, we matched the MRMBPT wavefunctions NILMRMBPT’) with the EOMCCSD

(CCSD)eT(CCSD)
states Rh. (3’)),|<I>) by analyzing first the overlaps of the zero-order states |\II

Eq. (78), with the EOMCCSD wavefunctions of interest. If this was not sufficient

for determining the matching pairs of the MRMBPT and EOMCCSD states, we

calculated the complete overlap denominators (\IILMRMBPT) IRLCCSD)6T(CCSD) |Q), which

we need to determine the MMCC(2,3)/PT corrections to EOMCCSD energies anyway

(see the denominators D” in Eqs. (93) and (96)).

We illustrate the performance of the MRMBPT-corrected MMCC theory in excited-

state calculations by analyzing the results of benchmark MMCC(2,3)/PT and

MMCC(2,4)/PT calculations for the valence excited states of the CH+ ion (see Table

7). We compare the MMCC(2,3)/PT and MMCC(2,4)/PT results for a few low—

lying excited states of CH+ of the 12+, 111, and 1A symmetries, obtained with the

[5s3pld/331p] basis set described in Ref. 269 and the ground-state RHF orbitals,

with the results of the corresponding full CI calculations reported in Refs. 13, 269.

Along with the MMCC/PT and full CI data, we show the EOMCCSD and full EOM-

CCSDT results (the latter ones obtained in Ref. 24) and the results obtained with

the perturbative triples response CC3 model.122 In addition to the equilibrium ge-

ometry RC-“ = Re (RC4; is the C—H separation and RE is the equilibrium value of

Ron), we consider two stretched geometries of CH+, so that we can see how good

the MMCC/PT theory can be in calculations of excited—state potential energy curves

along bond breaking coordinates. We also compare the MMCC/PT results with the

results of the MMCC/CI calculations reported in Refs. 126, 127. In calculating the

MRMBPT wavefunctions IQLMRMBWU, Eq. (86), that enter the MMCC(2,3)/PT and
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MMCC(2,4)/PT energy formulas, Eqs. (93) and (94), we used the same set of ac-

tive orbitals as used in the previously reported MMCC(2,3)/CI and MMCC(2,4)/CI

calculationst127 Thus, the active space employed in the calculations for CH+ con-

sisted of the highest-emery occupied orbital, 3a, and the three lowest-energy unoc-

cupied orbitals, 171', E 111, 171,, E 211’, and 40. This choice of active space reflects

the nature of orbital excitations defining the valence excited states of CH+ shown

in Table 7 and the nature of the bond breaking in this system. (see Refs. 124—126

for details). Finally, we compare the results of the MMCC(2,3)/PT calculations

with the CR—EOMCCSD(T) results reported in Ref. 22. Let us recall that the CR-

EOMCCSD(T) method is a “black-box” variant of the MMCC(2,3) approximation,

in which we do not have to select active orbitals to determine the triples corrections

to CCSD/EOMCCSD energies derived from the general MMCC formalism.

We begin our discussion with the vertical excitation energies at the equilibrium

geometry. In this case, the doubly excited nature of the first-excited 12+ (2 1E“)

state and the lowest-energy 1A (1 1A) state, and the partially biexcited character of

the second 1II (2 1II) state (cf. Refs. 111, 124—127, 269) cause significant problems for

the EOMCCSD approach. The errors in the EOMCCSD excitation energies for these

three states, relative to the corresponding full CI values, are 0.560, 0.924, and 0.327

eV, respectively. The conventional linear response CC approach to triple excitations

19121-123 reduces these large errorsvia the CC3 method of Jorgensen and co-workers

to 0.219—0.318 eV,122 which is a significant improvement, but if we want to obtain

errors which are much than 0.1 eV with the standard EOMCC methodology, we must

use the full EOMCCSDT approach (or its active—space EOMCCSDt variant125J24).
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The full EOMCCSDT approach reduces the relatively large unsigned errors in the

EOMCCSD results for the 2 12+, 1 1A, and 2 1II states to 0.074, 0.040, and 0.060

eV, respectively.

As shown in Table 7, the CR—EOMCCSD(T), MMCC(2,3)/CI, and

MMCC(2,3)/PT methods, which represent three different flavors of the

MMCC(2,3) theory and which are all much less expensive than the iterative CC3 and

EOMCCSDT approaches, are capable of providing the results of near—EOMCCSDT

quality. Indeed, the errors in the vertical excitation energies calculated at Ron =11.3

for the 2 123+, 1 1A, and 2 111 states of CH+, which have significant double excitation

components, obtained with the noniterative CR—EOMCCSD(T), MMCC(2,3)/CI,

MMCC(2,3)/PT approximations, are 0.084—0.117 eV for the 2 12"” state, 0.027—

0.090 eV for the 1 1A state, and 0.105—0.176 eV for the 2 111 state. This should

be compared to the 0.560, 0.924, and 0.327 eV errors, respectively, in the EOM-

CCSD results and the 0.230, 0.318, and 0.219 eV errors, respectively, obtained with

the CC3 method. For the remaining two states shown in Table 7 (the third 12+

state and the lowest-energy 111 state), which at Ron = R, are dominated by sin-

gle excitations,“1’12“.“2'“269 the errors in the CR—EOMCCSD(T), MMCC(2,3)/CI,

and MMCC(2,3)/PT results are 0000—0051 eV and 0.007—0.015 eV, respectively.

In this case, the CR—EOMCCSD(T), MMCC(2,3)/CI, and MMCC(2,3)/PT meth-

ods provide the results of the CC3 or near-EOMCCSDT quality. The standard

EOMCC methods, including the basic EOMCCSD approximation, have no trou-

bles with describing excited states dominated by one-electron transitions, but it is

encouraging to observe that even in this case all three MMCC(2,3) methods, includ-
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ing the MMCC(2,3)/PT approximation developed in this work, improve the EOM-

CCSD results. The MMCC(2,4)/PT approach provides small improvements in the

MMCC(2,3)/PT results for the 212+ and 1A states, while keeping the high accuracy

of the MMCC(2,3)/PT calculations for the remaining states.

The very good performance of the MMCC(2,3)/PT and other MMCC(2,3) meth-

ods is not limited to vertical excitation energies at the equilibrium geometry. As

shown in Table 7, the CR—EOMCCSD(T), MMCC(2,3)/CI, and MMCC(2,3)/PT

approaches are capable of providing a highly accurate description of excited-state po-

tentials of CH+ at larger values of Ron, where all excited states listed in Table 7 gain

a considerable multi-reference characterm—m. The very large (even ~ 1 eV) errors

in the EOMCCSD results for the excited-state potential energy curves of CH+, rel-

ative to the corresponding full CI potentials, are reduced in the CR—EOMCCSD(T),

MMCC(2,3)/CI, and MMCC(2,3)/PT calculations to 0.1 eV or less. Indeed, the

errors in the EOMCCSD excitation energies, relative to full CI, for the two lowest

excited states of the 123+ symmetry, the two lowest 111 states, and the lowest 1A state

are 0.668, 0.124, 0.109, 0.564, and 1.114, respectively, at RC4; = 1.5R¢, and 0.299,

0.532, 0.234, 0.467, and 1.178 eV, respectively, at RC-“ = 2Re. The MMCC(2,3)/PT

method proposed in this work reduces these large unsigned errors to 0.102, 0.053,

0.083, 0.022, and 0.085 eV, respectively, at R041 = 1.5R¢, and 0.079, 0.021, 0.133,

0.123, and 0.005 eV, respectively, at RC_H = 2R6. As in the RC4; = R. case, the only

standard EOMCC approach that can provide the results of similar quality is the very

expensive full EOMCCSDT method (of. Table 7). The MMCC(2,4)/PT approach

provides further improvements in a few cases or does not change the already very
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good MMCC(2,3)/PT energies.

The results in Table 7 show that all three MMCC(2,3) approximations, including

CR-EOMCCSD(T), MMCC(2,3)/CI, and MMCC(2,3)/PT, provide similar improve-

ments in the EOMCCSD energies. The improvements are particularly substantial

for excited states dominated by doubles and for excited-state potentials at stretched

internuclear geometries, where all excited states of CH+ gain a significant multi-

reference character. It is interesting to learn that the basic and relatively simple

MMCC(2,3) approximation is capable of providing considerable improvements in the

EOMCCSD results, independent of the form of the wavefunction |\II,,) used in the

MMCC(2,3) correction formula. The CR—EOMCCSD(T) approach uses the pertur-

bative, EOMCCSDT-like, wavefunctions I‘ll"), the MMCC(2,3)/CI method uses the

MRCI-like wave functions I‘ll“), and the MMCC(2,3)/PT scheme proposed in this

work uses the MRMBPT-like wavefunctions (\II”) defined by Eqs. (86) or (87), and

yet the resulting MMCC(2,3) excitation energies for CH+ are very similar. This

demonstrates the robustness of the MMCC formalism, which is capable of improving

the results of conventional CC and EOMCC calculations independent of the specific

form of |\II,,) used to calculate the energy corrections 63A) or 630031)). Rom the point

of view of this work, it is important that we can considerably improve the CCSD and

EOMCCSD results using low-order MRMBPT-like wavefunctions |‘Il,,) defined by

Eq. (86). As explained earlier, the MMCC(2,3)/PT is much less expensive than the

MMCC(2,3)/CI approach, since we do not have to solve iterative MRCI-like equations

to obtain the wavefunctions I‘ll”) that enter the MMCC(2,3)/PT energy expression.

Also, if the active space is small, the MMCC(2,3)/PT method is less expensive than
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the CR-EOMCCSD(T) approach, since the summation over i < j < k,a < b < c in

Eq. (93) includes only the selected types of triple excitations relative to IQ) that are

included in the MRMBPT wavefunctions IQLMRMBPTU, Eqs. (86) or (87). Finally,

it is worth noticing that there is no apparent need to reoptimize orbitals to obtain

an accurate description of excited states of CH+ in the MMCC(2,3)/PT calcula-

tions (the ordinary RHF orbitals seem to suffice), although it would be interesting to

examine the role of orbital optimization in MRMBPT calculations that precede the

MMCC(2,3)/PT calculations. The MMCC(2,4)/PT method improves the description

of the CH’r system somewhat, but not to a degree that would favor this approach

over the less expensive MMCC(2,3)/PT approximation.
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6 Summary, Concluding Remarks, and Future Per-

spectives

In this dissertation, a new electronic structure theory, termed MMCC/PT, which

combines the CC/EOMCC method with low-order multi-reference perturbation the-

ory, has been developed. The MMCC/PT approaches have been formulated using

diagrammatic methods. The MMCC(2,3)/PT and MMCC(2,4)/PT methods have

been efficiently implemented using the idea of diagram factorization. The perfor-

mance of the basic MMCC/PT approximations has been illustrated by the results of

test calculations for the bond breaking in HF, F2, and H20, and the excited states of

CH+. The test calculations show that the MMCC(2,3)/PT and MMCC(2,4)/PT ap-

proaches provide a good description of bond breaking and excited states dominated by

doubles, eliminating the failures of the conventional CC/EOMCC methods at larger

internuclear distances and for excited states dominated by two—electron transitions

without invoking expensive steps of high-order CC/EOMCC methods

Clearly, several issues need further study. The role of different choices of active

orbitals should be examined. The majority of multi-reference calculations are per-

formed with the orbitals optimized at the CASSCF level. In this work, we have only

used the ground-state RHF orbitals. It would be also interesting to examine different

types of the MRMBPT wavefunctions that enter the MMCC/PT corrections. In this

work, we have tested a simplified MRMBPT-like scheme based on the partitioning of

the Hamiltonian into the model-space (P-space) and Q-space components (the latter

component originates from single and double excitations from a multi-dimensional
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model space). The majority of contemporary MRMBPT calculations are performed

with schemes, such as CASPT2, MC-QDPT, or MRMP2, mentioned in the Introduc-

tion. Several other low-order MRMBPT have been proposed in literature as discussed

in the Chapter 1. It would be useful to test how the conclusions of this work depend

on the particular form of the MRMBPT theory used to provide wavefunctions |\II,,)

for MMCC calculations.
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Appendices
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Appendix A. An Introduction to the Diagrammatic Methods of

Many-Body Theory

To introduce the diagrammatic methods of many-body theory, we begin our con-

siderations with selecting a Fermi vacuum state |Q), which is a single-determinantal

state that is typically chosen to provide a reasonable approximation to the ground

electronic state of a given many-fermion system of interest. The Fermi vacuum state

(reference state) is diagrammatically represented by an empty space. All other Slater

determinants are represented with oriented lines, pointing either upward for parti-

cle states (spin-orbitals unoccupied in the reference |Q)) or downward for hole states

(spin-orbitals occupied in the reference IQ)), with labels associated with the corre-

sponding spin-orbitals excitations relative to IQ), and outgoing or incoming into a

simple vertex.

We represent the second—quantized operators entering a given operator product

with basic diagrams. In the design of these diagrams, we use vertices with incoming

lines representing annihilation operators and outgoing lines representing the creation

operators. Each basic vertex contains information about matrix elements in a spin—

orbital basis defining the operator. For instance, the Slater determinants |Q?) =

[a“a,]|0) are represented by

and (Qfl = (0|(aaa,)I = (0|a‘aa are represented by
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We assign difierent vertices to represent different operators. Since the one-body

operator brings a pair of creation and annihilation operators, its diagrammatic rep—

resentation contains only two oriented lines. Likewise, the diagram representing the

two-body operator, which brings two pairs of creation and annihilation operators,

contains four oriented lines, and so on and so forth.

There are several diagrammatic representations; the most popular are the Hugen-

holtz and the Goldstone representations. The Hugenholtz representation employs

the antisymmetrized matrix elements in the second-quantized definitions of operators

(e.g., 1);; = (pqlvlrs) — (pq|v|sr) for the two-body operator VN) while the Goldstone

representation is based on the second-quantized form of operators that uses non-

symmetric matrix elements (e.g. (pq|v|rs) in the case of VN). In our analysis, we use

the Hugenholtz representation, since this approach produces fewer distinct resulting

diagrams than the Goldstone representation. The Goldstone representation is useful

in developing spin-adapted formalisms for spin-free Hamiltonians.

The basic diagrams (in the Hugenholtz representation) for the one- and two—body

parts of the electronic Hamiltonian in the normal-ordered form, FN and VN,

FN = ngNW’aq] E f:N[a”aq] (119)

P19
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p p r

q q s

(a) (b)

a I b i .

\J V
(C) (d)

a I b I .

V 8‘)?
(e) “I

Figure 15: Hugenholtz representation of (a) By; (b) VN; (c) T1; ((1) T2; (e) R”; and

(f) Rye.

and

VN = % Z v;N[aPaqa,a,.] E ivgthaqamr] , (120)

p,q,r.s

respectively, and the cluster and excitation operators T1, T2, R“, 1, and Rm are shown

in Figure 15.

The spin-orbitals that are attached to the oriented lines are referred to as free

if they represent summation indices and as fixed otherwise. As shown in Figure 15,

the cluster operators and the linear excitation operators have the same diagrammatic

form, the only difference is with their corresponding vertices. In particular, T1 and
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Figure 16: Hugenholtz representation of FN.

T2 use unfilled oval vertices, while RM and Rm» use circled dots. A diagram stripped

of the free labels is called a skeleton or, better, the oriented skeleton. The oriented

skeleton determines the weight of the diagram (a combinatorial coefficient that enters

the algebraic expression). The spin—orbital indices p, q, r, s can either be occupied

or unoccupied in the Fermi vacuum. According to standard convention, the indices

2', j, . .. label occupied spin-orbitals, while a, b, . .. refer to unoccupied spin-orbitals in

the Fermi vacuum IQ). For example, the one-body component of the Hamiltonian

HN can be expressed as

FN = Z f:N[a°ab] + Z f{N[a‘aj] + th9N[aiaa] + ZffiNhaai]. (121)

0,6

The corresponding diagrams are shown in Figure 16. The two-body component of

HN, VN, can be partitioned in a similar way, as shown in Figure 17.

After assigning skeletons (or diagrams) to the basic operators, the diagrammatic

calculation proceeds as follows:

1. Represent the operators by appropriate skeletons following the vertical time axis

(as described in Section 4.3), that is, placing the operators from the bottom to
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Figure 17: Hugenholtz representation of VN.

the top corresponding to the left to right order of the operators, when they

act on the functions (vectors) in the Fock space. For instance, the operator

3(VNTI’) is represented as

 

2. Form all permissible resulting skeletons by connecting the lines in all possible

ways. Then, form all nonequivalent resulting diagrams, in which the oriented
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lines are labeled with their corresponding spin-orbital indices, representing only

the nonvanishing contraction schemes that result when the Wick’s theorem is

applied, that is,

I I

(a) (b)

l—l m

where (a) a? a, = 6WH(q) and (b) ap a9 = 6m[1—H(q)].

The H(q) step function is equal to 1 for q being a hole and 0 for q representing

a particle and 5m is the usual Kronecker delta.

3. Lastly, assign the algebraic expressions to all nonequivalent permissible result-

ing diagrams. The final expression for the operator product of interest is a sum

of the algebraic expressions corresponding to all nonequivalent resulting dia-

grams allowed by a given many-body formalism. In general, the corresponding

algebraic expression of a given diagram is a product of (a) the weight factor, (b)

the sign factor, (0) the scalar factor, and (for example, in the wavefunction ex-

pressions) (d) the operator part, accompanied by a summation over all relevant

hole and particle indices, if such summations exist in the operators. For the
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Figure 18: Brandow representation of FN.

connected Hugenholtz diagrams, the weight factor is specified by (3)” where

m is the number of pairs of “equivalent” lines. A pair of equivalent lines is

defined as being two lines originating at the same vertex and ending at another,

but same vertex, and going in the same direction. We must remember that the
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I I.

identically oriented lines carrying fixed (i.e. not summed) spin-orbital indices

can never be regarded as equivalent lines. The scalar factor is a product of

matrix elements associated with the individual vertices entering the resulting

diagram. The operator part (if it appears in the expression) is a product of the

creation and annihilation operators associated with the uncontracted external

lines. 1

The drawback of the Hugenholtz representation is that Hugenholtz diagrams do

 
not specify the overall sign of the contribution of the diagram. This is due to the fact j

that the basic Hugenholtz diagrams, such as VN or T2, use antisymmetrized matrix E3

elements 12;, tffh, etc. In order to determine the sign, it is necessary to draw one

Goldstone representative, called the Brandow diagram, for each Hugenholtz diagram.

This can be done by “expanding” the Hugenholtz vertices. In other words, we replace

all basic Hugenholtz vertices by Brandow vertices (the Brandow representations of
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Figure 19: Brandow representation of VN.

FN and VN are shown in Figures 18 and 19), while keeping the directions of the lines

and the connectivity intact. Usually more than one possibility exists, since one can

usually draw several Goldstone diagrams for each Hugenholtz diagram, but this is

not a problem here: we choose any Goldstone representative of a given Hugenholtz

diagram as a Brandow diagram. The final results do not depend on the choice. Once

the Brandow diagram is drawn, we determine the sign factor for it by counting the

 

number of loops (1) and the number of internal hole lines (h) and by using the sign

formula (—1)'+".
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Appendix B. The Structure of the Similarity-transformed Hamiltonian

of the CCSD Theory

The H = e‘THeT operator is a quantity of interest for several reasons. Due to

the Campbell-Hausdorff-Baker formula, H can be expanded in terms of commutators

only, which is equivalent to its expansion in terms of the connected diagrams, as in

Eqs. (9) and (12). This means that H is represented by a finite set of diagrams. The

other reason H is worth considering is the fact that it is a quantity that occurs in

various computational schemes based upon the CC wavefunction ansatz.

In order to construct the H(CCSD) diagrams, we follow the diagrammatic rules

discussed in Appendix A. Thus, we contract the Hamiltonian in the normal ordered

(CCSD) .

expans10n.form, HN, with a number of T‘CCSD) operators appearing in the eT

Since Hamiltonians used in chemistry contain at most two-body interactions, HN can

be contracted with at most four cluster operators to produce connected diagrams of

- (CCSD)
N .

The one- and two-body components of the H(CCSD) have similar diagrammatic

forms as the one- and two-body component of the Hamiltonian, HN, the difference

is only with the interaction line, the former uses the wavy interaction line, while the

latter uses the dashed lines, as in Figures 18 and 19.

To illustrate how we use the diagrammatic methods in deriving the explicit alge-

braic expressions for H(CCSD),

H(CCSD) = (HNeT1+T2)c = figapaq + fifigapaqafl, + . . . , (122)
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we show an example on how we obtain the contributing diagrams to 71:,

which is one of the one-body components of H(CCSD). In this case, our goal is to

generate diagrams of this form from the connected product of HN and eflccsm. The
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fi
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h

d
.

1

I

resulting diagrams must contain an oriented line above and below the vertex; both

lines should be directed upward as particle lines a and b. We can expand the H(CCSD)

operator in the following manner:

T(ccso)

H(CJJDJ = (the )5

= [(FN(1+T1+T2+%T12+...)+

VN(1 + T1+ T2 ‘1' 3712+ . . .)]c. (123)

Let us identify which terms in Eq. (123) contributes to 712 by forming first the

nonoriented Hugenholtz skeletons. We begin with the first term, FN, which is repre-

 

sented diagrammatically in Figure 16. As shown in Figure 16, the leftmost diagram in

that figure satisfies the above criteria and hence contributes to 712. Next, we consider

the (FNT1)c terms, which produces one resulting nonoriented Hugenholtz skeleton

that contains one line above the vertex as well as one line below the vertex as shown

below:
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When we analyze other terms in Eq. (123) in the same fashion, we obtain all of the

resulting nonoriented Hugenholtz skeletons of 113, which are

«35555
The corresponding oriented Hugenholtz diagrams for 77.2 with their respective weights

-

I

d

4

an

'-

Ii

4

o

are as follows:

a a

+ m b + 5 + b + 5

b a 9 m 9 ha a n 9m

w=1 w=1 w=1 w=II2 “(=1

The corresponding Brandow diagrams for it: with their corresponding sign factors are

shown below

a ----x a ______

-.- , "" """ +
X b + m b + e m b + 6 mb n 9 mb n

a
a a .

s=+1 s=-I s=+I s=-I s=-I
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These diagrams yield the following algebraic expression for 71.2:

72: = f: — 3th" + 12"" t'" — l11¢” tm” — v" tmt" (124)
mac 27717380 mac 0'

All of the resulting diagrams for one, two-, three, and four—body components of

H(CCSD) are obtained in a similar way. They are shown in Figures 20—23. Figures 24

and 25 show all of the resulting diagrams corresponding to ground-state triply and P

i.

'3!
1

[a
w

v

.I

i

I

I

i ..

quadruply excited moments of the CCSD equations, 933’:he(2) and 93133032), respec-

tively, which can also be regarded as three and four-body components of H(CCSD).

Tables 8—11 summarize all the algebraic expressions of the one, two-, three, and four-

body components of H(CCSD), including 933’3‘he(2) and 9333:3132), which are obtained

by reading the diagrams shown in Figures 20—25.
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(a) 71‘:

a a . _b_

= —-—-x + —— + n
e m

b b e m a

_b_ b __.)(

e m n m

a a

(b) 713

—1_ i --_-9<

+ 6 m f + e

I i

(c) 7115

Figure 20: Onebody components of F1(CCSD).
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(c) fist
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+ e ' f

k I

((1)712?

Figure 21: Two—body components of H(CCSD).
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Figure 21: continued.
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Figure 21: continued.
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(a)fi”‘abc

Figure 22: Threebody components of H(CCSD).
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(b) 87.3.:

Figure 22: continued.
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(e) 5:33.

 

Figure 22: continued.
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(a) hmita

Figure 23: Four-body components of H(CCSD).
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(b) 5:3;

Figure 23: continued.
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(e) hchJa

Figure 23: continued.
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Figure 24: Diagrammatic representation of 933’Zhe(2).
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(b)

Figure 24: continued.
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Figure 25: Diagrammatic representation of 931330119).
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Table 8: Explicit algebraic expressions for_the one- and two-body body matrix ele-

ments elements of H(CCSD) (designated by h) shown in Figures 20-21.

 

 

 

Expressiona Figure

72;“ f: + uggtg‘ 20 (a)

72:; f2+v3‘mt2”- eventzn—vssntrtz- at: 20 (b)

133 ff + vfgtg' + g-vgtgi + vgfitrfi + fit: 20 (c)

53‘: v2? - vii-t2." 21 (a)

71:39 1;ij + vfftfi 21 (b)

712‘}, 123 + %v,°,‘fnt;"b“ — Aobvfjfntg" + vffntgntg 21 (c)

72f} vfj’ + §vfjftflf + Ak’vfjetfl + vfjftft} 21 (d)

’ 317, 2);; + vggtg - vgjtg‘ + vfijtg‘ — vggtgtgn 21 (e)

’25, —f::.t:§:: + vii + 223th — Aawfmtz" + avatar 21 (f)

+ivfintfi" + vfzntrtz: - Aavzsntztzr + vistas:
ecmin cc imn lecmni

—v ttab—Aabv t tb—Evmntab te
mn c mn ac

— 'k . 'k 'k . . . .

ht fti’: + via - vimtz" + A’kvzift: + A’kviritzz" 21 (g)

+%v{:1’}: - Ajkvfitm + 21,-fat: - vfitgntgt}

+v{,;t;"t": + Ajkvifgtgnakfi — fivfitjttf

 

° Summation over repeated upper and lower indices is assumed; f: = (plf Iq) and

v; = (pqlers) — (pqlvlsr) are the one- and two—electron integrals in a molecular

spin-orbital basis {19} corresponding to the Fock operator (f) and the two-body part

of the Hamiltonian (2)).
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Table 9: Explicit algebraic expressions for the three- and four—body body matrix

elements elements of H(CCSD) (designated by h) shown in Figures 22-23.

 

Expression" Figure

 

’43: Ao/bcvnmté‘tmt’; + Act/CAvamtztitm‘ 22 (a)

_Aa/bcA”Wm”$33 + iAa/bcvfmtgmtii

+A°b/°A"”¥?mt?tm’ Aobcvifbtflii - Aa/bA‘ivfititZZ‘

+Au/bcvcb”g; - Aab/cAijvgtg‘

575: -AabA"'/"v{,;t’;t;"tfi _ Ai/jkvfetlfctjtme
22 (b)

+AobA‘/j*v,{;t{’;t;gi _ l-A‘/"'°v{mt,tkjtm;

waists + Awe/232:4:

_AobAik/jzfiltg‘tg + AabA‘j/kvfiftg __ Ai/jkvfitznai

Egg; —Aab,cv;1tg‘ + Amvgfntgtm‘ 22 (0)

71:3,; A‘j/kvfifitfli + A‘j/kvfitfitg; 22 (d)

72:1: Aabvwi: — «421222222; 22 (e)

—A‘jv’kfntb'2‘ — A‘jvzfntitm‘

 

3:13;; —Aab/CA‘/j*/‘vfignt’gtfi + AM/bA‘j/k’vf";t“t'; 23 (a)

—Aab/CA‘/j*/'v,f,fnt‘,t§gt3; — AM/bA‘j/k‘vgfntgtntfi

71m -Aob/cMA”#11:;tigtm‘ + Aw/dAik/ngntgtgg 23 (b)

+Aab/c/dA‘/j"v;{nt3t:} 3‘ + Ab/dAik/jvzatgfitfli

his; Aw/uvsint’tmtaf 23 (c)

H“ A‘k/j'vgfnflgtg 23 (d)

hfkj‘ —Aab,cAi/ikvg;tggtgi 23 (e)

 

“ Summation over repeated upper and lower indices is assumed; f: = (plfIq) and

1);; = (pqlvlrs) - (pqlvlsr) are the one- and two—electron integrals in a molecular

spin-orbital basis {p} corresponding to the Fock operator (f) and the two-body part

of the Hamiltonian (2)).
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Table 10: Explicit algebraic expressions for 93132542) obtained by reading the dia-

grams shown in Figure 24.

 

 

Term Expression“

1 — Ant/c 4421* f3. t2: tit

23 — AWAW" 222,1; t3};

2b Aab/c AW" vii ti:

3a — Ache/1W" vfgbtg‘ til:

3b — Am,c A‘i" v33“ t; tag"

30 Aob/c AW" viii. ti? t2

3d AMA/Mg gt”;

4a Ame A‘b'k 22:3,, tg‘ t3 tg:

4b - Aab/c A‘h'k 12;; t3: tg' t';

4c — Auk/”“125; tittitz"

4d Momentum

5a — Aa/bc A“ 2253,, t2: t3:

5b AWN/1* v35, t2: 1’";

50 % Ash/c AW" 033.. tilt" til?

5d ’i-Aob/cAijviicti’i‘ if}

6a As/CA‘Hkvsxntrtitit’t

6b AWC Ai/J'" 12:1,, tfg‘ tg‘ t'; t:

7 -— AweAW“ 223;“ t2}; t3; tgn

88‘ % Aab/c AW" Ufa". ti? 1‘3} 2

8b é Aab/cAW v35; tgf t3" t}

8c — Am A‘/J'" v35, t3;1 if: 2

8d — AWC A‘j" 2251,, t} t2; tg"

 

“ Summation over repeated upper and lower indices is assumed; f; = (plfIq) and

v" = (pqlvlrs) - (pq|v|sr) are the one- and two-electron integrals in a molecular
P9

spin-orbital basis {p} corresponding to the Fock operator (f) and the two-body part

of the Hamiltonian (1)).
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Table 11: Explicit algebraic expressions for 911333,“,(2) obtained by reading the dia-

grams shown in Figure 25.

 

 

Term Ezpression“

9a Aab/od Ajk/i‘ 223;; t3: :3;

9b Abe/ad A‘j/k‘ v3 t3; t’;f,

9‘3 — Aa/b/od 44'7”” v55. t2 t2?

10a A/bc/d A‘i/kfl v31" t3; t3* t3

10b — AW“ A‘J'Wl vgfb if}, t3" t1

10c Aw“, A‘k/J'” v3“ t3; t3" tf,

10d — Ace/wAW*1 123,, if}, t5; t3"

11a — Aa/W A‘i/W 1);!" t3, tg" t3

11b iAob/odAW 03in ti? t3}; t2}:

llc g-AM/bc AW“ v55, ta ta" if;

12a 21¢,chij 115;“th tg' t’; t3;

12b Awe/dAW” v35, t3: tiff t1, t3

12c And/b... A‘j/k‘ v35; t3” t3" t3 t’;f,

 

° Summation over repeated upper and lower indices is assumed; f: = (p|f |q) and

2);; = (pqlvlrs) - (pqlvlsr) are the one- and two-electron integrals in a molecular

spin-orbital basis {19} corresponding to the Fock operator (f) and the two-body part

of the Hamiltonian (1)).
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Appendix C. Factorization of Coupled-Cluster Diagrams

The diagrammatic technique is a very powerful tool, however, if we program the

diagrams one by one, this will give an inefficient and hence impractical computer code,

even in a situation where each of the diagrams is computed at a modest cost. The

purpose of this section is to reformulate the one- and two-body components of H(CCSD)

in such a way that all the common pieces could be factored out, computed only once,

and then substituted in different places. This procedure is possible due to the fact

that coupled-cluster diagrams are, in fact “denominator-less”, which means that the

MBPT denominators are implicitly included in the cluster operator vertices, which

avoids assigning the denominators to each diagram that are normally considered in

MBPT diagrams. This enables us to sum over all internal lines belonging to one T

vertex independent of the other T vertex, which helps the factorization.

In this section, we rederive the expressions for the one- and two-body components

of H(CCSD), FIECCSD) and HéCCSD), respectively, in such a way that only linear terms

with redefined vertices are retained in each equation. Thus, in each nonlinear term,

we retain one t amplitude, usually (but not always) corresponding to the highest

level of excitation, while the remaining amplitudes are absorbed to an efiective vertex.

{0030) and ELECCSD) are used to define the higher-Ultimately, the factorized forms of H

rank components 0f H(CCSD), such as the three- and four-body components 10030)

and HECCSD), as well as other intermediates entering the CC expressions of interest,

such as 9332,42) and 931:1?“(2L which are naturally expressed via -§CCSD) and

fliccsn).
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Figure 26: Diagrammatic representation of B3.

-b- -b- n

Qmfi —> .QmA —* A“. —> b "
8 nVa nVa a

A B C D

Figure 27: Example of diagram factorization.

To illustrate the diagrammatic factorization technique and computational benefits

that it offers, we analyze an example of fig, which is expressed in a diagrammatic form

in Figure 26.

Clearly, diagram A in Figure 26 is a nonlinear contribution. Hence, diagram A is

a good candidate for demonstrating the idea and benefits of factoriZation. The cost

of evaluating this diagram scales as W5 with the system size ./V or 12311:.

Figure 27 presents the factorization of diagram A and its decomposition, for com-

putational efficiency, into independently calculated parts. After factorization, the

original computational cost associated with diagram A, 113,123 is reduced to nonfi (the
u,
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cost associated with diagram D) plus ngnfi (the cost associated with the intermediate

C which is defined as diagram B). Furthermore, if we realize that the intermediate

C actually takes one of the forms of chcsn), which may have been calculated al-

ready, we can take advantage of this fact by extending the definition of the above

intermediate C as one of the one-body components of Hiccsm, in this case the 71:,

which is defined in part (a) of Figure 20. As a result, diagram D, which has initially

represented a single diagram A in Figure 27, becomes now equivalent to

—— —-X

if = Q l + 1
D A E

corresponding to diagrams A and E in the original, not factorized, diagrammatic

formulation of 53, as shown in Figure 26. Thus, the fully factorized version of 712, as

shown in Figure 28, uses four diagrams, which are considerably cheaper to calculate

than the original five diagrams shown in Figure 26.

The same factorization and cost reduction procedure can be applied to other com-

ponents of H(CCSD). The computational savings offered by the factorization procedure

in the case of the two-body and other many-body components of H(CCSD) are even

more substantial than in the above example. Figures 29-30 shows the factorized dia-

grams of the one and two-body components of H(CCSD), which can be generated in

a recursive, fully vectorized (linearized) manner.
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Figure 28: Fully Factorized Diagrammatic Formulation of hf,
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(c) E?

Figure 29: Factorized one-body components of H(CCSD).
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= 7\ — + $7,,

(a) hb‘
ai

= 7) + 37)

(b) 711-3"

5:
:

+ ll/

(d) 7123‘

Figure 30: Factorized two-body components of HfCCSD).
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