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ABSTRACT

ASSESSING INVASIVE PLANT INFESTATION IN FRESHWATER WETLANDS.

By

Nathan M. Torbick

Recent shifts in wetland ecosystem management goals have directed efforts

toward measuring ecological integn'ty, rather than only using physical and chemical

measures of ecosystems as health indicators. Invasive species pose one ofthe largest

threats to wetlands integrity. Resource managers can benefit from improved methods for

identifying invasive plant species, assessing infestation, and monitoring control measures.

The utilization of advanced remote sensing tools for species-level mapping has been

increasing and techniques need to be explored for identifying species of interest and

characterizing infestation.

The overarching goal of this research was to develop monitoring technologies to

map invasive plants and quantify wetland infestation. The first field-level objective was

to characterize absorption and reflectance features and assess processing techniques for

separating wetland species. The second field-level objective was to evaluate the abilities

of a shape filter to identify wetland invasive plant species. The first landscape-level

objective was to classify hyperspectral imagery in order to identify invasives of interest.

The second landscape-level objective was to quantify infestation within the study area.

Field-level hyperspectral data (350-2500nm) were collected for twenty-two

wetland plant species in a wetland located in the lower Muskegon River watershed in

Michigan, USA. The Jeffries-Matusita distance measure, continuum removal, and a



shape-filter were applied to hyperspectral species reflectance data to characterize spectral

features. Generally, continuum removal decreased separation distance for the invasive

species of interest. Using the shape-filter, Lythrum salicaria, Phragmites australis, and

Typha latifolia possessed maximum separation (distinguished from other species) at the

near-infrared edge (700nm) and water absorption region (1350nm), the near-infrared

down slope (1000 and 1100nm), and the visible/chlorophyll absorption region (500nm)

and near-infrared edge (650nm), respectively.

Airborne hyperspectral imagery was classified using a two-step approach in order

to obtain an optimal map (overall accuracy ~ 70%). Information in the near-infiared

enabled relatively accurate classification for Phragmites australis using the Spectral

Angle Mapper algorithm and image-derived training, while Typha latzfolia signatures

possessed high spectral overlap and required ISODATA clustering techniques. Landscape

pattern metrics relate infestation to disturbances and hydrological controls. The highest

levels of infestation and infestation patterns coincide with the most substantial levels of

hydrological modifications indicating human disturbances are correlated with Typha and

Phragmites percentages in the landscape.

Overall the approach was successful and increased the level of information

ultimately desired by decision makers. The rapidly advancing field of wetland remote

sensing science can obtain more meaningful information from hyperspectral imagery;

however, the data are challenging to work with and only the most precisely calibrated

datasets will provide utility. Combining these data with traditional wetland assessment

techniques can substantially advanced goals ofpreserving and restoring wetland

ecosystem integrity.
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Chapter 1: INTRODUCTION

Global inventories estimate that approximately half of the world’s wetlands have

been lost due to human activities (Mitsch and Gosselink 2000). Over 50% of the 90

million hectares of wetlands estimated in the lower 48 states at the time of European

settlement have been lost due to human activities (Figure 1). In, the Great Lakes regions,

some states have lost 90% of the original wetlands primarily to intense agricultural

expansion, resource use, and urbanization (Dahl 2000).

I

 

 

Figure 1. Wetlands percentage loss in the past 150 years (Source: Dahl 2000).

The substantial loss of wetland area has gained attention over the past few

decades. The environmental and socioeconomic benefits of wetland ecosystems are now

well recognized. These benefits are in the form of services provided by the ecosystem

functions wetlands perform. These range from ground water recharge and flood control to
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providing habitat and promoting biodiversity. Current policies and regulations at various

government levels require wetlands management practices to conserve and promote the

benefits wetlands provide. No net loss and assessment policies are in place which

requires monitoring and inventory to conserve the remaining wetlands.

Traditionally, wetland assessment techniques have largely relied on a few

physiochemical measurements as indicators of condition. Recent shifts in ecosystem

management goals have redirected efforts toward measuring ecological and biological

integrity, rather than only using physical and chemical measures of ecosystems as health

indicators (USEPA 1998, EMAP 2002). Here, integrity refers to a condition that is

determined to be characteristic of its natural condition considering history,

regionalization and scale, and levels of diversity and resiliency. Preserving and restoring

the ecological integrity of the remaining wetlands has become a priority (Danielson 2001 ,

NRC 1995, 2000). This shift is part of a growing consensus that wetland assessments

require a set of complementary indicators for a complete ‘check-up’ and assessment of

the threats to ecosystem fimctions (Paulsen et al. 1991, US EPA 1996, 1998).

Currently an overarching goal for wetlands assessment is to provide improved

information on invasive species (EMAP 2002, NRC 1995, 2000). Invasive species are

one of the largest threats to wetlands biodiversity and ecosystem functioning. In the US,

invasive species are estimated to cause $120 billion dollars per year in environmental

damage and associated control costs: Lythrum salicaria (purple loosestrife) alone is

estimated to cost $45 million per year as it spreads at a rate of 115,000 ha/yr across

wetlands in the US (Pimentel et al. 2005).



The term invasive is sometimes used interchangeably with exotic, alien, foreign,

introduced, and nonindigenous among others. The National Invasive Species Information

Center (USDA) defines an invasive species as non-native to an ecosystem and whose

introduction is likely to cause economic or environmental harm (USDA NRCS 2007).

The EPA and other organizations tend to focus on likelihood to cause ecological harm or

economic damage and not so much on alien categorization (EMAP 2002, NRC 2000).

The pre-industrial revolution (circa 1750) is often set as a benchmark for determining

whether a species is native or foreign. Currently there are approximately 7000 non-native

species introduced in the US, about 15% become invasive, and only a smaller percent of

those become a nuisance or cause harm (USDA NRCS 2007).

Ecologically, invasive refers to a set of characteristics that a species possess that

enable that species to establish, often aggressively, or invade. Those characteristics

include a plants reproduction ability (e.g., seed- abundance, persistence, vigor), growth

pattern (e.g., moisture use, anaerobic tolerance, density), and morphological adaptations

(e.g., foliage porosity, shape, form). The degree of invasiveness will vary by region and

environmental conditions. Generally, invasives have been found to alter ecosystem

functions and services such as hydrology, soil moisture, disturbance regimes, and

ecosystem resiliency. Invasives have a wide tolerance to environmental conditions (e.g.,

soil and water pH, temperature, and hydroperiod fluctuations), possess phenotypic

plasticity and unique life cycle features (e.g., reproduction, seed crop intervals), and can

often undergo rapid evolution.

1.1 Wetlands Remote Sensing



Wetlands mapping programs have largely focused on identifying extent or total

area. The National Wetlands Inventory (NW1) program has relied extensively on fine-

scale aerial photography as its primary source of data. Human photo interpretation

techniques are utilized to delineate the extent of wetlands in a given area based on these

photos. This technique is by nature somewhat subjective as visual interpretation

approaches rely on an expert to delineate wetland boundaries. While acceptable accuracy

can be achieved for a region, the approach can be time consuming, expensive, and

extrapolation to other regions is problematic. The last large-area NW1 application is now

more than two decades old. Further, when using subjective approaches, discrepancies

exist between classifications (e.g., NW1 vs. Michigan Land Use Land Cover), program

objectives, and definitions used to map wetlands.

Satellite and airborne remote sensing has been utilized for nearly three decades to

inventory and identify wetlands (Hardinsky 1986). Similar to aerial photography, remote

sensing techniques are often less costly and time-consuming compared to conventional

field methods. Advantages of satellite and airborne data include regular overpass

intervals with capabilities for the mapping of wetlands and adjacent land use/covers,

monitoring human activities and impacts on wetlands, assessing wetland changes

seasonally, and extrapolation of information over large regions. Sensor instruments

record measurements in spectral regions outside of the visible spectrum. Additionally,

advances in technology and computer capabilities allow advanced modeling and

integration of remotely sensed data within a Geographic Information System (GIS).

Many wetlands mapping studies discuss the limitations of remote sensing

technology. Data resolution has been the foremost limiting factor in obtaining high



precision and detailed information on wetlands vegetation and biophysical characteristics

(Ozemsi and Bauer 2002). Coarse spatial resolutions have made delineations of wetland

boundaries challenging (Fortin et al. 2000, Torbick et al. 2006), while broad radiometric

and spectral resolutions prohibit species level separability (Becker et al. 2005, Schmidt

and Skidmore 2003). Generally fewer types, or categories, of wetlands can be mapped

due to complications with spatial resolution, temporal overpass constraints, and spectral

variability and overlap. In response to these limitations, the NWI program (in the USA)

has used color infrared aerial photography exclusively (Cowardin 1979, Tiner 1999).

New state of the art remote sensing technology can contribute to advancing

wetlands mapping and monitoring. Recent advances in sensor technology and remote

sensing science have promoted an interest in hyperspectral data for mapping wetlands at

the species level (Artigas and Yang 2006, Becker et al. 2005, Schmidt and Skidmore

2003, Thiemann and Kaufmann 2002, Thomas et al. 2002). Advanced spectroscopic

systems possess capabilities to capture data at narrow spectral bandwidths on the order of

three to ten nanometers (nm) contiguously covering large portions of the spectrum (e.g.,

350-2500nm). This allows for small variations in plant/substrate absorptance and

reflectance to be recorded (Figure 2). Incorporating such relatively high spectral detail

makes it possible to explore species separability and precise ecological process

monitoring (Schmidt and Skidmore 2003, Ustin et al. 2004).
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Figure 2. Example plant signatures recorded using a hyperspectral instrument with

rescaled Landsat resolutions signatures overlaid.

1.2 Problem Statement

Traditionally most ecosystem assessment techniques have relied on a few physical

and chemical measures of systems as indicators of health. In order to meet firture goals

for enhancing wetland ecosystem integrity, resource managers and decision makers need

advanced information and improved methods for identifying wetland stressors and

ecological indicators, such as invasive plants, and for monitoring response to control

measures. Multispectral remote sensing has been a useful tool in monitoring and mapping

aquatic vegetation and stressors; however, the information provided is limited in

achievable detail by sensor resolutions.

Hyperspectral sensing technologies that capture narrow spectral and spatial

resolution data can advance assessment techniques for addressing complex wetland

assessment questions. A few studies have explored methods to identify wavelengths



possessing the greatest ability to differentiate wetland species (Becker et a1 2005,

Schmidt and Skidmore 2003). The ability of hyperspectral remote sensing technologies to

map wetland invasive plant infestation needs to be evaluated.

1.3 Research Objectives

The overarching goal was to develop monitoring technologies to map invasive

plants and quantify wetland infestation. The objectives were broken into two categories:

field-level and landscape-level. The first field-level objective was to characterize

absorption and reflectance features and assess processing techniques for separating

wetland species. The second field-level objective was to evaluate the abilities of a shape

filter, which requires unique absorption features for successful implementation, to

identify wetland invasive plant species. The overarching landscape-level goal was to map

invasive plant infestation. The first landscape-level objective was to classify

hyperspectral imagery in order to identify invasives of interest. The second landscape-

level objective was to quantify infestation within the study area.



Chapter 2: HYPERSEPCTRAL REMOTE SENSING

Satellite remote sensing has been a useful tool in providing general information

on wetlands types (Ozesmi and Bauer 2002); however, both spatial and spectral

resolutions have limited the level of detail ultimately required for comprehensive wetland

assessments. Recent advances in sensor technology and remote sensing science have

promoted an interest in hyperspectral data for mapping wetlands at the species level

(Artigas and Yang 2006, Becker et al. 2005, Hirano et al. 2003, Schmidt and Skidmore

2003, Thomas et al. 2002). Advanced spectroscopic systems possess capabilities to

capture data at narrow spectral bandwidths on the order of three to ten nanometers (nm)

contiguously covering large portions of the spectrum (e.g., 350-2500nm). This allows for

small variations in plant/substrate absorptance and reflectance to be recorded.

Incorporating such relatively high spectral detail makes it possible to explore species

separability and precise process monitoring (Schmidt and Skidmore 2003, Ustin et al.

2004)

The underlying theory of hyperspectral science is that increased spectral detail,

along with improved or adequate spatial resolution, can provide increased information

such as species-level mapping. Generally, the higher resolutions a sensor possess, the

greater the level of detail can be extrapolated. 1n the last few years several studies have

applied hyperspectral data for wetlands mapping. A primary goal in these investigations

was to evaluate and develop methods to utilize the increased level of data supplied via

hyperspectral instruments. The studies can be grouped into methods to identify



wavelengths of particular utility (processing techniques to extract and identify the most

useful bands) and evaluating classification algorithms to map species of interest.

Approaches to identify wavelengths that possess separation abilities are an

interest because of the large amount of spectral information and fact that much is

redundant. With hyperspectral instruments recording near-continuously, large portions of

the data tend to be highly correlated. At the same time the amount of storage space

required can be quite large as these sensors do in fact capture hundreds of narrow bands.

Processing protocols and limitations on spatial resolutions can be problematic due to the

large file sizes. Therefore identifying wavelengths of particular utility allows less spectral

information to be required simultaneously allowing for increases in spatial resolutions.

Becker et al. (2005) performed derivative analysis to identify unique points of

inflection along spectra for wetland plants in a Great Lakes coastal wetland and identified

eight bands as possessing the most utility for separation. The bands are located across the

visible (VIS) and near-infrared (NIR) portions of the spectrum and are affiliated with

domains that represent unique biophysical characteristics. The red-edge was highlighted

as having particular strength in separation. Artigas and Yang (2006) also identified the

NIR region using a discrimination metric (Cochrane 2000) and derivative analysis for a

New Jersey coastal wetland. This research concluded that monotypic stands of

Phragrnites could be identified by using the unique NIR response. Schmidt and Skidmore

(2003) found significant differences between salt marsh species using field-level

reflectance data from coastal Netherlands wetlands.

Developing and improving classifications has been a focus of hyperspectral

wetland remote sensing. Becker et al. (2007) examined the optimal spectral and spatial



resolutions for mapping Great Lakes coastal wetlands. A series of experiments tested

different bands, band combinations, and pixels sizes to identify the most advantageous

configurations to accurately map coastal wetlands. The results showed that narrow,

strategically located bands were necessary to achieve acceptable resiliency levels when

trying to limit the number ofbands to maintain small pixel sizes. The research also found

that spatial resolutions of 1 meter or under were best situated to map coastal wetlands.

Obtaining pixels this size essentially requires use of airborne remote sensing platforms as

no satellite instruments possess hyperspectral spatial resolutions less than 20m.

Rosso et al. (2005) used Spectral Mixture Analysis (SMA) and Multiple End-

member (MESMA) techniques on airborne data to map a portion of coastal marshes in

central California. They found MESMA appropriate allowing for multiple end-members.

However, when similar end-members, defined by root-mean-square-error, were utilized

accuracy decreased substantially highlighting the need to carefully choose them for

image training. Rosso et al. (2005) further found that using less than half a dozen end-

members in a more homogeneous environment produced optimal results.

Some recent research focused on evaluating image processing techniques to map

wetlands has come to different conclusions. Underwood et a1 (2003) found increased

accuracy in using Minimum Noise Fraction (MNF), a data reduction technique, to map

Carpobrotus edulis in coastal California; while Artigas and Yang (2006) found less

separation ability after applying MNF for salt-marsh species in a New Jersey

meadowland. Underwood et a1 (2003) found band ratio techniques to perform moderately

well as an image processing technique to identify coastal Cortaderiajubuta, but it did not

outperform MNF enhancements. Artigas and Yang (2006) were able to distinguish

10



Phragmites australis from Spartina and Distichlis in the NIR region of imagery when

only these species were dominant. These papers highlight the fact that biological

community composition (number of species and level of heterogeneity) will largely

determine selection of image processing methodologies.
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Chapter 3: METHODS

3.1 Study Area

The investigation was carried out in an expansive wetland complex in the lower

Muskegon River Watershed (MRW) located on the western side of central Michigan

(W86° 09’ 45”, N43° 16’ 10”). The MRW is almost 7000 km2 in size, includes 94

tributaries and 183 stream segments (interrupted by 95 dams), and hundreds of lakes and

wetlands (Figure 3). Glacial deposits reach as much as 300m deep over bedrock and

create conditions with substantial ground-surface water exchange.

 

Figure 3. Location ofMRW (left) within Michigan and overlay on false color (423:2)

Landsat ETM+ scene.

Fed from the Muskegon River and an extensive tributary network, the wetland

complex serves as the last land-water interface before draining into Lake Muskegon,

which flows directly into Lake Michigan (Figure 4). Lake Muskegon was recognized as

an Area Of Concern by the 1987 Great Lakes Water Quality Agreement due to poor



water quality conditions. Projections show that a 50% urban sprawl increase by 2040 is

likely in the coastal sub-watershed under current land use trends (Pijanowski et al. 2002).

Adjacent land uses in the immediate subwatershed are residential and urban

neighborhoods, industrial zones including a pulp and paper mill, chemical and

petrochemical companies, and recreation parks, along with expansive agriculture and

forest patches. NWI data classify the majority of the wetland complex as palustrine with

seasonally and semiperimanently flooded regions with scrub-shrub, forest, and emergent

COVCI’S.

 

Figure 4. Wetland complex resides adjacent to Lake Muskegon. Dashed red line

approximates hyperspectral imagery footprint overlaying 2006 aerial photo.

The two most problematic invasive species in the study area are Phragmites

australis and Typha latifolia. P. australis, is a perennial grass species that has strains

native to temperate wetlands for at least the past thousand years. Recently, however,

Saltonstall (2002) found that nonnative strains of P. australis have aggressively spread

13



throughout the northeastern US and Great Lakes region. T. latifolia is a herbaceous,

rhizomatous perennial plant and is common throughout the US and temperate and

tropical places worldwide. T. latzfolia is exploitative in its ability to clone rapidly and

produce a large litter amounts and biomass, which may contribute to its superior

competitive ability (Grace and Wetzel 1982). Every state in the US has now reported the

presence ofPhragmites australis and Typha latifolia.

The increasing rate of expansion is now a primary concern. Regionally, Lynch

and Saltonstall (2002) found that P. australis invasion in Lake Superior wetlands was

dominated by native strains, although nonnatives were present. Wilcox et al. (2004)

found that 90% of P. australis populations expanding into Long Point, Ontario on lake

Erie were nonnative strains of the species, and suggested that declining water levels in

the Great Lakes may have contributed to its expansion. Given that fluctuations in water

levels are associated with high plant diversity in coastal wetlands (Wilcox and Meeker

1991), stable water levels caused by management or natural climate change may favor the

spread of dominant invasive species. Normative or native classification is less relevant as

these two species are both considered a nuisance species because they are persistent,

produce large amounts of biomass, propagate easily, and are difficult to control with

mechanical, biological, or chemical means.

The effect of this rapid expansion is largely unknown, but is generally believed to

be negative (Roman et al. 1984; Marks et al. 1994). Plants can influence ecosystem

functions like nutrient cycling through their morphological, phenological, and metabolic

traits (Windham and Ehrenfeld 2003). Increasing cover of these invaders has known

multiple impacts on the ecology of wetlands, as it can reduce nutrient availability to

14



native species, shift community composition, and alter food webs (Mack and D’Antonio

2003, Saltonstall 2002, Uzarski and Burton 2005, Windham 2001, Windham and

Ehrenfeld 2003).

3.2 Data

3.2.1 Field-level data

A field campaign was conducted during mid-August (2005 and follow up 2006),

which generally represents the peak of the growing season for wetland species within the

study area. Capturing data during peak phonological cycles has been shown to increase

the separability of invasive wetland plants (Laba et al. 2005). Due to the expansive nature

of the wetland complex and the challenge of moving through a wetland, a compromise

between operational feasibility and statistical sampling rigor was required. Both logistical

constraints (equipment setup and takedown) and traveling throughout the wetland

complex required a substantial amount of time. Reconnaissance field work identified two

primary emergent pools where high biodiversity and ecologically noteworthy species of

interest (i.e., invasives) were present. Focusing our efforts around these two regions of

the wetland complex allowed the largest number of species spectra to be collected with

minimal time required between sampling sites. An airboat provided the most efficient

access for traveling around the wetland complex. Data acquisition focused on the

dominant terrestrial-, emergent-, and submergent- species. Dominance was qualitatively

identified during reconnaissance field work by evaluating percent cover and the

approximate size of a patch for a species. Eight measurements were averaged for one

spectrum and approximately nine spectra were collected in each homogeneous plot. A

15



total of twenty-two (Vallisneria americana repeated for two different water depth

conditions) wetland plant species were recorded (Table 1). Eight species are identified as

being invasive (USDA, NRCS 2006). Note that not all the species identified as invasive

are classified as exotic and the degree of ‘invasiveness’ can vary by region and

conditions.

Table 1. Plant species sampled in the study area.

 

  

 

 

Common Name Genus Sgecies Invasive

Arrowhead, broadleaf Sagittaria latzfolia Invasive

Bulrush, softstem Scirpus validus

Cattail, broad-leaved Typha latifolia Invasive

Cutgrass Leersia oryzoides

Eelgrass Vallisneria americana

Spikerush, beaked Eleocharis rostellata

Canadian waterweed Elodea canadensis Invasive

Bur-reed, branched Sparganium androcladum

Filamentous green algae

Grassleaf mudplatain, water star grass Heteranthera dubia

Iris, harlequin blue flag Iris versicolor

Common duckweed Lemna minor

Watermilfoil, whorl-leaf Myriophyllum verticillatum

Mowed field grass

Pennsylvania smartweed Polygonum pensylvanicum Invasive

Common reed Phragmites australis Invasive

Pickerelweed Pontederia cordata Invasive

Spiral pondweed Potamogeton spirillus

Purple loosestrife Lythrum salicaria Invasive

White water lily Nymphaea odorata Invasive

Willow Salix eriocephala

Yellow pond lily Nuphar lutea  

 

 
 

 
We used a portable spectroradiometer (FieldSpec Pro FR®, Analytical Spectral

Devices, Inc., Boulder, Colorado) to collect in situ radiance between 350-2500 nm

(visible to shortwave infrared). Spectral resolution (full width half maximum) was

recorded at 3 nm in the visible wavelengths and 10 nm in the infiared region. The sensor
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was equipped with a 24 degree field-of-view (FOV) optic and held approximately 1-

meter above the target at nadir for measurements representing field-canopy conditions.

Sun-target—sensor geometry was repeated as best as possible under these difficult field

conditions. The viewing geometry configuration approximately represents the spatial

resolution current airborne hyperspectral sensors can achieve. A reference Spectralon®

panel (Labsphere, Inc., North Sutton, New Hampshire) was used for calibration during

processing and atmospheric adjustments. During data acquisition, the sensor was first

placed over the reference panel to record the panel-reflected radiance. Then the sensor

was placed over the target to record the target-reflected radiance. Then, by ratioing the

radiance measurements, surface reflectancefactor was calculated. By definition, the term

reflectancefactor is the ratio of radiant emittance of a target (i.e., wetland plant) to that

reflected into the same reflected-beam geometry and wavelength range by an ideal and

diffuse standard surface (i.e., Spectralon calibration panel) irradiated under the same

conditions (Schaepman-Strub et al. 2006). The reflectance factor was calculated based on

the following equation:

p=tET/cpET I (1)

where p is in situ reflectance factor for target of interest

(wetland plant species), tE T is target (wetland plant

species) in situ radiance, and cpE T is the calibration panel

in situ radiance.

l7



Subsequent data processing in this study also removed wavelength regions severely

affected by atmospheric absorption in the spectral ranges of 1350-1480 nm, 1775-2000

nm, and >2400 nm (Thenkabail et al. 2004).

 

Figure 5. Ground control marking data collection locations. Polygons were stratified

throughout the complex and included a range of shapes and sizes.

Field-level ground control was collected during August 2005 and 2006 (Figure 5).

The 2005 field campaign was within a few days of the airborne imagery fly over but not

simultaneous. The ground control was collected in order to characterize the accuracy of

the classified airborne imagery. The ground control was focused on collecting reference

data for the invasive plant species of interest, primarily large Typha latifolia and

Phragmites australis patches as these are the two primary invasives of concern in the

region. A Trimble Pro XR Global Positioning Systems (GPS) was utilized to record

ground polygons. A suite of polygons ranging in size, shape, and location were collected



Potential sites were identified using airborne photographs and on-the-fly sites were

collected while traversing the study area.

3.2.2 Landscape-level data

A flyover was performed on the 24th of August 2005. A light aircraft was

equipped with a push-broom Airborne Imaging Spectroradiometer for Applications

(AISA) and a GPS differential navigation system. The AISA sensor (16-bit) is a linear

array sensor (push-broom) that uses a system of semiconductive elements (e.g., charge-

coupled device array) to record one line of an image simultaneously. Concurrent

downwelling radiance was integrated using a Fiber Optic Downwelling Irradiance

System (FODIS) configured to match the upwelling radiance measurements. Twelve

overlapping flight lines and AISA configuration calculated apparent at sensor reflectance

covering the VIS—NIR domains (Table 2). AISA pre-processing (CaliGeo) included

geometric correction and image rectification. Flown at an above ground altitude of

approximately 1000m, one meter pixels were obtained for twenty bands in the visible

through near infrared.
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Table 2. AISA hyperspectral configuration and resolutions for airborne data-collection

performed during August 2005.

 

 

 

nbr min. wvl I center wvl rn.ax wvl I ch.width I avg offset Iaav.g gain

1 434.45 438.43 442.4 7.95 21.8771

2 451.94 455.92 459.89 7.95 0 17.8561

3 459.89 463.87 467.84 7.95 0 15.9328

4 499.64 503.62 507.59 7.95 0 7.1509

5 518.72 522.7 526.67 7.95 0 5.6548

6 575.56 579.73 583.91 8.35 0 3.382

7 585.58 589.75 593.93 8.35 0 3.2076

8 620.65 624.82 629 8.35 0 2.9989

9 644.03 648.2 652.38 8.35 0 2.9429

10 654.05 658.22 662.4 8.35 0 2.8382

11 674.09 676.6 679.1 5.01 0 3.9341

12 684.11 685.78 687.45 3.34 0 5.3284

13 689.12 691.62 694.13 5.01 0 3.4042

14 723.06 725.65 728.25 5.19 0 3.4821

15 731.71 734.31 736.9 5.19 0 3.5483

16 738.63 741.23 743.82 5.19 0 3.6101

17 757.66 760.25 762.85 5.19 0 4.0223

18 783.61 786.21 788.8 5.19 0 5.2317

19 833.78 836.38 838.97 5.19 0 5.8467

20 877.03 879.62 882.22 5.19 0 7.3689   
3.3 Quantifying separation

A variety of separability measures can be used on spectral signatures to identify

similar and divergent spectra. The Jeffries-Matusita (JM) distance measure has been

utilized successfully to quantify the divergence of spectral signatures including wetland

vegetation (Schmidt and Skidmore 2003). Slight variations of the JM formula exist. The

Ayala and Menenti (2002) algorithm (Eq. 2 & 3) was used to evaluate spectral

separability and the impacts ofprocessing techniques executed:

JMij = ,/2(1- e"“) (2,
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where Jsz is the Jeffiies-Matusita distance between

signatures i and j, T is transpose, C,- is the variance-

covariance matrix of signature i, Ui is the mean vector of

signature 1', I C,- I is the determinant of C,-,

3.4 Continuum removal

A processing technique that allows for the extraction and modeling of individual

spectral features (absorptance and reflectance) is continuum removal (Clark and Roush

1984). This technique is increasingly being implemented in hyperspectral vegetation

investigations as a processing technique to extract parameters of interest (Huang et al.

2004, Kokaly et al. 2003, Schmidt and Skidmore 2003, Underwood et al. 2003). Used

extensively in geological applications, continuum removal disregards albedo, or

background, to obtain individual features (absorption/reflectance) such as peak

wavelength position and depth (van der Meer 2004). Schmidt and Skidmore (2003) found

that applying continuum removal to salt-marsh vegetation spectra improved species

separation in the visible spectrum, but decreased it in the near-infrared (NIR) and

shortwave-infrared (SWIR) regions of the spectrum. This is important as the NIR domain

is often identified as an area of key utility for separation. Underwood et al. (2003) found

that continuum removal performed moderately well in improving hyperspectral image

classifications when trying to identify species with high leaf water content.
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Aspects of continuum removal not previously addressed in detail relate to the role

of plant canopy architecture and the impacts of continuum removal on separating

individual species of interest such as invasives. Schmidt and Skidmore (2003) suggest

that if continuum removal eliminates noise from the soil background, moisture content,

and canopy structure, then only the varying biogeochemical content of a species would

determine separability levels. The impact of continuum removal related to species canopy

architecture needs to be investigated to assess its contribution to distinguishing wetland

invasive species.

A modified continuum removal technique was developed for the wetland

vegetation spectra following methods outlined in Schmidt and Skidmore (2003). For

wetland spectra, amplitudes in the near-infrared can be large enough to disregard

absorption features in other spectral regions, such as the visible portion of the spectrum.

Therefore, a modified convex hull was forced to include seven primary spectral

reflectance maxirna distributed among spectral regions. Once the modified continuum

removal was forced, the continuum was removed by dividing the reflectance by the

convex hull (Clark and Roush 1984). The seven primary spectral regions that isolate the

major reflectance features were:

0 Visible domain and chlorophyll absorption region (350-675 nm)

0 Near-infrared edge (676-780 nm)

0 Near-infrared plateau (781-975 nm)

0 Near-infrared down slope (976-1190 nm)

0 Upper near-infrared shoulder (1191-1450 nm)

0 First shortwave infrared plateau (1451-2000 nm)
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0 Second shortwave infrared plateau (2001-2400 nm)

3.5 Shape filter

In reality, plant canopy architecture and other factors create reflectance variability

and reflectance overlap between plant species that makes species-level identification

challenging. Vegetation reflectance varies across the spectrum with the visible domain

largely determined by the chlorophyll content, the NIR region a function of leaf structure

and biomass volume, and the SWIR region largely determined by leaf water content and

biomass volumes (Cochrane 2000, Danson 1995). Generally, differences in absorption

determine the amount of variation and spectral overlap between vegetation species. To

examine variability, a shape filter (Cochrane 2000) that incorporates species reflectance

variability was applied to evaluate separability of wetland invasive species in the study

area based on spectra shape. The maximum (Max) and minimum (Min) spectral

reflectance creates the shape-space for the species (Eq. 4).

Shape-space = Maxp : Mlnp / ’1 (Eq.4)

3.6 Image classification

The primary objective associated with the imagery was to characterize infestation.

In order to complete this objective an accurate map was needed. Becker et al. (2007)

assessed classification algorithms and image resolutions for mapping coastal wetland

imagery. The research here is intended to build upon these efforts and not repeat

classification technique assessment. A series of classification algorithms were applied
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and evaluated in order to achieve the most accurate depiction of the invasive plants of

interest within the landscape. An expert system approach was carried out that primarily

relied on two classification algorithms. A basic unsupervised clustering algorithm was

first executed and refined, then combined with a more advanced supervised algorithm

using image derived training data.

An unsupervised classification is generally considered a straightforward, basic

approach to group pixels based on spectral properties in n-dimensional space. The

Iterative Self-Organizing Data and Analysis Technique (IOSDATA) algorithm was

applied. Using a set of defined criteria that have been developed over the past two

decades, ISODATA approaches can be very effective and sophisticated. The approach

here included:

- The maximum number of classes was defined at forty based on

reconnaissance field work, ancillary data, and expert judgment

0 Statistical initialization was based on diagonal axis means which are

computed to be along a diagonal vector and are evenly distributed within the scaling

range for each band

0 The number of iterations was set at ten to recalculate cluster mean vectors

each iteration

- Convergence threshold was set to ninety-five percent. The convergence

threshold is the maximum percentage of pixels whose cluster assignments can go

unchanged between iterations
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A second, more advanced supervised approach was carried out to classify the

species of interest in the landscape using ground—truthed training data rather than image

statistics. The Spectral Angle Mapper (SAM) algorithm (Kruse et al. 1993) was used in

this context. This algorithm relies on spectra shape and angles formed between a

reference spectrum and an unclassified pixel in n-dimensional space where n represents

the number ofbands. The primary advantage ofSAM is that the classifier is insensitive to

albedo and illumination effects (Sohn et al. 1999). The SAM approach has been shown to

correctly classify spectrally similar targets (South et al. 2004).

Using the ground-truthed GPS collected data, image training sites were

developed. Slight spatial adjustments were required due to registration and

georeferencing discrepancies. NRCS aerial color photographs were used as reference data

to assist in spatial adjustments. Spectral signatures were used to create a signature library.

Forty total signatures were created including the two primary species of interest- Typha

latifolia and Phragmites australis. This library was developed within ENVI and fed into

the SAM protocol using imagery mosaics.

3.7 Landscape pattern metrics

Landscape-pattem metrics provide a means to quantify ecosystem characteristics

at various scales. In the past two decades an increasing number of investigations have

explored landscape-stressor relationships for wetland ecosystems using pattern metrics

(Liu and Cameron 2001, Lopez et al. 2002, Keams et al. 2005, Torbick et al. 2006). In

general, all landscape pattern metrics have strengths and weaknesses. When using metrics

to explore relationships and patterns, it is important to understand their limitations,
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appropriate applications, inter-relationships, and possible interpretations of results

(Gustafson 1998, Hargis et al. 1998, Li and Wu 2004). Identifying specific thresholds of

indices to guide decision making and management practices individually has proven to be

a challenge when using landscape pattern measures. By comparing characteristics and

ecosystem attributes across the landscape at various scales using complementing

measures, a more thorough indication of relationships is possible. This can help focus

decision making and monitoring.

Several studies have used pattern metrics to indicate landscape patterns and

wetland stressors. The methods vary widely and range in results. The overarching goal of

using the landscape pattern metrics was to quantify and assess relationships between

hydrology and infestation. Simple metrics that describe the percentage and distribution of

the invasives of interest were generated using Fragstats v3.3 (McGarigal and Marks

1995) for the class (species) and landscape level. Composition measures, including

percent cover, were generated to calculate the total area covered by the invasives.

Configuration metrics, including the Aggregation Index and the Interspersion and

Juxtaposition Index (111), were generated to identify large homogenous patches and

assess dispersion. The Simpson Diversity Index (SDI), dependant only on the class of

interest, was chosen as the diversity metric.

Area-based metrics are a suite of measures quantifying fundamental information

on the ecological utility of a patch. Basic area metrics are perhaps the most important

metrics and provide information for many other metrics (Hargis et al 1998). Therefore

area and percent of landscape (PLAND) were generated to illustrate landscape

composition-invasive relations.
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Area — all (10,000) (Eq.5)

Area equals the area of a patch, class, or landscape. (1” is the area

ofpatch if.

n

2%-

PLAND = P,- = PIA (100) (Eq.6)
 

PLAND is the sum of the areas of all patches of the corresponding

patch type, divided by the total landscape area (converted into

units of preference). Pi=proportion of the landscape occupied by

patch type (class) i, aij = area ofpatch ij, A=total landscape area.

Aggregation Index is calculated from the number of like adjacencies of

corresponding classes (types), divided by the maximum possible number of like

adjacencies (McGarigal and Marks 1995).

g..

AI = "

g,-,- equals the number of like adjacencies (joins) between pixels of

 

patch type i based on the single-count method, maX-gri is

maximum number of like adjacencies (joins) between pixels of

patch type i based on the single-count method.
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A disturbance metric was developed to assess relationships between infestations

and hydrogeomorphic modifications (HGMM) and human disturbances. The study area

was divided into contiguous 1km wide transects, or sections, for a total of 15 full

sections. Using a knowledge-based evaluation system, each section was assessed for level

of human disturbance and given a rating between 1 to 5 representing low to high

disturbance and/or activities. Human activities and/or disturbances were measured in

terms land use pressures and landscape modifications (agriculture, urban), intensity of

managements and disturbances (continuous crop fields, dense impervious road network,

etc...), and hydrological modification (river channelization, dredging). Following the

river continuum framework, adjacency and spatial dependence was incorporated into the

knowledge-based ratings. The river continuum framework emphasizes a holistic approach

considering system openness, or the notion of spatial scaling, in a landscape adjacency

context (Naiman et a1 1988, Weins 1989). For example, if a section had intense

agriculture along its boundary this increases the disturbance rating. Further, if a pristine

section was adjacent to a highly disturbed section, this would cause an increase.
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Chapter 4: RESULTS AND DISCUSSION

4.1 Spectral separation

The wetland plant spectra displayed a range of JM distance values. Table 3

displays the JM distance values in a matrix against the invasive species (USDA, NRCS

2006). According to the JM values, Heteranthera dubia (grassleaf mudplain) and

Lythrum salicaria (purple loosestrife) are relatively easy to separate with the highest JM

value of 1.2645. Heteranthera dubia has the highest separability from most of the

invasives compared to the other species collected (Table 3). The invasive with the lowest

separation value from Heteranthera dubia is Elodea canadensis (Canadian waterweed) at

0.8599, still a moderate separation value.
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Table 3. JM distance matrix for invasive species. Vallisneria americana-18 refers to a

collection of spectra made with Vallisneria americana located approximately 18inches

below the water surface (averaged spectra n=32). Low, medium, high detail three evenly

 

 

divided categories.

Wetland species Elodea Lythrum Nymphaea Phragmites

canadensis salicaria odorata australis

Eleocharis rostellata 0.4213 0.1 124 0.3245

Elodea canadensis

Filmacutee 0.3406 0.0969 0.2435

Heteranthera dubia

Iris versicolor

Leersia oryzoides 0.2365 0.3381

Lemna minor 0.2525 0.353

Lythrum salicaria - 0.3251 0.1093

Mowedfield grass 0.1 132 0.2187 0.0051

Myriophyllum verticillatum

Nymphaea odorata 0.3251 - 0.2225

Nuphar lutea

Phragmites australis

Ponterderia cordata

Polygonum pensylvanicum

Potamogeton spirillus

Sagittaria lanfolia

Salix eriocephala

Scirpus validus

Sparganium androcladum

Typha latifolia

Vallisneria americana  Vallisneria americana-l8
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Table 3 (cont).

 

 

 

Wetland species Polygonum Pontederia Sagittaria Typha

pe Ivanicum cordata lati oIia lati olia

Eleocharis rostellata 0. 3663 0.25 79 0. 3535

Elodea canadensis

Filmacutee 0.2753 0.168 0.2672 0.3305

Heteranthera dubia

Iris versicolor

Leersia oryzoides 0.2949 0.4004 0.307 0.302

Lemna minor 0.309 0.4139 0.3218 0.4126

Lythrum salicaria 0.0763 0.1818 0.079

Mowedfield grass 0.0693 0.0761 0.0438 0.1546

Myriophyllum verticillatum

Nymphaea odorata 0.2712 0.1585 0.2551 0.4629

Nuphar Iutea

Phragmites australis 0.0643 0.078 0.0388 0.6234

Ponterderia cordata 0. l 179 - 0.1 044 0.1224

Polygonum pensylvanicum - 0.1 179 0.0275

Potamogeton spirillus 0.3625 0.254 0.3499 0.318

Sagittaria lanfolia 0.0275 0. 1 044 - 0.0988

Salix eriocephala 0.2519 0.1389 0.2404

Scirpus validus

Sparganium androcladum

Typha latrfolia -

Vallisneria americana Vallisneria americana-l8

Heteranthera dubia and Elodea canadensis are both perennial forbs with

somewhat similar morphology and physiology, growing at the water-surface with a mat-

like foliage texture. Elodea canadensis tends to grow at a higher density, with toothed

leaves (6-15mm) in whorls, mostly floating just under the water surface; whereas

Heteranthera dubia tends to grow along the water surface with long, linear leaves (10-

15cm) joined at the base to a tubular sheath wrapped around a stem. Therefore, both

species often have substantial amounts of water present in their spectra under field-
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canopy conditions resulting in distinguishable signatures compared to the other emergent-

and upland- aquatic invasive species in the study area. The VIS, NIR, and SWIR

reflectance for Heteranthera dubia and Elodea canadensis spectra never surpassed ten

percent reflectance factor because of the high amounts of water absorbing energy in the

FOV.
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salicaria

      
australis

MH- 
Figure 6. Reflectance factor at 50mm intervals for selected invasive plant species. Pre-

processing removed wavelength regions severely affected by atmospheric absorption in

the spectral ranges of 1350-1480 nm, 1775-2000 nm, and >2400 nm. Averaged spectra

(11:32).
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Nymphaea odorata (water lily) had the lowest separation distance from all other

species, while Sagittaria latifolia (arrowhead) had the lowest separability value against

the other invasive species. Sagittaria latifolia had a relatively high separability measure

from submergent and emergent species such as the invasive Elodea canadensis at 1.0421,

but very low separation scores from the other six invasives with an average of 0.1006

indicating difficulty in identifying this species. Sagittaria latifolia had a very small,

separation distance from Polygonum pensylvanicum (Pennsylvania smartweed) and the

two are likely to cross-classify. These two plant species have relatively similar plant

architectures and inhabitat very similar niches in this ecosystem. Sagittaria latifolia is a

medium height perennial herb with erect orientation that can grow upwards of a few feet

from the water surface. Its structure has arrow-shaped, simple leaves (6-40cm) with small

white flowers arranged in whorls on the stalk (present during data collection) that fills out

to reach medium foliage texture with moderate porosity. Polygonum pensylvanicum is an

annual herb with lance-shaped leaves (25cm) that grows a few feet upward from the

water with flowering branches that has moderate porosity with medium foliage texture.

The similarity of these two species with respect to the JM index lends support to the

claim that plant canopy structure plays a large role in species separability. In contrast,

Sagittaria latifolia also had very low separation values from Phragmites australis

(common reed), an aggressive, very densely growing erect stalk with coarse texture that

extends upwards of 2m, and Nymphaea odorata, a floating-leaf forb with large, thick

circular leaves (25cm) that rest on the water surface, which suggests that plant canopy

structure does not play a singularly strong role in differentiating spectra.
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4.2 Continuum removal

In theory, a normalization process based on continuum removal can remove

albedo, or background signal, from a spectral signature. In this study, the modified

continuum removal mostly decreased separation abilities (Table 4). The differentiation of

Lythrum salicaria from Sagittaria latifolia, Potamogeton spirillus (spiral pondweed), and

Polygonum pensylvanicum increased slightly, although these species had very high IM

separation values before the continuum removal was applied. The separability of

Potamogeton spirillus from five of the invasives also increased slightly. Potamogeton

spirillus can be submerged or float on the water surface with long (20cm), simple leaves.

Therefore, an increase in species separability for Lythrum salicaria, Nymphaea odorata,

Phragmites australis, Pontederia cordata (pickerelweed), and Sagittaria latifolia was

contrary to expected results based on plant architecture, while emphasizing the role of

leaf water content in separation. The decrease in separability from Elodea canadensis

further suggests that background signal and canopy architecture were indeed removed via

continuum removal.
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Table 4. Change in JM distance values with modified continuum removal applied

Negative values indicate increase in separation values. Vallisneria americana-18 refers to

a collection of spectra made with Vallisneria americana located approximately 18inches

below the water surface (averaged spectra n=32).

 

 

 

 

  

Wetland species Elodea Lythrum Nymphaea Phragmites

canadensis salicaria odorata australis

Eleocharis rostellata 0.5615 0.3275 0.0344 0.1982

Elodea canadensis 0.7279 0.6421 0.7038

Filmacutee 0.5976 0.2086 .I... :9..91.l1. . ”II 0.0843

Heteranthera dubia 0.8599 1.2645 1.228 1.2528

Iris versicolor 0.3549 0.6905 0.5135 0.6105

Leersia oryzoides 0.8061 0.2127 0.5114 0.2968

Lemna minor 0.8418 0.2326 0.5038 0.3382

Lythrum saicaria 0.7279 0.3017 0.0765

Mowedfield grass 0.739 0.0626 0.1648

Myriophyllum verticillatum 0.0678 0.8029 0.6837 0.7336

Nymphaea odorata 0.6421 0.3017 0.1707

Nuphar Iutea 0.4064 0.6282 0.433 0.5388

Phragmites australis 0.7134 0.0401 0.1707

Pontederia cordata 0.7275 0.1201 0.1103 0.0087

Polygonum pensylvanicum 0.797 0.1822

Potamogeton spirillus 0.5914

Sagittaria latifolia 0.7686

Salix eriocephala 0.6238

Scirpus validus 0.4855 0.3898

Sparganium androcladum 0.5946 0.9468 1.1649 1.199

Typha latifolia 0.3958 0.6254 0.4134 0.5229

Vallisneria americana 0.8959 0.7165 0.741 1

Vallisneria americana-18 0.6076 0.6523 0.8297 0.8302
 

36



Table 4 (cont).

 

 

 

 

  

Wetland species Polygonum Pontederia Sagittaria Typha

en Ivanicum cordata lati olia lati olia

Eleocharis rostellata 0.2157 0.1488 0.1879 0.4562

Elodea canadensis 0.797 0.7275 0.7686 0.3958

Filmacutee 0.1221 0.0495 0.0859 0.2067

Heteranthera dubia 1.2552 1.255 1.2567

Iris versicolor 0.6689 0.6248 0.6279 0.5645

Leersia oryzoides 0.2194 0.3624 0.2326 0.2826

Lemna minor 0.2221 0.355 0.2523 0.3565

Lythrum saicaria 0.1201 I, . :0,0,08,_ _,I 0.6254

Mowedfield grass 0.0157 0.0362 0.0063 0.1058

Myriophyllum verticillatum 1.0843 1.0943 1.2034 0.8955

Nymphaea odorata 0.1822 0.1103 0.1641 0.4134

Nuphar lutea 0.5914 0.5437 0.5517 _ 0.6245

Phragmites australis 0.0087 £0,927}, -3 0.5229

Pontederia cordata 0.1179 0.0401 0.4901

Polygonum pensylvanicum 0.0748 0.5285

Potamogeton spirillus 0.3194

Sagittaria latifolia 0.0078

Salix eriocephala 0.2054 0.2036

Scirpus validus 0.5166 0.4748 0.4916 0.5062

Sparganium androcladum 0.7865 1.1033 1.2021 1.1462

Typha latifolia 0.5285 0.4901 0.5072

Vallisneria americana 0.8655 0.8042 0.8221 0.8634

Vallisneria americana-I8 0.9187 0.8852 0.8752 0.6947
 

The continuum removal results suggest that the processing technique is not

necessarily useful for all vegetation applications. While continuum removal might be

effective in identifying absorption feature characteristics or particular wavelengths

associated with biophysical attributes, applying the technique for separating plant species

(or classifying image data) might be disadvantageous. Clearly, for wetland ecosystems,

continuum removal decreased abilities to distinguish invasives species. These results

further suggest that background and canopy architecture may contribute to improving

separation of wetland plant species. The results here advocate emphasizing plant canopy

architecture when attempting to map wetland invasive species.
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Plant canopy architecture is not only the morphological and biophysical structure

of a species. The plant canopy architecture is also representative of the

microenvironment; the background removed via continuum removal. The background

signal, or local environment, is what often creates conditions that support hydrophytic

plants. The background signal includes variations in soil moisture or water content along

with understory debris and previous plant growth. These background factors provide

useful biophysical information that is well-known to be measured spectrally. Therefore,

when continuum removal techniques are applied, the loss of these background signals is

detrimental to spectral separation of species in many cases. In other ecosystems or

applications, such as geological and mineral identification, background signal may not be

usefirl; in wetland ecosystems these are critical.

4.3 Absorption feature characteristics

The peak reflectance and wavelength location in each of the seven spectral

regions varies by species. This is important because identifying the best wavelengths can

be arbitrary if those wavelengths are not unique to an invasive species of interest. The

SWIR plateaus (1451-2000 nm, 2001-2400 nm) have the largest variation in peak

reflectance wavelength. When normalized by the number of wavelengths in each spectral

domain (range of peak wavelengths/number of wavelengths in spectral domain), the

second SWIR plateau has the greatest range in peak wavelength locations, followed by

the NIR edge (781-975 nm) and first SWIR plateau (1451-2000 nm). This indicates that

these three spectral domains possess the largest variation in peak reflectance wavelength

location, which can assist in species discrimination. These results are consistent in
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identifying the NIR edge as this wavelength region has been recognized as a useful

spectral domain for distinguishing wetlands plants using other statistical techniques,

namely second derivative analysis and Mann-Whitney U-testing (Artigas and Yang 2006,

Becker et al. 2005, Schmidt and Skidmore 2003).

Peak reflectance wavelength locations for Lythrum salicaria are furthest from the

average of all other species in the first SWIR and NIR domains and to a lesser extent the

NIR down slope and second SWIR domains. The peak reflectance wavelengths in these

spectral domains are, therefore, more usefirl for discriminating Lythrum salicaria from

the other wetland species compared to the chlorophyll absorption region, NIR edge, and

the water absorption region. As such, the leaf moisture content and internal leaf structure

(Cochrane 2000, Danson 1995) of Lythrum salicaria are more useful characteristics for

separation than are plant pigmentation differences represented by the visible and

chlorophyll domain. However, when background was eliminated via continuum removal,

little increase in separation scores resulted.

The NIR regions (edge, plateau, and down slope) have the greatest range of

reflectance maxima between species. The visible domain and SWIR plateaus have

relatively narrow ranges between the peak reflectance of the wetland species. The

differences between species’ leaf structure, largely represented by the NIR and water

absorption regions, make the differences in reflectance amplitude a useful characteristic

for separation. However, for a particular species of interest, the most unique peak

reflectance feature might reside within a different wavelength domain. For Lythrum

salicaria, the water absorption region, followed by the NIR down slope, possess peak

reflectance features fiirthest from the average of all other species. The peak reflectance
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features of the two SWIR plateaus have relatively equivalent separation abilities as the

NIR edge and NIR plateau for Lythrum salicaria (reflectance factor for Lythrum salicaria

— average reflectance factor for all species). The NIR edge is often emphasized as a

useful wavelength region for distinguishing species (Artigas and Yang 2006, Becker et a1

2005, Schmidt and Skidmore 2003, Thenkabail et al. 2004); however, for identifying

Lythrum salicaria other wavelength regions show larger distances in terms of peak

reflectance maxima and peak reflectance wavelength location. Thus, individual plant

absorption/reflectance features should receive some consideration when attempting to

map invasives or species of interest.

4.4 Shape filter

While the absorption/reflectance features from average species spectra provide

useful information, in reality the reflectance for individual wetland plant spectra display

considerable variation. Figure 7 illustrates the reflectance variability for Scirpus validus

(softstem bulrush), Phragmites australis, Lythrum salicaria, and Typha latifolia (broad

leaved cattail). Recall that the shape filter method (Cochrane 2000) is intended to identify

species of interest, such as invasives, using the uniqueness of the absorption features and

reflectance variability. In essence, the more unique an absorption feature of a given

species is, the easier that species can be distinguished.
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Figure 7. Reflectance factor (n=32) variability, or shape-space, (maximumo,

minimumA , range- A-) illustrated for Scirpus validus, Phragmites australis, Lythrum

salicaria, and Typha australis at 50nm intervals. Pre-processing removed wavelength

regions severely affected by atmospheric absorption in the spectral ranges of 1350-1480

nm, 1775-2000 nm, and >2400.

The shape space varies by wavelength domain and by species. For example,

Scirpus validus had relatively less variation compared to Phragmites australis, Lythrum

salicaria, and Typha latifolia. The variation Scirpus validus did possess occurred

primarily in the water absorption region, first SWIR plateau, and second SWIR plateau

while increasing respectively. This is likely due to the erect, small diameter structured

grth and the fact that Scirpus validus tends to occur as a transitional plant between
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standing water and higher substrate on a microtopographic scale. Thus only minute

differences were detected in leaf water content and plant biomass volume compared to

variation in soil moisture and understory debris, again emphasizing the utility in

background signal for identification purposes. Phragmites australis and Typha latifolia

have larger reflectance variability in the NIR down slope (976-1190nm) and the water

absorption region (1191-1450nm); however, both these regions have high separation

abilities when the shape filter was applied (Figure 8).
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Figure 8. Number ofplants species separated (displayed at 50nm intervals) by shape

filtering for the wetland invasive plant species.
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The wavelengths identified as most useful for separating invasive species by the

shape filter vary by species (Figure 8). This is critical as classification and processing

techniques and/or choice of wavelengths might require evaluation based on the species on

interest. Further, the biophysical properties influencing reflectance become valuable as

background and plant canopy architecture vary by species thus potentially improving

identification. Polygonum pensylvanicum has the most separation around 605nm.

Compared to the other invasives this wavelength has low separation value using the

shape filter method. Nymphaea odorata is most separable from the other species in the

visible and chlorOphyll domain (350-600nm) likely due to the plant canopy architecture

possessing large (24cm), round leaves that float on the water surface. Using the shape

filter technique, the invasive Lythrum salicaria had between five (minimum at 2000nm)

and 20 (maximum at 700nm) species distinguished.

The results from applying the shape filtering technique confirm that information

provided by increased spectral data does increase abilities to distinguish plants of interest.

The wavelength domains of utility vary by species therefore data reduction and

wavelength selection methods need to consider evaluating species of interest and their

particular absorption/reflectance features. The concept of spectral libraries and

classification techniques based on shape filtering is promising for distinguishing invasive

species. In the wetland ecosystem where this study was conducted, even very similar

spectra were able to be filtered.



4.5 Characterizing Infestation

Complications due to shifts in aircraft flight path and multiple flight lines, lack of

simultaneous ground control, and high landscape heterogeneity required a multi-step

approach in order to obtain the most accurate map possible for the species of interest. A

series of classification runs were executed. The more advanced SAM approach using the

signature library developed from field-collected spectra resulted in very poor

classification accuracy results. SAM classifications carried out on irnage-derived training

data had satisfactory results for Phragmites, but the Typha delineation was poor.

Therefore, a simplified approach was executed to identify Typha in the form of

unsupervised algorithms. Qualitative inspections confirmed that the unsupervised

classification accurately depicted landscape structure and biological communities within

the study area. Figure 9 illustrates a subset of the 40-class unsupervised ISODATA

classification. Apparent is landscape structure with deep pools, biological communities,

forest regions, road networks, and tributary systems. Using GPS ground data, Typha

polygons were created and merged within the classification.
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Figure 9. Unsupervised classification depicts landscape structure and man-made features

for adjacent buffer around Route 31 which bisects the wetland complex.

The SAM Phragmites classification was fused with the Typha unsupervised

classification for the optimal product. A total of twelve polygons were used to assess the

accuracy of the combined classification. Overall accuracies for each individual polygon

ranged from 39%-81% (Table 5). Figure 10 illustrates two Typha latifolia assessment

polygons located on opposite ends of the study area. P6 shows a high accuracy (73%)

while P3 shows a poor overall accuracy (39%). P6 was surrounded by lower strata

canopy (submergents/emergents) while the P3 assessment polygon area tended to have

similar strata canopy (rushes/sedges) which likely contributed to the confusion and

ultimately the misclassification. The overall accuracy (weighted average by # pixels) was

70%. Considering the level of detail, overlapping signatures, and imagery complications,

this is a fair (~industry standard is 85%) overall accuracy. When referencing the field-

level signatures, Typha tends to have common reflectance values within the wavelength
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domains covered by the imagery. Phragmites, on the other hand, has a relatively unique

spike in the NIR.

Table 5. Accuracy assessment for the Typha and Phragmites classes.

 

  

 

   
 

   

Polv # Qv_e_rgll # Pixles flgnTtfi

l 66.97% 445 Typha

2 80.00% 70 Typha

3 39.45% 844 Typha

4 62.67% 150 Typha

5 63.03% 238 Typha

6 73.33% 896 Typha

7 81.40% 328 Phrag

8 55.45% 101 Phrag

9 46.39% 761 Phrag

10 67.08% 814 Phrag

l l 76.56% 3720 Phrag

12 79.63% 2573 Phrag

Weighted average 70% 10665 Typha & Phrag_
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Figure 10. Example accuracy assessment points for Typha latifolia. P3 shows a poorly

captured patch whereas P6 illustrates a patch captured very accurately with the imagery.

Heterogeneous environments are challenging to classify and the desired level of

classification detail and pixel size often influence methodology, objectives, and overall

goals. Becker et al. (2007) evaluated classification algorithms and the optimal spatial

resolutions for mapping coastal wetlands. The research concluded that strategic

wavelengths and spatial resolutions of a few meters meter or under were required for

accurate maps. Li et al. (2004) found that increasing levels of landscape heterogeneity

required higher spatial and spectral resolutions. Large homogeneous stands have less

variance compared to smaller mixed stands and, essentially, large homogenous areas are

easier to map. Smaller mixed stands have greater spectral overlap and a larger amount of

species contributing toward the spectral signature. However, in this study no relationship
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between patch size and accuracy was found. Both Typha and Phragmites were tested

individually and collectively, and no significant relationship was found using 1m size

pixels. Two related points can be extrapolated from the accuracy results. The first being

that the fine resolution imagery used in this study was not near the threshold in which

spatial resolution becomes a limiting factor. Also, these results suggest that the size of the

patch, also representing composition and variance, does not singularly determine

accuracy or abilities to delineate species.
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Figure 11. No relationship between accuracy and patch size was found. Combined Typha

and Phragmites ground control and overall accuracy for each polygon.

Assessing infestation required an expert system framework that depicted a variety

of disturbances and scale. Using a knowledge-based evaluation system, each section was

assessed for level of human disturbance and given a rating between 1 to 5 representing

low to high disturbance and/or activities. Human activities and/or disturbances were
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measured in terms land use pressures and landscape modifications (e.g., agriculture,

urban), intensity of managements and disturbances (continuous crop fields, dense

impervious road network, etc...), and hydrological modification (river channelization,

dredging). Following the river continuum framework, adjacency and spatial dependence

was incorporated into the knowledge-based ratings. If a section had intense agriculture

along its boundary, the disturbance rating will increase. Further, if a pristine section was

adjacent to a highly disturbed section, this would cause an increase. Figure 12 displays

transects across the study area. Transects were aligned N—S in order to complement the

imagery and locate the Rte 31 bridge into one transect.

 

Figure 12. Illustration of infestation transects used to assess Typha and Phragmites

distribution and develop the disturbance metric.

The expert-system values are displayed in table six. Transects start upstream,

which is the eastern most portion of the classification in this case. Transects one and two

received the highest hydrogeomorph rating because the river in these transects has

undergone substantial channelization altering the hydrological flow of the main branch of
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the Muskegon. As the river resumes natural meandering toward transect three,

hydrogeomorph disturbance ratings decrease. As the river branches into its delta-like

pattern in transect five ratings receive their lowest scores. At transect eleven substantial

modification is present as the Route 31 bridge bisects the wetland complex. A channel

was dredged running parallel to the bridge creating an artificial, slow moving branch.

Dredging and miniature dikes for several rail bridges and old transport channels are

present closer toward the City ofMuskegon resulting in increased modification ratings.

Table 6. Disturbance ratings for the study area east to west.

 

 Transect LU/LAN DP HGMM Rating

1 5 5 5

2 2 5 3.5

3 2 2 2

4 1 1 1

5 2 2 2

6 3 1 2

7 3 1 2

8 3 2 2.5

9 3 2 2.5

10 2 2 2

11 5 5 5

12 4 4 4

13 4 4 4

14 5 5 5

15 5 5 5      
The human disturbances in transects one and two are relatively moderate. As the

wetland complex resides in essentially a valley, adjacency disturbances play a role. The

northern buffer of the study area remains relatively consistent. Clearings for power lines

aiming westward starting in transect six and seven increased the rating. Transect eleven
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and the western most transect have the highest amounts of impervious surfaces causing

the highest possible rating.

For replication, quantitative approaches are desired. Therefore, a fractal metric

was derived to quantify the shape ofthe Muskegon River and its tributaries to assess

changes in hydrogeomoprh across the study area. Figure 13 displays the area-weighted

fractal metric for the water class against Phragmites australis (A) and Typha latifolia (B).

Although sample size was limited to the number oftransects (15), moderately strong (.5

and .44 respectively) relationships are evident with decreasing PLAND values as the

shape complexity ofthe water class increases. This supports the interpretation that as the

river becomes channelized and impacted by human activities infestation is higher, and as

the river flow reflects the delta-like hydrology ofthe complex, Phragmites PLAND

decreases.
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Figure 13. Moderately strong relationships exist between Phragmites australis (A)

and Typha latifolia (B) PLAND metric and the shape complexity of the water class.

The spatial pattern of Typha and Phragmites are closely correlated in addition to

the percentage of areal coverage these two invaders occupy. Their area-weighted fractal

was strongly positive correlated (.69) across the study site and these two species appear

to mimic the other species pattern and distribution. The shape complexity, as measured

by area-weighted fractal, of Typha was highly correlated (.76) to the aggregation index of

Phragmites patches across the landscape. As Typha patch shape becomes more complex,

Phragmites tends to become more aggregated and decrease in complexity within the
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landscape. Figure 14 displays the assessment metric showing the relationship between

disturbance and infestation. The quantitative fractal metric indicates that the hydrological

modifications are significantly related to pattern of infestation.
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Figure 14. displays the relationship between infestation level and disturbance ratings for

the transects contiguously covering the study site.
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Chapter 5: CONCLUSIONS

The research carried out in this investigation was focused on distinguishing

wetland invasive plant species of interest and mapping infestation. Field-level

hyperspectral reflectance factor was characterized to identify unique wavelength regions

for dominant invasive plant species within the study area. Processing techniques were

evaluated and showed varying degrees of utility. Relatively accurate maps for Typha

latifolia and Phragmites australis were developed from airborne hyperspectral imagery.

The mouth and western portion of the study site were identified as having higher levels of

infestation. These infested regions coincide with relatively higher human land use

intensities and slow-moving hydrological conditions.

Specific and general conclusions are as follows:

1. Characterizing absorption/reflectance features for particular species of interest

should be considered when determining processing and classification techniques.

When an overarching goal is to identify and map species of interest, such as

Phragmites australis, techniques should consider absorption/reflectance features

of that species response, since wavelengths of utility might vary. ‘Universally’

applied processing techniques are not always applicable as shown in this research.

Shape filtering, which is a relatively straightforward approach, is one useful

method to isolate wavelengths and/or biophysical attributes of interest for

individual species. Useful wavelengths, according to shape-filtering approaches,

can be species specific as shown in this work.
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2. Continuum removal largely decreased separation abilities. The understory and

previous plant growth are critical for identifying wetland species and play a role

in creating unique signatures. Removing these features ultimately removed

biophysical characteristics that aided in identification. Unless an absorption

feature is identified as having a particular utility in aiding identification,

continuum removal decreases separation and should not be used. Plant canopy

structure had mixed results in terms of whether continuum removal disregarded

structure, yet it did emphasize the utility ofbackground signal.

3. In this study, basic pattern metrics were most applicable. While more complex

metrics exist, describing infestation is really a factor ofbasic area, percentages

covered, and distribution ofthose species across the study site. Straightforward

metrics that describe percentage of landscape and aggregation measures

illustrated infestation which was a primary goal. The infestation maps developed

through this work can help assist management plans and efforts to control

invasive species in the future. The framework developed in this work should be

applicable to many regions and many species.

4. The concept of signature libraries (or building a database of signatures to feed

into imagery for classification) for species-level mapping in wetland

environments with current technologies is very challenging. In environments

where species reflectance ranges widely and landscape heterogeneity is high,

classification accuracies will rarely achieve levels above the industry standard

threshold of 85%. Ground control and collection must occur simultaneously (i.e.,

radiometric calibration) to overpass for successful implementation. The highest
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quality imagery is also necessary as slight reflectance differences between species

are often smaller than signal to noise ratios of imagery. If species have unique

spectral characteristics, if those characteristics are distinguishable in the

wavelength captured by the imagery, if simultaneous ground control is collected,

if the landscape has lower levels of dominant species and low levels ofmixed

pixels, and imagery is of the highest caliber, it will improve mapping accuracies

and signature library concepts might be capable of discriminating covers.

. The highest quality data is required. Issues related to multiple flight lines and no

simultaneous ground control created calibration problems and limited imagery

accuracy. Field work in diverse, wetland environments is extremely challenging

and obtaining a large ground control dataset is extremely useful. In this study,

several trips to the field were required and more data was always useful.

. As eluded to in conclusion four and five, operational monitoring using

hyperspectral wetland imagery for invasives monitoring is challenging. Data

quality issues and landscape conditions produce ‘thresholds ofutility ’ where the

framework developed here is and is not useful. Operational monitoring might be

possible with lower diversity in simpler landscapes where large, dominant patches

of spectrally unique species are the plants of interest.

. Future work needs to explore fusing advanced hyperspectral remote sensing

technologies with other sensors such as LiDAR (providing topographic

information) and RADAR (providing moisture information). Hyperspectral

sensing provides advanced canopy and biological community (e.g., species)

information. By combining these data with geomorphology and hydroperiod data
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increased assessment information can possibly be provided. Wetlands health

assessment approaches that can link all these technologies together and link with

traditional field-based measures (e.g., HGM) is the next step in this field.
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