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ABSTRACT

DEFECT STRUCTURE AND TRANSPORT PROPERTIES OF NARROW

GAP SEMICONDUCTOR PbTe AND RELATED SYSTEMS

By

Salameh M. Ahmad

Understanding the detailed electronic structure of deep defect states in narrow

band-gap semiconductors has been a challenging problem. Self-consistent ab initio

calculations within density functional theory (DFT) using supercell models have been

quite successful in tackling this problem. In this thesis, we carry out such calculations in

PbTe and SnTe, two well-known narrow band-gap semiconductors, for a large class of

defects: cationic and anionic substitutional impurities of different valence, and cationic

and anionic vacancies. For the cationic defects, we study the chemical trends in the

position of defect levels by looking at a series of compounds RQz..-1Te2n, where Q is Pb

or Sn, R is vacancy or monovalent, divalent, or trivalent atom. Similarly, for anionic

defects, we study compounds MsznTeZM, where M is vacancy, S, Se or I. We find that

the density of states (DOS) near the top of the valence band and the bottom of the

conduction band get significantly modified for most of these defects. This suggests that

the transport properties of PbTe and SnTe in the presence of impurities may not always

be interpreted by simple carrier doping (from bound impurity states in the gap) concepts,

confirming such ideas developed from qualitative and semi-quantitative arguments.

Transport coefficient calculations using the Boltzmann equation within energy-

dependent relaxation time approximations have been carried out for n-type PbTe over a

wide temperature (T) and concentration (72) range, 300 K S T S. 900 K and 1 S n/no S



10, no = 5 x 1019cm‘3. The nonparabolic Kane model for the energy dispersion was

used in these calculations following the earlier work of Ravich et. al. Although the T

dependence of the electrical conductivity 0 comes from several sources (band structure

parameters, chemical potential u, scattering relaxation time T), we find that the

T dependence of r dominates. We represent the temperature dependence and the energy

of the electrons (8) dependence of the total relaxation time rm by a scaling function

 

“I“

(1' ~ hwy), where a, b, c, p, r are T and a independent parameters but depend on the

carrier concentration. Using this simple scaling function in the calculation of a, we find

that for these concentrations changing the parameter r which governs the energy

dependence of scattering does not appreciably affect the T dependence of a. In addition

to the study of the T dependence of a, a careful electronic thermal conductivity

calculation (both at constant current J and constant electric field E) was done to

reexamine the validity of the Wiedemann-Franz (WF) law in PbTe, extending the earlier

work of Bhandari and Rowe. We point out that using the standard WF law to estimate the

electronic contribution of the thermal conductivity (K81) usually overestimates this

contribution by more than 0.5 W K'lm", and hence underestimates the lattice thermal

conductivity. This has important implications in the question of how low the lattice

thermal conductivity can go in the presence of nanostructures in PbTe.
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Chapter 1
 

Introduction
 

1.1 Why Study IV-VI Narrow Gap Semiconductors

Narrow-gap IV-VI semiconductors are materials unique in their physical

properties, the diversity of effects observed in them, and the possibilities for practical use.

In particular, these compounds are the basis for creating infrared semiconductor lasers

that can operate at near-room temperatures, highly efficient thermoelectric converters,

and radiation detectors in the far-infrared and submillimeter ranges [88]. All the above

possibilities are the consequence of a nontrivial combination of properties characteristic

of the materials under consideration. These properties include the direct gap whose width

can be smoothly varied by creating solid solutions, the high efficiency of radiative

recombination, very high values of the static permittivity 6 up to 10", and small effective

masses of carriers ~10’2m0, where m0 is the mass of free electron.[88] As a result, the

Coulomb potential of charged impurities in IV—VI semiconductors is almost completely

screened. Therefore, it has no substantial effect on the mobility of carriers.

One of the important disadvantages of type IV—VI semiconductors is the high

concentration of defects in their structure. For standard synthesis methods, the

concentration of vacancies and interstitial atoms reaches 1018 — 1019 cm‘3.[88] All the

growth defects are electroactive, because of which the low carrier concentration

necessary for a number of applications cannot be reached in undoped compounds.



Doping is one of the main methods for controlling the concentration of free

carriers in semiconductors. The use of this method as applied to IV—VI semiconductors

and, in particular, to lead telluride—based solid solutions not only allows the concentration

of electrons and holes to be changed but also leads to the appearance of radically new

properties uncharacteristic of the starting material. For example, when PbTe and a

number of PbTe-based alloys are doped with group III impurities (inditun, gallium, or

thallium) the phenomena of Fermi-level pinning is observed. In this case, the Fermi-level

position is determined by the alloy composition alone and is independent of the

concentration of doping impurities and lattice defects [45]. In particular, a situation can

arise when the Fermi level is stabilized within the band gap and a semi-insulating state is

accomplished at low temperatures. Such a state is not observed in alloys that have not

been specially doped.

PbTe was one of the first materials studied by Ioffe and his colleagues in the

middle of the last century when there was a revival of interest in thermoelectricity.[4]

This compound, its alloys with SnTe and PbSe, and related compounds called TAGS

(alloys of AngTez and GeTe) were for many years the best thermoelectric materials at

temperatures ~700 K.[5] In recent years, quantum wells of PbTe/Pb1-xEuxTe,

PbSeo,9gTeo,02/PbTe superlattices.[6] and quaternary compounds AngPmeTe2m+2

(m=9,10) [7] have attracted considerable attention because of their large thermoelectric

figure of merit (FOM). Similar quaternary systems with Ag replaced by Na are also

promising high temperature therrnoelectrics.[8] Most of the above systems have

stoichiometry closer to the parent compound PbTe.



1.2 Defects in Semiconductors: Shallow and Deep

The band gap, the energy region that is free of electronic states and is bounded by

the valence and conduction bands, is the hallmark that differentiates metals,

semiconductors, and insulators. Dopants and defects can dramatically modify the

electrical conductivity of semiconductors as they add states in this band gap, which can

provide electrical charge carriers (electrons or holes) to the respective bands at energies

very much lower than the gap energy. Electrically active defects in semiconductor

crystals have different characteristics, depending on the location of their energy states

relative to the conduction- or valence-band edge. Shallow defects have energy levels

within a few tens of millielectron volts from the respective band edges, whereas deep

defects typically reside within the middle third of the semiconductor energy band gap. In

fact the above simple definition and classification are no longer generally applicable.

Instead one uses the degree of localization of the defect state to characterize this state.

Deep levels have highly localized wave functions whereas shallow-level wave functions

are as extended as the far reaching Coulomb potential. According to this definition,

oxygen in GaN is a deep defect even though it is located inside the conduction band.[89]

A shallow defect is easily explained. For example, a shallow donor resembles a hydrogen

atom with a positive nucleus binding an electron. Two modifications to the hydrogenic

model arise inside a solid. First, the mass of the electron is renorrnalized because of its

interactions with the lattice. This “effective mass” is usually smaller than that of the free

electron. Second, the crystal reduces the Coulomb potential caused by the dielectric

screening. Combined, these two effects reduce the ground-state binding energy

(ionization energy) of a donor, from the well-known 13.6 eV of the isolated hydrogen



atom, down to, for example, merely 45 meV in Si. Other hydrogenic features remain: a

series of bound excited states, which are observable with far-infrared spectroscopy, and

the ionization into the energy continuum, that is, the conduction band in the case of a

donor. This strikingly simple and effective hydrogenic model of shallow-level impurities

or dopants has been amply confirmed with a broad range of electrical and optical studies

of a vast number of dopants in numerous semiconductor materials.[90] The deep defects

are much more difficult to understand.[91] Badly fitting impurity atoms distort the host

lattice so extensively that the binding energy greatly exceeds that of shallow, hydrogenic

defects. In wide band-gap semiconductors, the energy level lies “deep” within the

forbidden energy band gap. Despite the availability of highly sophisticated computational

tools, deep defects still represent one of the most challenging of problems of current

semiconductor theory. Many atoms around the distorting defect must be considered when

a first-principles calculation is attempted; the defect extends over many lattice constants.

The carriers can interact strongly with the lattice. The effects of deep defects are to

drastically reduce minority carrier lifetimes and to act as traps for charge carriers. Some

deep defects can be used to pin the Fermi level near the middle of the energy gap and

thus lead to highly resistive materials.

In Recent years a lot of progress has been made in tackling the deep defect states

in wide band-gap semiconductors, using ab initio methods. For example, Lany et. al.

[134] investigated theoretically using density functional theory the In DX center and the

DX-like configuration of the Cd host atom in CdTe. Another well known example is P

and As impurities in GaN. Mettila et. al. [135] found that P and As substitutional

impurities in GaN induce deep levels in the band gap in contrast with all other



conventional III-V systems. The calculated exciton binding energy for (P)GaN has an

excellent agreement with the available experimental data. In contrast to the wide band-

gap semiconductors, the problem of defects in narrow-gap semiconductors, particularly

the physics underlying the deep defect states, is far from understood. In these systems

both shallow defects caused by the long—range Coulombic potential and deep defects

formed by short range interactions and mixtures of these may coexist.

The theory of deep defects in narrow band-gap semiconductors has a long history.

For substitutional defects in PbTe, Lent et al[14] presented a simple chemical theory of s-

and p-bonded substitutional impurities almost 20 years ago. This theory naturally gave

deep defect states near the fundamental band gap and also predicted resonant levels

further away from the gap. In this thesis we review the basic ideas underlying this theory

and discuss the results of our recent attempts to understand the physics behind these deep

defect states using first principle ab initio electronic structure calculations. We also

discuss how these defect states get modified when different types of impurity

microstructures are present. It is well-known that transport and optical properties of

semiconductors are dominated by the states in the neighborhood of the band gap. Thus it

is important to have a fundamental understanding of the changes in the electronic states

near the band-gap region in PbTe when it is mixed with other binary and ternary

compounds. Before being able to understand the nature of the electronic states near the

band gap and/or the Fermi energy in the complex systems mentioned above, one must

understand how the electronic states of PbTe change when Pb or Te is replaced by

impurity atom or by vacancy.



Before studying the defect states in narrow band-gap semiconductors, one must

understand their band structure without any defect. In recent years ab initio electronic

structure calculation using density functional theory (within local density or generalized

gradient approximations, LDA [61] or GGA [32]) have been extremely successful in

unraveling the electronic structure (including the band gap) of many narrow band gap

semiconductors with complex crystal structures. Examples are: skutterudites [117], and

ternary bismuth chalcogenides systems (BaBiTe3 [119] and CsBi4Te6 [120]). Although

the fundamental reason for this success is not known, the subtle nature of the origin of

gap formation (i.e. hybridization, spin-orbit interaction etc.) in these compounds may be

responsible for the above mentioned quantitative agreement. [119, 120] Even in systems

where the quantitative predictions of LDA/GGA are not that good, one has been able to

understand the physics of gap formation, the nature of bonding, and the parentage of

states contributing to the transport properties of these narrow band gap

semiconductors.[121] It is clear that ab intio electronic structure calculations are able to

provide great insight about the physical properties of complex systems.

1.3 Transport Properties of Thermoelectrics

The efficiency 77 of thermoelectric (TE) energy conversion depends on the

transport coefficients of the constituent materials through the figure of merit (FOM)

ZT = USzT/(Kl + Ice”), where a is the electrical conductivity and S is the therrnopower

(Seebeck coefficient) [9]. The quantity in the denominator is the thermal conductivity; it

is given by the sum of contributions from the electronic carriers at constant electrical

current i (K31,J ) and the lattice contribution K]. (n —> ncamot when ZT -9 00) Z has units

of inverse temperature, so it is generally quoted as a dimensionless number ZT, with Tthe



absolute operating temperature of the TE device [9]. TE devices are usually made from

semiconductors. From the definition of ZT, it is clear that, to increase ZT we have to

decrease the thermal conductivity of the material and/or increase the therrnopower and

the electrical conductivity. Among the four quantities involved in ZT, three of them (a, S

and K3,,1) are mainly related to the electronic structure of the material and the fourth one

(Kl) is mainly related to the lattice. One possible way to improve the FOM is to reduce it]

without significantly altering the electronic properties of the materials, referred to as

electron crystal phonon glass concept [92]. This approach has been explored extensively

in the past [93, 94] through the enhancement of phonon scattering. The other way to

improve the thermoelectric properties of a material is to increase the power factor 052 by

varying the doping concentration and manipulating the electronic structure in the

neighborhood of the chemical potential [95, 96]. In this thesis we focus on the electronic

contributions to the thermoelectric properties of PbTe.

PbTe is a well known for its excellent thermoelectric properties. It is used for

power generation in the temperature range 400 to 800 K [97]. In general, iodine and PM;

are the ordinary dopants for n-type PbTe used to optimize the carrier concentration [98].

But the lattice thermal conductivities of PbTe with these dopants are too high (~ 2.2

WK'lm" at 300 K and ~ 1.1 WK'lm" at 650 K) [132] to restrain application (ZT has only

been ~ 0.1 at 300 K and ~ 0.9 at 650 K). [98, 132] Therefore many methods have been

used to reduce K, of PbTe, such as hot pressing and spark plasma sintering (SPS)

techniques [99]. The lattice thermal conductivity of PbTe samples prepared by hot

pressing is about 2WK"m_l which is much higher than the ideal value of 1 WK’lm'l

needed for good thermoelectric materials as pointed out by Mahan [100]. Although there



are many successful examples of reducing the thermal conductivity of PbTe by alloying

such as in Pb1_xSnxTe, a product of PbTe alloyed with SnTe, and (Bi1_bex)2Te3 solutions

[100], recently, novel bulk quaternary systems AngmeTem+2 (LAST-m) with special m

values [7, 19], and MBE (molecular beam epitaxy) grown PbSeTe/PbTe quantum dot

(QD) superlattices [101] have been found to give a large ZT ~ 2 in the temperature range

(400-800 K). LAST-m gives large ZT values at the higher temperature end.

A different approach to increase ZT by increasing the power factor has been

suggested recently by Heremans and collaborators [102] and by Kanatzidis and

collaborators[103]. The proposal is to alter the energy dependence of the carrier

scattering rate (and consequents the T dependence of a) by inserting metallic nano-

particles such as Pb and/or Sb inside bulk PbTe. The precise effect of these nano-particles

(~ 30 — 50 nm size) on electronic and phononic transport properties are not understood.

One of the motivation of the present work is to alter the value of the parameter that

controls the energy dependence of the effective scattering time (rather than individual

scattering processes) and see how the T-dependence of electronic conductivity changes

From the theoretical side, several calculations of the transport coefficients of

PbTe and related systems have been reported over the years [52, 95, 102, 104, 105].

These calculations have been performed using the Boltzmann transport equation within

the energy-dependent relaxation time approximation and the nonparabolic Kane model

[133] for the energy dispersion 8; vs If The energy and temperature dependence of

different scattering mechanisms were incorporated in these calculations. Depending on

the temperature, different scattering mechanisms (from impurities, acoustic and optical

phonons) contributed to the relaxation time ‘1’. At high temperatures when optical phonons



dominate the scattering mechanism, it was found that both polar and deformation

couplings with optical phonons played equally important role. [106, 107] Earlier work by

Bhandari and Rowe [104] focused on the electronic thermal conductivity Ice”; they

indicated that the inclusion of non-parabolicity in energy dispersion had a pronounced

effect on Ice” and neglecting it would overestimate Ice],1° Also they pointed out that

acoustic phonon scattering was the dominant carrier scattering mechanism in PbTe at

room temperature (RT). In a later work, Bilc et al [52] work focused on the power factor

at high temperatures, and showed that the strength of the deformation coupling constant

had to be reduced by about 30% from its earlier value (used in fitting to the room

temperature data) to get a better quantitative fit to the high T transport data. All these

earlier work did not explore the relationship between the energy and temperature

dependence of the effective relaxation rate and the T-dependence of o, Keu and Ice”,- .

Also a careful analysis of the difference between these two different electronic

conductivities and its impact on the Wiedemann Franz (WF) law in doped PbTe was not

made. In this thesis we address these issues by focusing on (1) a careful analysis of the

energy and T dependence of r to develop a simple scaling form, (2) understanding the

relation between the energy dependence of T and the T dependence of a, S, and the

power factor (052), and (3) finding out the difference between electronic thermal

conductivity at constant E and at constant T and reexamine the validity of WF law

ice, E Ice“,- = LOUT, where the Lorentz number L0 = 2.45 x 10"8 WQ/K. The last point

is quite important because in many papers in the current literature the WP law is used to

obtain ice] and subtracting it from Km, one gets Kl. This method gives unusually small

values of 1c, (<< 1 WK‘lm—l). One of the motivations behind this reexamination of WF



using realistic scattering models for PbTe is to check whether these ultra low values of K1

are reasonable.
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Chapter 2
 

Defects in Semiconductors
 

2.1 Point Defects

Point defects can be either intrinsic, that is, atoms of the same type as the host

crystal but in a wrong position, or extrinsic, that is, atoms of a different type than those of

the ideal crystal. The most common intrinsic point defects are the vacancy (a missing

atom from a crystalline site) and interstitial (an atom in a non-crystalline site). The most

common extrinsic defects are substitutional impurities, that is, atoms which are foreign to

the crystal but are situated at crystalline sites, substituting for a regular crystal atom. The

presence of defects ofien distorts significantly the atomic structure of the crystal in the

immediate neighborhood of the defects.

2.1.1 Intrinsic Point Defects

Vacancies are quite common in many crystals, both in close-packed metallic

structure, ionic solids and open covalent structure. The creation of a vacancy costs some

energy, due to the breaking of bonds, which is called the formation energy 6;“. This is

defined as the ground state energy of the crystal containing a vacancy, that is, one atom

fewer than the ideal crystal which has N atoms, denoted as EX“(N — 1), plus the energy

per atom for an ideal crystal, minus the energy of an equal number of atoms in a perfect

crystal (with N —> 00 for an infinite crystal) [54]:
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 6;“ = limNro, [(153an — 1) + 5°13”) — 50m] , (2.1)

where Eo (N) is the ground state energy of a crystal consisting of N atoms at ideal

positions. Sometimes instead of using (E0 (N)/N) in Eq. 2.1, one uses 6‘”, the energy of

an isolated atom, the difference between these two definitions is the binding energy per

atom of the perfect crystal. Vacancies can move in the crystal, jumping from one

crystalline site to the next — what actually happens is that an atom jumps from one of the

sites surrounding the vacancy, into the vacant site. The concentration of vacancies per

site in the crystal at temperature T under equilibrium condition is determined by the

vacancy formation energy, and is given by [54]

c”“C(T) = C exp(—e}’“‘/kBT) , (2.2)

where k3 is the Boltzmann constant and C takes account of the appropriate unit. The

concentration of defects in a crystal is usually determined by the balance between the

entropy gain due to the various ways of arranging the defects in the crystal and the energy

cost to introduce each defect.

Interstitial atoms are extra atoms that exist inside the crystal at positions that do

not coincide with regular crystalline sites. These defects are common in crystals with

open structures since in close-packed crystals there simply is not enough room to

accommodate these extra atoms: it costs a large energy to squeeze the extra atom into a

close-packed crystal. The energy to create an interstitial, its formation energy 6"", by

analogy to the formation energy of the vacancy, is given by [54]

Eo(N)

N

 a?“ = [1,1590 [(Egntm + 1) - )— E0(N)] , (2.3)
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where E3”(N + 1) is the ground state energy of the solid containing a total of N + 1

atoms, N of them at regular crystalline positions (allowing for small relaxation) plus one

at the interstitial position. Interstitials in crystals with open structures can also move,

undergoing a thermally activated process by which they are displaced from one stable

position to another, either through a direct jump, or by exchanging positions with an atom

of the host lattice. By analogy to the vacancy, there is a thermal activation energy

int
associated with motion of interstitials, called the interstitial migration energy 6 , and

the concentration of interstitials per site in the crystal at temperature T under equilibrium

conditions is given by [54]

cintCl') = C exp(—e}"t/kp T). (2.4)

The presence of intrinsic defects in a crystal has an important consequence: it

introduces electronic states in the solid beyond those of the ideal crystal. If the energy of

such defect-related states happens to be in the same range of energy as that of states of

the perfect crystal, the presence of the defect does not make a big difference to the

electronic properties of the solid. However, when the defect states happen to have an

energy different than that of the crystal states, for example, in the band gap of

semiconductors, or resonant states near the valence band maximum or conduction band

minimum, their effect can be significant. To illustrate this point, consider a vacancy in Si:

the presence of the vacancy introduces four broken bonds (called "dangling bonds"), the

energy of which is in the middle of the band gap, that is, outside the range of energy that

corresponds to crystal states. By counting the available electrons, it becomes clear that

each dangling bond state is occupied by one electron, since two electrons are required to
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form a covalent bond. If the neighbors of the vacant site are not allowed to distort from

their crystalline positions, symmetry requires that the four dangling bond states are

degenerate in energy, and are each half filled (every electronic level can accommodate

two electrons with opposite spin). The actual physical situation is more complex but

interesting [54]: the four dangling bonds combine in pairs, forming two bonding. and two

antibonding combinations. The four electrons end up occupying the two bonding states,

leaving the antibonding ones empty. This is achieved by slight distortion in the position

of the immediate neighbors of the vacancy, which move in pairs closer to each other as

shown in Fig. 2.1. The net effect is to produce a more stable structure, with lower energy

and a new band gap between the occupied bonding and unoccupied antibonding states, as

illustrated schematically in Fig.2.l. This is called a Jahan-Teller distortion; it is common

in defect configurations when the undistorted defect structure corresponds to partially

occupied, degenerate electronic states.

2.1.2 Extrinsic Point Defects

The most common type of extrinsic point defect is a substitutional impurity, that

is, a foreign atom that takes the place of a regular crystal atom at a crystalline site. A

common application of extrinsic point defects is the doping of semiconductor crystals.

This is a physical process of crucial importance to the operation of modern electronic

devices, so we discuss its basic aspects. The energy of states introduced by the impurities,

which is relevant to doping, lies within the band gap of the semiconductor. If the energy

of the impurity related states is near the middle of the band gap, these are called "deep"

states; if it lies near the band extrema (Valance Band Maximum-VBM- or Conduction

Band Minimum-CBM) they are called "shallow" states [54]. If the impurity atom has

14



C““any \RiiedV319
Conduction Bands

......+.......+-------------+--~--~-- ....... 8.17 I . . .

‘, ’1':- . " - H
. , .

t i
.

\ I V I

.

’ "-17.35,” Valence Bands _.i=." . 3"" "‘1‘ "'

 

    

Figure 2.1 Schematic representation of electronic states associated with the Vacancy. The

shaded regions represent the conduction and valance states of the bulk. Left: the vacancy

configuration before any relaxation of the neighbors: each broken bond contains one

electron denoted by an up or a down arrow for the spin states, and all levels are

degenerate, coincident with the Fermi level which is indicated by a dashed line. Right:

the reconstructed vacancy, with pairs of broken bonds formatting bonding and

antibonding states; the former are fully occupied, the latter empty, and the two sets of

states are separated by a small gap. [54]

more valence electrons than the host atom, as P impurity in Si , in which case it is called

a donor, these extra electrons occupy states near the CBM. At finite T, these electrons get

excited to the conduction band and contribute to transport (n-type). In the opposite case,

the impurity creates states near the VBM, which is empty at T = 0. At finite T it is

occupied, which leaves empty states in the VBM of the crystal called "holes"; this type of

impurity is called acceptor and the charge carriers are holes (p-type). One important
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Figure 2.2 Schematic illustration of shallow donor and acceptor impurity states in

semiconductor with direct gap. The light and heavy electron and hole states are also

indicated; the bands corresponding to the light and heavy masses are split in energy for

clarity. [54]

aspect of the impurity related states is the effective mass of charge carriers (extra

electrons or holes): due to band-structure effects, these can have an effective mass which

is smaller or larger than the bare electron mass, described as "light" or "heavy" electrons

or holes, respectively. These features are illustrated in Fig. 2.2. [54]

Electronic transitions between impurity levels through absorption or emission of

photons, reveal a signature that is characteristic of, and therefore can uniquely identify,

the impurity. Such transitions are often responsible for the color of crystals that otherwise

would be transparent. This type of impurity is called a color center.
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2.2 Evolution of Theory of Defects in Semiconductors

The first device-related problem that required understanding was the creation of

electrons or holes by dopants. These (mostly substitutional) impurities are a small

perturbation to the perfect crystal and are well described by Effective Mass Theory

(EMT) [129]. The Schrbdinger equation for the nearly-free charge carrier, trapped very

close to a parabolic band edge, is written in hydrogenic form with an effective mass (m‘)

determined by the curvature of the band. The calculated binding energy of the charge

carrier is that of a hydrogen atom but reduced by the square of the static dielectric

constant of 60 of the host material. The binding energy is given by[(m‘/moeg)Ryd].

Typically (50 z 10) and (m‘~ 0.1 m0) where mo is the free electron mass. As a result,

the binding energy ~ meV instead of eV and the associated wavefunction is substantially

delocalized, with an effective Bohr radius some 100 times larger than that of the free

hydrogen atom. EMT has been refined in a variety of ways [130] and provides a basic

understanding of doping in many broad band-gap semiconductors. However, it cannot be

applied to defects that have energy eigenvalues far from band edges. These so-called

deep state defects are not weak perturbations to the crystal and often involve substantial

relaxations and distortions. [69]

The first theoretical tool used to describe the localized defects in semiconductors

involved Green’s functions.[109-111] These calculations begin with the Hamiltonian Ho

of the perfect crystal. Its eigenvalues give the crystals band structure and the

eigenfunctions are Bloch functions. One constructs a set of localized functions (Wannier

function's) formed by linear combination of Bloch functions and uses these localized

basis to study the defect problem. In principle, the defect-free host crystal is perfectly
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described. The localized defect is represented by a Hamiltonian H' which includes the

defect potential U. The Green’s function of the perturbed crystal is G(E) = 1/(E - H').

The perturbed energies E, in the presence of defect, coincide with its poles. The new

eigenvalues include the levels of the defect and the corresponding eigenfunctions are the

defect wavefunctions. In principle, Green’s functions provide a correct description of a

defect in its crystalline environment. In practice, there are many difficulties associated

with the construction of perfect-crystal eigenfunctions that can be used as a basis set for

the defect calculation, [108] and the construction of the defect potential itself. This is

specially true for deep defect states and those defects which induce large lattice

relaxations and/or distortions.

The first successful Green’s functions calculations for semiconductors date back

to the late 19703. They were used to study charged defects and to calculate forces and

total energies. These calculations also provided important clues about the role of native

defects in impurity diffusion. However, while Green’s functions do provide a near ideal

description of a single defect in a perfect crystal, their implementation is difficult and not

very intuitive. Alternative methods have been introduced to treat the defect problem;

these are cluster and supercell methods. Clusters or supercells are much easier to use and

provide a physically and chemically appealing description of the defect and its immediate

surroundings. In the cluster approach one takes finite size cluster of the host system and

introduces a defect. [131] These types of calculations were performed in real space with

basis sets consisting of localized functions such as Gaussians or LCAOs. The dangling

bonds on the surface atoms of the cluster must be tied up in some way, most often with H

atoms. However, without the underlying crystal and its periodicity, the band structure is
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missing and the defect’s energy eigenvalues cannot be placed precisely within a gap.

Further, the finite size of the cluster artificially confines the wavefirnctions. This affects

the charged defects the most, as the charge tends to distribute itself on the surface of the

cluster. However, the local covalent interactions are well described by the cluster

approach. [69]

The Schrodinger equation for a cluster containing a defect can be solved using

almost any electronic structure methods. The early work was empirical or semiempirical,

with heavily approximated quantum chemical methods. At first, semiempirical extended

Hiickel theory [113] then self-consistent Hartree-Fock method. Geometries could be

optimized, albeit often with symmetry assumptions. The methods suffered from a variety

of problems such as cluster size and surface effects, basis set limitations, lack of electron

correlation, and the use of adjustable parameters. Their values are normally fitted to

atomic or molecular data, and transferability is a big issue.

Substantial progress in the theory of defects in semiconductors occurred in the

mid 1980’s with the combination of periodic supercells to represent the host crystal, ab-

initio type pseudopotentials [114] for the core regions, density functional theory (DFT)

for the valence regions, and ab-initio molecular dynamics (MD) simulations [115] for

nuclear motion. This combination is now referred to as first-principles in contrast to

semiempirical. There are a few parameters in the theory. They include the size of the

supercell, k-point sampling, type and size of the basis set, chosen by the user, as well as

the parameters associated with the basis sets and pseudopotentials. However, these

parameters and user inputs are not fitted to an experimental database. Instead, some are

determined self-consistently, other are calculated from first principles or obtained from
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high-level atomic calculations. For more accurate calculations one uses full potential, all

electrons, rather than the pesudupotential. Note that although the first supercell

calculations were done in the 1970’s in conjunction with approximate electronic structure

methods, [116] density firnctional theory and ab initio electronic structure methods using

large supercells are just becoming possible.

2.3 Density Functional Theory for Defect Calculations

Density-functional theory (DFT) [55, 56] has become the most successful theory

for studying atomic-scale computational condensed matter physics and is also widely

used to study defects in semiconductors, predict their structures and energetics,

vibrational and diffusional dynamics, and elucidate their electronic and optical properties,

as observed by various experimental probes. The central quantity in DFT is the electron

density. The ground-state total energy is a functional of the electron density and can be

obtained via variational minimization of the functional. The wave-mechanical kinetic

energy part of the total-energy functional is obtained not from the density directly but

through a mapping to a non-interacting Kohn-Sham system.

The basis of electronic structure calculations lies in the nature of electrons in a

solid. Electrons interact through long range Coulomb forces which makes it very difficult

to describe them as distinct entities. However, the electrons in solids do not act as "bare"

particles, rather they are screened out by positively charged polarization clouds. The

electron and its screening cloud form a "quasiparticle" which weakly interacts with other

quasiparticles in the solid. The effective weak interaction between these quasiparticles

allows for an effective single particle approximation, particularly for low energy
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properties where they can be treated as acting in the mean field of the other

quasiparticles. Such an approximation is valid in a large class of solids (metals,

semiconductors, and insulators) but not in solids with strong electron-electron

interactions and weak screening (such as magnetic insulators).

2.3.1 Density Functional Theory

Because of its great successful in making computational advances in electronic

structure of solids, I will briefly discuss the basics of DFT. This theory states that the

ground state electronic properties of a solid are determined solely through its electronic

density p(r) in terms of which the total energy is:

Etot(p(r)) = T5(p(r)) + Eee(p(r)) + ENe(p(r)) + Exc(p(r)) + ENN (25)

where T, is the kinetic energy of the noninteracting particles having the same density

p(r), Eee is the electron-electron repulsive Coulomb energy, ENe is the nuclear-electron

attractive Coulomb energy, Exc is the exchange-correlation energy, and 5va is the

repulsive Coulomb energy of the fixed nuclei.

In the local density approximation (LDA) [61], E,“ is expressed as a function of

the local exchange-correlation energy density Mn:

5:914 = [ uxe(p(r))p(r)d3r. (2.6)

This approximation is generalized for both the spin densities pT(r) and pl(r) in local

spin density approximation (LSDA):

5:5“ = f u... (p'(r). pm) [p'(r) + p*(r)]d3r. (2.7)
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Recent progress has been made by going beyond LSDA where one adds the gradient

terms of the electron density to Exc. This has led to generalized gradient approximation

(GGA)[32, 63]

555‘ = I lure (p'(r).Vp‘(r).p‘(r).\7p‘(r)) [p’(r) + p‘(r)]d3r . (2.8)

To solve the energy minimization problem Kohn and Sham proposed a method in

which Ts is given by:

N
’12

Ts = Z: I 11130“) (-§;V2) ¢t(r)d3l‘r (2.9)

where till-(1') are the one-electron orbitals and the sum goes over the all occupied orbitals

of an N-electron system. Minimization of the total energy Etot with respect to charge

density p(r) leads to the Kohn-Sham single particle equations:

2
h

-fiV2 + VcCI‘) + ch il’iU‘) = EiII’iCI‘) . (2°10)

where Va is the classical Coulomb potential and ch is the exchange-correlation potential.

VC + ch = eff is an effective single particle potential. The single particle Kohn-Sham

Eqs. 2.10 has to be solved self consistently with the condition:

p(r) = ZiVII/Jt(r)|2 - (2-11)

It should be emphasized that the total energy Em:

Etot it 2 figs 1 (2.12)

i
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where 6,!“ are Khon-Sham single particle eigenvalues; certain corrections have to be

made. [67] 6,!“ are not the true quasiparticle energy states seen in experiment. However,

for broad band systems they provide a very good description of the physics except for

band gaps and effective masses. [68] Band gaps are usually underestimated.

2.3.2 Full Relativistic Single Particle Dirac Equation

For systems containing heavy atoms, such as Pb and Bi, relativistic effects are

very important and one should in principle use Dirac theory. In the single particle

description, one has to solve the Dirac equation for an electron because the full

relativistic effects applied to electronic structure are included in this equation. The Dirac

Hamiltonian is given by [57]:

HD = ca.p + ([5’ — 1)mc2 + V(r) , (2.13)

where a and 3 are 4 X 4 matrices expressed as:

a = (g g) (2.14)

p = (‘1) 3) (2.15)

with ax, 0y, and oz being the Pauli spin matrices. p is the four component momentum, m 4

is the bare electron mass, c is the speed of light and V(r) is the effective single particle

potential. The eigen vectors ‘1’ of the Dirac Hamiltonian can be written as four

component spinors consisting of the two two-component spinors: large component <1) and

small component x.
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111 = (‘1’) (2.16)

This gives a set of coupled equations for (I) and x:

c(a.p)x = (e — V)<I> (2.17)

C(O'. p)<l> = (e — V + chz);( (2.18)

Solving for CD the above two equations give the equation for the large component <1):

-1

) (a.p)<l> + V<I> = 6(1) (2.19) 

1( )(1+6

2m a.p ch2

The above equation is exact.

2.3.3 Scalar Relativistic Approximation

Eq. 2.19 is the exact Dirac equation. This equation serves as the basis for

relativistic electronic structure calculations. [5 8, 59, 60] However, for valence electrons,

where the relativistic effects are not usually strong, one can make the following

approximation:

  (1 + E — V)—1 :-:- (1 - E _ V) (2.20)
ch2 ch2

and using the identities:

pv = Vp — ihVV (2.21)

(a.VV)(o-. p) = (W. p) + 1'0. [17, p] , (2.22)
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the Dirac Eq. 2.19 can be written as a linear second-order differential equation for (I).

This is given by:

 

(1 €_V)p2+v¢ hz (VVV‘DH hz ([VV ]<1>)- (b 223
chz 2m 4m2c2 4m2c2 0' ’p —6 ' ( ' )

For a spherically symmetric potential V(r), Eq. 2.23 can be simplified further:

p2+V p4 1'12 dVd+ 1 dVl

2m 8m3c2 4m2c2 dr 0r Zmzc2 dr 7'

 (1.5) 42 = ed) , (2.24)

where the first two terms represent the nonrelativistic Schrodinger Hamiltonian, the third

is the mass velocity term, the fourth is the Darwin term, and the last term is the spin-orbit

interaction ($01). In the presence of the SOI term, j= 1 + s is the good quantum number.

The four-component wave fimction is now written as:

_ <1> _ 9(r)Y,-{’

w ' (X) - (titan-{2) (2'25)

where g and f are the radial functions, Y,{’ is the r-independent eigen function ofj2, jz,

(2, and 52 formed by the combination of the Pauli spinor with the spherical harmonics.

In practice one first solves Eq. 2.24 without the last term [57], which reduces to:

p2 + V p4 h2 dV 0

2m 8m3c2 4m2c2 dr 6r

 <1> = ab. (2.26)

Eq. 2.26 is called the scalar relativistic Schrodinger equation. Since there is no spin-orbit

coupling in Eq. 2.26, l and s are individually good quantum numbers. The four-
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component wave function ‘17 can be expressed in terms of radial functions (f'(r) and

,‘g' (r) ) and spherical harmonics, Ylm as:

~ (TS 9'0.) Ylmw=(,)=( ,. ) , 2.27
x -lf(r)th *5 ( )

. . 1 0 . . . .
where x, are the two component Pauli sprnors (0), (1). The scalar relatrvrsuc Eq. 2.26 15

solved with this choice of 513. The functions ‘P are not eigenfunctions of the Dirac

Hamiltonian H0 and their deviation from eigenfunctions is used to define the spin-orbit

Hamiltonian H50:

~

H0117 = 5LT! + Hmtp. (2.28)

In the basis set of functions 513, H30 has the form:

 

 

h dV 1 l. S 0

5° — 2Mc2 dr;( 0 0) (2'29)

where M is the relativistic mass given by:

M — E _ V 2 3o_ m 2C2 o
( . )

Spin-orbit interaction (SOI) effects are important, especially for heavier elements. To

include 801, one method is to double the entire basis set obtained while solving Eq. 2.26

to accommodate H50. This approach is usually computationally expensive. The second

variational method is an alternative approach, which does not require the doubling of the

entire basis set. The spin up and down states are considered separately using the

eigenvectors of the scalar relativistic calculation for only a finite number of states near
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the Fermi energy. This reduces the number of basis sets involved in the calculation in the

presence of 801. The spin up and down states can be expressed as:

~t

‘T’t=(—gifircii'3fm)” ' “(3) (2'3“

~l

‘T’l=(-girirci~§lfm)i‘ ' “(3) (2'32)

The states given in Eq. 2.31, and 2.32 are used as new basis set for the expansion of the

wave function <19 in Eq. 2.24. The total Hamiltonian including 801 can be solved with

less computational effort since the ntunber of (PT and i1“ states are usually much less

than in the original eigenvalue problem. [20, 57]

2.3.4 Method of calculations

Electronic structure calculations were performed using the self-consistent full-

potential linearized augmented plane wave methods (FLAPW) [20] within DFT [31, 55],

using GGA of Perdew, Burke and Emzerhof [32] for the exchange and correlation

potential. Since the method and the approximations are very well discussed in the

literature, I will not discuss them here. As most of the systems of our interest contain the

heavy atom (Pb) relativistic effects are very important. Relativistic effects are marginally

important for Te, and not important for Se and Sn. The way these effects are included in

the electronic structure code used to obtain the electronic structure (WIENZK program)

[3 7] is discussed very briefly below.

The core states are treated in a fully relativistic way (i.e solving the Dirac

Eq.2.19).[76] The valence and local orbitals, which are defined within the atomic spheres

are first obtained within the scalar relativistic approximation (see section 2.2.4). This
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approximation does not include 801 but takes into account the effects of mass-velocity

and Darwin corrections.[76] In the absence of SOI spin up and spin down eigen functions

separate. In the presence of 801, the spin up and spin down eigen functions mix and this

is incorporated in a rather efficient way using a second variational method.[77, 78]

The linearized augmented plane wave (LAPW) method [37] which was used in

most of my studies, is among the most accurate methods for performing electronic

structure calculations for crystals. Before we describe the LAPW method it is helpful to

discuss the augmented plane wave (APW) method first. In the region far away from the

nuclei, the electrons are more or less ‘free’. Free electrons are described by plane waves.

Close to the nuclei, the electrons behave as if they were in a free atom, and they could be

described more efficiently by atomic like functions. Space is therefore divided now in

two regions: around each atom a sphere with radius Rd is drawn (call it 5“). Such a

sphere is often called a muflin tin sphere and the part of space occupied by the spheres is

called the muflin tin region. The remaining space outside the spheres is called the

interstitial region (call it I), see Fig. 2.3. One augmented plane wave (APW) used in the

expansion of lp—E is defined as [3 7]:

MG) = W - r (2.33)

( iii” uflr’. 5)) 141.0“) r e s,
l,m

-r

where K are the reciprocal lattice vectors of the plane wave expansion, k are wave

vectors within the first Brillouin zone, V is the volume of the unit cell, Y,§,(f’) are

spherical harmonic functions referred to the center of the sphere located at Ra, u,“ (r’, E)

are the regular solutions of the radial Schrodinger equation for energy E, and Afif‘LR are
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the expansion coefficients that are determined by the matching and normalizing

conditions for the wavefunction.

The problem with the APW method is that u? (r’, E) has to be constructed at the

yet unknown eigen energy E = 8;? of the searched eigenstate. It would be helpful if we

were able to recover u? (r’, 8-,?) on the fly from known quantities. That is exactly what

the Linearized Augmented Plane Wave method enables us to do. If we calculate u? at

some energy E0 then we can make a Taylor expansion for energies not far away from it

 

 
 

[37]:

Bu“ r',E

uf’(r’,££ = uf'(r’,Eo) + (E0 — £7?) lag? ) + 0(E0 — E£)Z(2.34)

a 5:52

aware)

 

   
 

Figure 2.3 Division of a unit cell in muflin tin regions and the interstitial region, for a

case with two atoms. The black dot is the origin of the axis system.
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Substituting the first two terms of the expansion in the APW for a fixed Eo, gives the

definition of an LAPW. This has a price: the energy difference (50 — 87?) is unknown,

and hence a yet undetermined Biff“? has to be introduced [3 7]:

1 . —. .

TBIU‘HO'T i" E I

41526) = V 2+2: 2+2 (2'35)
m (.433, uf‘(r’,Eo) + 33;, 11,“(r’,Eo)) 12,50“) r e 5,,

'—o+l—(o '-O —0

(1k and Ba k+K

In order to determine both A(m (m , one requires that the firnction in the sphere

matches the plane wave both in value and in slope at the sphere boundary.

An important parameter that goes into the electronic structure calculation in the

LAPW method is the value of the atomic radius of each component. For multi-component

systems the values of the atomic radii are chosen differently. In some cases the values of

atomic radii are taken to be the same for all the atoms, and this value is chosen to fill the

space between the atoms. In other cases different values are chosen for different atoms.

The number of R points used in the calculations of the self-consistent charge density is

usually taken to be in the range 18 to 30, which corresponds to 400-600 It; points in the

Brillioun zone for cubic systems. The number of plane waves used in the interstitial

region is characterized by a parameter RKmax = leKmax, where leis the smallest

muffin tin radius and Kmax is the maximum plane wave vector. Typically RKmax is

chosen between 7 and 9, and for our calculations it was taken to be 8. Convergence of the

self-consistent iterations are usually performed within 0.0001 Ry with cutoff -6.0 Ry

between the valance and core states.

30



2.4 Supercell Method

A common approach to calculate defect energetics from first principles (i.e.,

starting from electronic degrees of freedom) is based on the supercell idea. In this method

one confines the atoms defining the defect area of interest into an otherwise arbitrary box,

which is then repeated infinitely in one or more spatial directions (see Fig.2.4). In other

words, this box (the supercell) now becomes the new unit cell of the system, and periodic

boundary conditions are applied at one or more of its boundaries. For a point-defect

assembly in a three-dimensional solid, the system now becomes a three-dimensional

periodic defect array. For a line defect (e.g., a dislocation) the result is a regular line-

defect network. For a surface, the system becomes a sandwich of material slabs interlaced

by vacuum regions. Typical sizes of the supercell in all electron calculations are

nowadays 64 atoms or larger in a cubic system, and the increasing computational power

has enabled supercells with hundreds of atoms.[69]

 

 

 

 

 

 

 

 

 

    
Figure 2.4 Schematic presentation of the supercell construction of lattice vacancy in a

solid.
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The great advantage of supercell calculations is that the periodic boundary

conditions allow the utilization of many efficient techniques derived for the quantum

physics of periodic systems. The wavevectors of the Brillouin zone (BZ) in the reciprocal

space of the supercell are good quantum numbers, and the standard "band-structure

methods" of periodic solids can be applied in full force. Particularly fast computation

methods can be performed by using Fourier analysis (plane-wave basis sets), as they

adopt naturally to periodic boundary conditions and offer spatially uniform resolution.

The supercell approach enables the full relaxation of the structure to minimize

total energy, and the calculation of the formation and migration energies of defects in

different charge states as a function of the Fermi-level position of the host semiconductor,

and as a function of the chemical potentials of the atoms building up the material. Thus,

the method can be conveniently adapted to describe such effects as host materials

stoichiometry on the energetics of isolated defects in compound semiconductors [75].

From supercell calculations one can extract several useful physical properties, such as:

(1) the probabilities of certain types of defect to form under given chemical and

thermodynamical conditions during the growth, (2) the basic nature (acceptor, donor,

deep level) of the defect electronic states, (3) the migration and recombination barriers,

(4) vibrational modes, hyperfine fields, positron-annihilation parameters and other

ground state properties, and (5) within certain limitations, excited-state (for example

optical) properties as well. The ground state properties are those most reliably accessible.
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2.5 Issues with the Supercell Method in Defects Studies

The obvious drawback of the supercell methods for defect calculations is that the

periodicity is artificial and can lead to spurious interactions between the defects. They

have a finite density, and do not necessarily mimic the true physical situation with an

aperiodic, very low density defect distribution. The supercell method, widely used and

with demonstrated success in defect studies, requires a critical examination of the finite-

size and periodicity effects.

The first consequence of the finite-size supercell approximation is the broadening

of the defect-induced electronic levels to "defect bands", with a bandwidth of the order of

0.1 eV for 64-atom supercells. This translates into a difficulty in accurately placing the

ionization levels. The one-electron Kohn-sham states associated with the defect are often

assigned a position by averaging over the supercell Brillouin zone, or just values at the

Brillouin zone origin ( the I‘ point) as they exhibit the full symmetry of the defect. The

defect-state dispersion usually has a smaller effect on the total energies that include

summations and integrations of the Kohn-Sham states over the entire Brillouin zone.

Thus, ionization levels determined from the total-energy differences is expected to be less

sensitive to the defect-band dispersion. However, this is hard to prove systematically.

Another source of difficulty associated with supercell calculations is the accurate

determination of the host crystal band edges (valence-band maximum, conduction-band

minimum), which are the natural reference energies for the defect-induced gap states. In

the defect-containing supercell, the band-edge states themselves are affected by the

defect. The band-edge positions are often determined by aligning a chosen reference level

between the defect-containing and perfect solid. For example, the effective potential in a
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localized region far from the defect can be aligned with the potential in the same region

in a perfect crystal. The calculated band-edge distances from the reference energy in a

perfect crystal can then be used to align the band edges in the system containing the

defect. Alternatively, one can consider a deeper, core-level energy of an atom as a local

reference.

Another, more difficult problem arises with charged defects. In order to avoid

divergences in electrostatic energies, a popular solution is to introduce a homogeneous

neutralizing background charge to the supercell array, which enables the evaluation of

electrostatic (Coulomb) energies. This, however, introduces an electrostatic interaction

between the periodic charge distribution in the supercells and the background, which

vanishes only in the limit of infinitely large supercells. The influence of their fictitious

charge has to be subtracted in the end, and this is a highly nontrivial task.

Point defects induce lattice relaxation in the host lattice. The lattice-relaxation

pattern is restrained by the supercell geometry. The argument, often used in supercell

calculations, is that the ion displacement vanish near the borders of the supercell.

However, this does not necessarily guarantee that the long-range ionic relaxations are

correctly described, as the supercell symmetry itself may fix the positions of the

boundary atoms. According to elastic continuum theory, the strain field at large distances

from the point defect fall of as lrl’3 and the ionic displacements falls off as Irl’z. The

finite size of the supercell thus restricts also the ionic relaxations around the defect. The

relaxation pattern is truncated midway between a defect and its nearest periodic replica.

In the case of long-range relaxations this cutoff may be reflected dramatically close to the
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defect, as was demonstrated by Puska et al. [79] by detailed calculations for vacancies in

silicon.

Further comparison of the supercell to the finite-cluster and Green's function

methods reveals the following. The supercell and Green's function methods have a well-

defined electron chemical potential (they are coupled to a reservoir of electrons) where as

the cluster method does not. This has consequences for the treatment of ionization levels,

which is somewhat problematic for the cluster method. The finite-size effect is there in

the cluster method as well, as the clusters can contain spurious surface-related effects.

The Green's function method is mathematically elegant and in principle the best for

isolated defects, but its computational implementation is difficult in view of the accuracy

required for total electronic energies and derived quantities.

Finally, it is important to note that defect and impurity calculations should, as a

rule, be carried out using the theoretical lattice constant, optimized for the bulk unit cell.

This is crucial in order to avoid spurious elastic interactions with defects or impurities in

the neighboring supercells. The purpose is to investigate properties of isolated defects or

impurities in a dilute limit. If the volume of the defect-containing supercell is relaxed (in

addition to relaxing the positions of the atoms near the defect), the calculation would in

fact correspond to finding the lattice parameter of the system containing an ordered array

of defects at high concentration. In spite of these limitations, the supercell method has

been, extremely successful in predicting physical properties of defects in solids [74, 79],

so we are going to use it in this thesis.
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Chapter 3
 

Electronic Structure of Defects in

PbTe
 

3.1 General Introduction

A detailed microscopic understanding of the nature of the defect states in PbTe is

an old but a challenging problem. Naively, one expects to see bound shallow defect states

in the band gap (pinned to the valence band maximum or conduction band minimum)

when a Pb or a Te atom is replaced by either a donor- or acceptor-like impurity or by a

vacancy. However, it is known that, in narrow band-gap semiconductors like PbTe, one

does not see these shallow defect states but deep defect states (DDS) which can be

outside the band gap.[11-15]

One of the earlier attempts to understand the origin of deep defect states in PbTe

was made by Lent et al.[13] For substitutional defects in PbTe, they presented a simple

chemical theory for a large class of substitutional defects and vacancies in terms of the

atomic energy levels and tight binding concepts. Unfortunately, these calculations did not

take into account the potentials generated by the impurities in a self-consistent manner

and, therefore, were only qualitative in their prediction. In fact, an even earlier attempt to

understand the origin of vacancy-induced deep defect states in PbTe was made by Parada

and Pratt.[14] They used a Slater-Koster model [110] and Wannier function basis

constructed out of a finite number of PbTe bands. For Pb vacancies, they predicted defect
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states outside the band gap and were able to explain the low temperature n- and p-type

transport properties in nominally pure PbTe. The defect potential used in the Slater-

Koster model was assumed to be a constant and was not calculated self-consistently.

Therefore the precise positions of the defect states predicted by this calculation are not

expected to be quantitatively reliable. The other major efforts in understanding the

physics of deep defect states are for In-doped PbTe. Inhomogeneous mixed-valence

models for In and other group III impurities (like Ga and T1) have been proposed to

explain several experimental data.[17] In these models, In impurities are assumed to exist

in two valence states, one trivalent and the other monovalent, stabilized by strong

electronic and ionic relaxations. My recent calculations have cast some doubts on the

validity of this model.[18]

In this Chapter, I discuss the results of my calculations to understand the physics

behind the formation of deep defect states in PbTe using self-consistent ab initio

electronic structure calculations within density functional theory (DFT) and supercell

models. Only a few ab initio studies in narrow band gap systems (such as PbTe, PbSe,

etc.) have been made recently. One is by Bilc et al. [19] who have recently reported their

results on Ag and Sb substitutional defects in PbTe using all-electron full-potential

linearized augmented planewave (PP-LAPW) method.[20] Another is by Ahmad et

al.[18] who looked at the In impurity problem. Similar calculations have been carried out

by Edwards et al. [21] who looked at the Ge and Te vacancy and anti-site defects in GeTe.

The purpose of my thesis project is to extend the previous studies of the defects in PbTe

to different types of defects. The defects studied are: Pb and Te vacancies, Pb substituted

by monovalent atoms (Na, K, Rb, Cs, Cu), divalent atoms (s-type Zn, Cd, Hg and p-type
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Ge, Sn), or trivalent atoms (group III Ga, In, T1, and group V As, Sb, Bi), and Te

substituted by S, Se, or I. My main focus is to develop a systematic understanding of

these defect states as one goes across or down the periodic table to select different

impurity atoms. The results of this study have been recently reported.[18, 24, 50] The

arrangement of this chapter is as follows. In Sec. 2, I discuss the electronic structure of

PbTe. In Sec. 3, I describe the structural model and briefly review the method used to

calculate the electronic structure (The details are already given in chapter 2). In Sec. 4, I

present my results of calculations for Pb—site defects. In Sec. 5 results on Te-site defects

are presented. In Sec. 6, I discuss the impurity-impurity interaction issue and its

implications on the dilute defect limit. In Sec. 7, I discuss my theoretical results in the

light of recent measurements of therrnopower in several PbTe based compounds. Finally,

a brief summary is given in Sec. 8.

3.2 Electronic Structure of PbTe

The rock-salt structure semiconductors PbS, PbSe and PbTe are quite interesting,

they show a series of electronic anomalies relative to the usual II-VI semiconductors

(such as CdTe). For example, the direct gap occurs at the L point and the order of the

band gap and valence band maximum energies in going from S to Te are anomalous

(1'3“g [PbS] = 0.29 eV, Eg[PbSe] = 0.17 eV, Eg[PbTe] = 0.19 eV, at T = OK) [30]. The

band gap pressure coefficient is also anomalous, it is negative. Because of these

peculiarities and their practical applications, there have been many electronic structure

calculations in these compounds [25, 26, 27, 28, 29, 30]. Wei and Zunger [28] have

carried out extensive electronic structure calculations using local density approximation
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(LDA) [31] as implemented through the linearized augmented plane-wave (LAPW)

method [20]. They have argued that the above anomalous features can be ascribed to the

presence of the Pb s-band below the top of the valance band, setting up coupling and

level repulsion at the L point of the face centered cubic (fcc) Brillouin zone (Fig. 3.1).

Albanesi et al [29] have calculated the frequency dependent dielectric constant of PbSe

and PbTe using the electronic structure (obtained with LAPW) within both LDA and

generalized gradient approximation (GGA) [32]. They found a large dielectric constant

for PbTe in agreement with experiment. [33, 34]. Bilc et al have carried out extensive all

electron LAPW calculations within both LDA and GGA. The band structure results show

that PbTe has a direct band gap at the L point, but with a small gap value of ~ 0.09 eV at

the experimental volume Vexp [23]. The volume optimization increases the gap to ~ 0.19

eV in much better agreement with experiment. The GGA (LDA) optimal

volume Vopt correspond to 5% increase (decrease). The Orbital analysis shows that Te

and Pb p states strongly hybridize, suggesting covalent interaction between these two

atoms. They have also computed the ionicity of Pb and Te atoms according to Bader's

"Atoms in Molecules" theory [35]. The results show an ionic state of PbJ'O'MTe'O'64 which

is much smaller than that of the pure ionic model Pb+2Te_2. Therefore in PbTe covalent

interactions play an important role. The reduction in formal charges from 2(-2) to 0.64

(—0.64) is consistent with the large dielectric constant of PbTe.

3.3 Supercell Model to Calculate Defect Structure

Before we discuss the structural model used to study the impurity states, we

would like to briefly describe the quaternary systems one constructs in developing
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Figure 3.1 (a) fcc Brillouin zone of PbTe (b) Band structure of PbTe in fee Brillouin zone

at V0,”. [23]

therrnoelectrics starting from the binary compound PbTe and replacing Pb atoms by other

atoms. The new compounds are described by the formula RR'szn.2Te2n, where R and R’

are chosen to maintain charge neutrality. Here two divalent Pb atoms are replaced by one

monovalent (R) and one trivalent (R') atom. If R is divalent then R' is also divalent (for

example R=R'=Cd). The material is therefore charge compensated and most likely will

maintain its semiconducting character. One then adjusts the concentrations of R and R' to
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control the sign of the charge carriers. In a recent work, Bilc et al. [19] have discussed the

electronic structures of a series of charge compensated AngPb2n.2Te2n compounds (n=6,

9, 16) and also charge uncompensated compounds AngzmTeZn, Sbe2n.1Te2n (n=16)

where only one of the elements R or R' is present. They found resonant states overlapping

conduction and valence bands caused by Sb and Ag impurities, respectively. In this

chapter, we extend their results to a large class of defects, but focus on defects of one

type (either R or R'), investigating the electronic structure of RPbZMTeZn. We also carry

out similar calculations in compounds of the type MsznTeZn-1, where M is a defect at the

Te site. Our aim is to explore systematically the impurity-induced changes in the

electronic DOS as one goes down or across the periodic table.

We use a supercell model where the defects are periodically arranged in a PbTe

lattice (see Sec. 2.4). This corresponds to the formula RPb2n.1Te2n or MsznTezn-1 as

mentioned above. To increase the distance between the defects as much as possible (in

order to reduce the interaction between them) without increasing the size of the supercell

enormously we have chosen n=16. This corresponds to a unit cell containing 64 atoms

with the minimum distance between two defects being ~13A (see Fig. 3.2). Due to the

large dielectric constant of the host PbTe, we expect long-range Coulomb effects to be

strongly screened, thereby reducing the impurity-impurity interaction. However, short-

range interactions are still present. Before describing the details of our calculations we

would like to point out that there are some fundamental problems regarding the

inadequacy of using the supercell model to calculate the energy of isolated defect states

in semiconductors; [36] as discussed in Sec. 2.4. However, they are usually for extended

“shallow” impurity states and for charged defects. Since most of the defect states in
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Figure 3.2 Supercell model of RPb31Te32 where R is either a vacancy or an impurity atom.

Small balls are for Pb and Te, large balls are for R.

narrow band-gap semiconductors of our interest are of localized “deep” type, we expect

the supercell model to be reasonable. We discuss in details the supercell size dependence

of the defect states in Sec. 6 of this chapter.

Electronic structure calculations were performed within DFT using all-electron

FP-LAPW plus local orbital method [20] incorporated in WIEN2k. [37] We used the

generalized-gradient approximation (GGA) [32] for the exchange and correlation

potential. Scalar relativistic corrections were included and spin-orbit interaction (SOI)

was implemented using a second variational procedure. [38] Convergence of the self-

consistent iterations was performed using 20 k-points inside the reduced Brillouin zone to

within 0.0001 Ry (1.36 meV) with a cutoff energy of -6.0 Ry separating the valence and

the core states. For this initial survey, calculations were performed using the experimental
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lattice constant of PbTe, which is 6.454A, [39] and no relaxation (volume or internal)

studies were carried out. For a few systems, we also carried out calculations using the

projector augmented wave (PAW) [40] method incorporated in Vienna Ab-initio

Simulation Package (VASP) [41] to compare with the FP-LAPW results and also to

increase the impurities separation by going to larger supercells. The optimal lattice

constant of PbTe obtained from volume optimization (which is 6.55 A) was used in these

PAW calculations, and ionic relaxations were performed. I should mention here that

choosing between the experimental or optimal lattice constant should not change the

basic physics of the impurities states, since the difference between these two values is

rather small (~0.096A).

3.4 Pb-site Defects

Before presenting the results of the ab initio electronic structure calculations, we

discuss some basic physics of the PbTe system. In this compound Pb and Te 65 and 55

states are quite deep and the conduction and valence bands are formed primarily out of 6p

states of Pb and 5p states of Te respictively. The Pb-Te bonds have both covalent and

ionic character. The removal of one Pb atom or replacing it by a monovalent cation leads

to a local charge disturbance and alters the covalent bonding with the neighboring Te

(denoted as Te2) p states. As a result, the valence band states get strongly perturbed. One

expects acceptor-like states to appear near the top of the valence band. However, their

precise positions can only be obtained after a detailed self-consistent calculation. Also,

because of the local nature of the perturbation we expect the entire valence band region to

be affected. In the case of the monovalent Ag impurity, one has, in addition, the filled d
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states which interact with the Te p states and change the valence band. The Cd impurity,

although divalent like Pb, has a SS state that may give rise to new states near the bottom

of the conduction band. Indium (In) and other trivalent sp atoms may also give rise to a

bound 3 state below the valence band and therefore act more like a monovalent impurity

than a trivalent one. It is important to emphasize that simple shallow impurity-state

models [16] and Slater-Koster type models [110] that do not calculate the impurity

potential self-consistently [13-15,17], are not capable of describing the short-range

physics of these impurity states quantitatively. Only a carefiil self-consistent ab initio

calculation is able to do so. In this section (3.4) I focus on the cationic site defects. This is

because in several experimental systems of our interest, e.g., AngPb2n.2Te2n [7] and

Nao_95PbmeTem+2,[8] the Ag, Na and Sb atoms are located on the Pb-cation sites. The

removal of one Pb atom (i.e., creation of one vacancy at the Pb site) or replacing it by

another atom with different valence structure charge introduces a local charge

disturbance and alters the bonding with the neighboring Te p states. Due to the long-

range nature of the former and the short-range of the latter, we expect the entire valence

and conduction band states to get perturbed in the presence of the impurity. Although

anionic vacancies (discussed in Sec. 3.5) have been considered to play a significant role

in the transport properties of PbTe, substitutional defects at the anionic sites have been

less well-investigated in the past and there are plans for future investigation of these

defects.
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3.4.1 Pb Vacancy in PbTe

The total DOS of PbTe with and without Pb vacancy and the difference between the two

are shown in Fig. 3.3(a)-(c). These were calculated using 20 inequivalent k-points in the

cubic Brillouin zone. For the sake of comparison, we shifted (upward) the DOS of PbTe

by a small amount (~ 0.2 eV) so that the lower edge of the valence-band DOS of the

systems with and without Pb vacancy matched. We found that the first peak below the

valence band maximum (VBM) also matched after this shift. This small shift appears to

be reasonable since with this shift the Te core 5s bands (not shown in Fig. 3.3) also

matched perfectly. As we can see from Fig. 3.3(a)-(c), the entire valence-band and

conduction-band DOS get modified by the presence of the Pb vacancy. It is important to

note that the states near the bottom of both the valence and conduction band do not

change appreciably in the presence of the Pb vacancy. Since transport properties are

controlled by the states near the VBM and conduction band minimum (CBM), let us

focus on the band gap region within an energy range of i 0.5 eV about the center of the

band gap. We see that there is very little change near the bottom of the conduction—band

DOS whereas there is an increase in the DOS near the top of the valence band. We

analyze this increase in more detail below. From Fig. 3.3(a), we can clearly see that the

Fermi energy (at 0 eV) cuts through the valence band top and therfore Pb vacancies give

rise to holes as expected.

To see which atoms contribute to the change in the DOS near the VBM, we show

in Fig. 3.3(b) the difference in the partial DOS between PbTe with and without Pb

vacancy. There are six nearest-neighbor Te atoms of the Pb vacancy (denoted as Te2) and
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Figure 3.3 (a) The total DOS of PbTe with and without Pb vacancy, (b) the difference in

the partial DOS between PbTe with and without Pb vacancy where the six nearest

neighbor Te atoms of the Pb vacancy are denoted as Te2 and there are three other

inequivalent Te atoms (denoted as Tel, Te3, and Te4), and (c) Atomic spheres (Apat),

and interstitial components Api of Aptot. The energy origin in (b) and (c) is chosen to be

the top of the valence band of PbTe; whereas the energy origin in (a) is the highest

occupied Kohn-Sham single-particle state (which will be denoted as the Fermi energy) of

the system with defect.

 

 



three other inequivalent Te atoms (denoted as Tel, Te3, and Te4). Among the Pb

neighbors of the Pb vacancy, Pb2 is the Pb atom that bridges two Te2 atoms each being

the nearest-neighbor of one of the defect sites. In one supercell there are three Pb2 atoms

and twenty-eight other Pb atoms. Of the latter, there are four inequivalent (Pb3, Pb4, Pb5,

Pb6) lead atoms. Clearly the major contribution to the DOS increase near the top of the

valence band comes from the six nearest-neighbor Te2 atoms and we see that Te2 states

in the lower half of the valence band get pushed towards the upper half. This transfer of

the Te2 DOS is partially compensated by the downward shift of the DOS associated with

the other atoms. Also other Te atoms do contribute a small amount to the increased DOS

near the VBM.

It should be noted that, in FP-LAPW calculations, there is an appreciable DOS

associated with charges outside the atomic spheres, i.e., in the interstitial space (as

discussed in chapter 2). [37] In Fig. 3.3(c), we show the difference in the total DOS

(Apia), DOS associated with the charges inside the atomic spheres (Apat), and that

associated with the interstitial space (ApfiApmt-Apat). Apt and Apm have almost the same

energy dependence and are comparable in magnitude. We can interpret the peak in Aptot

near the top of the valence band [Fig.3.3(c)] as a vacancy-induced resonant state. This

should be significant in the hole-doped samples where these states will be involved in

charge and energy transport. The fact that Pb2, Tel, Te3, and Te4 contribute very little to

Aptot suggests that the vacancy-induced resonant states are well localized and hence

weakly interacting with each other.

It is interesting to compare our results with those of Parada and Pratt.[14] They

found that the perturbation due to a Pb vacancy was not strong enough to drive any levels
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out of the Te p bands. The Pb 5 state associated with the vacancy site was driven about 3

eV above the bottom of the conduction band, hence of no significance for transport. A

doubly degenerate state was driven out of the Te 3 band but only by about 1 eV, hence it

was occupied by two Te s electrons. As a result, a Pb vacancy creates two holes in the Te

p valence band and leads to p-type conduction. These findings are supported by our ab

initio calculations. However, the subtle effects such as the DOS enhancement near the top

of the Te p valence band which can affect the thermopower of holes was not found in this

earlier study.

3.4.2 Monovalent impurities (Na, K, Rb, Cs, Cu, Ag) in PbTe

Now let us discuss the monovalent impurities. They should provide a weaker

perturbation compared to the Pb vacancy because the nominal charge difference is 1. In

Fig. 3.4, instead of giving the total DOS, we only show the difference (Aptot). We find

that K, Rb, Cs, Cu and Ag all show peaks near the top of the valence band, just like a

vacancy. Na is anomalous, it does not seem to change the DOS near the valence band top,

but shows an increase (as compared to other three alkalis) near -3.2 eV. The major

difference between Cu, Ag and the alkalis is seen near the bottom of the valence band in

the energy range (-2, -1) eV for Cu and (-4, -3) eV for Ag. This is due to the Cu and Ag d

states hybridizing with the Te p bands. We will further discuss these results later in Sec.

IV when we compare our theoretical results with experiment. We find that the valence 5

state of the alkalis are all above the valence band, hence all of them donate one electron

to the system. In contrast to the suggestions made in Ref.13, we find that Cs behaves just

like Na in this respect. We should note that even if the alkali atoms donate one electron,
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when they replace Pb (which is divalent), they give rise to one hole per impurity and

should behave like accepter under ideal conditions.
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Figure 3.4 The difference in the total DOS (Aptot) between PbTe with and without

monovalent impurities: Na, K, Rb, Cs, Cu, and Ag. The energy origin (0 eV) is chosen to
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3.4.3 Divalent impurity (Zn, Cd, Hg, Sn, Ge) in PbTe

There are two types of divalent impurities: s-type (Zn, Cd, and Hg) and p-type (Sn

and Ge). The valence configurations of the s-type impurities are 452 (Zn), 5.92 (Cd) and

652 (Hg); whereas those for the p-types are 4p2 (Sn) and 5p2 (Ge). The valence state of

divalent Pb is of course 6p2. Our result for Zn, Cd and Hg are given in Fig. 3.5 and 3.6.

We find that the s-type impurities introduce resonant states near the bottom of the PbTe

conduction band and there are three major changes in the DOS: (i) an enhancement of the

DOS near the bottom of the conduction band caused by a resonant state, (ii) a reduction

in the DOS near the top of the valence band within an energy range ~0.25 eV, and (iii) an

enhancement of the DOS near the bottom of the valence band [see Fig. 3.5 and Fig.

3.6(a)-(d)]. These three changes can be seen clearly if, for example, one looks at the Cd 3

character in Fig. 3.6(d). The Cd atom introduces an s-like state into the system. This state

strongly hybridizes with the p orbitals of the six neighboring Te2 atoms and the bonding

state appears at about -4 eV [see Fig. 3.6(c) and 3.6(d)]. The corresponding anti-bonding

state appears as a resonant state near the conduction band bottom, reflecting the deep

defect nature of these impurity states. The states near the top of the valence band (anti-

bonding between Pb and Te2 p’s) are depressed when Pb is replaced by Cd. Because of

the resonant state near the bottom of the conduction band, we expect electron-doped Cd

systems to exhibit large thermopower. Its experimental implication will be discussed

later. In contrast to the s-type divalent impurities, the p-type impurities, Sn and Ge, do

not alter the DOS near the band gap (see Fig. 3.7). They behave very much like Pb near

the band gap region, which is understandable since Pb is also a p-type divalent atom.
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Figure 3.5 The difference in the total DOS (Aptot) of PbTe with and without s-type

divalent defects: Zn, Cd and Hg. The energy origin (0 eV) is chosen to be at the top of the

valence band of PbTe.
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3.4.4 Trivalent impurity (Ga, In, T1, As, Sb, Bi) in PbTe

Like the divalent case, we also have two types of trivalent impurities: group III

(Ga, In, T1) and group V (As, Sb, Bi). The valence configurations of the group III

trivalent atoms are 452 4p', 55“2 5p1 and 6s2 6p1 for Ga, In and T1, respectively; whereas

the valence configurations of the group V trivalent atoms are 4p3, 5p3 and 6p3 for As, Sb

and Bi, respectively.

Indium and other group III impurities (gallium and thallium) in IV-VI

semiconductors have been known to exhibit anomalous behavior. [42, 43] For example

they are n-type in PbTe and p-type in SnTe. When PbTe is doped with group III

impurities, one observes the pinning of the Fermi energy and mixed-valence behavior.

[17] The same impurity can be either donor or acceptor depending on the specific

composition of the semiconductor. The Fermi-level stabilization within the band gap

appears to be essential for understanding the unusual behavior of these systems and also

for their practical application. Indium metal is nominally trivalent, and hence when In

replaces a divalent Pb, one expects an n-type donor. This assumes that the number of

states in the Te p band does not change when an In impurity is present. If the In s-state is

strongly bound and lies below the valence p-band, then In will behave as an acceptor

because it gives only one electron to the Te-p band instead of needed two. According to

the current theoretical picture, these group III impurities exist in two valence states in the

solid, one trivalent and the other monovalent (referred to as s°p3 and 32pl states

respectively where 3 refers to an impurity s-state and p refers to a band like p-state the

precise relative of which is not known), an inhomogeneous mixed-valence picture. [44,

45] The divalent impurity state (s'pz) is an excited state. The trivalent and monovalent
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states (two holes or two electrons in the impurity s-state) are degenerate and stabilized by

the negative correlation energy [44, 45] as in the well-known negative-U Anderson

model. [46] Thus half of the In impurities are trivalent On“) and the other half are

monovalent On“). The Fermi level gets pinned between the empty and doubly occupied

single particle defect states.

As I will show, my ab initio calculations give a different picture of the deep

defect states associated with In and similar trivalent impurities in PbTe. In Fig. 3.8(a) and

(b), we plot, respectively, the total density of states (DOS) for PbTe and InPb31Te32 and

the difference (after making a small relative rigid shift by 0.1 eV so that the Pb 6s core

state and the highest peak in the valence band match). Clearly, we see a band of states

split off below the valence-band minimum and a band of states split off above the

valence-band maximum (VBM) and lying in the band gap region. The integrated DOS in

both these bands of states is 2 (including spin degeneracy). The lower band is doubly

occupied whereas the upper band is half full. The width of these two bands is ~ 0.25 eV.

We will refer to these bands as “localized” bands. What is most interesting is that the

Fermi energy (at 0 eV) is at the middle of the upper “localized” band (the one in the gap).

This can be easily understood if the Te-p valence band looses one state per/In impurity.

Naively, one can say that the In 5s state is strongly bound and appears below the valence

band minimum and is occupied by two In valence electrons. If the number of states in the

valence band remained same as in PbTe, then the third In valence electron will go to this

band, since Pb gives two electrons to fill the valence band in PbTe. The Fermi energy

will be in the valence band giving 1 hole per In. The only way the Fermi energy can

move to the upper “localized” band in the gap is if the valence band looses 1 state (2
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Figure 3.8 (a) The total DOS of PbTe with and without In impurity, (b) their difference

Aptot, (c) partial DOS per Te associated with nearest neighbor Te atoms, and (d) In partial

DOS of s-character. The Fermi energy of PbTe with In impurity is at the energy origin (0

eV).
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including spin). This is precisely what happens, and the reason for the observed Fermi

surface pinning in the band gap in In doped PbTe is a strong interaction between In and

neighboring Te orbitals which removes one state from the valence band and gives rise to

a new hybridized state in the gap, a classic example of a deep defect state (DDS) [11].

In order to understand the parentage of the two “localized” bands, we plot in Fig.

3.8(c) the partial DOS associated with Te atoms which are neighbors of In. Clearly, the

Te p valence band of PbTe has changed dramatically in the presence of In. The two new

“localized bands” have nearly similar Te p character. In Fig. 3.8(d), we show the In 3

character which contribute primarin to the “localized bands”, the lower one has more In

s-character. In addition, in FPLAPW calculations there is a substantial contribution to the

charge density from the interstitial regions. The atomic radii have been chosen to be 1.53

A for both In and Te and the distance between In and its nearest neighbor Te is 3.23 A,

leaving a substantial interstitial charge distribution. The upper “localized” band has more

interstitial contribution, hence it is more delocalized. Thus the “localized” bands consist

of strongly hybridized In s and Tep states. The lower one can be thought of bonding state

between In s and neighboring Te p states and the upper one is the corresponding

antibonding state.

Results for Ga and T1 atoms show that their deep defect states are resonant states

near the top of the PbTe valence band (Fig. 3.9). The difference between In and the other

two may explain the experimental anomalies seen in the case of In impurities in PbTe

such as [17]. The resonant states at the top of the valence band for the Ga and T1 is

caused by the overlap of the upper localized band of states with the states near the top of

the valance band. We show, in Fig. 3.10 (a)-(d), the total and partial DOS of PbTe with
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Figure 3.10 (a) The total DOS of PbTe with and without Ga impurity, (b) their difference

Aptot, (c) partial DOS per Te associated with nearest neighbor Te atoms, and ((1) Ga

partial DOS of 3 character. The Fermi energy of PbTe with Ga impurity is at the energy

origin (0 eV).
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and without Ga impurity, the difference Aptot, and 5 character of the partial DOS of Ga

impurity. Results for T1 impurity are similar except that the lower localized band (hyper

deep state HDS) is further below the valence band minimum. The “hyper-deep” level at

about -5.0 eV is predominantly impurity (Ga)-like whereas the resonant state centered

around 0 eV is predominantly host (Te2)—like, which is consistent with the picture

proposed by Hjalmarson et al. [48] The peak of the resonant state is about 0.25 eV below

the VBM. This is consistent with the current understanding of the Tl-doped PbTe systems

(see Ref. 17 and references therein). According to our calculations, Ga and T1 impurities

should show rather similar behavior.

Results for group V impurities (As, Sb and Bi) show that they introduce resonant

states near the bottom of the conduction band (see Fig. 3.11). In contrast to the group III

impurities which have s and p valence electrons, the resonant states for these p valence

electron impurities are rather broad, the sharpest structure being for As. In Fig. 3.12(a)-

(d), we show the total and partial DOS of PbTe with the As impurity. The resonant state

is a mixture of the p states of As and the p states of the neighboring Te2 atoms in almost

equal proportions.
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Figure 3.11 The difference in the total DOS (Aptot) between PbTe with and without

trivalent group V impurities: As, Sb, and Bi. The energy origin (0 eV) is chosen to be at

the top of the valence band of PbTe.
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3.5 Te—site defects

As in the case of Pb-site defects, the removal of one Te atom (i.e., creation of one

vacancy) or replacing it by another atom introduces a local charge disturbance and alters

the covalent bonding with the neighboring Pb (denoted as Pb2) p states. As a result, we

expect both the valence and conduction bands states to get strongly perturbed.

3.5.1 Te vacancy in PbTe

The total and partial DOS of PbTe with and without vacancy and the difference

Aptot are shown in Fig. 3.13(a)-(c). For the sake of comparison, we shifted (downward)

the DOS of PbTe with defect by ~ 0.455 eV such that the core bands match perfectly. As

we can see, the entire valence and conduction band DOS get perturbed by the vacancy.

Since transport properties are controlled by the states near the Fermi energy (at 0 eV), let

us focus on this region. As seen in Fig. 3.13(a)-(c), new states appear in the band gap

region and near the bottom of the conduction band in the energy range -O.5 to 0 eV.

Partial DOS analysis indicates that these states are predominantly of Pb p character [see

Fig. 3.13(c)]. The valence band looses 6 states (including spin) per Te vacancy. These 6

states are occupied by 4 Te electrons and 2 Pb electrons. Removal of Te atom takes 4

valence electrons away leaving two Pb valence electrons. As a result, two Pb electrons

occupy the new states mentioned above. The system then behaves like an n-doped

system. Our picture is qualitatively consistent with that of Parada [15] who argued that

each Te vacancy causes 4 states (8 states including spin) to be removed from the valence

band and to move near the conduction band bottom. This picture includes the Te 53 core

state. Since Te atom has 6 electrons, the extra two electrons (coming from Pb) occupying
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the 8 states in the valence band (in PbTe) have to move into the conduction band when a

Te vacancy is present resulting in an n-type conduction. However, the detailed nature of

the DOS near the bottom of the conduction band could not be obtained in earlier non-self

consistent calculations.[15]
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3.5.2 S and Se impurities in PbTe

S and Se, like Te, need two electrons to fill their valence p shell. Thus one expects

mainly the valence band to be perturbed when one replaces Te by S or Se and there

should be a small perturbation of the conduction band (indirectly through changes in the

hybridization effects). This is clearly seen in Fig. 3.14(a)-(c) and Fig. 3.15(a)-(c). The

change in the valence-band DOS takes place over the entire valence-band energy range

with a reduction in the DOS in the energy range of 0.5 eV from the top of the valence

band. S and Se p states appear in the entire valence-band region peaking around 1.2-1.5

eV below the VBM [Fig. 3.14(d) and Fig. 3.15(d)]. The conduction band is hardly

affected within about 1.0 eV from its minimum.

3.5.3 I impurity in PbTe

Iodine (1) appears to act as an ideal donor in PbTe, in agreement with what is

known about the halogen impurities in PbTe.[17, 49] It does not perturb the states either

near the top of the valence band nor near the bottom of the conduction band as can be

seen in Fig. 3.16(a)-(d). The major change in the DOS occurs near the bottom of the

valence band around -5.0 eV (predominantly Ip-character), near -1.1 eV and +1.0 eV due

to changes in the Pb p hybridization effect. The Fermi energy is shifted to the conduction

band making it an ideal n-type impurity (donor), consistent with experiments.
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ofp character. The Fermi energy of PbTe with I impurity is at the energy origin (0 eV).
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3.6 Impurity-impurity interaction and the dilute defect limit

In the calculation of energy of the defect states using the supercell model

containing 64 atoms, the defect-defect interaction appears to be appreciable, because the

width of the so called localized bands in the In case, for example, is ~ 0.25eV. It is

therefore important to understand how much of the defect physics remains as one

increases the distance between the impurities (when one goes to the dilute limit). Clearly

the spectral weight of the impurity-induced changes in the DOS will scale with impurity

concentration. In addition, we expect the impurity bandwidth to decrease. But the most

significant question is how the position of the impurity band center changes relative to

the conduction or valence band extrema. In order to see how the impurity-impurity

interaction affects the DOS when two impurities are closer or farther than 13.16 A, we

have studied two different systems. One is Insz31Te32, i.e., two impurities in a (2x2x2)

supercell, where one In is located at the corner and the other at the center of the supercell,

the distance between two In impurities being 11.345 A. The second is InPmeelog with

In located at the comer of a (3x3x3) cubic supercell, the distance between the two In

impurities being 19.65 A. For these two systems, we used the PAW [40] method since it

is’more computationally efficient than FP-LAPW [20] in handling large supercells like

the (3x3x3) one containing 216 atoms. For the sake of clarity, we present here the results

of calculations without the spin-orbit interaction (801).

In the case of Insznge32, the bandwidth of the hyper-deep defect state is the same as

that of InPbnge32 (see Fig. 3.17) [50]. This can be understood using a symmetry

argument. Since the impurity states have s-symmetry and the dominant contribution to

the overlap between two impurity states comes through Te-p and Pb-p orbitals, one
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expects the hopping amplitude between the two impurity states (in an effective tight-

binding model) to be small due to the 90° relative arrangement of the overlap paths

connecting the two impurities. In the case of InPb107T6103, our main results are

summarized in Fig. 3.18 and Table 3.1 [50]. As we had expected, both the hyper-deep

and deep defect states get narrower since the overlap between the In atoms becomes

smaller. The bandwidths (as measured by Ez-El) change from 0.323 to 0.049 eV for the

hyper-deep (a factor of 6.5 reduction) and from 0.654 to 0.120 eV for the deep defect

state (a factor of 5.45 reduction). In order to see how the changes in the impurity

separation affects their positions of the impurity band centers, we have used the bottom

of the valence band (conduction band) as the reference point EOV (Ecc) for the hyper-deep

(deep) defect states, since the valence and conduction bands are expected to be less

sensitive to the size of the supercell than the impurity states. As seen in Table 3.1, E0v

changes by only 0.001 eV and E0c by 0.036 eV in going from (2x2x2) to (3x3x3)

supercell; the energy separation between the hyper-deep level and Em, (as measured by

Bay-Boy) increases from 0.425 to 0.449 eV, a rather small change of 0.024 eV (5.6%

change); and the corresponding separation between the deep state and EOC (as measured

by Eav-EOC) increases from 0.511 to 0.525 eV, a yet smaller change of 0.014 eV (2.7%).

We then speculate that if we increase the distance between the impurities further, the

main effect will be to reduce the impurity bandwidths without further changing their

positions (peaks) with respect to the band minima. Therefore we can use the results of

smaller supercell calculations to discuss the qualitative physics.
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Figure 3.17 The total DOS of PbTe with In impurity obtained in PAW calculations using

two different models: InPb31Te32 with one In impurity at the comer, and Insz30Te32 with

one In at the corner and the other one at the center of a (2x2x2) supercell; the distance

between the two In impurities being 13.1 A and 11.345 A, respectively. The two lines are

almost identical except at ~-0.5 eV and ~4.5 eV where the integrated DOS of the deep

and hyper-deep defect states of In2Pb30TC32 are larger than those of InPb31Te32 by a factor

of 2. The Fermi energy is at the top of the upper localized band formed by the deep defect

state. [50]
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[InPb107Temg]; the distance between the two In impurities being 13.1 A and 19.65 A,

respectively. The Fermi energy is at the top of the upper localized band formed by the

deep defect state. [50]
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(2x2x2) supercell (3x3x3) supercell

 

Hyper-deep state Deep state Hyper-deep state Deep state

 

 

 

 

 

E0" E0c -0077 4.903 -0.076 4.939

El -0340 4.065 -0549 4.354

E2 -0.663 4.719 -0.500 4.474

W=E2-E1 0.323 0.654 0.049 0.120

E“: 0.32.451)” .0502 4.392 -0525 4.414

 

Table 3.1 Characteristics of the hyper-deep and deep defect states in PbTe with In

impurity. Results obtained in PAW calculations using two different supercell sizes,

(2x2x2) supercell (64 atoms/cell) and (3x3x3) supercell (216 atoms/cell). Em, and Eco are

respectively at the bottom of the valence band (used as the reference for the hyper-deep

states) and at the bottom of the conduction band (used as the reference for the deep

states). E1 and E2 are respectively at the top and the bottom of the lower (upper) localized

band formed by the hyper-deep (deep) defect state. W and EN are respectively the width

and the average position of the lower and upper localized bands. All these quantities are

measured in eV.

3.7 Comparison with Experiments

One of the remarkable properties of the lead chalcogenide group of narrow band-

gap semiconductors is that they have a range of non-stoichiometry accompanied by either

Pb or Te vacancies. Our theoretical results predict that Pb vacancies produce p-type PbTe

whereas Te vacancies produce n-type PbTe, which are consistent with the earlier model

calculations.[14, 15] However, in contrast to these earlier semi-empirical or model

studies, present ab initio calculations predict significant changes in the DOS near the

band gap region, which should affect the transport properties quantitatively.
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As regards monovalent impurities, Poudeu et al. [8] found that Nao_95PbmeTem+2

(m=20) was a p-type semiconductor with high thermoelectric FOM, ZTmax of ~ 1.7 at

650K. The observed p-type behavior is consistent with our ab initio calculations and what

is known about Na and Li impurities in PbTe. To approach a Na concentration closer to

that for m=20 compound (NaSbemTem+2), we add one more Na atom at the middle of

the 64 atom super cell. The calculation shows that the DOS in the region of the band gap

does not change by this addition. Thus one can treat the NaogstzoSbTezz as basically

PbTe doped with holes. Its therrnopower should therefore be positive.

The behavior of trivalent impurities such as In, Ga, Tl has been both interesting

and puzzling. Gelbstein et al. [42] have recently argued that the thermoelectric property

of In-doped PbTe can be understood in terms of the existence of deep-lying states

generated by In-doping. We find that In not only introduces deep defect states in the band

gap (perhaps overlap with the bottom of the conduction band) but also strongly reduces

the DOS near the top of the valence band. This results in the reduction in the minority

(hole) contribution to therrnopower both due to DOS reduction and annihilation of the

holes by electrons occupying the localized state in the gap. The net effect can be an

increased n-type therrnopower, as seen in [42].

As, Sb, and Bi give rise to resonant states near the bottom of the conduction band.

Although this resonant state may not take part directly in transport properties because

they are at least 0.5 above the band bottom, they indirectly affect the transport properties

by increasing the DOS near the bottom of the conduction band. This was pointed out in

Fig. 3.11 and Fig. 3.12. The increased DOS can in principle give rise to an increased

therrnopower in n-type systems. A simple calculation [51] of therrnopower by assuming
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energy-independent relaxation time showed that room temperature therrnopower of

AngPb2,..2Te2n could be large, as seen experimetally.[7] However, detailed calculations

of transport coefficients taking into account the changes in band structure (caused by the

Sb induced resonant states) and energy dependent scattering indicates that this

enhancement of therrnopower is not true in general but depends on the carrier

concentration and temperature range studied.[52]

3.8 Summary

In summary, my ab initio electronic structure calculations in Rszn-1TeZn (n=16),

where R is a vacancy, or monovalent, divalent, or trivalent atom, show that when a Pb

atom is substituted by R, the DOS gets perturbed over the entire valence and conduction

bands. In addition, there are major changes in the DOS near the band gap region for most

R. This should have significant impact on the transport properties of LAST-m compounds

for m z 18. We find that Na does not change the DOS within 0.5 eV of the band

maxima; thus it is an ideal acceptor. In contrast, other alkali atoms and Ag and Cu give

rise to an increase in the DOS near the top of the valence band and negligible change in

the DOS near the bottom of the conduction band. Hg, Cd, Zn give rise to strong resonant

state near the bottom of the conduction band and suppress the DOS near the top of the

valence band (which is good for n-type therrnoelectrics). Group V (As, Sb and Bi)

impurities introduce resonant states near the bottom of the conduction band and should be

good for n-type thermoelectrics. In contrast, the trivalent impurities (Ga, In, and T1)

either introduce bound states in the gap or resonant states near the top of the valence

band.
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Te vacancy also has a strong effect on the DOS of PbTe near the band gap region.

New states appear in the band gap below the CBM, these states comprise primarily of the

p states of Pb neighboring the vacancy. In contrast, the Pb vacancy increases the DOS

near the top of the valence band but only by a small amount. Te vacancy should be n-type

whereas Pb vacancy should be p-type. Iodine appears to be an ideal donor, it does not

change the DOS of PbTe near the band gap, just shifts the Fermi energy to the conduction

band. The divalent atoms S and Se also do not change the DOS near the CBM. There is

however some depletion of the DOS near the VBM. These results should have important

implications in the thermoelectric properties of, e.g., the n-type ternary compound

PbTeHSx, [53] where one can synthesize mixed Te/S systems without appreciably

affecting the conduction-band states and hence the n-type charge and energy transport.
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Chapter 4
 

Electronic Structure of Defects in

SnTe
 

4.1 General Introduction

Although the electronic structures of IV—VI semiconductors such as PbS, PbSe

and PbTe [18, 19, 23, 28, 29] have been extensively studied in past using a large variety

of methods (both empirical and ab initio), there is very little information about the

electronic structure of SnTe using ab initio first principles electronic structure techniques

excepting for only one calculations by Okoye [80]. Earlier non ab initio band structure

calculations for SnTe have been carried out using many different techniques which

include the empirical pseudopotential method [81, 82], the augmented plane wave

method [83], the orthogonalized plane wave method [82] and the improved

pseudopoential method [84]. All these calculations give results that show several

common features but they differ in detail in comparison with experimental data.[80]

Okoye has recently carried out an ab initio band structure calculation in SnTe using the

full potential linearized augmented plane wave (PP-LAPW) method within the

framework of the density functional theory (DFT). [80] His calculations have been

performed with and without spin-orbit interaction (SOI); he found that the inclusion of

SO coupling effects generally improved the agreement between the parameters studied

(band gap, lattice constant, bulk modulus) and the experiment data. No defect structure
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calculations in SnTe using ab initio methods have been done to our knowledge. In this

Chapter, we discuss the results of our attempts to understand the physics behind the deep

defect states formed by different types of defects in SnTe using self-consistent ab initio

electronic structure calculations within DFT. The purpose of this work is to develop a

systematic understanding of the defect states for different types of impurities (Sn and Te

vacancies, substituting for Sn: Ag, Cd, In and Sb) and compare with those obtained in

PbTe (Chapter 3). The arrangement of this chapter is as follows. In Sec. 2 I discuss the

electronic structure of SnTe. In Sec. 3, the structural model and the method used to

calculate the electronic structure are discussed briefly. In Sec. 4, I present the results for

different type of impurities in SnTe. Finally, a brief summary is given in Sec. 5.

4.2 Electronic Structure of SnTe

SnTe crystallizes in the rock salt (NaCl) structure. The experimental lattice

constant for SnTe is 6.327 A. [85] SnTe has a direct minimum energy band gap of 0.23

eV [86], and as in PbTe the gap occurs at the L point in the face centered cubic (fcc)

Brillouin Zone (Fig. 4.1). The theoretical band gap (with SOI and using GGA) is

E9 = 0.212 eV [80]. Orbital analysis shows that Te and Sn p states strongly hybridize,

suggesting covalent interaction between these two atoms. The valance band has more Te

p character whereas the conduction band has more Sn p character. The DOS of SnTe

shows that the Sn s-band overlaps with the valance band, as shown in Fig. 4.2, unlike the

Pb s-band in PbTe, which lies below the valence band minimum by ~ 0.8 eV. This is due

to the larger relativistic effects (Darwin and mass velocity correction) in Pb.
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Figure 4.1 Electronic energy band structure of SnTe calculated using GGA including

SOI.[80]
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Figure 4.2 Total Density of state of SnTe calculated using GGA including 801.

4.3 Defects in SnTe

To model the impurities and the vacancy we have used the 2x2x2 supercell model

consisting of 64 atoms (see Fig. 3.2). We choose the defects to be at the origin of the

supercell with separation of two lattice constants (12.654 A) between the defects.

Convergence of the self-consistent iterations was performed using 10 k-points inside the

reduced cubic Brillouin zone (for cubic supercell) to within 0.0001 Ry (1.36 meV) with a

cutoff -6.0 Ry between the valance and the core states. For all calculations we use the

experimental lattice constant of SnTe.

The removal of a Sn atom (vacancy) or replacing it by a monovalent or trivalent

cation introduces a local charge disturbance and alters the covalent bonding with the

neighboring Te (denoted as Te2) p states. As a result the valence band and conduction
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band states get strongly perturbed. One expects acceptor-like states to appear near the top

of the valence band or donor like states near the bottom of the conduction band, whose

precise positions can only be obtained after a detailed self consistent calculation. Also

because of the local nature of the perturbation we expect the entire valence band and

large part of the conduction band region to be affected. It is important to emphasize that

simple shallow impurity state models may not be able to describe the short range physics

of these impurity systems, as justified in PbTe case. Only a careful self consistent ab

initio calculation will be able to do so.

4.3.1 Sn vacancy in SnTe

The total DOS with one Sn vacancy, without Sn vacancy and the difference

between the two are shown in Fig. 4.3 (a,b). For the sake of comparison we shifted the

DOS of the SnTe upward by ~ 0.25 eV so the core bands Te-s band matched perfectly.

As we can see the entire valence band and conduction band density of states (up to 2 eV)

get modified in the presence of the vacancy. Since transport properties are controlled by

the states near the top of the valence band and the bottom of the conduction band we will

focus on the changes near band gap region within an energy range of :1: 0.5 eV. We see

that there is little change near the bottom of the conduction band DOS whereas there is an

increase in the DOS near the top of the valence band. In order to see which atoms

contribute near the top of the valence band DOS we show the difference in the projected

DOS Ap = p (with defect) — p (SnTe) associated with six Te nearest neighbor neighbors

of the vacancy in Fig 4.3 (c). The major contribution to the increase comes from the six

nearest neighbor Te atoms and we see that Te states near the bottom part of the valence
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Figure 4.3 (a) The total DOS of SnTe with and without Sn vacancy, (b) their difference

Apm, and (c) partial DOS per Sn associated with nearest neighbor Te atoms. The Fermi

energy of SnTe with Sn vacancy is at the energy origin (0 eV).
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band get pushed towards the top. This shift is partially compensated by the DOS

associated with the other atoms. Also other Sn and Te atoms do contribute to the

increased DOS near the valence band maximum. From Fig. 4.3(a), we can clearly see that

the Sn vacancies give rise to holes as expected. A comparison between the Sn vanacny in

SnTe with Pb vanacny in PbTe, we can see that Sn vacancy perturbs the conduction

bottom (reduction in the DOS in the energy range 0.5-1.0 eV), whereas Pb vacancy in

PbTe does not perturb the conduction band (see Fig. 3.3).

4.3.2 Te vacancy in SnTe

The total and partial DOS of SnTe with and without Te vacancy and the

difference Apm. are shown in Fig. 4.4(a)-(c). For the sake of comparison, we shifted

downward the DOS of SnTe with defect by ~ 0.455 eV such that the core bands match

perfectly. As we can see, the entire valence and conduction band DOS get perturbed by

the vacancy. New states appear in the band gap region and near the bottom of the

conduction band in the energy range -0.5 to 0 eV but clser to the valence band maximum

compared to PbTe case (see Fig. 3.13). Partial DOS analysis indicates that these states are

predominantly of Sn p character [see Fig. 4.4(c)]. For each Te vacancy, the valence band

looses 6 states (including spin). These 6 states are occupied by 4 Te electrons and 2 Sn

electrons. Removal of Te atom takes 4 valence electrons away leaving two Sn valence

electrons. As a result, two Sn electrons occupy the new states appearing above the

valence band. The system then behaves like an n-doped system.

84



100 

 

 

CE: , (a) + SnTe with Te vacancy

O 80 . SnTe

> .

Q 60

.33 . l i“: '1»m l“ 1' I i! I '3'

E 40 - i \ ‘ *

co j l '
o 20 4 f I

‘

D 0 r . - f ,‘L. -    
 

 

 

 
      

cf; 20- (b) Difference in total DOS

0

E 10- /

9 * l 1.9, 0 A AA _

s WVVVV
w
v _104

H

O .
H

o. -20-

< . 1 - .

-6 -5 -4 -3 -2 -1 0 1 2

1.0 

. ((3) Sn partial DOS .

0,81 —*— SnTe with Te vacancy 3

. —SnTe I! j

l
1

. j l. ‘ ' ‘ '

it: I} M J” i.

’0’ ~

.
0

a
)

 .
0
m  J  .

0
o I V I

'-5 4'53'32'310

Energy [eV]

Figure 4.4 (a) The total DOS of SnTe with and without Te vacancy, (b) their difference

Aptot, and (c) partial DOS per Te associated with nearest neighbor Sn atoms. The Fermi

energy of SnTe with Te vacancy is at the energy origin (0 eV).

A
d

N

P
a
r
t
i
a
l
D
o
s

(
s
t
a
t
e
s
/
9
V

c
e
l
l
)

0

.
I
:

0
,
-

85



4.3.3 Ag impurity in SnTe

Ag is a monovalent impurity, it provides a weaker perturbation (changes the ionic

charge by 1) compared to the Sn vacancy (change the ionic charge by 2). In Fig. 4.5 (a,b),

we plot the total density of states (DOS) for Sn32Te32 and AgSnnge32 and their difference

(after making a small relative rigid shift by -0.326 eV so that the Te 3 core band match

perfectly). We find that Ag impurity perturbs the valence band states, within energy

range (-4 to -3 eV), due its core d states hybridizing with the Te p bands. The difference

in the total DOS with and without Ag impurity shows a small peak near the top of the

valance band (similar to PbTe- see Fig. 3.4). Since the s state of the Ag is above the

valance band, Ag donates one electron when it replaces Sn (which is divalent), it gives

rise to one hole per impurity and hence acts as an acceptor.
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Figure 4.5 (a) The total DOS of SnTe with and without Ag impurity, (b) their difference

Apmb. The Fermi energy of SnTe with Ag impurity is at the energy origin (0 eV).
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4.3.4 Cd impurity in SnTe

Cd is a divalent impurity, the valence configurations of Cd is 532 whereas the

valence state of divalent Sn is 5p2. Naively, one can say when Cd replaces Sn, one

expects the Fermi energy position to be unchanged (as in the case of SnTe), if the number

of states in the valence band remains the same as in SnTe. Our ab initio calculations give

a completely different picture when Cd substitutes for Sn in SnTe. In Fig. 4.6(a)-(d), we

show the total and partial DOS of SnTe with Cd impurity. The Ferrni energy lies in the

conduction band. The only way the Fermi energy can move to the conduction band is if

the valence and the Sn 3 bands loses 2 state (4 including spin) to the conduction band.

This is precisely what happens, and the reason for the observed Fermi energy in the

conduction band in Cd doped SnTe is a strong interaction between Cd and neighboring

Te orbitals which removes one state from the valence band and gives rise to a new

hybridized state near the bottom of the conduction band. The integrated DOS of the

valence and Sn 3 bands show a loss of 2 states (4 including spin). One of these two states

is from missing Sn 5s2 state (two electrons) and the other state moves to the conduction

band giving rise to a new hybridized state near the bottom of the conduction band.

Because of the resonant state near the bottom of the conduction band, we expect electron-

doped Cd systems to exhibit large therrnopower. Cd in PbTe, as discussed in chapter 3,

also shows resonant states near the bottom of the conduction but in contrast to SnTe the

Fermi energy in PbTe remains in the gap, below the resonant state. This difference is

intriguing and more careful calculations are needed to understand the physics behind the

major difference of Cd defect in PbTe and SnTe.
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Figure 4.6 (a) The total DOS of SnTe with and without Cd impurity, (b) their difference

Apt“, (c) partial DOS per Te associated with nearest neighbor Te atoms, and ((1) Cd

partial DOS of s-character. The Fermi energy of SnTe with Cd impurity is at the energy

origin (0 eV).
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4.3.5 Sb impurity in SnTe

Sb is a trivalent impurity, the valence configurations of the Sb is 5p3, The valence

state of divalent Sn is 5p2. Results for Sb impurity show broad resonant states (width ~1

eV) near the bottom of the SnTe conduction band. In Fig. 4.7(a)—(d), we show the total

and partial DOS of SnTe with the Sb impurity. The resonant state is a mixture of the p-

states of Sb and the p states of the neighboring Te2 atoms in almost equal proportions.

The Sb impurity act as donor.
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partial DOS ofp-character. The Fermi energy of SnTe with Sb impurity is at the energy
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4.3.6 In impurity in SnTe

Indium impurity in IV-VI semiconductors have been known to exhibit anomalous

behavior.[42, 43] For example it act as n-type in PbTe and p-type in SnTe. We discussed

in details in the previous chapter, the anomalous behavior of In impurity in PbTe and we

presented a new picture in order to understand these anomalous behavior. Indium metal is

nominally trivalent, and hence when In replaces a divalent Sn, one expects an n-type

donor. This assumes that the number of states in the Te-p band does not change when an

In impurity is present. If the In s-state is strongly bound and lies below the valence p-

band, then In will behave as an acceptor because it gives only one electron to the Te-p

band instead of needed two. Results for In impurity in SnTe shows that the deep defect

states are resonant states near the top of the SnTe valence band (act as p-type). In

contrast, in PbTe these states lie in the band-gap region and can act as n-type by

thermally exciting an electron from the DDS to the conduction band. This difference in

the position of the deep defect states between SnTe and the PbTe is extremely subtle but

explains the experimental anomalies seen in the case of In impurities (act as n-type in

PbTe and p-type in SnTe). These subtle differences can only be seen in a fully self

consistent ab initio study. We find that the orbital nature of the resonant state near the top

of the valence band is a hybridization of the 3 states of the In with the p state of the

neighboring six Te atoms. We show, in Fig. 4.8 (a)-(d), the total and partial DOS of SnTe

with and without In impurity, the difference Apmt, and 3 character of the partial DOS of In

impurity. These general features are very similar to those for In in PbTe.
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Figure 4.8 (a) The total DOS of SnTe with and without In impurity, (b) their difference

Aptm, (c) partial DOS per Te associated with nearest neighbor Te atoms, and (d) In partial

DOS of s-character. The Fermi energy of SnTe with In impurity is at the energy origin (0

eV).

4.4 Summary

In summary my ab initio electronic structure calculations in RSnZMTeZn, n=16, R

= a vacancy, Ag, Cd, Sb, and In show that when a Sn atom is substituted by R, the DOS

of the valence and conduction bands get strongly perturbed. There are significant changes

near the band gap region. Sn vacancy causes very little change near the bottom of the

conduction band DOS whereas there is an increase in the DOS near the top of the valence

band. Te vacancy on the other hand creates new states in the band gap region and near the
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bottom of the conduction band. Ag impurities perturb the valence band states due to the

Ag d-states hybridizing with the Te p bands. The difference in the total DOS with and

without Ag impurity shows a small peak near the top of the valance band. Sb impurity

shows resonant states near the bottom of the SnTe conduction band. Results for In

impurity shows that, unlike PbTe, the deep defect states in SnTe are resonant states near

the top of the valence band. In PbTe these deep defect states lie in the band-gap region

(act as n-type). This fundamental difference in the position of the deep defect states in

SnTe and PbTe explains the experimental anomalies seen in the case of In impurities (act

as n-type in PbTe and p-type in SnTe).[13, 87]
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Chapter 5
 

Energy and Temperature

dependence of relaxation time and

Wiedemann-Franz law in PbTe
 

5.1 General Introduction

As discussed in Chapter 1, the efficiency of thermoelectric (TE) energy

conversion depends on the transport coefficients of the constituent materials through the

figure of merit (FOM) ZT = USzT/(Kl + Ice”) where a is the electrical conductivity and

S is the therrnopower (Seebeck coefficient) [9]. The quantity in the denominator is the

thermal conductivity; it is given by the sum of contributions from the electronic carriers

at constant electrical current i (Keu ) and the lattice contribution Kl. Z has units of inverse

temperature, so it is generally quoted as ZT, with T the absolute operating temperature of

the TB device [9]. TE devices are usually made from narrow band gap semiconductors.

Several calculations of the transport coefficients of PbTe and related systems have

been reported over the years [52, 95, 102, 104, 105]. These calculations have been

performed using Boltzmann transport equation [123] within the energy-dependent

relaxation time (t) approximation and the nonparabolic Kane model for energy dispersion

8;,- vs It. [133] The energy and temperature dependence of different scattering mechanisms

were incorporated in these calculations. Depending on the temperature, different

scattering mechanisms (from impurities, acoustic and optical phonons) contribute to the
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relaxation time. These earlier works did not explore the relationship between the energy

and temperature dependence of the effective relaxation rate and the T-dependence of

0, Ice“ and Kel‘E. Also the validity of using WF law [123] to estimate electronic thermal

conductivity at high temperatures has been questioned in the literature [104], but it is still

widely used to estimate the lattice thermal conductivity from the total experimental

thermal conductivity. The lattice thermal conductivities estimated this way are turning

out to be very small, well below the so called alloy limit. [136] This reduction has been

attributed to the enhanced phonon scattering from the nanostructures present in the

samples. Thus to have a more definite picture one must critically examine the use of WF

law. Furthermore the difference between constant T and constant I? electronic thermal

conductivities in PbTe has not been addressed properly although the fact that the

experimentally measured electronic thermal conductivity ice, appearing in the expression

for ZT is Ice“ 5 LOT, and the modified Lorentz number L is different from L0 is well

known. [104, 122]

In this chapter we address these issues by focusing on (1) a careful analysis of the

energy and T dependence of r to develop a simple scaling form, (2) understanding the

relation between the energy dependence of r and the T dependence of a, S, and the

power factor (052), and (3) finding out the difference between K9),1 and Ice”,- and to

reexamine the validity of WF law Ice, 5 Ice“; = LoaT, where the Lorentz number L0 =

2.45 x 10"8 WQ/K.

The arrangement of this chapter is as follows. In Sec. 2, I describe the transport

coefficients using the Boltzmann transport equation and define the transport function. In

Sec. 3, I briefly review the non-parabolic Kane model for the energy band dispersion. In
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Sec. 4, I describe the transport coefficients calculated using in the Kane model. In Sec. 5,

I describe the total relaxation time and different scattering mechanisms contributing to

this quantity in PbTe. In Sec. 6, I discuss the total thermal conductivity K and the

different types of electronic contributions. In Sec. 7, I present and discuss our results and

finally, I give a brief summary in Sec. 8.

5.2 Transport Coefficients using the Boltzmann Transport Equation

The charge carriers in a metal or a semiconductor move under an applied external

field and temperature gradient. We consider the situation where the carriers are

accelerated by the fields, but lose their extra energy and momentum by scattering from

lattice waves (phonons) and impurities. A standard method used to deal with this problem

is to use Boltzmann transport equation. [123] This equation states that in a steady state

situation, at any point in space 1" and for any value of the electronic wave vector E, the

net rate of change of f; (i’, t) is zero, where f; (i’, t) is the probability that an electron

(hole) of wave vector I: is at point 1" in the crystal. Then:

aft 0f; of

[6—:]diff+ {—6—-tklfieza++[
—:Lwtt'o—

’
(5-1)

where the different contributions to the change are due to diffusion, external fields and

scattering. Eq. 5.1 is valid for the steady-state, not for equilibrium (ffif, t) = $01))

which holds in the absence of external fields, 1:200.) is the equilibrium single particle

Fermi distribution function, where i" dependence comes through the local temperature

TU"). It is given by:
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1

3"” (killer—(Li) + 1

where a; is the energy, [.1 is the chemical potential, k3 is the Boltzmann constant. For

 

f;°(7)—- (5.2)
 

simplicity we will ignore the spin index and assume that each state If is two-fold spin

degenerate since we do not consider magneto transport.

Assuming Liouville's theorem of the invariance of volume occupied in phase

space, one finds that the number of carriers in the neighborhood of 1’ at time t is equal to

those in neighborhood of i’ — ti}; at time zero:

‘ ma 1) = f;(? — 115;, o). (5.3)

The rate of change of the distribution fimction due to diffusion can then be written as:

[Bf—E _ a? 0f; 13171“

diff at am) k ar (5'4)

using the definition of Fermi distribution function the derivative with respect to

temperature in Eq. 5.4 can be rewritten as:

   

 

5" - #1

aft ”CM—5,?) e;—u_ _af; ewe (55)

OT _ 8" — 2 kBTz — 087(- T ' '

[exp Err”) + 1l

and then the rate of change of the distribution function due to diffusion is given by:

a__f-°] _( 0f2)875—l1.
— v~ (—VT). 5.6

By analogy to Eq. 5.3 we can apply Liouville's theorem in E—space:

fig. (5’, t) = fE-Et(F’ 0) I (5'7)

considering only electric field E as the external field, the time rate of change of Bloch

_...

wave vector k rs given by:
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hi2 = eE' . (5.8)

The velocity of the electron in the state If is given by:

hi3}; = —_. . (5.9)

In Eq. 5.8 and 5.9, e is electronic charge, m is free electron mass, and h = h/Zn with h

being the Planck constant. The rate of change of the distribution function due to the field

can be written as:

6 -° aka - _46 68~_ Ea * ..

[aft—k] — f"— f"— —8 4‘15,th =e(- -f—a_’f)13;13. (5.10)
field— —at 6k [(68);6k_ —h6—875 ask

The effect of scattering on the change in the distribution function is more

complicated. In this thesis the relaxation time approximation was considered. In the

relaxation time approximation the rate of change of the distribution function due

scattering is given by:

(5.11)

h

[sz1 = _fr-__f__;o ____gg

scatt. Ti" Tie

where g; is the difference between the steady-state and equilibrium distribution

functions, and I; is the relaxation time.

Using the Eq. 5.6, 5.10, and 5.11, the Boltzmann transport equation (Eq. 5.1) can

be written as:

a " —) a a E” —

git. = e (_ _fl‘.) fikTEE + (— fk) RT ufiETE(—VT). (5.12)

In order to find the expressions for electrical conductivity tensor 3 and

 

therrnopower tensor 3", the microscopic and macroscopic Ohm's laws have to be used,
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which relate the current density to the applied electric field and temperature gradient. The

microscopic Ohm's law is given by:

j=VZeRaft/299m , (5.13)

since

2 £21336; = o , (5.14)

78

where V is the volume of the crystal in real space. From Eq. 5.12 and Eq. 5.13, the

current density can be expressed as:

«v 1 6f” —c 1 6f" 8" _ u

]=M;e(- 1972;)” kv~E + V E e( 687;) T rkv~kE(—VT), (5.15) 

 (—vr) (5.16)

ar~ . ..
1 5f; _, 1 ZE(‘BE_;)(£E—”)TEVEVE

j 721% )rfiaxafi 13+ 0

72

58;;

The macroscopic Ohm's law in the presence of an external electric field E" and

temperature gradient VT is given by:

j’ = 3'” + 5’§(—VT) = 8(12?’ + §(-VT)). (5.17)

Direct comparison of the two Ohm's laws in Eq. 5.16 and 5.17 gives the expressions for

the electrical conductivity and thermopower tensor:

H 32 6f]; —o -o

0': V _. (—-aE-l_E-)T§v-évk: , (5.18)

§= (3)-1A” , (5.19)

where X is given by:
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H e 6f” -c -v

A = —Z ——5 (872 — 10131275177). (5.20)
VT -

k

as};

Analogous to the current density equations, the heat current density equations for

L; can be written as:

. 1 . 1 .

IQ = 7211182 - #) V2 = 72972092 — #9127; : (5-21)

75 1%

Q s a’E‘Tfi + Rafi—VT) , (5.22)

where 138”; is the electronic thermal conductivity tensor at constant If field

(evaluated at E" = 0). Direct comparison of the two heat current density equations gives

the expression for the electronic thermal conductivity tensor at constant E" field (E = 0):

H 1 af-IE 2 a -+

Keir: = WZ (— 5.9—7".) (£7; '— [1) TEUEUR‘ . (5.23)

It

At constant current density f (f = 0) (Eq. 5.17), the heat density To is given by:

.. H H 2

10 5 [KM — 0(5) T] (—vr). (5.24)

The electronic thermal conductivity at constant current density i (evaluated at f = 0)

12'3”, is given by:

H H H 2

Ice” = x,” — 0(5) T . (5.25)

Normally in metals and highly degenerate semiconductors the second term on the right

hand side of Eq. 5.25 is quite small and 133),, z Eelig. But as we will see later, for

semiconductors of current interest they can differ dramatically.
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5.3 Nonparabolic Kane Model for Energy Dispersion

In this section I will briefly describe the Kane model for the band structure of

PbTe valid near the band extrema which occur at the L point of the fcc Brillouin Zone

(BZ), see Fig. 3.1. In narrow band-gap semiconductors (i.e., lead chalcogenides) the

energy region of interest of an electron as measured from the band edge is comparable to

the band gap Eg. Because of this, the dependence of the energy on crystal momentum is

non-parabolic and the effective masses are functions of energy. The nonparabolic Kane

model was introduced [133] to describe the deviations from the quadratic dependence of

energy on the crystal momentum. In this model, the longitudinal effective mass m; and

the transverse effective mass m, depend only on the interaction between the lowest

conduction band and the highest valence band and the contributions of the other bands

are assumed to be small. Here longitudinal and transverse are defined parallel and

perpendicular to the vector joining the center of the El to the L point (see Fig. 3.1). From

now on we will confine ourselves to the conduction band and electron type transport. For

a simple parabolic model the energy dispersion can be expressed as:

—h2 2ktz+k‘2 526
Ek—Z mt m, ’ (' )

where 872 is the energy, and k, and kt are the magnitudes of the longitudinal and

transverse components of k, measured from the band extrema. In the Kane model the

energy dispersion is given by:

8;; r12 Zkt2 klz
_. _ =-- —— — . 7g,(1+Eg) 2(m.+m. , (52)
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In this model the effective masses and the mass anisotropy coefficient of electrons and

holes are equal. The constant energy surfaces are ellipsoids, and m; and m, have the same

energy dependence.

5.4 Transport Coefficients in the Kane Model

In order to calculate the transport coefficients we have to compute different

quantities appearing in Eqs. 5.18, 5.19, and 5.23, which include the carrier velocity 13;;

and the relaxation time I}. For the sake of completeness we will derive the expression for

the transport coefficient following the methods used by Ravich et. al. [125] and work of

Bilc et. al.[52] For this, we change the discrete sums over E into integrals, the carrier

velocity 137‘- is calculated using the Kane model for energy dispersion, and the relaxation

time expressions for different scattering mechanisms are obtained within Kane model.

These expressions are given in the section 5 .5. [106, 107, 124, 125]

PbTe systems have cubic symmetry. Therefore, the components 0w and SW of

the electrical conductivity and therrnopower tensors can be expressed as:

0w = W0, (5.28)

s“, = 6),,5, (5.29)

where a and S are related to the trace of 3 and Stensors and they are given by:

1
a = 3115*, (5.30)

1 ..
s = §Tr5, (5.31)

For cubic system, Tr? and TrS are related to {37,4375 = 9;: terms.

101



The Kane model energy (Eq. 5.27) contains two types of effective masses and in

order to simplify the calculations the fallowing substitutions can be made

2 = mt ,2

kt —m;, k, , (5.32)

2 ._k1 _ ma k1 , (5.33)

where m'd is a scaling mass parameter (see Eq. 5.57 for its definition)

Using the new variables k,’ and k;, Eq. 5.27 can be written as:

      

8k, _ hZ ,2 ,2 _ hZ '2

8k, (1 + E9) — 2mg! t ) — 2m; k . (5.34)

 

In terms of the new variable k” the expressions for 3' and 5 are:

82 afkl -O -D

‘VZ(Te.,)’k'”k'”k“ (5'35)
kl

’5” = (3)-12’, (5.36)

where X is given by:

e 6f?! -9 -9

= 1771:; (—3%) (£72, - ”175,152,123“ (5.37)

kl

Changing the sums into integrals, Eq. 5.36 for therrnopower becomes:

a _.r -v -. "’r

1I: (.08fk37.5) (81;! _ #)T7¢’:v7¢'rvird3k

3 I

—a£k—-::')rk,v-,;,v,~c,dqk

5’: (5.38)

Usrng Eq. 5.34, the infinitesimal unit volume in reciprocal space 6131fI can be expressed

as:

31 1

d3k’ = 41rk’2dk' = 4n 1 +— 1 -l- — d8 , (5.39)
r1359 59 -
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where we have dropped the suffix for the carrier energy 83,. The carrier velocity in Eq.

5.9 is given by:

1115;, = 13512 = i—kT. (5.40)
h 6k, md 1 + .5

Ba

2

Using the above equation, the 173, = 133,133, term in the transport equations can be

expressed as:

E

- 2 £(1+E;)

I_ml 2'

11+?)
9

(5.41)

Substituting Eq. 5.39 and 5.41 into Eq. 5.38 and using Eqs. 5.28 and 5.31, the

therrnopower along any one of the cubic axis Sxx (Sxx = S) becomes:

af 3 2 ‘100 E 2 8

1L) (_EE)(£-H)[E(1+E—g)] (1+E—g) T5618

3” = — 3 _1 , (5.42)

[00° (— g) [a (1 + 15.39)]2 (1 + £5) 18 615

where the relaxation time Is depends on energy. Since 5' depends on the ratio of the two

 

integrals (Eq. 5.38) the spin and band degeneracy (y) factors (see the following

paragraph for a definition) cancel out in Eq. 5.38 and 5.42.

Taking into account the spin degeneracy and the band degeneracy y, the

expression for the electrical conductivity 2? can be rewritten as:

H Zye2 6f3, _, 4 Zye2 V °° 0f3, _, .. 3..
= —— —o -o =———— —— -O -0 I ’ .4

a V E ( 6875;)TRIVTUVIU V (2703i) 683, rk,v3,vk,d k (S 3)

kl

and using Eq. 5.39 and 5.41, Tr 5' can be expressed as:
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-1
1 3

(2mg)? °° 6f 8 5 28
H = 2 __ _ _—

Tr a 2ye ”2,13 [0 ( as) e 1 + By 1 + E9 r8 d8. (5.44) 

Again for cubic system the conductivity along any one of the cubic axis axx(on = a) is

given by:

1 3 '1

2 (2mg)? °° 6f 8 5 28

= — 2 — -— —- '—a 3 ye ”2,13 [0 ( as) [a (1 + 59)] (1 + E) r8 d8 . (5.45)

The expression for the electronic thermal conductivity at constant [3" field (E = 0)

 

We”; can be rewritten as:

H 2}, afil 2 -9 a

Ice“. = VT .. (- 5g?) (53, - 11) 13,123,173, , (5.46)

kl

H 2y V 00 6f}: 2 -v -9 3"!

Kel,E - flan—)3 Io (— 673,) (51;, - #) r3,v3,v3,d k » (5-47)

and using Eq. 5.39 and 5.41, Tr 12'8“,- can be expressed as:

1 3 "1

H _ 2y (2mg)? °° 0f 2 e 5 28

TT Keug —?-;2-f-l-3—L (-3g) (E—fl) 8 14-39- 1+2; T8618 ,(5.48)

the electronic thermal conductivity at constant I? field (E = 0) 133),); along the x-axis

(12235)“ (03835)“ = K835) becomes:

1 3 ‘1

_ 2y (2m;)7 °° 6f 2 s 7 28

Ice“,- — 3—7, ”2,13 IO (— E) (e - u) a 1 + By 1 + 59 re d8 . (5.49)

The three transport coefficients for the cubic system can be expressed in terms of a single

transport function 2(5):

0 = e2 I: (— 13%) 2(8) (18 , (5.50)
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s = T31: (— g—i) 2(a) (a — p)d8 , (5.51)

x...- = 1107?) 2600 — 102 as (5.52)

where 2(8) = D(8)v§r£, and D(8) is the density of states, defined as D(8) =

zkp 6(8 — 815,0)

The concentration of carriers 11 can be written as:

2y 2y d3k’

n = 723,, =71 8, _ ,, (5.53)

3, exp (4381—) + 1

and using Eq. 5.53 the concentration n can be expressed as:

 

 

o.e(1:[ 73%)]2-(1 + %—8) d8

=n—2—2—h3ym'2:fo ,, 9 . (5.54)

ET)+1

The expression ym'f/2 is defined as:

m3,” = ym'j/2 , (5.55)

where md is called density of state effective mass because it takes into account the

degeneracy of the conduction band. The relation between scaling mass parameter (m'd),

the density of state effective mass ma and longitudinal and transverse effective masses

(ml, mt) can now be deduced using the Eqs. 5.32, 5.33 and the following equation:

d3k = .132", (5.56)

which sets the equality between the infinitesimal volumes in reciprocal space. Using this

we find the scaling mass parameter m'd = (mlmt)1/3. From Eq. 5.55, we therefore

obtain:

ma = Y2/3m'a = y2/3(m)m§)1/3
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5.5 Relaxation Time in the Kane Model

Different scattering mechanisms of charge carriers in lead chalcogenides have

been extensively discussed in many papers [106, 107, 124, 125]. It is found that the

dominant scattering mechanism contributing to T are from point defects and thermal

phonons. Their relative contributions to the scattering processes are summarized below.

At low temperatures (liquid helium), charge carriers are scattered mostly by

charged vacancies. At low densities n S S X 1018 cm'3, scattering by Coulomb potential

of the vacancies dominates, whereas for high carrier densities n 2 1019 cm'3, the

Coulomb potential gets screened out and scattering by the short range potential of

vacancies dominates. As the temperature increases, the relative importance of the charged

vacancies decreases and scattering by thermal phonons increases. For temperatures above

300 K, scattering by acoustic phonons and optical phonons (both polar and deformation

potential coupling) contribute mostly to the relaxation time. The expressions for the

dominant contributions to the relaxation time within the Kane model were first worked

out by Ravich and collaborators and later extended by Zayachuck and Freik et al. [106,

107, 124, 125]. They are available in the literature. Therefore we give here only the final

expressions for different scattering mechanisms, discuss the fundamental parameters

involved, and analyze their relative significance for PbTe systems.

(i) Deformation potential of acoustic phonons (Ta)

1

£2 _.2_

mam (e + 3')

Ta: .

(1+2E3)[(1—A)2 —B]

 (5.58)
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E

E—g(1 _ Ka)

 

 

 

A = e , (5.59)

(1 + 2 FE)

8 e

8 E_g (1 + F9) Ka

B = 2 , (5.60)

3 (1 + 25—)
£9

21th4C

TO,a(T) = l 3 I (5.61)

EchBT(2md0)§

where Eac is the acoustic deformation potential coupling constant for the conduction

band, C, is a combination of elastic constants, Ka is the ratio of the acoustic deformation

potential coupling constants for the valence and conduction bands K, = Edy/Ede with

the values Ka = 1 for n-type PbTe and Ka = 1.5 for p-type PbTe, and mao is the density

of states effective mass for a single ellipsoid (y = 1), i.e. mdo = m'd.

(ii) Deformation potential of optical phonons (To)

1

£2 "2'
1.0.0 (T) (E + E_g)

 

 

 

r, = 8 , (5.62)

(1 + 2-E—) [(1 —A)2 — B]
9

T?" (1 _ K0)

A = —9——€—, (5.63)

1 + 2..)
( a.

E E

8E (1 + F9) K0

3 = 2 , (5.64)

3 (1 + 2 3)
E9

2h2a2p(hw )2

16,6(T) = ° 3 . (5.65)

”EchBT(2mdo)§
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where a is the PbTe lattice constant, p is the PbTe density, wois the frequency of the

optical phonons, K0 is the ratio of the optical deformation potential coupling constants for

valance and conduction bands, KO = Eov/EOC, which are taken to be the same as for the

acoustic phonons, Ka.

(iii) Polar scattering by optical phonons (Tpo)

1

6:2)5 _
£+-— F 1

( Eg
 

 

1”" = 1 E . (5.66)

92(2mao)‘2’K3T(e;1 — 651) (1 + 2F")

9

251(1 + Bi)

F=1—6ln(1+61)— 2 [1—26+261n(1+6 )1, (5.67)
8

(1 + 2E—g

6 = (21%)”,
(5.68)

where eoand 6,0 are the static and high frequency dielectric constants, k is the carrier

wave vector and To is the screening length of the optical phonons. The parameters k and

r0 are given by:

 

 

£2

Zmdo (a + F)

k2 = 9 (5 69)
h2 ' °

5 2

Ziezm2 l
_ _ d 0

r0 2 _ 1th3€66 ( Li) , (5.70)

where "L? is the generalized Fermi integral:

m z

n m _ °° _fi .. i E
Ll (1,1,8‘9) —fo ( aJr: [8(1+Eg)] (1+Eg) d8. (5.71)

(iv) Short range deformation potential of vacancies (Iv)
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TV = To,v(T) (E + g)—§ ’ (5.72)

(1 + 2,—3.3) [(1 —A)2 — B]

 

Fin — K.)

A = 9—— (5.73)
E I

1+2—)
( Eg

 . (5.74)

 

To” (T) = , (5.75)

UgcmdoamdofiNv

where N, is the vacancy density, K, is the ratio of the short range deformation potential

coupling constants of vacancies for valence and conduction bands, RV = UW/ch which

are taken to be the same as for acoustic phonons, Ka.

(v) Coulomb potential of vacancies (re)

2

 

£30me); (a + g—ZY

I, = 9 8 , (5.76)

n(2e2)21v,[zn(1 + 5) — {/(1 + 6)] (1 + 275;)

f = (Zkrv)'2 (5.77)

where Ze is the vacancy charge, and 7”,, is the screening radius of the vacancy potential

 

given by:

41w2

Tv'z = 001), (5-78)
50

2%( f 2 3mac 2 I1 H= _ _ _ .7D01) ”2,1, (u 59) (1 + 2 Eg). (5 9)
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D (11) being the density of states at the chemical potential.

The total scattering relaxation time ( TE E TM) is expressed as:

1 1 1 1 1 1

=-—+-—-+—+—+-—. (5.80)

Ttot Ta To Tpo Tv TC

 

The parameters used to calculate the relaxation time were taken from Ref. [106] where

the transport data were fitted in the temperature range 300K < T < 900K. They are

given in Table 5.1. Experimentally, one finds that the energy gap EQ and the density of

states effective mass md are temperature dependent. [126] This comes from strong

electron-phonon coupling. Following the work of Bilc et. al. [52], we have incorporated

the T-dependent E9 and ma using the experimental data in all our calculations. It turns

out that the temperature dependence of ma is very important to get a good agreement

between theoretical and measured values of the transport coefficients a and S [52].

Experimentally, it is found that Eg increases linearly with temperature for T 5 400K and

above 400K, it remains constant. The temperature dependence of the band gap Eg[126]

can be approximately given as

E9 = 0.19 + (0.42 x 10‘3)T for T S 400 K, (5.81)

g = 0.358 for T > 400 K. (5.82)

The temperature dependence of the density of states effective mass md comes primarily

through the temperature dependence of the transverse effective mass mt and this is taken

from experiment [127],

m

Ht = 0.024 59 + (8.659 341 x 10-5)T, (5.83)

where m is the bare electron mass.
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Parameter Unit of measurement Value

m,/m 0.241

60 400

600 32.6

C, N/m2 0.71 x10“

hwo eV 0.0136

a A 6.461

p g/cm3 8.24

Z 0.14

Eac eV 15

N, cm’3 2.5x1019

Eoc eV 15

ch Erg cm3 3><10'34

Ka ,Ko ,Kv for n-type 1.0

K0 ,K0 ,Kv for p-type 1.5

 

Table 5.1 Parameters used to calculate the relaxation times for PbTe. [52, 106]

Before discussing the detail results of our present study we make a few brief

comments on the work of Bhandari and Rowe [104] and Bilc et al.[52] Bhandari et al.

considered the deformation potential of acoustic phonon as the dominant scattering

mechanism (Ta) at room temperature although they claimed that scattering by polar

optical modes was not insignificant. On the otherhand, Bilc et al.[52] focused on the high

temperature transport coefficients (but only a and S) and included all the scattering

contributions. The latter authors did not explicitly explore the energy and T-dependence

of the relaxation time and how they contributed to the T-dependence of a and S. In this

thesis we do so.

In Table 5.2, we give the contribution of each scattering mechanism to the

scattering rate for different temperatures (T 2 300K) and different carrier energy E.

Scattering by acoustic phonons and optical phonons (both polar and deformation
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potential coupling) make significant contributions at temperatures above 300 K, whereas

the contribution of the short range deformation potential of vacancies (Iv)and Coulomb

potential of vacancies (TC) at (T 2 300K) are weak and insignificant. At low energy

(8 << 0.10 eV), the polar scattering by optical phonons (Tpo) dominates the scattering

mechanism, whereas in the energy range (0.05 2 8 2 0.30) scattering by acoustic

phonons and optical phonons (both polar and deformation potential coupling) are

comparable. At high energy (8 > 0.30 eV), the acoustic phonon scattering is the

dominant scattering mechanism. At constant temperature, the contribution of the

scattering by the deformation potential of acoustic (Ta) and optical (To) phonons increase

with increasing energy 8; in contrast the contribution of polar scattering by optical

phonons (rpo) decreases with increasing energy a.

In Fig. 5.1, we plot the inverse scattering relaxation time associated with the three

dominant scattering mechanisms (Ta, To and Tpo) as a function of carrier energy 8, at

different T (300K, 600K, and 900K) for electron carrier density n = 5 x 1019 cm‘3.

The chemical potential it was calculated for each T using Eq. 5.54 (T-dependence of y

will be discussed latter in section 5.7). Also, we have drawn (— afo/BE) about the [1-

values, in order to see the range of energy E that contribute to the transport coefficients

(as discussed before is Sec. 5.4) and hence check the scattering mechanisms that

contribute in this range. We can see from Fig 5.1 that, in energy range (0 < E < 0.3), it

is not appropriate to ignore the deformation potential (1/To) and polar (1/rpo)

scattering by optical phonons to get a proper understanding of the transport coefficients

and subsequent comparison with experiment (see Ref. 52). At room temperature T =

300K where [.1 = 0.146 eV, Ta and 7120 are comparable and To is not insignificant.
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1/‘ra 1/1'0 l/tpo l/Tv l/Tc e

(10'1 sec") (10" sec") (1011 sec") (1011 sec") (1011 sec") (EV)

300 K 14.90 7.12 75.70 0.996 0.25

600 K 45.10 21.50 198.00 1.51 0.22 0.02

900 K 129.00 61.70 315.00 2.88 0.09

300 K 36.60 17.50 56.60 2.44 0.02

600 K 109.00 51.80 136.00 3.62 0.02 0.10

900 K 246.00 118.00 221.00 5.48 0.02

300 K 63.60 30.30 48.60 4.24 0.01

600 K 183.00 87.20 112.00 6.10 0.01 0.20

900 K 400.00 191.00 186.00 8.91 0.01

300 K 97.10 46.30 45.70 6.48 0.004

600 K 272.00 130.00 103.00 9.08 0.004 0.30

900 K 587.00 280.00 172.00 13.10 0.004         
 

Table 5.2 Inverse of the relaxation time of different scattering mechanisms in PbTe for

different temperatures T and different carrier energies 8.

Increasing temperature reduces [.1 and hence shifts the (— afo/ae) peak towards lower

energy, as shown from Fig. 5.1 (b) and (c). This increases the contribution of the polar

scattering by optical phonons to the net scattering rate.
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Figure 5.1 Energy dependence of the inverse of the relaxation time of the three dominant

. scattering mechanisms (Ta, To and 1.‘p0 )1n PbTe for electron carrier density n =5><10'9 cm

3at different temperatures (a) 300K (b) 600K (c) 900 K. The smooth curves gives the

(- arc/as) indicating the energy region contributing to the transport at different

temperatures.

114



5.6 The Electronic Thermal Conductivity

We will now evaluate the electronic thermal conductivity using the T and a

dependence of r, as discussed in Sec. 5.5. But before this we would like to make some

general observation. The total thermal conductivity Km is usually defined and measured

at zero electric current and is a sum of the lattice contribution K, and the electronic part at

zero current Ice” and is given by (using Eqs. 5.25, 5.28 and 5.29) and Km, = K5,“, for

different types of electronic thermal conductivity

1cm = K, + Ice” (5.84)

= K, + Ice”; — T052 . (5.85)

This Km appears in the definition of ZT. [9] Since the thermal conductivity is a positive

quantity for a thermally stable system (K3,, 2 0), it is therefore necessary that Ice”,- 2

T052. The dimensionless figure of merit which is then given by

27 - T052 5 86
_ Kl + Kel,E - T052 ( . )

 

can be optimized by manipulating Kel'E. Sofo and Mahan [96] found that for a given

lattice thermal conductivity K1, the best thermoelectric is when Ice”; = T052, which is

equivalent to KeU = 0. If we look at Eqs. (5.50)-(5.52) this equality occurs when

2(8, T) = 116(8 — so), i.e. the energy and charge transport take place in a single energy

channel, 8 = so, i.e. perfect energy filtering. Even in this case one has to adjust the

chemical potential such that In — 801 z 2.5kBT to maximize ZT. In this case ZT -> 00

when the lattice thermal conductivity is ignored (K, = 0). In a recent work Humphrey

and Linke [137] have explored a similar energy filtering idea, but for an inhomogeneous

system. They have shown that in the presence of a temperature gradient if one can
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s(i")-u .

remarns constant

RBTO’)

construct a graded thermoelectric such that the quantity (

throughout the sample, then the energy and charge transport is adiabatic, which gives rise

to perfect Carnot efficiency and this correspond to ZT = 00, when the lattice thermal

conductivity is ignored. The thermoelectric efficiency is given by [9]

_ Tho, — Tc,” \/1 + ZT - 1

Th“ \/1 + ZT + If—O‘i '
hot

  (5.87)

To achieve high efficiencies, high ZT materials and large temperature differences

AT = That _ colds are needed ( 77 '9 7Icarnot = AT/Thot When ZT ‘7 0°)

5.7 Results and Discussions

In order to calculate the electrical conductivity 0, S and Ice“,- for a given

concentration 11 at different temperatures, Eqs. 5.42, 5.45, 5.49, and 5.53 have to be

solved simultaneously, the common link being the chemical potential (.1. We used

Mathematica program to solve these set of coupled equations.

As mentioned in the section 5.5 of this chapter, we have taken into account the

temperature dependence of the energy gap E9 and the density of states effective mass

mdwhich are given in Eqs. 5.81, 5.82, and 5.83. For PbTe, as mentioned before, the gap

occurs at the L point in the fcc B2 and y = 4. At high concentrations, 71 ~ 1019cm'3,

which are required for good thermoelectric, the n- or p-type PbTe can be described using

a single (either conduction or valence) band model since for these concentrations,

contributions to transport come primarily from one type of carrier. (Note: that for p-type
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transport all transport equations have to be interpreted in terms of hole occupation

function) Here we give the results for the n-type PbTe. Fig. 5.2 shows the temperature

3anddependence of the chemical potential [.1 for concentrations 71 = 5 x 1019cm’

n = 5 X 102°cm‘3. The change in 11 over the temperature range of 600 K is quite

significant. This plays an important role in the observed T-dependence of o, S and Ice“,-

over this temperature range. Results of a and S with a comparison with experimental

values, taken from Ref. [128], are shown in Fig. 5.3. The parameters used to calculate

Tm were taken from Bilc et a1 's. work. [52]. Our theoretical results for Ice”,- and Ice”

will be discussed in Sec. 5.9.

0.6 

  

o y n=5.0X10190m'3

0.5~ —Fittedy n=5.0x1019 cm"3

. 20 -3

E x 916 y n=5.0x10 cm
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A MD=A+BTC 9‘ 9K x

> 0.3- x x >6 x
G.) A 0.17i0.001
v ..
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' C 1.61:1. 0.01
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Figure 5.2 Temperature dependence of the chemical potential ,u for n-type PbTe at

different concentrations n =5 x10l9 cm'3 and n =5><1020 cm'3.
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Figure 5.3 Temperature dependence of the electrical conductivity 0' and therrnopower S

for n-type PbTe at concentration 11 =5>< 1019 cm'3. The experimental values are shown as

solid points from Ref [128].

5.7.1 Energy and Temperature Dependence of the Relaxation time

In order to understand the temperature and energy dependence of the total

relaxation time in PbTe we plot the total relaxation time not (see Eq. 5.80) as a function

of carriers energy 8 for different temperatures. Fig. 5.4 shows the energy dependence of

not for deferent temperatures. As we can see, the relaxation time decreases with

increasing a, and decreases with increasing temperature for a given a. We scaled “rm for

different temperatures in order to see how the scaled rm depends on 8. Fig. 5.5 shows

that for different T, the energy dependence of rm is almost the same; therefore we fit

Ttot(T=300, 8) to find the energy dependence of rm (see Fig. 5.6). After that it was

straight forward to find the T dependent of the not (see Fig. 5.7). The total relaxation

time of PbTe can be approximated extremely well by a scaling function
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Figure 5.4 Energy dependence of the total relaxation time 1,0,, calculated from Eq. 5.80,
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_ aT‘l”

7“” ‘ (b + cs") ’
(5.88)

where a, b, c, p and r are the fitted parameters, which depend on the carrier

concentration. We used this expression to check the calculated electrical conductivity 0

and the therrnopower S, (see Fig. 5 .8 and Fig. 5.9). This expression of rm gives

excellent agreement (within 5%) with the values of a and. S calculated directly from the

scattering mechanisms.

To check how sensitive the electrical conductivity 0 is to the energy dependence

of rm, we plot a for different values of the r parameter (see Eq. 5.88) as shown in Fig.

5.10. The absolute values of a change with 1'. As 1‘ increases from 0 scattering in the

energy range of interest (0.0-0.3 eV as discussed in Sec. 5.5) gets suppressed leading to

an increase of a for all T. However, after scaling 0', we notice that it is not sensitive to the

energy dependence of rm. In order to understand why the temperature dependence of a

is so weekly dependent on the parameter r of Eq. 5.88, we look in detail the different

physical quantities that give rise to the observed T-dependence. The scaling form for the

total scattering time not gives p = 1.4. This power law dependence comes fi'om two

sources, T‘1 dependence from the phonon occupation number at high T (kBT >> hm),

[T‘1~ 1%] and a T""4 from the temperature dependence of the density of state through

the parameter mao (see Sec. 5.5 for different phonon induced relaxation rates). The

question is where the additional T'o'8 dependence of 0 comes from: In order to find this,

we made a simple calculation. We assumed rm to be constant and then calculated the T-

dependence of a coming from other sources. We find that 0 ~ T‘O's, the T—dependence

of 11 playing a crucial role in this T-dependence. In this respect, PbTe at the doping
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levels of thermoelectric interest, differs significantly from both highly degenerate limit

and the non-degenerate limit [9], and is somewhere in between.
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5.7.2 Electronic Thermal Conductivity and the Validity of Wiedemann-

Franz law

We will now use the full T and 8 dependence of the effective relaxation time (using our

scaled form Eq. 5.88), T dependence of chemical potential and other parameters to look

at the electronic thermal conductivity. Our work is a generalization of the earlier work by

Bhandari and Rowe [104] who looked at this problem but only with acoustic phonon

scattering. They had claimed that the acoustic phonon scattering was the dominant

scattering mechanism in PbTe at high temperature. Our calculations for 7,0,, as we

discussed earlier in Sec. 5.5, show that it is not appropriate to ignore the deformation

potential (To) and polar (1pc) scattering by optical phonons to get a proper

understanding of the transport coefficients. Our results for the electronic thermal

conductivity match perfectly with their results if we only consider the acoustic phonon

scattering. In Fig. 5.11 we give the T dependence of Ice”,- and K9,,1° Both decrease with

T but the difference increases with T. One question is how close PbTe is to a perfect

thermoelectric(ZT = 00 when K, = 0, see Eq. 5.87). In this limit, ZT = aSzT/Keu =

(Kel.E/Kel.1) - 1. We plot this quantity in Fig. 5.12, it goes from ~O.l at 300K (metallic

limit) to ~ 3 at 900K. PbTe does approach a perfect thermoelectric at high temperatures

but is far from it.

Next we address the validity of Wiedemann-Franz (WF) law. The first question is

whether Ice”; = LOO'T or K3,, = LOO'T where L0 = 2.45 x 10‘8WQ/K2? For a metal or

a highly degenerate semiconductor it is the first equation that is correct. [9, 123] We can
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cm'3 assmning K1: 0.

use the calculated a (Fig. 5.8) and this equation to estimate Kew. However there is a

fundamental problem! If we use this as Kc”; then estimate K9,, using the calculated

values of a and S (the plot LOO’T — 520T in Fig. 5.11), we find that for T > 700 K,

K8” < 0. But since K6,] is a response function it must be positive definite. So we cannot

use the equation Kc“; = LoaT to estimate K3”; from experimental a and then calculate

K8,, using the experimental value of a and S.

The next thing we can do is to use the second equation, K8,, = LoaT. This

appears to be more reasonable and is closer to the values of properly calculated KB”. This
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is what is usually done in the estimation of electronic contribution to the total thermal

conductivity Kw, using experimental values of a, S. As we can see in Fig. 5.11, the use

of WF law overestimates the electronic contribution Ke, -:- K8,, and therefore

underestimates the lattice contribution. The proper lattice contribution should be actually

higher (by more than 0.5 W K'lm").

In order to find the temperature dependence of electronic thermal conductivity at

constant current (Keu), one defines an effective Lorenz number as [122]

“cu
L= .

0T

(5.89)

Fig. 5.13 shows the effective Lorenz number vs. temperature for different carrier

concentrations. As we can see, the effective Lorenz number L approaches Lo (metallic

like electric thermal conductivity) with increasing concentration and decreasing

temperature. As pointed out in Sec. 5.6, for a perfect thermoelectric KelJ = 0, i.e. L = 0.
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Figure 5.13 Temperature dependence of the scaled effective Lorenz number (L/Lo) for n-

type PbTe at different concentration n. (Lo= 2.45 X 10-8 WQK'Z)

5.8 Summary

Transport calculations using the nonparabolic Kane model for energy dispersion

in PbTe show that the deformation potential of acoustic phonons (ta), the deformation

potential of optical phonons (To), and the polar scattering by optical phonons (rpo), are

comparable and make significant contributions at temperatures above 300 K.

Temperature and energy dependence of the total relaxation time 7,0, calculations show

that the T—dependence comes from two sources, one from the high-T limit of phonon

occupation number and the other from the density of states associated with the carriers. In

the temperature range 300K < T < 900K, 0(T) for n-type PbTe ~ T—2.2_ This T-

dependence of 0 comes from several sources (band structure parameters i.e. effective
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mass, chemical potential 11 and relaxation time T ), the T-dependence of I (~ T‘”)

however dominates, the other important source being a strong T-dependence of 1.1. It

turns out that energy dependence of 1,0,(T, s) does not seem to control the T-dependence

of a in this temperature range and for carrier concentration (11 ~ 1019cm'3). This should

have implications in current attempts to change the energy dependence of electron

scattering to control the T-dependence of a.

Careful electronic thermal conductivity calculations were done using the same

model and parameters which were used to fit a and S. Our calculations show that using

WF law (K8,, = LOUT) to estimate this contribution of the thermal conductivity will

overestimate the electronic contribution and hence underestimate the lattice contribution

to the total thermal conductivity. This suggests that the very low values of lattice thermal

conductivity found from using WF law may not be quite right.
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Chapter 6
 

General Summary
 

PbTe was one of the first materials studied in the middle of the last century when

there was a revival of interest in thermoelectricity.[4] This compound, its alloys with

SnTe and PbSe, and related compounds called TAGS (alloys of AngTez and GeTe)

were for many years the best thermoelectric materials at temperatures ~700 K.[5] In

recent years, quantum wells of PbTe/Pb,-xEuxTe, PbSGoggTerz/PDTC superlattices.[6]

and quaternary compounds AngszmTe2m12 (m=9,10) [7] have attracted considerable

attention because of their large thermoelectric figure of merit (FOM). Similar quaternary

systems with Ag replaced by Na are also promising high temperature thermoelectric [8].

Most of the above systems have stoichiometry closer to the parent compound PbTe. This

has lead to a great deal of experimental and theoretical activity in PbTe and similar IV-VI

narrow band-gap semiconductors in last few years.

A detailed microscopic understanding of the nature of the defect states in PbTe

and SnTe has been an old but a challenging problem, because it is known that, in narrow

band-gap semiconductors like PbTe and SnTe, one does not see shallow defect states but

deep defect states (DDS) which need not be inside the band gap.[11-15] Inspite of several

theoretical attempts the problem of defects in PbTe, particularly the physics underlying

deep defect states, has not been well understood until my ab initio density functional

studies presented in this thesis.
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Several calculations of the transport coefficients of PbTe and related systems have

been reported over the years. [52, 95, 102, 104, 105] These earlier works did not explore

the relationship between the energy and temperature dependence of the effective

relaxation rate and the T-dependence of 0, K8” and Kew. Although the validity of using

Wiedemann-Franz (WF) law [123] to obtain electronic thermal conductivity at high

temperatures has been questioned in the literature [104], it is still widely used to estimate

the lattice thermal conductivity from the total experimental thermal conductivity. The

lattice thermal conductivities estimated this way are turning out to be very small, well

below the so called alloy limit [136]. This reduction has been attributed to the enhanced

phonon scattering from the nanostructures present in the samples. Thus to have a more

definite picture one must critically examine the use of WF law.

In my thesis, I have presented two major contributions in PbTe and related

systems. (1) Results of my calculations to understand the physics behind the formation of

deep defect states in PbTe and SnTe using self-consistent ab initio electronic structure

calculations within density functional theory (DFT) and supercell models, and (2) A

careful investigation of the energy and temperature dependent transport processes in n-

doped PbTe, particularly at high temperatures.

Electronic structure calculations on defects in PbTe show that when a Pb atom is

substituted by a defect, the single particle density of states (DOS) gets perturbed over the

entire valence and conduction bands. In addition, there are major changes in the DOS

near the band gap region for most of the defects. This should have significant impact on

the transport properties of these new compounds. We find that Na does not change the

DOS within 0.5 eV of the valence and conduction band extrema; thus it is an ideal
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acceptor. In contrast, other alkali atoms and Ag and Cu give rise to an increase in the

DOS near the top of the valence band and negligible change in the DOS near the bottom

of the conduction band. The divalent defects (sz-type) Hg, Cd, Zn give rise to resonant

states near the bottom of the conduction band and suppress the DOS near the top of the

valence band (which is good for n-type therrnoelectrics). Group V (As, Sb and Bi)

impurities (p3-type) introduce resonant states in the conduction band and should be good

for n-type thermoelectrics. In contrast, the trivalent impurities (Ga, In, and T1; szpl-type)

either introduce bound states in the gap or resonant states near the bottom of the

conduction band or the top of the valence band. My calculations strongly suggest that the

currently used mixed valence model [43-45] for these defects is not correct. Te vacancy

also has a strong effect on the DOS of PbTe near the band gap region. New states appear

in the band gap below the CBM, these states comprise primarily of the p states of Pb

neighboring the vacancy. In contrast, the Pb vacancy increases the DOS near the top of

the valence band but by a small amount. Te vacancy should be n-type whereas Pb

vacancy should be p-type. Iodine appears to be an ideal donor, it does not change the

DOS of PbTe near the band gap, just shifts the Fermi energy to the conduction band. The

divalent atoms S and Se also do not change the DOS near the CBM. There is however

some depletion of the DOS near the VBM. These results should have important

implications in the thermoelectric properties of, e.g., the n-type ternary compound

PbTeMSx, [53] where one can synthesize mixed Te/S systems without appreciably

affecting the conduction-band states and hence the n-type charge and energy transport.

Electronic structure calculations of defects in SnTe show that when a Sn atom is

substituted by a defect, the DOS of the valence and conduction bands get strongly
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perturbed, similar ti PbTe. Sn vacancy causes very little change near the bottom of the

conduction band DOS whereas there is an increase in the DOS near the top of the valence

band. Te vacancy on the other hand creates new states in the band gap region and near the

bottom of the conduction band. Ag impurity perturbs the valence band states due to the

Ag d-states hybridizing with the Te p bands. The difference in the total DOS with and

without Ag impurity shows a small peak near the top of the valance band. Sb impurity

shows resonant states near the bottom of the SnTe conduction band. Results for In

impurity shows that, unlike PbTe, the deep defect states in SnTe are resonant states near

the top of the valence band. In PbTe these deep defect states lie in the band-gap region

(act as n-type). This fundamental difference in the position of the deep defect states in

SnTe and PbTe explains the experimental anomalies seen in the case of In impurities (act

as n-type in PbTe and p-type in SnTe).[13, 87] In addition, we also find a major

difference in Cd-induced defect states in PbTe and in SnTe. This has to do with the

valence s-states of Sn which are strongly perturbed by the defects. In contrast, Pb valence

s do not get perturbed by the defect. However, more careful calculations are needed to

understand the physics behind this difference between Cd defects states in PbTe and

SnTe.

Transport calculations in PbTe show that scattering rates associated with

deformation potential of acoustic phonons (Ta), the deformation potential of optical

phonons (To), and the polar scattering by optical phonons (Tpo), are all comparable. All

these make significant contributions at temperatures above 300 K. Temperature and

energy dependence of the total relaxation time rm, calculations show that the T-

dependence comes primarily from two sources, one from the high-T limit of phonon
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occupation number and the other from the density of states associated with the carriers. In

the temperature range 300K < T < 900K, for n-type PbTe we find 0(T)~ T’Z'Z, in

agreement with experiment. This T-dependence of 0 comes from several sources (band

structure parameters i.e. effective mass, chemical potential 11 and relaxation time 1,0,).

The T-dependence of 1,0, (~ T'“) however dominates, the other important source

being a strong T-dependence of the chemical potential 11. It turns out that energy

dependence of 1,0,(T,£) does not seem to control the T-dependence of o in this

temperature range and for carrier concentration (11 ~ 1019cm'3). This should have

implications in current attempts to change the energy dependence of electron scattering to

control the T-dependence of a. [102, 103]

Careful electronic thermal conductivity calculations were done using the same

model parameters which were used to fit a and S. Our calculations show that using WF

law (K8,, = LOoT) overestimates the electronic contribution. Subtracting this from

measured total thermal conductivity therefore underestimates the lattice contribution.

This suggests that the very low values of lattice thermal conductivity found from using

WF law may not be quite right.

Finally, I would like to make few general remarks. Electronic structure

calculations within density functional theory (DFT) offer varieties of tools to determine

the stability of compounds, their atomic geometries, their band structure and transport

properties. Within DFT the stability of compounds (their total energies) are well

predicted. Therefore, the theory can indeed help in predicting new compounds with new

electronic properties. One can use these calculations not only to understand why already

synthesized good thermoelectric materials show these properties, but also to search for
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new potential thermoelectric materials. However, the issue of how accurate the DFT

studies of defect states using supercell models, one needs further calculations with larger

supercell. More quantitative studies (experimental) and comparison with theoretical

calculations are needed to check that.

In order to characterize the thermoelectric properties of a material, transport

calculations for a, S, and K8, have to be performed carefully. Unfortunately, to perform

such calculations one has to make approximations whose validity is not always fully

under control. By this I mean that we do not have an estimate of the magnitude of the

errors made. Approximation such as the rigid band model, where the electronic band

structure of doped semiconductors is assumed to be the same as for the undoped

semiconductors, needs to be critically examined. We saw that the host band structures do

get modified strongly for defect concentrations 2 1%. The other approximation is the

relaxation time approximation made in describing the electronic scattering mechanisms.

The other problem we would like to mention is the problem of LDA/GGA in

underestimating the band-gap. [32, 61] For narrow band-gap semiconductors, which most

good thermoelectric are, this could be a problem in calculating the transport coefficients.

Although methods like GW approximation [68] have developed in recent years, their

applications to study the electronic structure and transport properties of complex

materials are still at their its infancy. One expects considerable theoretical effort to be put

in this direction in the future. I believe strongly that for a proper understanding of

transport properties of complex systems a close interaction between theory and

experiment is necessary.
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