
I
"

w
-
g

'
5
'

w
-

-
“

.

....
3
"
"

.
w
.

.
>
*
“
-
"

4
.
.
(
4
.
.

~
.
«
_

‘
.
.
.
.
.
.
.
.
.
.
.
.

“
m
y
.
.
.
”
u
v
~

.
.
.
r
.
.
*
m
.
.
m

“
m
.

“
‘
"
f
‘

,
V
i
n
-
«
i

'
‘
U
u

.
.
.
'
-
.
.
~
.
4
-
w
"
~
"
*
‘

7
‘

3
.
.
.
.
.
.
»
.
u
n
.
.
.
l
u
v
-
“
n
"

n
-
v
‘
d
m
d
h
fi
'
w

“
f
.

'
v

o
m
n
w
-
u
”
v
"

4
"
n
u
-
.
5
.

.
.
,
.
.
v
u
»
-

t
r
u
m
p

4
“

1
.
:

o
.

t
"'4 I”an

M
E
W
’
w
f
x
y
z
l
v
a
m
e

-,
°

‘
,

1
P
M
“

'
#
x

.
”
.
5
5

3
:
.
6
,
3
:

‘

This is to certify that the

thesis entitled

DESIGN AND EVALUATION OF AN AUTOMATED TEST

PLATFORM FOR LARGE-SCALE ANALOG FLOATING

GATE ARRAY PROGRAMMING

presented by

Paul R. Kucher IV

has been accepted towards fulfillment

of the requirements for the

MS. degree in Electrical and Computer

Engineering

Major Professor’s Signature

(OI/{al/zoo?

Date

MSU is an affirmative-action, equal-opportunity employer

LIBRARY

Michigan State

University

_
.
_
.
—
.
—
.
-
-
I
-
a
-
-
-
o
-
o
-
-
o
-
o
-
c
-
n
-
¢
-
-
-
-
-
c
-
-
-
c
-
n
-
o
-
u
-
o
-
I
-
u
—
-
-
n
-
a
-
u
-
o
-
-
-
a
-
n
-
c
-
o
-
o
-
-
-
-
u
-
n
-
c
-
-
o
-
o
-
n
-
o
-
o
-
c
-
o
-
-
-
-

PLACE IN RETURN BOX to remove this checkout from your record.

To AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DAIEDUE DATEDUE

 filmMm

6/07 p:/CIRC/DateDue.indd-p.1

DESIGN AND EVALUATION OF AN AUTOMATED TEST PLATFORM FOR

LARGE—SCALE ANALOG FLOATING GATE ARRAY PROGRAMMING

By

Paul R. Kucher IV

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Electrical and Computer Engineering

2007

ABSTRACT

DESIGN AND EVALUATION OF AN AUTOMATED TEST PLATFORM FOR

LARGE-SCALE ANALOG FLOATING GATE ARRAY PROGRAMMING

By

Paul R. Kucher IV

Due to advances in microfabrication technology, modern digital systems can pro-

cess large data sets using discrete algorithms with high precision. However, due to

the increasing clock frequencies required to operate on data in real-time applications,

analog circuit topologies have become attractive for computation. Such computa—

tional blocks require an analog data store that can achieve at least eight bits of

accuracy for coarse classification. This work creates an automatic means of program-

ming subthreshold floating gate circuits used as analog storage elements. The system

consists of a test platform designed with a flexible configuration for both topology

and process—neutral large-scale floating gate array programming. A system-on-chip

with analog floating gates has been fabricated in a standard 0.5pm CMOS process

and is used to validate the performance of the test platform. A novel algorithm for

floating gate programming has been developed based on experimental observation

and the test unit is capable of programming analog floating gate arrays to within

0.5% accuracy.

ACKNOWLEDGMENTS

I would like to begin by thanking my advisor, Dr. Shantanu Chakrabartty. I feel

honored to have worked under his direction for the past two years, and have gained

significant insight into designing mixed-signal VLSI systems for machine learning

applications. He has provided me with the opportunity to pursue the areas of research

I find most intellectually stimulating and has always guided me in accomplishing my

goals. I look forward to continued collaboration and wish him the best in his own

research endeavors.

I thank my committee members, Dr. Greg Wierzba and Dr. Andrew Mason, for

taking time out of their busy schedules to be a part of my project. I also credit

Dr. Mason with introducing me to research through working in his lab during my

undergraduate career. I thank him for this opportunity and his thoughtful review

of my thesis work. I thank Dr. Greg Wierzba for his advice and inspiration. I have

enjoyed our many discussions and the advice he has given extending back to my

undergraduate years. His courses have taught me many of the skills I needed to

complete this work and I thank him for giving me these tools.

I thank my friend, Arthur Matteson, who helped in populating the test platform

printed circuit board. I am impressed with his ability to work with fine-pitch, surface

mount components and am grateful of being able to learn his technique. I also thank

Arthur for his constant input and review of my thesis.

Finally, I thank my parents, Paul and Elaine Kucher, who have done their absolute

best in raising and guiding me. They have always supported my interests and have

never failed to help in time of need.

iii

LIST OF TABLES viii

LIST OF FIGURES ix

1 Introduction 1

1.1 Previous Work 2

1.1.1 Field-Programmable Analog Arrays 2

1.1.2 Support Vector Machine 4

1.1.3 Imagers and Adaptive Sensors 6

1.2 Motivation: Rapid Configuration of Analog Memories 7

1.3 EEPROMS for Analog Parameter Storage 8

1.4 Floating Gate Test Station Design 8

1.5 Floating Gate Test Station Control 8

1.6 Testing and Results 9

1.7 Conclusions 9

2 EEPROMs for Analog Parameter Storage 10

2.1 History 10

2.1.1 PROM 10

2.1.2 EPROM 11

2.1.3 EEPROM 11

2.1.4 Flash Memory 12

2.2 Floating Gate Transistors 12

2.3 Fowler-Nordheim Tunneling 13

2.4 Hot-Electron Injection 15

2.5 Analog Floating-Gate Programming Procedure 16

2.6 Programming Precision 18

2.7 Charge Retention Characteristics 19

2.8 Temperature Dependency 20

2.9 Summary 22

3 Floating Gate Test Station Design 23

3.1 Noise and Shielding Considerations 23

3.1.1 Shared Current Paths 24

3.1.2 Shielding Techniques 25

3.2 System Architecture 26

3.3 Power Circuits 28

3.3.1 Voltage Regulation 28

TABLE OF CONTENTS

iv

3.3.2 Fowler-Nordheim Tunneling Supply and Control 29

3.3.3 Hot-electron Injection Supply and Control 32

3.4 Voltage Digital-to-Analog Conversion 33

3.5 Voltage Analog-to-Digital Conversion 34

3.6 Multi-channel Current Digital-to—Analog Conversion 36

3.7 Multi-channel Current A/D Conversion 38

3.8 Testing Considerations 42

3.9 Summary 43

Floating Gate Test Station Control 45

4.1 Instruction Decoding and Execution 45

4.1.1 Instruction Set 48

4.2 Digital Input/Output 49

4.3 Digital Potentiometer Control 50

4.4 Current Analog-to-Digital Conversion 52

4.5 Injection Control 54

4.6 Memory I/O 55

4.7 Memory Multiplexer 57

4.8 Memory Transfer Control 57

4.9 Voltage Digital-to—Analog Conversion 59

4.10 Serial I/O 61

4.11 Serial Multiplexer 64

4.12 Serial Shifter 64

4.13 Seven Segment Display 66

4.14 Signal Generator 67

4.15 Voltage Analog-to—Digital Conversion 69

4.16 Voltage DAC Multiplexer 71

4.17 Digital Clock Manager 71

Testing and Results 74

5.1 Test Station Validation 74

5.1.1 Fowler-Nordheim Tunneling Pulse Response 74

5.1.2 Hot-Electron Injection Pulse Response 75

5.1.3 VoltageMode ADC Linearity 76

5.1.4 Signal Generator 80

5.2 Overview of the Test Chip 84

5.3 Floating Gate Testing Results 86

5.3.1 Floating Gate Current Equalization 86

5.3.2 Adaptive Injection Characteristics 87

5.3.3 Effects of Injection on Threshold Voltage 90

5.3.4 Programmable Current Lookup Tables 92

6 Conclusions 94

6.1 Accomplishments 94

6.2 Suggestions For Future Work 95

6.2.1 Floating Gate Architectures 95

6.2.2 Board-Level Modifications 96

6.2.3 Microcontroller-Based Test Station 97

APPENDICES 100

A Support Vector Machine SoC 100

A1 Layout 100

A2 Pad Frame 103

B Test Station Design Documentation 105

El Test Station Parts List 105

C Test Station VHDL 127

C.1 Digital Clock Manager: dcm.vhd 127

C2 Instruction Decoder and System Controller: decode.vhd 129

C3 Multi-channel Digital Input/Output: digital_io.vhd 135

C4 Digital Potentiometer Control: digital_pots.vhd 138

C5 Current ADC Control: iadc.vhd 140

C6 Floating-Gate Transistor Injection: injectionvhd 144

C7 Memory Transfer Control: memory_block_transfer.vhd 145

C8 Memory Controller: memory_io.vhd 147

C9 Memory Multiplexer: memory.mux.vhd 149

C10 Voltage DAC Controller: program_dacs.vhd 150

CH RS-232 Serial Controller: serial_io.vhd 152

C.12 Serial I/O Multiplexer: serial_mux.vhd 157

C.13 Serial Shifting Controller: serial_shifter.vhd 158

CM Seven Segment Display: seven.segment.vhd 160

C.15 Signal Generator: signal_gen.vhd 162

C.16 Voltage ADC Controller: vadc.vhd 164

C.17 Voltage DAC Multiplexer: vdac_mux.vhd 167

C.18 Top Module: top.vhd 168

C.19 Implementation Constraints File: top.ucf 177

D MATLAB Toolbox Overview 179

E Test Station MATLAB Functions 181

E1 FPGAInit.m 181

E2 FPGALoopback.m 182

vi

E.3 FPGADigitalIO.m 182

E4 FPGAInjectPulse.m 183

E5 FPGATunnel.m 184

E6 FPGASetBias.m 184

E7 FPGASetBiasCurrent.m 185

E8 FPGAReadVoltage.m 185

E9 FPGAReadCurrent.m 187

E10 FPGAEstimateCurrent.m 188

E11 FPGAReadMemory.m 189

E.12 FPGAReadMemoryBlockm 189

E.13 FPGAWriteMemory.m 190

E14 FPGAWriteMemoryBlock.m 191

E.15 FPGAWriteMemoryVector.m 192

E16 FPGASerialShift.m 192

E17 FPGAthctionGenerator.m 193

E.18 FPGASignalGen.m 195

F Floating Gate Testing Code 196

El KeithleyInit.m 196

F2 KeithleyGetCurrent.m 196

F3 KeithleySetVoltage.m 197

F4 SVM2Init.m 197

F5 SVM2SelectCell.m 198

F6 SVM2GetCurrent.m 199

F7 SVM2GetCurrents.m 199

F8 SVM2SetCurrent.m 199

F9 SVMZSetCurrents.m 201

FIG SVM2InputSweep.m 201

FM SVM2CurrentRampTest.m 201

BIBLIOGRAPHY 203

vii

LIST OF TABLES

3.1 Jumper Descriptions 42

4.1 System Instruction Set 48

A.1 Fabricated Prototype Pin Descriptions 104

B] Test Station Parts List 109

viii

2.1

2.2

2.3

2.4

2.5

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

LIST OF FIGURES

Crossection of a Floating Gate nMOS Transistor 12

Energy band of a structure influenced by Fowler-Nordheim tunneling 13

Floating Gate Cell Schematic 16

Floating Gate Transistor Equalization Procedure 17

Floating Gate Current Mirror 21

Circuits with Ground Loops 24

Local Return Paths Only 24

Block Diagram of the Mixed-Signal Test Station 27

Voltage Regulation 28

Tunneling Control Circuit Schematic 29

MAX762 Simplified Schematic Diagram 30

Injection Comparator Circuit 32

LTC2600 Block Diagram 34

16—Channel Voltage ADC 35

Precision Current Source 36

AD7376 Digital Potentiometer SPICE Model Schematic and Code . . 37

Precision Current Source DC Response 38

Precision Current Source Transient Startup Response 39

Current Measurement Circuit 40

Current ADC I—V Converter DC Response 41

Current ADC I—V Converter Transient Response 41

Mixed-Signal Test Station Populated Printed Circuit Board 44

System Controller Block Diagram 46

The Instruction Decoding and Execution VHDL Module 47

Digital I/O VHDL Module 50

Digital Potentiometer VHDL Module 51

Digital Potentiometer Serial Peripheral Interface 51

Current ADC VHDL Module 52

Current Channel Multiplexer 12C Interface 52

Current ADC Serial Peripheral Interface 53

Hot-Electron Injection VHDL Module 55

Memory I/O VHDL Module 56

Memory Multiplexer VHDL Module 57

Memory Transfer VHDL Module 58

Voltage DAC VHDL Module 60

4.14 Serial I/O VHDL Module 61

4.15 RS-232 Signal Timing Diagram 62

4.16 Serial Multiplexer VHDL Module 64

4.17 Serial Shifter VHDL Module 65

4.18 Seven Segment Display VHDL Module 66

4.19 Signal Generator VHDL Module 67

4.20 Voltage ADC VHDL Module 69

4.21 Voltage ADC Serial Peripheral Interface 70

4.22 Voltage DAC Multiplexer VHDL Module 72

4.23 Digital Clock Manager Module 73

5.1 Tunneling Pulse 75

5.2 Minimum Injection Width 76

5.3 Injection Widths 77

5.4 Voltage ADC Linearity at 2 MHz 78

5.5 Voltage ADC Linearity at 1 MHz 78

5.6 Voltage ADC Linearity at 400 kHz 79

5.7 Voltage ADC Linearity at 153600 Hz 79

5.8 Signal Generator Sine Wave at 1 kHz 81

5.9 Signal Generator Triangle Wave at 1 kHz 81

5.10 Signal Generator Sawtooth Wave at 1 kHz 82

5.11 Signal Generator Square Wave at 1 kHz 82

5.12 Floating Gate Programming Test Setup 83

5.13 Analog SVM Chip Photomicrograph 83

5.14 Support Vector Simplified Schematic 84

5.15 Floating Gate Cell Schematic 85

5.16 Unequalized Array of Floating Gates 87

5.17 Equalized Array of Floating Gates 88

5.18 Floating Gate Equalization Accuracy Histogram 88

5.19 Equalized Array of Floating Gates at VCG = 2.2 V 89

5.20 Floating Gate Equalization Accuracy Histogram at VCG = 2.2 V . . 89

5.21 Adaptive Programming used for Hot-Electron Injection 90

5.22 pMOS Input Stage V-I characteristics 91

5.23 Floating Gate MOS Threshold Voltage Modulation 91

5.24 Floating Gate Current Ramp 93

5.25 Floating Gate Current Sine Wave 93

A.1 Floating-Gate Transistor Layout 100

A2 Integrator Layout 101

A3 Shift Register Layout 101

AA Support Vector Layout 101

A.5 Output Stage Layout with Floating Gates and Shift Register 101

A6 Support Vector Machine Layout 102

A7 Fabricated Prototype Pin Bonding Diagram 103

B.1 Gerber Output: Motherboard Top Silkscreen 110

B2 Gerber Output: Motherboard Top Solder Mask 111

B3 Gerber Output: Motherboard Top Layer 112

B4 Gerber Output: Motherboard Middle Layer 1 113

B5 Gerber Output: Motherboard Middle Layer 2 114

B6 Gerber Output: Motherboard Bottom Layer 115

B7 Gerber Output: Motherboard Bottom Solder Mask 116

B8 Motherboard NC Drill Output 117

3.9 Gerber Output: Daughterboard Top Silkscreen 118

3.10 Gerber Output: Daughterboard Top Solder Mask 118

8.11 Gerber Output: Daughterboard Top Layer 119

B.12 Gerber Output: Daughterboard Bottom Layer 119

B.13 Gerber Output: Daughterboard Bottom Solder Mask 120

RM Daughterboard NC Drill Output 120

B.15 Test Station Connectors 121

3.16 Test Station Power Circuits 122

B.17 Test Station Voltage Digital-to—Analog Converters 123

B.18 Test Station Current Digital-to—Analog Converters 124

3.19 Test Station Analog-to—Digital Converters 125

B.20 Test Station Daughterboard 126

xi

CHAPTER 1

Introduction

Analog VLSI computational methods become an attractive alternative to compara-

ble digital VLSI techniques when systems demand high computational density and do

not require high precision [1]. The former is the case in any application whose data

depends on multi—dimensional datasets, and generally takes the form of a matrix-

vector multiplication (dot product) [2]. These two requirements are the case in many

machine learning applications where the output is represented as the confidence of a

decision-making algorithm. In the case of digital systems, these algorithms are gen-

erally sequential in their execution, and require computationally-intensive operations

such as the above mentioned matrix-vector multiplication as well as implementing

polynomial functions [3].

Creating ultra-low-power signal processors often requires a substantial portion of

the architecture implemented in the analog domain [4]. Additionally, when the input

has a resolution of around 10 bits or less, analog computation can have significant

advantages when compared to an architecture implemented in the digital domain.

For example, there are many application circuits that are both very elegant in their

implementation and scalability as well as their power consumption. An example of

such a circuit is the winner-takeall or maximum circuit [5]. What appears to be an

O(n) problem in a computer science context becomes a parallel operation in analog.

Creating a parallel architecture requires a parallel data store that can allow trained

templates to be directly accessed by analog hardware. In the past, such parameters

were implemented as external potentiometers that had to be tuned by hand. Further-

more, this method also used a significant number of external I/O channels, increasing

package size and reducing the number of available diagnostic pins [6]. One increas-

ingly popular method involves the use floating gates to store bias currents on-chip.

These circuits have the advantage of eliminating off-chip, configurable biases such

as DACs or potentiometers, and of implementing them directly in the signal path,

eliminating the need for transmission gate multiplexers to share these sources. Addi-

tionally, because these circuits are simple in their architecture, they may be densely

integrated.

1 .1 Previous Work

Floating gate devices are traditionally divided into three primary areas: as analog

memory elements; as adaptive circuit elements; and as capacitive circuit elements [7].

This section provides an overview of previous work in important selected applica-

tions incorporating these three primary uses for floating gate devices. Interestingly,

however, many applications fully realize the potential of floating gates. For example,

field-programmable analog arrays incorporate both analog memory and trimming el-

ements, as well as capacitive elements. Likewise, SVMs incorporate floating gates as

analog memories and as adaptive circuit elements.

1.1.1 Field-Programmable Analog Arrays

Analog integrated circuit (IC) design often requires substantial expertise in the field

to design, fabricate, and test a system successfully. Additionally, such work sometimes

requires several design iterations, and is therefore expensive and time consuming. The

digital design flow includes several tools for the designer, such as hardware descrip-

tion languages, synthesis tools, and field-programmable gate arrays (FPGAs) to test

designs before they are synthesized on-chip for fabrication. However, such tools for

the analog designer do not exist, making it difficult to study non-ideal effects such as

noise and mismatch.

Modeling and simulation provide a first principle approach for sub-system imple-

mentation. Yet, testing will ultimately be required, and for some large-scale designs,

is the only means of verifying the entire design. Field-programmable analog arrays

(FPAA) have been proposed [8, 9, 10] to alleviate some of these design challenges to

allow rapid prototyping of analog designs using reconfigurable hardware.

Reconfigurable analog hardware may sound like an attractive alternative to tra-

ditional analog VLSI. However, it has the disadvantage of requiring a larger die area

to achieve similar functionality, a problem shared by FPGAs. Additionally, FPAAs

have additional parasitics due to switch matrices necessary to route signal paths.

These shortcomings lead to higher power consumption and reduced bandwidth, mak-

ing them impractical for some designs.

Floating gates are attractive for FPAAs because they may be used as switches

in the configuration network and may be used directly as analog elements [11]. The

impedance of a floating gate is inversely proportional to the number of electrons on

the floating node. Thus, the quality of the switch is determined by its finite on

and off impedances. FPAAs are comprised of computational analog blocks (CAB),

which are analogous to slices in FPGA terminology. The use of floating gates as

in-circuit elements leads to a dense architecture, reducing the size of these CABS.

This is possible by eliminating the need for on—chip resistors that consume significant

area. Additionally, without fixed-value resistors, signal routing complexity is further

reduced as a floating gate may act as a variable resistor.

Basic analog building-blocks such as current summation and subtraction, integra-

tion, differentiation, amplification, and thresholding may be integrated into a single

CAB with few transistors. These CABS include floating gates combined with op—

erational transconductance amplifiers to perform these tasks. Furthermore, floating

gates have been used directly in operational amplifiers for offset cancellation through

on—chip trimming circuits [12, 13, 35].

Matrix vector multipliers have also been included on FPAAs [14]. The charge

on the floating gate can act as a weight and its control gate can act as the input.

Signed numbers are represented using a differential pair configuration and if cascaded

together across multiple CABS, a matrix vector multiplier may be realized.

Since matrix vector multiplication (MVM) provides the foundation for many ma-

chine learning-related operations, specialized hardware for this task has been devel-

oped to exceed the performance of a general purpose FPAA hardware. One realization

of this approach is in the form of a support vector machine.

1.1.2 Support Vector Machine

A support vector machine (SVM) is a type of supervised learning method for creat-

ing functions based on a set of labeled training data. These functions could be for

classification or generalized regression [15]. For machine learning applications, SVMs

are applied to the classification task, and have been used extensively for recognition

with image [16, 17], acoustic [18, 19, 20], olfaction [21, 22], temperature [23], acceler-

ation or vibration [24], and even biomedical signature [25] front-ends. However, these

applications have largely been confined to software implementations and on digital

signal processors, where speed and storage capabilities are not the limiting factor as

on a system-on-chip.

SVMs have only recently been mapped onto analog structures [28], which are

becoming viable alternatives to digital signal processors as a means of implementing

SVMs in hardware. Utilizing parallel architectures, it is possible to compute the deci-

sion score as a single operation, based on the DC response of the system. Furthermore,

where speed is not critical, it is possible to bias these circuits in the subthreshold re-

gion at reduced voltage headroom to dramatically reduce power consumption beyond

that of digital implementations.

Floating gates become very important template storage elements for analog SVMs

since they may be placed directly in the signal path for continuous time classification.

Since SVM parameters are represented as floating-point values, they may be directly

mapped onto analog hardware as configurable current sources. Additionally, SVM

performance may be controlled directly through the bias of the global control gate

voltage, which capacitively couples with the floating node to set bias current.

However, before realizing an SVM using analog structures, it is important to un-

derstand the training methods used and how they affect chip architecture and floating

gate programming. SVM training involves finding the maximum margin between data

classes, which means that the classifier attempts to maximize the distance between

data points of different classes along the decision boundary (hyperplane), which in

turn minimizes error when classifying incoming data points. This topic, along with

soft-margin regularization theory, are important when developing the training algo—

rithm [26].

Furthermore, these topics are critical for the designer as they have implications

on any hardware implementations, which have both limited resolution and linear-

ity, as well as device imperfections. For example, noise robustness and temperature

sensitivity at the circuit-level can affect the generalized performance of an SVM by

corrupting SVM parameters through capacitive coupling or temperature-dependent

offsets. This often leads to deterioration of the equal error rate, a common figure of

merit for SVM performance.

Analog SVMs may also implement a modified variant of the general SVM formula—

tion. One such implementation involves working in the log domain where floating gate

parameters are not stored as linear mappings of their floating point representations

[27]. Here, the decision surface becomes warped due to circuit topology, resulting

in a need for floating gate support vector compensation. The log domain SVM also

has the unique advantage of simplifying the hardware implementation by not having

to implement the SVM formulation directly and has no inherent temperature de-

pendency. However, it still relies on floating gates for parameter storage, leading to

nonlinear noise and temperature dependency.

Analog SVMs are an ideal application for large-scale floating gate programming

due to the high demand for accurate and high-density parameter storage to achieve

performance on par with digital SVM implementations. However, the need for a

large number of support vectors has lead to increasing requirements on die area. In

addition, increasing density can also result in reducing the size of the floating gate

capacitors, which has implications on resolution, and is discussed in Section 2.6.

In the design of neuromorphic systems [29], SVMs have broad applications. Con-

sequently, analog SVMs are of direct interest to this work, which will be validated

through the testing of an analog SVM’s floating gate array. Further details on the

test chip are given in Section 5.2.

1.1.3 Imagers and Adaptive Sensors

Floating gates also have applications in the feature front—end space of neuromorphic

systems. One such application is in active pixel sensors (APS), where traditional

machine vision systems separate the image acquisition and processing modules. In-

spired from biology, a vision chip that can integrate adaptive elements directly on the

imager has the advantage of higher speed and parallelism, and higher integration.

Bandyopadhyay et al. proposed a CMOS transform imager [30] with on-chip float-

ing gates capable of programmable matrix operations and filtering. Here, the floating

gates store arbitrary analog waveforms for image transforms and nulling mismatch

during matrix Operations. These basis function bias generators are stored in a ma—

trix and are multiplexed to the active row of the imager. I-V converters are used to

provide voltage-mode output.

In addition to on-chip filtering, mismatch cancellation is another area of interest

in designing APS imagers. Process variation can create undesirable artifacts in the

image from a phenomenon called fixed pattern noise (FPN). This leads to random,

deterministic spacial noise across the pixel array. FPN has traditionally been elimi-

nated through the use of correlated double sampling, but Wong et a1. has proposed a

current-mode imager with self-adapting mismatch reduction [31]. Here, floating gates

were added at the pixel level. During a calibration step, uniform light was shown on

the imager and the pixel output voltages were read. Each pixel was adapted through

hot-electron injection to produce a desired constant output voltage under these con-

ditions.

1.2 Motivation: Rapid Configuration of Analog Memories

Due to the proliferation of analog floating gate technology and its applications, it

becomes increasingly important to have a generalized framework for precision pro-

gramming of floating gate arrays. As will be discussed in Chapter 2, both circuit

topology and process technology will determine programming methods. Thus, a con-

figurable programming interface is necessary to accommodate different mixed-mode

designs.

This work aims to provide a testing platform for mixed-signal systems incorporat-

ing analog floating gates. This system will implement a generic interface that is easy

to use for rapid testing, and is both modular and customizable in its software and

firmware interfaces. Finally, the work will validate the performance of the system on

a mixed-mode system—on-chip in the form of an analog support vector machine. This

thesis will cover the following topics in detail.

1.3 EEPROMS for Analog Parameter Storage

This chapter covers the background of non-volatile semiconductor memory technology,

how it has been used in the past in the digital domain and the evolutionary steps

that have led to the use of floating gates as analog memory elements. The theory of

these devices are discussed, including the important hot-electron injection and Fowler-

Nordheim tunneling programming and global erasure methods, as well as previous

work in the area of floating gate characterization and device limitations.

1.4 Floating Gate Test Station Design

This chapter covers the design considerations and implementation of the testing plat-

form required for floating gate programming. Noise and shielding considerations are

discussed, as well as the circuits required on the periphery of a mixed-mode design

incorporating floating gates. Important topics include the design of a precision cur-

rent measurement system, a tunneling and injection supply and associated control

schemes, a voltage-mode digital-to—analog converter bank for bias and signal genera-

tion, and digital interfaces to mixed-signal designs.

1.5 Floating Gate Test Station Control

Chapter 4 covers the design of a hardware-based controller using the Xilinx Spartan-3

XC3S2OO FPGA. This controller is responsible for providing all serial interfaces to

the sub-modules of the test station, as well as instruction interfacing with a PC—based

host. All logic has been written using the VHSIC Hardware Description Language

(VHDL) and was optimized to minimize slice utilization.

1.6 Testing and Results

This chapter begins with the validation of the mixed-mode test platform. Such tests

are necessary for calibration of the measurement circuits acting on the periphery of

the floating gate chip. Next, the test chip is discussed, outlining the programming

methods and some architectural considerations in the testing process. Finally, floating

gate results are provided, demonstrating functionality of the complete system.

1 .7 Conclusions

This thesis concludes with an overview of the work accomplished and some suggestions

for future work. Also, further resources are available in the appendices, including

layouts from the fabricated test chip, schematics and component lists for the test

station, all code used in the hardware controller and PC-based interfaces, as well as

testing scripts for the floating gate experiments. A brief tutorial is given on using the

software interface.

CHAPTER 2

EEPROMS for Analog Parameter Storage

An Electrically Erasable Programmable Read-Only Memory (EEPROM) is a non-

volatile storage medium typically used to store configuration parameters. EEPROMs

have been used for many years in digital systems but have only recently made their

way into the field of analog computation. Additionally, EEPROMs have the advan-

tage of data retention for prolonged periods of time, typically ten years or more. This

chapter covers the history of PROM technologies through the first digital EEPROM

devices, as well as the theory of floating gate transistors and their limitations. This

basis will then be used to design an interface for a floating gate programming test

platform.

2.1 History

2.1.1 PROM

One of the earliest forms of programmable memory is the Programmable Read-Only

Memory (PROM), invented in 1956 by Wen Tsing Chow at the American Bosch Arma

Corporation for the US Air Force’s Atlas ICBM. This memory device utilizes fuses

and anti-fuses to either establish an open or short circuit connection, respectively,

effectively writing a one or zero permanently to that cell of the device.

For example, if the PROM initially contained all cells programmed to logic zero,

10

burning an anti-fuse would bridge a connection between the output of the given

cell and the chip’s supply voltage, establishing a digital high or ‘1’ at the output

node. A fuse will likewise produce the opposite effect. It is important to remember

that the breakthrough of PROM technology meant that configuration data could

be stored onto the integrated circuit post-fabrication for the first time. PROM’s

greatest advantage is therefore its permanent data retention capability. However,

what became PROM’s greatest advantage is also its greatest limitation, which lead

to the development of erasable non-volatile memories.

2.1.2 EPROM

Next came the Erasable Programmable Read-Only Memory (EPROM), invented by

Dr. Dov Frohman in 1971. EPROM technology utilizes floating gate transistors,

which are described in greater detail in Section 2.2. EPROMs are erased by exposing

the die to an ultra-violet light source. This is accomplished by penetrating light with

a typical wavelength of 235 run through a quartz erasing window in the packaging.

Many EPROM chips are mounted inside a plastic rather than ceramic package

to reduce costs. These types of EPROM-based circuits are OTP or One-Time-

Programmable in that they do not include a quartz window.

2.1.3 EEPROM

EEPROM technology is similar to EPROM technology, but does not require an ultra-

violet light source for erasure. The methods required for writing and erasing these

types of memory cells include injection and tunneling, which are discussed in greater

detail in Sections 2.3 and 2.4.

11

Control Gate Floating Gate

Figure 2.1. Crossection of a Floating Gate nMOS Transistor

2.1.4 Flash Memory

Flash memory has become standard in many consumer electronic devices that re-

quire large non—volatile data stores. Flash memory utilizes the same technology of

EEPROMs, except they allow erasure of all cells simultaneously. This differs from

regular EEPROMs that may program and erase each cell individually. By this defi-

nition, analog floating gates with a single erase may be termed analog flash memory,

as the tunneling operation is a global function of the programming process.

2.2 Floating Gate ’Il'ansistors

Figure 2.1 illustrates the crossectional structure of a floating gate transistor. Float-

ing gate transistors are constructed using a traditional MOSFET with an additional

gate layer (ELEC in the AMI 0.5 pm fabrication technology). Thus, a floating gate

is a polysilicon layer encapsulated by silicon dioxide. Charge may then be stored

on the polysilicon gate indefinitely, provided that no charge may leak through the

surrounding insulator.

12

_EC

_EV

Figure 2.2. Energy band of a structure influenced by Fowler-Nordheim tunneling

The voltage of the floating gate is determined by the capacitively coupled input

voltage, called the control gate voltage. The amount of charge on the floating gate

determines the potential difference between the floating node and the control gate

voltage. By increasing the amount of charge on the floating node, the potential

across the POLYl-POLY2 capacitor increases, thus decreasing the voltage of the

floating node with respect to ground, and increasing the current in a floating gate

pMOS device and decreasing current in a floating gate nMOS device. Increasing the

charge of the floating node is achieved through a process called hot-electron injection.

Charge is removed through a process called Fowler-Nordheim tunneling.

2.3 Fowler-Nordheim Tunneling

Fowler-Nordheim (FN) tunneling is a field-assisted electron tunneling method used

to remove negative charge from the floating node [32]. When a large potential is

applied across a polysilicon-silicon dioxide-silicon structure, typically implemented

as a MOS-capacitor, its band structure will be modified as shown schematically in

Figure 2.2.

In the presence of a high electric field, electrons in the conduction band of the

floating gate electrode will see a triangular energy barrier whose width is a function

of the applied electric field. Adequately high electric fields will cause the barrier

13

to become small enough for electrons to tunnel through the barrier and into the

8102 conduction band. Equation (2.1) gives the Fowler-Nordheim tunneling current

density where h is Planck’s constant, it = h/27r, (15;, is the energy barrier at the Si-Si02

interface (3.2 eV), ET is the electric field at the tunneling interface, q is the charge

of an electron (1.6 x 10‘19 C), m is the mass of a free electron (9.1 x 10'31 kg), and

m“ is the effective mass of an electron in the band gap of Si02 (0.42 - m).

/—.¢

J: q3 Ln—E2ezrp —4 2m 3%? (2.1)

87rh¢bm* T ET

The tunneling mechanism is independent of temperature. However, the number

of electrons available for tunneling in the conduction band of the polysilicon gate is

dependent on temperature. In addition, the Fowler-Nordheim tunnel current density

is exponentially dependent on the applied electric field.

Using Equation (2.1), it is possible to calculate the current density in the AMI

C5N process, which has a 13.5 nm gate oxide thickness [33]. Equation (2.2) shows a

numerical expression of the tunneling current density with respect to applied tunnel-

ing voltage (VT). For 15 V applied at the tunneling pin (and 0 V at the floating gate),

it is expected that the Fowler-Nordheim tunneling current density will be 176.2 A/m2

or 176.2 pA/umz, which translates to 158.6 pA through the 1.5um/0.6pm MOS ca-

pacitor.

 J[A/m2] = 1.147-10-6 [WIT] [fir [117/7:] exp [{3;;:?;/[ill] (2.2)

Although the tunneling current may be estimated by multiplying the current den-

sity by the area of the MOS capacitor, this assumes that the current density is uniform

across the interface. In fabricated devices, however, this is an unlikely scenario due

to fringe fields and device mismatch.

14

2.4 Hot-Electron Injection

Hot-electron injection is a process by which electrons are put onto the floating node

by gaining enough energy to surmount the SiOg barrier. When the minority carriers

that flow through the channel of a MOS device are in the presence of a large source-

to—drain bias (for a pMOS transistor), the carriers are heated by this large electric

field and their energy distribution is increased. This leads to impact ionization at the

drain of the device, generating both majority and minority carriers. The minority

carriers are collected at the drain, and can overcome the 8102 barrier if they gain

sufficient energy. This process moves these carriers from the drain and onto the gate,

a process commonly called the hot-electron injection gate current.

It is important to note that with hot—electron injection, it is only feasible to move

electrons onto the floating node and they cannot be removed by the same means.

A mechanism called hot-hole injection has been demonstrated as a complementary

operation to neutralize the negatively charged gate, but is not widely used due to its

low hot-hole injection gate current.

There are several models that have been used to characterize the hot-electron in-

jection current such as the lucky, eflective electron temperature, and other physical

models. However, unlike Fowler-Nordheim tunneling, there is no closed form expres-

sion for the gate current and therefore these models are simply quantitative. An

empirical model that can be used for programming floating gate arrays was proposed

by Bandyopadhyay et a1. [34] and is given in Equation (2.3).

AI Iinitial 2 Iinitial

ln — == K2 (V03) ln -—-—— + K1(VDS)ln — + K0 (Vps) (2.3)

ISO [so 150

Here, K2, K1, and K0 are unitless functions of the source-to-drain voltage and

[so is a bias current. This expression has been used to accurately model the best

source-to—drain voltage at the injection node during programming to minimize the

15

TUNNEL

Vdd KER.

l: T is...
M1

INJECT

Figure 2.3. Floating Gate Cell Schematic

number of injection pulses.

Figure 2.3 shows the schematic representation of a floating gate cell. Hot-electron

injection is achieved by pulsing the drain of transistor M1. Transistor M2 is the MOS

capacitor discussed in the Fowler-Nordheim tunneling section. The TUNNEL pin is

a global erase, meaning it is tied to all floating gates in the array. In this example,

the injection pin is also the cell output current. The REF pin is the control gate

voltage which capacitively couples with the floating node to set the gate voltage of

the device. The capacitance C is a parallel plate capacitor (shown in layout in Section

A.1). It is comprised of a parallel plate (POLYl-POLY2) capacitor separated by an

SiOg dielectric layer.

2.5 Analog Floating-Gate Programming Procedure

An algorithm to initialize floating gate arrays is given in Figure 2.4. First, the array

characteristics must be determined to equalize the floating gate cells to a constant

current. This is done by measuring the output source current of each floating gate cell.

An initial control gate voltage is chosen such that all floating gates are conducting a

measurable current. The maximum cell current in the array is then programmed to

every floating gate.

Next, the control gate voltage is increased until the floating gate cells output a

16

Initialize variables

moquead = 0

Select first EEPROM cell

I

> RoadCumnt

cummerd >

minim?

sanctum

lnItIaIIze variables

SelectfirstEEPROMcoll

mmneanad :-

currereod

 ‘I

EEPROM Col

Madman: Current Found

(mmwnenueed)

Salaam
EEPROM Col V

Figure 2.4. Floating Gate Transistor Equalization Procedure

minimally resolvable current. Due to mismatch, not all cells will maintain the initial

targeted current during control gate voltage scaling. Thus, the equalization procedure

must be repeated. This process continues until the array is equalized at less than

10 nA at an unspecified control gate voltage. Finally, the array is programmed to

its targeted current levels specified by the application using the previously discussed

hot-electron injection methodology.

17

2.6 Programming Precision

It has been shown that floating gates can reliably achieve an equivalent accuracy of

greater than 13 bits of resolution [6]. The accuracy of floating gate programming

is highly dependent on the measurement Circuit’s ability to resolve drain current

changes between injection pulses, as well as the minimum charge transfer possible

using hot-electron injection. Srinivasan et al. [35] defined a figure of merit (FOM)

given in Equation (2.4) and showed that programming accuracy was constant in the

subthreshold region and improves in strong inversion.

FOM = —log2 <~AI—I) (2.4)

Here, AI is the minimum change in drain current possible for a given I, or the

existing bias current of the floating gate transistor. Essentially, the FOM shows the

resolution of an injection pulse, which for the 0.5 pm process is between 3.2-4.6 bits

up to 1 pA of current and increases quadratically beyond this limit. This increase is

due to a modified AI/I relationship as the drain current equation for strong inversion

contains an overdrive term that depends on the initial floating gate voltage. Thus, to

attain high accuracy, higher floating gate currents are required.

The precision is theoretically limited to the ability to inject a single electron onto

the floating gate. In addition, resolution is also determined by the floating gate

capacitance (CFC). Since AVFG = AQ/Cpg, the change in charge will produce a

larger change in potential across the floating gate if capacitance is decreased. Thus,

larger floating gate capacitors will increase resolution.

With a CFO of 1 pF, [35] showed it is theoretically possible to achieve 17.82 bits

of accuracy with a charge transfer of one electron in weak inversion and 20.09 bits in

strong inversion. However, due to the probabilistic nature of hot-electron injection,

it is difficult to achieve transfer of a single electron to the floating gate.

18

2.7 Charge Retention Characteristics

Due to the high quality SiOg insulator surrounding the floating node, floating gates

have the ability to store charge for long periods of time. Charge retention is limited

only by defect densities, which increase under stress such as a high-temperature bake

during PCB population or from a high number of injection/tunneling cycles [32].

Following an initial programming cycle, a slight drift in the floating gate current

results from interface trap site settling. This loss of charge from the Sl02 is when

backtunneling to the silicon bands occurs. Interface trap density may be reduced

substantially, however, through a hydrogen annealing step during device fabrication.

Unfortunately, however, this step is not present in a standard digital CMOS process.

Thermionic emission is responsible for long-term charge loss in floating gate tran-

sistors and is a function of temperature and time. This phenomenon results when

electrons are emitted over the energy barrier toward the control gate or substrate.

Equation (2.5) expresses the fraction of charge lost where Q(t) is the floating gate

charge at time t, Q(0) is the initial charge, k is Boltzmann’s constant (1.38-10'23J/K),

T is temperature in Kelvin, V is the relaxation frequency of electrons in polysilicon,

and (233 is the Si—Si02 barrier potential.

%= exp [—tu - exp (3135)] (2-5)

It can be seen that thermionic emission increases with temperature. Therefore,

retention tests typically use a series of accelerated conditions, such as storing the

device at temperatures up to 350°C. From these experiments, the relaxation frequency

and Si-Si02 barrier potential may be extracted. Srinivasan et a1. [35] found a 433 of

0.9 eV and V of 60 Hz for the 0.5 pm process by plotting Q(t)/Q(0) for temperatures

between 250°C and 350°C and applying the data to the above model. Thus, over the

course of ten years, a charge loss of 1.14 - 10‘3% is expected at room temperature

19

(25°C). Even in extreme environments where device temperatures can reach 100°C,

charge retention is still 98.5% over the same period of time. Consequently, floating

gates are very attractive as long-term analog storage elements.

2.8 Temperature Dependency

Floating gates suffer from the same temperature dependency as a standard MOS

device. The carrier mobility and threshold voltage are the predominant temperature-

dependent parameters. These are evident in the source current equations for a pMOS

transistor in both weak (2.6) and strong (2.7) inversion regions [36].

Q, W VDD - VCG + VFG
IS — L [00623]) (n(kT/q)) (2.6)

,W V
IS = K I [(VDD — VCG + VpG — VT) — —:’3] VSD (2.7)

In subthreshold, IDo is a process-dependent preexponential constant dependent

on VT and n is the subthreshold slope factor, which typically 1 < n < 3. Note that

Equation (2.6) does not model the moderate inversion transition region. In strong

inversion, K’ is a process parameter that is dependent on the mobility and capacitance

of the gate oxide layer. It can be seen in these equations that the pMOS transistor

source current is directly proportional to temperature.

Various topologies have been used to offset temperature dependency in current

references. However, these circuits traditionally involve fixing the operating point

through fixed—width transistors. One proposed method [37] uses a floating gate as

a trirnmable element in a temperature-insensitive current source. However, such

references will require current mirrors to bias the control gate voltage, and due to

device mismatch, mirrors can suffer from offset errors. Figure 2.5 shows a floating

gatebased topology for offset removal and was proposed in [38]. Here, 01 and Cg act

20

Vdd Vdd

01 02

M1 l>—lwH ..
IIN l l IOUT

Figure 2.5. Floating Gate Current Mirror

as programmable multiplicative factors of the mirror. An ideal mirror can be realized

by calibrating the floating gates such that both devices have the same threshold

voltages.

Using a current reference instead of a fixed voltage bias for the control gate has

an additional advantage of being supply voltage invariant, and thus increases the

supply rejection capability of the floating gate cell. This is on account of the control

gate reference VCG tracking the source-to-gate voltage of a diode-connected pMOS

transistor. Consequently, a direct relationship (neglecting mismatch) may be derived

between the fixed reference current and the floating gate output current, scaled by

the floating gate voltage V02 as given in Equation (2.8) below.

IOUT = ea: (V02 - V01) (2.8)

[m nkT/q

Equation (2.8) gives the output current scaling factor for weak inversion and is

based on the difference in charge stored on the floating gate cell and the floating gate

reference. Furthermore, it is possible to decrease floating gate currents in relation to

the reference current through increasing the charge on Cl, which may be useful if the

sink current Im is significantly large.

This analysis has shown that techniques exist to compensate for device and tem—

perature variations in floating gate elements. Although these topologies solve some

operational deficiencies, they create new problems such as increased circuit com-

21

plexity, which leads to calibration and testing challenges. Also, these circuits offer

reduced flexibility as the temperature—independent biases must be designed around a

target current or a specific region of operation. Furthermore, such bias circuits add

to the overall power budget of the chip and must be designed to meet the targeted

specifications.

2.9 Summary

In this chapter, the fundamentals of erasable programmable solid-state memories were

described. The history of non-volatile semiconductor memories was discussed, laying

the foundation for an analog memory storage element. Floating gate devices have the

ability to replace fixed current sources and sinks in analog integrated circuits. Their

flexibility in reprogrammability allows them to be used for not only calibration and

trimming, but as template storage, opening up the possibility for on-chip learning.

Next, the mixed-signal test station with automatic floating gate cell programming

support will be described. It can be seen that mixed-signal systems-on-chip with

floating gate cells require extensive peripheral circuitry. This work aims to provide

this support in a modular fashion for rapid design evaluation and validation.

22

CHAPTER 3

Floating Gate Test Station Design

The need for a test station to automatically calibrate floating gate transistors and the

difficulty in setting precision current sources for analog computation was outlined in

Chapters 1 and 2. The system required to perform the operations of hot-electron in-

jection and tunneling, as well as performing data acquisition for the forward-feedback

process of floating gate programming has been carefully designed to meet the targeted

specifications. In addition, this system must also be a fully-functional mixed-signal

test station, and be able to set the bias conditions for the device under test and pro-

vide digital control interfaces. This chapter discusses the design of each subsystem

and its targeted performance.

3.1 Noise and Shielding Considerations

When designing analog and mixed-signal systems, noise becomes an increasingly ap—

parent limitation when trying to resolve signals in the millivolt and sub—millivolt

range. Additionally, noise may not only be a random phenomenon, as detector sys-

tems can pick up correlated, spurious signals as well.

23

Circuit A Circuit A

l J L—F—J
X »— Y Ground Plane Ground Plane

J. [.1. .J_ _J_

J " 7 Fri T

Circuit B Circuit 8

Figure 3.1. Circuits with Ground L00ps Figure 3.2. Local Return Paths Only

3.1.1 Shared Current Paths

The most common type of unwanted signal transfer is caused by ground loops, also

known as shared signal paths [39]. Figure 3.1 illustrates shared current paths for two

independent circuits. Circuits A and B both have their own dedicated current return

paths. However, because current will target the path of least resistance, it will flow

through the ground plane. Large currents between nodes X and Y cause a potential

difference across the ground plane, inducing an additional voltage at node X.

Figure 3.2 shows an improved layout of circuits A and B that limits current flow

in the ground plane to currents entering or leaving circuits A and B only. Each circuit

has its own dedicated current return path, so no shared DC path exists, thus limiting

any transient spikes on circuit A to affect circuit B.

However, paths need not exist explicitly for ground loops to form. In time-varying

signals, parasitic capacitances may exist between these nodes and the ground plane.

Thus, spurious voltages are formed on the critical node as a result of AC coupling

and charge injection with the ground plane. Furthermore, induction can cause charge

injection onto critical nodes as well if they exist between time-varying signals and the

return path. Therefore, it is essential to tightly route the signal and its return path,

minimizing induction through field cancellation.

Shared current paths have been minimized in layout by connecting all ground and

24

power pins for each circuit to centralized nets [40]. These nets are connected to the

power planes though single or concentrated vias. Furthermore, AC coupling through

parasitic capacitance has been reduced by routing time-varying signals away from

sensitive DC signals as well as through shielding techniques.

3.1.2 Shielding Techniques

One method to reduce the effects of electromagnetic interference is to use contiguous

shielding. A contiguous shield is one that completely surrounds sensitive signals, thus

attenuating and reflecting the majority of any incident wave. The fraction of the wave

that is reflected is given by Equation (3.1).

Z3 ie

E0, = E0 (1 —— —§——‘i) (3.1)

0

Reflection is high because the impedance of free space (Z0) is approximately 377 Q

and the impedance of the conductor is much lower, thus E0, z E0. Additionally, the

signal is attenuated because any absorbed wave produces a local current whose mag-

netic field opposes the incident electromagnetic wave. The total current in the shield

decreases as the wave penetrates deeper into the material, and the wave penetration

depth (6) may be calculated by the equation given in (3.2) where f is the frequency

of the incident electromagnetic wave, p, is the permeability and p is the resistivity of

the conductor.

 6: 2.110_4[cm-s—l] ”ff (3.2)

Thus, if a shield is adequately thick, has a high enough conductivity and low

permeability, the majority of the incident electromagnetic interference will be isolated

from the inside of the enclosure. Therefore, during testing, a contiguous shield will

be placed over the test setup to reduce the effects of light and RF pickup.

25

In addition to contiguous shielding, additional internal shielding methods are em-

ployed to prevent capacitive coupling from transferring interference onto sensitive

nodes. The technique employed is called field line pinning and works by placing a

conductor between the interfering source and the critical node, thus absorbing the

field lines and shielding the node.

This is implemented by placing all digital signals on the bottom layer and analog

signals on the top layer. Two inner layers act as ground and supply planes, providing

the intermediate conductor. The dielectric material between the outer signal layers

and inner planes is fiberglass with a dielectric constant of approximately 4—4.9 and

a thickness of 12 mils [41]. Furthermore, the inner planes are separated by a 28 mil

core of laminate. Thus, a high capacitance exists between the interference node and

the intermediate node, allowing the ground plane to absorb the field lines of noisy

digital signals.

3.2 System Architecture

Figure 3.3 shows a block diagram of the mixed—signal floating gate test station and

its interface with external digital control via a field-programmable gate array. All

voltage-mode channels are passed through a lOO—pin connector to an adjacent board

that houses the device under test. Current-mode circuits interface through BNC

connectors that provide contiguous shielding for noise reduction.

The main digital bus runs vertically on the underside of the board and is responsi-

ble for controlling all sub-circuits. In addition, 13 channels of digital I/O are reserved

for the 100-pin header, and connect to the daughterboard. Each sub-circuit is dis-

cussed in the remaining sections. The FPGA-based controller is discussed in detail

in Chapter 4.

26

‘
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
—
-
-
-
—
-
c
-
-
-
—
-
-
-
—
-
—
-
-
-
-
-
-
-
-
-
-
-
-
-
—
-
—
—
-
-
-f """""" 100-Pin FX2 Header ’""""""

I - I - I - f 4|

I I I I I H F l I]

5 . s2 s2 s2 s2 as as .
I > 8 g o g o g o g o g o E < > ‘c’

=§9 28. 2a as as 28. w] 2s ~09
5 s: ‘5 <9 3 9 a 9 s e s 9 a :3 a N t 8 a?
I CI: to g co g co g on g co g ,_ >0 c S, E

I I L m 1 - [5 2
I ' ' ' t c

I I 5 2

: _ Injection DC/DC Injection 0— Current ADC — 0

I Ad" (3.3V) _ Converter T Comparator "T"

E Regulator

I

I

I

l '5V DC/DC Current DAC Channels #1 -2

E Adj. (5V) 4’ Converter —

I Regulator , I

: Tunneling

: Gate Driver Current DAC Channels #3-4 — 0 3:;

: Ad' (5V) 1 1 3 5
I . 4.: l,

E ReJ ulator 1:— 15V DC/DC C tDAC Ch I #5-6 5 2

I I o 5

Power Current DAC Channels #7-8 1

Supply
J

T I

L --.

r"""" A1 Expansion Header --‘ A2 Expansion Header ---:

I I [W .1.

I TA H _ XCFOZS ..

VGA J G eader Configuration -8

Port 1.2V PROM 8

T Regulator I I

n C

256k x 16 .3

5" DC 25’" SRAM P] XIIInx 5
Supply Regulator XC3SZOO a

j 256k x 16J FPGA '3'

. 3.3V SRAM m

Senal Regulator

Port I

; l Four Character -;—

: Eight LEDs Seven Segment Display ’ I

I RS—232
[as/2

' Level Shifter T Port
5 Four Push Buttons Eight Slide Switches J .

I

Figure 3.3. Block Diagram of the Mixed-Signal Test Station

27

TIN OUT ‘

R
C ADJ 1$ —— Ca

Figure 3.4. Voltage Regulation

3.3 Power Circuits

Proper supply regulation is important because it provides a stable voltage to sensitive

analog circuits whose output may become distorted if the power supply rejection ratio

is low. Furthermore, it is important to have separate supplies for both analog and

digital signals, since Section 3.1 showed that digital switching can cause considerable

noise on the supply rail. The board contains three linear voltage regulators and three

DC/DC converters. A 15 V boost converter is required for Fowler-Nordheim tunneling

in the AMI C5N 0.5 pm CMOS process. Additionally, the digital potentiometers and

operational amplifiers in the current ADC and DAC circuits require a -5 V VSS supply

rail. The hot-electron injection circuit requires a -2 V VSS supply rail. These are

provided by two switched-capacitor voltage converters.

3.3.1 Voltage Regulation

The board is powered by three LM1086 1.5 A low dropout positive voltage regulators

[42] using the adjustable topology shown in Figure 3.4. The voltage VU is provided

by a 9 V nominal unregulated power adapter with an open circuit voltage measured

at 13 V. Capacitors Cl, Oz, and 03 are 10 uF tantalums rated for 16 V. Additionally,

resistors R1 and R2 make up a voltage divider that allows adjustment of the regulated

voltage.

28

Au (13V) 1m“ Tunnel

__]_ Mir—— (FPGA es)

33uF L "

I LBI Lx bier .N 500

T J;— REF MAX762 V+ voo our OUT

SHDN _ ucca7322

I T GND

' _J__ -_- __l_ AVDD3.3

Figure 3.5. Tunneling Control Circuit Schematic

Tuning the regulators becomes important when it comes to precision measurement

because it determines the supply rails and reference voltages of the ADCs and DACs.

Any small fluctuations will directly aflect the scaling of any digital input/output

codes.

The three voltage regulation circuits are shown in Appendix B.16. U0 is calibrated

to 5 V and can provide power directly to the FPGA development board, eliminating

the need for the board’s own regulated 5 V supply. U1 also provides 5 V, but is used

to supply the test station’s own circuits. U2 provides 3.3 V to the test chip, as well

as to the Fowler-Nordheim tunneling circuit for the idle voltage.

3.3.2 Fowler-Nordheim Tunneling Supply and Control

The tunneling supply is provided by the Maxim MAX762 15 V step-up switching

regulator [43], which is capable of providing 150 mA of output current at an effi-

ciency greater than 80%. Figure 3.5 shows the configuration of the tunneling supply

connected to its control logic via the UCC37322 gate driver [44].

The input voltage range for the MAX762 is 2 V to 16.5 V. To reduce the load on the

5 V regulators, the unregulated supply is connected directly to the boost converter,

which also increases the efliciency of the converter by reducing the switching frequency

and increasing the gate-to-source voltage of the internal MOSFET. The device is

29

o TRIG —<)<]T _

ONE-SHOT

LCD—s

 ii
E

TRIG Q’

ONE-SHOT

r
-
-
-
-
-
-
-
-
_
-
-
¢
-
-
—
-
-
-
-
-
—
-
-
—
-
-
—
-
-
-
-
-
-
—

Figure 3.6. MAX762 Simplified Schematic Diagram

operated in the bootstrapped mode, meaning its supply current is drawn through the

output node.

Figure 3.6 shows a block diagram of the MAX762’s internals, simplified from the

datasheet’s own diagram to emphasize the features used in the circuit given in Fig-

ure 3.5. The basic theory of operation of the device is as follows. The regulated

output voltage is set by charging up the 33 ”F output filter capacitor. This is accom-

plished by pulse-frequency modulating the LX line. First, LX is pulled to ground,

causing current to ramp up inside the inductor. Next, LX is released and becomes

a high-impedance node. Since current cannot change instantaneously inside an in-

ductor, the current is forced through the Schottky barrier diode and charges up the

output capacitor.

A closer look at Figure 3.6 reveals that there are two primary functions of the

MAX762: to detect undervoltages as well as to limit the current flowing through the

inductor. Resistors R1 and R2 act as a voltage divider and connect to the undervoltage

30

comparator. This output is fed to an S—R latch as well as a one-shot monostable

timer. The purpose of the latch is to determine whether the internal N-channel

power MOSFET M1 should be turned on.

When enabled, the power MOSFET allows the increased current in the inductor

to flow through R3. When the voltage across this resistor exceeds V2, the peak current

comparator output goes high. This causes the S—R latch’s reset to go high and sets

the output Q to low, turning off the power MOSFET. This prevents the chip from

sinking more than its 1 A peak current limit.

In addition to a current limit, the MAX762 also limits the “on” pulse width

through the one-shot monostable multivibrator at the output of the undervoltage

comparator. When the comparator detects a low voltage at V+, the output of the

timer goes low for 8 as. This sets the maximum time at which the LX pin is enabled

through M1. If the peak current is exceeded, the reset on the S-R latch is still tripped

via the current comparator.

A minimum delay between pulses is controlled by the second one-shot monostable

connected to the output of the S-R latch through an inverter. This disables the S

input on the latch for a duration of 1.3 us. After this minimum time, M1 either

remains off if the output is in regulation, otherwise the cycle repeats if the output is

out of regulation.

The output of the MAX762 acts as the power supply to the Texas Instruments

UCC37322 high-speed, low-side MOSFET driver. The UCC37322 provides an output

of either 0 V or 15 V based on input logic issued from the FPGA. The output of this

MOSFET driver is connected to a resistor and Schottky barrier diode in series. When

the output of the driver is 0 V, the diode prevents the ‘OUT’ node in Figure 3.5 from

falling below one diode drop less than the output of the 3.3 V regulator. The resistor

provides a low current path back to the grounded output of the UCC37322.

When the output of the MOSFET driver is 15 V, the diode does not conduct

31

Idle Voltage

Inject Bias (DAC #39 = 3V)

(DAC #37 = 2V) °

Inject

(FPGA 05) °

V

Threshold

MAX1681 __ (DAC #38 = 1.5V)

,...\ 1uF

;:1UF '— I

tuF

Figure 3.7. Injection Comparator Circuit

and the ‘OUT’ node is set directly to the output of the driver. Because the global

tunneling pin is a high-impedance node and tunneling currents are on the order of

picoamperes, the voltage drop across the resistor is primarily due to the reverse bias

leakage of the Schottky barrier diode, which can be in excess of 1 mA.

3.3.3 Hot-electron Injection Supply and Control

Hot-electron injection is the method used to add charge to the floating gate. Figure 3.7

shows the schematic of a comparator circuit to switch the global injection pin from a

user-set idle voltage and the -2 V injection voltage.

The MAX1681 [45] is a frequency-selectable, switched-capacitor voltage converter

that inverts a 2 V input voltage to -2 V for the VSS supply rail on the OPA2743 [46]

op-amp comparator. Since the injection current is proportional to the drain-to-source

voltage drop across a floating gate transistor, the inverted voltage of the MAX1681

may be adjusted during runtime to modulate the amount of injection current. Thus,

both amplitude modulation and pulse-width modulation programming methods are

supported. However, the minimum input voltage is 2 V, therefore only larger injection

currents are supported.

32

Since transistors can break down at 8 V in the AMI C5N process, it is not‘rec-

ommended to exceed a 4 V positive voltage input. This is prevented by the 4.096 V

precision reference used in the voltage DAC, which is used to set the positive voltage

supply of the MAX1681.

The OPA2743 is a high speed, rail-to-rail operational amplifier. The device has a

slew rate of 10 V/ps, allowing injection pulse widths as small as 1 us. The positive

supply rail is connected to voltage DAC channel #39, and is initialized to 3.3 V

during test station startup. The negative supply rail is connected to the output of

the MAX1681 and is controlled by DAC channel #37. The threshold voltage for

the comparator is set by DAC channel #38 and is configured at startup to 1.5 V, a

midpoint for FPGA logic signals.

The injection pulse is provided by the FPGA and uses negative logic. Therefore,

when the negative terminal of the op—amp is set to low, no injection occurs and the

‘Inject Out’ node shown in Figure 3.7 is set to the positive, idle voltage. Likewise,

a logic high on the negative input terminal produces the negative, injection bias as

output.

3.4 Voltage Digital-to—Analog Conversion

Five LTC2600 octal 16-bit voltage-output DACS [47] are used to provide 40 channels

of voltage digital-to—analog conversion. A block diagram of the LTC2600 is shown in

Figure 3.8.

The LTC2600 is programmed in a straightforward manner using a serial periph-

eral interface that is described in detail in Section 4.9. After receiving the update

instruction in the 32-bit shift register, a decoder updates the DAC register associated

with the selected channel. The ideal output voltage is given by the following transfer

function:

33

01: GND voo I°

I I

' DAC 7 Input 4 A Input DAC :

or DAC 0 Re ister Register Re ister Re ister :9 DAC 7 To

* T % 0%C I

OL DAC 1 (:3 DAC ::I Input It Input LtIDA I: DAC 6 Jo

. Register Re ister Register Re ifter I

I + r I

I , I

I DAC Input Input DC I

. DAC 2 3:] Register . ister ¢ $I Rgiister Re ister DAC 5 To

I I

' DAC 7 7 Input Input EDIDA '

o-I- DAC 3 Re ister Re ister ¢ :9 Re ister Re iscfer :5 DAC 4 -I-o

I .. I

oI REF CLR’ Io

I Control Decoder I

I ' {F o I
 i

t

I— 32-bit Shift Register

§DI :0

0

Figure 3.8. LTC2600 Block Diagram

:t:

VOUT = (213) ‘VREF (33)

where a; is the input code given in 24—bit binary and VREF is the reference voltage set

via the REF pin.

The REF pin is connected to an LT1461 precision voltage reference [48] set to

4.096 V, which sets the maximum voltage output of each DAC channel. In addition,

each channel is capable of sinking or sourcing up to 15 mA, making it an ideal supply

for the hot-electron injection circuit.

3.5 Voltage Analog-to—Digital Conversion

Sixteen channels of ADC input are made available through the use of the Linear

Technology LTC2418 24-bit delta-sigma converter [49]. Figure 3.9 shows a block

diagram of the LTC2418’s internals, as well as its configuration on the board.

The LTC2418 is a 3rd order A2 ADC, which is an advantageous ADC architec-

34

I- -I---------------------------- 1

I VD“ LTC2418 I '..........

CH1 . r Oscillator +IF0 < I

83% 0' B ROI-I-
: : g :

°——- . . I I

' ° 1x? DIfferentIaI Decimating Serial Iiggk I: i

' z 5% T” 3rd0rder T” FIR FT Interface Joisoo 1" E

CH15 o'— 3 AZ Modulator —I0: 08’ I

owe .L__ 2 R 1 l ----------

2.5V Leno A i

Figure 3.9. 16—Channel Voltage ADC

ture due to its high resolution and linearity, which is critical for precision measure-

ment. Also, unlike traditional A2 ADCs, this part has zero latency, meaning data is

available before beginning the next conversion cycle. The ADC is capable of handling

differential input, however, an LT1461 precision voltage reference of 2.5 V connects to

the common terminal for single-ended input. Therefore, each of the sixteen channels

has a rail-to-rail input voltage range as is given by the following constraint equation:

— 0.5 - VREp g VIN g 0.5 - Vppp (3.4)

where (REE. — REF.) = VREF and is equal to 5 V and VIN = IN+ - 2.5. Addi-

tionally, the digital output code monotonically increases with input voltage, meaning

the output code is not represented in two’s complement. Equation (3.5) translates

the received binary code into an equivalent analog voltage between 0 and 5 V.

35

+§V IN OUT A

REF192

4.7uF == GND 1uF £2, 4 w R

3 {F +5V

OPA2743

B + VL

-5V

Rt

Figure 3.10. Precision Current Source

3.6 Multi-channel Current Digital-to-Analog Conversion

Figure 3.10 shows the schematic for a single channel precision current reference [50].

Eight channels have been included for providing input bias currents for nMOS-based

input current sinks.

The basic circuit operation is as follows. The REF192 precision voltage reference

[51] maintains a constant 2.5 V between nodes A and B, and is bypassed by a 1 [IF

tantalum capacitor. An AD7376 digital potentiometer [52] acts as a voltage divider

by setting the value of the wiper at node W. The op—amp is in a negative feedback

loop, forcing the positive and negative input terminals to a virtual ground. This

causes nodes VL and W to be set to the same voltage if ignoring the offset of the

amplifier.

Therefore, by setting the value of the wiper resistance in the digital potentiometer,

the voltage across the resistor R is fixed by the voltage divider, and Ohm’s Law

determines the current flowing through the resistor and into the load. Also, since

the current range is determined by the value of the resistor, the value of R has been

spaced exponentially across channels to give the highest range.

36

* AD7376 Model

* A W B

.SUBCKT POT10K 1 2 3 7 8

ERA 1 6 VALUE = {V(7,8)*1OK*I(V81)}

V31 6 5 0

RS 5 2 1

ERB 5 4 VALUE = {(1-V(7,8))*1OK*I(V32)}

V82 4 3 0

.ENDS

Figure 3.11. AD7376 Digital Potentiometer SPICE Model Schematic and Code

The output voltage range at VL is from -5 to 2.4 V. The AD7376 digital poten-

tiometer has a VSS of -5 V, making its wiper voltage swing capable of :t5 V. The

OPA2743 has a rail-to-rail input voltage swing, allowing VL to drop to the negative

supply. If VL exceeds 2.4 V, the precision voltage reference will decrease its output

voltage if VAW is set to 2.5 V, since the supply range requires a minimum of 2.6 V.

Figure 3.12 shows a SPICE simulation of the current DAC’s DC response. The

macromodels for the REF192 and OPA2743 were used during simulation. However,

the AD7376 was modeled separately as two voltage-controlled voltage sources in series

with two independent DC sources set to 0 V. The digital potentiometer is modeled

in Figure 3.11. The voltage across the ERA dependent source is proportional to the

resistance of the potentiometer multiplied by the current through the V51 independent

source and the value of an external source (V733, which sets the wiper ratio). The other

dependent source is set in a similar manner, but its voltage is set according to the

remaining fraction of the wiper.

The value of R in Figure 3.10 was set to 2.2 MG, which is the value of R9, R11,

R13, and R15 on the test station. These correspond to the first four DAC channels.

Channels #5 and #6 are set to 100 k9 and the remaining two channels are set to

10 k9, providing a larger source range. It can be seen from simulation that the current

DAC is linear across its entire range and is inversely proportional to the code set in

the potentiometer’s internal register.

37

Current DAC Simulated DC Response

I I I 1

O
u
t
p
u
t
C
u
r
r
e
n
t
(
u
A
)

O
.
0

O
)

o
n

.
0
.
5

0.2 '

120 100 80 60 40 20 0

Digital Potentiometer Input Code

Figure 3.12. Precision Current Source DC Response

Figure 3.13 shows the step response of the current DAC, which tests the stability

of the circuit. Although there is a slight overshoot and ringing, the circuit settles

in under 3 us. This ringing may be eliminated by changing to a lower bandwidth

op-amp such as the TLC2252 as used in the current ADC; however, this will result

in a longer settling time.

3.7 Multi-channel Current A/D Conversion

Precision current measurement is accomplished through the use of a I-V converter as

shown in Figure 3.14. The ADG715 [53] contains eight channels of serially-controlled,

single pole, single throw switches that are used to multiplex input currents. The

TLC2252 [54] that is in a negative feedback configuration allows I-V conversion across

the AD7376 digital potentiometer. Additionally, the output voltage of the op-amp is

sampled by the 24—bit, LTC2415-1 A2 ADC [55].

38

Current DAC Simulated Transient Response

50 r v

2

3

§
t

3

o

E
o I

3 4 5

3’ MI ' I III/MN

E 0.4 -

§
0

15 0.2

o (Ir—I 4 . ‘

0 1 2 3 4 5

Time (us)

Figure 3.13. Precision Current Source Transient Startup Response

Not shown in the figure for simplicity is a unity gain buffer between the output

of the I-V converter and the input of the ADC. This buffer isolates the switched-

capacitor front-end of the ADC from the I-V circuit. The LTC2415-1 has a dynamic

input current that is set by this switched capacitor network at a frequency of half the

conversion clock rate (see Section 4.4) and is dependent on the source impedance and

input capacitance of the external circuit.

Analog-to—digital conversion involves turning on a single switch in the ADG715

and calibrating the gain of the I-V by setting the wiper on the digital potentiometer.

The I-V output is given by Equation (3.6).

1m = (VA — VW) /RAW (3-6)

The reference VA % VREF - VAMp_0FFSET and VAMp_017p3ET is the amplifier input

offset, which is sampled during an initial calibration step. VREp is an adjustable offset

39

IZC Interface

___________I |
I- T- ? meas A AD7376 3

cm SCL SDA JIN——°

CI-I2 0—

CH3 0— Vdd

CH40— W Vdd SPI

CH5 0_ ADG715 _ —r- .93 ELEAI

CH6 0— I

cmo— “m“ LTC2415 . i
cm0— GND 0— + 2.5V 0— IN- 24-bit ADC I

REF I I

-J_— (DAC #40) _ GND L _____ i

_ - I

Figure 3.14. Current Measurement Circuit

and is set by the 40th channel of the voltage DACS. Its default value is set to 1 V

during system startup. The value of RAW is iteratively chosen to maximize the poten-

tial across VAW, which helps to minimize the measurement error caused by the series

resistance RW internal to the potentiometer. The output Vw is measured directly by

the ADC and the current computed in Equation (3.6) is handled in software.

Figure 3.15 shows the DC response of the I-V converter. For the simulation, the

AD7376 was replaced with a 2.2 M52 resistor, enabling resolution of sub—nanoampere

currents, a modification that has also been made to the board for testing the floating

gate transistors.

Figure 3.16 shows the stability of the current ADC’s I-V converter by simulating

its step response. This I-V circuit was initially designed with the OPA2743 that was

used previously in the injection and current DAC circuit, but was shown to cause

stability problems both in testing and in simulation. A beta network analysis also

reveals the OPA2743 to be marginally stable in this configuration.

Due to small source currents, the input impedance is very large, and fl approaches

one as given by the following equation where R1 is the input impedance to the I-V

converter and R2 is the feedback resistance.

40

Current ADC I-V Simulated DC Response

_
5

0
|

.
5 I

O
u
t
p
u
t
V
o
l
t
a
g
e
(
V
)

0.5

Mr

0

Input Current (nA)

Figure 3.15. Current ADC I-V Converter DC Response

Current ADC I-V Simulated Transient Response

15 .

_
s

O

I I

I
n
p
u
t
C
u
r
r
e
n
t
(
M
)

0
1

0 u

-5 l L l l

o 10 20 30 40 50

1.03 . .

a 1.02 r -

*3 l> 1.01

'5

a t -
o

O.” a 4 e a

”0 10 20 30 40 50

Time (us)

Figure 3.16. Current ADC I-V Converter Transient Response

41

1

R1 [IN

[3: R1+R2 = T};+2.2Mn

 (3.7)

As IIN is small, 6 ——» 1. A plot of the open loop gain and phase versus frequency

in the OPA2743 datasheet shows that the phase margin is less than 20° when the

open loop gain crosses unity. Although marginally stable, a SPICE simulation of the

step response showed oscillations. However, the TLC2252 has approximately a 30°

phase margin at the unity gain crossover frequency and is shown to be stable with a

settling time of approximately 6 us.

3.8 Testing Considerations

Each of the previously described circuits are globally enabled through a series of

jumpers, which are described in Table 3.1. These jumpers aid in the initial population

and testing phase, and act as power-on resets during control logic testing. These

jumpers also enable supply current measurement for each sub-circuit.

Designator Description

JPO DGND to AGND Inductor Bypass

JPl Unregulated Supply

JP2 FPGA Supply

JP3 5 V Regulator Output

JP4 3.3 V Regulator Output

JP5 Current ADC Supply

JP6 Current DAC Supply

JP7 -5 V DC/DC Converter Input Supply

JP8 Boost Converter Input Supply

Table 3.1. Jumper Descriptions

42

3.9 Summary

This chapter covered the design and implementation of the floating gate mixed-signal

test station. To obtain high precision, both noise and shielding issues have been ad-

dressed through layout and part selection. Additionally, reference calibration through

manual potentiometer adjustment and offset sampling techniques have been imple-

mented to improve converter accuracy. These details will become apparent when

trying to resolve sub-nanoampere currents during the floating gate programming pro—

cedure. Figure 3.17 shows a picture of the completed test station motherboard.

43

Figure 3.17. Mixed—Signal Test Station Populated Printed Circuit Board

44

CHAPTER 4

Floating Gate Test Station Control

Now that the system architecture and circuits have been well-defined in the previous

chapter, a control logic is necessary to handle high-speed digital communication with

the motherboard. The test station is controlled via a Xilinx XC3S200 Spartan-3 [56]

field-programmable gate array. A commercially-available development board [57] for

this FPGA is directly connected to the floating gate test station motherboard. The

control logic has been written in VHDL and synthesized for direct representation of

the FPGA’s firmware as a bitstream file and is stored on an adjacent EEPROM chip.

4.1 Instruction Decoding and Execution

The test station’s main controller is shown in block diagram form in Figure 4.2.

This main module is responsible for handling system startup as well as enabling

and disabling each sub-module based on the incoming instruction. Each instruction

is sent serially over the RS-232 interface as a 16—bit packet and is stored in the

currentjnstr'uctz'on variable. A global instruction pointer is then incremented, which

allows the module’s state machine to recognize incoming instructions.

As new instructions arrive, they are immediately decoded and executed. There is

no FIFO queue for instructions, so the main controller must complete execution of the

previous instruction before beginning the next instruction. Although a limitation of

45

i Digital Clock Manager

rxd

txd

Serial l/O

serial_out

serial_clt

Serial Shifter

Walk

damnedI

dummy

Digital Pots

dIQItILIOI

E

_
I
_

1
1
1
1

I
t
:

1
1
7
1
.
.

Digital I/O I

domed

aIgIt.vuI

_
‘
I
_
L

Seven Segment

Display

Intact C—I Injection I

Voltage DACs

80k.“ .—

“m ._ Voltage DAC

Mm” ._ MultIpIexer

I Serial Mux

, Execution Control

Memory Xfr

Memory I/O

H
I
I
H
H
H
I

Memory Mux

Current ADC

I
I
I
I
H

Signal Generator

Voltage ADC

H
U
I

Figure 4.1. System Controller Block Diagram

46

Iadc_elt

Iadc_sck

iadc_oe_bor

ladc_ado

Iadc_sda

iadc_ecl

adc_clk

adc_sok

adc_cs_bar

adc_adl

adc__edo

clk .— -. program_dac

vdac_uloct .— —. dac_programmed

sig_gen_enable .— —. dac_lnsh‘ucflon

sig.gen_oomplete .— _. adc_oonv_modo

serial_ooroct .— '. ‘°°—'°°'°“

txd_ready .— —. adc_data_ready

txd_oomplete .— _. adc_data_collect

rxd_complete ._ —. ladc_data_ready

parallothd .— —. iadc_data_oollect

paralloerd .— —. injechulse

“”3”” '— Execution Control '" “be—“‘9“
shift_end_flag .— —. lnbcflonm_vfldth

lads .— -. tunnel_pulse

lod_datn .- -. lo_lnstructlon

from_addms .- —D lo_update

to_addross ._ —. lo_updated

read_block .— _. lo_output

write_block .— _. dlgltaLpoLnumbor

mom_dau_ln '-
—. dlgltaLpoLvalue

xfr_op_completed .— ~—. digital_pot_update

modulo_uloct h —. digital_pot_updated
Figure 4.2. The Instruction Decoding and Execution VHDL Module

47

the instruction decoding architecture, this does not pose a great risk to the operation

of the system due to low overhead and latency of instruction execution. Additionally,

the PC—based software interface always waits for an acknowledgment packet before

sending additional instructions.

During the idle state, each module is disabled and the three system multiplexers

are put in their neutral states. Upon receiving a new instruction, the instruction

pointer increments, which is identified in the idle state and instruction decoding

begins.

4.1.1 Instruction Set

The system uses the four most significant bits of the first packet to decode the in-

struction. Table 4.1 details the instructions available and their basic function.

Code Description

0000 Loopback

0001 Memory Transfer

0010 Voltage Digital-to—Analog Conversion

0011 Voltage Analog-to-Digital Conversion

0100 Current Digital-to—Analog Conversion

0101 Current Analog-to—Digital Conversion

0110 Floating-Gate Transistor Injection

0111 Floating-Gate Transistor Tunneling

1000 Digital I/O

1001 Signal Generation

1010 Serial Shifter

Table 4.1. System Instruction Set

The system then jumps to the appropriate state based on the properly decoded

instructions. Any illegal instruction is ignored and the controller enters the idle state

on the rising edge of the next clock pulse.

Some instructions are longer than one, 16-bit word and require subsequent packets

to be sent and decoded. An example of this is any operation that requires memory

48

access. The FPGA development board includes 512 kB of SRAM available through

an external chip. These memory addresses are 19 bits wide and block memory trans-

fers require two addresses to be sent: one for the starting address and one for the

ending address. Additionally, if data is to be written to the on—board memory, an

additional packet is required. This structure is handled automatically by the internal

states of the system controller. Since the instruction packet is incremented whenever

a new instruction arrives, the system controller expects additional packets whenever

a multi-packet instruction is decoded. Additionally, during each of these states, the

inst.pointer.last variable is updated in order to distinguish changes on the main in-

struction pointer.

After an instruction is executed, an acknowledgment word is sent back to the PC

so it may resume its own script execution. This is handled by sending the controller

into the loopback state (state 3). The data stored in the current_instruction variable

is transferred to the serial I/O module for data transfer. This variable is reset to zero

prior to this operation to ensure data integrity.

Next the system controller returns to the idle state and sets the instruction pointer

and its comparison register inst.poz'nter_last to zero. This is necessary to prevent

the instruction pointer register from rolling over after receiving a large number of

instructions. Since the controller can only execute one instruction at a time, the

value of the instruction pointer does not have any effect on future instructions.

4.2 Digital Input/Output

The board includes a 13-channel digital I/0 interface between the PC and the device

under test. Figure 4.3 shows the block diagram of this module.

The signal digital_ios is a 13-bit wide input/output bus that connects directly to

the FPGA’S I/O pins. All other signals are connected to the instruction execution

module. The instruction signal is a 6—bit wide bus that contains the channel to update

49

clk

io_update

io_updated Digital I[O F. dlgitaLlos

instruction

output H
H
T

Figure 4.3. Digital I/O VHDL Module

(stored in the four least-significant bits) as well as the direction of the data flow and

any data that must be written to the digital line.

Two internal state machines control the current state of the module and the

state of the digital_ios signal. During system startup, all channels are set to a high

impedance state. Next, the module sits in an idle state and waits to receive the

update flag when the io_update signal is high on the rising edge of the FPGA clock.

Then, the channel to update is decoded from the instruction signal and it is set to a

high impedance state for one clock cycle. If the most-significant bit of the instruction

signal is high, the channel enters the writing state, otherwise it enters the reading

state. If the channel enters the reading state, its data is latched to the output signal’s

register where it remains until it is overwritten during the idle state. Finally, the

io-updated flag is set to high for a duration of one clock pulse for the system controller

to acknowledge that the I/O operation has completed. The module then returns to

the idle state and resets the acknowledgment flag.

4.3 Digital Potentiometer Control

The board contains nine digital potentiometers that are daisy-chained together for

control via a three-wire serial peripheral interface. Each potentiometer is seven-bits,

which implies a 63-bit serial chain to program all potentiometers simultaneously.

50

clk

dlgltal-pot_numbor

dlgltaLpoLvaluo

digital_poLupdate

digital_poLupdated

—. digital_poLclk

—. digital_pot_sdi

l" digital_poLcs_bar

—. digital_pot_shdn_bar

Digital Pots

H
H
T

Figure 4.4. Digital Potentiometer VHDL Module

cs*\ .. r—+

Figure 4.5. Digital Potentiometer Serial Peripheral Interface

Figure 4.4 shows the signal assignments for the digital potentiometer controller. The

input signals from the execution controller include the number of the device in the

daisy chain, the value to store in the device, and an update flag for when these registers

are ready to be sampled. The clock, serial data input, chip select, and shutdown lines

connect directly to the digital potentiometer.

Upon receiving the update flag, the module decodes the device number and goes

into serial shifting mode. During the shifting operation, the serial chain is rotated

in a 63—bit register to retain the values previously updated in the other devices. The

shifting operation occurs at 390 kHz, allowing an update frequency of 6.2 kHz. After

the shifting operation completes, an acknowledgment flag is set to high for one clock

pulse before returning to the idle state.

Since the digital potentiometers are used for both the current analog-to-digital

converter as well as the current digital-to—analog converter, the update process is

controlled globally by the execution controller. This eliminates the requirement of an

51

—. iadc_clk

—. iadc_sck

clk .— —. iadc_cs_bar

—. iadc_sdo

iadc_data_collect .— -. iadc_sda

iadc_data_ready .— Current ADC r. iadc_scl

ladc_address .— —. read_control

iadc_starLaddross .— —. write_control

iadc_end_addross .— —C mem_op_completed

—. address

—. memory_data_wrlte
Figure 4.6. Current ADC VHDL Module

scLW

smW0 A1 A0 rvw sameacameieim
Start Stop

Condltlon‘— “an“ BY“ —’ 0'“ BY“—* condition

Figure 4.7. Current Channel Multiplexer 12C Interface

additional multiplexer for the potentiometer control signals from both the execution

controller and the current ADC.

4.4 Current Analog-to-Digital Conversion

The board incorporates a 24-bit delta-sigma voltage mode analog-to—digital converter

in conjunction with a 128-position digital potentiometer, an eight-channel analog

multiplexer and operational amplifier to make up the current ADC module. This

FPGA module controls the three interfaces between the ADC, potentiometer, and

multiplexer to resolve currents in the nanoampere range.

From a data acquisition perspective, the channel number, gain and number of

52

53130292827262524

3m>—\n_5:°° 0'" 9'6 CEEE®H®®®®®®W

Convmlon Result E

CS

 1:
;"

r
r
I
I
u

Octal/O M:

Figure 4.8. Current ADC Serial Peripheral Interface

samples are specified. These are provided by four, 16-bit packets to the execution

controller, which then slices them into the starting address, ending address, channel

address, and gain. The memory addresses are required because the data is first stored

into the FPGA board’s RAM modules before being transferred over the communica-

tion bus, acting as a buffer to allow real-time data acquisition. Data is ultimately

transferred over the serial line via the block memory transfer module. The three

most-significant bits of the memory addresses as well as the ADC channel number

are obtained from the first instruction packet.

The gain update is provided by the seven least-significant bits of the fourth in-

struction packet. Gain update only occurs when the most-significant bit of this packet

is set to ‘1’, otherwise no gain update occurs. This reduces the overhead and improves

the performance of the ADC module.

During startup, the module initializes all of the internal variables and external SP1

and 12C signals, and waits in the idle state until the iadc_data-collect signal is high.

Next, it initializes the multiplexer serial chain and enters shifting mode to update the

analog multiplexer. The analog multiplexer uses an 12C interface, however only the

writing mode of the protocol has been implemented.

After the multiplexer is updated, the single-channel, 24—bit ADC is reinitialized

by shifting out the previous conversion. This is completed since the ADC begins

conversion immediately following the last bit during the serial shifting operation,

53

thus the existing data in the ADC is from a previous data collection and should be

ignored.

After shifting out the previous conversion, the ADC goes into a waiting state for

the serial output line to transition from high to low. This transition signifies data

conversion is complete. The data is shifted into a 32-bit register where it is sliced

into two 16-bit words for storage into two sequential memory cells in the FPGA

development board’s RAM. After writing to the memory, the current memory address

is incremented and the process repeats for however many samples are specified.

The data may be stored anywhere in memory thanks to the iadc_start.address and

iadc_end.address input signals. This allows the flexibility of filling the entire memory

with samples if necessary or allowing space for other modules.

After reaching the ending addresses, the module sets the iadc_data_ready flag to

high for one clock cycle and then returns to the idle state.

4.5 Injection Control

The floating gate transistors are written to using the hot-electron injection process

discussed in Chapter 2. The circuit that controls this process requires one digital

output from the FPGA to enable/disable injection. However, the injection control

module uses a logarithmic-based injection scheme to achieve very small injection

pulses on the order of tens of nanoseconds to approximately ten seconds.

This is achieved by the use two 30—bit registers. First, a comparison register is set

to all zeros with its least significant bit set to ‘1’. The signal injecti0n_pulse_width

shown in Figure 4.9 is provided by the execution controller and is an 8-bit integer

representing the pulse width given by the following equation

y = 20 - 10‘9 - 2x (4.1)

where y represents the output pulse in seconds and :1: represents the value given

54

clk .—

in]ectlon_pulse_width .— . . , ,

__ Injection —- unlect
Inject_pulse .—

pulse_injected .—

Figure 4.9. Hot-Electron Injection VHDL Module

by injectiompulsewidth. After initializing the comparison register, it is rotated left a:

number of times. Although a: can take values from 0—255, the number is practically

limited to 29, since there are 30 bits in the comparison register. Any values greater

than 30 will simply cause the comparison register to make a complete rotation, keeping

the injection pulse width at a maximum of 10.73 seconds.

After setup of the comparison register, the injection pulse goes high and the

module enters a counting mode where it increments the 30—bit injectionfegister' vari-

able once per clock cycle until it exceeds the value of the comparison register. Thus,

2010g(229) or approximately 174.5 dB of dynamic range is achieved using this method.

Following the injection pulse, an acknowledgment flag is set high for the duration

of one clock cycle to allow the execution controller to resume operation and return

to the idle state.

4.6 Memory I/O

The system uses the FPGA development board’s SRAM chips to buffer all data

acquired from the test platform, as well as configuration data for the serial shifting

module and signal generator. It is therefore essential to have a robust interface to the

physical memory cells. The Memory I/O controller shown in Figure 4.10 interfaces

with the physical control pins on the two RAM modules as well as a 5:1 memory

multiplexer to allow multiple modules direct access to the memory without passing

55

-. cet

-. ubt

clk .— -. Ib1

—. ce2

read_control .—4 —. ub2

write_control .— Memory I/O —D Ib2

mem_op_completed .— ---D 06

address .— —. we

memory_dsta_wflts .— —. mem_sddress

rnsmory_dsta_resd C: -. mem_dstat

-. mn_dsts2
Figure 4.10. Memory I/O VHDL Module

data through the execution controller.

During the idle state, the two input control flags read_control and writecontrol

determine how the RAM cells are enabled. The read mode always has a higher

precedence than the write mode. Thus, if both signals are high, the memory controller

will read the data from the current address and latch it to memory.data-read. During

the read mode, the active low write enable signal is set to high and the output enable

signal is low. The dual is true during the write mode. The RAM chips themselves are

each 256 kB and thus have an 18-bit addressing scheme. Internally, however, these

two chips are addressed in a 19-bit addressing scheme where the 19th bit acts as the

upper and lower byte enable as well as the chip enable.

Each RAM chip shares the same address bus, but has separate data buses. The

data buses are bidirectional, meaning they must be set to a high impedance state when

not in use. When both input control flags are set to logic low, the memory address

is set to zero, both output and write control flags are disabled, and the memories are

disabled.

After receiving a transition on one of the two input control flags, the internal

56

modulsJoloct

F. read_oontroLout

r—D write_control_out

i-v. “armpit

—. my_dsu_\vms_ou

read_contnLln

writs_control_ln

m In

nunory_dsts_wrls_ln

Memory Mux

”
H
T

Figure 4.11. Memory Multiplexer VHDL Module

state machine goes into the read or write state. In the read state, the data latched

onto the memory_data-read signal by the two data buses is determined by the most-

significant bit of the memory address. Likewise, during the write state, this bit also

determines the data put onto the bus from the memor‘y_data_write register. Finally,

the mem-op_completed acknowledgment flag is enabled to return control to the parent

module before returning to the idle state.

4.7 Memory Multiplexer

The Memory I/0 controller discussed in Section 4.6 interfaces with a 5:1 multiplexer

to allow the memory transfer, current ADC, voltage ADC, signal generator, and

serial shifter to gain direct access to memory without passing data indirectly through

the execution controller. Figure 4.11 shows the signals passed through the memory

multiplexer.

4.8 Memory Transfer Control

Although the Memory I/O controller handles low-level access to the RAM, all data

transferred to and from the board is handled by the Memory Transfer Control module.

It also interfaces directly with the serial I/O module for direct outbound data transfer.

Figure 4.12 shows a block diagram of this module and its associated pins, where all

57

—. p-uIlsthd

r—D txd_ready

clk .— -. txd_complete

lrom_sddrsss .— —. read_control

mam ._ Memory Transfer _. “mom

read_block .— —C mem_op_completed

write_block .— —. dams

“In .— —. mmory_dsmm

op_completed .— —. mem_dutdmssd
Figure 4.12. Memory Tiansfer VHDL Module

pins on the left-hand side connect to the execution controller.

This module contains two internal state machines, one for block memory reads

and the other for writes. The memory transfer control module is also connected to

the memory multiplexer. Therefore, the execution controller must select the second

input channel, otherwise the Memory Transfer Controller will never receive an update

acknowledgment from the Memory I/O module.

Just as the read.c0ntrol and writecontrol flags initiate the memory I/O con-

troller to complete an operation, the Memory Transfer module uses the read_block

and writablock control flags to begin a block memory transfer. These signals can

never be high simultaneously, otherwise both state machines will break out of their

idle states and will attempt to access the same memory signals at the same time.

This condition is prevented by the execution controller, which ensures both signals

are logic low during the idle state and only go high based on the 6th most-significant

bit of a memory transfer instruction packet.

On the execution controller side, the first instruction packet contains the read or

write operation flag, as well as the three most-significant bits of the address registers.

Two additional states collect the starting and ending addresses for reading or writing.

If a writing operation is required, a fourth packet is sent. The fourth data packet may

58

be written to one address or a range of addresses. This is used to initialize memory

cells, or for verification purposes as seen in the system initialization script.

Initially, there were two instructions to handle memory transfer. However, since

a block data transfer mode was required, a more elegant solution was to include one

extra instruction packet for every transfer, providing an address range. If the transfer

included a single read or write, both addresses would be the same. The expectation,

however, is that most data transfers will be block transfers, which is the case for

analog-to—digital conversion and serial shift chain verification. This approach reduces

the need for additional overhead in the FPGA to handle single address reads and

writes, as well as reduces the need for an additional op code in the instruction set.

When either of the two state machines break out of the idle state, they iterate

through the range of addresses provided by the from_address and to-address signals.

It uses a temporary currenLaddress variable for comparison and increments after each

read or write. During a memory read operation, the module may access the serial

I/O directly given the execution controller has enabled the serial I/O multiplexer

accordingly. Upon completion of a block data transfer, the 0p-completed signal is set

to logic high for one clock pulse before returning to the idle state.

4.9 Voltage Digital-to-Analog Conversion

The voltage DACS consist of five, eight-channel daisy-chained devices programmed

using a serial peripheral interface at a frequency of 25 MHz. Each device contains

a 312-bit register used to store a command op code, DAC channel, and 16—bit value

representing the voltage output. Thus, the module requires an internal 160-bit serial

chain for device configuration. Figure 4.13 shows a block diagram of the DAC control

module.

Upon DAC update, the execution controller receives two packets from the se-

rial communications interface. The first packet contains the upper 12 bits of the

59

—C clk

program_dac .— —. clr_bar

dac_programmed .— Voltage DACS h. cs__bar

dac_lnstructlon '— —. sdi

—. sck

Figure 4.13. Voltage DAC VHDL Module

dac_instruction signal and the second packet contains the remaining 16 bits. The

upper four bits of this signal contain the device address, which is parsed after the

program_dac signal becomes a logic high and initiates a DAC update. The device ad-

dress determines which 32 bits in the internal 160—bit shift chain register are updated

prior to the shifting operation. The remaining 24 bits in the dac-instruction register

are written directly to the shift chain register based on the device address. Further-

more, the upper eight bits of the instruction register contain four bits representing

the DAC command code followed by four bits representing the DAC channel.

The command code has multiple configurations, but only the write and update

feature is used. For example, the DAC channels may have their internal registers

written to, but not their outputs updated, or may have their outputs disabled en-

tirely. This feature may be useful, for instance, if all channels need to be updated

simultaneously. Given that the dac_instruction is passed directly from the software

interface, such behavior is user configurable.

After updating the serial chain, the module enters the shifting mode. Since this

module updates only one device per serial shift cycle, all other devices receive a

command code of no operation (OxF). Finally, the dac_programmed signal is set to

logic high to acknowledge the DAC operation is complete before returning to the idle

state.

60

txd__ready .—

txd_complete .— —C clk

rxd_complete .— Serial I[O —I rxd

paralleerd .— —. txd

parallethd .—

Figure 4.14. Serial I/O VHDL Module

4.10 Serial 1/0

The serial communications module allows data transfer between the PC—controlled

software interface and the FPGA development board. The protocol used is the stan-

dard asynchronous serial communications found in typical RS-232 implementations.

The hardware used is the minimal 3—wire RS-232, which contains only transmission,

receive, and ground connections. Figure 4.14 shows the Serial I/O module and its

associated pins.

Figure 4.15 shows one byte of asynchronous data using RS—232 signal levels. From

this figure, it can be seen that the signal levels use a negative logic. There is a voltage

translator that resides between the interface cable and the FPGA to convert between

these signal levels and 0—3.3 V levels, as well as converting the signals to positive

logic.

The line sits idle at the mark voltage level. There is an undefined region between

positive and negative 3 V to eliminate invalid start bit detection, particularly when

the cable is unplugged. When a transition from high to low occurs (positive logic),

the start bit is sent, followed by eight data bits and a specified number of parity

and stop bits. The figure also illustrates mark parity and two stop bits, which has

been defined for this system. Additional packets may be sent on the next clock cycle

61

Packet

+15V

LSB MSB

10100100001E111

Space (0)

+3V

Undet. 0V

-3V

Mark (1) - - .. _

-15V Stop Bits

sum an Parity Bit

Figure 4.15. RS-232 Signal Timing Diagram

following the last stop bit.

This transceiver contains two registers for storing both received data and data to -

transmit, pamllethd and paralleLrttd. It also has acknowledgment signals for these

two modes whenever a serial to parallel or parallel to serial conversion is complete.

Finally, in the transmit mode, the transceiver has an additional control flag whenever

data stored in the parallel_t:cd register is ready to be sent serially.

The module operates at a baud rate of 115200 bps, which is the maximum sus-

tainable frequency of the data terminal equipment (DTE). To set the baud clock, the

FPGA’s 50 MHz external clock is divided using a counter. There are two baud rate

generators depending on the direction of data being transferred. The transmission

baud rate generator may run continuously because it is the responsibility of the DTE

to detect the start bit and to synchronize its own baud rate clock. However, during

receiving, the baud rate clock is synchronized during start bit detection, and is set to

a logic low otherwise.

A standard packet size is typically eight bits (although seven bits is often found

in legacy devices) for this type of serial communications. However, due to the 16—bit

word widths of the RAM chips and data from the voltage DACS, it became natural to

implement a 16-bit packet structure for serial communications. This is accomplished

62

by sending two, 8-bit packets sequentially and then reconstructing the data as a

single 16—bit word following transmission on both ends. A state machine handles

each bit transmitted as well as the start, stop, and parity bits. During each state of

the transmit operation, another state machine handles the shifting of the parallethd

register.

On the receive side, the input signal is buffered to prevent glitches. This is ac-

complished by incrementing or decrementing a counter based on the current sample

of the input signal. The counter is initially set to 50 and the output is set to logic

‘1’, which also corresponds to the idle state of the serial protocol. If the input signal

goes low, the counter will begin to decrement until it reaches zero for every ‘0’ it

samples per clock cycle or will increment its value by one for every ‘1’ it samples.

After at least fifty ‘0’ samples, the output is set to logic ‘0’. Therefore, by utilizing

this method, any spurious logic highs during which time the input should be logic

low will be avoided. This specifically prevents false triggering of the start bit.

As in the transmit mode, the receiver has its own state machine to iterate through

the received bits during the serial to parallel conversion. This state machine is syn-

chronized on the start bit, which is accomplished by oversampling the filtered serial

receiver input. Once a high to low transition is detected, a counter increments until it

reaches half of the desired clock cycle length. A flag then instructs the receiver state

machine to begin collecting each data bit. The baud rate generator counts 434 clock

cycles per bit and sets the get_nert_bit signal high for one clock cycle before resetting

the counter. After receiving the last data bit of the second packet, the receiver state

machine returns to the idle state.

Since mark parity and two stop bits are used, the next three bits following the

data bits during serial transmission are logic ‘1’, or the same as the RXD line’s idle

state. This is designed to give the data terminal equipment extra time between

packets. However, in the receiver, only one stop bit and no parity bits are recognized.

63

module__sslect .—

S _ l M —. txd_ready_out

txd_readan .— ena UX —. parallel_txd_out

parallel_brd_ln .—

Figure 4.16. Serial Multiplexer VHDL Module

Therefore, higher transmission rates may be achieved by configuring the data terminal

equipment accordingly.

4.11 Serial Multiplexer

Two modules require access to the serial I/O module, the execution controller and the

memory transfer module. Figure 4.16 shows the serial multiplexer that allows each

of these modules to gain control of the paralleLtrrd and txd.ready signals. This multi-

plexer may also directly disable serial I/O transmission by setting the moduleselect

signal to zero.

4.12 Serial Shifter

A general-purpose serial shift chain controller has been included for the purpose of

testing mixed-signal designs with D flip-flop—based shift registers. Such shift registers

are used to enable and disable portions of the chip to aid in the testing process.

However, the length of these chains can vary depending on design and application,

but they all have the same basic structure and control pins.

Figure 4.17 shows the block diagram for the serial shift chain VHDL module.

Three external pins are needed for serial shifting: serial_clk, serial_in, and serial_out.

The other signals and buses are required for handshaking and for loading and storing

data from the memory.

64

—. serial_in

--. serial_out

clk .—

-D serial_clk

add —. read_oontrol

starL rsss .— . .

v—D write_control”d_mm Serial Shifter

—. mem_op_completed

shithtarLflag .—

—. address

shift_end_flag .—

—. memory_data_wrtte

—. memory_data_read
Figure 4.17. Serial Shifter VHDL Module

The controller works by reading the bitstream from sequential memory locations

and shifting the data out one bit per serial clock cycle. Additionally, the controller

will read the data output from the opposite end of the serial shift chain if available,

and will store it in subsequent memory locations.

Setup requires writing ‘1’s and ‘0’s to the least-significant bits of sequential mem-

ory cells in any portion of the SRAM. This is accomplished by using the memory

transfer module and writing ‘1’s and ‘0’s to each address. The addresses which this

data spans is given by the start.address and end_address registers.

During the idle state, the end shifting flag and serial out pin are cleared. During

a shifting operation, the execution controller configures the memory multiplexer to

allow the serial shifter module direct access to the SRAM. Three packets are received

from the PC-based host containing the instruction op code and the start and end

memory locations where the serial chain data is configured. I

The current address is set to the start address and the cell count is determined

by subtracting the start address from the end address. The host controller ensures

that the end address is always greater than the start address, and that the selected

memory cells are not less than cechount locations away from the end of memory.

Such a condition will cause the data written back as read from serial_in to overflow

65

—C clk

-D digit_sel

—. dlgit_val

Seven Segment

Display
lad_data .—

Figure 4.18. Seven Segment Display VHDL Module

the memory space.

The controller then iterates through each memory location until the current ad-

dress is greater than the end address. Next, the shift_end_flag is set for one clock

cycle and the controller returns to the idle state.

Data read from the serial_in pin will be written to the next memory location

following the last cell containing data to add to the serial chain. Thus, if memory cells

1—500 contain data for shifting, the data written back will be contained in memory

cells 501—1000.

4.13 Seven Segment Display

A seven segment display decoder is used for debugging purposes to view the internal

states of the FPGA. It is set by default to display the value of the current_instmction

register. Figure 4.18 shows the block diagram for the control module.

The theory for updating the seven segment display is as follows. Each display

module has a parallel interface to control which of the seven LEDs are enabled.

Additionally, each module has its own enable pin, making a four-bit address bus to

control which display module is to be updated. Only one seven-segment module may

be enabled at a time. The controller iterates through the four display modules and

turns each on individually to set the display segments. Although one digit is on at

any given time, the human eye perceives the update of the display as continuous.

This module uses four internal processes. A clock divider is used to reduce the

66

—. cs_bar

—D sdi

clk .— r—D sck

sig_gen_enab|e .— —. read_control

Mmmm ._ Signal Generator _. my,“

starLaddress .— —C mem_op_completed

end_address .— —. m

_.

r-C
Figure 4.19. Signal Generator VHDL Module

update frequency of the display to 250 kHz. An LED selection state machine decodes

an integer-based selection to one that enables only one seven segment module at a

time. A process to convert the value of a four-bit register into the enable signals

for the seven segments is needed to display the characters properly. Finally, the

main process deconstructs a 16—bit hexadecimal number and sets the other processes

accordingly to enable the correct seven segment module and its enabled segments.

4.14 Signal Generator

A signal generator module combines the functionality of the voltage digital-to-analog

conversion module with the memory transfer module to create a multi-channel wave-

form generator that may be used for testing mixed-signal designs. A block diagram

of this module is given in Figure 4.19.

A review of Section 4.9 shows that the DACS are controlled with a SPI through a

160—bit serial shift chain register. By storing 16-bit codes in memory, the DACS may

be programmed by reading these memory locations sequentially and updating their

outputs accordingly. Therefore, by computing a vector of digital inputs, an analog

waveform may be realized at any frequency, offset, amplitude, and phase within the

constraints of the digitally programmable interface and output range.

67

The execution controller initializes the DAC multiplexer and memory I/O multi-

plexer while waiting for the second instruction packet. The second and third instruc-

tion packets contain the start and end addresses for the memory locations containing

the DAC codes. The first five memory locations in the specified memory range con-

tain the channel addresses of the five DAC ICs. Therefore, for multi-channel signal

generation, up to five channels may be specified with one channel per DAC chip.

This behavior is due to the l60-bit serial chain updating the five chips concurrently.

Since only one channel per chip may be updated at a time, only one channel is

allowed per chip during multi-channel signal generation. Additionally, since the last

four channels of the fifth DAC chip provide biases to the injection and current ADC

circuits, these channels may not be specified in the fifth memory location in the

address range due to their required stability as a bias.

After receiving the ending address, the module sets the sig_gen_enable flag and

and enters a waiting state until a termination packet is received. This termination

packet is a single instruction packet and is implemented by the host controller using

the loopback command. This is the only means of disabling signal generation and

returning the execution controller to the idle state.

During the idle state, the DAC serial chain register is initialized to the no oper-

ation state for all five devices. Upon receiving the sig_gen_enable flag, the controller

initializes the channel addresses for the five chips by reading the first five memory

locations specified in the address range. Next, the data is loaded from the remaining

addresses sequentially and is stored into the DAC serial chain register.

This processes occurs in blocks of five memory addresses per shift cycle. After

loading the data into the serial shift chain register, the data is output via the serial

peripheral interface at a frequency of 25 MHz. The module then reads the next five

locations and stores them into the serial shift chain and repeats the process. This

occurs until the end address is reached, after which the current address is reset to

68

—. adc_clk

clk .— —. adc_sck

—. adc_cs_bar

adc_data_collect H H adc_sdi

adc_data_ready .— —. adc_sdo

sdc_conv_mode .— VOltage ADC —D read_control

sdc_sddress .— -. write_control

sdc_start_address .- —C mem_op_completed

adc_end_sddress h -. address

r-D memory_dsts_wrlte

Figure 4.20. Voltage ADC VHDL Module

the beginning of the data loadable addresses. It is also during this state that the

controller determines if the sig_gen-enable flag has been cleared, meaning that the

termination packet has been received. The sig.gen.complete acknowledgment signal

is set for one clock pulse and the module enters the idle state.

Thus, to construct multi-channel signal generation, the data for a single channel

is stored in every fifth memory location. Routines have been devised in software to

generate these data structures and store them in memory. An example function is

given in Section B.17.

4.15 Voltage Analog-to-Digital Conversion

The board includes a 16—channel, 24-bit delta-sigma voltage mode analog-to-digital

converter for data acquisition. This module controls the SP1 communication protocol

that both configures and receives the conversion result, as well as stores the received

data in the FPGA board’s SRAM.

Figure 4.20 shows the configuration of the voltage ADC VHDL module. The

signals on the left-hand side connect to the execution controller whereas the other

signals connect to the memory I/O module and external pins for the SP1 and conver-

69

31302928272625246543210

-—Input Address *7 t Don’t Care ——>

7—K

L_

l
i
o

t Datallo Viv
Figure 4.21. Voltage ADC Serial Peripheral Interface

sion clock.

During data acquisition, the channel number, number of samples, and conversion

mode are specified. These are provided by three 16-bit packets to the execution

controller, and are latched to the adc_c0nv_mode, adc_address, adc_start_address, and

adc_end.address registers. As in the current ADC case, the memory addresses allow

the data to be stored into the FPGA board’s SRAM before being transferred over the

communication bus, acting as a buffer to allow continuous data acquisition. Data is

then transferred over the serial line via the block memory transfer module. The three

most-significant bits of the memory addresses as well as the ADC channel number

are obtained from the first instruction packet.

During the idle state, the module initializes all of the internal variables and exter-

nal SPI signals and waits until the adc_data-collect flag is set. Next, it initializes the

ADC’s serial data input by setting the adc_chain register, which specifies the ADC

channel address and the conversion clock mode for the next conversion.

The conversion clock mode specifies the speed and accuracy of the data converter.

Four modes are selectable based on bits 6—7 of the first instruction packet. The

implications of each of these modes is discussed further in Chapter 5, during the

testing and validation of the test station’s performance.

The module then shifts 32-bit data to and from the ADC, as shown in Figure 4.21.

70

The serial output read from the ADC corresponds to the previous conversion cycle;

therefore, the first conversion after initiating analog-to—digital conversion is ignored.

The ADC then goes into a waiting state for the serial output line to transition from

high to low. This transition indicates the conversion is complete. The data is shifted

into a 32—bit register where it is sliced into two 16—bit words for storage into two

sequential memory cells in the FPGA development board’s RAM. After writing to

the memory, the current memory address is incremented and the process repeats for

however many samples are specified.

The conversion clock rate is determined by the adc-clk signal. This ADC is capable

of a conversion clock rate of 2 MHz, producing an output rate of over 97 samples per

second. As in the current ADC module, the data may be stored anywhere in memory

due to the use of specified address ranges at the input of the module. This allows the

flexibility of filling the entire memory with samples if necessary or allowing space for

other modules.

After reaching the ending addresses, the module sets the adc_data-ready flag to

high for one clock cycle and then returns to the idle state.

4.16 Voltage DAC Multiplexer

The voltage digital-to-analog converters are shared between two modules, the single-

channel, single update voltage DAC controller and the signal generator. The voltage

DAC multiplexer allows multi-module access to the SPI. Figure 4.22 shows the pin

configuration of this 2:1 multiplexer.

4.17 Digital Clock Manager

The Digital Clock Manager (DCM) module allows synthesis of a new clock frequency

along with duty cycle and phase correction of existing clock sources [58]. Additionally,

71

module_select .—

chn H Voltage DAC

deIn .- Multiplexer

cs_bar_ln .—

—. sck_out

—D sdi_out

—. cs_bar__out

Figure 4.22. Voltage DAC Multiplexer VHDL Module

DCMs help to eliminate clock skew, thus improving performance of the overall system.

Figure 4.23 shows the DCM module implemented on FPGA hardware.

The FPGA development board includes a 50 MHz external crystal oscillator that

acts as input to the DCM. The DCM can be synthesized for a number of modes,

but only buffering and duty cycle correction are used to improve fanout perfor-

mance. Additionally, a PLL can multiply the clock to frequencies up to 280 MHz

for the XC3S200FT256-4 and faster for parts with better speed grades. The DCM

shown in Figure 4.23 has three outputs. Signal clk0.0ut shares the same frequency

as clkin_in, but is buffered and has duty cycle correction. It also acts as the global

clock to all other modules. Signal clkfx.0ut is realized as a 250 MHz clock source and

clkin_ibufg_0ut is a buffered version of clkin_in.

The DCM is also capable of producing 90, 180, and 270 degree phase-shifted

clock sources based on the source frequency and 180-degree phase-shifted sources of

a doubled source frequency and the freely synthesizable (fx) frequency. Furthermore,

it is possible to divide the clock. The DCM is preferable to using traditional clock

dividers made with counters and comparators since these structures occupy slices

whereas a DCM is a separate module existing in the periphery of the FPGA. This

particular device contains eight DCMs.

Utilizing the PLL of the DCM module, it is possible to improve the speed of the

overall system, thus reducing the baud rate error in the asynchronous serial communi-

cations and doubling the speed of the voltage DACS to their maximum SPI frequency

72

—. clk0_out

clkian .— Digital Clock Manager —- cIktx_out

—. clkin_ibufg_out

Figure 4.23. Digital Clock Manager Module

of 50 MHz. However, this would require adjusting all internal timing and counter

sizes, which is not possible with existing slice utilization. A larger device such as

the XC3SlOOO would be required for any future expansion of the FPGA’s synthesized

functionality.

73

CHAPTER 5

Testing and Results

Before floating gate transistors may be programmed to currents in the nanoampere

range, it is essential to test and calibrate the measurement circuits of the mixed-

signal test station. This chapter validates the functionality of the voltage-mode ADCs

and DACS, current-mode circuits, and floating-gate programming circuits. Next, the

floating-gates are tested through a series of programming experiments detailed in

Section 5.3.

The system controller detailed in Chapter 4 has been tested throughout its design

and will not be discussed. Furthermore, it acts as the framework for the following

experiments, which would not be possible without a robust digital interface.

5.1 Test Station Validation

5.1.1 Fowler-Nordheim Tunneling Pulse Response

Figure 5.1 shows the transient response of the gate driver output of the Fowler-

Nordheim tunneling circuit. Since tunneling is either enabled or disabled by the least-

significant bit of the corresponding instruction packet, the period of the tunneling

pulse is defined by the speed of the host software to disable tunneling, which includes

the overhead of making the tunneling function call and constructing the packet for

serial transfer. A minimum tunneling pulse width of 139 [is is possible by sending

74

Tunneling Gate-Driver Output

1 6 T I i I T l T

L A; ‘L J A ‘_.LL_‘_

.
s

.
5

.
5

o
N

«
5

O
u
t
p
u
t
V
o
l
t
a
g
e
(
V
)

o
n

 J l j l l

‘20 30 4o 50 so 70 so 90 100

Time (ms)

Figure 5.1. Tunneling Pulse

two instruction packets back-to-back.

5.1.2 Hot-Electron Injection Pulse Response

Figure 5.2 shows the minimum pulse width of the injection circuit for different biases

of DAC channel #37. Unlike tunneling, which is a relatively slow process on the order

of seconds (at 15 V), large injection currents can be generated with pulse widths

on the order of microseconds. Thus, a logarithmic pulse scaling method has been

implemented as discussed in Section 4.5. The OPA2743, which acts as a rail-to-rail

comparator, has a slew rate of 10 V/us and sets the minimum resolvable pulse width.

Thus, the variable :1: in Equation (4.1) can be set to a minimum of six. Furthermore,

it can be seen that the output of the MAX1681 does not have a direct negative

correspondence to its input.

Figure 5.3 illustrates the logarithmic scaling of the injection pulse FPGA module

for different values of :1: at a fixed input of 2 V to the MAX1681 voltage inverter. This

75

Minimum Injection Rate vs. Injection Voltage

f

A_,

O
u
t
p
u
t
V
o
l
t
a
g
e
(
V
)

 <
O
I
O

N N <

224v

—4 l I L

2 3

Time (us)

Figure 5.2. Minimum Injection Width

experiment also illustrates that the injection voltage has a slight settling and drift to

its targeted amplitude.

5.1.3 Voltage-Mode ADC Linearity

The LTC2415-1 and LTC2418 have near identical performance specifications. The

LTC2418, however, includes a front-end multiplexer for 16-channel data acquisition.

Calibrating the LTC2415—1 will be especially important for accurate current measure

ment, which is essential for floating gate programming. These data converters have

an external conversion clock source input F0 that determines the conversion time. A

maximum frequency of 2 MHz produces 97.5 samples per second.

Figure 5.4 shows the linearity of the data converter operating in the 2 MHz con-

version clock mode. For this experiment, one channel of the voltage—mode DAC is

connected to the first channel of the LTC2418. The DAC is a 16—bit converter and is

guaranteed monotonic across its range of 0 to 4.096 V. First, the DAC’s internal reg-

76

Injection Pulse Widths

3 1
8

3

>

3 0r- " + 0 v

O

-1.

v x=6

‘2 O X=7 ‘

I x=8

O X=9

—3 l l 1

O 5 10 15 20

Time (us)

Figure 5.3. Injection Widths

ister is cleared, producing O V output, which is then sampled by the ADC. The DAC’s

register is incremented and this process is repeated spanning the entire resolution of

the DAC. The deviation from ideal is plotted in millivolts.

Given that these are 24-bit data converters, a minimum of 16 bits is expected

as the experiment is limited by the resolution of the digital-to—analog converters.

However, Figure 5.4 shows a resolution of less than 8 bits. The DACS have a settling

time of 2 us, however the time between configuration of the DAC and the ADC sample

is a minimum of 555.6 [1.8 (for serial communications) without including setup time

by the host. Therefore, this error is not due to any transients.

The LTC2418 datasheet shows that resolution is inversely proportional to sam-

pling speed. In addition, the resolution deteriorates rapidly after 25 samples per

second. Figures 5.5 and 5.6 show experimental results for 1 MHz and 400 kHz, re-

spectively.

77

Voltage ADC Nonlinearlty (at 2 MHz)

8C 1 s

60 1

40 q

S‘

E 20 ,

i
= O

5
2

-20

.40

4593.5 i 175 é 2:5 5 3.5
Input Voltage

Figure 5.4. Voltage ADC Linearity at 2 MHz

Voltage ADC Nonlinearity (at 1 MHz)

1

0.5

S‘

5. o

i

E -o.5

Z

_‘| I-

-1.g e s s s 1

6.5 1 15 2 as 3 3.5

Input Voltage

Figure 5.5. Voltage ADC Linearity at 1 MHz

78

Voltage ADC Nonlineerity (at 400 kHz)

0.8

0.6

0.4

0.2

0

—0.2

N
o
n
l
i
n
e
a
r
l
t
y
(
m
V
)

—o.4

-O.6

—0.8

"5.5

l l

1 1 .5 2 2.5

Input Voltage

Figure 5.6. Voltage ADC Linearity at 400 kHz

Voltage ADC Nonlineerity (at 153600 Hz)

0.5 '

N
o
n
l
i
n
e
a
e
r
(
m
V
)

T

1" l‘

I\ I‘

— Runi

— Run2

I f , .

it

I

1 1 .5 2 2.5

Input Voltage

Figure 5.7. Voltage ADC Linearity at 153600 Hz

79

The converter has a notch filter designed to reject 60 Hz noise at its internal clock

frequency when the F0 pin is driven to logic low and rejects 50 Hz noise at logic high.

The filter may be adjusted to a center frequency of F0/2560 if provided an external

conversion clock. This corresponds to an clock rate of 153.6 kHz for 60 Hz noise.

Figure 5.7 shows the best case performance metric for the LT2418 at 6.2 samples/sec.

5.1.4 Signal Generator

The multi-channel signal generator module discussed in Section 4.14 has been tested

through the example function generator script of Section EU in the appendices.

Figures 5.8 through 5.11 show a 1 kHz waveform for the standard sine, triangle,

sawtooth, and square waves with no offset or phase shift at two amplitudes: 1 and

0.5.

80

DAC-basedSignal Generator (Sine Wave)

:3A A

:: V V f

O
u
t
p
u
t
V
o
l
t
a
g
e
(
V
)

N
0
)

d

O

"0'50 0.5 1 1.5 2 2.5 3

“me (ms)

Figure 5.8. Signal Generator Sine Wave at 1 kHz

DAC-basedSignal Generator (Triangle Wave)

4.5

4 In

3.5 '-

3%

S

g 2.5r

i
> 2 '

S

g- 1.5 " t

O

1 P

0.5 -

0 d

’0'50 0.5 1 1.5 2 2.5 3

Time (ms)

Figure 5.9. Signal Generator Triangle Wave at 1 kHz

81

O
u
t
p
u
t
V
o
l
t
a
g
e

(
V
)

‘7

DAC-based Signal Generator (Sawtooth Wave)

0 0.5 1 .5

Time (ms)

2.5 3

Figure 5.10. Signal Generator Sawtooth Wave at 1 kHz

DAC-based Signal Generator (Square Wave)

..(— m“—

3.r‘——"‘ (“u--

N 0
1

O
u
t
p
u
t
V
o
l
t
a
g
e

(
V
)

a
m

0.5 ' or s

—.u

l l

Fm

1.5

Time (ms)

Figure 5.11. Signal Generator Square Wave at 1 kHz

82

Figure 5.12. Floating Gate Programming Test Setup

I I

, " .//./""

s‘v‘s‘sb be s l-/

'
0

,"s

~s

4.

.e

9.

A

,s

s

Figure 5.13. Analog SVM Chip Photomicrograph

83

L

\
l

\‘
x
V
\

O
I
I
/
o
'

L
-
-
-
-
-
-
d

—
—

'
e

3

_
:
1

r
-
-
-
-
-
-
-
1
>
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Figure 5.14. Support Vector Simplified Schematic

5.2 Overview of the Test Chip

An analog support vector machine (SVM) has been designed and fabricated using the

AMI C5N process teclmology. This chip contains a 14-dimensional input space and

28 support vectors, which corresponds to 392 floating gates in the first stage of the

SVM. The second phase of the algorithm contains an output stage with an additional

56 floating gate cells.

Without going into great detail on the SVM hardware, it is important to look at

the transistor-level structure of the SVM for floating gate programming. The output

currents from these cells will pass through the SVM to a common output node that

is measured with the current ADC.

Figure 5.14 shows a simplified schematic of a training vector in the SVM’s first

stage. The floating gate cells are represented by independent current sources Y0 and

Y1. X0 and X1 are represented as diode-connected transistors. The support vector

output is given by Z.

84

Vdd

 INJECT 0 our

Figure 5.15. Floating Gate Cell Schematic

All ground connections meet at a common node that is separate from digital

ground used for cell selection. This allows each cell to be individually selected to

test the output current of individual floating gates or the performance of individual

support vectors. The fabricated prototype includes cell selection transistors at the

output of the X and Y inputs, above M1 and M2, and above the 7 constant current

sink.

Floating gate readout involves disabling the sourcing capability on the Xn tran-

sistors and passing all current through M1. All other cells are disabled, including Mz

as well as M, for all support vectors. Additionally, this architecture requires the gate

of the M1 transistor to be charged, otherwise it will not act as a switch and will limit

the current flowing through the drain of the floating gate.

During every current readout or injection cycle, the M2 transistor is enabled to

charge the parasitic gate capacitance of M1 so it is completely enabled. M2 must then

be disabled, otherwise current may flow from adjacent cells, corrupting the reading.

Additionally, the cascoded biasing transistor at the output of the floating gate cell is

fully enabled to minimize effects of the early voltage.

85

Figure 5.15 shows the floating gate cell schematic as implemented on-chip. This

basic topology was discussed in Chapter 2; however, note that M1 through M4 have

been laid out as 6um/3um to minimize mismatch between the injection and readout

transistors.

Cells are selected through a shift register controlled by the interface described in

Section 4.12. The shift chain consists of 515 selection bits in the following order: 392

first stage cells, 28 output stage cells, six test cells, the remaining 28 output stage

cells, five cells for an on-chip integrator controller, and 56 M7 and M2 selection cells.

It is important to note that not every shift register stage contains a corresponding

floating gate cell. Consequently, all experiments have been carried out on the first

stage cells.

5.3 Floating Gate Testing Results

Figure 5.16 shows an array of 300 unequalized floating gate cells in their natural,

post-fabrication state. With a 2 V control gate voltage, they vary from approximately

21 nA to 34.5 nA. Since the nearest integer to the maximum current read in the array

is 35 nA, all cells will be equalized to this current.

5.3.1 Floating Gate Current Equalization

Figure 5.17 shows the same floating gate array programmed to 35 nA. Since the

programming algorithm stops injecting once the cell current exceeds the targeted

current, it can be seen that the average current slightly exceeds the targeted current.

A histogram of the equalized floating gate currents is shown in Figure 5.18.

Next, the control gate voltage is increased to 2.2 V. This reduces the current in the

floating gate cells by reducing the source-to-gate voltage of these capacitively-coupled

pMOS transistors. Figures 5.19 and 5.20 show the measured currents in the floating

gate cells and their histogram, respectively.

86

Unequalized Floating-Gate Currents (VCG = 2V)

35 I t 1 1 s

30 - .

g |

E
O

25

2 I l l l l

(50 100 150 200 250 300 350

Floating-Gate Cell

Figure 5.16. Unequalized Array of Floating Gates

5.3.2 Adaptive Injection Characteristics

Figure 5.21 shows the hot-electron injection characteristics for seven different targeted

currents starting from the equalized array current of 35 nA. The algorithm used for

this experiment is given in Section F.8.

Since injection current is a function of the initial current, the pulse width must be

decreased as the initial current increases. The algorithm thus includes an injection

width modifier that is incremented for different current ranges. The modifier is then

subtracted from the default pulse width. The default pulse width is determined by

the AI change between the previous injection cycle and targeted currents. As the

measured current comes within a specified range of the targeted current, the injection

pulse width is divided by two. This process is repeated until the current is within

250 pA of the targeted current.

87

O

Equalized Floating-Gate Currents (VCG = 2V)

eU

35.25

C
u
r
r
e
n
t
(
M
)

8
2 a

'3: __...-| .. .-
W

34.8 ‘ ‘

— Measured Current

------ Average Current 1

- - Targeted Current

l.1| ..
||

0 50 100 150

Floating-Gate Cell

200 250 300

Figure 5.17. Equalized Array of Floating Gates

—/'A

l
45

4o " /

235 Vi

8
6
1
‘

\
1

1

Equalized Floating-Gate Currents (VCG = 2V)

34.5 35

Current (nA)

Figure 5.18. Floating Gate Equalization Accuracy Histogram

88

Equalized Floating-Gate Currents (VCG = 2.2V)

;— Measured Current

------ Average Current

 4.4

 4.35 '-

4.3 '

4.25

C
u
r
r
e
n
t
(
n
A
)

 3. I I I I

950 50 100 1 50 200

Floating-Gate Cell

Figure 5.19. Equalized Array of Floating Gates at VCG = 2.2 V

Equalized Floating-Gate Currents (VCG = 2.2V)

I“ I U

: ‘l

2 /7, 40 _

U

‘6

b

.8 30'
E

3

z

20 "

10

I i I

(3.8 3.9 4 4.1 4.2 4.3 4.4 4.5

Current (nA)

Figure 5.20. Floating Gate Equalization Accuracy Histogram at VCG = 2.2 V

89

Adaptive Programming

70 i r , T 7 7

-9- 40nA —. '

-I- 45nA

-+— 50nA

-6- 550A .,

65f -e- BOnA r
+ 65nA

sol ‘7' 70nA

C
u
r
r
e
n
t
(
n
A
)

\

1
)

C
)

C O ((

Pulses

Figure 5.21. Adaptive Programming used for Hot-Electron Injection

It can be seen that the targeted current can be programmed within 2% accuracy

in fewer than 16 pulses. Extrapolating this figure shows a worst case of 26 pulses for

less than 0.5% accuracy. As compared to the state of the art injection algorithms

that require accurate modeling of injection currents [34], this empirical model requires

approximately twice as many pulses to achieve similar accuracy.

5.3.3 Effects of Injection on Threshold Voltage

Figure 5.22 shows the voltage to current characteristic for the standard pMOS tran-

sistor represented by Xn in Figure 5.15. These transistors have a width to length ratio

of 6/3. This characteristic may be compared to that of the floating gate as shown in

Figure 5.23. Here, the control gate voltage was set to 2 V and an array of floating

gates was programmed in increments of 50 nA, starting at 50 nA.

90

C
u
r
r
e
n
t
(
n
A
)

§

C
u
r
r
e
n
t
(
n
A
)

§

Standard pMOS vsc vs. IS (WIL = 513)

SW I I I I I I ‘

§
§

2.6 2.55 2.5 2.45 2.4 2.35 2.3 2.25

GateVoltage

Figure 5.22. pMOS Input Stage V-I characteristics

2.2

Floating-Gate Source Current vs. VCG

2m 7 V I I i V I’

180

160

_
s

N o
8

8

I I I I

3.6 2.3 2.2 2.1 2

Control Gate Voltage

2.5 2.4 1.9 1.8

1.7

Figure 5.23. Floating Gate MOS Threshold Voltage Modulation

91

By sweeping the control gate voltage, the threshold voltages of the programmed

floating gates may be observed. As more electrons are injected onto the floating

node, the threshold voltage decreases. Furthermore, it can be seen that the voltage

to current response of the floating gate is different from that of a standard pMOS

transistor. This is due to different source-to-drain voltages across both transistors,

as the floating gate cell includes an additional cascoded stage biased at 1.5 V.

5.3.4 Programmable Current Lookup Tables

Figures 5.24 and 5.25 demonstrate the ability to program a current-mode lookup table

on-chip. The first figure illustrates a current ramp from the initial equalized current

of 35 nA to 74 nA with a slope of 1 nA per cell. Figure 5.25 demonstrates a sine wave

with an offset of 62 nA and an amplitude of 14 nA—pp. These offsets and amplitudes

were chosen due to the initial state of the array, which had been equalized to 55 nA

prior to programming.

92

75

Programmable Current Ramp

Measured

— Ideal

70'

$

C
u
r
r
e
n
t
(
n
A
)

%

 P

t

I

10 15 20 25

Floating-Gate Cell

30

Figure 5.24. Floating Gate Current Ramp

Programmable Current Sine Wave

35

O
)

N

C
u
r
r
e
n
t
(
n
A
)

52'

Measured

 — Ideal

T

I

5 1O 15

Floating-Gate Cell

20 25

Figure 5.25. Floating Gate Current Sine Wave

93

30

CHAPTER 6

Conclusions

6.1 Accomplishments

Through this work, an automatic test unit (ATU) for topology and process-neutral

analog floating gate programming and mixed-signal design testing has been fabricated

and verified on a system-on-chip. This incorporated the design of a board-level system

framework for precision voltage and current measurement and analog output, as well

as high slew-rate injection and tunneling outputs. The system required the design

of a high-speed controller realized in VHDL and synthesized on a Xilinx XC3S200.

Furthermore, a software interface has been developed to provide a customizable API

for future floating gate testing for analog computation in SoCs.

For the validation phase of this work, an analog support vector machine complete

with floating gate transistors was designed and fabricated to test the accuracy of the

ATU for performing hot-electron injection and tunneling functions, as well as off-chip

current analog-to-digital conversion. Additionally, a novel floating gate programming

algorithm has been developed through experimental observation, and has been used

to successfully program floating gate cells to within 0.5% accuracy.

94

6.2 Suggestions For Future Work

This work is an ongoing effort to develop a rapid prototyping and verification system

for mixed-signal ICs. Future iterations will improve on the features introduced in

this work and further refine the methods developed herein. Several drawbacks to the

existing system were identified during system validation and these items are discussed

below.

6.2.1 Floating Gate Architectures

This work explored only one floating gate architecture that used a separate MOS

device for prograrmning and current output. A more efficient design would incorporate

these two functions using the same floating gate MOS device. This ensures that both

the injection and readout nodes have the same current sourcing characteristics. This

is important for accurate modeling of the injection rate based on the existing control

gate voltage and the charge stored on the floating node. Since mismatch between the

injection and readout transistors is likely to occur, the AI/At where t represents the

injection pulse period will not be constant across different cells given their output

currents are equalized. Furthermore, any charge trapping that occurs in the gate

oxide layer of the injection transistor will have a further effect on injection modeling,

making it more difficult to characterize the current output transistor.

However, although it would appear this method would require less area per floating

gate cell by eliminating the additional injection transistor, it would occupy a greater

footprint due to two required multiplexing transistors. Furthermore, two additional

multiplexing transistors should be added to the existing architecture in order to bypass

the support vector machine for direct current measurements. The existing topology

requires the floating gate current to pass through the support vector cells to the

ground terminal. This creates testing complications since this current cannot be

measured directly, or requires the SVM to be configured in an unstable state.

95

6.2.2 Board-Level Modifications

The floating gate test station was designed for the AMI C5N process, which requires

a minimum of 15 V for Fowler-Nordheim tunneling and allows hot-electron injection

between 4 V and 6.5 V. The tunneling and injection supplies were therefore designed

for these voltages without giving consideration to more sophisticated fabrication pro-

cesses.

A 0.25 pm process, for example, uses a 10 V tunneling voltage and 3.8 V VDS for

hot-electron injection. Although the amplitude of the injection output can be adjusted

through the configuration of voltage DAC channel #37, it cannot be reduced beyond

a certain threshold without the MAX1681 inverting DC-DC converter exceeding its

input range. One solution is to modulate the test chip’s supply voltage using one

of the voltage DAC channels. Since each DAC channel is capable of sourcing up to

15 mA of current, these channels may be used directly to decrease the supply for

injection at a lower VDs-

Furthermore, digital potentiometers could be used at the output of the tunnel-

ing and injection supply nets to divide their output voltages. This method may be

preferable for two reasons. First, as demonstrated in Chapter 5, there is not a di-

rect correspondence between the output of the DAC channel and the injection supply

output. Since the digital potentiometers are guaranteed to be monotonic regardless

of their nominal values, the output may be accurately calculated based on a fixed

output voltage. Second, the potentiometer would provide an additional load for these

DC—DC converters, thus improving their efficiency.

Another potential improvement could come from modifying the topology of the

current DAC to provide sinking as well as sourcing. This would allow current biasing

from pMOS-based structures. One possible implementation could include inverting

some of the channels to sink rather than source current. This may be done by using an

inverting regulator that maintains a negative potential across the digital potentiome-

96

ter in the existing topology. Both implementations may be combined by connecting

both regulators to the same common ground path and using a switch to reverse the

voltage polarity across the digital potentiometer.

6.2.3 Microcontroller—Based Test Station

The merits of an FPGA-based versus a microcontroller-based test station include

high speed through parallel processing and access to off-chip RAM for data storage

in real-time data acquisition experiments. Such performance cannot be matched by

a general purpose microcontroller unit such as the PIC18F or dsPIC30/33 families

by Microchip or the MSP430 family by TI due to limited I/O ports and peripheral

speed. Even the hardware SP1 and 12C modules in these devices are only capable up

to 2 Mbps whereas the FPGA is capable up to 125 Mbps when using the PLL module

of the FPGA’s digital clock manager.

However, these devices offer the advantage of being easily integrated onto the

existing test station PCB through package availability such as DIP and SOIC, which

stands in stark contrast to BGA and TQFP of modern FPGA devices. Additionally,

some performance bottlenecks can be reduced by incorporating demultiplexers on the

output of the part for chip selection in a SPI-only environment. This would allow

individual part selection, eliminating daisy-chained configurations and reducing the

number of shift cycles during serial communication with these devices.

The FPGA development board can accommodate a large number of parallel de-

vices such as external SRAM due to high density packaging. Chips up to 2 MB are

common as of 2007 and the current system integrates 512 kB of SRAM through two

256 kB devices. This cannot be matched directly by a microcontroller unit whose

options for external memory include serial EEPROMs or parallel SRAM. In the case

of SRAM, due to large data and address bus widths, multiplexers and latches would

be required to interface with the microcontroller using a minimum number of pins,

97

a partial speed penalty that makes real—time data acquisition more challenging. Ad-

ditionally, microcontrollers have at most 30 kB of data RAM, which would limit the

data buffer size before serially transferring the data for post processing.

An alternative to this problem would be to use the PIC18F2550/4550 family

of USB microcontrollers capable of 12 million instructions per second (MIPS) [59].

USB can alleviate communication bottlenecks by providing up to 12 Mbps for full

speed devices. Utilizing interrupt transfers, latency can be guaranteed [60], thus real-

time data acquisition may occur through immediate transfer with very small buffers.

Also, unlike the similar isochronous transfer mode, interrupt transfers include error

checking, thus ensuring data transmission accuracy. Furthermore, the bus can supply

power directly to the test station with up to 500 mA of current, well above the power

requirements of the existing test station (70 mA) and thus eliminating the need for

external power adapters.

In conclusion, one outcome of this work has been to create a modular test station.

Through this, it is possible to make a single demo platform that combines both

the functionality of the motherboard and daughter card containing the SoC under

test. Taking into account the lessons learned in this design and the recommendations

outlined above, it is now possible to make a completely integrated system which does

not require external test and measurement equipment for chip testing.

98

APPENDICES

99

APPENDIX A

Support Vector Machine SoC

A.1 Layout

Figure A.1. Floating-Gate Transistor Layout

100

101

Figure A 5 Output Stage Layout with Floating Gates and Shift Register

'1'. '10: I. ’1-21'4'; QI'I'.‘ l’l‘drirla‘f; 0
.

.l
.

u
.

.

m
y

.

.
5

I
.

o ..
..

.

U
.

I
:

.

C

Figure A.4. Support Vector Layout

[
I
I
I
/
I
I
I
.
”

Figure A 3 Shift Register Layout

..
/
/
.
/
/
/
/
/
/
/
/
M

E
w
fi
v
l
fi
u
g

4
H
P
”
m
u
1

/
”
/
t
/

.
-

/

V
V
/
A
n
fl
.
.
.
“

-
m
l
r
m
t
a
=
w
m

fi
r
;
5
5
2
1
/
1
/
:

o
I
t
.
a
r
.

.
3
5
.
5
.
7
3
3
.
.

I
I
I
I
_
I

fi
v
fi
m
m
3
2
.
?

I
I

A
l
l
!
!
!

n
.

m
e
l
l
w
l
m

r”!

I

1
//
: ’
1
/

[
M

M
a
y

”
r
t
/
1

é
é
x
/
z
m
v
m
e
/
I
a
/
V
/
/
/
/
/

W
m
m
7
,

2
3
7
/
4
2

I
I
I
?
—

W
W
K
M

r
.
.
c
g
/
/

.
-

.
/
v
V
/
1
.
7
1
7
/
/
/
:
7
/
/
1
Z
7
A
/
/
/
/

”
W
y
e
t
h

a

Figure A 2 Integrator Layout

LayoutSupport Vector Machine.6.AFigure

102

A22%dfimm

3 § § :5 a a '- E

'5' E E E E ’2' E E E 5

E E E E E E EEE

lameness? E wear

unreal-um: E E ass

SERIALTEST E oouuou

senIAm E can

samuour E van

CLK E E x43,

mnemvaus E x42,

emu” m1,

GAIN“ E E x40,

aspaouams Em

manna EEEEE

gm: mm:

Figure A.7. Fabricated Prototype Pin Bonding Diagram

103

Pin Name Type Description

1 VDD Jumper Supply

2 GND Jumper Ground

3 COMMON Analog I/O Aux Ground / Measurement

4 REF Analog I/O EEPROM Control Gate Reference

5 INJECT Analog I/O EEPROM Injection

6 TUNNEL Analog I/O EEPROM Tunneling

7 INTEGCALIBRATION Analog I/O Integrator Calibration Current

8 INTEGVPBI Bias Integrator ’Iiansconductor Bias

9 INTEGVPB2 Bias Integrator Transconductor Bias

10 INTEGVNB1 Bias Integrator Transconductor Bias

11 INTEGVNB2 Bias Integrator Transconductor Bias

12 INTEGVREF Bias Integrator Reference Voltage

13 INTEGVCMP Bias Integrator Comparator Threshold

14 INTEGREFCURRENT Bias Integrator Input Sink

15 INTEGMEAS Digital In Integrator Measurement Control

16 INTEGRESET Digital In Integration Capacitor Reset

l7 INTEGPULSE Digital Out Integrator Output Pulse

18 SERIALTEST Digital Out Shift Chain Cell #424 Out

19 SERIALIN Digital In Serial Shift Chain In

20 SERIALOUT Digital Out Serial Shift Chain Out

21 CLK Digital In Input Clock

22 INTEGINVBIAS Bias Integrator Output Inverter Bias

23 GAMMAl Bias Gamma #1 Bias

24 GAMMA2 Bias Gamma #2 Bias

25 EEPROMBIAS Bias EEPROM Cascode Bias

26 CELLBIAS Bias SVM Cell Bias

27 X<O> Analog I/O Input Dimension #1

28 X<1> Analog I/O Input Dimension #2

29 X<2> Analog I/0 Input Dimension #3

30 X<3> Analog I/0 Input Dimension #4

31 X<4> Analog I/0 Input Dimension #5

32 X<5> Analog I/0 Input Dimension #6

33 X<6> Analog I/O Input Dimension #7

34 X<7> Analog I/0 Input Dimension #8

35 X<8> Analog I/O Input Dimension #9

36 X<9> ' Analog I/0 Input Dimension #10

37 X<10> Analog I/0 Input Dimension #11

38 X<11> Analog I/O Input Dimension #12

39 X<12> Analog I/0 Input Dimension #13

40 X<13> Analog I/O Input Dimension #14

Table A.1. Fabricated Prototype Pin Descriptions

104

APPENDIX B

Test Station Design Documentation

B.1 Test Station Parts List

Designator Description Manufacturer Part

A1 CONN HDR BRKWAY .100 80POS RT/A 4—103326—0

A2 CONN HDR BRKWAY .100 80POS RT/A 4-103326—0

A3 CONN RECEPT R/A lOOPOS 1.27MM FX2-100$4.27DS(71)

ADC] IC ADC 16CH 24BIT DIFINPUT28$SOP LTC2418CGN#PBF

ADC2 IC ADC 24BIT DIFFINPUT/REFIGSSOP LTC2415-1CGN#PBF

ADC #1 CONN JACK BNC VERT 5OOHM PCB 227699-1

ADC #2 CONN JACK BNC VERT 5OOHM PCB 227699-1

ADC #3 CONN JACK BNC VERT 5OOHM PCB 227699-1

ADC #4 CONN JACK BNC VERT 5OOHM PCB 2276991

ADC #5 CONN JACK BNC VERT 5OOHM PCB 227699-1

ADC #6 CONN JACK BNC VERT 5OOHM PCB 227699-1

ADC #7 CONN JACK BNC VERT 5OOHM PCB 227699—1

ADC #8 CONN JACK BNC VERT 5OOHM PCB 227699-1

AMPO IC OPAMP RRIO DUAL 12V 8—SOIC OPA2743UAG4

AMP1 IC DUAL R-TO-R OP AMP 8-SOIC TLC2252IDG4

AMP2 IC OPAMP BRIO DUAL 12V 8—DIP OPA2743PAG4

AMP3 IC OPAMP RRIO DUAL 12V 8-DIP OPA2743PAG4

AMP4 IC OPAMP RRIO DUAL 12V 8—DIP OPA2743PAG4

AMP5 IC OPAMP RRIO DUAL 12V 8—DIP OPA2743PAG4

C0 CAP TANTALUM 22UF 16V 20% SMD F93lC226MCC

C1 CAP TANTALUM 10UF 16V 20% SMD F931C106MBA

C2 CAP TANTALUM 10UF 16V 20% SMD F931C106MBA

C3 CAP TANTALUM 10UF 16V 20% SMD F931C106MBA

C4 CAP TANTALUM 10UF 16V 20% SMD F931C106MBA

C5 CAP 1UF 16V CERAMIC X7R 1206 ECJ-3YB10105K

105

Designator Description Manufacturer Part

C6 CAP TANTALUM 10UF 16V 20% SMD F931C106MBA

C7 CAP TANTALUM 10UF 16V 20% SMD F931C106MBA

C8 CAP TANTALUM 10UF 16V 20% SMD F931C106MBA

C9 CAP TANTALUM 10UF 16V 20% SMD F931C106MBA

C10 CAP 1UF 16V CERAMIC X7R 1206 ECJ-3YB1C105K

C11 CAP 4.7UF 25V CERAMIC F 1206 ECJ-3FF1E475Z

C12 CAP 4.7UF 25V CERAMIC F 1206 ECJ-3FF1E475Z

C13 CAP 4.7UF 25V CERAMIC F 1206 ECJ-3FF1E475Z

C14 CAP 4.7UF 25V CERAMIC F 1206 ECJ-3FF1E475Z

C15 CAP TANTALUM 1UF 16V 20% SMD F931C105MAA

C16 CAP TANTALUM 1UF 16V 20% SMD F931C105MAA

C17 CAP TANTALUM 1UF 16V 20% SMD F931C105MAA

C18 CAP TANTALUM 1UF 16V 20% SMD F931C105MAA

C19 CAP TANTALUM 1UF 16V 20% SMD F931C105MAA

C20 CAP TANTALUM 1UF 16V 20% SMD F931C105MAA

CADCl CAP 1UF 16V CERAMIC X7R 1206 ECJ-3YB1C105K

CB1 CAP 4.7UF 25V CERAMIC F 1206 ECJ-3FF1E475Z

CB2 CAP 4.7UF 25V CERAMIC F 1206 ECJ—3FF1E475Z

CB3 CAP 4.7UF 25V CERAMIC F 1206 ECJ-3FF1E47SZ

CB4 CAP 4.7UF 25V CERAMIC F 1206 ECJ-3FF1E475Z

CB5 CAP 4.7UF 25V CERAMIC F 1206 ECJ-3FF1E475Z

CB6 CAP 4.7UF 25V CERAMIC F 1206 ECJ-3FF1E47SZ

CB7 CAP 4.7UF 25V CERAMIC F 1206 ECJ-3FF1E475Z

CB8 CAP 4.7UF 25V CERAMIC F 1206 ECJ-3FF1E475Z

CB9 CAP 4.7UF 25V CERAMIC F 1206 ECJ-3FF1E47SZ

CDACl CAP 1UF 16V CERAMIC X7R 1206 ECJ-3YB1C105K

CDAC2 CAP 1UF 16V CERAMIC X7R 1206 ECJ-3YB1C105K

CDAC3 CAP 1UF 16V CERAMIC X7R 1206 ECJ-3YB1C105K

CDAC4 CAP 1UF 16V CERAMIC X7R 1206 ECJ-3YB1C105K

CDAC5 CAP 1UF 16V CERAMIC X7R 1206 ECJ-3YB1C105K

CDAC6 CAP 1UF 16V CERAMIC X7R 1206 ECJ-3YB1C105K

CDAC7 CAP 1UF 16V CERAMIC X7R 1206 ECJ-3YB1C105K

CDAC8 CAP 1UF 16V CERAMIC X7R 1206 ECJ-3YB1C105K

CDAC9 CAP 1UF 16V CERAMIC X7R 1206 ECJ-3YB1C105K

CDAClO CAP 1UF 16V CERAMIC X7R 1206 ECJ-3YB1C105K

CIDO CAP 4.7UF 25V CERAMIC F 1206 ECJ-3FF1E475Z

CIDl CAP TANTALUM 1UF 16V 20% SMD F931C105MAA

CID2 CAP 4.7UF 25V CERAMIC F 1206 ECJ-3FF1E475Z

CID3 CAP TANTALUM 1UF 16V 20% SMD F931C105MAA

CID4 CAP 4.7UF 25V CERAMIC F 1206 ECJ-3FF1E475Z

CID5 CAP TANTALUM 1UF 16V 20% SMD F931C105MAA

106

Designator Description Manufacturer Part

CID6 CAP 4.7UF 25V CERAMIC F 1206 ECJ-3FF1E475Z

CID7 CAP TANTALUM 1UF 16V 20% SMD F931C105MAA

CID8 CAP 4.7UF 25V CERAMIC F 1206 ECJ-3FF1E475Z

CID9 CAP TANTALUM 1UF 16V 20% SMD F931C105MAA

CID10 CAP 4.7UF 25V CERAMIC F 1206 ECJ-3FF1E475Z

CID11 CAP TANTALUM 1UF 16V 20% SMD F931C105MAA

CID12 CAP 4.7UF 25V CERAMIC F 1206 ECJ-3FF1E47SZ

CID13 CAP TANTALUM 1UF 16V 20% SMD F931C105MAA

CID14 CAP 4.7UF 25V CERAMIC F 1206 ECJ-3FF1E475Z

CID15 CAP TANTALUM 1UF 16V 20% SMD F931C105MAA

CR1 CAP TANTALUM 10UF 16V 20% SMD F931C106MBA

CR2 CAP TANTALUM 10UF 16V 20% SMD F931C106MBA

CR3 CAP TANTALUM 10UF 16V 20% SMD F931C106MBA

CR4 CAP TANTALUM 10UF 16V 20% SMD F931C106MBA

CR5 CAP 1UF 16V CERAMIC X7R 1206 ECJ-3YB1C105K

CTl CAP 33UF 25V ELECT MZA SMD EMZA250ADA330MF61G

CT2 CAP 33UF 25V ELECT MZA SMD EMZA250ADA330MF61G

D0 LED RED CLEAR 1206 SMD LTST-C150CKT

D1 LED RED CLEAR 1206 SMD LTST-C150CKT

D2 LED RED CLEAR 1206 SMD LTST-C15OCKT

D3 LED RED CLEAR 1206 SMD LTST-C15OCKT

D4 DIODE SCHOTTKY 30V 1.5A NMP 2P MA2Q70500L

D5 DIODE SCHOTTKY 30V 1.5A NMP 2P MA2Q70500L

DACl IC DAC OCTAL R—R 16BIT 16SSOP LTC2600CGN#PBF

DAC2 IC DAC OCTAL R—R 16BIT 16SSOP LTC2600CGN#PBF

DAC3 IC DAC OCTAL R—R IGBIT 16SSOP LTC2600CGN#PBF

DAC4 IC DAC OCTAL R—R 16BIT IGSSOP LTC2600CGN#PBF

DAC5 IC DAC OCTAL R—R 16BIT 16SSOP LTC2600CGN#PBF

DAC #1 CONN JACK BNC VERT 500HM PCB 227699-1

DAC #2 CONN JACK BNC VERT 5OOHM PCB 227699-1

DAC #3 CONN JACK BNC VERT 5OOHM PCB 227699-1

DAC #4 CONN JACK BNC VERT 500HM PCB 227699—1

DAC #5 CONN JACK BNC VERT 5OOHM PCB 227699—1

DAC #6 CONN JACK BNC VERT 5OOHM PCB 227699—1

DAC #7 CONN JACK BNC VERT 5OOHM PCB 227699—1

DAC #8 CONN JACK BNC VERT 5OOHM PCB 227699-1

JPO SHORTING JUMPER GLD/NICKEL BLUE 929955-06—ND

JPl SHORTING JUMPER GLD/NICKEL BLUE 929955-06—ND

JP2 SHORTING JUMPER GLD/NICKEL BLUE 929955-06—ND

JP3 SHORTING JUMPER GLD/NICKEL BLUE 929955—06—ND

JP4 SHORTING JUMPER GLD/NICKEL BLUE 929955—06—ND

107

Designator Description Manufacturer Part

JP5 SHORTING JUMPER GLD/NICKEL BLUE 929955-06—ND

JP6 SHORTING JUMPER GLD/NICKEL BLUE 929955—06—ND

JP7 SHORTING JUMPER GLD/NICKEL BLUE 929955—06—ND

JP8 SHORTING JUMPER GLD/NICKEL BLUE 929955—06—ND

JPW CONN POWERJACK MINI .1” R/A PCMT SC237-ND

L1 FERRITE CHIP 1000 OHM 200MA 0805 BLM21AG102SN1D

L2 POWER INDUCTOR 1.0mH 0.18A SMD CDRH74NP-102MC

MUXl IC SW OCTAL SER 2.7/5.5V 24TSSOP ADG715BRUZND

POTl IC POT DIGITAL 128POS 14-TSSOP AD7376ARUZIOO

POT2 IC POT DIGITAL 128POS 14-TSSOP AD7376ARU10

POT3 IC POT DIGITAL 128POS 14-TSSOP AD7376ARU10

POT4 IC POT DIGITAL 128POS 14»TSSOP AD7376ARU10

POT5 IC POT DIGITAL 128POS 14-TSSOP AD7376ARU10

POT6 IC POT DIGITAL 128POS 14-TSSOP AD7376ARU10

POT7 IC POT DIGITAL 128POS l4-TSSOP AD7376ARU10

POT8 IC POT DIGITAL 128POS 14-TSSOP AD7376ARU10

POT9 IC POT DIGITAL 128POS 14-TSSOP AD7376ARU10

R0 RES 1.00K OHM 1/4W 1% 1206 SMD ERJ-8ENF1001V

R1 RES 511 OHM 1/4W 1% 1206 SMD ERJ-8ENF5110V

R2 TRIMPOT 2K OHM 4MM TOP ADJ SMD 3224W-1-202E

R3 RES 511 OHM 1/4W 1% 1206 SMD ERJ-8ENF5110V

R4 RES 511 OHM 1/4W 1% 1206 SMD ERJ-8ENF5110V

R5 TRIMPOT 2K OHM 4MM TOP ADJ SMD 3224W-1-202E

R6 RES 511 OHM 1/4W 1% 1206 SMD ERJ-8ENF5110V

R7 RES 2.20K OHM 1/8W 1% 0805 SMD MCRlOEZHF2201

R8 RES 2.20K OHM 1/8W 1% 0805 SMD MCRlOEZHF2201

R9 RES 2.20M OHM 1/8W 1% 0805 SMD MCRlOEZHF2204

R10 RES 2.20K OHM 1/8W 1% 0805 SMD MCRlOEZHF2201

R11 RES 2.20M OHM 1/8W 1% 0805 SMD MCRlOEZHF2204

R12 RES 2.20K OHM 1/8W 1% 0805 SMD MCRlOEZHF2201

R13 RES 2.20M OHM 1/8W 1% 0805 SMD MCRlOEZHF2204

R14 RES 2.20K OHM 1/8W 1% 0805 SMD MCRlOEZHF2201

R15 RES 2.20M OHM 1/8W 1% 0805 SMD MCRlOEZHF2204

R16 RES 2.20K OHM 1/8W 1% 0805 SMD MCRlOEZHF2201

R17 RES 2.20M OHM 1/8W 1% 0805 SMD MCRlOEZHF2204

R18 RES 2.20K OHM 1/8W 1% 0805 SMD MCRlOEZHF2201

R19 RES 2.20M OHM 1/8W 1% 0805 SMD MCRlOEZHF2204

R20 RES 2.20K OHM 1/8W 1% 0805 SMD MCRlOEZHF2201

R21 RES 2.20M OHM 1/8W 1% 0805 SMD MCRlOEZHF2204

R22 RES 2.20K OHM 1/8W 1% 0805 SMD MCRlOEZHF2201

R23 RES 2.20M OHM 1/8W 1% 0805 SMD MCRlOEZHF2204
108

Designator Description Manufacturer Part

R24 RES 2.20K OHM 1/8W 1% 0805 SMD MCRlOEZHF2201

R25 RES 511 OHM 1/4W 1% 1206 SMD ERJ—8ENF5110V

RADCl RES 2.20K OHM 1/8W 1% 0805 SMD MCRlOEZHF2201

RR1 RES 511 OHM 1/4W 1% 1206 SMD ERJ-8ENF5110V

RR2 TRIMPOT 2K OHM 4MM TOP ADJ SMD 3224W-1-202E

RR3 RES 511 OHM 1/4W 1% 1206 SMD ERJ—8ENF5110V

TUNNEL IC MOSFET DRVR SGL HS 9A 8—DIP UCC37322P

U0 IC REG POSITIVE 1.5A LDO TO-263 LM1086CS-ADJ/NOPB

U1 IC REG POSITIVE 1.5A LDO TO-263 LM1086CS-ADJ/NOPB

U2 IC REG POSITIVE 1.5A LDO TO-263 LM1086CSADJ/NOPB

U3 IC PREC REF LDO 4.096V 8-SOIC LT1461AC38—4#PBF

U4 IC REF LDO MICROPWR 2.5V 8SOIC LT1461AC38-2.5

U5 IC SW-CAP VOLT CONV 8-SOIC MAX1681ESA

U7 IC SW—CAP VOLT CONV 8-SOIC MAX1681ESA

U8 IC DC-DC CONV HI EFF 8-DIP MAX762CPA+

U10 IC VOLT REFERENCE LDO 2.5V 8801C REF192FSZ

U11 IC VOLT REFERENCE LDO 2.5V 8SOIC REF192FSZ

U12 IC VOLT REFERENCE LDO 2.5V SSOIC REF192FSZ

U13 IC VOLT REFERENCE LDO 2.5V 8801C REF192FSZ

U14 IC VOLT REFERENCE LDO 2.5V 8SOIC REF192FSZ

U15 IC VOLT REFERENCE LDO 2.5V 8SOIC REF192FSZ

U16 IC VOLT REFERENCE LDO 2.5V 8SOIC REF192FSZ

U17 IC VOLT REFERENCE LDO 2.5V SSOIC REF192FSZ
Table B.1. Test Station Parts List

109

110

Figure B.1. Gerber Output: Motherboard Top Silkscreen

 [an j
z
t
w

nixed-Sumo! 1c Testing Board v1.1.0

E“

J.

E“a

CH:

Lil)

crm ems ma

cme cu. m7

fi

0101201013921

the

HQWEI

[:3 Dammit: :3 m

D '0

0&2. [I .013

[:l .fi
.2 CZIEIIQWDEZIEII m.

E06 CI

0101001011

0101401015

we

1‘}

L]

07

II

ca?

1"}

LJ

cas

F‘l

LJ

[:3 E3 [3,5 EIEII [:3 m

[j n

can

{'1'

[.1

O
w
n

[3

£3.
[3

.9.
El

mo

m2

III

914

'5'
Cl

me

|:|
n20

III

n22

C3
R24

|:l

i

LII.
Ea

“ML

El
J96

0100 0101 as Dan CID2 0103

g
n
a
w
a
l
l

..,..
m
a
m
a
.
.
.
O

D
E
H
W

r
m
L

E
m

z
U
U
U
m

a
w

E
m

m
u
m
m
m
fl
m
m

U
m
U
h

n
w
W
E
m
m
m
fl
m
m

.
D
m
H
U
m
m
t
fl
u
m

D
m
H
U
m

.
U
m

m
m
“
U
m

L2 cu

l

04

I:

CT2

g
o
w
na
wa
s
E
U
.
.
.

g
a
m
m
a

E
m

[
D
a
m

U
m

l
m
l
m

m
..

II .II .II .II .II .II 11:"

E EI-H-II-H-H-I ° § 2' ’ '
II II II ~Il ~II %II II II C O O O

. .55.. -= = " II o 0 O O

I— —I- I: = -II 0 O

=§,§== 'l =Fh1’ 3| I O O O 0

III Ill" 0 O O o

=I-- "I. I I I 'ml 0 .

-- I I I o o o o
I... I. O... OOOI

IIII II n. "u = o o o 0

I'll Il'l; . .

_ o o o o

. C C .

=I== ” = =' 5 5 = = II... "I
- - - -. 0 °.

_ _ o o _ _ I . O C

III. II ' ' 0". oII

IIII u '° ' ' ' ’
II II II III. II o

C O C C

= -. : : - - .I... 'I'

- - - I

= = 0 0 = =. I. . .

’ ' 0". oll

.0 C C C C

III II II II IIII II '-

=I== I. _ -. : : _ _ -..O‘l 0'.

- - - - ’

= = o o = =0 .0. O 0

I'll III ° ' 'l'l oll

IIII n " ' ' ' ’
II II II I'll II o

C C C .

:-- . .: : . - .m
II = = o o = =' .0 O O

I. ' ' 0"". all

.. .0 O O C C

0 :: '
. 0.000000000000000... 3.000000000000000... .

loo-cocooooooooooooo oooooooooooooooooooo

Figure B.2. Gerber Output: Motherboard TOp Solder Mask

111

Figure 3.4. Gerber Output: Motherboard Middle Layer 1

113

Figure B.5. Gerber Output: Motherboard Middle Layer 2

114

H .i .i .1 .l .l E: H
O O

,:,::,::.::,::, '2- O O

l H H H H H H i O O O O

-. ,-. 0. s o.

!' O O O O

O .°.. IO! . .

O

O

. o- . .3 O O O O
. OO;.’

. a: O O O O

‘3 ° O O

O O O O

000- ooon .

' ' ' . O O O O

0000 0000 . .

o

O O O O
I

o

. o. o o o .000 .

O

. I. .I . .O'

o O O 0

o o ' 0 " Q O

O . . Q...) .

. . . .- O O O O

OO O O O OOOO .

O

.- g .0,

o o -

o o ' ' " O O

. . 0.0.: .

.- O O O O

OO O O O OOOO O.

O

.I o ,0, . O O O O

o o o

o o 0 0 ’ O O

.' o
O

. .- O O O O

OO O O OOOOOO .

O

.. . ,0, . O O O O

o . . ' .0
0 O ' ' O O

IO ° ’ '.'.' -

O. °‘ 0 0 C 0
I O

o

. 00000000000000.0000. Iooooooooooooooooooo .

looooooooooooooooooo oooooooooooooooooooo

Figure B.7. Gerber Output: Motherboard Bottom Solder Mask

116

O O O O

. O O

O O O O

O O O O

O

° OO

O O O

o. o

OOOOO

00.0

00000 OO O O O O

0000

no... 0

.000 o

OOOOO

O O O O

o

O

OO O O

O

. O.

O O O O

o

OOOO OOOO

O

O

’ ' O o O o

O

OOOO OOOO

' o o

o. o

00...

o.

OOOOO O O O O

.000

00000 O

0.00

OOOOO O

OO O O O OOOO

. O

. O O O O

00 o 0 °

0 o

O O O

O O ° ° O O

. o O . ,'

O O O O

O o O

o. o o o 0000

o

O

. O O O O

O o ,
. O

OO O O

to... . .

OOOO O O O O

OOOOO .

OOOO O O . .

OOOOO '

.00.

00000 O O O O

OO O O O OOOO O

° 0

o O O O O

OO . g .

O O

O O O

o o ' ° O o

O

. . . . '-

O O O O

O

OO O O OOOOOO

O

o

. O O O o
O O

o

O O

O O O

O O O O

O o '
.. . '-

Figure B.8. Motherboard NC Drill Output

117

Figure B.9. Gerber Output: Daughterboard Top Silkscreen

5:5: .
O O
O O
O O

O O
O O

:0:0 OO I I O II IO

.0.0 OO OO O O OO OO

.0.0 OO OO O O OO OO

-:-: :: °° : : :: :°
:0? OO OO O O OO O

.0.' OO OO O O OO OO

g... OO OO O O OO OO

.0.0 OO OO O O OO OO

.0.0 OO OO O O OO OO

.0.0 OO OO O O OO OO

. .0 OO OO O O OO OO

.5. OO OO O O OO OO

.50 OO OO O O OO OO

.50 OO OO O O OO OO

.50 OO OO O O OO OO

.0.0 OO OO O O OO OO

.0.' OO OO O O OO OO

.5: OO OO O O OO OO

0 OO OO O O OO OO

Figure B.10. Gerber Output: Daughterboard Top Solder Mask

118

119

Figure 3.12. Gerber Output: Daughterboard Bottom Layer

Figure B.11. Gerber Output: Daughterboard Top Layer

“
m
l

:
2
a
/
'
3
.
2
%
-

 ;
l
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
"
"

O
O O

O O
O O

O O
O O
O O
O O
O O

.50 IO II I O II IO

.50 OO OO O O OO OO

.50 OO OO O O OO OO

.50 OO OO O O OO OO

.50 OO OO O O OO OO

.50 OO OO O O OO OO

.0.0 OO OO O O OO OO

.50 OO OO O O OO OO

.50 OO OO O O OO OO-

.50 OO OO O O OO OO

.50 OO OO O O OO OO

.50 OO OO O O OO OO

.50 OO OO O O OO OO

.50 OO OO O O OO OO

.0.0 OO OO O O OO OO

.50 OO OO O O OO OO

.50 OO OO O O OO OO

.50 OO OO O O OO OO

.04 OO OO O O OO OO

0 OO OO O O OO OO

Figure B.13. Gerber Output: Daughterboard Bottom Solder Mask

Figure B.14. Daughterboard NC Drill Output

120

__ fififibl

 UHUBHUH

U
U
H
5
3
5
5
=
O
~
q
u
—
-

E

U
E
K
8
E
U
§
U
E
N
O
S
B
G
=
'
*
“
“
”

;
:
O
U
I
K
H
U
I
I
I
B
U
E
I
O
E
S
.
O
.
N

m- Mixed-SgnlDevdqmmlBoard-Oomas

su- Nuha Inn.

0.“ I
but 5; a

fin: . Mira-

.1

I

Figure B.15. Test Station Connectors

121

‘ m
mv ,

l «:33 .‘ . “

AEJ
‘ no

I _.t \‘LEDZ

' -PC-de3

“F :30

:‘Rul LI

1'" WKGND
__ Int-cu

? now

no

H—H

r'

AVDD \DDNEGN

i :48”: VIN amour

‘ l

’ L mam

. m

l 1 I

FHT’K C‘ A WTA

ln ,7 mus
KLI 5‘4 . WA

l [gal >22 in!» L (ND

:‘CRS

Cap

IuF

_:C$

Cap

luF

m TAB ‘ I IN

vu 3 rl-H menu

A" ‘fi‘ l

——Capw mmfi—mm "apron \Mu-mz * -300

I + 7 1M Cnpm- C.

0pm lOuF in;

[M I

REF-‘15

*Cu

Figure B.16. Test Station Power Circuits

(‘an fl CapPoB

[47$ 4.7uF

LT] Q!

—'_h

AVDD

l l ' Ru

r I

3' *ca:

' Cap PKB

' 4 ‘7uF

122

m:

Mixed-Signal Development Board - Power Circuits j

”Sue Nam Ruin I

(hadA J1

H[yu-::___“”3173?" rrrrr 51nd “L7,, » _ _____ _

ink; CDLum—ndScnxv\\Rquch Dawn By. M Kirlm__ _

.l 4

SZI

$134191:quScrew-0419511310aS'etnoAuon'eqswill'LI'H9116M

53mail-IPA-Momma-609mmuseumw

m

V9!

1

l

m

VH

amin

El

LZ'

wfi
Sf

JV

M

llOClAVvI

1

(“IM

M

'l

DICD

“mam—um

D

AVDD A D AVDD AVIDD AVDD AVDD AVDD A D

o 12 u m I, - - '- J I'm—"run.

I ul cl 1 l l l

2.2K K 22‘ 12K 7.2K 7.2K 2.2K UK

I .2
Figure B.18. Test Station Current Digital-to-Analog Converters

124

IFS

AV‘DD fl AVDD wx‘

IP

M

M

m

n M

m n

m 3
m m7“ $5

m “

DI 31

m 3.

II

I" m ‘

n

VD CIpM

V3 4."

Alli!

an

cm

can SI!

(15 M

fl 3 W" 5

$ mom" 7?
GI L1G“! K: I |’_

CD I:

am I!

CHI! 35+

CED cm A

8.}; WC '—--—:I

CAN]

cm: ' lnF

lOeI-nlm

T“ mmSgialDevdqmmlBomd - ADC:

Sin mm Izfiu

an.“ I

Dar. 7 5; a!

'wufih‘_§,WM59-J_WPM“!my

4l 2 ‘ l I

Figure B.19. Test Station Analog-to-Digital Converters

125

cm“

388335”Hoseausedam8.3m

unsufianéaonianoia25mg:.E

n
n
n
v
n
O
h
-
O
Q
=
§
fl
l
fi
l
t
2
2
fl

_
a
n
.
n
m
~
'
fi
2
=
a
a
s
n
!
:
3
2
8

:—3.Q..1..-

Ii

an

IF

I"

on“

«MR

39

RR

‘9

‘9

“R

an

It

in.

1...—

u:

3.

nb

On

On

«—«
w
-
I
u
a
u
n
n
a
n
n
a
n
x
n
n
c

'j

-
n
n
s
n
a
a
a
n
a
a
fi
n
n
n
n
n
n
h
n

"T

APPENDIX C

Test Station VHDL

C.1 Digital Clock Manager: dcm.vhd

1

2 —— Author: Paul R. Kucher

3 —- Module Name: clkmgr — Behavioral

4 — Modified: 2007—09—13

5 — Description: The digital clock manager for xc3s200—ft256—4.

6

7 library IEEE;

8 use IEEE.STD_LUGIC_1164.ALL;

9 use IEEE.STD_LOGIC_ARITH.ALL;

10 use IEEE.STD_LOGIC_UNSIGNED.ALL;

11 use IEEE.NUHERIC_STD.ALL;

12

13 library UNISIH;

14 use UNISIH.Vcomponents.ALL;

15

16 entity clkmgr is

17 Port(

18 c1kin_in: in std_logic;

19 c1kfx-out: out std_logic;

20 c1k1n_ibufg_out: out std_logic;

21 c1k0-out: out std_logic

22);

23 end clkmgr;

24

25 architecture Behavioral of clkmgr is

26 signal CLKFB_IN: std_logic;

27 signal CLKFX_BUF: std_logic;

28 signal CLKIN_IBUFG: std_logic;

29 signal CLKO_BUF: std_logic;

30 signal c1k0_out1: std_logic;

31 signal GND_BIT: std_logic;

32 component BUFG

33 port (I : in std_logic;

34 0 : out std_1ogic);

35 end component;

36

37 component IBUFG

38 port (I : in std_logic;

39 0 : out std_logic);

127

40 end component ;

41

42 —— Period Jitter (unit interval) for block DCMJNST= 0.15 U]

43 -—— Period Jitter (PMak—to—Fwak) for block DCWLJNST‘='0.61 ns

44 component DC)!

45 generic(CLK_FEEDBACK : string :=I "lit";

46 CLKDV_DIVIDE : real :- 2.0;

47 CLKFX_DIVIDE : integer :3 1;

48 CLKFX_HULTIPLY : integer :- 4;

49 CLKIN_DIVIDB_BY_2 : boolean :- FALSE;

50 CLKIN_PERIOD : real :- 10.0;

51 CLKOUT_PHASE_SHIFT : string :- "NONE”;

52 DESKEU-ADJUST : string :- "SYSTEM-SYNCHRONOUS";

53 DFS_FREQUENCY_HODE : string :- ”LOW";

54 DLL_FREQUENCY_HODE : string :- "LOW”;

55 DUTY_CYCLE-CORRECTION : boolean :- TRUE;

56 FACTORY_JF : bit_vector :- x”C080';

57 PHASE_SHIFT : integer :- O;

58 STARTUP_HAIT : boolean :- FALSE;

59 DSS-HODE : string :- ”NONE');

60 port (CLKIN : in std_logic;

61 CLKFB : in std_logic;

62 RST : in std_logic;

63 PSEN : in std_logic;

64 PSINCDEC : in std_logic;

65 PSCLK : in std-logic;

66 DSSEN : in std_logic;

67 CLKO : out std_logic;

68 CLK90 : out std_logic;

69 CLK18O : out std_logic;

7o CLK27O : out std_logic;

71 CLKDV : out std_logic;

72 CLK2X : out std_logic;

73 CLK21180 : out std_logic;

74 CLKFX : out std_logic;

75 CLKFX18O : out std-logic;

76 STATUS : out std_logic_vector (7 dounno 0);

77 LOCKED : out std_logic;

78 PSDONE : out std_logic);

79 end component;

80

81 begin

82 GND_BIT <- ’0’;

83 c1kin_ibufg_out <- CLKIN_IBUFG;

84 c1k0_out <- CLKFB-IN;

85 CLKFX-BUFG_INST : BUFG

86 port map (I->CLKFX_BUF ,

87 0->c1kfx_out);

88

89 CLKIN_IBUFG-INST : IBUFG

90 port map (I->c1kin_in.

91 0->CLKIN_IBUFG);

92

93 CLKO_BUFG-INST : BUFG

94 port map (I->CLKO_BUF,

95 0->CLKFB_IN);

96

97 CLKO_BUFG_INST1 : BUFG

98 port map (I=>CLKO_BUF,

99 0->c1k0_out1);

100

101 DCM_INST : DCM

128

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

0.2 Instruction Decoder and System Controller:

«
3
0
0
4
3
2
0
1
5
0
4
»
.
—

u
N
H
H
u
d
H
H
H
u
H
H
t
-
o

H
o
o
m
q
a
m
a
w
u
w
o

generic map(CLK-FEEDBACK => "1X",

CLKDV-DIVIDE -> 2.0,

CLKFX_DIVIDE -> 1,

CLKFX_HULTIPLY 8) 5,

CLKIN_DIVIDE_BY_2 -> FALSE,

CLKIN_PERIOD 8) 20.000

CLKOUT_PHASE-SHIFT .) "NONE",

DESKEU-ADJUST I) "SYSTEH_SYNCHRONOUS",

DFS_FREQUENCY-HODE ->

DLL_FREQUENCY_HODE I)

"HIGH",

"LOW",

DUTY_CYCLE_CORRECTION => TRUE,

FACTORY_JF -> x”8080“,

PHASE_SHIFT -> 0,

STARTUP-HAIT -> FALSE)

portrnqp (CLKFB->CLKFB_IN,

CLKIN->CLKIN_IBUFG,

DSSEN->GND_BIT,

PSCLK->GND_BIT,

PSEN->GND_BIT,

PSINCDEC->GND-BIT,

RST->GND_BIT,

CLKDV->open,

CLKFx->CLKFX-BUP,

CLKFX180->open,

CLKO->CLKO_BUF,

CLK2x—>open,

CLK2X180->open,

CLK90->open,

CLK180->open,

CLK270->open,

LOCKED->open,

PSDONE->open,

STATUS->open);

end Behavioral ;

decode.vhd

Paul R. Kucher

— Alodule Name: decode — Behavioral

—— Alodflied: 2007—09-13

—— Author:

Description: This nunn.rnodule controls the entire systeni. It

for decoding individual instructions coming from 125—232

communications and enables the appropriate sub—modules

—— to complete a given task.

is responsible

library IEEE;

use IEEE.STD_LOGIC_1164MALL;

use IEEE.STD_LOGIC_ARITHLALL;

use IEEE.STD_LOGIC_UNSIGNEDMALL;

entity decode is

generic(

width: integer :=16;

addr: integer :818;

depth: integer :=8

)3

Port(

129

22

23

24

25

26

27

28

29

30

3 l

32

33

34

35

36

37

38

39

40

4 1

42

43

44

45

46

47

48

49

50

5 l

52

53

54

55

56

57

58

59

60

6 1

62

63

65

66

67

68

69

70

7 l

72

73

74

75

76

77

78

79

80

8 1

82

83

clk:

serial-select:

txd_ready:

txd_conplete:

rxd-conplete:

parallel-txd:

parallel_rxd:

ehift_start-f1ag:

shift_end_flag:

lads:

led_data:

fron_address:

to-address:

read_block:

write_block:

men_data_in:

xfr_op_conp1eted:

Iodu1e_se1ect:

vdac_eelect:

eig_gen_enable:

eig_gen-conplete:

program_dac:

dac-progranned:

dac-instruction:

adc-conv-mode:

adc_addrees:

adc_data_ready:

ndc_data_collect:

iadc-data_ready:

iadc_data_collect:

inject_pulse:

pulse_injected:

injection_pulse_width:

tunnel_pulse:

io_inetruction:

io_update:

io_updated:

io_output:

digit-pot_nunber:

digit_pot_velue:

digit_pot_update:

digit_pot_updated:

);

end decode;

architecture Behavioral of

begin

leds(7) <- ’0’; leds(6) <=

out

out

out

out

out

out

out

out

in

out

out

out

in

out

in

out

out

out

in

out

out

out

in

out

out

out

out

in

out

out

out

in

std_logic;

integer range 0 to 2;

std_logic;

std_logic;

std-logic;

std_logic_vector(15 downno 0);

std_logic_vector(15 downno 0);

std_logic;

std_logic;

std_logic_vector(7 downno 0);

std_logic_vector(15 dounno 0);

std_logic_vector(addr dovnno 0);

std_logic_vector(addr dounno 0);

std_logic;

std_logic;

std_logic_vector(15 dounmo 0);

std_logic;

integer range 0 to 5;

integer range 0 to 2;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic_vector(27 downno 0);

std_logic_vector(1 downno 0);

std_logic_vector (3 downto 0);

std_logic;

std_logic;

std_logic;

std_logic;

std-logic;

3td_logic;

std_logic_vec’cor (7 downto 0);

std_logic;

std_logic_vector(5 downno 0);

std_1ogic;

std_logic;

std_logic;

std_logic_vector (4 downto 1);

std_logic_vector(7 dovnno 1);

std_logic;

std_logic

decode is

’0’;

leds(5) <= ’0’; led8(4) <= ’0’;

130

85

86

87

88

89

91

92

93

95

97

98

99

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

135

136

137

138

139

140

141

142

143

144

leds(3) <- ’0’; 1eds(2) <- ’0’; leds(1) (a ’0’; leds(0) <- ’0’;

- TVUs is the instruction fetch and decode process. It takes in 16—bit

— data from the RS’232 bus and then decides whether to write to memory.

—— send data to the chip, read frontinenuny. or send data back to the [Kl

decode_and_execute: process(clk)

variable current_instruction: std_logic_vector(15 downto 0)

:- ”0000000000000000";

variable execute_state: integer range 0 to 50 :- 0;

variable inst_pointer, inst_pointer_last: integer range 0 to 100 :- 0;

variable msb_addr, nsb_addr2: std_logic_vector(2 downto 0) := "000";

variable read_or_vrite_block, neu_instruction: std_logic :- ’0’;

variable dac_command: std_logic-vector(11 downto 0);

begin

if clk’event and clk - ’1’ then

if rxd_complete - ’1’ then —— fetch instruction

led-data <- std_logic_vector(parallel_rxd);

current_instruction :- para11e1-rxd;

inst-pointer :- inst-pointer + 1;

end if;

if inst-pointer > inst-pointer-1ast then

inst-pointer_1ast :8 inst-pointer;

nev_instruction :- ’1’;

else

new_instruction :- ’0’;

end if;

case execute_statO is

when 0 -> —- Idle State

if nev_instruction - ’1’ then

execute_state :- 1;

end if;

txd_ready <- ’0’;

urite-block <- ’0’;

read_block <- ’0’;

program_dac <- ’0’;

io_update <- ’0’;

adc_data-collect <- ’0’;

iadc_data_collect <- ’0’;

digit_pot_update <- ’0’;

shift_start_flag <- ’0’;

modu1e_select <- 0;

serial_select <- 1;

vdac_select <- 1;

when 1 -> —— Decode Instruction

if current-instruction(15 donnno 11) = "0000" then

execute_state :- 3; —- Loopback

elsif current_instruction(15 dounno 12) = "0001" then

execute_state :- 5; -— bkmuny Transfer

elsif current_instruction(15 dounno 12) a “0010” then

execute_state :- 9;-—— VoHage DflC

elsif current_instruction(15 douwno 12) - "0011" then

execute_state ;. 11; —— lfifltage.ADC

elsif current_instruction(15 dounno 12) 3 "0100" then

execute_state :- 14; -— Churent.DAC

elsif current_instruction(15 downno 12) - "0101" then

execute_state :- 16; —— Churent.ADC

elsif current_instruction(15 dounno 12) - "0110" then

execute_state :- 21; —- EEPRCMI Injection

131

146

147

148

149

150

151

152

153

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

181

182

183

184

185

186

187

188

189

190

191

192

193

194

elsif current-instruction(15 dounno 12) - ”0111” then

execute_state :- 23; —- EFPROM Tunneling

elsif current_instruction(15 dounno 12) - "1000" then

execute_state :- 24; -—- Digital IO

elsif current_instruction(15 dounno 12) - "1001' then

execute_state :- 26; -—- Signal (3eneration

elsif current_instruction(15 dounno 12) - "1010" then

erecute_state :- 30;-—— Serial Shift Chant

else execute_etate :- 2;

end if;

when 2 -> — Reset Instruction Pointer

inst_pointer_last := O;

inst_pointer :- 0;

execute_state :- 0;

‘when 3 ->-—— Yransfer data in current instruction over RS—232

parallel_txd <- current_instruction;

txd_ready <- ’1’;

execute_statO :- 4;

when 4 -> — Transfer data continued

txd-ready <- ’0’;

if txd_conplete - ’1’ then

execute_atate :- 2;

end if;

when 6 I) —— Memory Transfer (Block/Single Read ('4 W’rite)

nodule_select <- 2;

serial_select <- 2;

if neu-instruction - ’1’ then ——-1Receive Starting .4ddress

tron_address <- Isb-addr & current_instruction;

execute_state :- 6;

else

msb_addr :- current-instruction(2 dounno 0); —— 17—19th bits of

Isb_addr2 :-I current-instruction(5 dounno 3);-—— Address Reg.

read_or-urite-block :- currOnt_instruction(10);

end if;

‘when 6 ->

if neu_instruction - ’1’ then — Receive Ending Address

to-address <- Isb_addr2 & current_instruction;

execute_state :- 7;

end if;

‘when 7 ->

if read-or_urite_block - ’1’ and nev-instruction - ’1’ then

vrite_b10ck <8 ’1’; '

men_data_in <- current_instruction;

execute_state :- 8;

elsif read_or_vritO-block - ’0’ then

read_block <- ’1’;

execute_state :- 8;

end if;

udmm 8 ->

write_block <- ’0’;

read-block <- ’0’;

if xtr_op_completed - ’1’ then execute_state := 2;

end if;

when 9 -> — Voltage DAC

if neu-instruction 8 ’1’ then

dac-instruction (8 dac_command & current_instruction;

program_dac <- ’1’;

execute_state :- 10;

else

dac_connand :- current_instruction(11 dounno 0);

end if;

when 10 ->

132

208

209

210

260

program_dac (3 ’0’;

if dac_programmed I ’1’ then execute_state :I 3; end if;

when 11 I) —- Voltage ADC

module_select <I 3;

if neu_instruction I ’1’ then ——- Receive Starting i4ddress

fron-address <I msb_addr & current_instruction;

execute_state :I 12;

else

Isb_addr :I current_instruction(2 dounno 0); -— 17—19th bits of

nsb_addr2 :I current_instruction(5 dounno 3); ——-.4ddress Reg.

adc-address <I current_instruction(11 dounno 8);

adc_conv_node <I current_instruction(7 downmo 6);

end if;

vflunil2 I)

if nee_instruction I ’1’ then-—— Receive Endfiu].4ddress

to_address <I nsb_addr2 I current_instruction;

adc_data_collect <- ’1’;

execute_state :I 13;

end if;

when 13 I)

adc_data_collect (I ’0’;

if adc_data-ready I ’1’ then

current-instruction :I "0000000000000000";

execute_state :I 3;

end if;

when 14 I) -- Current DAC

digit_pot_number (I current-instruction(11 dounno 8);

digit_pot_value <I current_instruction(6 dounno 0);

digit_pot_update <I ’1’;

execute_state :I 15;

‘when 15 I)

digit_pot_update <- ’0’;

if digit-pot-updated I ’1’ then

current_instruction :I "0000000000000000";

execute_state :I 3;

end if;

when 16 I> —- Current ADC

module_select (I 4;

if new_instruction I ’1’ then ——— Receive Starting i4ddress

from_address <I nsb-addr & current_instruction;

execute_state :I 17;

else

msb_addr :I current_instruction(2 dounno 0); -— 17—19th bits of

nsb_addr2 :I current_1nstruction(5 dounno 3); ——-.4ddress Reg.

adc_address <I current-instruction(11 dounno 8);

end if;

udmm 17 I)

if new_instruction I ’1’ then —— Receive Ending Address

to_address <I Isb_addr2 t current_instruction;

execute_state :I 18;

end if;

when 18 ->

if new_instruction I ’1’ then-—— Receive Gout Update

digit_pot-number <I "0000"; '

digit_pot_va1ue <I current_instruction(6 downno 0);

if current_instruction(15) I ’1’ then —— (Duh; Update on Itequest

digit_pot-update (I ’1’;

execute_state :I 19;

else

iadc_data-collect <= ’1’;

execute_state :I 20;

end if;

133

286

287

288

316

end if;

when 19 I)

digit_pot_update (I ’0’;

if digit-pot_updated I ’1’ then

iadc_data_collect <- ’1’;

execute_state :I 20;

end if;

*when 20 I)

iadc_data_collect <I ’0’;

if iadc_data_ready I ’1’ then

current_1nstruction :I "0000000000000000';

execute_state :I 3;

end if;

when 21 I) —— EEPROM Injection

injection_pulse_vidth <= current_instruction(7 dounno 0);

1nject-pulse (I ’1’;

execute_state :I 22;

“men 22 I)

inject-pu1se (I ’0’;

current_instruction :I "0000000000000000";

if pulse_injected I ’1’ then execute_state :I 3; end if;

when 23 I) —— EEPROM Tunneling

tunnel_pulse <I current_instruction(0);

current_instruction :I "0000000000000000";

execute_state :I 3;

when 24 I> —— Digital I/O

io_instruction <I current_instruction(11 domnno 10) &

current_instruction(3 downto 0);

io_update <- ’1’;

execute_state :I 25;

‘When 25 I)

io_update <I ’0’;

if io-updated I ’1’ then

current_1nstruction :I "000000000000000" & io-output;

execute-state :I 3;

end if;

when 26 I) —— Signal Generation

vdac_select <= 2;

nodule_select (I 5;

if new_inetruction I ’1’ then —-.Receive Starting)4ddress

from_address <I nsb-addr & current_instruction;

execute_state :I 27;

else

msb_addr :I current_instruction(2 dounno O); —— 17—19th bits of

msb_addr2 :I current_instruction(5 downto 3); — Address Reg.

end if;

inhen 27 I)

if neu-instruction I ’1’ then ——-.Receive Ehuhng ziddress

to_address <I msb_addr2 & current_instruction;

sig-gen-enable <I ’1’;

execute_state :I 28;

end if;

wdmm 28 I)

if nev-instruction I ’1’ then-— Receive Stop Cbndinon

sig_gen_enable (I ’0’;

execute_state :I 29;

end if;

'when 29 I)

if sig_gen_complete = ’1’ then

current_instruction :I "0000000000000000";

execute_state :I 3;

end if;

134

C.3 Multi-channel Digital Input/Output:

O
O
Q
G
M
A
W
N
H

N
M
N
N
Q
N
D
N
N
N
w
w
a
v
—
n
u
—
H
i
—
n
v
—

o
m
d
a
m
a
w
n
w
o
e
m
q
a
m
a
m
n
u
o

when 30 I) —— Program Serial Chain

module_select <- 1;

if nev-instruction I ’1’ then —— Iteceuwz Starting llddress

from_address <I msb_addr t current_instruction;

execute_state :I 31;

else

nsb_addr :I current_instruction(2 downto 0); — 17—19th

Isb-addr2 :I current_instruction(5 dounno 3);-—— Address

end if;

‘when 31 I)

if nev_inetruction I ’1’ then —— Receive Ending Address

to_address <I Isb_addr2 l current-instruction;

shift_start_flag (I ’1’;

execute_state :I 32;

end if;

‘Nhen 32 I)

shift_start_11ag (I ’0’;

if shift_end-flag I ’1’ then

current_instruction :I "0000000000000000";

execute_state :I 3;

end if;

when others I) execute_state :I 0;

end case;

end if;

end process;

end Behavioral;

bits of

Reg.

digital_io.vhd

-— Author: Paul R. Kucher

— Module Name: digital_io — Behavioral

—— Modified: 2007-09— 05

-—— Description: This module allows easy access to the FPGA’s I/Os from the

-—— remaining pins on the FPGA development board. From Matlab.

— the direction of each pin may be set and data may be read

— or written to each of these ports.

—— If the main decoder unit is modified to accommodate additional

— functionality utilizing one of these I/Os, be sure remove the

—— pins from the UCF file accordingly.

—— Pins are currently assigned as fellows:

— digital-io(0) FPGA Pin MIO

—— digital_io(1) FPGA [Rn A7

-— digital_io (2) FPGA Pin 1117

— digital_io(3) FPGA Pin A13

— digital_io (4) FPGA Pin A9

—— digital_io(5) FPGA Pin AID

—- digital_io(6) FPGA Pin BM

—— digital-io(7) FPGA Fun A8

— digital-io(8) FPGA Pin 81]

—— digital_io(9) FTKLQ Pu: BIZ

- digital_io(10) FPGA Pin .412

—— digital-io(ll) FPGA Fdn BIO

—- digital_io(12) FPGA Fun 813

library IEEE;

135

30

3 l

32

33

34

35

36

37

38

39

4O

4 l

42

43

44

45

46

47

48

49

50

5 l

52

53

55

56

57

58

59

6O

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

8 1

82

83

84

85

86

87

88

89

90

91

use IEEE.STD_LOGIC-1164.ALL;

use IEEE.STD_LDGIC_ARITHLALL;

use IEEE.STD_L0GIC_UNSIGNEDLALL;

entity digital_io is

Port(

clk: in std_logic; —— FPGA clock

digital_ios: inout std_logic_vector(12 downto 0); — FPGA I/O Pins

instruction: in std_logic_vector(5 downto O);

io-update: in std_logic; -— Flag to read instruction

io_updated: out std-logic; —— Flag indicating instruct-ion executed

output: out std_logic — Output Data (If Applicable)

);

end digital_io;

architecture Behavioral of digital_io is

begin

state_nachine: process(clk)

variable io-stste: integer range 0 to 7 :I 0;

variable io_set: integer range 0 to 40 :I 0;

begin

if clk’event and clk I ’1’ then

case io_stste is

when 0 I) -— Initialization State

digital_ios <I (digita1-ios’range I) ’Z’);

io-stato :I 1;

when 1 I) -— Idle State

if io_update I ’1’ then

io_state :I 2;

end if;

io_set :I 0;

io_updated <I ’0’;

when 2 I) —— Make High Impedance

if instruction (3 downto 0) I "0000' then io_set 'I 1;

elsif instruction (3 downto 0) I "0001" then io-set :I 2;

elsif instruction (3 downto 0) I "0010" then io_set :I 3;

elsif instruction (3 downto 0) I "0011" then io_set -I 4;

elsif instruction (3 downto 0) I "0100' then io_set :I 5;

elsif instruction(3 downto 0) I "0101" then io_set :I 6;

elsif instruction (3 downto 0) I "0110" then io_set :I 7;

elsif instruction (3 downto O) I "0111' then io_set :I 8;

elsif instruction (3 downto 0) I “1000' then io-set :I 9;

elsif instruction (3 downto 0) I "1001” then io_set :I 10;

elsif instruction (3 downto O) I "1010" then io_set :I 11;

elsif instruction(3 downto 0) I "1011' then io_set :I 12;

elsif instruction (3 downto O) I "1100" then io_set -- 13;

end if;

io_state :I 3;

when 3 I) —— Decode

if instruction (5) I ’1’ then —— Set 1/0

if instruction (3 downto 0) I "0000' then io_set :I 14;

elslf instruction (3 downto 0) "0001" then io_set :I 15;

elsif instruction (3 downto 0) “0010” then io_set :I 16;

elsif instruction (3 downto O) "0011' then io_set :I 17;

elsif instruction (3 downto 0) "0100” then io_set :I 18;

elsif instruction (3 downto O) "0101" then io_set :- 19;

elsif instruction (3 downto O) "0110" then io_set :I 20;

elsif instruction (3 downto 0) "0111" then io_set :I 21;

elsif instruction (3 downto 0) "1000" then io_set :I 22;

136

92

93

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

152

153

elsif

elsif

elsif

elsif

end if

instruction(3

instruction(3

instruction(3

instruction(3

downto

downh:

downto

downto

output <I instruction(4);

else —-

if

elsif

elsif

elsif

elsif

elsif

elsif

elsif

elsif

elsif

elsif

elsif

elsif

end if

end if;

io_state

1Nhen 4 I)

io_updated <-

io_state

Read I/O

instruction(3

instruction(3

instruction(3

instruction(3

instruction(3

instruction(3

instruction(3

instruction(3

instruction(3

instruction(3

instruction(3

instruction(3

instruction(3

3

:I 4;

’1’;

:I 1;

when others I) io_state

end case;

case io_set is

downto

downuo

dounno

downto

dounno

downto

dounno

dounno

dounno

douuno

dounflo

dounflo

domnno

when 0 I) output (I instruction (4);

when 1 I) digital_ios (0) (I ’2’;

when 2 I) digital_ios (1) (I ’2’;

when 3 I) digital_ios (2) <I ’2’;

when 4 I) digital_ios (3) <I ’2’;

when 6 I) digital_ios (4) <I ’2’;

'when 6 I) digital_ios(5) <I ’2’;

when 7 I) digital_ios (6) (I ’2’;

‘when 8 I) digital_ios(7) <I ’2’;

‘when 9 I) digital_ios(8) (I ’2’;

‘when 10 I) digital_ios(9) (I ’2’;

when 11 I) digital_ios(10) <I ’2’;

‘when 12 I) digital_ios(11) <I ’2’;

when 13 I) digita1-ios(12) (I ’2’;

when 14 I) digital_ios (0) <-

when 16 I) digital_ios (1) <-

when 16 I) digita1-ios (2) <-

when 17 I) digital_ios (3) <-

when 18 I) digital_ios (4) <-

‘when 19 I) digital_ios(5) <-

when 20 I) digital_ios (6) <-

when 21 I) digital_ios (7) <-

when 22 I) digital_ios (8) <-

when 23 I) digita1-ios (9) <-

when 24 I) digita1-ios (10) <-

when 25 I) digital_ios (11) <-

when 26 I) digita1_ios (12) <-

when 27 I) output <I digita1-ios (0);

'when 28 I) output (I digita1-ios(1);

when 29 I) output <I digital_ios (2);

when 30 I) output <- digita1_ios (3);

0)

0)

0)

0)

0)

O)

0)

0)

O)

O)

0)

0)

0)

O)

O)

0)

0)

"1001”

"1010”

"1011"

"1100”

"0000"

"0001'

”0010”

"0011"

"0100'

”0101"

“0110”

"0111"

"1000"

"1001”

"1010"

"1011"

"1100"

then

then

then

then

then

then

then

then

then

then

then

then

then

then

then

then

then

instruction(4);

instruction(4);

instruction(4);

instruction(4);

instruction(4);

instruction(4);

instruction(4);

instruction(4);

instruction(4);

instruction(4);

instruction(4);

instruction(4);

instruction(4);

137

io_set

io_set

io_set

io-set

I 23;

24;

25;

26;

27;

28;

29;

30;

31;

32;

33;

34;

35;

36;

37;

38;

39;

154 when 31 I) output <I digital_ios (4);

155 when 32 I) output <I digital_ios (5);

156 when 33 I) output <I digital_ios (6);

157 when 34 I) output (I digital_ios (7);

158 when 35 I) output <- digita1-ios (8);

159 when 36 I) output (I digital_ios (9);

160 when 37 I) output (I digital_ios(10);

161 when 38 I) output <I digital_ios(11);

162 when 39 I) output <I digital_ios(12);

163 when others I) null;

164 end case;

165 end if;

166 end process;

167

168 end Behavioral;

0.4 Digital Potentiometer Control: digital_pots.vhd

1

2 —- Author: Paul R. Kucher

3 —- Module Name: digital_pots — Behavioral

4 —— Modified: 2007—07—13

5 — Description: This module controls the nine digital potentiometers on the

6 — mixed—signal test board. It takes in the value and channel

7 — number and updates the chain accordingly

8

9 library IEEE;

10 use IEEE.STD_LOGIC_1164.ALL;

11 use IEEE.STD_LOGIC_ARITH.ALL;

12 use IEEE.STD_LOGIC_UNSIGNED.ALL;

13

14 entity digital_pots is

15 Port(

16 clk: in std_logic; — FPGA Clock

17 digit-pot_c1k: out std_logic; —— Potentiometer Serial Clock

18 digit_pot_sdi: out std_logic; —— Potentiometer Serial Data Input

19 digit-pot_cs_bar: out std_logic; — Shift Enable

2o digit_pot-shdn-bar: out std_logic; -- Shutdown Signal

21

22 digit-pot_nunber: in std_logic_vector(4 downto 1); —— Pot Number

23 digit_pot_va1ue: in std_logic_vector(7 downto 1); —— 7—bit Pot Value

24 digit_pot-update: in std_logic; —— Potentiometer Update Flag

25 digit_pot_updated: out std_logic ~— Digital Potentiometer Updated Flag

26);

27 end digital_pots;

28

29 architecture Behavioral of digital_pots is

30

31 begin

32

33 program_pots: process(clk)

34 variable count: integer range 0 to 127 :I 0;

as variable shift_count: integer range 0 to 70 :I 0;

36 variable pot__state: integer range 0 to 2 :I O;

3? variable pot_chain: std_logic_vector(63 downto 1)

38 :- "100000010000001000000100000010000001000000100000010000001000000";

39 begin

4O

41 if clk’event and clk I ’1’ then

138

42

43

44

45

46

47

4s

49

50

51

52

53

54

55

56

57

5s

59

6 l

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

8 1

82

83

85

86

87

88

89

90

9 1

92

93

94

95

96

97

98

99

100

10 1

102

103

if count) 64 then digit_pot_clk (I ’1’;

else digit_pot_clk <I ’0’;

end if;

case pot_state is

‘when 0 I) —— Idle State

digit_pot_cs_bar (I ’1’;

digit-pot_sdi <- ’0’;

digit-pot_shdn_bar (I ’1’;

digit_pot-updated (I ’0’;

shift_count :I 0;

count :I O;

pot_state :I 1;

'when 1 I)

if digit_pot_update I ’1’ then

if digit_pot_nunber I ”0000" then —— IAIN? Potentunneter

pot-chain(7 dounno 1) :I digit-pot-value;

elsif digit_pot_nunber I “0001' then —— H140 Channel-#1

pot_chain(14 dounno 8) :I digit_pot_value;

elsif digit_pot_nunber I "0010" then -— IDAC Channel #2

pot_chain(21 dounno 15) :I digit_pot_va1ue;

elsif digit_pot_nunber I "0011” then —— H140 CWannel;#3

pot_chain(28 dounflo 22) :I digit_pot_value;

elsif digit_pot_nunber I "0100“ then —— H140 Cmannel #4

pot-chain(36 dounno 29) :I digit_pot_value;

elsif digit_pot_nunber I "0101" then —— HZ40’CWanncl #5

pot_chain(42 dounno 36) :I digit_pot_value;

elsif digit_pot_nunbor I "0110” then — [DAC Channel #6

pot-chain(49 dounno 43) :I digit_pot_valuo;

elsif digit_pot_nunber I "0111" then —— IDAC Channel #7

pot_chain(66 dounno 50) :I digit-pot_value;

elsif digit_pot-nunber I "1000" then —— H140’Channel #8

pot-chain(63 dounno 67) :I digit_pot_va1ue;

end if;

pot_state :I 2;

end if;

when 2 I)

if shift_count < 1 then

digit-pot-sdi <I ’0’;

digit-pot_cs_bar <I ’0’;

elsif shift_count < 64 then

digit-pot-sdi <I pot_chain(63);

elsif shiit_count < 65 then

digit_pot_sdi <I ’0’;

digit-pot_cs_bar <I ’1’;

else

digit_pot_updated (I ’1’;

shift_count :I 0;

pot_state :I 0;

end if;

count :I count + 1;

if count I 127 then

count :I 0;

if shiit_count < 64 and shift_count) 0 then

pot-chain (63 downto 1) :I pot_chain (62 downto 1) & pot_chain (63);

end if;

shift_count :I shift_count + 1;

end if;

*when others I) pot_state :I O;

139

104

105

106

107

108

109

end case;

end if;

end process;

end Behavioral ;

C.5 Current ADC Control: iadc.vhd

D
G
I
J
O
C
fl
fi
u
N
I
I

m
a
a
a
a
a
t
b
a
o
h
w
w
w
w
w
r
w
w
w
w
s
n
u
u
u
n
w
n
n
g
u
w
r
—
u
w
u
n
u
—
H

0
1
9
0
‘
!

0
‘

“
D
W
O
Q
Q
N
Q
O
‘

“
M
D
-
‘
0

m
fl
a
i
a
‘
é
U
N
I
-
I

O
U
‘
I
O
U
‘
b
G
N
H
O

—— Author: Paul R. Kucher

—- Module Name: iadc — Behavioral

— Modified : 2007— 09—07

—- Description: This module controls the 8 channel current ADC. It controls

—- the single channel LTC 2415 ADC as well as the ADC 715

———- analog multiplexer.

library IEEE;

use IEEE.STD_LOGIC_1164MALL;

use IEEE.STD_LOGIC-ARITHMALL;

use IEEE.STD_LOGIC_UNSIGNEDMALL;

entity iadc is

generic(

width: integer :I 16;

addr: integer :I 18;

depth: integer :I 8

)3

Port(

clk: in std_logic; -—-— FPGA clock

iadc_clk: out std_logic; —— Conversion Clock (f0)

iadc_sck: out std_logic; —- Serial Clock for ADC

iadc_cs-bar: out std_logic; —— Serial Transfer Enable

iadc_sdo: in std_logic; —— Serial Data Out (of ADC}

iadc-scl: out std_logic; —— Serial Clock for Multiplexer

iadc_sda: inout std_logic; —— Serial I/O for Multiplexer

iadc_address: in std_logic_vector(3 downto 0); —— Channel Address

iadc_start_address: in std_logic_vector(addr downto 0); — St. Data Store

iadc_end_address: in std_logic_vector(addr downto O); — End Data Store

iadc_data_ready: out std_logic; —- Data Conversion Complete Flag

iadc_data-collect: in std_logic; --— Control flag to initiate sampling

read_control: out std_logic; —— Instruct module to read data

urite_controlz out stdglogic; —- Instruct module to write data

mem_op_completed: in std_logic; —- Flag if memory operation completed

address: out std_logic_vector(addr downto O); —— Address to R/W

nemory_data_write: out std_logic,vector(vidth-1 downto 0) — Data to write

);

end iadc;

architecture Behavioral of iadc is

signal address_register: std_logic_vector (7 downto 0);

signal sdo_filtered: std-1ogic :I ’0’;

signal sdo-sync: std_logic_vector(1 downto 0) :I "00";

begin

address_encode: process(iadc_address)

140

52

53

54

55

56

57

58

59

60

61

63

65

66

67

68

69

70

7 l

72

73

74

75

76

77

78

79

80

81

82

83

84

85

87

88

89

9l

92

93

94

95

96

97

98

101

102

103

104

105

106

107

108

109

l 10

ll 1

112

begin

case iadc_address is

'when "0000" 8) address_register <- "00000001";

when "0001" => address_register <- "00000010";

when "0010" -> address_register <- ”00000100";

'when ”0011” -> address_register <- ”00001000”;

when "0100" -> address_register <- "00010000";

‘when "0101” -> address_register <8 "00100000";

when "0110" => address_register <3 "01000000";

'when ”0111" -> address_register <a "10000000”;

‘when others -> address_register <- "00000000";

end case;

end process;

sdo_sync_input: process(clk)

begin

if clk’event and clk . ’1’ then

sdo_sync <a sdo-sync(0) & iadc_sdo;

end if;

end process;

—- FWlter the inconfing data for any glitches.

sdo_fi1ter-input: process(clk)

variable count : integer range 0 to 7 :- 5;

begin

if clk’event and clk . ’1’ then

if sdo_sync(1) I ’1’ and count < 5 then count :- count + 1;

elsif sdo_sync(1) . ’0’ and count > 0 then count :- count - 1;

end if;

if count - 5 then sdo_fi1tered <- ’1’;

elsif count - 0 then sdo_filtered <- ’0’;

end if;

end if;

end process;

state_nachine: process(clk)

variable iadc_state: integer range 0 to 9 :- 0;

variable count, start_count: integer range 0 to 500 :- 0;

variable pause_count: integer range 0 to 60001 :- 0;

variable adc_clk_count: integer range 0 to 100 :- 0;

variable sdo_para11e1: std_logic_vector(31 dounno 0);

variable nux_chain: std_logic_vector(17 downto 0);

variable nux_count: integer range 0 to 127 :- 0;

variable current_address: std_logic_vector(addr dounno 0);

variable shift_count: integer range 0 to 40 :- 0;

variable mux_shift_count: integer range 0 to 20 :- 0;

variable conversion_conplete: std_logic :- '0’;

——variable startup-count: integer range 0 to 15 := 0;

variable startup-comp1ete: std_logic :- ’0’;

begin

if clk’event and clk - ’1’ then

—— if startup-count < 10 then

—— startup-count := startup_count + I;

.—— startup-covnplete :=- ’0’:

——- else

—— startup-c01nplete :=: ’1’;

—— end if:

if adc_c1k_count > 50 then iadc_clk <= ’1’;

else iadc-c1k <- ’0’;

141

113 end if;

114

115 if adc_c1k_count - 100 then adc_c1k_count :- 0;

116 else adc_c1k_count :II adc_c1k_count + 1;

117 end if;

118

119 if count > 200 then iadc_sck <8 ’1’;

120 else iadc_sck <3 ’0’;

121 end if;

122

123 if (nux_count < 32 or nux_count > 96) and iadc_state - 2 then

124 iadc_scl <- ’0’;

125 elsif start_count > 20 and iadc-state - 1 then iadc_scl <- ’0’;

126 else iadc_scl <- ’1’;

127 end if;

128

129 if pause_count < 50000 then

130 pause_count :- pause_count + 1;

131 end if;

132

133 if count - 400 or iadc_state /- 4 then count :- 0;

134 else count :- count + 1;

135 end if;

136

137 if nux-count - 127 or iadc_state /- 2 then nux_count :- 0;

138 else nux_count :- mux_count + 1;

139 end if;

140

141 case iadc_state is

142 when 0 -> -— Idle state

143 read_control <- ’0’;

144 urite_control <- ’0’;

145 iadc_cs_bar <- ’1’;

146 shift__count :- 0;

147 nux_shift_count :- 0;

148 iadc_sda <- ’1’;

149 iadc-data_ready <- ’0’;

150 conversion_conp1ete :- ’0’;

151 current_address :- iadc_start_address;

152 if iadc_data_collect - ’1’ and startup_complete - ’1’ then

153 nux_chain :- ”100100000" & address_register & "0";

154 start-count :- 0;

155 iadc_sda <- ’0’;

156 iadc_state :- 1;

157 end if;

158 when 1 -> — Multiplexer Write Start Condition

159 if start_count > 45 then

160 start_count :- O;

161 iadc_state :- 2;

162 else

163 start_count :- start_count + 1;

164 end if;

165 when 2 -> —— Update Multiplexer

166 if nux_shift_count < 18 then

167 if nux_count - 1 then

168 iadc_sda <- mux_chain(17);

169 elsif nux_count - 127 then

170 nux_chain(17 downto 1) :- nux_chain(16 downto 0);

171 nux_shift-count :- nux_shift_count + 1;

172 end if;

173 else

174 iadc-sda <- ’0’;

142

175

176

177

180

190

194

209

220

221

222

223

224

225

226

227

228

230

23 1

232

233

234

235

236

iadc_cs_bar <= ’0’;

iadc_state :- 3;

end if;

‘when 3 ->

if start_count > 45 then

iadc_sda <- ’1’;

start_count :- 0;

iadc_state :- 4;

else

start_count :- start_count + 1;

end if;

when 4 -> —— Shift Out ADC Data

if shift_count < 32 then

if count - 200 then

sdo_parallel :- sdo_para11e1(30 downno O) & sdo_filtered;

elsif count - 390 then

shift-count :- shift-count + 1;

end if;

else

pause_count :- 0;

iadc_state :- 5;

end if;

when 5 -> — Conversion Waiting Period

shift-count :3 0;

if sdo_111tered - ’0’ and pause_count a 50000 then — Conv. Complete

if conversion_complete - ’0’ then

conversion_conplete :- ’1’;

iadc_state :- 4;

else -—— At least one conversion completed

address <- current-address;

nemory_data_vrite <- sdo_para11e1(31 dounno 16);

write_control <- ’1’;

iadc_state :- 6;

end if;

end if;

udmm.6 ->

write_control <- ’0’;

current_address := current_address + 1;

iadc_state :- 7;

“dun 7 ->

if mem_op_completed - ’1’ then

address <- current_address;

memory_data_write <- sdo_para1161(15 downflo 0);

write_control <3 ’1’;

iadc_state := 8;

end if;

1when 8 ->

vrite-control <- ’0’;

current_address :- current_address + 1;

iadc_state :- 9;

\vhen 9 ->

if mem_op_completed - ’1’ then

if current_address > iadc_end-address then

iadc_data_ready <- ’1’;

conversion_complete :8 ’0’;

iadc_state :- 0;

else

iadc_state :8 4;

end if;

end if;

when others =II> iadc_state :2 0;

end case;

143

237

238 if startup_comp1ete - ’0’ then

239 startup_complete := ’1’;

240 end if;

241 end if;

242 end process;

243

244 end Behavioral;

C.6 Floating-Gate Transistor Injection: injection.vhd

1

2 — Author: Paul R. Kucher

3 — Module Name: injection —- Behavioral

4 — Modified: 2007-07—29

5 — Description: Hot electron injection is accomplished by providing a large

6 —— source to drain pulse to a PMOS transistor. This module

7 — controls the pulse width that drives the external injection

8 —— circuit.

9

10 library IEEE;

11 use IEEE.STD_LOGIC_1164.ALL;

12 use IEEE.STD_LOGIC_ARITH.ALL;

13 use IEEE.STD_LOGIC_UNSIGNED.ALL;

14

15 entity injection is

16 Port(

17 clk: in std_logic; -— FPGA clock

18 inject: out std_logic; —— Injection pulse

19

20 inject-pulse: in std_logic; —— Inject pulse control bit

21 pulse-injected: out std_logic; —— Pulse operation completed flag

22 injection-pu1se_vidth: in std_logic_vector(7 downto 0) —-— P/W register

23):

24 and injection;

25

26 architecture Behavioral of injection is

27

28 begin

29

30 injection_pulse: process(clk)

31

32 variable injection-state: integer range 0 to 2 :- O;

33 variable injection_pulse_count: std-logic_vector (7 downto 0);

34 variable injection_register , injection_compare: std_logic_vector(29 downto O);

35

36 begin

37 if clk’event and clk - ’1’ then

38 case injection_state is — injection pulse state machine

39 when 0 -> —— idle state

40 pulse_injected <- ’0’;

41 inject <- ’0’;

42 injection_register :3 "00000000OOOOOOOOOOOOOOOOOOOOOO";

43 injection-compare :3 "000000000000OOOOOOOOOOOOOOOOO1";

44 injection_pulse_count :- "00000001";

45 if inject_pulse = ’1’ then injection-state :- 1; end if;

46 when 1 -> — pulse width setup

47 if injection_pulse_width < injection_pulse_count then

48 injection_state :- 2;

144

49 else

50 injection_compare :- injection_conpare(28 dounno 0) t

51 injection_compare(29);

52 injection_pulse_count :- injection_pulse_count + "00000001";

53 end if;

54 when 2 -> -— injection state

55 if injection_register < injection-compare then

56 inject <- ’1’;

57 injection_register :- injection_register +

58 "000000000000000000000000000001";

59 else —— return to idle state

60 inject <- ’0’;

61 pulse_injected <- ’1’;

62 injection-state :- 0;

63 end if;

64 “men others -> injection_state :- 0;

65 end case;

66 end if;

67 end process;

68

69 end Behavioral;

C.7 Memory Transfer Control: memory_block.transfer.vhd

—— Author: Paul R. Kucher

— Module Name: memory-block-transfer - Behavioral

— Modified: 2007-09—13

Description: This module facilitates block memory transfers and indirectly

— controls data to and from the memory by external sources.

library IEEE;

use IEEE.STD_LOGIC-1164.Aflla

10 use IEEE.STD-LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNEDMALL;

O
Q
Q
G
O
I
A
O
D
D
H

H i
-
i

13 entity nemery_block_transfer is

14 generic(

15 width: integer :- 16;

16 addr: integer :- 18;

17 depth: integer :8 8

1s);

19 Port(

20 clk: in std_logic; ——-FTK}1 clock

21

22 iron_address: in std_logic_vector(addr doumno 0);.-— Start Address

23 to_address: in std_logic_vector(addr dounno 0);-— End.Address

24 read-block: in std_logic; -—- Read block flag

25 write-block: in std_logic; —— lVrfie block flag

26 data_in: in std_logic_vector(15 dowwmo 0);-—— Data to unite

27 op-comp1eted: out std_logic; —- Ahmuny operation conuflete flag

28

29 txd_complete: in std_logic; ——— Serial transfer conuflete flag

30 txd_ready: out std_logic; -—- Serial data ready flag

31 parallel_txd: out std_logic_vector(15 downto 0); -— Data for serial

32

33 read-control: out std_logic; —— Instruct inodule to read data

34 urite-control: out std_logic; -— Instruct nunhde to unite data

35 mem_op_completed: in std_logic; —— FVag if numuny operation conufleted

145

36

37

38

39

40

41

42

43

44

45

46

47

48

49

5 1

52

53

54

55

56

57

58

59

60

6 1

62

63

65

66

67

68

69

70

7 1

72

73

74

75

76

77

78

79

80

8 l

82

83

84

85

86

87

88

89

90

9 1

92

93

94

95

96

97

);

address: out std_logic_vector(addr downto 0); ~— R/W Address

neuory_data_vrite: out std_logic-vector(vidth-1 dounno 0); -— inue Ihna

memory_data_read: in std-logic_vector(vidth-1 donnno 0)-—— Read Dani

end nemory-block_transter;

architecture Behavioral of memory_block_transfer is

begin

memory_block: process(clk)

variable read_block_state: integer range 0 to 7 :- 0;

variable vrite_block_state: integer range 0 to 3 :- 0;

variable current_address: std_logic_vector(addr downto 0);

begin

if clk’event and clk - ’1’ then

if read_block_state - 0 and urite_block_state - 0 then

op_conpleted <- ’0’;

read-control <- ’0’;

write-control <- ’0’;

txd_ready <- ’0’;

end if;

case read_block_state is —- [Hock Read State Ahunine

“dam 0 ->

if read_block - ’1’ then

current_address :. fron_address;

read_block_state :- 1;

end if;

inhen 1 ->

if to_address < current_address then

op_conpleted <- ’1’;

read_block_state :- 0;

else

address <- current_address;

read_control <- ’1’;

read_block-state :- 2;

end if;

‘when 2 ->

read_control <- ’0’;

read-block_state :- 3;

‘when 3 =>

if mem_op_completed - ’1’ then

read-block-state := 4;

end if;

vdmm 4 ->

para11e1_txd <- memory_data_read;

txd_ready <- ’1’;

read_block_state :- 5;

vflux15 ->

txd-ready <- ’0’;

read-block_state :- 6;

‘when 6 ->

if txd_complete = ’1’ then

current_address :- current_address + "OOOOOOOOOOOOOOOOOOI";

read_block_state :- 1;

end if;

when others I) read_block_state := 0;

end case;

146

98

99 case vrite_block_state is —— Block Write State Machine

100 when 0 ->

101 if write_block - ’1’ then

102 current_address :- fron_address;

103 write_block_state :- 1;

104 end if;

105 when 1 ->

106 if to_address < current_address then

107 txd_ready <- ’1’;

108 op_completed <- ’1’;

109 write_block-state :- 0;

110 else

111 nemory_data_write <- data_in;

112 address <- current_address;

113 urite-control <- ’1’;

114 para11e1-txd <- data_in;

115 write_block_state :- 2;

116 end if;

117 when 2 ->

118 write_control <- ’0’;

119 if mem_op_completed - ’1’ then write,block_state :- 3; end if;

120 when 3 ->

121 current_address :- current_address + "0000000000000000001";

122 vrite_block_state :- 1;

123 when others -> vrite-block_state :- 0;

124 end case;

125 end if;

126 and process;

127

128 end Behavioral;

C.8 Memory Controller: memory.io.vhd

1

2 —— Author: Paul R. Kucher

3 —— Module Name: memory-io — Behavioral

4 — Modified .' 2007—09—13

5 — Description: This module is responsible for controlling the FPGA development

6 —- board’s SRAM chips. This module controls both. chips by adding

7 —— a. 19th address bit to select each 10.

8

9 library IEEE;

10 use IEEE.STD_LOGIC_1164.ALL;

11 use IEEE.STD_LOGIC_ARITH.ALL;

12 use IEEE.STD_LOGIC_UNSIGNED.ALL;

13

14 entity nemory-io is

15 generic(

16 width: integer :8 16;

17 addr: integer :- 18;

18 depth: integer :=II 8

19)3

20 Port(

21 clk: in std_logic; —— FPGA clock

22 ce1: out std_logic; —— Chip enable #1

23 ub1: out std_logic; —— Upper byte enable #1

24 lbl: out std_logic; -— Lower byte enable #1

25 ce2: out std_logic; —— Chip enable #2

147

26

27

28

29

30

31

32

33

34

35

36

37

38

39

4O

41

42

43

44

45

46

47

48

49

5O

51

52

53

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

85

86

87

ub2: out std_logic; -—- Upper byte enable #2

Ib2: out std_logic; —— Loner byte enable #2

0e: out std_logic; —— (MHput enable

we: out std_logic; -—- White enable

mem-address: out std_logic_vector(addr~1 downto 0); —— Addr. Bus

mem_datai: inout std-logic_vector(width-1 dowuno O);-—— Data Bus 1

mem_data2: lnout std_logic_vector(width-1 downno 0); —- Lhna Bus 2

read_control: in std_logic; —— Instruct nuuhde to read data

urite_control: in std_logic; —— Instruct nunhde to unite data

mem_op_completed: out std_logic; -— FVag if nwnuny operation connfleted

address: in std_logic,vector(addr downto O); —- Addr. to R/W

nemory-data_write: in std_logic_vector(width-1 downno O); —— lVrue LNMa

nemory_data_read: out std_logic_vector(width-1 donnno O)-*— Read Data

);

end nemory_io;

architecture Behavioral of memory_io is

begin

—- 7VH3 process controls uflnflher the address is‘fixnn the read

—— or unite operation and sets the address bus accordingly.

-- It also sets the control signals from the memory and moves

— data from the internal registers to the external memory and

—— vice versa.

nemory_data: process(clk)

variable nemory_state: integer range 0 to 3 z- 0;

variable enable_nem1, enable-nen2: std_logic;

begin

if clk’event and clk - ’1’ then

case nemory_state is

wdmm 0 ->

if read_control = ’1’ then

mem_address <- address(addr-1 dounno 0);

we <- ’1’;

as (I ’0’;

enable-nem1 :- address(addr);

enable-nen2 :- not address(addr);

memory_state :- 1;

elsif write_control - ’1’ then

mem_address <- address(addr-l donnno O);

we <- ’0’;

as <- ’1’;

enable_nem1 :- address(addr);

enab1e_mem2 :- not address(addr);

memory_state :- 2;

else

nemory_state :- O;

mem_data1 <- (mem_data1’range I) ’2’);

mem_data2 <- (mem_data2’range -> ’Z’);

nem-address <- "OOOOOOOOOOOOOOOOOO";

oe <- ’1’;

we <- ’1’;

enab1e_mem1 := ’1’;

snab1e_nem2 :- ’1’;

end if;

men-0p_comp1eted <- ’0’;

when 1 -> — read state

if address(addr) 8 ’0’ then

148

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

memory_data_read <- mem_datal;

else

nemory_data_read <- mem_data2;

end if;

nem-op-comp1eted <- ’1’;

nemory_state :- 0;

when 2 -> —— write state

if address(addr) - ’0’ then

mem_data1 <- memory_data_write;

else

mem_data2 <- memory_data_write;

end if;

nen-op-coup1eted <- ’1’;

aenory-state :- 0;

*when others -> nemory_state :- 0;

end case;

ce1 (I enab1e_mem1;

ub1 <- enable-mem1;

1b1 <- enable-men1;

ce2 <- enable-nem2;

ub2 <II enab1e_nem2;

Ib2 <- enab1e_nem2;

end if;

end process;

end Behavioral;

0.9 Memory Multiplexer: memory_mux.vhd

O
O
Q
O
i
O
I
A
U
N
I
-
i

N
N
N
N
N
N
N
N
N
u
H
H
r
-
i
-
I
H
H
H
H
H

D
N
Q
M
fi
w
N
H
O
O
Q
Q
O
fi
U
‘
O
-
U
N
H
O

— Author: Paul R. Kucher

—— Module Name: memory/mum: — Behavioral

—- Modified: 2007-09—13

— Description: This module multiplexes the input signals to the memory-io

— module. This is necessary since multiple modules need

—— access to the memory buses. This module is controlled via

—— the instruction executuni controUer.

library IEEE;

use IEEE.STD_LOGIC_1164LALL;

use IEEE.STD_LUGIC_ARITHMALL;

use IEEE.STD_L0GIC-UNSIGNEDMALL;

entity memory_mux is

generic (

width: integer :- 16;

addr: integer :- 18;

depth: integer := 8

);

Port(

nodule-select: in integer range 0 to 5;-—— Select

read-control_in: in std_logic_vector(4 dounflo 0); -— Read tVag

write_control_in: in std_logic_vector(4 downno 0); —— lVrfle Flag

address-in: in std_logic_vector(((addr+1)#5-1) domaflo 0);

nemory_data_write_in: in std_logic_vector((width*5)-1 dounno O);

149

29 read_control_out: out std_logic; —— Read Flag

30 write_control-out: out std_logic; —— Write Flag

31 address_out: out std_logic_vector(addr downto 0); —— Address

32 memory_data_write-out: out std_logic_vector(width-1 downto 0) —— Data

33);

34 end nemory_mux;

35

36 architecture Behavioral of memory_1nux is

37

38 begin

39

4o multiplexer: process(module_select , read_control-in, write-control-in,

41 address_in, memory_data_write_in)

42

43 begin

44

45 case nodule_select is

46 when 1 ->

47 read-control_out <- read-control-1n(0);

48 write_control_out <- write_control-in(0);

49 address-out <- address_in(addr downto 0);

50 menory-data_write_out <- nemory_data-vrite_in(width-1 downto 0);

51 when 2 ->

52 read_control_out <- read_control_1n(1);

53 write_control_out <- write_control_in(1);

54 address_out <- address_in(((addr+1)*2)-1 downto addr+1);

55 neuory_data_write_out <- memory-data_write_in(widtht2-1 downto width);

56 when 3 ->

57 read_control_out <- read_control_in(2);

58 write-control_out <- write_control_in(2);

59 address-out <- address-in(((addr+1)#3)-1 downto (addr+1)*2);

60 neuory_data-write_out <- neaory_data_write_in(widtht3-1 downto widtht2);

61 when 4 ->

62 read_control_out <- read_control_in(3);

63 write-control_out <- write_control_in(3);

64 address_out <- address_in(((addr+1)*4)'1 downto (addr+1)*3);

65 memory-data_write-out <. memory_data_write_in(widtht4-1 downto widtht3);

66 when 5 ->

67 read_control-out <- read_control_in(4);

68 write_control_out <- write_control_in(4);

69 address-out <= address_in(((addr+1)*5)-1 downto (addr+1)t4);

7o memory_data_write-out <- memory-data_write_in(widthIIS-1 downto widthfli);

71 when others ->

72 read_control_out <- ’0’;

73 write-control_out <= ’0’;

74 address_out <- "OOOOOOOOOOOOOOOOOOO";

75 nemory_data_write_out <-I "0000000000000000";

76 end case;

77

76 end process;

79

80 end Behavioral;

C.10 Voltage DAC Controller: program_dacs.vhd

1

2 — Author: Paul R. Kucher

3 — Module Name: program_dacs — Behavioral

4 — Modified: 2007—09—13

150

O
G
Q
Q
O
'

— Description: Update one LTC2600 I6—bit digital-to—analog converter

—— on the inothcrboard using the provided [WUT instruction.

library IEEE;

use IEEE.STD_LOGIC_11643ALL;

use IEEE.STD_LOGIC_ARITHaALL;

use IEEE.STD_LOGIC_UNSIGNEDMALL;

entity program_dacs is

Port(

clk: in std_logic; —— FPGA clock

clr_bar: out std_logic; —— thLRAR DAC’pin

cs_bar: out std_logic; ——- CS_BAR DAC pin

sdi: out std_logic; ___ Serial Data In DHC'pin

sck: out std_logic; —— Serial CHock.DAC pfil

program_dac: in std_logic; -- Program DAC control flag

dac_programmed: out std_logic; —- Fhognnnnnng conufleted control flag

dac-instruction: in std_logic_vector(27 donnno 0) —— DAClinstruction

);

end program_dacs;

architecture Behavioral of program_dacs is

begin

program_dacs: process(clk)

variable count: integer range 0 to 15 :- 0;

variable program_state: std_logic_vector(1 doumno 0) :- "00”;

variable dac_nun: std_logic_vector (3 downto 0);

variable dac_chain: std_logic_vector(159 downto 0);

variable shift-count: integer range 0 to 180 :- O;

begin

clr-bar <- ’1’;

if (clk’event AND elk-’1’) then

if count > 0 then sck <- ’1’;

else sck <3 ’0’;

end if;

case program_state is

vdmm "00” a)

if program_dac - ’1’ then

program_state :- "01”;

end if;

cs_bar <- ’1’;

dac_programmed <= ’0’;

when "01" ->

dac_num :- dac_instruction(27 dounno 24);

program_state := "10";

when "10" ->

dac_chain :-

"00000000111100000000000000000000"

"00000000111100000000000000000000"

"00000000111100000000000000000000"

'00000000111100000000000000000000"

"00000000111100000000000000000000";

if dac-nun = "0001" then

dac_chain(23 dounno 0) :- dac_instruction(23 dovnno 0);

elsif dac_nun - ”0010" then

"
R
R
"

151

67

68

69

70

7 1

72

73

74

75

76

77

78

79

80

8 l

82

83

85

86

87

88

89

90

9 1

92

93

94

95

97

98

99

100

101

102

dac_chain(55 dounno 32) :- dac-instruction(23 dounno O);

elsif dac_num - "0011" then

dac-chain (87 downto 64) :- dac_instruction(23 downto O);

elsif dac_num - "0100" then

dac_chain(119 dounflo 96) :- dac_instruction(23 douano 0);

elsif dac-nun - "0101" then

dac_chain(151 downno 128) :- dac-instruction(23 dounno 0);

end if;

program_state :- "11';

*when ”11“ ->

if shift-count < 160 then

dac_chain(159);sdi <-

cs_bar

else

sdi <-

cs_bar

(-

’0

(-

’0’;

,0

,

’1’;

dac_programmed <- ’1’;

shift_count :- O;

progran-atate :- "00";

end if;

if count I 1 then

shift_count :- ahitt_count + 1;

dac_chain(159 downto 1) :- dac_chain(158 downto 0);

end if;

*when others -> program_state :- "00";

end case;

if count - 1 or program_state /= "11“ then count :- 0;

else count :- count + 1;

end if;

end if;

end process;

end Behavioral;

C.11 RS—232 Serial Controller: serial-io.vhd

Q
W
Q
G
U
I
A
W
U
H

N
H
H
O
—
I
H
H
H
H
H
H
H

O
®
m
~
l
0
0
§
w
N
H
o

Author:

Module Name:

Alodified:

1)escription:

Paul R. Kucher

serial-io —- Behavioral

2007—08—06

This module is responsible for controlling the serial

connnunicafions between the FWCM and the.PC. It generates

the appropriate baud rate and handles turning zoarallel into

serial data for transmission and serial into parallel data

for receiving. This module is currently configured for

a 115200 bps baud rate. but num be adjusted by changing the

counters in the baud clock generators.

library IEEE;

use IEEE.STD_LOGIC_1164MALL;

use IEEE.STD_LOGIC_ARITHLALL;

use IEEE.STD_LUGIC_UNSIGNEDLALL;

entity serial_io

Port(

clk:

is

in std_logic; - FPGA clock

152

2 l

22

23

24

25

26

27

28

30

3 l

32

33

35

36

37

39

4-0

41

42

43

44

45

46

47

48

49

50

51

52

53

55

56

57

59

60

6 1

62

63

65

66

67

68

69

7O

7 l

72

73

74

75

76

77

78

79

80

81

82

rxd: in std_logic; —— Physical receiver pin

txd: out std_logic; -— Physical transmitter pin

txd_ready: in std_logic; — Data ready on parallel-t:cd to send

txd_conplete: out std_logic; —— Transmitted word control flag

rxd_complete: out std_logic; —— Received word control flag

para11e1_txd: in std_logic_vector(ls downto 0); — Transmit register

para1101_rxd: out std_logic_vector(15 downto 0) —— Received register

);

end seria1-io;

architecture Behavioral of serial_io is

signal baud_aamp1e: std_logic;

signal rxd-state: std_logic_vector(4 downto O) :- "00000";

signal txd_state: std_logic_vector(4 downto 0) :- "00100";

signal rxd_filtered, txd-tenp: std_logic :- ’1’;

signal rxd-sync: std_logic,vector(1 downto 0) :- "11";

signal get_next_,bit: std_logic :- ’0’;

begin

— This process divides the global clock down to the baud

—— rate for use in the RS232 serial communications.

— 115200 bps (specifically 115207.373 bps) is the current baud rate.

baud-rate_set: process(clk)

variable count: integer range 0 to 500 :- 0;

begin

if clk’event and clk - ’1’ then

count :- count + 1;

if count > 434 then count :- 0;

end if;

if count - 1 then baud_sanple <- ’1’;

else baud_sanple <- ’0’;

end if;

end if;

end process;

—- This process is what controls 128232 communications with Matlab. It will

— read 16 bit data from the paralleLtId signal and sends it to Matlab

—— in two chunks of 8 bits each. 115200 baud is used as well as mark parity

— and 2 stop bits.

txd_state_nachine: process(clk)

beghi

if clk’event and c1]: - ’1’ then

case txd_state is

when ”00100" -> if txd-ready - ’1’ then

txd-state <- "00000"; end if; —-— idle state

when "00000” -> if baud_sanp1e II ’1’ then

txd-state <- "01000"; end if; — send start bit

when “01000" I) if baud_sample = ’1’ then

txd_state <- "01001"; end if; —— bit 0

when "01001” -> if baud_sanp1e = ’1’ then

txd_state <8 "01010"; end if; — bit I

when ”01010" -> if baud_sanple I ’1’ then

txd_state <- "01011"; end if; — bit 2

when "01011" -> if baud-sample - ’1’ then

txd_state <- "01100"; end if; —- bit 3

when "01100" -> if baud_samp1e - ’1’ then

txd_state <= "01101"; end if; — hit 4

153

83 when "01101" -> if baud_sample - ’1’ then

84 txd_state <- "01110"; end if; — bit 5

85 when "01110" -> if baud_sample - ’1’ then

86 txd_state <- ”01111"; end if; —- bit 6

87 when ”01111" -> if baud_sanple - ’1’ then

88 txd_state <1I “00001”; end if; -— bit 7

89 when "00001“ -> if baud_sanp1e - ’1’ then

90 txd-atate <- "00010"; end if; —-— parity bit

91 when "00010” -> if baud_sanp1e - ’1’ then

92 txd_state (II ”00011"; end if; — stop bit #1

93 when ”00011" -> if baud_samp1e - ’1’ then

94 txd_state <- ”10000"; end if; —— stop bit #2

95 when "10000" -> if baud_sample '3 ’1’ then

96 txd_state <- "11000"; end if; —— send 2nd start bit

97 when ”11000” -> if baud-sample - ’1’ then

98 txd_state (I ”11001"; and if; — bit 8

99 when "11001" -> if baud_sample - ’1’ then

100 txd_atate <- ”11010"; end if; — bit 9

101 when "11010" -> if baud_sample - ’1’ then

102 txd-state <- "11011"; end if; — bit 10

103 when "11011" -> if baud_sanple - ’1’ then

104 txd_state (I "11100"; end if; — bit 11

105 when "11100” -> if baud_aanple - ’1’ then

106 txd_atate <- "11101"; end if; — bit 12

107 when "11101" -> if baud_aanple - ’1’ then

108 txd_state <- "11110"; end if; — bit 13

109 when ”11110” -> if baud_sanp1e - ’1’ then

110 txd-state <- "11111"; and if; — bit 14

111 when ”11111" -> if baud_sanple - ’1’ then

112 txd-state <- "10001“; end if; — bit 15

113 when "10001" -> if baud_sanple '- ’1’ then

114 txd_state (I “10010”; end lf; — parity bit

115 when "10010" -> if baud_sanple - ’1’ then

116 txd_state <- "10011"; end if; —— stop bit #1

117 when "10011” -> if baud-sanple - ’1’ then

118 txd_state <- "00100"; end if; — stop bit #2

119 when others -> txd_state <- "00100";

120 end case;

121 end if;

122 end process;

123

124 — This process handles the parallel to serial conversion of the. data in the

125 —— input register named ’parallel-t:rd ’.

126 txd_shift: process(clk)

127 variable parallel_data : std_logic_vector(15 downto 0) :- "0000000000000000";

128 begin

129 if clk’event and clk - ’1’ then

130 if baud-samp1e - ’1’ then

131 if txd_state (3 downto 0) - "0000" then

132 txd_temp <8 ’0’; — start bit

133 if txd_atate (4) - ’0’ then —— load data

134 parallel_data :- parallel_txd;

135 end if;

136 elsif txd_state (3) - ’1’ then —— send data bits

137 txd_temp <- parallel_data(0);

138 parallel_data(14 downto 0) := para11e1_data(15 downto 1);

139 else

140 txd_temp <- ’1’; —— idle is always high

141 end if;

142

143 if txd-state = ”10011" then

144 txd_conplete <- ’1’; —— send ack. bit

154

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

182

200

end if;

else

txd_conplete <8 ’0’;

end if;

end if;

end process;

txd <8 txd_tenp;

-—— Synchronize the receiver pin unth the FPGfi clock.

rxd_sync_input: process(clk)

begin

if clk’event and clk 8 ’1’ then

rxd-aync <8 rxd_sync(0) & rxd;

end if;

end process;

—- FWlter the inconnng data for any glitches.

rxd_tilter_input: process(clk)

variable count: integer range 0 to 60 :8 60;

begin

if clk’event and clk 8 ’1’ then

if rxd_aync(1) - ’1’ and count < 50 then count :8 count + 1;

elsif rxd_sync(1) - ’0’ and count > 0 then count :8 count - 1;

end if;

if count 8 50 then rxd_filtered <8 ’1’;

elslf count = 0 then rxd-filtered <8 ’0’;

end if;

end if;

end process;

—- Baud rate generator for receiving.

rxd-next-bit: process(clk)

variable count: integer range 0 to 1000 :8 0;

begin

if clk’event and clk 8 ’1’ then

if rxd-state(3 downno 0) - "0000" then

if rxd_filtered 8 ’0’ then count :8 count + 1;

else count :8 0;

end if;

if count 8 200 then

get-next_bit <= ’1’;

count :8 0;

else

get_next-bit <8 ’0’;

end if;

elsif count 8 434 then

get_next-bit <' ’1’;

count :8 0;

else

get_next_bit <= ’0’;

count :8 count + 1;

end if;

end if;

end process;

——- This process 1nanages the incannng connnand structure to the $7131

-— over RS232 conununicauons.

ra232_receive_sm: process(clk)

begin

155

208

209

211

228

229

23 l

232

233

234

235

236

237

238

239

240

242

243

244

245

246

247

248

249

250

25 1

252

253

254

255

256

258

259

260

26 l

262

263

264

265

266

267

268

if clk’event and clk 8 ’1’ then

case rxd_state is

when ”00000" 8> if get_next_b1t

rxd_state <8 "01000”; end if;

‘when "01000" 8> if get_next_bit

rxd_state <8 "01001"; end if;

'when ”01001" 8> if get_next_bit

rxd-state <8 "01010"; end if;

when “01010" 8> if get-next-bit

rxd_state <8 "01011"; end if;

when "01011" -> if get_next_b1t

rxd_state <8 "01100“; end if;

‘when "01100" 8> if get_next_bit

rxd-state <8 ”01101”; end if;

when "01101” 8> if get_next_bit

rxd_state <8 "01110”; end if;

when "01110” 8> if get_next_b1t

rxd-state <8 "01111"; end if;

when "01111" 8) if get_next_bit

rxd_state <8 "00001"; end if;

when "00001" 8> if get-next_b1t

rxd_state <8 "10000"; and if;

‘when "10000” 8> if get_next_bit

rxd_state <8 ”11000"; end if;

when "11000" 8> if get_next_bit

rxd-state <8 "11001"; end if;

vflxni"11001' 8> if get-next_bit

rxd_state <8 "11010"; end if;

‘when "11010" 8> if get-next_b1t

rxd_state <8 "11011"; end if;

when "11011" 8> if get_next_bit

rxd-state <8 "11100"; end if;

‘when ”11100" 8> if get-next_bit

rxd_state <8 ”11101"; end if;

8 ’1’ then

—— start bit found?

8 ’1’ then

—— bit 0

8 ’1’ then

—— bit 1

8 ’1’ then

—— bit 2

8 ’1’ then

—— bit 3

8 ’1’ then

—— bit 4

8 ’1’ then

—— bit 5

8 ’1’ then

—— bit 6

8 ’1’ then

—— bit 7

8 ’1’ then

—— stop bit

8 ’1’ then

—— 2nd start bit found?

8 ’1’ then

—— bit 8

8 ’1’ then

—— bit 9

8 ’1’ then

—— bit 10

8 ’1’ then

—- bit 11

8 ’1’ then

——- bit 12

when ”11101” 8> if get_next_b1t 8 ’1’ then

rxd_state <8 "11110"; end if; —— bit 13

when "11110" 8) if get_next_hit 8 ’1’ then

rxd_state <8 "11111”; end if; —— bit 14

when "11111" 8> if get_next_bit 8 ’1’ then

rxd-state <8 "10001"; end if; —— bit 15

“dun "10001" 8> if get-next_bit 8 ’1’ then

rxd_state <8 ”00000"; end if; —— stop bit

‘when others 8) rxd_state <8 "00000";

end case;

end if;

end process;

- This process shifts in the [ti-bit instruct-ion / data from the PC and makes

-— it available on the signal

r8232_shift-in: process(clk)

variable packet1 , packet2 std_logic_vector(7 downto 0);

begin

if clk’event and clk 8 ’1’ then

if get_next-bit 8 ’1’ and rxd_state(3) 8 ’1’ then

if rxd_state(4) 8 ’0’ then —— shift data

packet1 :8 rxd_filtered & packet1(7 dounno 1);

elsif rxd-state(4) 8 ’1’ then —— shift data

packet2 :8 rxd_filtered & packet2(7 donnno 1);

end if;

end if;

'parallel-r$d ’ when ’rzd-complcte ' is high.

if rxd_state 8 "10001" and get_next_bit 8 ’1’ then

156

269 parallel_rxd <= packet2 & packetl;

27o rxd_complete <8 ’1’;

271 else

272 rxd-complete <8 ’0’;

273 end if;

274 end if;

275 end process;

276

277 end Behavioral;

C.12 Serial I/O Multiplexer: serial_mux.vhd

1

2 —— Author: Paul R. Kucher

3 — Module Name: serial_mur - Behavioral

4 — Modified: 2007—09-13

5 -— Description: This module multiplexes the input signals to the serial_io

6 — module to allow direct communications back to the PC without

7 — having to pass data through the instruction decode and execute

8 -— unit.

9

10 library IEEE;

11 use IEEE.STD_LOGIC_1164.ALL;

12 use IEEE.STD_LOGIC_ARITH.AIL;

13 use IEEE.STD_LOGIC_UNSIGNED.ALL;

14

15 entity serial_mux is

16 Port(

17 nodule_se1ect: in integer range 0 to 2; —- Select Line

18 txd_ready_in: in std_logic_vector(2 downto 1); —— TXD Flag In

19 parallel-txd_in: in std_logic_vector(32 downto 1); —- 7X0 Reg. In

20

21 txd-ready-out: out std_logic; — TXD Flag Out

22 parallel_txd_out: out std_logic_vector(16 downto 1) — TXD Reg. Out

23):

24 end serial_nux;

25

26 architecture Behavioral of serial_nux is

27

28 begin

29

30 multiplexer: process(module_select , txd_ready_in, parallel_txd-in)

31

32 begin

33

34 case nodule_se1ect is

35 when 1 ->

36 txd_ready_out <8 txd_ready_in(1);

37 para11e1_txd_out <8 parallel_txd_in(16 downto 1);

38 when 2 ->

39 txd_ready_out <8 txd_ready-in(2);

4o parallel-txd_out <8 paralle1_txd_in(32 downto 17);

41 when others 8)

42 txd_ready_out <8 ’0’;

43 parallel_txd_out <8 ”OOOOOOOOOOOOOOOO";

44 end case;

45

46 and process;

47

157

48 end Behavioral;

0.13 Serial Shifting Controller: serial_shifter.vhd

0
0
4
0
1
0
1
3
5
9
1
9
.
-

m
u
m
m
m
u
a
a
a
n
a
a
a
a
a
a
w
w
w
w
w
w
w
w
w
w
u
n
n
w
w
n
n
n
n
n
i
-
w
u
i
—
p
—
H
u
i
-
.
—

a
!
a
w
u
w
c
o
m
q
m
u
a
w
n
w
o
o
o
n
u
m
m
h
w
u
w
o
o
m
«
a
m
a
u
u
w
o
c
m
q
a
m
h
w
u
w
o

— Author: Paul R. Kucher

— Module Name: serial_shifter - Behavioral

—— Modified: 2007—09—05

— Description: This unit enables and disables the states of a generic serial

—— shift register. The starting and stopping addresses specify

— where in memory the serial shifting states are stored and

—— this module will then read the least significant bit

— from sequential memory locations and output them on the

— ’serial-out ’ line.

library IEEE;

use IEEE.STD_LOGIC_1164MALL;

use IEEB.STD_LOGIC_ARITHuALL;

use IEEE.STD_LOGIC_UNSIGNEDMALL;

entity serial_shifter is

generic(

width: integer :8 16;

addr: integer :8 18;

depth: integer :8 8

)3

Port(

clk: in std_logic; —— FPGA Clock (Pin T9)

serial_clk: out std-logic; ——- Serial Clock (FPGA Pin A9)

serial-in: out std_logic; —— Serial Data To Chip (FPGA Pin 86)

serial_out: in std-logic; — Serial Data From Chip (FPGA Pin D5)

shift_start_flag: in std_logic; —-— Shifting operation begin flag

shift_end-11ag: out std_logic; — Shifting operation complete flag

start_address: in std_logic_vector(addr downto 0); —— St. Address

end_address: in std_logic_vector(addr downto 0); —— Ending Address

read_control: out std_logic; — Instruct module to read data

vrite-control: out std_10gic; —— Instruct module to write data

aem_op_completed: in std_logic; — Flag if memory operation completed

address: out std_logic_vector(addr downto 0); -— Address to R/W

nemory_data_vrite: out std_logic_vector(vidth-1 downto 0); —— Write Data

menory_data_read: in std_logic —- Read Data

):

end serial_shifter;

architecture Behavioral of serial_shifter is

begin

serial_shift: process(clk)

variable shift_state: integer range 0 to 7 :8 0;

variable read_next: std_logic :8 ’0’;

variable startup_conplete: std_logic :8 ’0’;

variable shift_out_period: integer range 0 to 200;

variable current_address , ce11_count: std_logic_vector(addr downto 0);

begin

158

57

58

59

60

61

62

63

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

10 l

102

103

104

105

106

107

108

109

1 10

11 1

112

1 13

1 14

115

116

117

if clk’event and clk I ’1’ then

case shi£t_state is

\Nhen 0 ->

shi£t_end_flag <- ’0’;

serial_in <- ’0’;

read_control <- ’0’;

urite-control <8 ’0’;

nemory_data_vrite <- "1111111111111111";

address <- '0000000000000000000”;

if shift_start_f1ag - ’1’ then

current_address :- end_address;

ce11-count ;. end_address - start_address + 1;

shift-state :- 1;

end if;

“dam 1 ->

if current_address < start-address then

shift_end_f1ag <- ’1’;

shitt_state :- 0;

elsif read_next I ’1’ then

address <- current_address;

read_control <- ’1’;

shi£t_state :- 2;

end if;

‘when 2 ->

read_control <- ’0’;

shift_state :- 3;

‘when 3 ->

if mem_op_completed - ’1’ then

shift_state :- 4;

end if;

‘when 4 -> —— Read serial data back for verification

serial_in <- nemory_data_read;

address <- current_address + ce11_count;

nemory_data_vrite <- “000000000000000' & serial_out;

write-control <- ’1’;

shift_state :- 5;

“dun 6 I)

urite_control <= ’0’;

shift_state :- 6;

\Nhen 6 ->

if nem-op_completed - ’1’ then

current_address :- current_address - 1;

shift_state :- 7;

end if;

\Nhen 7 ->

if shift_out_period - 0 then

shitt_state :- 1;

end if;

when others -> shift_state :- 0;

end case;

if shift_out_period 8 50 then read_next :3 ’1’;

else read_next :- ’0’;

end if;

if shift_out_period > 199 or shift_state a 0 then shift_out_period

else shift_out_period :- shift_out_period + 1;

end if;

if shift_out_period > 100 then serial_clk <- ’0’;

else serial_clk <s ’1’;

159

:= 0;

118

119

120

121 ‘

122

end if;

end if;

end process;

end Behavioral ;

C.14 Seven Segment Display: sevensegmentxhd

@
O
Q
G
O
I
#
O
O
N
H

O
l
a
-
b
a
a
a
n
d
:
A
a
s
s
u
m
e
:
w
w
u
g
u
w
w
w
g
n
g
n
n
u
w
w
u
N
H
H
H
H
H
H
i
—
H
H
H

H
o
c
m
q
a
m
a
w
u
—
o
e
m
a
a
u

w
h
a
t
—
o

m
m
m
a
u
u
w
o
c
m
q
o
c
n
b
w
u
w
o

— Author: Paul R. Kucher

—— Module Name: seven-segment — Behavioral

— Modified: 2007—08-06

— Description: This module controls the seven segment display on the FPGA

-— development board.

library IEEE;

use IEEE.STD_LOGIC_1164MALL;

use IEEE.STD_LOGIC_ARITHMALL;

use IEEE.STD_LOGIC_UNSIGNEDMALL;

entity seven_segment is

Port(

clk: in std_logic; -— FPGA clock

dig1t_sel: out std_logic_vector(3 downto 0); — Digit selection

digit-va1: out std_logic_vector(G downto 0); —— Digit value

1ed_data: in std_logic_vector(ls downto 0) —— Data for display

)3

end seven_segment;

architecture Behavioral of seven_segment is

— LED Timing

signal 1ed_c1k: std_logic;

signal 1ed_index: integer range 1 to 4;

signal led_number: std_logic_vector(S downto 0);

begin

— Divide the clock for the 7—segment LED display.

led_timing: process(clk)

variable count_1eds: integer range 0 to 200 :- 0;

begin

if (clk’event AND elk-’1’) then

if count_leds < 100 then

led_c1k <- ’0’;

else

led_c1k <- ’1’;

end if;

if count_1eds > 199 then count_leds := 0;

else count_1eds :8 count_1eds + 1;

end if;

end if;

and process;

—— This process selects the digit to update.

digit_select: process(1ed_index)

begin

160

52 case 1ed_index is

53 when 1 I> digit_sel (I "1110";

54 when 2 I) digit_sel (I "1101";

55 when 3 I> digit_se1 (- "1011";

56 'when 4 -> digit_se1 <- "0111";

57 when others I) null;

58 and case;

59 end process;

60

61 — For LED display write ucf file (a,b,c.d,e.f,g for 7 segments)

62 — Map the 7—bit code of the LED display to a 4—bit code O—F

63 digit_va1ue: process(led_number)

64 begin

65 case led_nunber is

66 when "0000" I) digit_va1 (n "0000001";

67 ‘when "0001” I) digit_va1 (I “1001111";

68 ‘when "0010" I) dig1t_va1 (I "0010010”;

69 when ”0011” I> digit_va1 (I “0000110”;

70 when "0100" I> dig1t_va1 (I "1001100";

71 when ~0101" -> digit-va1 <- "0100100-;

72 when "0110” I> digit_va1 (I ”0100000”;

73 'when "0111” I> dig1t_va1 (I "0001111";

74 when "1000” I) digit_va1 (I "0000000";

75 when "1001" I) digit_va1 (I "0000100";

76 Winn "1010" I) digit_va1 (I "0001000";

77 when ”1011' I) digit_val (I "1100000";

78 when "1100" I> digit-va1 (I "0110001";

79 when "1101" I) d1git_va1 (I "1000010";

80 ‘when ”1110" I) digit_va1 (I "0110000";

81 vflunl"1111" I> dig1t_va1 (I "0111000";

82 when others I> null;

83 and case;

34 end process;

85

86 — Set the value of the selected digit.

87 set_digit: process(1ed_c1k)

as variable count: integer range 0 to 5 :I O;

89 begin

90 if led_clk’event and 1ed_c1k I ’1’ then

91 count :I count + 1;

92 if count I 5 then count :I 0;

93 end if;

94

95 case count is

96 when 1 ->

97 led_number <- led_data(3 downto 0);

9s led_index <I 1;

99 when 2 =>

100 led_number <= 1ed_data(7 downto 4);

101 led-index <- 2;

102 when 3 ->

103 led_number <= 1ed_data(11 downto 8);

104 led_index (- 3;

105 when 4 I)

106 led_nunber (- led_data(15 downto 12);

107 led_index (I 4;

103 when others I)

109 null;

110 end case;

111 end if;

112 end process;

113

161

114 end Behavioral;

(3.15 Signal Generator: signal_gen.vhd

o
c
h
s
o
l
a
w
i
o
w

u
u
m
u
m
g
a
a
a
a
a
a
a
a
a
a
w
w
w
w
w
fi
w
w
w
w
u
n
n
u
u
u
n
w
u
u
u
u
w
w
u
u
—
u
—
w
w

m
o
u
n
t
-

o
m
fl
a
u
a
w
w
w
o
o
m
q
a
m

w
w
w
o
e
m
q
o
m
h
u
u
w
o
o
m
q
m
c
n
b
w
u
w
o

— Author: Paul R. Kucher

—— Module Name: signal-gen — Behavioral

— Modified: 2007—09—13

— Description: This module controls high—speed digital—to—analog conversion

— for function/signal generation. It reads the values of the

—- 16—bit DACS from memory and loads them into the 160—bit serial

--- shift chain.

library IEEE;

use IEEE.STD_LOGIC_1164MALL;

use IEEE.STD_LOGIC_ARITHLALL;

use IEEE.STD_LOGIC_UNSIGNEDnALL;

entity signa1_gen is

generic(

width: integer :I 16;

addr: integer :I 18;

depth: integer :I 8

)3

Port(

elk: in std_logic; —— FPGA clock

cs_bar: out std_logic; — CSLBAR DAC pin

sdi: out std_logic; — Serial Data In DAC pin

sck: out std_logic; — Serial Clock DAC pin

sig_gen_enable: in std_logic;

sig_gen_conplete: out std_logic;

start_address: in std_logic_vector(addr downto 0); — St. Data Store

end_address: in std_logic_vector(addr downto 0); —— End Data Store

read_control: out std-logic; — Instruct module to read data

vrite_control: out std_logic; —— Instruct module to write data

mem_op_completed: in std_logic; — Flag if memory operation completed

address: out std_logic_vector(addr downto 0); — address to RM

memory_data_vrite: out std_logic_vector(vidth-l downto 0); — Write Data

nemory_data_read: in std_logic_vector(vidth-1 downto 0) —— Read Data

)3

end signa1_gen;

architecture Behavioral of signa1_gen is

begin

generate_signa1s: process(clk)

variable count: integer range 0 to 15 :I 0;

variable program_state: integer range 0 to 5;

variable dac_chain: std_logic_vector(159 downto 0);

variable shift-count: integer range 0 to 180 :I 0;

variable current_address , true_start: std-logic_vector(addr downto 0);

variable next_sequence: std_logic_vector(addr downto 0);

begin

if (clk’event AND clka’l’) then

162

56

57

58

59

6O

6 1

62

63

64

65

66

67

68

69

7O

71

72

73

74

75

76

77

78

79

80

8 1

82

83

84

85

86

87

88

89

90

91

92

93

94

95

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

if count > 0 then sck (I ’1’;

else sck (I ’0’;

end if;

if count I 1 or program_state /I 5 then count :I 0;

else count :I count + 1;

end if;

case program_state is

\vhen 0 I)-—— Idle State

cs_bar (I ’1’;

sdi (- ’0’;

read_control (I ’0’;

vrite_control (I ’0’;

sig_gen_complete (I ’0’;

memory_data_vrite (- "0000000000000000";

dac_chain :-

"00000000111100000000000000000000" &

'00000000111100000000000000000000” &

"00000000111100000000000000000000' &

"00000000111100000000000000000000" &

”00000000111100000000000000000000";

if sig_gen_enab1e I ’1’ then

program_state :I 1;

current-address :I start_address;

true_start :I start_address + 5;

end if;

when 1 I) — Setup Channels

if current_address (true_start then

address (- current_address;

read_control (I ’1’;

progran-state :I 2;

else

current_address :- true_start;

next-sequence :I true_start + 5;

program_state :I 3;

end if;

‘when 2 I)

read_control (I ’0’;

if mem_op_completed I ’1’ then

current-address :I current_address + 1;

dac_chain :I dac_chain(127 dounno 0) & “000000000011" &

memory_data_read(3 dovnno O) & ”0000000000000000";

program_state :I 1;

end if;

when 3 I) — Start Loading Data Sequence (DAC3 #1 — #5)

if current_address < next_sequence then

address (I current_address;

read_control (I ’1’;

program_state :I 4;

else

program_state :I 5;

end if;

when 4 I) -— Load Data Into Shift Chain

read_control (I ’0’;

if mem_op_completed I ’1’ then

current_address :I current_address + 1;

dac_chain :I dac_chain(127 dounflo 0) &

dac_chain(159 dovnno 144) I memory_data_read;

program_state :I 3;

end if;

163

1 18

1 19

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

when 5 I> -— Shift Out Data

if shift_count (160 then

sdi (I dac_chain(159);

cs_bar (I ’0’;

else

sdi (I ’0’;

cs-bar (I ’1’;

shift_count :I 0;

if current_address > end_address then

current_address :I true_start;

next_sequence :I true_start + 5;

else

next_sequence := next-sequence + 5;

end if;

if sig_gen_enable I ’1’ then

program_state :I 3;

else

sig_gen_couplete (I ’1’;

program_state :I 0;

end if;

end if;

if count I 1 then

shift_count :I shitt_count + 1;

dac_chain :I dac_chain(158 domnno 0) & dac_chain(159);

end if;

when others I> progran-state :I 0;

and case;

and if;

and process;

and Behavioral;

C.16 Voltage ADC Controller: vadc.vhd

@
Q
Q
fi
t
h
N
v
-
I

”
S
N
M
H
H
H
H
H
H
H
H
H
H

a
:

H
O
G
W
I
I
O
O
‘
A
U
N
H
O

— Author: Paul R. Kucher

-— Module Name: vadc — Behavioral

—— Aloddied: 2007—08—23

— Description: This module controls the 16 channel. 224-bit Sigma Delta

— Analog—to—Digital converters used for voltage measurement.

library IEEE;

use IEEE.STD_LOGIC_1164MALL;

use IEEE.STD_LOGIC_ARITH“ALL;

use IEEE.STD_LOGIC_UNSIGNEDMALL;

entity vadc is

generic (

width: integer :I 16;

addr: integer :I 18;

depth: integer :I 8

) 3

Port(

clk: in std_logic; —- FTth clock

adc_clk: out std_logic; —- (Tonversion (Hock (f0)

adc_sck: out std_logic; -—— Serial (Hock

adc_cs_bar: out std_logic; —— Serial Transfer Enabh?

164

24

25

26

27

28

29

30

3 1

32

33

35

36

37

38

39

40

4 1

42

43

44

45

46

47

48

49

5 1

52

53

55

56

57

59

60

6 l

62

63

64

65

66

67

68

69

70

7 1

72

73

74

75

76

77

78

79

80

8 1

82

83

84

85

adc-sdi: out std_logic; —- Serial.Data In (to AEXU

adc_sdo: in std_logic; —— Skrial Data Out (oflm0C)

adc_conv_mode: in std_logic_vector(1 dounno 0); —- f0 Ahde

adc-address: in std_logic_vector(S dounflo 0);-w— Channel.Address

adc_start-address: in std_logic_vector(addr dounno 0); —— St. Data Store

adc_end_addreas: in std_logic_vector(addr downno 0); -— End [hue Store

adc_data_ready: out std_logic; —-— Data Conversion Complete Flag

adc_data-collect: in std_logic; —— (3ontrol flag to initiate sanufling

read_control: out std_logic; —— Instruct inoduurto read data

vrite-control: out std_logic; —- Instruct nunhde to unite data

mem_op_completed: in std_logic; -— FYag if nwmuny operation conufleted

address: out std_logic_vector(addr downno 0);-——.Address to H/H’

nemory_data_vrite: out std_logic_vector(vidth-l dounflo 0) —— lVrue [hua

):

end vadc;

architecture Behavioral of vadc is

begin

state_nachine: process(clk)

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

begin

if clk’

vadc_state: integer range 0 to 7 :I 0;

count: integer range 0 to 50 :I 0;

pause-count: integer range 0 to 50000 : 0;

adc_c1k_count: integer range 0 to 350 :I 0;

adc_clk-pariod: integer range 0 to 350 :I 24;

adc_clk-high: integer range 0 to 165 :I 12;

adc_chain, adc_parallel: std_10gic_vector(31 downno 0)

:I "01001111111111111111111111111111";

current_address: std_logic-vector(addr dounflo 0);

shift_count: integer range 0 to 40 :I 0;

conversion_complete: std_logic :I ’0’;

startup-conp1ete: std_logic :I ’0’;

event and clk I ’1’ then

if adc_c1k_count > adc_c1k_high then adc-c1k (I ’1’;

else adc_clk (I ’0’;

end if;

if adc-c1k-count I adc-c1k_period then adc_c1k_count :I 0;

else adc_c1k_count :I adc_c1k_count + 1;

end if;

if count > 12 and vadc_state I 1 then adc_sck (I ’1’;

else adc_sck <= ’0’;

end if;

if pause_count < 50000 then

pause_count :I pause_count + 1;

end if;

if count I 25 or vadc_state /= 1 then count :I 0;

else count :I count + 1;

end if;

0888 vadc_state is

when 0 I> —— Idle State

read_control <- ’0’;

write_control <- ’0’;

165

86

87

88

89

9O

9 1

92

93

94

95

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

adc_cs_bar <I ’0’;

adc_sdi (I ’0’;

shift_count :I 0;

adc_data_ready (I ’0’;

conversion_conp1ete :I ’0’;

current_address :I adc_start_address;

if adc_data_c011ect I ’1’ and startup-conp1ete I ’1’ then

adc_chain :I "1011" & adc_address(0) t adc_address(3 dounno 1) &

”000000000000000000000000”;

if adc_conv_mode I '00" then —— 153600 H3 f0 w/60Ue freq. rej.

adc_c1k_high :I 162;

adc_c1k_period :I 325;

elsif adc_conv_node I ”01' then —— 2 Aflh f0

adc_c1k_high :I 12;

adc_c1k_period :I 24;

elsif adc_conv_node I "10" then —— I Aflh f0

adc_c1k_high :I 25;

adc_c1k_period :I 49;

else —— 400 kHz f0

adc_c1k_high :I 75;

adc-c1k_period :I 124;

end if;

vadc_state :I 1;

——adc-cs-bar«<= ’0’:

end if;

when 1 I) —- Shift In/Out State

if shift_count < 32 then

if count I 1 then

adc_sdi (- adc_chain(31);

elsif count I 14 then

adc_parallel :I sdo-para11e1(30 dounno 0) & adc_sdo;

elsif count I 25 then

adc_chain (31 downto 1) :I adc-chain (30 downto 0);

shift_count :I shift_count + 1;

end if;

else

pause_count :I 0;

vadc_state :I 2;

end if;

when 2 I) — Conversion Waiting Period

shift_count :I 0;

if adc_sdo I ’0’ and pause_count > 49999 then —— (Tonversnni Cbnqflete

adc_chain :I “1011” & adc_address(0) t adc_address(3 dounno 1) &

"000000000000000000000000";

if conversion_conp1ete I ’0’ then

conversion_conp1ete :I ’1’;

vadc_state :I 1;

else —- At least one conversion completed

address (I current_address;

nemory_data_vrite (- sdo_para11e1(31 dounno 16);

vrite_control (I ’1’;

vadc_state :I 3;

end if;

end if;

*when 3 I)

vrite_control (I ’0’;

current_address :I current_address + 1;

vadc_state :I 4;

\when 4 I)

if mem_0p_comp1eted I ’1’ then

address (I current_address;

memory_data_vrite (I sdo_para1191(15 dounno 0);

166

148 vrite_control (I ’1’,

149 vadc_state := 5;

150 end if;

151 when 5 I)

152 vrite_control (I ’0’;

153 current_address :I current_address + 1;

154 vadc_state :I 6;

155 when 6 I>

156 if mem_op_completed I ’1’ then

157 if current_address > adc_end_address then

158 adc_data_ready (I ’1’;

159 conversion-conplete :I ’0’;

160 vadc_state :I 0;

161 else

162 vadc_state :I 1;

163 end if;

164 end if;

165 when others I) vadc_state :I 0;

166 end case;

167

168 if startup_comp1ete I ’0’ then

169 startup_comp1ete :I ’1’;

170 end if;

171 end if;

172 end process;

173

174 end Behavioral;

C.17 Voltage DAC Multiplexer: vdac_mux.vhd

1

2 — Author: Paul R. Kucher

3 — Module Name: vdac-mu:1: — Behavioral

4 — Modified: 2007—07—15

5 —— Description: This module multiplexes the output signals to the serial

6 — interface to the LT02600 voltage digital—to—analog converters.

7 —— Two separate modules control the DACS. An all—channel bias

8 — controller and a high—speed signal generation module.

9

10 library IEEE;

11 use IEEE.STD_LOGIC_1164.ALL;

12 use IEEE.STD_LOGIC_ARITH.ALL;

13 use IEEE.STD_LOGIC_UNSIGNED.ALL;

14

15 entity vdac_nux is

16 Port(

17 module-select: in integer range 0 to 2;

18

19 sck_in: in std_logic_vector(2 downto 1);

20 sdi_in: in std_logic_vector(2 downto 1);

21 cs-bar_in: in std_logic_vector(2 downto 1);

22

23 sck_out: out std_logic;

24 sd1_out: out std_logic;

25 cs_bar-out: out std_logic

26);

27 end vdac_mux;

28

29 architecture Behavioral of vdac_mux is

167

30

31

32

33

34

35

36

37

38

39

4o

41

42

43

44

45

46

47

4s

49

50

51

52

53

C.18

O
O
Q
G
U
h
W
N
o
-
I

w
w
N
E
S
N
M
N
N
N
N
N
H
v
—
v
a
i
—
H
H
H
H
H

H
0
6
0
)

a
m
h
w
w
w
o
o
m
q
m
o
‘
e
w
n
w
o

begin

multiplexer:

begin

case nodule_select is

*when 1 I) ——

sck_out

sdi_out

cs_bar_out

‘when 2 I> ——

sck_out

sdi_out

cs_bar-out (I

Bias

process(modu1e_se1ect,

ControHer

(I sck_in(1);

(I sdi_in(1);

sck_in, sdi_in, cs_bar-in)

(I cs_bar_in(1);

Signal Generation

(I sck-in(2);

sdi_in(2);

cs-bar_in(2);

(-

when others I)

sck_out

sdi_out

cs_bar-out (I

end case;

end process;

end Behavioral;

<-

(:-

’0’;

’0’;

’1’;

Top Module: top.vhd

.Author:

Module Name:

biodified:

I)escription:

Paul R. Kucher

top —

vnpm code.

Behavioral

2007-09—13

Top module for the

is responsible for

Mixed—Signal Test Station. This module

connecting the smaller components of

library IEEE;

use IEEE.STD_LUGIC_1164~ALL;

use IEEE.STD_LDGIC_ARITHLALL;

use IEEE.STD_LOGIC_UNSIGNED.AflIfi

entity tap is

generic(

width:

addr:

depth:

);

Port(

clksrc:

seria1-c1k:

serial_in:

serial_out:

inject:

tunnel:

leds:

rxd:

txd:

digit_se1:

digit_val:

integer :I

integer :8

integer :-

out

out

in

out

out

out

in

out

out

out

16;

18;

8

std_logic; —— FPGA [Mn 79

std_logic; —— FPGM Fun BIO

std_logic; —— FPO” Ihn A9

std_logic; —— FPGA fun 813

std_logic; —— FPGA Ffin C5

std_logic; —— FPCfl fun E6

std_logic_vector (7 downto 0);

std_logic; —— FPCH Fun 773

std_logic; —— FPGH fun R13

std_logic_vector(3

std_logic_vector(G

168

dounno 0);

dounno 0);

32

33

34

35

36

37

38

39

4O

4 1

42

43

44

45

46

47

48

49

50

51

52

53

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

8O

8 1

82

83

85

86

87

89

91

92

93

ce1: out std_logic; -— FPGA Fun P7

ub1: out std_logic; —— FPGA Fun 71

1b1: out std_logic; ~— FPCM fun P6

ce2: out std_logic; —— FPGA Pin N5

ub2: out std_logic; —— FROM [fin R4

Ib2: out std_logic; —— FPGA Pin P5

oe: out std_logic; -— FPGA Pin K4

we: out std_logic; — FPGA Pin 03

mem_address: out std_logic_vector(addr-1 downto 0); —— L5 — L3

mem_data1: inout std_logic_vector(vidth-l downto 0); -— N7 — R1

mem_data2: inout std_logic_vector(vidth-l downto 0); — P2 — N1

digital_ios: inout std_logic-vector(12 downto 0); — FPGA I/O Pins

clr_bar: out std_logic; — Unmapped

cs_bar: out std_logic; —— FPGA Pin B4

sdi: out std_logic; -— FPGA Pin D10

sck: out std_logic; -— FPGA Pin .44

adc_clk: out std_logic; — FPGA Pin B6

adc_sck: out std_logic; —— FPGA Pin B7

adc_cs_bar: out std_logic; — FPGA Pin A5

adc_sdi: out std_logic; —— FPGM [fin 88

adc-sdo: in std_logic; — FPGA Pin 85

iadc_clk: out std_logic; — FPGA Pin 07

iadc_sck: out std_10gic; — FPGA Pin D6

iadc_cs_bar: out std_logic; — FPGA Pin D5

iadc_sdo: in std_logic; - FPGA Pin 06

iadc-sc1: out std_logic; — FPGA Pin D8

iadc_sda: inout std_logic; — FPGA Pin A3

digit_pot_clk: out std_logic; — FPGA Pin E7

digit_pot_sdi: out std_logic; —-- FPGA Pin D7

digit-pot_cs_bar: out std_logic; —— FPGA Pin 08

digit_pot_shdn_bar: out std_logic —— FPGA Pin C9

)3

end top;

architecture netlist of t0p is

component cllnngr is

Port(

c1kin-in: in std_logic;

c1k11_out: out std_logic;

clkin_ibufg_out: out std-logic;

clk0_out: out std_logic

);

end component ;

component digital_io is

Port(

clk: in std_logic;

digital_ios: lnout std_logic_vector(12 downto 0)

instruction: in std_logic_vector(S downto 0);

io_update: in std_logic;

io_updated: out std_logic;

output: out std_logic

);

end component;

component serial_io is

Port(

clk: in std_logic;

rxd: in std_logic;

txd: out std_logic;

txd_ready: in std_logic;

169

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

152

153

154

155

txd_complete:

rxd_complete:

para11e1_txd:

para11e1_rxd:

)3

end component ;

component ser ial _mux

Port(

module-se1ect:

txd-ready_in:

para11e1_txd_in:

txd_ready_out:

out

out

in

out

in

in

in

out

para11e1_txd_out: out

) 3

end component ;

std_logic;

std_logic;

std_logic_vector(15 dounno 0);

std_logic_vector (15 downto 0)

integer range 0 to 2;

std_logic_vector(2 downto 1);

std_logic_vector(32 downto 1);

std_logic;

std_logic_vector(16 downto 1)

component nemory_block_transfer is

generic (

width:

addr:

depth:

) 3

Port(

clk:

from_address:

to_address:

read-block:

vrite-block:

data_in:

op_completed:

txd_conplete:

txd_ready:

parallel_txd:

read_control:

vrite_control:

men-op_comp1eted:

address:

nemory_data_write:

nemory_data_read:

)3

end component ;

component nemory_i o

generic (

width:

addr:

depth:

)3

Port(

clk:

ce1:

ub1:

1b1:

ce2:

ub2:

Ib2:

oe:

ve:

mem_address:

mem_datai:

men-data2:

is

integer :I 16;

integer :I 18;

integer :I 8

in std_logic;

in std_logic_vector(addr downto 0);

in std_logic_vector(addr downto 0);

in std_logic;

in std_logic;

in std_logic_vector(15 downto 0);

out std_logic;

in std-logic

out std_logic

out std_logic_vector(16 downto 0);

out std-logic;

out std_logic;

in std_logic;

out std_logic_vector(addr downto 0);

out std_logic_vector(vidth-1 dounno 0);

in std_logic_vector(vidth-i dounmo 0)

integer :I 16;

integer :- 18;

integer :I 8

out

out

out

out

out

out

out

out

out

inout

inout

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic_vector(addr-1 dounno 0);

std_logic_vector(vidth-l downno 0);

std_logic_vector(width-i dounno 0);

170

156

157

158

159

160

161

162

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

20 1

202

203

204

205

207

208

209

210

211

212

213

214

215

216

217

read_control:

vrite-control:

mem_op_completed:

address:

nemory_data_vrite

nenory_data_read:

)3

end component ;

component nemory_nux

generic (

vidth:

addr:

depth:

)3

Port(

nodule_se1ect:

read-control_in:

vrite_control_in:

address_in:

nemory_data_vrite

read_control_out:

vrite_control_out

address_out:

nemory_data_vrite

)3

end component;

in std_logic;

in std_logic;

out std_logic;

in std_logic_vector(addr downto 0);

: in std_logic_vector(vidth-1 dounno 0);

out std_logic_vector(vidth-l dounno 0)

integer :I 16;

integer :I 18;

integer :I 8

_1n: in

: out

out

_out: out

component seven_segnent is

Port (

clk: in st d_logic;

integer range 0 to 5;

std_logic_vector(4 dounflo 0);

std_logic_vector(4 dounmo 0);

std_logic_vector(((addr+1)I6-1) donnno 0);

std_logic_vector((vidth'5)-1 dounno 0);

std_logic;

std,logic;

std_logic_vector (addr downto 0);

std_logic_vector(vidth-l downno 0)

digit_sel: out std-logic_vector(3 dounflo 0);

digit_va1: out std-logic_vector(6 dounno 0);

1ed_data: in std_logic_vector(15 downto 0)

) 3

end component ;

component program_dac

Port (

clk:

clr_bar:

cs_har:

sdi:

sck:

prOgran_dac:

dac_programmed:

dac_instruction:

) 3

end component ;

component 3 ignal -gen

generic (

width:

addr:

depth:

)3

Port(

clk:

cs_bar:

sdi:

sck:

sig_gen_enab1e:

in std_logic;

out std-logic;

out std_logic;

out std_logic;

out std_logic;

in std_logic;

out std_logic;

in std_logic_vector(27 dounno 0)

integer

integer

integer

in std_logic;

out std_logic;

out std_logic;

out std_logic;

in std_logic;

171

218

219

220

22 1

222

223

224

226

227

228

229

230

231

232

233

234

235

264

sig-gen_comp1ete:

start_address:

end_address:

read_control:

vrite_control:

mem_op_completed:

address:

nemary-data_write:

nenory-data_read:

) 3

end component;

component vdac -nur is

Port (

nodu1e_se1ect: in

sck-in: in

sdi_in: in

cs_bar_in: in

sck_out: out

sdi-out: out

cs_bar-out: out

)3

end component ;

component vadc is

generic(

width:

addr:

depth:

)3

Port(

clk:

adc_clk:

adc_sck:

adc_cs_bar:

adc_sdi:

adc_sdo:

adc_conv-node:

adc_address:

adc_start_address:

adc_end_address:

adc_data_ready:

adc-data_collect:

read_control:

vrite_control:

mem_op_completed:

address:

memory-data_vrite:

)3

end component ;

component iadc is

generic (

width:

addr:

depth:

)3

Port(

clk:

iadc_clk:

out

in

in

out

out

in

out

out

in

std_logic;

std_logic_vector(addr dounno 0);

std_logic-vector(addr downto 0);

std-logic;

std_logic;

std_logic;

std_logic_vector(addr downto 0);

std_logic_vector(vidth-1 donnno 0);

std_logic_vector(vidth-l dounno 0)

integer range 0 to 2;

std_logic_vector (2 downto 1) ;

std_logic_vector(2 dounno 1);

std_logic_vector(2 downno 1);

std_ logic;

std-logic;

std- logic

integer :I 16;

integer :I 18;

integer :I 8

in

out

out

out

out

in

in

in

in

in

out

in

out

out

out

out

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic_vector (1 downto O);

std_logic_vector(3 dounno 0);

std_logic_vector(addr dounno 0);

std_logic_vector(addr dounno 0);

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic_vector(addr dounno 0);

std_logic_vector(width-l downflo 0)

integer :I 16;

integer :- 18;

integer 3‘ 8

in

out

std_logic;

std_logic;

172

280

28 1

282

283

284

286

287

298

311

335

iadc_sck:

iadc-cs_bar:

iadc_sdo:

iadc_scl:

iadc_sda:

iadc_address:

iadc_start_address:

iadc-end_address:

iadc-data_ready:

iadc_data_collect:

read_control:

write_control:

nen_op_comp1eted:

address:

nemory_data-vrite:

)3

end component ;

component digital -pots

Port(

clk:

digit_pot-clk:

digit_pot_sdi:

digit_pot_cs_bar:

digit-pot_shdn_har:

digit_pot_nunber:

digit-pot-va1ue:

digit_pot_update:

digit_pot_updated:

)3

and component;

component injection is

Port(

)3

clk:

inject:

inject_pulse:

pulse-injected:

out

out

in

out

inout

in

in

in

out

in

out

out

in

out

out

9

18

in

out

out

out

out

in

in

in

out

injection_pulse_vidth:

and component ;

component serial_shifter is

generic(

)3

width:

addr:

depth:

Port (

clk:

serial_clk:

serial_in:

serial_out:

shift_start_flag:

shift_end_flag:

start-address:

end_address:

read_control:

vrite_control:

mem_op_completed:

address:

nemory_data_vrite:

inte

inte

inte

in

out

out

in

in

out

in

in

out

out

in

out

out

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic_vector(3 dounno 0);

std_logic-vector(addr downuo 0);

std_logic_vector(addr douuno 0);

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic_vector(addr downno 0);

std_logic_vector(vidth-1 domnno 0)

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

st

St

d_logic_vector (4 downto 1);

d_logic_vector(7 downto 1);

std_logic;

std_logic

in

out

in

out

in

ger

ger

ger

std

std

std

std

std

std

std

std

std

std

std

std

std

std-logic;

std_logic;

std_logic;

std_logic;

std_logic_vector(7 donnno 0)

:I 16;

:I 18;

:I 8

_logic;

_logic;

_logic;

_logic;

_logic;

_logic;

_logic_vect or (addr downto 0);

_logic_vector(addr downno O);

-logic;

-logic;

_logic;

_logic_vector (addr downto 0);

_logic_vector(width-1 domnno 0);

173

342 memory_data_read: in std_logic

343) 3

344 end component;

345

346 component decode is

347 generic(

348 width: integer :I 16;

349 addr: integer :I 18;

350 depth: integer :I 8

351);

352 Port(

353 clk: in std_logic;

354 serial_select: out integer range 0 to 2;

355 txd_ready: out std_logic;

356 txd-conplete: in std_logic;

357 rxd_complete: in std_logic;

358 parallel_txd: out std_logic_vector(15 downto 0);

359 parallel-rxd: in std_logic_vector(15 downto 0);

360 shitt_start-11ag: out std_logic;

361 shiit_end-11ag: in std_logic;

362 leds: out std_logic_vector(7 downto 0);

363 led_data: out std_logic_vector(15 downto 0);

364 fron_address: out std_logic_vector(addr downto 0);

365 to-address: out std_logic_vector(addr downto 0);

366 read_block: out std_logic;

367 write_block: out std_logic;

368 men-data_in: out std_logic_vector(15 downto 0);

369 xfr_0p_conpleted: in std_logic;

37o nodule_select: out integer range 0 to 5;

371 vdac_select: out integer range 0 to 2;

372 sig_gen_enable: out std_logic;

373 sig_gen_conplete: in std_logic;

374 program_dac: out std_logic ;

375 dac_programmed: in std_logic;

376 dac_instruction: out std_.logic_vector (27 downto 0);

377 adc_conv_node: out std_logic_vector(1 downto 0);

378 adc_address: out std_logic_vector (3 downto 0);

379 adc_data_ready: in std_logic;

380 adc-data-collect: out std_logic;

381 iadc_data_ready: in std_logic;

382 iadc-data_collect: out std-logic;

383 inject_pulse: out std_logic;

384 pulse_injected: in std_logic;

385 injection_pu1se_width: out std-logic_vector(7 downto 0);

386 tunnel_pulse: out std_logic;

387 io_instruction: out std_logic_vector(s downto 0);

388 io_update: out std_logic;

389 io_updated: in std_logic;

390 io_output: in std_logic;

391 digit_pot_number: out std_logic_vector(4 downto 1);

392 digit_pot_va1ue: out std_logic_vector (7 downto 1);

393 digit_pot_update: out std-logic;

394 digit_pot_updated: in std_logic

395);

396 end component;

397

398 signal parallel_txd_in: std_logic-vector(32 downto 1);

399 signal txd_ready_in: std_logic_vector (2 downto 1);

400 signal serial_select: integer range 0 to 2;

401 signal txd_ready_out, txd_conplete, rxd_complete: std_logic;

402 signal parallel_txd_out , parallel_rxd: std_logic_vector(is downto 0);

403

174

404

405

406

407

408

409

410

411

412

413

414

415

416

417

422

448

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

signal led_data: std_logic_vector(is downto 0);

signal 1ron-address , to_address: std_logic-vector(addr downto 0);

signal read_block, write_block, xfr_op_completed, nem_op-co1npleted: std_logic;

signal nem_data_in: std_logic_vector(15 downto 0);

signal nemery_data_read: std_logic_vector(uidth-i downto 0);

signal module_se1ect: integer range 0 to 5;

signal read-control_in, srite_control_in: std_logic_vector(4 downto 0);

signal address-in: std_logic_vector(((addr+1)*6-1) downto 0);

signal memory_data_srite_in: std_logic-vector((width*5)-1 downto 0);

signal read-control_out, write_control_out: std_logic;

signal address_out: std_logic_vector(addr downto 0);

signal aemory_data_srite_out: std_logic_vector(sidth-i downto 0);

signal program_dac, dac_programmed: std_logic;

signal dac_instruction: std_logic_vector (27 downto 0);

signal adc_conv_node: std_logic_vector(1 downto 0);

signal adc_address: std_logic_vector(S downto 0);

signal adc-data_ready , adc_data_collect: std_logic;

signal iadc,data-ready, iadc_data_collect: std_logic;

signal inject_pulse, pulse_injected: std_logic;

signal injection_pulse_vidth: std_logic,vector(7 downto 0);

signal io_instruction: std_logic_vector(s downto 0);

signal io_update, io_updatod, io_output: std_logic;

signal shift_start_11ag, shift-end_f1ag: std_logic;

signal digit_pot_number: std_logic_vector(4 downto 1);

signal digit_pot_va1ue: std_logic_vector (7 downto 1);

signal digit_pot_update . digit-pot_updatod: std_logic;

signal vdac_select: integer range 0 to 2;

signal vdac-sck_in, vdac-sdi-in, vdac-cs-bar_in: std,logic_vector(2 downto 1);

signal sig_gen_enable , sig_gen-complete: std_logic;

signal clkin-ibufg-out, c1k0_out: std_logic;

signal c1kfx_out. clk: std_logic;

begin

clkmanager: clkmgr port map(clksrc, clkfx_out, c1kin_ibufg_out , clk);

serial: serial_io port map(clk, rxd, txd, txd_ready_out, txd_complete,

rxd_complete, parallel_txd-out, parallel_rxd);

ser_nux: serial_nux port map(serial_select, txd_ready_in,

parallel_txd-in, txd_ready_out, parallel-txd-out);

memory_xfr: memory_block_transfer port map(clk, from_address, to_address,

read-block , write_block . mem_data_in , xfr_op-completed , txd_complete ,

txd-ready_in(2), parallel-txd_in(32 downto 17), read-control_in(1),

srite_control_in(1) , nem-op_completed ,

address_in (((addr+1)*2)-1 downto addr+1) .

nemory_data_srite_in(width-'24. downto width), nemory_data_read);

memory: nemory-io port map(clk, ce1, ub1, 1b1, ce2. ub2, Ib2, 06, we,

mem_address, mem_datal, mem_data2, read_control_out , write_control_out ,

175

466 mem_op_completed, address_out, nemory_data_vrite_out , memory_data-read);

467

468 mem_nux: nemory_mux port map(nodule_select , read_control_in, write_control_in.

469 address_in, memory_data_urite_in , read_control_out , urite_control-out ,

470 address_out, memory_data_vrite_out);

471

472 display: seven_segnent port map(clk, digit_sel, digit-va1, led_data);

473

474 v-dac: program_dacs port map(clk. c1r-bar, vdac-cs-bar-in(1), vdac_sdi_in(1),

475 vdac_sck_in (1) , program_dac , dac-programned , dac_instruction);

476

477 sig_gen: signa1_gen port map(clk, vdac_cs_bar_in(2), vdac-sdi_in (2),

478 vdac_sck_in (2) , sig_gen_enable , sig_gen_completo , fron_address ,

479 to_address , read_control_in(4) , vrite_control-in(4) , men-op_conpleted ,

480 address-in (((addr+1)*5)'1 downto (addr+1)t4) .

481 nemory_data_write_in(width95-1 downto sidthfi4), memory-data_read);

482

483 v_dac_1nux: vdac_mux port map(vdac_select , vdac_sck_in, vdac_sdi_in,

484 vdac_cs_bar_,in, sck, sdi, cs_bar);

485

486 v_adc: vadc port mw(clk, adc_clk, adc_sck, adc_cs_bar, adc_sdi, adc_sdo,

487 adc_conv_mode , adc_address , fron_address , to_address . adc-data_ready ,

488 adc-data_collect , read_control_in(2) , srite_control_in(2) .

489 mem_op_completed , address-in(((addr+1)‘3)-1 downto (addr+1)*2),

490 neuory_data-vrite_in(width93-1 downto vidtht2));

491

492 i_adc: iadc port map(clk, iadc_clk, iadc-sck, iadc-cs_bar, iadc_sdo,

493 iadc-sc1, iadc_sda, adc_address , from_address , to-addross ,

494 iadc_data_ready . iadc_data_collect , read_contr01_in (3) .

495 vrite_control_in(3) . mem_op_completed ,

496 address-in(((addr+1)*4)-1 downto (addr+1)#3).

497 memory_data_vrite-in(widtht4-1 downto vidthtS));

498

499 pots: digital_pots port map(clk, digit_pot_c1k, digit_pot_sdi ,

500 digit_pot_cs_bar , digit_pot_shdn_bar , digit_pot_nunber ,

501 digit_pot_va1ue , digit_pot_update, digit_pot_updated);

502

503 injection_control: injection port map(clk, inject, inject_pulse,

504 pulse_injected, injection_pulse_vidth);

505

506 input_output: digital_io port map(clk, digital_ios, io_instruction,

507 io_update, io_updated, io_output);

508

509 shifter: serial_shifter port map(clk, serial_clk, serial-in. serial_out,

510 shift_start_flag , shi1t_end_f1ag , from_address , to_address ,

511 read_control_in(0) , write_control_in(0) , mem_op_completed ,

512 address_in(addr downto O), nemory_data_urite_in(width-1 downto 0),

513 memory-data_read(0));

514

515 main: decode port map(clk, serial_select, txd_ready_in(1), txd_complete,

516 rxd_complete , parallel_txd_in(16 downto 1), para1161_rxd,

517 shift_start_f1ag , shift_end_flag , leds, led_data, from_address ,

518 to_address , read_block, urite_block , mem_data_in, xfr_op_completed ,

519 module_select , vdac_select , sig_gen_enable , sig_gen_complete ,

520 program_dac , dac_programmed , dac_instruction , adc_conv-mode , adc_address ,

521 adc_data_ready , adc-data_collect , iadc_data_ready , iadc_data_collect ,

522 inject_pulse , pulse_injected , injection_pulse_sidth , tunnel ,

523 io_instruction , io_update , io_updated , io-output , digit_pot_number ,

524 digit_pot_va1ue, digit_pot_update, digit_pot-updated);

525

526 end netlist;

176

C.19 Implementation Constraints File: top.ucf

1 # Implementation Constraints File

2 # Assignment of FPGA Pins

3 # Modified: 2007—09—13

4 NET ”clksrc" LDC I "T9" ;

5 NET "mem_address<0>" LDC I ”L5" ;

6 NET "mem_address<1>' LDC I "N3" ;

7 NET "mem_address<2>" LDC I ”M4" ;

8 NET ”mem_address<3>" LDC I "H3" ;

9 NET "mem_address<4>" LDC I "L4" ;

10 NET "mem_address<5>" LDC I "G4" ;

11 NET ”mem_address<6>" LDC I ”F3" ;

12 NET "mem-address<7>" LDC I "F4" ;

13 NET "mem_address<8>" LDC I "E3" ;

14 NET ”mem-address<9>" LDC I "E4" ;

15 NET "mem_address<10>" LDC I "GS” ;

16 NET "mem_address<11>" LDC I "H3" ;

17 NET 'mem_address<12>" LDC I "H4" ;

18 NET “mem_address<13>' LDC I "J4" ;

19 NET "mem_address<14>" LDC I "J3" ;

20 NET "mem_address<15>" LDC I "K3" ;

21 NET 'mem_address<16>" LDC I "K5" ;

22 NET 'mem_address<17>" LDC I “L3" ;

23 NET ”mem_data1<0>" LDC I “N?“ ;

24 NET "mem_data1<1>" LDC I ”T8" ;

25 NET "mem_data1<2>" LDC I "R6" ;

26 NET ”mem_dat81<3>" LDC I "T5" ;

27 NET ”mem_datal<4>" LDC I "R5” ;

28 NET "mem_data1<5>" LDC I "C2" ;

29 NET "mem_datai<6>" LDC I "C1" ;

30 NET ”mem_data1<7>" LDC I ”Bi" ;

31 NET ”mem_datal<8>“ LDC I ”D3" ;

32 NET ”mem_data1<9>" LDC I "P8" ;

33 NET 'mem_datai<10>“ LDC I ”F2" ;

34 NET "mem_data1<11>" LDC I "Hi" ;

35 NET ”mem_data1<12>" LDC I ”J2" ;

36 NET "mem_data1<13>" LDC I "L2" ;

37 NET "mem_datal<14>" LDC I "P1" ;

38 NET "mem_data1<15>" LDC I "R1" 3

39 NET "mem_data2<0>" LOC - "P2" ;

40 NET "mem_data2<1>" LDC I "N2" ;

41 NET "mem_dat82<2>" LOC . "M2" ;

42 NET ”mem_data2<3>” LDC I "K1” ;

43 NET "mem_data2<4>" LDC I "J1" ;

44 NET "mem_data2<5>" LDC I "G?" ;

45 NET "mem_data2<6>” LDC I "E1" ;

46 NET ”mem_data2<7>" LDC I "DI” ;

47 NET "mem_data2<8>" LDC I "D2" ;

48 NET ”mem_data2<9>" LDC I "E2" ;

49 NET "mem_data2<10>" LDC I ”Ci" ;

50 NET "mem_data2<11>" LDC I ”F5” ;

51 NET "mem_data2<12>" LDC I "C3" ;

52 NET "mem_data2<13>" LDC I "K2" ;

53 NET ”mem_data2<14>" LDC I "Hi" ;

54 NET "mem_data2<15>" LDC I “N1" ;

55 NET "ce1" LOC . "P7" ;

56 NET "ce2" LDC I "N5" ;

57 NET "1b1" LDC I "P6" ;

58 NET "Ib2" LDC I ”P5" ;

177

59

60

61

62

63

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

8 1

82

83

8
3
3

86

87

88

89

91

92

93

95

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

NET

NET

NET

NET

NET

NET

NET

NET

NET

NET

NET

NET

NET

NET

NET

NET

NET

NET

NET

NET

NET

NET

NET

NET

NET

NET

NET

NET

NET

NET

NET

NET

NET

NET

"ub1"

"ub2"

woe"

"we"

”digit_val<0>"

'digit-va1<1>"

"digit_va1<2>"

"digit_va1<3>"

”digit_va1<4>"

“digit_va1<5>"

"digit_va1<6>”

”digit_sel<0>"

"digit_sel<1>"

”digit_sel<2>"

"digit_sel<3>”

"1eds<0>"

"leds<1>"

'1eds<2>"

"leds<3>"

"leds<4)”

"leds<5>"

"leds<6>"

"leds<7>"

"txd"

'rxd'

”serial_clk"

"serial_in"

"serial_out'

"inject"

”tunnel”

”digital_ios<0>"

"digital_ios<1>"

'digital_ios<2>”

”digital_ios<3>"

fiflfifl'”digihfl-ios<4>”

NET

NET

NET

NET

NET

NET

"digital-ios<5>"

'digital-ios<6>"

"digita1-ios<7>"

"digital_ios<8>"

"digital_ios<9>”

“digital_ios<10>"

#fi$fl‘”diginfl-ios<11>”

#NET "digital_ios <12)”

NET

NET

NET

NET

NET

NET

NET

NET

NET

NET

NET

NET

NET

NET

NET

NET

NET

NET

'digit_pot_clk"

"digit_pot_sdi"

"digit_pot_cs_bar"

"digit_pot_shdn_bar"

"cs_bar'

”sck"

"sdi"

"adc_clk"

"adc-cs_bar"

"adc_sck"

"adc_sdi"

"adc_sdo"

"iadc_clk"

"iadc_cs_bar"

"iadc_sck”

"iadc_sdo"

"iadc_scl"

”iadc_sda"

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LCK7=

LDC

LDC

LDC

LDC

LDC

LDC

£1X3

LCX?

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

LDC

"T4"

"R4"

"K4"

"G3"

"N16"

"F13"

"R16"

”915"

"N15"

"613"

"£14"

"914"

"614"

”F14"

"E13"

"K12”

"P14"

"L12“

"N14"

“p13"

"N12"

"p12"

“911"

"R13”

"T13"

"B10"

.Agu

"813"

"C5 M

"£6:

”H10"

"A7"

"M7"

”A13"

”A9”

"A10"

"B14"

"A8"

"311"

"312"

"112'

”310”

6813"

"E7"

.07"

"ca"

"cg"

"B4"

"A4"

"010"

”B6"

"A5"

"B7"

"B8"

:85"

"C7"

"cs"

”D6"

"05"

"A3"

"D8"

178

APPENDIX D

MATLAB Toolbox Overview

Appendix E provides source listings for all MATLAB functions that control the test

station. Each script is documented and syntax descriptions are available in the com-

ments. Additionally, these descriptions are available in MATLAB via the help func-

tion in the form help (function name>.

These functions will only be visible in MATLAB if the toolbox has been properly

added to the directory search path. This is accomplished by adding the full directory

path in the File —> Set Path dialog or by directly using the path function. In

addition, ADC calibration data is stored in the same directory, and this path must

be set in FPGAInit .m.

The board is controlled via the instructions described in Table 4.1, and all

hardware-level communication is handled through the built-in file I/0 functions such

as fopen, fwrite, fread, and fclose. Serial objects are created with the serial

function, which requires the COM port number as its argument. Consequently, this

parameter must be modified for every installation. All other configuration options are

set through this object and are given in Section B.1. Also, MATLAB writes to the

serial port using an array of unsigned, 8-bit integers. Because the FPGA uses a 16-bit

data word internally, MATLAB must read and write two 8~bit packets sequentially

and reconstruct received data as a 16-bit unsigned integer.

179

The FPGA is initialized by calling FPGAInit. This function cannot be called

a second time unless the serial port object is released by calling fclose(s). The

initialization script runs a sanity check on the FPGA to ensure that the memory

transfer and loopback commands are working properly before initializing the test

station. Also, the working directory is changed to the location of the toolbox. All

other functions may be called following successful initialization. However, failure

may result if the FPGA is not in its idle state or if the JTAG program bit stream is

corrupted. Thus, ensuring that the FPGA has been reset prior to initialization will

prevent either the FPGA or initialization scripts from entering a locked state.

Appendix F may act as an example toolbox for chip testing. These scripts were

used in the floating gate experiments of Chapter 5. Here, SVM2Init acts as the system

initialization routine and calls both FPGAInit as well as configures all of the on—chip

biases and serial interface.

180

APPENDIX E

Test Station MATLAB Functions

E.1 FPGAInit.m

D
Q
4
Q
M
§
W
N
H

w
w
w
w
w
w
w
w
w
w
w
n
u
u
u
n
n
u
n
n
p
u
m
p
—
H
u
n
t
s
.
.
-

C
O
O
I
I
O
U
‘
u
t
h
I
-
‘
O
Q
O
I
I
O
I
O
w
a
t
-
‘
O
O
O
I
I
G
O
I
I
B
Q
N
H
O

70 This script initializes the FPGA for data acquisition. It opens the

% serial port for data transfer as well as runs some sanity checks on the.

%FPGA’s modules to ensure everything is working properly.

% Cheates serial port object ’3’ at the desired settings.

cd(’c:\Documents and Settings\Pau1 R. Kucher\Desktop\Matlab\FPGA Tools’)

eval(sprintf([’load VADCCalibrationData’])); % lflfltage ALK7(7aHbration [NHa

global s;

s I serial(’CDM2’); % Set to whatever (29M port you are using.

s.Tineout I 5;

s.InputBufferSizo I 600000; %A value greater than the maximum memory size

s.DutputBu1£erSize I 600000;

set(s,’BaudRate’,115200,’Parity’,’none’, ’StopBits’, 1);

fiopen(s);

random_nunber I round(rand(1)*1000);

FPGAWriteMemoryBlock(1,100,randon-nunber);

read_data I FPGAReadHenoryBlock(1.100);

sun-of_zeros I ann(mnn(read_data,1),2);

init_test I FPGALoopback(5);

init_test2 I FPGALoopback(0);

if init_test 'I 5 II init_test2 'I 0 ll sum_of_zeros ~- randon_number9100,

fprintf(’Sanity Check Failed! Check Setup.\n’);

else

fprlntf(’Initia1ization Successfu1!\n’);

end;

% Initialize Potentiometers

FPGASetBiasCurrent(0, 127);

for channel-1:8,

FPGASetBiasCurrent(channel, 127);

end;

% Initialize Injection Circuit

FPGASetBias (37. 2); % Injection Voltage

FPGASetBias (38, 1.5); % Threshold

181

40

41

42

43

FPGASetBias(39,

% Initialize

FPGASetBias(40,

3.3); %

Current ADC

1);

Idle

E.2 FPGALOOpback.m

O
W
Q
G
U
h
W
N
t
-
i

H
H
H
H
H
H
H
H
I
—
I
H

c
o
n
s
u
m
m
a
t
i
o
n
-
o

lflfltage

function output I FPGALoopbackC intval);

§
t
§
3
§
i
§
i
§
i
§
i
§
i

global

This function

Loopback TEst (sanity check).

it to the P7114, decodes

read.

it,

intval I uint8(intval);

fwrite (s ,

while 8 . BytesAvailable <2 ,

end;

data I

output

fread(s, 2);

I data(1,:);

E.3 FPGADigitalIO.m

c
o
c
o
q
a
s
c
n
a
u
n
u
—

N
N
N
N
U
N
N
N
H
H
V
-
‘
D
‘
H
H
H
H
H
U
H

a
m
m
e
w
u
w
o
o
m
q
o
u
b
w
u
w
o

function output I

.%

Takes

and then

is useful

the FPGA and you want to verify that

decoded properly and the

if you

instruction

Syntax: output = FPGALoopbaclc(intval)

in a value 0—255 and sends

serializes it back to Aiaflab to be

are uniting a new instruction for

the previous instruction has been

fetch / decode process is at idle.

[intval hex2dec(’00’)].’synC’);

FPGADigitalID(pin_name, direction, value)

% Syntax: output = FPGADigitalIO(pin-name. direction, value)

% Generic digital l/O control of the FPGA’s remaining 1/0 pins.

% Up to twelve channels are available

% overridden in the FPGA’s

global

if nargin < 3,

value I 0;

end;

if

elseif

elseif

elseif

elseif

elseif

elseif

elseif

elseif

elseif

elseif

elseif

elseif

end;

strcmp(pin_nane ,

strcmp(pin_name ,

strcmp(pin-name ,

strcmp(pin_name ,

strcmp(pin_name ,

strcmp(pin_name ,

strcmp(pin_nane ,

strcmp(pin_nane ,

strcmp(pin-nane ,

strcmp(pin_nane ,

strcmp(pin_name ,

strcmp(pin-nane ,

strcmp(pin_name ,

’MlO’).

1‘71),

1,171),

’113’).

1A9»),

’110’).

'314'),

’68,).

’811’),

’812’).

'412’),

’810’),

’813’).

channel

channel

channel

channel

channel

channel

channel

channel

channel

channel

channel

channel

channel

if they have not been

internal controller.

I
I
I

I

p
H
H
t
o
m
l
e
i
c
n
-
t
h
I
-
b
o

M
H
O
U
I
-
o
v
s
u
e
v
-
v
e
u
u
b
o
w
e
-
a

182

28

29

30

31

32

33

34

35

36

37

38

39

40

4 1

42

43

44

45

46

47

48

49

if strcmp(direction, ’out’).

dir_nun I 8;

elseif strcmp(direction, ’in’).

dir_nun I 0;

else

fprintf(’You must specify the direction of data flow.’);

return;

end;

instruction I bitor(dir_nu1n, bitshift(value, 2));

instruction I bitor(hex2dec(’80’), instruction);

try , fwrite (s , [channel instruction] , ’ sync ’);

catch , fwrite (s , [channel instruction], ’ sync ’);

end;

while s.BytesAvailab1e < 2,

end;

data I fread(s,2);

output I bitshift(data(2,1),8) + data(1,1);

E.4 FPGAInjectPulse.m

@
Q
N
I
O
U
‘
A
Q
N
H

0
3
6
9
0
9
6
3
0
3
Q
N
N
M
N
N
N
M
N
N
H
F
‘
F
‘
H
H
H
F
‘
H
H
H

l
b
w
N
H
O
O
Q
Q
O
i
U
w
a
H
O
O
Q
Q
G
U
‘
fi
U
N
D
-
I
O

function time I FPGAInjectPulse(width);

95 Syntax: time = FPGAInjectPulse(width)

%

% Produce a pulse of —2V to the floating—gate transistor injection pin.

% The value of 'width.’ corresponds to the time the injection pulse is set.

% in the fawn tnne = (l/50e6)t2‘(undth+4) umere 'tfine' is the return value

95 in seconds.

global s;

nax_pulse I hex2dec(’FF’);

if width > nax-pulse,

width I max_address;

elseif width < 0,

width I 0;

end;

try, fwrite(s, [width hex2dec(’60’)], ’sync’);

catch. fundte(s, [width hex2dec('60’)],’sync’);

end;

injection_width I 1/5066I2‘(width+1);

fprintf (’Injection width: 21.6f seconds.\n’, injection_width);

pause(injection_width+1/576OOI20);

while s.BytesAvailable < 2,

end;

fread (s , . BytesAvailable);

time I injection_width;

183

E.5 FPGATunnel.m

O
Q
N
G
M
J
I
U
U
H

H
H
D
—
l
b
-
I
I
-
‘
i
-
I
I
-
l

G
i
l
m
fl
w
w
i
-
‘
O

function FPGATunnel(state);

% Syntax: FTML47vnnd(state)

.%

% Fowler-Nordheim Tunneling enable/disable function. The variable ’state

% is specified as I if the tunneling voltage is desired and 0 if the 3.3V

% regulator supply is desired.

9

global s;

intval I uint8(state);

fwrlte(s, [intval hex2dec(’70’)] , ’sync’);

while a . Byteshvailable <2 ,

end;

data I fread(s, 2);

E.6 FPGASetBias.m

O
W
Q
G
U
w
a
r
-
t

M
a
c
a
w
“
“
U
M
M
N
N
N
N
N
N
N
N
H
H
H
H
H
H
H
M
H
H

G
U
I
A
C
J
N
H
O
C
D
O
q
a
’
m
‘
w
w
h
‘
o
o
m
‘
l
a
’
m
fi
w
w
fi
o

function status I FPGASetBias(channel_number , dac_value);

% Syntax: status = PIML4Seufias(channeLJuunber. dac_value);

.%

% FPGASetBias sets a specific analog DC bias to one of the motherboard's

% five on—board DAC3. The first paranuner is the channel nunflmr (1—40) and

% the second is the specific voltage that the DAC unll be set to (0 to 4.096t7.

global s;

dac-num I floor((channel_number-1)/8) + 1;

channel_num I channel_number - (dac_num - 1)I8;

supply_range I 4.098;

dacbits I 16;

if (dac_num > 0) & (dac-num < 6) & (channe1_num > 0) & (channel_num < 9)

if dac_value > supply_range

fprintf([’Given DAC value = (X1.4f) has exceeded the higher ’...

’limit of 4.098V.\nDAC Value is corrected and assigned ’...

’with maximum supply range.\n’], dac_value);

dac_value = supp1y_range;

end;

range_value I bitand(uint32((dac_va1ue/supply_range)I((2‘dacbits)-1))....

hex2dec(’FFFF’));

value-msbs I bitshift(bitand(range_va1ue, hex2dec(’FFOO’)), -8);

value-lsbs I bitand(range_value, hex2dec(’00FF’));

comm_msbs I bitor(hex2dec(’20’), dac_num);

comm_lsbs I bitor(hex2dec(’30’), channel_num-1);

try, fwwdte(s, [comm_lsbs comm_msbs value_lsbs value_msbs],’sync’);

catch, fwufite(s, [comm-lsbs comm_msbs value_lsbs value_msbs],’sync’);

end;

184

37

38

39

40

4 1

42

43

44

45

46

47

while s . BytesAvailable <2 ,

end;

fread(s,2);

status I 1;

else

fprintf([’Either DAC number (> 5) or channel number (

’ has exceeded the limits’J);

status I 0;

end;

E.7 FPGASetBiasCurrent.m

O
O
Q
G
G
‘
C
A
D
F

N
M
H
H
H
H
H
H
H
H
H

o
c
w
q
a
m
a
w
u
w
o

functkn: FPGASetBiasCurrent(channel, value);

% Syntax: FPGASetBiasCurrcnt(channel, value);

> 8)’...

%

% Bias current generator. The eight channels have a range of 0—7 (with the

% exclusion of the current ADC potentiometer. 1—8 otherwise) and have an

96 integer ’value’ from 0—127, representing the digital code of the

% potentiometer that controls the current amplitude.

global s;

value I uint8(value);

command I bitor(hex2dec(’40’). channel);

fwrite (s , [value command] , ’ sync ’);

while s . BytesAvailable <2 ,

end;

data I fread(s, 2);

output I data(1,:);

E.8 FPGAReadVoltage.m

O
W
Q
O
U
B
W
M
H

U
-
l
b
-
‘
H
H
D
-
I
H
H
H
I
-
‘
I
-
I

m
m
q
m
u
a
w
a
i
w
o

function output I FPGAReadVoltage(channel , start_address , samples , clk_mode);

95 Syntax: output 2 FPGAReadVoltage(channel, start-address .

s
s
a
a
s
n
n
s
a
s
s
s
n
n
s
s
n

samples, clk-m0de):

FPGAReadVoltage allows voltage analog—to—digital conversion via

the LTC2/18 I6—channel, 24—bit Delta—Sigma ADC. Channels are numbered

1-16 and are specified on the daughter board. The 'start-address
7

parameter sets the first address to begin storing the conversion

result in memory. The variable ’samples ' specifies the number of samples

to be taken during the experiment.

’clkJnode ’ specifies the frequency of the ABC’s conversion. clock. It

defaults to BMHZ when this optional parameter is unspecified. Other valid

rates are ’internal ’ which provides the best accuracy and a 60 H: notch

filter to help reject light pickup noise, '400kllz’ and ’IMHz’ modes are

provided as a best compromise between speed and accuracy. Accuracy

deteriorates rapidly after [MHz as detailed in the LTC2418 datasheet.

The output is a two—dimensional array that contains the channel from

which the conversion result was obtained as well as the result itself.

185

20

2 l

22

23

24

25

26

27

28

29

30

3 l

32

33

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

61

62

63

65

66

67

68

69

70

7 1

72

73

74

75

76

77

78

79

80

81

%'

96 Last modified: 2007—09—13

global s titted;

if nargin < 4,

conv_clk-mode I 1;

elseif strcmp(c1k-mode,’internal’) II 1,

conv-c1k_mode I O;

elseif strcmp(clk_node,’QOOkHz’) II 1,

conv_c1k_mods I 3;

elseif strcmp(clk_mode,’1HHz’) II 1,

conv_c1k_mode I 2;

else % 2 MHz Conversion Clock

conv-c1k-mode I 1;

end;

channel I channel - 1;

end_address I start_address + 2Isamp1es - 1;

data_total I end_address - start_address + 1;

start_address_read I start_address;

end_address_read I end-address;

max-address I hex2dec(’7FFFF’):

if start_address > end_address,

fprintf(’The ending address must be greater than the starting address!\n’);

return;

elseif (max_addrsss - end_address) < (end_address - start_address + 1),

fprintf(’The ending address is too close to the last address in RAM!\n’);

return;

elseif channel < 0 II channel > 15,

fprintf(’The specified channel number is invalid!\n’);

return;

end;

three_msbsl I bitand(bitshift(start-address,-16), 7);

three_msbs2 I bitand(bitshift(end_address,-16), 7);

msbs I bitshift(conv_clk_mode,6) + bitshift(three_msbs2,3) + three_msbs1;

96 Just set the address to allow a maximum number of bits.

start_address I uint16(hitand(start-address, 65535));

end-address I uint16(bitand(end_address, 65535));

packetil I bitand(start_address, hex2dec(’00FF’));

packet21 I bitshift(bitand(start_address, hex2dec('FF00’)), -8);

packet12 I bitand(end_address, hex2dec(’00FF’));

packet22 I bitshift(bitand(end_address, hex2dec(’FFOO’)), -8);

command I bitand(hex2dec(’3F’).bitor(hex2dec(’FO’).channel));

try, fwnfite(s, [msbs command packetil packet21 packet12 packet22],’sync’);

catch, fundte(s, [msbs command packetll packet21 packet12 packet22],’sync’);

end;

while s . BytesAvailable <2 .

end;

fread(s,2);

data I FPGAReadHemoryBlock(start_address-read, end_address_read);

186

82

83 reference I 2.501;

84 supply I 5.0209;

85

86 jIl;

87 for 1I1:2:data_tota1,

88 data_temp I bitor(bitshift(data(i).16).data(i+1));

89 channel_returned I bitor(bitand(14,data_temp),

90 bitshitt(bitand(16,data-temp),-4));

91 code I bitshift(bitand(536870848,data_temp),-6);

92 measured_voltage I (bitget(data_temp,29))*bitget(data_temp,30)*supply

93 + (1-bitget(data_temp,29))*bitget(data_temp.30) *

94 (code/(2‘23)Isupply+reference) ...

95 + (1-bitget(data_temp,30))*bitget(data_temp.29) #

96 (reference-(1-code/(2‘23))Isupply);

97 output(j,1) I channe1_returned + 1;

98 output (3' ,2) I measured_voltage; % - polyval (fitted , measured_voltage)+3e—3;

99 j I j + 1;

um end;

E.9 FPGAReadCurrent.m

functhon output I FPGAReadCurrentC channel, start_address, samples, gain);

Syntax: output = FTMLAReadCunwnt(channel, start_address, sanufles, gain);

Returns the voltage read by the L7YEM15—1 data converter when doing l—V

conversion. This function is called in FPGAEstimateCurrent, but gives

better control over the conversion procedure such as udnch addresses to

store conversion results and gain control.

c
o
n
d
e
n
s
a
t
e
.
.
.

E
fi
i
fi
i
fi
i
fi
i
fi
i
fi

gLobal s;

10

11 update I 0;

12 if nargin < 4,

13 update I O;

14 gain I 0;

15 else

16 update I 8;

17 end;

18

19 channel I channel - 1;

20

21 end_address I start-address + 2*samples - 1;

22

23 data-tota1 I end_address - start_address + 1;

24 start-address_read I start_address;

25 end_address_read I end_address;

26

27 max-address I hex2dec(’7FFFF’);

28

29 if start-address > end_address,

30 fprintf(’The ending address must be greater than the starting address!\n’);

31 return;

32 elseif (max_address - end_address) < (end_address - start_address + 1),

33 fprintf(’The ending address is too close to the last address in RAH!\n’);

34 return;

35 elseif channel < 0 ll channel > 15.

36 fprintf(’The specified channel number is invalid!\n’);

37 return;

187

38 end;

39

4o three_msbs1 I bitand(bitshift(start_address ,-16), 7);

41 three-msbs2 I bitand(bitshift(end_address ,-16), 7);

42

43 msbs I bitshift (three_msbs2 ,3) + three_msb81;

44

45 % Just set the address to allow a maximum number of bits.

46 start_address I uint16(bitand<start_address, 65535));

47 end_address I uint16(bitand(end_address, 65535));

48

49 packetli I bitand(start_address, hex2dec(’00FF’));

50 packet21 I bitshift(bitand(start_address, hex2dec(’FI-‘00’)), -8);

51

52 packet12 I bitand(end-address. hex2dec(’00FF’));

53 packet22 - bitshift< bitand(end-address, hex2dec(’FF00’)), -8);

55 command I bitand (hex2dec(’ 5F ’) . bitor (hex2dec(’ F0 ’) , channel D;

56

57 try , fwrite (s , [msbs command packet11 packet21 packet12 . . .

58 packet22 update gain] , ’ sync ’);

59 catch , fwrite (s , [msbs command packet11 packet21 packet12

60 packet22 update gain], ’ sync ’);

61 end;

62 while s.BytesAvailable <2,

63 end;

64

65 fread(s,2);

66

67 data I FPGAReadHemoryBlock(start-address-read,end_address-read);

68

69 jIl;

7o

71 for 1I1:2:data_tota1 ,

72 data_temp I bitor (bitshift (data(i) .16) ,data(i+1));

73 value I bitshift (bitand (1073741760 , data_temp) , -6);

74 output(j) I 2*5.04*va1ue/16777216-2.5;

75 j - j + 1;

76 end;

E.10 FPGAEstimateCurrent.m

1 function output I FPGAEstimateCurrent(channel, samples);

2 % Syntax: output = FPGAEstimateCurrent(channel. samples);

3 %

4 9’6 Calculate the measured current from the voltage—mode output of the

5 % current ADC circuit. The variable ”reference” should be recalibrated

6 % upon startup for accurate current measure-ment.

7

8 global s currentadcoffset;

9

10 reference I 1.0258;

11 %reference = FPGAReadCurrent(9.1.samples); % Read from

12

13 measured I mean(FPGAReadCurrent(channel, 1, samples)); % Measure current

14

15 output I (currentadcoffset - measured) / 2.195596;

16

17 fprintf (’Measured Current: 7.1.6an\n’, outputtleQ);

188

E.11 FPGAReadMemory.m

O
Q
Q
O
I
U
‘
é
Q
D
r
-
i

A
a
a
a
a
n
u
u
w
w
w
w
w
w
w
w
u
n
u
n
n
u
n
n
w
w
w
w
r
—
w
a
w
w
w
u
—

m
a
u
n
n
o
o
m
q
0
:
0
!
s
-
w
u
u
o
o
m
q
m
u
a
w
u
w
o
o
m
q
m
o
‘
A
w
w
a
-
o

function output I FPGAReadHemory(address);

96 Syntax: output = FPGAReadMemory(address)

%

% Read from the FPGA data RAM by specifying a 19—bit address 'address ' and

95 return the value as 'output ’

global s;

max_address I hex2dec(’7FFFF’);

if address > max-address, % 19—bit addresses

address I max-address;

end;

addressl I address;

address2 I address;

addresses I address2 -address1 +1;

three_msbsl I bitand(bitshift(addressi ,-16) , 7);

three_msb82 I bitand(bitshift (address2 ,-16) , 7);

msbs I bitshift(three_msbs2,3) + three_msbs1;

96 Just set the address to allow a maximum number of bits.

addressi I uint16(bitand(addressl, 65535));

addres32 I uint16(b1tand(address2, 65535));

packet11 I bitand(addressl, hex2dec(’00FF’));

packet21 I b1tshift(bitand(address1, hex2dec(’FF00’)), -8);

packet12 I bitand(address2, hex2dec(’00FF’));

packet22 I bitshift(bitand(address2, hex2dec(’FF00’)), -8);

try , fwrite (s , [msbs hex2dec (’ 10 ’) packet11 packet21 . . .

packet12 packet22] , ’ sync ’);

catch , fwrite (s , [msbs hex2dec(’ 10 ’) packet11 packet21

packet12 packet22] , ’ sync ’);

end;

while s.BytesAvailable < 2,

end;

data I fread(s,2);

output I bitshift(data(2,1),8) + data(1,1);

E.12 FPGAReadMemoryBlock.m

N
O
M
w
a
s
-
I

function output I FPGAReadHemoryBlock(addressi, address2);

70 Syntax: output = FPGAReadMemoryBlock(address} , addressi!)

%

70 Read a block of the FPGA's memory by specifying two IQ—bit addresses

% where address] <= address2. The result is stored in the array ’output '

global s;

189

10

ll

l2

l3

14

15

16

'17

18

19

20

21

22

23

24

25

26

8
8
8
3
3

31

32

:
3
8

35

36

37

38

39

40

41

42

43

45

46

47

48

49

50

51

52

53

54

max_address I hex2dec(’7FFFF’);

if addressl > max_address, %§19—bit addresses

addressl I max_address;

end;

if address2 > max_address ll address2 < addressi, %'19—bit addresses

address2 I addressl;

end;

addresses I address2-address1+1;

hytes_to-read I 2*(addresses);

three_msbs1 I b1tand(bitshift(addressI,-16), 7);

three_msh32 I hitand(bitsh11t(address2,-16), 7);

msbs I bitshift(three_msbs2,3) + three_msbs1;

96 Just set the address to allow a maximum number of bits.

address1 I uint16(bitand(address1, 65535));

address2 I uint16(bitand(address2, 65535));

packet11 I bitand(addressl, hex2dec(’00FF’));

packet21 I h1tsh11t(bitand(addressl, hex2dec(’FF00’)), -8);

packet12 I bitand(address2, hex2dec(’OOFF’));

packet22 I bitshift(hitand(address2, hex2dec(’FF00’)), -8);

try, fundte(s, [msbs hex2dec(’10’) packetll packet21

packet12 packet22],’sync’);

catch, fundte(s, [msbs hex2dec(’10’) packet11 packet21

packet12 packet22],’sync’);

end;

while s.BytesAva11able < bytes_to_read,

end;

data I fread(s,hytes_to_read);

addr_1ndex I 1;

J ' 1;

while j <- bytes_to-read,

output(addr_index) I bitshift(data(j+1,1),8) + data(j,1);

j ' 3+2:

addr_index I addr-index + 1;

end;

E.13 FPGAWriteMemory.m

o
m
q
a
m
b
w
n
—

function FPGAWriteMemory(address , value);

% Syntax: FPGA WriteMemory(address . value)

%

% TWis function alhows the value specified in ’value’ to be undtten to the

70FI’GA’5‘ on-board memory at the specified address given in ’address ’.

global s;

max_address I hex2dec(’7FFFF’);

190

10

11

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

26

28

29

31

32

33

35

36

37

38

39

40

4 1

42

43

44

45

46

47

48

49

if address > max_address, %§19—bit addresses

address I max-address;

end;

addressl I address;

address2 I address;

value I uint16(va1ue);

addresses I address2-addressl+1;

three_msbs1 I bitand(bitshift(address1,-16), 7);

three_mshs2 I hitand(bitshift(address2,-16), 7);

msbs I bitsh11t(three_msbs2,3) + three_nsbs1;

% Just set the address to allow a maximum number of bits.

address1 I uint16(b1tand(addressl, 65636));

address2 I uint16(bitand(address2, 65535));

packet11 I bitand(address1, hex2dec(’00FF’));

packet21 I bitshift(hitand(address1, hex2dec(’FF00’)), -8);

packet12 I bitand< address2, hex2dec(’00FF’));

packet22 I hitshift(hitand(address2, hex2dec(’FF00’)), -8);

packet3 I b1tand(value, hex2dec(’00FF’));

packet4 I bitshi£t(bitand(value, hex2dec(’FF00’)), -8);

try, fundte(s, [msbs hex2dec(’1F’) packet11 packet21 ...

packet12 packet22 packet3 packet4],’sync’);

catch, fundte(s, [msbs hex2dec(’1F’) packet11 packet21

packet12 packet22 packet3 packet4],’sync’);

end;

while s . BytesAvailable <2 ,

end;

data I fread(s,2);

output a bitshift(data(2,1),8) + data(1,1);

E.14 FPGAWriteMemoryBlock.m

@
O
Q
Q
U
I
A
O
D
N
H

H
H
H
H
H
H
H

O
i
u
t
h
b
-
I
O

functhon output I FPGAUriteMemoryBlock(addressl, address2, value);

% Syntax: output = FPGAWriteMemoryBlock(address]. address2. value)

9E

% Write a block of data to the FPO/1's Memory by specifying two IQ—bit addresses

% where address] <= address2, and the value to write.

global s;

max_address I hex2dec(’7FFFF’);

if address1 > max_address, 5% HL—bit addresses

address1 I max_address;

end;

if address2 > max_address ll address2 < address1, % 19—bit addresses

address2 I addressi;

191

"
m
m_
‘
‘
m
‘

17 end;

18

19 value I uint16(va1ue);

20

21 addresses I address2-address1+1;

22

23 three_mshs1 I hitand(bitshift(addressl,-16), 7);

24 three_mshs2 I bitand(b1tshift(address2,-16), 7);

26 msbs I bitshift(three-msbs2 ,3) + three_msbs1;

28 % Just set the address to allow a maximum number of bits.

29 address1 I uint16(bitand(address1, 65535));

30 address2 I uint16(bitand(address2, 65535));

32 packet11 I bitand(addressi, hex2dec(’00FI-"));

33 packet21 I hitshift(hitand(address1, hex2dec(’FFOO’)), -8);

35 packet12 I hitand(address2, hex2dec(’00Fl'-"));

36 packet22 I hitshift(hitand(address2, hex2dec(’FF00’)), -8);

38 packet?) I b1tand(value, hex2dec(’00FI-"));

39 packet4 I hitshift(b1tand(value, hex2dec(’FF00’)), -8);

4o

41 try , {write (s , [msbs hex2dec (’ 1F ’) packet11 packet21 . . .

42 packet12 packet22 packet3 packet4] , ’ sync ’);

43 catch , fwrlte (s , [msbs hex2dec(’ 1F ’) packet11 packet21 . . .

44 packet12 packet22 packet3 packet4] , ’ sync ’);

45 end;

46 while 8 . BytesAvailable <2 ,

47 end;

48

49 data I fread(s,2);

50 output I b1tsh1ft(data(2.1).8) + data(1,1);

E.15 FPGAWriteMemoryVector.m

function FPGAHriteHemoryVector(addresses , values)

% Syntax: FPGA WriteMemoryVectofladdresses. values)

’ to the addresses

in vector ’addresses ’. Note that both ’valucs’ and

% 'addresses ’ must have the same length.

’70 Write the values in the vector ’values

if length(addresses) "I length(va1ues),

O
O
Q
O
M
Q
-
W
N
H

fprintf(’Vectors "addresses” and ”va1ues” are not of equal 1ength!\n’);

10 return;

11 end;

12

13 tota1_va1ues I length(addresses);

14

15 for 1-1:tota1_values,

16 FPGAWriteMemory(addresses(i),va1ues(i))

17 end ;

E.16 FPGASerialShift.m

192

©
O
I
I
O
M
§
N
N
H

.
h

D
H

8
S

3
8

3
m

S
3

a
3

3
3

S
3

8
8

fl
8

8
K

8
S

8
8

8
m

3
8

8
2

3
S

8
8

S
3

Z
8

a
n

E
5

Z
8

B
G
E
Q
é
'
i
E
R
B
Q
S
Q
é
Q
e
Q
S
Q
é
Q
é
S
B
Q
S
Q
o
V
e
W
B
Q

function FPGASerialShift(start_address, end_address);

Syntax: FPG/lSerialSh-ift(start_address, end_address);

This function acts as a generic. variable—width, high—speed serial shift

register interface. By storing Is and Os into sequential memory addresses,

this function will instruct the FPGA to load the least—significant bit of

each memory location and put it onto the serial data line.

the start and end addresses away from the last memory location in RAM.

This is because the serial data shifted out from the chip (if present)

will be shifted back into the FPGA and stored in the subsequent memory

locations following the end address. Thus. the total amount of memory

required for this module is 2t(end_address — start_address + 1).

You may then read the appropriate memory locations to check that the

desired serial chain operation is present.

global s;

max_address I hex2dec(’ 7FFFF ’);

if start_address > end_address,

fprintf('The ending address must be greater than the starting address!\n’);

return;

elseif (mar_address - end_address) < (end_address - start_address + 1),

fprintf(’The ending address is too close to the last address in RAM!\n’);

return;

end;

three_msbsl I bitand(b1tshift(start_address ,-16), 7);

three_mshs2 I bitand(bitshift(end-address,-16). 7);

msbs I hitshift(three_msbs2 ,3) + three_msb31;

% Just set the address to allow a maximum number of bits.

start_address I uint16(bitand(start_address , 65535));

end_address I uint16(bitand(end_address, 65535));

packet11 I bitand(start_address, hex2dec(’00FF’));

packet21 I bitshift(b1tand(start_address, hex2dec(’FF00’)), -8);

packet12 I hitand(end_address, hex2dec(’00FF’));

packet22 I bitshi£t(hitand(end_address. hex2dec(’FF00’)), -8);

try, fwrite(s, [msbs hex2dec(’A0’) packet11 packet21

packet12 packet22] , ’ sync ’);

catch, fwrite(s, [msbs bex2dec(’A0’) packet11 packet21

packet12 packet22] , ’sync ’);

end;

while s.BytesAva11ab1e <2,

end;

data I fread(s,2):

E.17 FPGAFunctionGenerator.m

1

2

3

function FPGAFunctionGenerator(channel , type , frequency , gain , offset);

% Syntax: FPGAFunctionGenerato-r(channel, type , frequency, gain , offset);

%

193

Note: The ’end_address ’ cannot be positioned less than the difference between

E

3

:

a

i

I‘-

w
o
o
d
m
a
n

1 1

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

4O

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

This command sets up the waveforms necessary for function generation. The

parameters may contain the following values:

%

%

%

% channel: 1—4. 9—12. 17—20. 25—28. 33—36 are valid.

%' type: ’sine fl 'square ’ 'sauflooth ’ and ’triangle ’ are valid.

% frequency: < 5kH2 gives acceptable penfinvnance.

% gain: 0 < gain < 1

%' offset: —25 < offset < .5

global s signa1_data;

if gain > 1,

gain I 1;

elseif gain < 0;

gain I 0;

end;

if offset > 0.5,

offset I 0.5;

elseif offset < -0.5,

offset I -O.5;

end;

% Compute the number of cycles to generate desired frequency

cycles I round((frequency‘-1)/((20e-9)*21 + 160t2I20e-9))

dac_num I floor((channe1-1)/8) + 1;

channel_num I channel - (dac_num - 1)I8;

if channel-num > 6,

fprintf(’The channel number (per DAC) cannot exceed 5!\n’);

return;

end;

if strcmp(type, ’sine’),

waveform I uint16(65535*(0.5 + offset) +

65535Igaint(0.5*sin(2*pi*[1:cycles]/cyc1es)));

elseif strcmp(type, ’ square ’) ,

vaveform([1:floor(cyc1es/2)])I uint16(65535*(0.5 + offset) +

65535Igain*0.5*(ones(size([1:f100r(cycles/2)]))));

waveform([(floor(cyc1es/2)+1):cyclesl) I uint16(65535*(0.5 + offset) -

65535‘gaint0.5t(ones(size([(floor(cycles/2)+1):cycles]))));

elseif strcmp(type, ’sawtooth ’) ,

waveform I uint16(65536IgainI[1:cyclesllcycles +

0.5I65535*(1-gain) + offsett65535);

elseif strcmp(type, ’triangle ’) ,

waveform([1:floor(cycles/2)]) I

65535Igaint[1:floor(cyc1es/2)]/floor(cycles/2) +

0.5I65535*(1-gain) + 65535*offset;

waveform([(floor(cyc1es/2)+1):cycles]) I

65535Igaint[cycles-floor(cyc1es/2):-1:1]/floor(cyc1es/2) +

0.5I65535I(1-gain) + 65535Ioffset;

else

fprintf(’Invalid waveform type. Setting values to zero.\n’);

waveform I zeros(1,cyc1es);

end;

FPGAWriteMemory(dac_num, channel_num-1);

FPGAWriteMemoryVector([6-dac_num+5:5:(Stcycles+5)]. waveform);

FPGASignalGen(1,SIcycles+5);

194

{
7
1
.
1
”

1

I1‘
9

I

1"

li'.
..
'-

E.18 FPGASignalGen.m

(
D
O
I
I
G
O
I
t
h
O
U
-
I

b
e
w
w
w
w
w
w
w
w
w
w
n
w
u
w
u
n
n
n
n
w
w
w
w
w
H
u
n
-
H
u
n
—

H
o
o
m
q
m
u
n
u
u
v
—
o
o
m
q
a
u
a
w
n
w
o
o
m
«
a
m
a
t
e
u
r
-
o

function FPGASignalGen(start_address , end_address);

% Syntax: FPGASignalG’en(start_address. end-address);

.%

% This function initiates multi—channel function generation.

95 It will send the start and end addresses where the waveforms

% are stored in memory and will enable the state machine

% in the FPGA that controls continuous reading of these memory

% locations.

global s;

max_address I hex2dec(’7FFFF ’);

if start_address > end_address,

fprintf(’The ending address must be greater than the starting address!\n’);

return;

elseif (max_address - end_address) < (end_address - start-address + 1).

fprintf(’The ending address is too close to the last address in RAM!\n’);

return;

end;

three_msbs1 I bitand(bitshift(start_address ,-16). 7);

three_msbs2 I bitand(bitshift(end_address ,-16), 7);

msbs I hitshift(three-msbs2 ,3) + three-msbs1;

% Just set the address to allow a maximum number of bits.

start-address I uint16(hitand(start_address , 65535))3

end_address I uint16(hitand(end_address, 65535))3

packet11 I hitand(start-address, hex2dec(’00FF’));

packet21 I bitshift(bitand(start_address , hex2dec(’FF00’)), -8)3

packet12 I bitand(end-address, hex2dec(’00FF’));

packet22 I bitshift(hitand(end_address, hex2dec(’FF00’)), -8)3

try , fwrite (s , [msbs hex2dec (’ 90 ’) packet11 packet21

packet12 packet22] , ’ sync ’);

catch , fwrite (s , [msbs hex2dec (’ 90 ’) packet11 packet21

packet 12 packet22] , ’ sync ’);

end;

195

APPENDIX F

Floating Gate Testing Code

F.1 KeithleyInit.m

@
G
Q
O
M
‘
W
B
H

H
H
H
r
A
H
H
o
—
H

4
¢
€
8
t
h
H
O

% Setup the Ketthley 2400 SourceMeter for measurement.

% Cheates serial port object ’s2’ at the desired settings.

global s2;

:2 I seria1(’COH6’);

s2.Tineout I 5;

32.1nputBufferSize I 500000;

32.0utput8uffer8120 I 500000;

set(s2,’BaudRate’,57600,’Parity’,’none’, ’StopBits’, 1, ’Terminator’,’CR’);

fiopen(32);

fprintf(s2, ’UUTP ON’);

fprlntf(82, ’:SENS:FUNC ”CURR"’);

if s2.BytesAvailab1e > 0,

fread(s2,s2.BytesAvailable);

end;

F.2 KeithleyGetCurrent.m

c
o
m
a
a
u
a
w
u
u

H
I
-
I
I
-
I
I
—
l
-
I
H
H

a
m
h
w
n
u
o

functton output I KeithleyGetCurrent(samples);

% Syntax: output = KeithleyGetCurrenH samples)_:

%

% Return the measured current as floating point value in units of Amperes.

global 32;

for iIlzsanples,

try, fprintf(s2, ’:READ?’);

catch, fprintf(s2. ’:READ?’);

end;

while s2.BytesAvailable < 70,

end;

temp I fecanf(s2);

output(i) I str2num(temp(15:27));

196

i

i
t

“i

17 end;

F.3 KeithleySetVoltage.m

O
O
Q
G
U
Q
W
N
F
’

H 0

function output I KeithleySetVoltage(voltage)3

% Syntax: output = KeithleySetVoltage(voltage);

%

% Set the voltage of the Sourcehhder.

global 82;

try, fprlntf(s2, [’:SOUR:VOLT:LEV:IHM:AMPL ’ num2str(voltage)])3

catch, fprintf(s2, [’:SOUR:VOLT:LEV:IHM:AMPL ' num2str<voltage)])3

end;

F.4 SVM21nit.m

@
O
fl
fi
u
h
u
w
-
fi

w
w
w
n
n
u
n
w
g
n
s
n
n
u
—
i
—
u
—
u
—
n
—
u
u
u

u
n
c
o
m
q
a
a
c
n

w
n
o
o
m
q
o
u
-
b
w
n
u
-
o

3
8
8
‘
3
8

0
0
0
)

c
o
o
n

%S'VM Chip Version 2 Initialization Script

%

% Last modified: 2007—09—13

gLobal ref integvpbl intengb2 integvnb1 integvnb2 integvref integvcnp;

gLobal integrefcurrent integinvbias gannal ganna2 eeprombias cellbias;

global 1111;

global currentadcoff set;

%Input and Bias Initial lfiflues

ref I 2.0;

%ref = 2.2;

integvpbi I 2.0;

1ntegvpb2 = 1.4;

integvnbl I 1.1;

integvnb2 I 1.7;

integvref I 0.7;

%integvref = 0;

integvcmp I 1. ;

integrefcurrent I 0.65;

integinvbias I 1;

gammal I 0.6;

gamma2 I 0.2;

eeprombias I 1.5;

cellbias I 1.5;

xin I 3.3tones(1,14);

% Ififint the current state of the biases

fprlntf (’REF = Z1.4f\n’, ref)3

fprlntf (’INTEGVPBI = Z1.4f\n’, integvpbi);

fprintf (’INTEGVPB2 . 7.1.4f\n’, integvpr);

fprlntf (’INTEGVNBI = Zl.4f\n’, integvnbi)3

fprlntf(’INTEGVN82 = '/.1.4f\n’, integvnb2);

fprlntf (’INTEGVREF = 7.1.4f\n’, integvref);

fprlntf (’INTEGVCMP = Zl.4f\n’, integvcmp);

fprlntf (’INTEGREFCURRENT = Z1.4f\n’, integrefcurrent)3

fprintf (’INTEGINVBIAS = Z1.4f\n’, integinvbias)3

197

m
a
r
-
I
r
v

c.

.'

u

L

40

41

42

43

45

46

47

48

49

50

51

52

53

8
8
2

57

58

59

6l

62

63

65

66

67

68

69

70

7l

72

73

74

75

76

77

78

79

80

8 1

82

83

84

85

86

87

fprlntf (’GAMHAI = Z1.4£\n’, gamma1);

fprintf (’GAMMA2 I 7.1.4f\n’, gamma2)3

fprlntf (’EEPROMBIAS = 7.1.4f\n’, eeprombias)3

fprintf (’CELLBIAS = Z1.4f\n', cellbias);

FPGAInit;

FPGADigitalIO(’H10’, ’out’, 1); % Integrator Measure

FPGADigita1I0(’A7’, ’out’, 1); % Integrator Reset

FPGAHriteHenoryBlock(1,5000,0);

%Keithley1nit;

FPGASetBias (33 , integrefcurrent); % INTEGREI"CURHENT (Pin 14)

FPGASetBias (32 , integvcmp)3 % INTEGVCMP (Pin 13)

FPGASetBias (31 , integvref)3 % INTEGVREF (Pin .12)

FPGASetBias (30 , integvnb2); % IN'I'EGVNBZ (Pin 1 1)

FPGASetBias (29 . integvnbl); % [NTEGVNBI (Pin 10)

FPGASetBias (28 , integvpb2)3 96 IN'I'EGVPBB (Pin 9)

FPGASetBias (27 , integvpbl); 96 INTEGVPBI (Pin 8)

FPGASetBias (26 , ref); % REF (Pin 4)

FPGASetBias (18 , integinvbias); % INTEGINVBIAS (Pin 22)

FPGASetBias (17 , gannal)3 % CALHWU (Pin 23)

FPGASetBias (16 , gamma2); % GAMMA2 (Pin 24)

FPGASetBias (15 , eeprombias); % EEPROMBIAS (Pin 25)

FPGASetBias (14 , cellbias); % CELLBIAS (Pin 26)

96 Initialize Input Vectors

FPGASetBias(13, xin(1)); % Pin 27

FPGASetBias(12, xin(2)); % Pin 28

FPGASetBiasUl, xin(3))3 % Pin 29

FPGASetBias(10, xin(4)); %'F5n 30

PPGASetBias(9, xin(5)); 96 Pin 31

FPGASetBias(8. xin(6)); "a Pin 32

FPGASetBias(7, xin(7)); 95 Pin 33

FPGASetBias(6, xin(8)); % Pin 34

FPGASetBias(5. xin(9)); % Pin 35

FPGASetBias(4, xin(10))3 % Pin :36

FPGASetBias(3, xin(11)); % Pin 37

FPGASetBias(2, xin(12))3 % Pin 38

FPGASetBias(1, xin(13))3 % Pin 39

FPGASetBias(1, xin(14))3 % Pin. 40

FPGAReadCurrent(1,1,10)3

currentadcoffset I nunn(FPGAReadCurrent(9,1,20))3

FPGAReadCurrent(1,1,20)3

-F.5 SVM2$electCele

(
3
4
:
3
0
!
w
a
—

function SVM2SelectCe11(cell)

95 Syntax: SVMZSelectCelH cell)

% Select one of the internal .515 floating—gate cells.

FPGAUriteHemoryBlock(13515.0);

FPGAWriteMemory(cell,1);

VaFPGAWriteMemory(floor((cell -1)/14) + 488.1);

198

9

10

ll

FPGASerialShift(1,515)3

%FPGASermlS/zift (I .515):

pause(.s)

F.6 SVM2GetCurrent.m

Q
w
fl
fi
u
fi
w
w
fi

N
N
N
U
N
S
D
N
i
-
I
H
I
—
i
—
w
u
w
i
—
H
u

~
3
0
5
m
e

H
o
c
m
q
o
u
e
w
n
—
o

function output I SVM2GetCurrent(ce11)

Syntax: output 2 SVM2GetCurrent(cell)

Read the (mirrent front a floating-—gate cell and retain: it iii 'output’

while using the on—board current ADC.

J
§
i
§
3
§
3
§
2
§
2
§

Last modified : 2007-09—13

global eepronbias cellbias;

eepronbias I 3.3;

cellbias I 3.3;

FPGASetBias(15,00prombia3)3 % EEPRONHNHS (Fun 25)

FPGASetBias (14, cellbias); % CELLBIAS (Pin 26)

FPGAUriteHenoryBlock(1,5000,0)3

SVM2SelectCell(cell)3

pause(.s)

output I FPGAEstimateCurrent(1.20);

eepronbias I 1.5;

cellbias I 1.5;

FPGASetBias(15,eepronbias); % EERROAHHAS (Inn 25)

FPGASetBias (14 , cellbias)3 % CELLBIAS (Pin 26)

F.7 SVM2GetCurrents.m

o
m
fl
a
a
c
n
a
w
n
o
n
—

n
u
n
s
-
a
—

A
G
N
D
-
O

% Yvns script acquires floating-—gate cell currents and stores thflnl'fil the

% variable ’data’

global cellbias;

for i-1:100,

SVM2SelectCe11(i)3

cellbias I 0;

FPGASetBias(14,ce11b1as); % CELLBLdS (Phi 26)

cellbias I 3.3;

FPGASetBias(14,ce11bias); % CELLBLdS (Phi 26)

data(i) I FPGAEstimateCurrent(1,20);

%data(i) = mean(KeithleyGetCurrent (5));

end;

F.8 SVMZSetCurrent.m

199

5
3
0
T
”

‘
~

.
_
_

@
O
I
I
G
O
‘
b
G
N
t
—
i

W
W
D
N
D
N
M
D
N
N
N
N
H
H
H
u
H
H
h
-
t
—
H
O
—

w
o
o
m
q
a
m
a
w
N
p
a
o
o
m
q
a
i
o
-
a
w
u
w
o

32

33

34

35

36

37

38

39

4O

41

42

43

44

45

46

47

48

49

50

51

52

53

55

56

57

58

59

60

6 l

62

functhon injectionrate I SVM2SetCurrent(cell, value);

% Syntax: injectionrate = SVM2SetC-ur1'ent(cell, value)3

%

% Set the specifunl cell to the targeted current where ’value’ is

9'5 given in Amperes.

global eeprombias cellbias s 32;

cellbias I 0;

FPGASetBias(14,cellbias)3 % CELLBLAS (PHI 26)

cellbias I 3.3;

FPGASetBiaa(14,ce11bias)3 % CELLBDH3(I%n 26)

SVH2SelectCe11(cell)3

injnod I 0;

pulses I 0;

current I nunn(KeithleyGetCurrent(5))

if current < 700-9,

injnod I 0;

elseif current < 1000-9.

injnod I 1;

elseif current < 150e-9,

injnod I 2;

else

injnod I 4;

end;

%Determine injection pulse width modifier

injectionrate(pulses+1,1) I current;

1njectionrate(Pulses+1,2) I 0;

if current < value,

while value > current ,

if current < value - 10e-9,

pulsevidth I FPGAInjectPulse(22 - injnod);

elseif current < value - 7e-9,

pulseuidth I FPGAInjectPulse(21 - injuod);

elseif current < value - 6e-9,

pulsevidth I PPGAInjectPulse(20 injnod);

elseif current < value - 2e-9,

pulsevidth I PPGAInjectPulse(19 injuod);

elseif current < value - 1e-9,

pulsevidth I FPGAInjectPulse(18 injnod);

elseif current < value - .5e-9,

pulsevidth I FPGAInjectPulse(17 injnod);

elseif current < value - .25e-9

pulsevidth I FPGAInjectPulse(16 injmod);

else FPGAInjectPulse(15 - injmod);

end;

pulses I pulses + 1;

current I KeithleyGetCurrentCl);

injectionrate(pulses+1,1) I current;

injectionrate(pulses+1,2) I pulseuidth;

If current < 60e-9,

injmod I 0;

elseif current < 100e-9,

injnod I 1;

elseif current < 1506-9,

injnod I 2;

else

injmod I 4;

end;

end;

200

63

65

end;

fprlntf(’Programmed current in '/.i pulses: '/.1.6f nA.\n’,

pulses, currentt199)3

pause(0.5)3

F.9 SVMZSetCurrents.m

N
O
U
D
U
N
"

% Script used to equalize an array of floating gates.

value I 35e-9;

for iI3013392,

SVM2SetCurrent(i,value)3

end;

F.10 SVMZInputSweep.m

Q
Q
‘
I
G
U
I
#
W
N
H

H O

11

% Last modified: 2007—09—05

global eepronbias cellbias;

eepronbias I 3.3;

cellbias I 3.3;

ganna1 I 2;

FPGASetBias(15,0epronbias);

%FPG/lSetBias (14, cellbias);

%FPGASetBias (l7,gamma1);

SVM2SelectCell(1);

3'1:

for 1-3.3:-.01:1.75,

FPGASetBias(14,0)3

FPGASetBia8(14,3.3);

FPGASetBias(13,i)3

% EEPROMBIAS (Pm 25)

% CELLBIAS (Pm 26)

% CELLBDH;(IHn 26)

95 CELLBIAS (Pin 26)

sveepdata5(j) I nunn(KeithleyGetCurrent(5));

J-J+1:

end;

eeprombias I 1.5;

FPGASetBias(15,eeprombias)3

F.11 SVMZCurrentRampTest.m

w
m
q
m
m
a
w
w
v
—

H O

% Script to set a targeted set of currents across the array specified in

% 'i’ using the SVMBSetCurrent function. This script has also been used to

% configure other arbitrary

global a 32;

for i-91:100,

%SVM2SetCurrent(i , sin ({

waveforms on— chip.

(i)—90)/10* pi)I.56—9+60€—9).‘

SVH2SetCurrent(i,i*1e-9)3

end;

201

BIBLIOGRAPHY

202

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

BIBLIOGRAPHY

C. Mead and M. Ismail, Analog VLSI Implementation of Neural Systems, Springer,

1989.

A. H. Kramer, “Array-Based Analog Computation,” IEEE Micro, Vol. 16, No. 5,

Oct. 1996, pp. 4049.

R. Genov, G. Cauwenberghs “Charge-Mode Parallel Architecture for Matrix-

Vector Multiplication,” IEEE T. Circuits and Systems II, vol. 48 (10), pp. 930-936,

2001.

R. Sarpeshkar, C. Salthouse, J. Sit, M. W. Baker, S. M. Zhak, T. K. Lu, L.

Turicchia, and S. Balster, “An Ultra-Low-Power Programmable Analog Bionic

Ear Processor,” IEEE Transactions on Biomedical Engineering, Vol. 52, No. 4,

Apr. 2005, pp. 711-727.

J. P. Lazzaro, S. Ryckebusch, M. A. Mahowald, and C. A. Mead, “Winner-Take-

All Networks of O(N) Complexity,” Caltech Computer Science Department Tech-

nical Report, Caltech-CS—TR—21-88, 1989.

R. R. Harrison, J. A. Bragg, P. Hasler, B. A. Minch, and S. P. Deweerth, “A CMOS

Programmable Analog Memory-Cell Array Using Floating-Gate Circuits,” IEEE

Transactions on Circuits and Systems II: Analog and Digital Signal Processing,

Vol. 48, No. 1, Jan. 2001.

P. Hasler “Overview of Floating—Gate Devices, Circuits, and Systems,” IEEE

Transactions on Circuits and Systems II: Analog and Digital Signal Processing,

Vol. 48, No. 1, Jan. 2001.

T. S. Hall, C. M. Twigg, J. D. Gray, P. Hasler, D. V. Anderson, “LargeScale Field-

Programmable Analog Arrays for Analog Signal Processing,” IEEE Transactions

on Circuits and Systems I: Regular Papers, Vol. 52, No. 11, Nov. 2005.

E. Lee and PG. Gulak, “A CMOS Field Programmable Analog Array,” IEEE

Journal of Solid State Circuits, Vol. 26, No. 12, Dec. 1991, pp. 1860-1867.

[10] V. Gaudet and P. G. Gulak, “Implementation Issues for High-Bandwidth Field-

Programmable Analog Arrays,” Journal of Circuits, Systems, and Computers Spe-

cial Issue on Analog and Digital Arrays, World Scientific Publishing, Vol. 8, No.

5—6, 1998, pp. 541-558.

203

[11] M. Kucic, P. Hasler, J. Dugger, and D. V. Anderson, “Programmable and adap-

tive analog filters using arrays of floating-gate circuits,” Proc. of 2001 Conference

on Advanced Research in VLSI, Mar. 2001, pp. 148-162.

[12] LR. Carley, “Trimming Analog Circuits Using Floating-Gate Analog MOS Mem-

ory,” IEEE Journal of Solid-State Circuits, Vol. 24, No. 6, Dec. 1989, pp. 1569-

1575.

[13] Y. L. Wong, M. H. Cohen, and P. A. Abshire, “A Floating-Gate Comparator

With Automatic Offset Adaptation for 10-bit Data Conversion,” IEEE Transac-

tions on Circuits and Systems 1: Regular Papers, Vol. 52, No. 7, Jul. 2005, pp.

1316-1326.

[14] T. S. Hall, P. Hasler, D. V. Anderson, “Field-Programmable Analog Arrays: A

Floating-gate Approach,” 12th International Conference on Field Programmable

Logic and Applications. Montpellier, France. Sept. 2002.

[15] C. J. C. Burgas, “A Tutorial on Support Vector Machines for Pattern Recog-

nition,” Data Mining and Knowledge Discovery, Vol. 2, No. 2, Jun. 1998, pp.

121-167.

[16] E. Osuna, R. Freund, and F. Girosi, “Training Support Vector Machines: An Ap—

plication To Face Dectection,” Proc. Computer Vision and Pattern Recognition,

1997, pp. 130-136.

[17] A. K. Jain, Fundamentals of Digital Image Processing, Englewood, Cliffs, NJ:

Prentice-Hall, 1989.

[18] A. Ganapathiraju, J. E. Hamaker, and J. Picone, “Applications of Support Vec-

tor Machines to Speech Recognition,” IEEE Transactions on Signal Proc., Vol.

52, No. 8, Aug. 2004, pp. 2348-2355.

[19] V. Venkataramani, S. Chakrabartty, and W. Byrne, “Gini-Support Vector Ma-

chines for Segmental Minimum Bayes Risk Decoding of Continuous Speech,” Com-

puter Speech and Language, Vol. 21, No. 3, Jul. 2007, pp. 423—442.

[20] V. Wan and S. Renals, “Speaker Verication Using Sequence Discriminant Sup-

port Vector Machines,” IEEE Tmnsactions on Speech and Audio Processing, Vol.

13, No. 2, Mar. 2005, pp. 203-210.

[21] L. Wang, Support Vector Machines: Theory And Applications, Springer, 2005,

pp.370.

[22] C. E. Priebe, “Olfactory Classification via Interpoint Distance Analysis,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. 23, No. 4, Apr.

2001, pp. 404-413.

204

[23] G. Xu, W. Tian, Z. Jin, and L. Qian, “Temperature Drift Modelling and Compen-

sation for a Dynamically Tuned Gyroscope by Combining WT and SVM Method,”

Measurement Science and Technology, 18 (2007), IOP Publishing Ltd, pp. 1425-

1432.

[24] P. C. Moster, “Gear Fault Detection and Classification Using Learning Ma-

chines,” Sound and Vibration Magazine, Mar. 2004.

[25] X. Chen, R. Harrison, and Y. Zhang, “Genetic Fuzzy Fusion of SVM Classifiers

for Biomedical Data,” IEEE Congress on Evolutionary Computation, Sept. 2005,

Vol. 1, pp. 654-659.

[26] B. Boser, I. Guyon, and V. Vapnik, “A training algorithm for optimal margin

classifier,” in Proc. 5th Annu. ACM Workshop Computational Learning Theory,

1992, pp. 144-52.

[27] P. Kucher and S. Chakrabartty, “An Energy-Scalable Margin Propagation-Based

Analog VLSI Support Vector Machine,” IEEE International Symposium on Cir-

cuits and Systems, 2007, 27—30 May 2007, pp. 1289-1292.

[28] S. Chakrabartty and G. Cauwenberghs, “Sub-Microwatt Analog VLSI Support

Vector Machine for Pattern Classification and Sequence Estimation,” Adv. Neural

Information Processing Systems (NIPS’2004), Cambridge: MIT Press, 17, 2005.

[29] C. Mead, “Neuromorphic Electronic Systems,” Proceedings of the IEEE, Vol.

78, No. 10, Oct. 1990, pp. 1629-1636.

[30] A. Bandyopadhyay, P. Hasler, and D. Anderson, “A CMOS Floating-Gate Matrix

Transform Imager,” IEEE Sensors Journal, Vol. 5, No. 3, Jun. 2005, pp. 455-462.

[31] Y. L. Wong and P. A. Abshire, “A 144x144 Current-Mode Image Sensor with

Self-Adapting Mismatch Reduction,” IEEE Transactions on Circuits and Systems

I, Vol. 54, No. 8, Aug. 2007, pp. 1687-1697.

[32] W. D. Brown and J. E. Brewer, Nonvolatile Semiconductor Memory Technology,

IEEE Press, 1998.

[33] AMI Semiconductor, “Process Specification Sheet: Process Technology 0.5um,”

2003.

[34] A. Bandyopadhyay, G. J. Serrano, and P. Hasler, “Adaptive Algorithm Using

Hot-Electron Injecton for Programming Analog Computational Memory Elements

Within 0.2% of Accuracy Over 3.5 Decades,” IEEE Journal of Solid-State Circuits,

Vol. 41, No. 9, Sept. 2006, pp. 2107-2114.

205

[35] V. Srinivasan, G. J. Serrano, J. Gray, and P. Hasler, “A Precision CMOS Am-

plifier Using Floating-Gate Transistors for Offset Cancellation,” IEEE Journal of

Solid-State Circuits, Vol. 42, No. 2, Feb. 2007, pp. 280-291.

[36] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, Second Edition,

Oxford University Press, New York, 2002.

[37] S. Shah and S. Collins, “A Model for Temperature Insensitive Trimmable MOS-

FET Current Sources,” IEEE Transactions on Circuits and Systems II: Express

Briefs, 2007.

[38] F. Adil, G. Serrano, and P. Hasler, “Offset Removal Using Floating-Gate Circuits

for Mixed-Signal Systems,” Proc. IEEE Southwest Symp. Mixed-Signal Design,

Las Vegas, NV, Feb. 2003, pp. 190195.

[39] H. Spieler, “Radiation Detectors and Signal Processing - VII. Why Things Don’t

Work,” University of Heidelberg, Oct. 2001.

[40] D. L. Jones, “PCB Design Tutorial,” Rev. A, 29 Jun. 2004, pp. 17—18.

[41] Sunstone Circuits, “Material Specifications,” Online, Accessed 4 Oct. 2007.

[42] National Semiconductor Corp, “LM1086 1.5A Low Dropout Positive Regula-

tors,” D3100948, Jun. 2005.

[43] Maxim, “MAX761/MAX762: 12V/15V or Adjustable, High-Efficiency, Low Iq,

Step-Up DC-DC Converters,” 19-0201, Rev 0, Nov. 1993.

[44] Texas Instruments, Inc., “UCC27321, UCC27322, UCC37321, UCC37322 Single

9—A High Speed Low-Side MOSFET Driver with Enable,” SLUS504C, Sept. 2002.

[45] Maxim, “MAX1680/MAX1681: 125mA, Frequency-Selectable, Switched-

Capacitor Voltage Converters,” 19—1247, Rev 0, Jul. 1997.

[46] Texas Instruments, Inc., “OPA743, OPA2743, OPA4743: 12V, 7MHz, CMOS,

Rail-to-Rail I/O Operational Amplifiers,” SBOS201, May 2001.

[47] Linear Technology Corporation, “LTC2600/LTC2610/LTC2620 Octal 16—/14-

/12-Bit Rail-to—Rail DACS in l6—Lead SSOP,” 2600fa, LT/TP 1103 1K Rev A,

2003.

[48] Linear Technology Corporation, “LT1461 Micropower Precision Low Dropout

Series Voltage Reference Family,” 1461f LT/LCG 0800 4K, 1999.

[49] Linear Technology Corporation, “LTC2414/LTC2418 8-/16-Channe1 24-Bit No

Latency A2 ADCs,” 241418fa, LT1105 Rev. A, 2005.

206

i
f
“
n
e
w

[50] P. Khairolomour, G. Leung, A. Li, “Precision Programmable Current Sources

Use Digital Pots,” Electronic Design, #9944, 31 Mar. 2005.

[51] Analog Devices, Inc., “REF19x Series: Precision Micropower, Low Dropout Volt-

age References,” C00371-0—10/06(1), Rev I, 2006.

[52] Analog Devices, Inc., “AD7376: +30 V/:l:15 V Operation 128-Position Digital

Potentiometer,” Rev. B, Mar. 2007.

[53] Analog Devices, Inc., “ADG714/ADG715: CMOS, Low Voltage Serially Con-

trolled, Octal SPST Switches,” Rev. B, 2002.

[54] Texas Instruments, Inc., “TLC225x, TLC225xA Advanced LinCMOS Rail-to-

Rail Very Low-Power Operational Amplifiers,” SLOSl76D, Mar. 2001.

[55] Linear Technology Corporation, “LTC2415/LTC2415—1 24—Bit No Latency A2

ADCs with Differential Input and Differential Reference,” sn2415 sn24151fs,

LT/TP 0202 2K, 2001.

[56] Xilinx, Inc., “Spartan-3 FPGA Family: Complete Data Sheet,” D8099 (v2.2),

25 May 2007.

[57] Xilinx, Inc., “Spartan-3 Starter Kit Board User Guide,” UG130 (v1.1), 13 May

2005.

[58] Xilinx, Inc., “Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs,”

XAPP462 (v1.1), 5 Jan. 2006.

[59] Microchip Technology, Inc., “PIC18F2455/2550/4455/4550 Data Sheet,”

DS39632D, 30 Jan. 2007.

[60] Axelson, Jan, USB Complete, Third Edition, Lakeview Research LLC, pp. 28—29,

2005.

207

 u][][]][[[j[][11]]

