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ABSTRACT

ASSESSING TURBULENCE MODELS FOR SIMULATING
GAS-TURBINE ENDWALL AERODYNAMICS AND HEAT TRANSFER

By

Robert D. Draper

The fluid mechanics in gas-turbine endwalls is quite complicated with horseshoe,
passage, and corner vortices. These secondary flows adversely affect performance and
reliability of gas turbines. This is because secondary flows get their energy from the
main flow, and so is a source of aerodynamic loss. Also, they entrain higher-temperature
gas in the main flow to the airfoils and the endwalls, and this can increase surface heat
transfer. On film cooling, secondary flows can advect and lift film-cooling jets away
from surfaces that they are intended to protect. These detrimental effects can be
especially severe for low-aspect ratio, high-pressure turbines and highly loaded, low-

pressure turbines.

The objective of this research is to assess the usefulness of existing turbulence
models in predicting the complicated flow and heat transfer in the endwall region of the
first-stage stator. The following models will be evaluated: (1) the realizable k-¢ model,
(2) the shear stress transport k- model with the two-layer model in the near-wall region,
(3) Durbin’s v2-f model, (4) the Reynolds-stress model with the two-layer model in the
near-wall region, and (5) the Spalart-Allmaras model. The evaluation will be performed
in two steps. First, a grid sensitivity study will be performed. Afterwards, predictions

will be compared with experimental measurements
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KEY TO SYMBOLS

C = chord of stator vane
h = convective heat transfer coefficient
k = turbulent kinetic energy

Lt = turbulent lengthscale

Ma = Mach number

P = stator vane pitch

P, = gage back pressure (for pressure outlet boundary condition)
P = static pressure

P = total pressure

q" = heat flux

Re  =Reynolds number

s = surface distance along stator vane, measured from flow stagnation
S = span of stator vane

T, = total temperature

T,  =total back temperature (for pressure outlet boundary condition)

Tu = turbulence level
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T = wall temperature

w

U = incident upstream velocity

u = shear velocity

X,Y,Z = global coordinates defined from stagnation location

y = normal distance from the wall in Cartesian coordinates
y* = normal distance from the wall in non-dimension, inner wall coordinates
6 = boundary layer thickness

£ = turbulent dissipation rate

6 = displacement thickness

K = von Karman constant

Y7, = dynamic viscosity

v = kinematic viscosity

v, = turbulent kinematic viscosity

P = density

T = wall shear stress

w

1) = turbulence frequency
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MOTIVATION

The aspiration of this research is to gain a firm understanding of computational
fluid dynamics (CFD) and to acquire a working knowledge of the functions necessary to
proficiently use a commercial CFD package with confidence. CFD is a design tool that
has proven itself in many industries. One such field of interest is that of industrial gas
turbines. This area of research incorporates experimental mechanics and theoretical
computations. In conjunction with the well known equations of conservation, the primary
sources of closure to the systems of equations that model the highly turbulent flows

typical to this discipline are based on the results of experimental measurements.

The motivation for this study is to validate the commercially available CFD
models in moderate turbulence levels through a stator vane passage. By using the
experimental data published by Radomsky and Thole [1], [2], [3], [4] on a PRATT &
WHITNEY stator vane, a complete set of initial conditions, boundary conditions, and
flow characteristics have been compiled. This data will be used to completely analyze the
capabilities of the commercial source code FLUENT 5/6 [S]. FLUENT’s preprocessing

software, GAMBIT, will be used for all gird generation.

The mesh size for the three dimensional, near-wall model has 1.5 million cells.
All elements generated in this research have been structured, multi-block, quadrilaterals.

Of the turbulent models accessible in FLUENT 5/6, the following have been employed



for this research: realizable k-, shear stress transport k-o, Durbin's vz-f, Spalart-
Allmaras, and the Reynolds stress model. Along with the results provided by Radomsky
and Thole, these models were used to benchmark the turbulent flow capabilities of
FLUENT 5/6. Error estimation, time per iteration, and computational time required to
reach a converged solution are additional aspects of the benchmark study that have been

documented for posterity purposes.



LITERATURE SURVEY

While considerable effort has been spent analyzing rotor blades, less emphasis has
been placed on stator vane studies. Given the aggressiveness of rotor blade turning angles
and flow acceleration versus that customary to stator vanes, the somewhat less
complicated physics associated with stator vane passages may be more equipped to learn
the correlations between the flowfield and surface heat transfer effects that are typical to
turbomachinery [6]. The majority of this research is focused on the effects of heat
transfer in the endwall region of the flow passage. The experimental data supplied by
Radomsky and Thole provides a baseline for comparison of the results generated with the
turbulent models used in FLUENT 5/6. There is a complete set of boundary and
operating conditions to properly represent the characteristics of the flowfield. The vane
geometry has been supplied by Pratt & Whitney. For the purpose of this research, this

blade has been scaled up by a factor of nine.

In CFD, often the most time-consuming task is generating a quality computational
domain. Practical turnaround times for computing a solution and availability of computer
resources often limit the number of points that can be utilized in a grid. However, when
minimizing the number of cells in a given mesh, one must not sacrifice accuracy. As
such, grid points must be placed in regions where they are needed most to resolve the
geometry and flow physics, but sparsely distributed everywhere else. Unfortunately, this
non-uniform distribution can create what are referred to as poor quality cells. Poor quality

cells can induce considerable errors in the computed solutions [7]. Qin and Shih advocate



three major sources of error in CFD; inadequate modeling of unresolved physics such as
turbulence, spurious modes from discretization of partial differential equations, and errors

induced by poor quality or insufficiently fine meshes [8]].

In accordance with the first and second points discussed above, five different
models have been employed over the same numerical domain. The default coefficients, as
recommended by FLUENT 5/6 documentation [5], have been used appropriately in an
effort to minimize unnecessary differences between numerical methods of solution. Mesh
quality is the only factor mentioned by Qin and Shih that can be controlled in this
research. Such as the case, a grid sensitivity study has been performed in an effort to
generate a two-dimensional, grid independent solution. Once optimal cell placement was
thought to be attained throughout the vane passage, the final steps in the study were to
increase and decrease the grid density by a factor of two or more. The results from this
these three cases have been compared as a final indication that the two-dimensional, grid
independent solution has been found. The mesh has been swept in the spanwise direction
and provides the basis for the three-dimensional domain that has been used for the
benchmark study. The grid generation package offered by FLUENT 5/6 is GAMBIT,

which has been used for all preprocessing during this research.

GAMBIT is a robust, user friendly program that is well suited for simple
geometric domains. It offers translation for the import and export of surface and volume

meshes across many platforms, such as ANSYS, PATRAN, I-DEAS, and HyperMesh to



name a few [5]. GAMBIT utilizes a very systematic procedure for generating meshes.

The only criticism made towards the software is in a lack of mesh automation available.

As shown in Figure 1 [5], FLUENT 5/6 offers two techniques for modeling
boundary layer fluid flow: wall function and near-wall modeling. Wall functions are
typically referred to as high-Reynolds number models and approximate the boundary

layer with a log-law relationship, which does not further subdivide the boundary layer.

turbulent
core

buffer &
sublayer

Figure 1: Wall treatment approaches, wall function is shown at left and near-wall

modeling is shown at right.

Figure 1 also shows how the wall function approach can significantly reduce the
amount of elements in the model and, thus, the computation time spent in the processing
phase of the simulation. By approximating the buffer and sublayers of the boundary layer

with a log-law hip, there is no requi to place grid points inside an inner

di siay 1

wall distance of y* = 40. The variable y+ is a no onal, inner wall and

is defined in Equation 1.



Equation 1: Y =

Here, v is the kinematic viscosity of the fluid, , is the shear velocity, which is

defined in Equation 2.

T

w

Jo,

Equation 2: u, =

In Equation 2, 7, is the wall shear stress and p is the density of the fluid. In the most
simplistic case, for flow over a flat plate with no pressure gradient, the form of the shear
stress is defined by Equation 3. As shown below, U is the velocity component of the core
flow parallel to the flat plate and x is in the direction of the flow.
do
2

Equation3: Tw =p-U E

By definition, & is the momentum thickness of the boundary layer and is defined
in Equation 4. The momentum thickness is based on the fact that the boundary layer
thickness, & , is some distance normal to the wall such thatat 6 =y, ¥=.99-U . In

Figure 2 [5], the velocity profiles that make up the boundary layer for two turbulent flows

are shown.

u u
Equation 4: 6= f E 1- _(j)dy



U,
A U/U, = 2.5 In(U, y/v) + 5.45

U/U, = Uy y/y

fully
turbulent
region or

log-law
region
Upper limit depends

on Reynolds number

viscous
sublayer

o]

y+m5 y+=60 ln(Ut y/u)

Figure 2: Divisions of near-wall region in fully turbulent flow.

As described by van Driest [9], “...fully developed turbulent motion occurs only
beyond a distance sufficiently remote from the wall that the very eddies themselves are
not damped in turn by the nearness of the wall.” As such, the wall function approach is
adequate if only a broad understanding of the physics at work in the flow domain is
desired. As shown in Figure 2, the log-law relationship very closely follows the velocity
profiles outside of the viscous sublayer and buffer layer, where viscosity affect are
negligible on the core flow. Therefore, if boundary layer interactions are of interest, the

grid should meet this requirement and extend all of the way to the wall.

For situations where low-Reynolds-number effects are dominant and of interest,

near-wall modeling is used to resolve the boundary layer of the flow completely. In this



approach, the mesh extends all of the way to the wall. This method can be extremely
comprehensive and, in order to accurately represent the boundary layer, usually requires

significantly large grids.

In the wall function approach, the numerical domain is further discretized to
reduce grid resolution at the expense of solution accuracy. Since the focus of this
research is on endwall heat transfer through the vane passage, all grids have been
generated using the near-wall approach to promote accuracy of the computed shear stress
and heat transfer coefficients. When measured in local wall coordinates; in the direction
normal to the wall, the first grid point is within y* = 1 and the first ten grid points are

located within y* = 10.

Another function of the mesh is for the application of boundary and operating
conditions. Inlet, exit, symmetry conditions, as well as wall boundaries and other physical
conditions are numerically incorporated onto the domain. Figure 3 illustrates the
experimental domain used by Radomsky and Thole [1]. Figure 4 depicts the numerical
domain and the locations where boundary conditions (BCs) have been applied. As shown
below, a single vane passage has been used to represent the test section. So that proper
mesh quality and adequate grid resolution could be accomplished in modeling one vane

passage, symmetry boundary conditions have been specified as the pitchwise boundaries.



Plexiglass
wall

Shaded area shows
the layout of the
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Flow removal to
downstream of test
section

Figure 3: Schematic of experimental domain used by Radomsky and Thole.
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Figure 4: Numerical domain and boundary conditions for 3D simulati




Mesh quality is attributed by node distribution, smoothness, and skewness. Along
with proper clustering at the leading edge of the vane, smooth transitioning between cells
in the flow direction and minimizing skewness are critical aspects of quality grids.
Smoothness is a measure of change between adjacent cell volumes. Rapid changes lead to
truncation errors, which are the differences between the partial derivatives of the
governing equations and their discrete approximations [5]. Skewness is a measure of the
difference in shape between cells of similar volume and optimal quadrilateral cells have
near-orthogonal vertex angles. These mesh attributes are used to keep numerical diffusion

to a minimum, while encouraging accuracy and stability.

Numerical diffusion is a dominant source of error in multidimensional domains. It
is most noticeable in convection-dominant problems, where physical diffusion is small.
All numerical schemes contain a finite amount of numerical diffuser, which arises from
truncation errors in representing flow equations in discrete form [5]. However, proper
mesh refinement and alignment of cells to the flow direction are techniques that minimize

numerical diffusion.

In an effort to follow these previously mentioned guidelines, quadrilateral cell
shapes have been exercised in all grids created in this research. This cell shape is capable
of large aspect ratios that can reduce the number of cells necessary to sufficiently resolve
the flow domain in the streamwise and spanwise directions. Numerical diffusion,

stability, and accuracy can be further controlled by solution strategies.

10



The FLUENT 5/6 software package offers a wide variety of solver options and
solution strategies. The characteristics of the numerical method of this software are
double precision, segregated, implicit scheme that is incorporated over a pressure-based
flow solver. Second-order upwind discretization has been utilized for convection terms,
while second-order central differencing has been used for diffusion terms, and pressure
and velocity coupling has been achieved through the use of the Semi-Implicit Method for

Pressure-Linked Equations (SIMPLE) algorithm.

The Spalart-Allmaras model uses one transport equation to solve for the turbulent
viscosity, v, . It was designed specifically for aerospace applications involving wall-

bounded flows and is being used for turbomachinery applications as well. The Spalart-
Allmaras model represents a family of one-equation transport models that do not require
the calculation of the length scale related to the local shear layer thickness. As a result,
criticism has been placed on one-equation models for their inability to rapidly
accommodate changes in length scale, which may be noticed as the flow changes from
that of a wall bounded flow to free shear flow. The transport equation for the Spalart-

Allmaras model is shown in Equation 5, with S, being the source term.

Dv 14
: —L=V.|-LVy, |+S
Equation 5: Dt o v

| 4

The Spalart-Allmaras model is effectively a low-Reynolds-number model that has
been shown to provide good results for boundary layers subjected to adverse pressure

gradients of the transported variable being much smaller than those in the realizable k-€

11



and shear stress transport k- models. As described by Pope [10], an accelerating flow
produces a negative or favorable pressure gradient, while decelerating flow generates
positive or adverse pressure gradients. The adverse pressure gradient is so called because
it can lead to separation of the boundary layer from the surface, which is typically not

desirable for turbomachinery applications.

The realizable k- model is based off of the standard k-e model with the
exceptions of new formulations for the turbulent viscosity and transport equation for the
dissipation rate [5]. “The term “realizable” means that the model satisfies certain
mathematical constraints on the Reynolds stresses, consistent with the physics of
turbulent flows [5].” Thus, the realizable k-& model performs well in boundary layer
flows experiencing separation, recirculation, and strong adverse pressure gradients. Due
to the inclusion of mean rotation effects in the definition of the turbulent viscosity, the
realizable k-€ model predicts non-physical results of the turbulent quantity when both
stationary and rotating fluid zones exist in the computational domain [S]. The realizable
k-e model requires approximately twice the computational effort of the Spalart-Allmaras
model. The transport equations for the k-€ model are shown in Equation 6 and Equation

7, where k is the turbulent kinetic energy and ¢ is the turbulent dissipation rate.

PRI e 2% IS
Equation 6: Dt o,
De vy Pe g’
Equation 7: —Bt—=V- -&—-Vg +Cal7c"'—csz',‘c"
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In general, the turbulent kinetic energy, turbulent dissipation rate, and turbulent

viscosity are related by Equation 8, as described by Pope [10].

_cCpk?

&

Equation 8: Vr
The shear stress transport k- model is similar to the standard k-w model. It
effectively blends the k- model in the low-Reynolds-number region with that of the k-¢
model in the core flow. Some of the differences between the shear stress transport k-
and the standard k-o model are that the shear stress transport k- model incorporates a
damped cross-diffusion derivative in the o transport equation, and the turbulent viscosity
accounts for the transport of turbulent shear stress. The shear stress transport k- model
is similar to the realizable k-€ model in terms of computation time, as they both use two
transport equations for closure of turbulence quantities. The turbulence frequency, o, is

the ratio of k/e and its transport equation is shown in Equation 9.

b, ===V VI v +Ca,,—lz—a—)——Ca,2a)2
quation9: 1y o k

a

The Reynolds stress model uses differential transport equations to calculate the
specific Reynolds stresses, which are then used to resolve the Reynolds-averaged
momentum equations [5]. The is the most computationally intensive turbulence model
offered by FLUENT 5/6, since it closes the Reynolds-averaged Navier Stokes equations
by solving transport equations for all of the Reynolds stresses as well as an equation for

the dissipation rate. The equation for the evolution of Reynolds stresses is shown in

13



Equation 10, where the three terms inside the partial derivative are the viscous diffusion,

pressure transport, and turbulent convection respectively.

D 0 ) r" (w) (@)
. =<u.u.>+—(T.. +T. +T,. ):P..+SR. -,
Equation 10: e \"77J 0 A ki ki kij ij ij ij
The v*-f model is based on Durbin’s k-g-v> model and is similar to the standard k-
¢ model, but incorporates near-wall turbulence anisotropy and non-local pressure strain
effects. Pope [10] defines turbulence isotropy as any flow field that is statistically
homogeneous, which under translations is said to be statistically invariant. A statistically
isotropic field requires the field to be statistically invariant under rotations and reflections
of the coordinate system as well as under translations. Here, the velocity variance (v?) is
the variance of the normal velocity and is used to calculate the eddy viscosity, rather than
using the turbulent kinetic energy for determining the eddy viscosity. For this reason, VAf
model has been shown to provide improved scaling in representing the damping of the
turbulent transport close to the wall [5]. Please reference the user manual for FLUENT

5/6 [5] for a description of the transport equations used in the v?-f model.

Convergence criteria is based on the default setting in FLUENT 5/6, which
enables scaling of the residuals and requires 10 for energy and P-1 equations, with 10
for all other equations. Once this level is attained, the results are checked for constancy
between solutions from prior iterations. Although this does not substantiate convergence,

attaining such a small residual should establish a converged solution. Once the solution

14



achieves this residual state, the solution is then checked for convergence by calculating

the difference of the solution outputs between successive iterations.

When considering computational resources, the two major physical dependences
to computation time are processor speed and the amount of random access memory
(RAM) the system has access to. As a rule of thumb, a one-million node model will
require about one gigabyte of system memory. All computations for this research were
computed using FLUENT s parallel solver on a computer with dual, 2.8 MHz processors
and 2 gigabytes of random access memory (RAM) operating on Linux RedHat
Workstation 3.0. Depending on the turbulent model being solved, the time per iteration
over the three-dimensional domain ranged from about 25 seconds for the Spalart-

Allmaras model to around 3.25 minutes for the RSM.

15



OBJECTIVES

There are two objectives for this research. The first is to perform a 2D grid
sensitivity study and attain a 2D grid independent solution. The results from this will
serve as the basis for the 3D domain. Once this is complete, the experimental results of
Radomsky and Thole will be used as a baseline for performing a benchmark study
consisting of the following five turbulent models of those available in FLUENT 5/6:
realizable k-g, shear stress transport k-o, Durbin's v2-f, Spalart-Allmaras, and the

Reynolds stress model.

There are numerous turbulent models offered in FLUENT 5/6, which makes for a
diverse and interesting benchmark. The goal of the benchmark is twofold. The first

intention is to gain an understanding as to which model(s) most accurately depict the

experimental data generated by Radomsky and Thole [1], [2], [3], [4])

16



APPROACH

In order to demonstrate the turbulent modeling capabilities of the commercially
available source code in FLUENT 5/6, no other software has been used during the
preprocessing and solver phases of this research. GAMBIT has been used to complete all
grid generation. By constructing an over developed near-wall region in the mesh, a highly
resolved boundary layer will be captured for comparison to the experimental data of

Radomsky and Thole [1], [2], [3], [4].

Numerous iterations were made to the 2D domain in an effort to attain the grid
independent solution for this stator vane passage and operating and boundary conditions.
The 2D grid sensitivity study provides confidence that the mesh adequately represents the
physics at work in this flow regime. Although time consuming, this task is necessary for
providing vital information on cell placement throughout the computational domain.
Upon arriving at a mesh that provided an acceptable solution, the node densities were
both increased and decreased by a factor of at least two times that of the original grid
density. The solutions to these three different meshes were then compared against each
other on the basis of skin friction coefficient, pressure coefficient, and other flow

characteristics to verify that the grid independent solution had been reached.

In order to completely capture the physics at work in the boundary layer of the

vane passage, all meshes created for this research are based on near-wall modeling

17



techniques. When measured in local wall coordinates, the first grid point is located at y*
<1 and the first ten grid points are located within y* = 10. The 2D mesh produced during
the sensitivity study has been swept in the spanwise direction to construct the 3D domain
necessary for the benchmark study to simulate the experimental geometry used by

Radomsky and Thole [1].

Convergence criteria is based on the default setting in FLUENT 5/6, which
enables scaling of the residuals and requires 10 for energy and P-1 equations, with 10
for all other equations. Once this level is attained, the results are checked for constancy
between solutions from prior iterations. Although post processing can be accomplished in

FLUENT 5/6, Tecplot has been used for all plotting and visualization.

18



DESCRIPTION OF PROBLEM

The test section used by Radomsky and Thole [1] consists of one centralized vane

and two partial vanes, as shown in Figure 5. The Cartesian coordinate system shown

below has been utilized for all simulations. The vane has a chord length, C, of .594

meters and a span, S, of .552 meters. The pitch, P, of the vane cascade is .457 meters. As

shown below, the vertical or y-axis is aligned with the pitchwise direction and the z-axis

corresponds to the spanwise direction, with the x-axis being parallel to the inlet flow

direction.
Endwall
Active turbulence measurement
generator grid location
b=1.27 cm
Splitter plate
1 - mas :‘
—— D .
t ..
. 17.8b \
Main .‘
__.ﬂow )" Inlet :i Plelldglass
&\ measurement |) » wal
—o— location \ \\
.
‘\ Shaded area shows
— Trip wire -—n0—e :\ ths layout of the
heater
Boungda
layer Lmb \
bleed  gsb 33C | Flow removal to
1.8C downstream of test
4.6C section

Figure 5: Test section used by Radomsky and Thole.

In order to simulate the test section numerically, a velocity inlet boundary

condition was enforced at a distance of one chord length upstream of the vane leading

19



edge in a location where the velocity field is unaffected by the presence of the vane. This
provides uniform flow through the vane passage and matches the inlet Reynolds number
0f 230,000 used in the experiment. A user-defined function was used to specify the
endwall boundary layer profile on the inlet plane. A pressure outlet boundary condition
was imposed at a distance of one chord length downstream of the vane’s leading edge to
reduce numerical errors in the solution by placing the boundary location downstream of

the wake mixing region in the flow.

A constant heat flux boundary condition has been applied to the grid in a fashion
similar to that used by Radomsky and Thole [3] in the experiment with a heater on the
endwall. Since the passage is symmetric in the spanwise direction, the computational grid
was made to be only half of the physical geometry. In doing so, the mesh was able to be
clustered more closely to the endwall. All of the boundary conditions and their values are

shown in Figure 6.
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Figure 6: Boundary condition specifications on 3D numerical domain.

The vane profile is shown in Figure 7. The original coordinates are from a
PRATT & WHITNEY stator vane, which has been scaled up by a factor of nine for this
work. Experimental results have been measured at nine different locations along the vane
profile, as presented by Radomsky and Thole [4] and shown below in Figure 8. Here, the
variable s/C is the ratio of distance around the vane profile measured from the stagnation

location and divided by the chord length.
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Figure 7: Vane geometry, shown in meters.

‘Pressure Surface Suction Surface
Name | Location Name| Location
S s/C=0.00 S1 |s/C=0.21
P1 |s/C=-.15 S2 0.5
P2 -0.3 S3 0.75
P3 -0.45 S4 0.1
P4 06 | S5 1.2

Figure 8: Vane locations of experimental measurements.
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DESCRIPTION OF NUMERICAL METHOD OF SOLUTION

The first step to generating a structured, three-dimensional grid is to construct a
structured, two-dimensional mesh that can then be swept in the out of plane direction.
This mesh consists of a near wall modeling approach and adheres to the guidelines set
forth by Shih [11], with the first 10 grid points being located at the local wall distances
indicated in Table 1. In order to fully capture the boundary layer effects through the vane
passage, much effort has spent in generating an over developed near-wall region. This is
why the first ten grid points are very close to the wall and an aspect ratio near unity has

been employed through this region to facilitate constant spacing.

Cell Location v v+

Wall 0.000E+00 0.000
1 7.616E-06 0.975

2 8.062E-06 1.032

3 8.062E-06 1.033

4 8.944E-06 1.146

5 8.944E -06 1.147

6 9.849E-06 1.264

7 9.849E-06 1.265

8 1.030E-05 1.323

9 1.118E-05 1.437
10 1.118E-05 1.438
11 1.253E-05 1.613

Table 1: Vane local wall coordinates.
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Figure 9 shows the two-dimensional mesh that provides the baseline geometry for
the three-dimensional domain. This mesh was produced during the grid sensitivity study

and has 50,396 elements.
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Figure 9: Two-dimensional mesh, swept in spanwise direction to create three-

dimensional numerical domain.

Much effort was put forth in adhering to the aforementioned grid quality
measures. Cell location and aspect ratio have all been optimized by hand in an iterative
process that took nearly eighty attempts to achieve the grid shown. This grid has been
created using a multi-block approach, as evident in Figure 10 and Figure 11. The multi-

block technique allows for relatively smooth transitions in regions where the flow is
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expected to turn about the vane profile. Quadrilateral element shape allows for stretching
of the cells in the flow direction, while at the same time allowing for near orthogonal

intersections between adjacent cells.

Figure 10: Leading edge region of two-dimensional mesh, swept in spanwise direction to

create three-dimensional numerical domain.
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Figure 11: Trailing edge region of two-dimensional mesh, swept in spanwise direction to

create three-dimensional numerical domain.

For the purposes of the grid sensitivity study, the two-dimensional mesh shown
above has been increased and decreased in node density by at least a factor of two.
Decreasing the mesh density by a factor of two created a grid that consisted of 22,060
elements. This mesh is shown in the top row of Figure 12, with the original mesh shown
in the middle row for comparison. While keeping the near-wall region similar to that of
the initial mesh, the majority of the cells have been removed by transitioning from the
buffer layer to the inner and outer layers by increasing the aspect ratio much more

aggressively.
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The bottom row of Figure 12 depicts the mesh where the node density has
increased by a factor of nearly four times that of the original two-dimensional domain.
This mesh consists of 200,544 elements. This mesh transitions from adjacent multi-block
regions very smoothly, with good orthogonal qualities, minimal skewness, and is an

overall high quality mesh.
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Figure 12: Mesh comparison of two-dimensional grid sensitivity cases.
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The two-dimensional mesh shown in Figure 9, Figure 10, and Figure 11 has been

swept in the spanwise direction to produce the full, three-dimensional mesh shown in

Figure 13. For the three-di ional simulati asy y boundary condition has
been enforced at the midspan location of the vane geometry so that only half of the
experimental domain needed be simulated. This grid is comprised of 1,511,880 elements,

with 30 cells in the spanwise direction.
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Figure 13: Numerical domain for all th n:
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The three dimensional mesh utilizes the two dimensional grid at the endwall and
at each consecutive spanwise node location from the endwall. The first spanwise location
in the enhanced wall function grid is at an inner wall distance of y+ = 0.868 from the
endwall. The fifth point is at an inner wall distance of y+ = 4.135. Table 2 shows the
inner wall distance versus node number for the three-dimensional, near-wall modeled

grid.

Cell Locaton v v+
Wall 0.000E+00 0.000
7.113E-06 0.868
1.369E-05 1.670
2.080E-05 2.539
2.759E-05 3.370
3.384E-05 4,135
4.096E-05 5.006
4.861E-05 5.944
5.551E-05 6.791
6.262E-05 7.664
6.909E-05 8.458
7.620E-05 9.334

—
Zloe ol o unlslw]o|—

Table 2: Endwall local wall coordinates.

All two-dimensional and three-dimensional simulations have been performed
using the double precision, segregated solver in FLUEN 5/6. The Semi-Implicit Method
for Pressure-Linked Equations (SIMPLE) algorithm has been used in the FLUENT 5/6
pressure-based flow solver for pressure and velocity coupling [5]. Second-order upwind

discretization has been used for convection terms and second-order central differencing
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has been used for diffusion terms. Under-relaxation parameters have been left at their
default settings unless otherwise stated. Convergence criteria are set as the defaults
supplied by FLUENT 5/6, with the energy and P-1 equations requiring 10 and all other

equations demanding a magnitude of 10 on the scaled residual.
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RESULTS

In total, eight different results will be discussed in the following section. Table 3
shows the file name and turbulent model associated with it. The FLUENT files have been
saved at different points along the solution process, so only the name of the converged

solution is referenced in Table 3.

Nﬁ;“;r Mesh File (.msh) FLUENT Files (.cas, .dat) Turbulence Model
1 VTvane92_2D VTvane92_ralizable_2D_27657 Spalart-Alimaras
2 VTvane92 Halfx 2D| VTvane92_Halfx_2D_25955 Realizable k-¢
3 VTvane92_2x_2D VTvane92_2x_2D_73020 Realizable k-¢
4 VTvane92_3D VTvane92_rea_16243 Realizable k-€
5 VTvane92_3D VTvane92_rsm_19892 Reynold's Stress Model
6 VTvane92_3D VTvane92_sa_29442 Spalart-Alimaras
7 VTvane82_3D VTvane92_3D_sst_26527 | Shear Stress Transport k-w
8 VTvane92_3D VTvane92_3D_v2f_ 15060 Durbin's V2-f

Table 3: Case number and file name of each simulation.

Cases 1-3 have been performed in support of the two-dimensional, grid sensitivity
study. Case 1 refers to the mesh consisting of 50,396 elements referred to in the previous
section, with Case 2 being comprised of 22,060 cells, and Case 3 having 200,544
elements. Cases 4-8 constitute the results for benchmarking and comparison to the
experimental data of Radomsky and Thole. All of these cases make use of three-

dimensional grid containing 1,511,880 elements.
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Case 1 was unexpectedly solved with the Spalart-Allmaras turbulent model, so
unfortunately a direct comparison can not be made between it and Cases 2 and 3. Figure
14 shows the un-scaled residual versus iteration number for Case 1. Here, convergence is
reached for all quantities and this plot shows how each variable reduces by at least three

orders of magnitude throughout the iteration process.
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Figure 14: Residual plot for Case 1.
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Figure 15 shows the un-scaled residual versus iteration number for Case 2, which
was solved with the realizable k- turbulent model. Again, convergence is reached for all

quantities and each variable reduces by at least three orders of magnitude throughout the

iteration process.
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Figure 15: Residual plot for Case 2.

Figure 16 is a plot of the un-scaled residual versus iteration number for Case 3.

This case was solved with the realizable k-¢ turbulent model. It can be seen that just after
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35,000 iterations the under-relaxation parameters were adjusted to minimize the
oscillations seen in the solution. After making this adjustment, the iteration process

behaved as expected and it took just under 40,000 iterations to attain a converged

solution.
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Figure 16: Residual plot for Case 3.

Comparison of Cases 1-3 are shown in the following figures. Here, s/C
corresponds to vane locations, with zero indicating the location of stagnation on the vane

surface. Decreasing negative values indicate moving along the pressure side of the vane
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profile in the direction from the leading edge toward the trailing edge. Increasing positive
values represent moving along the suction side of the vane in the direction from the

leading edge toward the trailing edge, as shown in Figure 8.

Figure 17 is a plot of wall shear stress (units of Pascal) versus non-dimensional
vane location. This plot clearly indicates that all cases are in very good agreement until
the flow starts to separate at a vane location of s/C = .7, which is near measurement
location S3 in Figure 8. After this point, Case 1 and Case 2 remain in good agreement
through the rest of the vane passage. A similar trend is noticed in Figure 18, which is a

plot of turbulent kinetic energy versus non-dimensional vane location.
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Figure 17: Plot of wall shear versus vane location for Cases 1, 2, and 3.
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Figure 18: Plot of turbulent kinetic energy versus vane location for Cases 1, 2, and 3.

Contour plots of Mach number and static pressure are shown in the following two
figures. Both
Figure 19 and Figure 20 are consistent with the previous two plots in that Case 3 is far
superior in predicting the wake region of the flow. This should be expected, since the

mesh density is vastly greater than both Case 1 and Case 2.
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Figure 19: Contour plots of Mach number for Case 1 (top), Case 2 (middle), and Case 3
(bottom).
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Figure 20: Contour plots of static pressure (gage) for Case 1 (top), Case 2 (middle), and

Case 3 (bottom).
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The plots of un-scaled residuals, wall effects in the boundary layer, and contour
plots of the free stream all indicate that a converged solution has been attained and that a
two-dimensional grid independent solution has been found through the majority of the
vane passage. If computational expense was not an issue, the mesh from Case 3 would
provide the best baseline for comparison of results throughout the vane passage.
However, the results on the vane surface and through the passage in regions that are not
affected by the separation zone (s/C <.7) are in very good agreement for all three cases.
Thus, for the three-dimensional domain a compromise has been made on the mesh quality
and the mesh documented in Case 1 will provide the most effective baseline for sweeping
in the spanwise direction. This mesh, while not the highest quality for resolving the
separation region when compared to Case 3, will provide adequate resolution of the
boundary layer and core flow through the majority of the vane passage and will reduce

computational resources for computing over the three-dimensional domain.

For comparison with the experimental results, Cases 4-8 are presented below.
Case 4 was solved with the realizable k-¢ turbulence model and the residual plot is shown
in Figure 21. Based on the convergence criteria set forth by FLUENT 5/6, it reached a
converged solution. Based on the un-scaled plot shown below, all quantities have

decreased by more than four orders of magnitude.
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Figure 21: Residual plot for Case 4.

Case 5 was solved with the Reynolds stress model and its un-scaled residual plot
is located in Figure 22. This case presented some issues with attaining a converged
solution, which ultimately lead to requiring that it be initiated from the results of Case 4.
Although convergence was not attained on the basis of scaled residual, Case 5 was able to

reduce in magnitude by nearly two orders of magnitude.
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Figure 22: Residual plot for Case 5.

Case 6 was solved using the Spalart-Allmaras turbulence model. This case had no
issues during the solution process and was able to attain a converged solution, based on

the scaled residual criteria. The led residual plot is shown in Figure 23.
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Figure 23: Residual plot for Case 6.

Case 7 was solved with the shear stress transport k- turbulence model. Minor
adjustments were made to the under-relaxation parameters in order to attain a converged

solution, with the un-scaled residual plot shown in Figure 24.
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Figure 24: Residual plot for Case 7.

Case 8 was solved with Durbin’s v>-f turbulence model. Due to convergence

issues, this case was also initiated from the converged solution of Case 5. After initiating

from Case 5, three adjustments were made to the under-relaxation parameters, as shown

in Figure 25. Based on scaled residual criteria, a converged solution was not attained for

Case 8. The un-scaled residual shown below did decrease by almost two orders of

magnitude before reaching an asymptotic state in the solution process.
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Figure 25: Residual plot for Case 8.

The following figures present the comparison of endwall heat transfer results
between the experimental data and Cases 4-8, in units of W/m2-K. For these plots, the
recorded endwall heat transfer results were measured with an infra-red camera, as

described by Radomsky and Thole [3]. Due to the spatial averaging produced in the infra-
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red camera measurements, the exact proximity of the recorded data to the endwall is not
known. Thus, CFD results at multiple inner wall coordinates have been compared to the

experimental measurements taken on the endwall of the vane by the infra-red camera.

The results for y+ = 1 are shown in Figure 26. Although the magnitudes are not in
agreement, the trends appear to be following with the experimental data until the grid
resolution is no longer adequate in resolving the separation region located in s/C > .75 on
the suction side of the vane. Based on the difference between the peak magnitudes of
experimental and CFD results, the spectral averaging does not agree well this close to the

endwall.
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Figure 26: Endwall heat transfer results in local y-coordinates for y+ = 1 in the numerical

domain.

The CFD data trends shown in Figure 27 are for y+ = 5. Here, all of the cases
appear to show increasing heat transfer with increasing at s/C = -.3, but there is no real

correlation that can be made between the cases and experimental data.
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Figure 27: Endwall heat transfer results in local y-coordinates for y+ = 5 in the numerical

domain.

Figure 28 has data at y+ = 10. At this location to the endwall, it appears that all
cases expect for the Case 8 (v>-f model) are over predicting the heat transfer coefficient
by more than 15% in the vicinity of s/C = .2 on the vanes suction side. Conversely, all
cases show increasing heat transfer in the region of separation (s/C > .7). In this region,
the more than 40% difference in heat transfer coefficient between experimental data and

simulations can be attributed to lack of grid resolution.
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Figure 28: Endwall heat transfer results in local y-coordinates for y+ = 10 in the

numerical domain.

Figure 29 shows the CFD data at y+ =20. Again, all cases except for Case 8 are
showing extreme over prediction of heat transfer in the vicinity of s/C = .2 on the vane.
For Case 8, there is good correlation to the experimental data up to s/C = .1, at which the
v2-f model starts to over predict the heat transfer coefficient by as much as 11%, with the
peak value being shifted downstream by roughly .25 in non-dimensional vane length.
Again, all cases predict increased heat transfer coefficient in the separated region as the

data moves farther away from the endwall.
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Figure 29: Endwall heat transfer results in local y-coordinates for y+ = 20 in the

numerical domain.

Based on these results, the v>-f model appears to be the best turbulence model of
those compared for predicting heat transfer through this vane passage. It is postulated that
the spectral averaging of the infra-red camera measurement has in a sense smoothed out
the experimental data, which is why the CFD predictions are so much more dramatic in
change. However, when comparing the case that best fits the CFD results to the
experimental measurements, the v>-f model is predicting within 11% peak difference
through the majority of the vane passage. Had the grid resolution been better in the region

of separation, this may have been seen throughout the entire passage.
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In comparing the turbulent models to each other, it is obvious that the v>-f model
was best equipped for predicting the heat transfer in the endwall region of this passage.
However, if turnaround time is more important than accuracy, it may be more effective to

use a turbulence model with fewer transport equations to establish a rough idea of what

the aerodynamics and heat transfer look like in the given geometry. Table 4 lists all of

the cases ran and breaks down the solution times.

Iterations Time per Time to
Case |pnomain|  Turbulence Model  |Numberofl  to | eration |COnverged
Number Elements Convet:ged (seconds) Solution
Solution (days)
1 2D Spalart-Alimaras 50,396 27,857 1 0.3
2 2D Realizable k-¢ 22,060 25,955 1 0.3
3 2D Realizable k-£ 200,544 | 40,520 5 23
4 3D Realizable k-€ 1,611,880 16,243 55 10.3
5 3D Reynold's Stress Mode!l ]1,511,880| 19,892 195 449
6 3D Spalart-Alimaras 1,511,880] 29,442 25 8.5
7 3D | Shear Stress Transport k-w|1,511,880| 26,527 60 18.4
8 3D Durbin's V2-f 1,511,880 11,060 150 19.2

Table 4: Computational information for Cases 1-8.

Even though the Spalart-Allmaras model requires half of the time per iteration

when compared to the realizable k-€ model, it took nearly twice as many iterations to

converge. That being said, the realizable k-€ model was probably the most stable of the

turbulence models used in this study. In the three-dimensional domain, it required the

fewest number of iterations to reach a converged solution based on scaled residual

criteria and required minimal, if any, adjustments to the under-relaxation factors. The

Reynolds stress model and the v?-f model were both very unstable during the early
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iterations and required initialization from a converged solution in order to reach

convergence.

In closing, this project has been very fulfilling. The grid independence study
provided critical learning skills required for quality mesh generation. Performing the
simulations over the same numerical domain with five different turbulence models has
supplied a broad sense of the physics at work in this vane passage as well as expanded

my knowledge base in the field of turbulence.
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