. fins? : r. t Evin."- fl... xHe-ifl“ I314... :to 1‘3}... I. .199 1.. sit-I... ti ‘lutti; I .. Juv. i3£fi§62uniKi fill .11.. .16).. 3.129? IS‘!.£Q¢8¢ 5!)! 1'! .1.) (:31): 5.15.5.1... .3... _¢i'-x-ld +0 v.1 a “15515 LIBRARY 2 Michigan State 200% University This is to certify that the thesis entitled DEVELOPMENT OF AN ANAEROBIC TREATMENT SCREENING PROTOCOL FOR FRUIT AND VEGETABLE PROCESSING WASTEWATER presented by ERIN HENDERSON SZCZEGIELNIAK has been accepted towards fulfillment of the requirements for the Master of degree in Biosystems and Agricultural Science Engineering 3 ELM (Q Aer' Major Profdisor’s Signature Z/l *1/20 6' Y Date MSU is an affirmative-action, equal-opportunity employer PLACE IN RETURN BOX to remove this checkout from your record. To AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. DATE DUE DATE DUE DATE DUE 6/07 p:/CIRC/DateDue.indd-p.1 DEVELOPMENT OF AN ANAEROBIC TREATMENT SCREENING PROTOCOL FOR FRUIT AND VEGETABLE PROCESSING WASTEWATER By Erin Henderson Szczegielniak A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Biosystems and Agricultural Engineering 2008 ABSTRACT DEVELOPMENT OF AN ANAEROBIC TREATMENT SCREENING PROTOCOL FOR FRUIT AND VEGETABLE PROCESSING WASTEWATER By Erin Henderson Szczegielniak Fruit and vegetable processors commonly produce large volumes of high strength wastewater that may be inadequately treated by land application. Anaerobic digestion reduces or eliminates the need for soil treatment and produces biogas which has the potential to provide the processor with a renewable energy resource. A novel screening protocol was developed to help food processors determine the economic feasibility of instituting an anaerobic digester. The protocol assesses a processing waste stream’s pretreatment requirement (e.g. pH buffering or nutrient limitations), biogas potential using an anaerobic respirometer, and biogas quality (% CH4). Processor needs, wastewater parameters and respirometer results are considered in tandem to conclude whether the processor should further pursue anaerobic treatment in a pilot-scale study. The protocol was tested under three conditions including one in replicate, one blended substrate and one failed condition, with distinguishing results indicating appropriate or inappropriate substrates for anaerobic treatment. For each case study, the substrates were characterized by common wastewater parameters and tested in an anaerobic respirometer. Gas samples from the respirometer flasks’ headspace were collected and analyzed in a gas chromatograph for methane and carbon dioxide. This work is dedicated to the food processors of Michigan. Here’s to a brighter, cleaner future. ACKNOWLEDGEMENTS I wish to acknowledge and thank the following people: my major professor, Dr. Steven Saffennan, for his patience, guidance and endless support; my committee members, Dr. Timothy Harrigan and Dr. William Bickert, for their insight; Mr. Steve Miller for his invaluable assistance, and weathering a harrowing trip home from Milwaukee; the rest of the GREEEN project advisory team, especially Mr. Gerald Wojtala, for helping to facilitate the project, and the Michigan food processors who shared their time, their facilities and their wastewater to make this work possible; Mr. James Wallace for his time and effort in supplying the digestate for the respirometer, without which there would be no data; my fellow students, Ms. Isis Femandez-Torres and Ms. Rebecca Larson, for providing support and laughter through the frustration; the department staff, Ms. Barb DeLong, Ms. Cheryl Feldkamp and Ms. Priscilla Gardner, for tirelessly ordering lab supplies, ensuring I received some payment, and providing rescue the numerous times I looked my keys in the lab; the rest of the department faculty and staff who each imparted knowledge and/or support in their own way; my parents and in-laws for their love, concern and support; my cat, Eddie, for his companionship throughout the writing process; and most especially my husband, Mike, whom words would not do justice. TABLE OF CONTENTS List of Tables ....................................................................................... vii List of Figures ....................................................................................... ix Key to Abbreviations and Acronyms .......................................................... x Chapter 1: Introduction ........................................................................... 1 Chapter 2: Literature Review .................................................................... 4 2.1 Anaerobic Treatment Applications ............................................... 4 2.2 Microbiology ........................................................................... 4 2.3 pH and Alkalinity ..................................................................... 5 2.4 Temperature .......................................................................... 6 2.5 Nutrient Availability .................................................................. 7 2.6 Toxicity ................................................................................. 9 2.7 Estimating Biogas Production ................................................... 10 2.8 Digester Start-up, Operation and Acclimation .............................. 11 2.9 Biogas Products .................................................................... 13 2.10 Economic and Environmental Considerations ............................ 14 2.11 Advantages and Disadvantages ............................................. 15 Chapter 3: Materials and Methods ........................................................... 17 3.1 Overview ............................................................................. 17 3.2 Substrate Sources ................................................................. 17 3.3 Substrate Characterization ...................................................... 18 3.4 Anaerobic Respirometery ........................................................ 19 3.5 Gas Chromatography ............................................................. 24 Chapter 4: Results and Discussion .......................................................... 26 4.1 Substrate Characterization ...................................................... 26 4.2 Anaerobic Respirometery ........................................................ 29 4.2.1 Case A .................................................................... 29 4.2.2 Case B-1 .................................................................. 31 4.2.3 Case B-2 .................................................................. 33 4.2.4 Case C .................................................................... 36 4.3 Biogas Analysis ..................................................................... 39 4.4 Summary ............................................................................. 43 4.5 Discussion ............................................................................ 45 Chapter 5: Anaerobic Digestion Feasibility Protocol ..................................... 47 5.1 Protocol Overview ................................................................. 47 5.2 Plant Profile ......................................................................... 48 5.3 Energy Potential .................................................................... 48 5.4 Substrate Characterization ....................................................... 49 5.5 Anaerobic Respirometery ........................................................ 50 Chapter 6: Conclusions ......................................................................... 51 6.1 Conclusions ......................................................................... 51 6.2. Future Applications ............................................................... 51 Appendix A: Anaerobic Respirometer Components .................................... 54 Appendix B: Substrate Characterization Analyses - Raw Data ..................... 61 Appendix C: Case C Substrate Allocation Calculations ................................ 66 Appendix D: Respirometer Data ............................................................. 69 Appendix E: Gas Chromatograph Calibration Curves ................................ 121 Appendix F: Gas Chromatography Data ................................................. 124 Appendix G: Quality Assurance and Quality Control .................................. 131 Appendix H: Anaerobic Digestion Feasibility Protocol ................................ 133 H.1 Processor’s Goals and Objectives .......................................... 134 H.2 Plant Profile ....................................................................... 136 H.3 COD Conversion to Heat and Electric Potential ......................... 139 HA Substrate Characterization Tests ............................................ 141 H.5 Anaerobic Respirometery ...................................................... 146 H.6 Toxicity Test ....................................................................... 150 H.7 Interpretation ...................................................................... 151 Appendix I: Respirometer Set-up Procedure ............................................ 152 L1 Flask Allocation .................................................................... 153 l.2 Nutrient and Metal Solutions ................................................... 154 L3 Flask Set-up ........................................................................ 156 Appendix J: Processing Plant Assessment Worksheets .............................. 158 References ....................................................................................... 164 vi LIST OF TABLES Table 2.1 Biogas Production from Various Commodities and Reactor Types 13 Table 3.1 Case A Respirometer Flask Allocations ...................................... 21 Table 3.2 Case 8-1 Respirometer Flask Allocations .................................... 22 Table 3.3 Case 8-2 Respirometer Flask Allocations .................................... 22 Table 3.4 Case C Respirometer Flask Allocations ....................................... 23 Table 4.1 Substrate Characteristics ......................................................... 28 Table 4.2 Case A Biogas Analysis .......................................................... 40 Table 4.3 Case 81 Biogas Analysis ........................................................ 41 Table 4.4 Case 82 Biogas Analysis ........................................................ 42 Table 4.5 Case C Biogas Analysis .......................................................... 43 Table 8.1 Case A Substrate Characterization Raw Data .............................. 62 Table 8.2 Case B Substrate Characterization Raw Data .............................. 63 Table 8.3 Case C Wastewater Characterization Raw Data ........................... 64 Table 8.4 Case C Manure Characterization Raw Data ................................ 65 Table 0.1 Respirometer Raw Data: Case A Cumulative Gas ........................ 71 Table 0.2 Respirometer Calculated Data: Case A Gas Production Rate ......... 77 Table 0.3 Respirometer Raw Data: Case 8-1 Cumulative Gas ..................... 84 Table 0.4 Respirometer Calculated Data: Case 8-1 Gas Production Rate ....... 88 Table 0.5 Respirometer Raw Data: Case 8—2 Cumulative Gas ...................... 91 Table 0.6 Respirometer Calculated Data: Case 8-2 Gas Production Rate ....... 98 Table 0.7 Respirometer Raw Data: Case C Cumulative Gas ...................... 103 vii Table 0.8 Respirometer Calculated Data: Case C Gas Production Rate ........ 114 Table E.1 Gas Chromatograph Calibration Data — Methane ........................ 122 Table E.2 Gas Chromatograph Calibration Data — Carbon Dioxide ............... 123 Table F .1 Gas Chromatography Data: Case A ......................................... 126 Table F .2 Gas Chromatography Data: Case 8-1 ....................................... 127 Table F.3 Gas Chromatography Data: Case 8-2 ....................................... 128 Table F.4 Gas Chromatography Data: Case C ......................................... 129 Table 6.1 Percent Relative Range for Duplicates ..................................... 132 Table 6.2 Percent Recovery for Standards ............................................. 132 Table H.1 Types of Anaerobic Digesters ................................................. 140 Table H.2 Substrate Characterization Analyses ........................................ 142 viii LIST OF FIGURES Figure 4.1 Case A Gas Production Rate ................................................... 30 Figure 4.2 Case A Cumulative Gas Production .......................................... 31 Figure 4.3 Case 8-1 Gas Production Rate ................................................ 32 Figure 4.4 Case 8-1 Cumulative Gas Production ....................................... 33 Figure 4.5 Case 8-2 Gas Production Rate ................................................ 35 Figure 4.6 Case 8-2 Cumulative Gas Production ....................................... 36 Figure 4.7 Case C Gas Production Rate ................................................... 38 Figure 4.8 Case C Cumulative Gas Production .......................................... 39 Figure A.1 Stir Plate ............................................................................. 55 Figure A.2 Rear View of Water Bath on Stir Plate ....................................... 55 Figure A.3 Water Bath Hose Connections to Heating/Cooling Unit ................. 56 Figure A.4 Heating/Cooling Unit Set for 35°C ............................................ 57 Figure A.5 Empty Reaction Flask with Syringe and Gas Collection Line .......... 58 Figure A.6 Individual Flow Measuring Cell ................................................. 59 Figure A.7 Flow Measuring Cells ............................................................. 60 Figure A.8 Case A Flasks in Water Bath ................................................... 60 Figure E.1 Methane Calibration Curve ................................................... 122 Figure E.2 Carbon Dioxide Calibration Curve .......................................... 123 8MP COD HRT MDEQ Rep. SCOD TMP TS VFA VS KEY TO ABBREVIATIONS AND ACRONYMS biological methane potential chemical oxygen demand hydraulic retention time Michigan Department of Environmental Quality replicate soluble chemical oxygen demand theoretical methane potential total solids volatile fatty acids volatile solids CHAPTER 1: INTRODUCTION Fruit and vegetable processors face technical challenges and potential costs in treating the large volumes of high strength wastewater resulting from production. All processors face rising fuel costs. Processors with access to a municipal treatment plant must often meet volume and quality restrictions and pay a base amount for flow and surcharges for high solids, biochemical oxygen demand and nutrients. Often a pretreatment system is needed prior to discharge to the sewer. Processors in rural areas commonly employ lagoon systems and land application which incorporates soil treatment. While minimally regulated in the past, land application may soon face more stringent regulations. One possible solution is anaerobic digestion which reduces or eliminates the need for municipal or soil treatment and would provide the processor with an energy resource from the biogas. Anaerobic biogas consists primarily of methane and thus can be burned as natural gas or transformed into electricity. While anaerobic digestion offers an attractive solution, not all waste streams are appropriate for anaerobic treatment. If the wastewater has a significant concentration of sanitizers, a non-neutral pH or a nutrient deficiency, then biodegradation and methane production will be inhibited. The high capital investment of such a treatment system necessitates preliminary screening to ensure that the waste is anaerobically biodegradable. Anaerobic biodegradability is typically reported in terms of percent chemical oxygen demand (COD) removed. More advanced testing to determine the biogas potential is often desired, which can be achieved using anaerobic respirometry. A respirometer study measures the individual gas production from multiple reaction flasks. Thus far, respirometers have commonly been used to study aerobic treatment methods, a trend which mirrors the predominance of conventional aerobic treatment methods in the wastewater treatment field. As anaerobic digestion and its advantages are becoming better understood and appreciated, the respirometer has been utilized for anaerobic studies in municipal wastewater applications. Conversely, many anaerobic studies have focused on food processing wastewater over the past two decades, but none have been found to use respirometers. The first objective was to develop a protocol to pre-screen fruit and vegetable processing waste streams for anaerobic treatment by determining the biogas potential using an anaerobic respirometer. Employing anaerobic respirometry provides a cost effective and efficient means for a processor to investigate anaerobic treatment options prior to investing significant time and money in a pilot-scale test or a full-scale system. The purpose of the protocol was to provide a step by step methodology for the determination of anaerobic biodegradability. This required general guidelines to apply this method to any waste stream, the parameters of which could fall within wide ranges. These parameters affect how long the respirometer trial must run and the net biogas produced. The second objective was to test the protocol under three conditions: an ideal substrate, a low-COD substrate and a blended substrate. ‘ldeal’ and ‘low- 000’ substrates were defined as suggested by supporting literature. A fourth case of interest involved a failed condition, which happened to be incorporated in the blended substrate case. Observing a failed substrate was important in demonstrating that the respirometer results did not produce false positives. Testing these conditions served to develop and check the utility of the protocol, which was then revised based on these test results. The purpose of this research was not to compare specific waste streams. As the protocol employs a small-scale apparatus, its results are not directly representative of a full-scale operation nor do they guarantee full-scale success. Flasks smaller than a liter, such as the respirometer uses, do not accurately reflect the mixing effects in a full-scale digester. The purpose of the protocol is to verify if a pilot-scale study is a worthy investment. CHAPTER 2: LITERATURE REVIEW 2.1 Anaerobic Treatment Applications Anaerobic digestion is most widely established as a waste treatment method in Western Europe (Angelidaki et al., 1999). Regulations there require strict abatement of greenhouse gases including methane and carbon dioxide (Carucci et al., 2005). As a treatment technology, anaerobic digestion is unique in that it both reduces waste and produces an energy resource in the biogas. Potential anaerobic feed substrates include manure (AI-Masri, 2001; Demirer and Chen, 2005), crop residues (Stewart et al., 1984; Weiland, 1993), organic municipal solid waste (i.e. solid food wastes) from restaurants or markets (Bouallagui et al., 2003; Han et al., 2005; Xu et al., 2002; Kiely et al., 1996), and wastewater from food processing plants (T ekin and Dalgic, 2000; Alvarez et al., 2005; Lepisto and Rintala, 1997; \flswanath et al., 1992). 2.2 Microbiology There are four processing steps defined in anaerobic digestion, each attributed to different trophic groups. The first three steps are hydrolysis, acidogenesis, and aoetogenesis, which are each performed by different bacterial groups. The final step is methanogenesis, performed by a type of archaea aptly termed methanogens (Bouallagui et al., 2004a). In studying anaerobic digestion it is important to recognize that methanogens are archaea and still often mislabeled as bacteria. Archaea make up a domain separate from bacteria and eukarya, and include methanogens, therrnophiles, and halophiles (Schiraldi et al., 2002). Woese and Fox (1977) distinguished the domain by noting that archaea evince stark biochemical and genetic differences from bacteria. Anaerobic bacteria have different optimal pH and nutrient levels from methanogens and exhibit different growth kinetics and stress responses (Bouallagui et al., 2004a). Methanogens are generally more sensitive than bacteria to environmental fluctuations. It is common for anaerobic digesters to manifest an unstable methanogen population: methane production may fluctuate significantly while bacterial volatile fatty acid (VFA) productions remain consistent (Bouallagui et al., 2005). The rate-controlling step is often acetogenisis though, as evidenced by VFA accumulation (Speece, 1996; Bouallagui et al., 2005). Optimal environmental needs include pH and alkalinity, temperature, macronutrients (C/N/P), bioavailable micronutrients, and a lack of toxicity (Speece, 1996). Adequate conditions for all parameters must exist for a digester to flourish, as discussed below. 2.3 pH and Alkalinity Optimal alkalinity and pH, between 6.5 and 8.2 (Speece, 1996), are critical for stable methanogensis, and yet confounded by the proceeding process steps that produce 002 and other acids. If acetogens are slowed by environmental stressors, then acids go unprocessed and pH will quickly drop, inhibiting methanogenesis entirely (Bouallagui et al., 2005; Speece, 1996). To counter this acidifying effect, alkalinity in the digester must be balanced with VFA levels relative to organic loading rate and hydraulic retention times (HRT) (Borja et al., 2004). A two-stage digester system, with separate sections for acid and methane formation, was found to quell rising acid levels (Bouallagui et al., 2005). Biodegradation can also be limited by high pH though (Penaud et al. 1999), as ammonia is un-ionized above a pH of 8 and thus toxic (Speece, 1996). 2.4 Temperature Anaerobic digestion can occur in three distinct temperature ranges: psychrophilic at 15°C to 25°C, mesophilic at 30°C to 37°C, and thermophilic at 50°C to 65°C (Bouallagui et al., 2004b; Speece, 1996). It should be noted that thermophilic digestion is unrelated to the therrnophile archaea that inhabit more extreme locales such as geysers and ocean heat vents. A distinct transition region between mesophilic and thermophilic digestion is evinced around 45°C where methane production notably decreases (Converti et al., 1999; Speece, 1996). Methanogens are also sensitive to abrupt temperature change (Bouallagui et al., 2004b). A 5°C drop resulted in a 34% decrease in methane production (Speece, 1996). Thermophilic biomass has a higher metabolic rate than mesophilic and thus higher gas production (Speece, 1996; Converti et al., 1999) and protein assimilation (Speece, 1996). Thermophilic systems also exhibit greater pathogen elimination (Bouallagui et al., 2004b; Duran, 2006). Methanogens exhibited improved activity with higher temperatures (Converti et al., 1999). The optimal temperature for acetoclastic methanogens was found to be 56°C to 59°C (Speece, 1996). Thermophilic digestion requires disproportionately higher metal nutrients (Speece, 2006) and has a significantly slower growth rate than mesophiles and consequently a longer start-up period (Speece, 1996). A two-stage system with therrnophlic and mesophilic in series utilized the advantages of both (Bouallagui et al., 2005). A digester’s temperature range is often selected to compliment the climatic region, as to avoid excessive heating demands (Bouallagui et al., 2004b). It follows then that as Europe is the prevailing region in anaerobic research and development and of a temperate clime, mesophilic systems are most commonly studied and pursued (Borja et al., 2004; Penaud et al., 1999; Al-Masri, 2001; Bouallagui et al., 2003). An underlying reason may also be that acetogens and methanogens are equally active at a mid temperature range (Speece, 1996); acetogen activity dominates at lower temperatures where methanogens are more active a higher temperatures. 2.5 Nutrient Availability Methanogenesis is very sensitive to nutrient availability. Basic macronutrients and a library of micronutrients must be properly allotted and biologically available (Speece, 1996). Like most metabolic processes, anaerobic digestion requires an adequate C:N:P ratio, where carbon is often accounted for in terms of COD. One source considered fruit and vegetable waste to be balanced with a COD/NIP of 100/4.3l0.9 (Bouallagui et al., 2004b). Nitrogen or phosphorus deficiency may be expressed by VFA accumulation (Speece, 1996). Ammonium can be used as an indicator of digester performance (Carucci et al., 2005; Speece, 1996). Micronutrient availability can play a pivotal role in anaerobic digestion. When a food waste lacking in trace metals was co-digested with municipal sludge abundant in iron, manganese, copper and zinc, significantly more methane was produced than from food waste alone (Carucci et al., 2005). Low methane production initially attributed to toxicity may often be amended by trace metal addition, particularly iron, cobalt and nickel (Speece, 1996). To prevent such limiting conditions in batch digesters and bench-scale studies, researchers commonly provide bulk nutrient solutions with a host of trace metals (Owen et al., 1979; Shelton and Tiedje, 1984; DiStefano and Ambulkar, 2006; Aquino and Stuckey, 2007). Iron, cobalt, nickel, zinc, copper, manganese, molybdenum, selenium, tungsten and boron have been shown to stimulate methanogenesis (Speece, 1996; Speece, 2006). Among required nutrients, sulfide is especially noteworthy. While microbes require sulfide, it readily precipitates with various trace metals (especially iron), rendering all biologically unavailable (Speece, 1996; Isa et al., 1986). Sulfur also plays a role in the multifaceted competition between methanogens and sulfate reducing bacteria, which produce hydrogen sulfide in lieu of methane (Speece, 1996). Hydrogen sulfide gas is toxic to both anaerobes and humans. Sulfate and free sulfide are recognized as methanogen inhibitors at higher concentrations (lsa et al., 1986). 2.6 Toxicity Anaerobic digestion can be hindered by certain compounds. At high concentrations, potassium and other salts can interrupt cell function (Carucci et al.; 2005; Speece, 1996). Sodium chloride was found to inhibit methanogenic activity (Dolfing and Bloemen, 1985). It was shown however, that in adding sodium hydroxide, the hydroxide anions caused the negative effect, not the sodium cations (Penaud et al., 1999). Surfactants were shown to cause greater inhibition of anaerobic treatment than aerobic treatment (Mohan et al., 2006). As mentioned in section 2.3, ammonia is un-ionized above pH 8 and is toxic to anaerobes. Acetogens are particularly sensitive, and concentrations above 3000 mglL NH4-N are toxic regardless of pH (Calli et al., 2005). While not necessarily ‘toxic’, increased total solids loading have a direct correlation with methanogen inhibition (Viswanath et al., 1992; Carucci et al., 2005; Tekin and Dalgic, 2000). General toxicity can be determined by an Anaerobic Toxicity Assay, in which gas production rates are depressed despite an abundance of acetate (Owen et al., 1979; Speece, 1996). Long-chain fatty acids (LCFAs) and polyphenols are natural antimicrobial compounds. In multiple studies of different phenol-rich substrates, anaerobic digestion was drastically inhibited unless some form of pre-treatment was employed, such as ozonation (Alvarez et al., 2005), fungal treatment (Dhouib et al., 2006), or electro Fenton reaction (Khoufi et al., 2006). Adding sulfate during treatment can also improve phenol biodegradability (Speece, 1996; lsa et al., 1986), though the negative affects of sulfate must then be abated. It is important to note that while a microbe population may express inhibition upon initial exposure to a compound, anaerobes have a strong ability to acclimate (Speece, 1996). Acclimation to LCFAs could not be achieved and the inhibiting affect was irreversible (Angelidaki and Ahring, 1992). 2.7 Estimating Biogas Production Simple anaerobic digestibility is often reported in terms of percent COD removal. Further testing is often desired to determine the biological methane potential, reported as volume methane produced per unit COD. Batch tests are commonly conducted using some variation of the Owen serum bottle method (Owen et al., 1979; Demirer et al., 2000; Han et al., 2005; Shelton and Tiedje, 1984). Based on preliminary batch test results, studies are often expanded to a semi-continuous bench scale reactor (Carucci et al., 2005; Hwang and Cheng, 1991). There are respirometers available for anaerobic applications. In anaerobic mode, a respirometer measures the individual gas production from multiple flasks, each approximately 500 mL in volume (Mohan et al., 2006). This combines the benefit of test controls and replicates from the serum bottle methods with the continuous gas monitoring of bench scale reactors (DiStefano and Ambulkar, 2006). In a hydrogen production study, the anaerobic 10 respirometer produced 43% more gas than the Owen serum bottle method (Logan et al., 2002). Many studies use synthetic substrates to observe the affects of specific parameters on anaerobic digestion (Converti et al., 1999; Conklin et al., 2006); Isa et al., 1986; Fitzgerald, 1996). However, to study wastewater biodegradability in the lab, substrate must be imported from the original processing waste stream because processing wastewaters often include a conglomeration of food wastes, disinfectants, anti-scaling and other chemicals, the interactions of which cannot be synthetically replicated. 2.8 Digester Start-up, Operation and Acclimation Anaerobes have a relatively slow growth rate compared to their aerobic counterparts. Organic substrate must be processed through several steps before reaching simple carbon compounds appropriate for methanogenesis. Thus, a reactor of any size may require several weeks of acclimation before significant methane production is observed. A two-liter lab reactor digesting pig slurry produced minimal biogas for the first 25 days of testing (Kiely et al., 1997). Start- up time is greatly improved when the reactor is seeded with adequate inoculate from an acclimated seed source (Totzke, 2006). Different methanogen species express distinct responses to environmental stimuli and stressors. Hourly versus daily feeding schedules were shown to select for methanogens with low and high growth rates, respectively 11 (Conklin et al., 2006). The microbes with a higher growth rate made for a more stable digester, responding better to peak loads and feed shortages. Biogas production is also influenced by organic loading, total solids and hydraulic retention time (HRT) (Viswanath et al., 1992; Tekin and Dalgic, 2000). HRT is of greater concern for a substrate with a high non-soluble fraction (Tekin and Dalgic, 2000). Switching feedstock between different fruit wastes evinced little effect on biogas production (Viswanath et al., 1992). This is significant for food processing applications as plants often switch seasonal commodities throughout the year. Table 2.1 includes a brief comparison of various sized reactors and feed sources and their subsequent methane production. 12 Table 2.1 Biogas Production from Various Commodities and Reactor Types Reference Commodlty Reactor Temperature Biogas Methane Type! Size Production fraction Bouallagui Raw fruit & Tubular/ Psychrophilic 0.64-1.05 LIL/d 56-58% et al. 2004b vegetable 18L waste Mesophilic 0.83-2.34 UUd 54-65 % (shredded) Thermophilic 1.7 -3.17 UUd 58-62% Alvarez et Cherry stillage Sequencing Low mesophilic 58-71 % al. 2005 Batch (30°C) Reactor/ 1.8 L Stewart et Bananas Continuous! Mesophilic 497 L/kg T8 53% al. 1984 (fruit and stem) 20 L Potatoes 350-410 ng 44-50% (peelings, TS rejects) Oats 227-257 ng 51-54% TS Yacob et al. Palm oil mill Closed High 650-1000 kg/d 2006 effluent digester/ mesophilic 500 in3 (37-42°C) Tekin and Olive pomace Semi- Mesophilic 0.39-0.69 UUd 79.5-84% Dalgic 2000 continuous! 1 L Vrswanath et Sequential Semi- Low mesophilic 0.61-1.96 UUd 22-61.2% al. 1992 feedings: continuous] (30°C) mango, orange, 45 L pineapple, tomato processing, jackfruit and banana waste Lepisto and Carrot UASBI Thermophilic 7.3 UUd 49% Rintala 1997 processing 2-3 L (55°C) (315 cm3/g (carrots) wastewater. COD) Potato and swede 347 cm3/g processing COD wastewater 2.9 Biogas Products Methane and carbon dioxide are the main constituents of anaerobic biogas. The methane fraction can range from 40 to 85% depending on methanogen vitality, substrate quality and reactor type (Alvarez et al., 2005; Stewart et al., 1984; Tekin and Dalgic, 2000; Yacob et al., 2006). A large 13 percentage of the carbon dioxide remains in solution (Shelton and Tiedje, 1984). Being mostly methane, biogas can be collected and burned, like natural gas, for thermal or electric energy. In Denmark, community digesters produce both heat for local farms and electricity to the power grid (Angelidaki et al., 1999). Several engine types are adapted to run on biogas, and emerging technology in high- temperature fuel cells can convert and store energy from biogas (Bove and Lunghi, 2006; Serge, 2006). The anaerobic digestion process can also be manipulated to produce a higher percentage of hydrogen gas, a sought-after resource for fuel cells (Han et al., 2005; Logan et al., 2002). There are also minor gas constituents which can be troublesome for certain applications. Biogas often includes a small fraction of hydrogen sulfide produced from sulfate-reducing bacteria (Speece, 1996). The specific percent fraction depends on the substrate components. Digestion of citric acid factory wastewater with 600 mg/L sulfate resulted in the biogas having 4% H28 (Isa et al., 1986). Internal combustion engines are especially sensitive to hydrogen sulfide impurities (Speece, 1996) which can be expensive to purge (Isa et al., 1986) 2.10 Economic and Environmental Considerations There are several economic considerations in choosing anaerobic treatment. While primary attention goes to methane as an energy source, those with experience in the field have found equal or greater benefit in the stabilized sludge end product (T ekin and Dalgic, 2000). There is also the opportunity to 14 apply for carbon credits through such organizations as the Chicago Climate Exchange, for actively reducing methane and carbon dioxide emissions (Jensen, 2006). There are various operating costs associated with an anaerobic digester. If the influent substrate has a low pH or alkalinity, an alkalinity source must be metered in to support a neutral pH. To maintain digester stability, it is necessary to extensively monitor various parameters. There has been recent research to develop infrared monitoring equipment to measure VFA, COD, alkalinity, sulfate and nitrogen in-Iine to limit the over-sizing of digesters and lower capital and operating costs (Spanjers et al. 2006). There had been some trouble of the monitoring equipment clogging with higher solids content though. 2.11 Advantages and Disadvantages Anaerobic treatment allows for higher organic loading rates and requires lower nutrient levels than traditional aerobic treatment (Speece, 1996). There is no aeration required. While an anaerobic digester requires heating to maintain a mesophilic (or thermophilic) environment, this can often be met by reapplying 25% of the biogas as a heat source. Overall, anaerobic treatment can provide an energy resource while reducing a waste product. Due to the anaerobe’s low growth kinetics, an anaerobic reactor can remain viable in a dormant state during periods of low flow or plant shut-down. There are disadvantages to anaerobic wastewater treatment. It does not achieve significant nutrient treatment such as denitrification or phosphorus 15 removal (Speece, 1996). If effluent discharge regulations require lower limits than can be met by anaerobic treatment, secondary or tertiary treatment such as aerobic polishing or phosphorus treatment would need to be considered. While a low growth rate can provide some advantages, it also equates to a slow start-up period and arduous recoveries from organic overloading or biomass washout. 16 CHAPTER 3: MATERIALS AND METHODS 3.1 Overview Development of the screening protocol required a correlation between the conclusions drawn from the substrate characterization results and the respirometer results. Testing consisted of collecting and analyzing wastewater samples from various fruit and vegetable processing plants, and digesting the samples in an anaerobic respriometer. Respirometry tests included the analysis of gas samples from the headspace to verify significant methane production. The substrates were characterized based on parameters of known relevance to anaerobic digestion. Respirometry testing was conducted at 35°C based on full-scale operating norms in the region. Quality assurance and quality control was observed in all aspects by the use (as applicable) of field duplicates, lab duplicates, standards, blanks and controls. 3.2 Substrate Sources Wastewater was sampled from three fruit and vegetable processing plants. Coincidentally, all three plants were processing only fruit at the respective times at which wastewater was sampled. At the time of sampling, plant A was producing apple juice and dried cherries; plant 8 was processing apple slices; plant C was processing whole cherries. The subsequent studies of each sample are referred to as Case A, 8 and C, respectively. Two respirometer trials were conducted with sample B, denoted Case 8-1 and 8-2. In Case C, 17 liquid manure was sampled from a local dairy farm for a blended substrate of manure and wastewater. Manure was collected following a cyclone sand- manure separator. The substrate constituents for Case C were analyzed separately and blended later based on these results. 8qu samples for respirometer testing were stored at 4°C until the respirometer was available to set up. 3.3 Substrate Characterization Several parameters were tested, of which pH, COD, soluble COD (SCOD), total solids, volatile solids and total phosphorus were tested in-house at Michigan State University. Ammonia, nitrate + nitrite, TKN, sulfide and sulfate testing was conducted by a commercial laboratory, A&L Labs (Fort Wayne, IN). Immediately after being collected, these samples were packed on ice and shipped overnight to A&L Labs. Samples for COD, SCOD and total phosphorus were collected in glass containers, adjusted with sulfuric acid to a pH <2, stored at 4°C and analyzed within 28 days. Samples for pH, total and volatile solids were stored at 4°C and analyzed within seven days. The pH was measured by a pH meter (accumet Excel XL60, Fisher Scientific) and electrode (accuCap, Fisher Scientific). COD was determined according to USEPA approved Hach Method 8000 (0 to 1500 mg COD/L) (Hach Company, Loveland, Col.). Total phosphorus was determined according to USEPA accepted Hach Method 8190 (Hach Company). TKN and nitrate plus nitrite were determined according to EPA methods 351.3 and 353.2, respectively. Sulfide 18 was determined according to EPA method 376.2. Wastewater samples were analyzed for ammonia according to EPA method 350.2, and digested according to method SW846-3010A and then analyzed for sulfate according to EPA method 200.7. The liquid manure was analyzed for ammonia according to method SM(20th)-4500-NH38,C. Sulfate was determined according to EPA method 375.4. 3.4 Anaerobic Repirometery Respirometer testing was conducted with an AER 200 model (Challenge Technology, Springdale, Ark.) in anaerobic mode. The system consisted of eight nominal 500 mL reaction flasks maintained at 35°C in a constant temperature water bath and mixed via magnetic stir plate at approximately 100 rpm. Gas production resulted in a slight pressure buildup and dissipated in discrete bubbles, measured through calibrated flow measuring cells. A computer processed and stored the data, calculating the gas production rate and cumulative volume for each individual flask. To minimize any lag in degradation due to microbial acclimation, seed was collected from a bench-scale reactor actively digesting ethanol processing byproducts. Both pH and COD were analyzed at the time of sample collection and, if stored, again at the time the respirometer set up, as these parameters may change in unpreserved samples during storage. Several studies with nutrient solutions were considered (Owen et al., 1979; ASTM E, 1996; Shelton and Tiedje, 1984; DiStefano and Ambulkar, 2006; 19 Aquino and Stuckey, 2007). Shelton and Tiedje (1984) offered an improvement on the proposed ASTM standard and a detailed methodology that minimized precipitation. Though intended for serum bottle tests, this nutrient solution was similar to mediums described in respirometer literature (DiStefano and Ambulkar, 2006; Logan et al., 2002; Mohan et al., 2006). Measured amounts of microbial seed, nutrient solution and wastewater substrate were added to multiple reaction flasks. Contents were stirred and maintained at a constant 35°C via a water bath. When filled to the lip of the bottle, nominal 500 mL Wheaton reaction flasks hold approximately 715 mL. Following the respirometer manufacturer’s recommendations, a 10% headspace was allowed with a working volume of 650 mL. A 4:1 ratio of nutrient solution to seed as described by Mohan et al. (2006) was chosen as the study used comparable substrate and equipment. Resazurin, an oxidation-reduction indicating dye, was added to each flask for an approximate concentration of 1 mglL. This indicator changes color depending on the level of oxidation or reduction: from blue when fully oxidized, pink when partially oxidized/reduced, and colorless when fully reduced (see Figure A.8, Appendix A). It allowed for the determination of oxygen contamination in the anaerobic respirometer flasks. Color change was discemable even with dark, opaque seed in the flasks. Tables 3.1, 3.2, 3.3 and 3.4 outline the reaction flask constituents for Cases A, 8-1, 8-2 and C respectively. Case A had seven reaction flasks; Cases 20 8-1, 8-2 and C each had eight flasks. In all cases a seed control provided the background biogas produced without substrate. For Case A (see Table 3.1) two wastewater/seed flasks served as duplicates. Nutrient solution was omitted from these flasks to evince the effect of nutrient amendment. The half-strength dilution flask (1/2 [wastewater] seedl nutrientsj) served as both a scale-duplicate and, if it were to produce proportionally more biogas than the full-strength flask, a toxicity indicator. Seed was omitted from the wastewater/nutrients flask to test the microbial activity of the wastewater itself. Seeding a full-scale digester can incur significant cost. A blank flask of de-ionized water served to establish the noise level in gas readings due to pressure changes. During set-up, an eighth flask was broken and so could not be included. Table 3.1 Case A Respirometer Flask Allocations Flask m substrate Seed Nutrient Solution “$223“ (mL) (mL) (mL) (mL) Wastewater, Seed, Nutrients 50 120 480 0 Wastewater, Seed (repA) 50 120 0 480 Wastewater, Seed (rep 8) 50 120 0 480 Seed 0 120 0 530 ‘/2 (Wastewater, Seed, Nutrients) 25 60 240 325 Wastewater, Nutrients 50 0 480 120 Blank 0 0 0 650 For Case 8-1 (Table 3.2) a flask was tested with half the volume of nutrient solution to further investigate the effect and need for nutrient amendment. As in Case A, two wastewater/seed flasks served as duplicates; a half-strength dilution, wastewater/nutrients flask and blank were also included. 21 Table 3.2 Case 8-1 Respirometer Flask Allocations Flask ID Substrate Seed Nutrient Solution 0963;?“ (mL) (mL) (mL) (mL) Wastewater, Seed, Nutrients 50 120 480 0 Wastewater, Seed, 1/2 Nutrients 50 120 240 240 Wastewater, Seed (rep A) 50 120 0 480 Wastewater, Seed (rep 8) 50 120 0 480 Seed 0 120 0 530 1/2 (Wastewater, Seed, Nutrients) 25 60 240 325 Wastewater, Nutrients 50 0 480 120 Blank 0 0 0 650 The seed and substrate samples from Case 8-1 were stored at 4°C and used 4 weeks later in Case 8-2 (Table 3.3). For Case 8-2, two wastewater/ substrate! nutrients flasks were designated as duplicates to confirm the results from Case 8-1. Two seed controls were tested, one with nutrients and one without, to determine if a nutrient solution would affect the background gas production. As in Cases A and 8-1, two wastewater/seed flasks served as duplicates; a half-strength dilution, wastewater/nutrients flask and blank were also included. Table 3.3 Case 8-2 Respirometer Flask Allocations Flask ID Substrate Seed Nutrient Solution 096322;?“ (le (le (le (mL) Wastewater, Seed, Nutrients (rep A) 50 120 480 0 Wastewater, Seed, Nutrients (rep 8) 50 120 480 0 Wastewater, Seed, 1/2 Nutrients 50 120 240 240 ‘/z (Wastewater, Seed, Nutrients) 25 60 240 325 Seed, Nutrients 0 120 480 50 Wastewater, Seed 50 120 0 480 Seed 0 120 0 530 Blank 0 0 0 650 Case C (Table 3.4) tested a blended wastewater/manure substrate and thus wastewater and manure separately, each with and without nutrients. The seed control included nutrients for comparability with the substrate/nutrient 22 flasks. Because of the multiple scenarios the same controls in Cases A, 8-1 and 8-2 could not all be utilized in Case C due to the restricted number of flasks in the respirometer. Substrates were allocated differently with Case C to increase the net biogas, i.e. the biogas differential between the seed controls and substrate flasks. The wastewater and manure were apportioned based on COD rather than volume and blended based on their combined weight-based COD-to- nitrogen ratio (see Appendix C). Manure is known to have a high microbial activity; a seed source is not traditionally used in such anaerobic digestion applications. For comparability, manure was tested both with the common seed source and as a full volume of manure alone. In this way, manure was tested as a seed source itself. Table 3.4 Case C Respirometer Flask Allocations Nutrient De-ionized Flask ID wastwa‘" "3"“ 3”" Solution Water (mL) (mL) (mL) (Ml-I (mL) Wastewater, Manure, Seed, Nutrients 170 30 90 360 0 Wastewater, Seed, Nutrients 1 70 0 90 360 30 Manure, Seed, Nutrients 0 30 90 360 170 Manure, N utrients 0 120 0 360 170 Seed, Nutrients 0 0 90 360 200 Wastewater, Manure, Seed 170 30 90 0 360 Wastewater, Seed 170 0 90 0 390 Manure, Seed 0 30 90 0 530 Setting up the respirometer was typically a two day process. During the first day, the nutrient solution was blended, the de-ionized water for the flask mixtures and the nutrient solution were autoclaved to drive out dissolved oxygen and the water bath was cleaned. On the second day, the seed sample was collected (with the exception of Case 8-2 for which stored seed from 8-1 was 23 used), the flask filled with the apportioned constituents, the water bath was filled, the flasks were connected to the gas counting cells and the respirometer software was set up for data collection. See Appendix H for the respirometer set- up protocol used. Respirometer tests were continued until gas production in all flasks ceased. A flask without nutrient media illustrated to what degree nutrient amendment was required relative to the flask of substrate, seed and nutrients. A flask without seed showed to what degree biodegradation, if any, may occur without seed. The half-strength dilution served as a scale-duplicate and a toxicity indicator if it were to produce proportionally more biogas than the full-strength flask. 3.5 Gas Chromatography Gas samples of 100 pL were collected from the head space of the reaction flasks and analyzed for methane and carbon dioxide composition by a gas chromatograph (GC-8, Shimadzu Co., Kyoto, Japan) equipped with a thermal conductivity detector (TCD) and 6.1 m nickel columns packed with HayeSep D (100l120 mesh) (Supelco, Bellefonte, Pen.). Two identical columns were installed; the second served as a reference column into which gas was never injected. Helium served as the carrier gas. The column temperature was ramped from 40°C to 110°C at 20°C per minute and the injection port was maintained at 120°C. 24 Gas tight syringes with push button valves (Series A-2, Fisher Scientific) were used to collect the gas samples. Originally, 1 mL volume syringes were used. These were later changed to 250 pL volume syringes for more precise sample collection. Sampling syringes was purged several times with ambient air before drawing gas samples from the reaction flasks or standard gas cylinders. Using methane (99.0%) and carbon dioxide (99.8%) gas standards, calibration curves were established for the gas chromatograph column (see Appendix E). Samples of 25, 50, 75 and 100 uL standard gas were analyzed for each calibration curve (methane and carbon dioxide). From this calibration, the composite methane and carbon dioxide fractions, was found. Prior to any sampling event, 50 or 75 uL standard samples of methane and carbon dioxide were analyzed to conflrrn the calibration. The calibration was considered valid if were acceptable if the gas standard reading’s reported percent value (determined from the calibration) was within ten percentage points of the injected value, e.g. a peak area equivalent to 40% for a 50 uL standard methane sample, or a peak area equivalent to 65% for a 75 uL standard carbon dioxide sample. 25 CHAPTER 4: RESULTS AND DISCUSSION 4.1 Substrate Characterization Table 4.1 outlines the characterization analysis of each substrate (wastewaters A, B and C and manure C). The test parameters and corresponding recommended ranges from the literature serve as guidelines by which to screen a substrate’s suitability for anaerobic digestion. This provides a starting point from which to consider financial implications such as the cost of nutrient amendment. Wastewater A had an ideal pH, adequate COD, and a low sulfate concentration which should produce a clean biogas free of hydrogen sulfide. The decision to measure SCOD was made after testing case A, so this information is not available. Like the others fruit processing wastewaters (8 and C) it was low in nitrogen, phosphorus and sulfide. It was also low in alkalinity. These would need to be supplemented in a full-scale operation. Wastewater 8 had a marginally acceptable pH and a low sulfate concentration, but low COD and alkalinity levels which would not be cost effective for anaerobic digestion. Wastewater C had an adequate COD level, especially considering the high percent SCOD which is a measure of COD readily available to the microbial population. Alkalinity was not tested for wastewater C due to the limited sample volume collected. The low pH may require the addition of substantial alkalinity to a full scale system. Manure C had well proportioned nitrogen (CODzN) and adequate sulfide. The precise phosphorus level was unknown: readings were 26 over the detection limit even at 0.025 dilution factor. This at least indicates that the phosphorus level was greater than 136 mg/L P. The low percent SCOD and VS could make for unstable digestion while the remaining insoluble COD (and solids) are slowly broken down. Marginally high ammonia could cause some inhibition and the higher sulfate levels could produce a biogas with a notable hydrogen sutfide component. Alkalinity could not be tested as the manure sample was too opaque for reliable results. 27 9:9: me 8:82 .. 830; 0 Loan be 2.2 «on was 56 + E: 8 3:8 .. eow <9: o8 v :8 <95 82 a 8 e2 Emcee: :2 so : 8 m 99.8 eom <9: 83 v .. w e~ Manure, Seed Figure 4.8 Case C Cumulative Gas Production Note: Data were recorded every four hours. For clarity, points are only shown for every eight hours. 4.3 Biogas Analysis Tables 4.2, 4.3, 4.4 and 4.5 present the biogas analyses for Case A, 8-1, 8-2 and C, respectively. “COD from Substrate” is the amount of COD available from the substrate in each given flask, based on the volume of substrate added and its measured COD. The theoretical methane potential (T MP) is determined by the following stoichiometric conversion (Speece, 1996): 1 g COD = 395 mL CH4 at 35°C [4.1] TMP is calculated at 35°C so as to be comparable to the measured data. From this, the theoretical biogas potential (T 8P) was calculated by assuming 70% 39 methane composition. The total biogas reported is the cumulative volume measured by the respirometer. Net biogas was calculated as the difference between the substrate flask and its respective seed control. An effort was made to analyze gas samples at a period in the trial when the gas production rate was maximized for a majority of the flasks, barring any equipment maifunctions. It was assumed this point in the trial best represented the ideal operating conditions of a full scale reactor when methane production should also be maximized. Gas sampling for Case A (Table 4.2) was conducted just as the gas chromatograph was being set up and the respirometer trial was ending (day 33 and 34). Due to equipment malfunctions and time constraints there was not an opportunity to analyze a sample from the wastewater/seed/nutrients flask. A significant background level of methane appeared in sample from the de-ionized water flask. The syringe-flushing method was revised due to this cross- contamination. Table 4.2 Case A Biogas Analysis COD from TBP Total Net o Flask ID Substrate (mL at Biogas Biogas “la-LEV: d % CH 4 (mg) 35°C) (mL) (mL) Seed - - 512.01 - - 64.5 Wastewater, a Seed, Nutrients 54.5 130.46 605.7 93.69 71.8 /o n/a Wastewater, 0 Seed (rep. A) 231.2 130.46 592.3 80.29 61.5 /o 65.6 Wastewater, 0 Seed (rep. 8) 231.2 130.46 618.85 106.84 81.9 A 73.0 ‘/2 (Wastewater, 0 Seed, Nutrients) 115.6 65.23 275.75 19.75 30.3 /o 47.0 Wastewater, Nutrients 231.2 130.46 45.82 45.82 35.1% 37.6 De-ionized water - - 31.21 31.21 - 25.8 For Case 8-1 (Table 4.3) gas samples were collected and analyzed on day 6 from wastewaterlseed/nutrients, wastewater/seed (rep. 8) and wastewater/nutrients) and day 12 from all flasks. Wastewater/seed (rep. A) was left un-sampled as a control to ensure that the act of gas sampling did not impose any negative affect on the gas flow measurements. Active flasks with full-strength wastewater all exhibited methane fractions over 60%. The half- strength flask (‘/2(wastewater/seed nutrients» achieved over 90% of its TBP, though with an average methane fraction of 32%, the %T8P may be skewed by background noise considering the de-ionized water had a reported 10 mL biogas. Unseeded wastewater produced negligible biogas and methane. Table 4.3 Case 8-1 Biogas Analysis COD from TBP Total Net "/ TBP Flask ID Substrate (mL at Biogas Biogas “awed % cr-r4 (mgL 35°C) (mL) (mL) Seed - - 122.74 - - 68.5 Wastewater, 54 2 Seed, 54.5 30.75 115.44 0 0.0% 652 Nutrients ' Wastewater, Seed, 54.5 30.75 143.08 20.34 66.1% 70.9 1l2 Nutrients Wastewater, 0 Seed (rep. A) 54.5 30.75 143.65 20.91 68.04 n/a Wastewater, o 47.8, Seed (rep. 8) 54.5 30.75 146.79 24.05 78.2 /o 68.1 ‘/2 (Wastewater, o 19.6, Seed, Nutrients) 27.3 15.38 75.40 14.03 91.2/e 44.6 Wastewater, o Nutrients 54.5 30.75 3.14 0 O/o 4.8 De-ionized water - - 10.19 10.19 - 5.7 For Case 8-2 (Table 4.4) gas samples were collected and analyzed on day 20. The wastewater/seed/Vz nutrients flask was not sampled, as the gas production was negligible. Though Including nutrients with the seed control had no affect on total gas production, net biogas was calculated from each flask’s 41 corresponding seed control (i.e. with or without nutrients). The half-strength flask (‘/2(wastewaterlseed nutrients» had low biogas production and correspondingly low methane of 39%, comparable to its 8-1 counterpart at an average 32% Table 4.4 Case B-2 Biogas Analysis COD from TBP Total Net 0 Flask ID Substrate (mL at Blogas Biogas a $12,; 7, CH4 (m9) 35°C) (le (mL) Seed, Nutrients - - 121.12 - - 68.5 Wastewater, Seed, Nutrients 54.5 30.75 137.71 16.59 53.9% 59.3 (rep. A) Wastewater, Seed, Nutrients 54.5 30.75 135.44 14.32 46.6% 74.8 (rep. 8) Wastewater, Seed, 1/2 54.5 30.75 3.88 0 0.0% n/a Nutrients 1/2 (Wastewater, a Seed, Nutrients) 27.3 15.38 63.31 2.75 17.9 /o 38.7 Seed - - 129.51 - - 56.7 we???“ 54.5 30.75 134.49 4.98 16.2% 28.2 De-ionized water - 11.60 11.6 - 5.6 For Case C (Table 4.5) gas samples were collected and analyzed on days 11 and 14. The methane fraction varied significantly for some of the flasks. A manure/seed lab duplicate had a difference of 12% methane and average value of 71.8%. This suggests that the variance between sampling days may reflect this same resolution. The blended substrate (wastewater and manure) produced significantly more gas than either individually, though gas production from the blended substrate was less than the sum of that from wastewater plus that from the manure. Interestingly, the individual substrates (wastewater or manure) achieved a higher %TBP with nutrient amendment at approximately 100% for each, where the blended substrate reached a higher %T8P without nutrient addition. Table 4.5 Case C Biogas Analysis COD from TBP Total Net ./ TBP Flask ID Substrate (mL at Biogas Biogas a ciii ev ed % CH4 (m9) 35°C) (mL) (mL) Seed, Nutrients - - 983.6 - - 211% Wastewater, 40 0 Manure, Seed, 1647 929.5 1632.4 648.8 69.8% 57' 9’ Nutrients ' Wastewater, 27.3, Seed, Nutrients 783 441.7 1440.1 456.5 103.4% 62.8 Manure, Seed, 63.3, Nutrients 865 487.8 1467.0 483.4 99.1% 77.3 Manure, 63.7, Nutrients 3458 1951.4 1173.1 1173.1 60.1% 70.5 Wastewater, 58.8, Manure, Seed 1647 929.5 1725.7 742.1 79.8% 62.2 Wastewater, 5.2, Seed 783 441.7 110.0 0 0.0% 17.5 Manure, Seed 865 487.8 1292.5 308.9 63.3% #3,; *averaged value from lab duplicates 4.4 Summary All three case studies had respective correlating substrate characterizations and respirometer gas analyses. Substrate analyses for the Case A wastewater sample suggested a decent candidate for anaerobic treatment, with a neutral pH and a mid-range COD level with a high SCOD, though it would require nutrient amendment including nitrogen, phosphorus and alkalinity. This was confirmed by the respirometer results, achieving roughly 72% theoretical biogas potential (assuming 70% methane) and an average methane fraction of 69% from the wastewater/seed replicates. The difference in gas production rates between the wastewater/seed flasks and that with nutrients confirmed the benefit of nutrient amendment. 43 Substrate characterizations for Case 8 suggested a poor candidate for anaerobic treatment, mainly due to the dilute COD level in addition to low alkalinity and nutrient levels. Respirometer results were poor for both Case 8-1 and B-2. Percent TBP recovered was higher for B-1 than B-2, though these values may not be significant considering the background level from the de- ionized water were in the same range as the net biogas from wastewater. Though biogas production was limited, the average methane fraction (for the seeded wastewater flasks with and without nutrients) was 63% for 8-1 and 67% for 8-2. Wastewater and manure substrates were blended in Case C to optimize anaerobic treatment potential. The blended substrate had a near optimal COD/N ratio, compared with the nitrogen deficient wastewater and the nitrogen rich manure. Respirometer and gas chromatography test results were complex and inconsistent in this case. Based on the net biogas, biodegradation was improved by blending. While the manure/nutrients flask produced the highest net biogas, it had a lower volume than the manure/seed/nutrients per 30 mg COD of manure added. The percent TBP recovery suggests that manure was the better candidate, followed by the blended substrate and then the wastewater. Manure alone also had the highest methane fraction with an average of 70%, where the blended substrate had an average of 55% methane and the wastewater an average of 28% methane. Considering just the fruit processing wastewater C, anaerobic biodegradability was significantly improved by blending with liquid dairy manure. 44 4.5 Discussion Screening wastewater for anaerobic biogas potential is important because substrate characterization alone may not identify sources of inhibition. This was illustrated in Case C where manure exhibited an unstable gas production rate and cherry wastewater completely inhibited biogas production in the respirometer, for which there were no definitive indication from the substrate characterizations. This is especially true for the blended substrates which did not exhibit the explicit improvement in gas production as anticipated by the characterization results. Case C does not represent conditions as they would likely occur in the case of proposed blending circumstances. All processors (A, B and C), from whom samples were collected for testing, added their storm water to their plant wastewater and land applied this mixture. This may be acceptable practice for land application, but in pursuing anaerobic digestion storm water would be kept separated and other water minimization practices would likely be implemented to further concentrate the COD loading. Blending manure with a highly soluble COD waste stream could then potentially stabilize gas production. Wasted food product that does not meet specifications would also be much more concentrated and appropriate for supplemental blending perhaps. The experiments conducted to support this protocol development yielded interesting findings regarding the characteristics of fruit processing wastewater. For Cases A, 8-1 and 8-2, the cumulative gas curves from the optimized flasks (wastewater/seed/nutrients) exhibited a classic batch-system growth curve, i.e. 45 an initial lag period followed by a log inverse increase. Without nutrient amendment (wastewater/seed), the lag was increased in the slope of the growth curve was decreased. From the varied seed gas production rates among the respriometer trials, it is clear that anaerobic digestate activity can vary greatly (even from the same digester processing the same substrate over time). Therefore, it is important to note the relative seed activity so that inaccurate conclusions are not drawn regarding the substrate’s biodegradability. In developing the protocol, several procedural techniques were found that can impact results. This includes the ratio of substrate to seed in the respirometer flasks. There is little precedent set by previous literature as the majority of studies concern the treatment of municipal sludge or manure in which case the substrate being treated provides its own seed source. Cases A, 8-1 and 8-2 illustrate one option in which a set volume of substrate is added in proportion to a set volume of seed. The specific ratio may be adjusted to model a plug-flow anaerobic digester. Case C offers an alternative in which a substrate volume is selected to provide a specific amount of COD to each flask. This option allows more control in insuring an ample net biogas potential and the respirometer trial length. A subsequent question is whether to ration the nutrient solution in relation to the seed volume, the substrate volume or both. 46 CHAPTER 5: ANAEROBIC DIGESTION FEASIBILITY PROTOCOL 5.1 Protocol Overview Based on the lab results (Chapter 4) and several processing plant tours and interviews this protocol was revised to its current edition. Step-by-step instructions for the protocol are provided in Appendix H with supporting material in Appendices l and J. This protocol is intended to serve fruit and vegetable processors by analyzing a waste stream (substrate) to determine the applicability of anaerobic digestion as a treatment method and/or energy source. Food processors and area farmers pursuing a regional digester may also test wastewater-manure blends. An individual processor may be interested in installing a digester for the plant’s wastewater treatment or a group of processors and/or farmers may be organizing a regional digester. The protocol includes methods to assess a waste stream’s pretreatment and operating requirements, estimate biogas production using an anaerobic respirometer and analyze the subsequent methane fraction with gas chromatography. It provides recommendations for suitable methane applications. Processor objectives, wastewater parameters and respirometer results are considered to determine if further investigation such as a pilot-scale digester is appropriate. To facilitate the collection of pertinent information from the processor, assessment worksheets were developed based on literature and site-specific experience (see Appendix J). Conclusions for an individual processor may include a recommendation to consider a regional digester. 47 5.2 Plant Profile Several fruit and vegetable processors were interviewed to gain insight to important considerations for this screening procedure. Due to the seasonality of fruit and vegetables, processors commonly handle a variety of commodities throughout the year. Wastewater may widely fluctuate in flow, pH, COD strength and nutrient concentration, all of which can impact the stability of anaerobic digestion. Therefore, a critical step is to profile these changes throughout the year as accurately as possible. For the purpose of regulatory compliance, many processors keep record of monthly wastewater flows and its characteristics such as pH, BOD, macronutrients and some minerals. Wastewater regulations often require processors to monitor BOD, which reflects aerobic biodegradability; however, COD is easier to analyze and more appropriate for anaerobic applications and thus the reference test for this protocol as with most anaerobic literature. Once the wastewater profile is established, multiple samplings may be . needed for testing to represent high, low and average wastewater conditions. To maintain representative results, waste stream samples should be analyzed and set up in the respirometer as soon as possible. 5.3 Energy Potential Other important considerations for anaerobic treatment often include energy potential. Rough estimates of methane production and heating potential can be calculated based on the wastewater COD content. The theoretical 48 methane equivalence of 1 g COD is 395 mL CH4 at 35°C (or 350 mL CH4 at STP) (Speece, 1996). This converts to 12.66 GJ (12 MM Btu) per 1000 kg COD destroyed. Actual methane production will vary with reactor efficiency. Given a processor’s current cost for natural gas, and assumed reactor and boiler efficiencies, rough cost offsets from potential methane production can be calculated. This represents the maximum energy potential. If energy recovery is important to the processor and this value is too low, the opportunity for anaerobic digestion will be limited. 5.4 Substrate Characterization The COD to energy conversions described above do not account for variability in substrate biodegradability. To properly assess the potential for anaerobic treatment of a specific waste stream, several other parameters must be analyzed. In considering anaerobic treatment for a nutrient-deficient waste stream, the cost for nutrient amendment in full-scale operation should be weighed against potential cost offset by biogas production. Most food processing wastes may be lacking in trace metals such as iron, nickel, zinc and cobalt, which are known to be highly limiting of methanogenesis. If nutrient amendment is too costly, the opportunity to blend the waste stream in a regional digester should be considered and tested using this protocol. 49 5.5 Anaerobic Respirometer The ultimate step in the protocol is respirometer testing to analyze biogas potential and methane production. Testing different combinations of wastewater or blended substrate with seed and/or nutrient solution can provide information about the biodegradability of the wastewater. Comparison of the cumulative gas and gas production rate curves can show signs of inhibition, nutrient limitation and seeding requirements. Gas chromatography analysis of headspace samples can confirm the degree of biodegradation and methane production. From these considerations an educated assessment to pursue anaerobic treatment can be garnered. 50 CHAPTER 6: CONCLUSIONS 6.1 Conclusions The objectives of the project were successfully met. A general protocol was developed to pre-screen fruit and vegetable processing waste streams for anaerobic treatment using anaerobic respirometry. This protocol was tested under three conditions with distinguishing results indicating appropriate or inappropriate substrates for anaerobic treatment. 6.2 Future Applications There are several opportunities to improve and streamline the screening protocol for future applications. Characterizing the seed sample prior to respirometer testing including COD and volatile suspended solids would provide better insight to the seed biogas potential, as the experiments in this study showed great variability in the seed activity over time even from the same digester. A standard seed source maintained in the lab may provide the most benefit. A validation study of the protocol with a full-scale system is imperative and may incite further improvements in the protocol. It may be of interest to compare the respirometer method to the conventional serum bottle method. If an expanded respirometer of 16 or more reaction flasks were available, then it should be possible to run flask duplicates in which CO; is scrubbed out from one of each pair. This could allow for the gas counter to directly measure 51 methane production. Gas chromatography analyses would still be advisable to ensure carbon dioxide was fully removed and to confirm methane concentrations. 52 APPENDICES 53 APPENDIX A ANAEROBIC RESPIROMETER COMPONENTS 54 Figures A-1 through A-8 show the various components of the respirometer equipment. In Figure A-1 the stir plate is shown, upon which the water bath is placed in Figure A-2. The gap in the water bath lid provides space for the gas transport lines which connect the reaction flasks to the flow measuring cells. The heating/cooling unit is not yet connected to the water bath in this view. Figure A.2 Rear View of Water Bath on Stir Plate 55 Hose connections at the water bath are shown in Figure A-3. The left hose is the inlet line to the water bath; the right hose is the gravity return line to the heating/cooling unit. Figure A.3 Water Bath Hose Connections to Heating/Cooling Unit Flow rate through the water bath was adjusted by the blue handle seen on the heating/cooling unit’s left side (Figure A-4). The valve on top allows for the unit to be filled or drained. The water bath must be elevated above the unit to accommodate the gravity return line. 56 Figure A.4 Heating/Cooling Unit Set at 35°C Figures A-5 through A-7 illustrate the gas collection components. Arrows indicate the direction of gas flow. In Figure A-5, a syringe connected to the gas collection line is shown inserted into an empty reaction flask septum cap. The syringe is inserted into the septum cap at the thicker edge and at an angle to prevent strain, as per the manufacturer’s instructions. 57 Figure A.5 Empty Reaction Flask with Syringe and Gas Collection Line From the reaction flasks, gas flowed through the syringe and gas collection line to flow measuring cells. An individual flow measuring cell is shown removed from the base in Figure A-6. Gas flows from the reaction flask up the left tube, then through the cell oil in discrete bubbles of calibrated volume where they interrupt a laser counter (labeled in Figure A-6). The bubbles then flow out of the cell through the right tube to a common manifold and out the exhaust port. Figure A-7 shows all eight flow measuring cells connected to the center manifold. Tubing can be seen (as labeled in Figure A-7) connected to the exhaust port which led to a gas collection bag (not pictured) for safety. In Figure A-8, the reactions flasks are shown being stirred while in the water bath and connected to the flow measuring cells. An oxidation-reduction 58 Figure A.6 Individual Flow Measuring Cell indicator, resazurin, was added to each flask to indicate aerobic conditions. With no microbial activity in the de-ionized water, the resazurin is fully oxidized and a dark indigo color. Resazurin transitions to bright pink when minimal reduction occurs. This can be seen in flask 6 (top right corner, Figure A-8) containing wastewater and nutrients, which shows there is limited microbial activity though not fully anaerobic conditions. When fully reduced, the indicator is colorless as seen in the seeded flasks (1 through 5, the five flasks to the left in Figure A-8). If oxygen were present in the seeded flasks, the indicator would be oxidized and turn the solution a dark maroon color. 59 Exhaust tubing to gas collection bag n—m... -M “W... . W“.-. . _--... . Figure A.8 Case A Flasks in Water Bath 60 APPENDIX B SUBSTRATE CHARACTERIZATION ANALYSES — RAw DATA 61 Table 8.1 Case A Substrate Characterization Raw Data Dilution Original Reported Reporting Parameter Sample No. Factor Reading Value leit H 1 7.41 9 LD 1 7.20 Alkalinity 1 1 66 66 (mg/L CaCO3) , Blank 0.025 L 0.000 g 0 Total Solids (glL) 1 0.025 L 2.341;; 93.64 LD 1 0025 L 1.8881: 75.52 Standard COD (m 9M (1000 mglL) 1.00 1050 1050 2 0.25 1156 4624 Standard (392 m gIL P) 0.20 0.85 4.25 Total Phosphorus 1 025 OR OR 1 _10+ (mg/L P) 2 0.25 1.11 4.44 LD 2 0.25 1.00 4.00 Ammonia A&L BDL 0.10* (mg/L NH4-N) Nitrate + Nitrite [m /L N) A&L 0.40 TKN (rm/L N) A&L 24 Sulfide (mg/L) A&L BDL 1* Sulfate (mg/L S04) A&L 3 LD = Lab Duplicate OL = Over Limit BDL = Below Detection Limit 1: Liquid left in dish after 6 hours “ Upper limit * Lower limit 62 Table 8.2 Case 8 Substrate Characterization Raw Data Dilution Ori inal Re rted Re ortin Parameter Sample No. Factor Reagcang VZTue Eimit g 1 6.42 pH 2 6.52 3 6.62 Alkalinity 2 (mg/L CaCO3) 4 0. 0 11 55 Blank 0.025 L 0.0000 g 0.00 1 0.025 L 0.0251 g 1.00 Total Solids (g/L) 2 0.025 L 0.0255 9L 1.02 LD 2 0.025 L 0.0269 g 1.08 3 0.025 L 0.0261 g 1.04 Blank 0.025 L 0.00143 0.06 1 0.025 L 0.0198 g 0.79 Volatile Solids (glL) 2 0.025 L 0.0205 g 0.82 LD 2 0.025 L 0.0217 g 0.87 3 0.025 L 0.0215 5 0.86 Standard 1.00 1044 1044 (1000 mglL) COD ("'9“) 1 0.25 265 1060 2 0.25 280 1120 1 0.25 224 896 SCOD (mg/L) 2 0.25 239 956 L0 2 0.25 226 904 f f Standard (392 m g/L P) 0.20 0.73 3.65 Total Phosphorus 1 0.25 0.52 2.08 (mg/L P) LD 1 0.25 0.57 2.28 2 0.25 0.51 2.04 3 0.25 0.52 2.08 Ammonia ' A&L BDL 0.10* (mg/L NH4-N) Nitrate + Nitrite . (mg/L N) A&L BDL 0.05 TKN (mg/L N) A&L 6 Sulfide (rrig/L) A&L BDL 1* Sulfate (mg/L $04) A&L 28 L0 = Lab Duplicate OL = Over Limit BDL = Below Detection Limit + Upper limit * Lower limit 63 Table 8.3 Case C Wastewater Characterization Raw Data Dilution Ori inal Re rted Parameter Sample No. Factor Reagdin v2?“ pH 1 5.17 Blank 0.025 L 00006 -o,02 Total Solids (glL) 1 0.025 L 0,1223 4.89 LD 1 0.025 L 0.12319 4,95 Blank 0.025 L 0.0004 g 0.02 Volatile Solids (g/L) 1 0.025 L 01143 9 4,59 LD 1 0.025 L 0.1167 g 4.68 Standard coo (mg/L) (1000 mg IL) 1.00 1014 1014 1 0.25 1160 4640 2 0.25 1 142 4568 1 0.25 1047 4188 SCOD (mg/L) LD 1 0.25 1077 4308 Standard Total Phosphorus (3.92 mglL P) 0'20 ”5 3'25 (mg/L P) 2 0.25 0.92 3.68 . LD2 , 0.25 0.98 3.92 Ammonia A&L 2.02 (mg/L NH4-N) Nitrate + Nitrite ' ‘ (mg IL N) A&L 0.68 . T KN (mgL N) A&L 22 Sulfide (mg/L) A&L 1 Sulfate (mg/L $04) A&L 11 LD = Lab Duplicate Note: sample 1 was un-preserved; sample 2 was preserved with H2804 to pH < 2. 64 Table 8.4 Case C Manure Characterization Raw Data Dilution Original Reported Reporting Parameter Sample No. Factor Readin Value Limit . Blank See Case C Wastewater ma" S°"ds (9M 1 0.025 L [ 0.6665 9 1 26.66 . . Blank See Case C Wastewater V°'at"e S°"ds (9M 1 0.025 L 0.4111 g 16.44 Standard (a) (1000 mg@ 1.0 1014 1014 1 (a) 0.04 563 14,075 1 (a) 0.02 637 31.850 LD 1 (a) 0.02 566 28.300 Standard (0) COD (mg/L) (1000 mglL) 1.0 1024 1024 1 (b) 0.05 CL CL 1500+ LD1 (b) 0.05 1374 27,480 (33333333 1.0 1019 1019 1 (C) 0.05 1382 27,640 1 0.05 537 10,740 SCOD (mg/L) LD 1 0.05 546 10.920 Standard 7 Total phosphorus (3.92 mg/L P) 02° 0'65 3'25 (mg/L P) 1 0.10 CL CL 1.10+ 1 0.025 CL CL 1.10+ Ammonia A&L 1004 (mg/kg NH4-N) Nitrate (mg/kg N) A&L 2 TKN (mg/kg N) A&L 1673 Sulfide (mg/L) A&L 1 3 Sulfate (mg/L $04) A&L 681 L0 = Lab Duplicate OL = Over Limit " Upper limit (a), (b), (c) Corresponds given standard to sample(s). 65 APPENDIX C CASE C SUBSTRATE ALLOCATION CALCULATIONS 66 The Objective for Case C was to blend the cherry wastewater and dairy manure to an approximate COD/N Of 100/4.5 (approximated from Bouallagui et al., 2004b). In this case, only SCOD was considered, representing substrate readily available tO the microorganisms. TKN was considered for the nitrogen fraction, following Bouallagui et al. (2004b). From the SCOD and TKN values given in Table 4.1, the COD:N ratios are: Wastewater C (COD/N): 4248 l 23 100l0.517 Manure C (COD/N): 10830 / 1673 100/15.45 In the original blending calculations, the Wastewater C ratio was rounded to 100/0.52 and Manure C was rounded to 100l15. A target Of 1000 mg COD per flask was chosen to provide a significant net biogas volume when compared with the seed flask. TO achieve an approximate ratio of 100l4.5 from a blended substrate would require 720 mg Of Wastewater C and 280 mg Of Manure C. Wastewater: 720 mg COD *0.52 mg N I100 mg COD = 3.74 mg N Manure: 280 mg COD *15 mg N I 100 mg COD = 42. mg N Blended: (720 + 280) mg COD I (3.74 + 42.) mg N = 1000/45.74 COD/N = 100l4.57 67 TO set up the respirometer flasks, the wastewater and manure was measured out volumetrically. The fractions of milligrams COD were simply converted to milliliters. Wastewater: 720 mg COD / 4248 mg COD/L = 170 mL Manure: 280 mg COD / 10,830 mg COD/L = 26 mL The manure volume was rounded to 30 mL for ease Of measurement. This provided a blended substrate volume of 200 mL. The remaining flask volume was then 450 mL. At a seed to nutrient solution Of 4:1, this gave a seed volume of 90 mL and 360 mL Of nutrient solution. 68 APPENDIX D RESPIROMETER DATA 69 For Tables 0.1 through 0.8, the flask contents are abbreviated as follows: wastewater (W), manure (M), seed (8), nutrients (N), de-ionized water (DI) and replicate (rep). The ‘Cumulative Gas’ tables (Tables D1, D3, 05 and 0.7) contain data stored directly by the respirometer software. The ‘Gas Rate’ tables (Tables 0.2, DA, 06 and 0.8) contain the gas rate (mL/hr) calculated from the change in total gas (mL) over the given time count Of three or four hours. While the respirometer software updates and plots the gas production rate every ten seconds, it does not store this data, so this had to be recalculated from the stored cumulative gas data which was recorded in multiple-hour time steps. In Case A, the gas counter was reset at 13 hours when the water bath temperature and gas fluctuation had equilibrated, and data collection was changed from every 4 hours to every 3 hours. In Cases B-1, B-2 and C, the cumulative gas totals were recalculated after the acclimation period. This period was defined by a noted common decrease in the gas production rate consistent among all the flasks after an initial spike. Cumulative gas totals were recalculated from zero, and trial durations were retimed, starting at this point. 70 Table D1 Respirometer Raw Data: Case A Cumulative Gas Cumulative Gas from Flasks (mL) Da Time ws WS . V (m) wsu V:(WSN) s (rep A) (rep 6) WM DI Date 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4/5/07 0 0.00 0.04 0.13 0.09 0.13 0.00 0.09 4/5/07 4 9.36 7.55 9.28 10.37 11.23 5.28 6.31 4/6/07 6 12.06 6.22 10.08 12.41 13.54 5.67 6.40 4/6/07 12 14.19 6.56 11.77 14.54 15.65 5.96 6.56 4/6/07 13 14.64 6.67 12.22 14.99 16.34 5.96 6.62 4/6/07 0.00 16 1.62 0.40 1.47 1.45 1.65 0.00 0.16 4/6/07 0.13 19 3.26 0.76 2.94 2.65 3.11 0.00 0.36 4/6/07 0.25 22 4.69 0.96 4.24 4.06 4.44 0.00 0.40 4/6/07 0.36 25 6.51 1.16 5.53 5.30 5.77 0.00 0.40 4/6/07 0.50 26 7.95 1.43 6.73 6.57 7.33 0.00 0.40 4/7/07 0.63 31 9.47 1.66 6.16 6.11 6.97 0.00 0.49 4/7/07 0.75 34 10.96 2.41 9.59 9.60 10.61 0.18 0.63 4/7/07 0.66 37 12.39 2.66 10.93 10.67 11.94 0.27 0.67 4/7/07 1.00 40 13.69 3.22 12.13 11.67 13.10 0.27 0.67 4/7/07 1.13 43 15.31 3.67 13.60 13.05 14.21 0.27 0.67 4/7/07 1.25 46 16.79 3.64 14.65 14.04 15.41 0.27 0.67 4/7/07 1.36 49 16.32 3.96 16.01 14.68 16.56 0.27 0.67 4/7/07 1.50 52 20.03 4.20 17.35 16.04 17.60 0.27 0.67 4/8/07 1.63 55 21.91 4.60 16.73 17.35 19.23 0.27 0.67 4/6/07 1,75 56 23.60 4.67 19.96 16.57 20.60 0.27 0.67 4/6/07 1.88 61 25.66 5.19 21.23 19.60 21.69 0.27 0.67 4/8/07 2.00 64 27.64 5.54 22.52 21.11 23.31 0.27 0.67 4/6/07 2,13 67 29.66 5.99 23.62 22.42 24.76 0.27 0.67 4/8/07 2.25 70 32.10 6.39 25.15 23.76 26.24 0.27 0.67 4/6/07 2.36 73 34.30 6.75 26.40 25.05 27.57 0.27 0.67 4/6/07 2.50 76 36.62 7.24 27.74 26.46 28.95 0.27 0.67 4/9/07 2.63 79 39.29 7.76 29.03 27.66 30.41 0.27 0.67 4/9/07 2.75 62 41.65 6.31 30.37 29.06 31.97 0.27 0.67 4/9/07 2.88 85 44.41 6.90 31.71 30.53 33.43 0.27 0.67 4/9/07 3.00 66 47.06 9.57 33.09 32.03 34.90 0.27 0.67 4/9/07 3.13 91 50.06 10.55 34.70 33.70 36.67 0.27 0.67 4/9/07 3.25 94 53.03 11.44 36.22 35.24 36.32 0.27 0.67 4/9/07 3.36 97 55.72 12.11 37.51 36.65 39.60 0.27 0.67 4/9/07 3.50 100 56.55 12.92 39.03 36.10 41.25 0.27 0.67 4/10/07 3.63 103 61.33 13.66 40.45 39.55 42.76 0.27 0.67 4/10/07 3.75 106 64.21 14.39 41.66 40.91 44.16 0.27 0.67 4/10/07 3.66 109 66.66 15.11 43.26 41.90 45.47 0.27 0.67 4/10/07 4.00 112 69.62 16.00 44.62 43.53 47.02 0.27 0.76 4/10/07 4,13 115 73.10 17.03 46.61 45.16 46.75 0.27 1.12 4/10/07 4.25 116 76.29 16.10 46.44 46.79 50.39 0.27 1.39 4/10/07 4.36 121 79.43 19.09 50.16 46.34 51.99 0.27 1.57 4/10/07 4.50 124 62.57 20.03 51.91 49.69 53.46 0.27 1.71 4/11/07 71 Table D1 continued 4,63 127 86.03 21.14 53.88 51.32 55.19 0.27 2.02 4/11/07 4.75 130 89.53 22.26 55.88 52.87 56.61 0.27 2.25 4/11/07 4,88 133 93.21 23.47 58.07 54.54 58.30 0.27 2.56 4/11/07 5.00 136 97.34 24.99 60.52 56.44 60.25 0.27 3.10 4/11/07 5.13 139 101.56 26.51 62.93 58.35 62.25 1.05 3.64 4/11/07 5.25 142 105.65 27.89 65.34 60.11 64.11 1.55 4.09 4/11l07 5,38 145 109.96 29.32 67.75 61.88 65.89 1.96 4.49 4/11/07 5,50 148 114.41 30.80 70.29 63.65 67.80 2.46 4.98 4/12/07 5,63 151 118.76 32.14 72.74 65.32 69.49 2.78 5.25 4/12/07 5.75 154 122.85 33.35 75.11 66.77 70.55 2.87 5.34 4/12/07 5,88 157 126.62 34.33 77.29 68.00 72.11 2.87 5.34 4/12/07 6.00 160 130.48 35.49 79.66 69.40 73.53 2.87 5.34 4/12/07 6.13 163 134.25 36.56 82.02 70.62 74.86 2.87 5.34 4/12/07 6.25 166 137.89 37.59 84.38 71.85 76.15 2.87 5.34 4/12/07 6.38 169 141.61 38.75 86.79 73.11 77.48 2.87 5.34 4/12/07 6.50 172 145.70 40.19 89.56 74.61 79.21 2.87 5.34 4/13/07 6,63 175 149.83 41.62 92.41 76.19 80.99 2.87 5.34 4/13/07 675 178 154.01 43.09 95.27 77.73 82.67 2.87 5.34 4/13/07 6.88 181 158.23 44.61 98.12 79.32 84.36 2.87 5.34 4/13/07 7,00 184 162.94 46.35 101.29 81.18 86.36 2.87 5.34 4/13/07 7,13 187 168.06 48.37 104.85 83.31 88.36 2.87 5.34 4/13/07 7,25 190 172.51 50.24 108.47 85.48 90.89 2.87 5.34 4/13/07 7,38 193 177.62 52.08 112.08 87.52 93.20 2.87 5.34 4/13/07 7,50 196 183.15 54.13 115.96 89.88 95.77 2.87 5.34 4/14/07 7,63 199 188.80 56.32 119.97 92.37 98.43 2.87 5.34 4/14/07 7,75 202 194.46 58.56 124.03 94.86 101.14 2.87 5.34 4/14/07 7,88 205 200.16 60.84 128.18 97.35 103.94 2.87 5.34 4/14/07 8,00 208 205.87 63.07 132.37 100.02 106.78 2.87 5.34 4/14/07 8,13 211 212.06 65.80 137.10 103.24 110.20 2.87 5.34 4/14/07 8,25 214 217.94 68.26 141.56 106.23 113.31 2.87 5.34 4/14/07 8,38 217 223.60 70.58 146.02 109.22 116.15 2.87 5.34 4/14/07 8,50 220 229.39 73.00 150.66 112.30 119.39 2.87 5.34 4/15/07 8,63 223 234.83 75.41 155. 30 115.38 122.59 2.87 5.34 4/15/07 875 226 240.66 77.82 160.02 118.50 126.05 2.87 5.34 4/15l07 8.88 229 246.37 80.15 164.71 121.63 129.29 2.87 5.34 4/15/07 900 232 252.29 82.56 169.48 124.94 132.93 2.87 5.70 4/15/07 9.13 235 258.44 85.15 174.61 128.52 136.75 3.64 6.47 4/15/07 9.25 238 264.60 87.57 179.60 132.05 140.39 4.14 6.96 4/15/07 9,38 241 270.70 89.80 184.42 135.49 143.99 4.46 7.23 4/15/07 9,50 244 277.03 92.13 189.33 138.98 147.72 4.82 7.54 4/16/07 9,63 247 283.63 94.59 194.41 142.69 151.49 5.19 7.95 4/16/07 9.75 250 290.28 96.95 199.32 146.27 155.31 5.46 8.17 4/16/07 9.88 253 297.10 99.41 204.40 149.99 159.31 5.73 8.49 4/16/07 10.00 256 304.11 101.96 208.33 153.61 163.48 6.10 8.85 4/16/07 10,13 259 311.43 104.69 212.83 157.69 168.01 6.60 9.34 4/16/07 10,25 262 318.92 107.41 217.51 161.77 172.45 6.96 9.70 4/16/07 10,38 265 326.24 110.01 221.89 165.71 176.76 7.14 9.88 4/16/07 72 Table D1 continued 10.50 268 333.74 112.69 226.30 169.74 181.20 7.42 10.15 4/17/07 10.63 271 341.82 115.68 231.07 174.13 185.95 7.83 10.51 4/17/07 10.75 274 349.50 118.63 235.62 178.39 190.65 8.10 10.78 4/17/07 10,88 277 357.31 121.58 239.99 182.60 195.27 8.24 10.96 4/17/07 11,00 280 365.53 124.85 244.41 187.13 200.20 8.69 11.40 4/17/07 11.13 283 373.97 128.24 248.82 191.80 205.31 9.15 11.85 4/17/07 11,25 286 382.50 131.73 253.60 196.42 210.23 9.60 12.26 4/17/07 11,38 289 391.08 135.17 258.55 201.04 215.21 9.87 12.57 4/17/07 11,50 292 399.88 138.70 263.41 205.48 220.22 10.19 12.84 4/18/07 11,63 295 409.08 142.46 268.31 210.06 225.42 10.60 13.20 4/18/07 11.75 298 418.33 146.30 273.09 214.50 230.44 10.92 13.51 4/18/07 11,88 301 427.63 150.15 277.81 218.80 235.32 11.15 13.74 4/18/07 12,00 304 437.15 154.13 282.76 223.01 240.20 11.38 14.01 4/18/07 12,13 307 446.75 158.19 287.89 227.36 245.09 11.78 14.41 4118/07 12.25 310 456.45 162.31 292.62 231.62 249.71 12.06 14.68 4l18/07 12,38 313 466.20 166.42 297.30 235.88 254.19 12.29 14.91 4/18/07 12,50 316 475.98 170.66 301.90 240.18 258.76 12.60 15.22 4/19/07 12,63 319 485.95 175.09 306.58 244.57 263.34 12.92 15.49 4/19/07 12.75 322 495.74 179.56 311.13 248.88 267.91 13.20 15.76 4/19/07 12.88 325 505.35 184.03 315.55 253.27 272.35 13.24 15.85 4/19/07 13,00 328 514.91 188.59 319.92 257.80 276.97 13.56 16.16 4119/07 13,13 331 524.61 193.55 324.55 262.60 281.90 14.01 16.57 4/19/07 13,25 334 533.73 198.33 328.93 267.27 285.94 14.24 16.79 4/19/07 13,38 337 542.30 203.16 333.12 271.80 291.00 14.38 16.93 4/19l07 13,50 340 550.34 208.12 337.31 276.42 295.57 14.56 17.11 4/20/07 13,63 343 556.54 213.13 341.50 281.04 300.32 14.79 17.29 4/20/07 13.75 346 560.40 218.14 345.61 285.75 305.12 14.97 17.47 4/20/07 13.88 349 562.46 223.01 349.49 290.06 309.69 14.97 17.47 4/20/07 14,00 352 563.72 228.10 353.59 294.90 314.62 15.29 17.74 4/20/07 14,13 355 564.53 233.29 357.69 299.93 319.72 15.74 18.18 4/20/07 14,25 358 565.20 238.52 361.75 304.96 324.92 16.20 18.59 4/20/07 14,38 361 565.61 243.39 365.54 309.76 329.80 16.47 18.90 4/20/07 14,50 364 566.05 248.26 369.15 314.52 334.78 16.79 19.13 4/21/07 14.63 367 566.50 252.87 372.63 319.23 339.70 17.02 19.35 4/21/07 14.75 370 567.00 257.03 375.84 323.99 344.63 17.24 19.58 4/21/07 14,88 373 567.49 260.38 378.83 328.65 349.47 17.43 19.67 4/21/07 15.00 376 568.39 263.06 381.91 333.59 354.62 17.84 20.12 4/21/07 15.13 379 569.38 265.07 384.76 338.66 359.73 18.38 20.61 4/21/07 15.25 382 570.41 266.64 387.40 343.74 364.92 18.88 21.10 4/21/07 15.38 385 571.22 267.66 389.67 348.54 369.99 19.20 21.37 4/21/07 15.50 388 571.94 268.56 391.81 353.34 375.00 19.47 21.69 4/22/07 15,63 391 572.83 269.36 393.91 358.19 380.06 19.88 22.05 4/22/07 15.75 394 573.51 269.81 395.74 362.67 384.86 20.07 22.23 4/22/07 15,88 397 574.14 270.17 397.48 367.20 389.48 20.07 22.23 4/22/07 16,00 400 575.21 270.84 399.53 372.05 394.63 20.38 22.58 4/22/07 16,13 403 576.47 271.55 401.67 377.03 399.82 20.98 23.17 4/22/07 16,25 406 577.77 272.27 403.76 381.97 404.97 21.57 23.71 4/22/07 73 Table 0.1 continued 16.38 409 578.94 272.71 405.64 386.64 409.86 21.89 24.02 4/22/07 16,50 412 580.11 273.07 407.47 391.12 414.25 22.25 24.34 4/23/07 16,63 415 581.59 273.56 409.43 395.79 419.09 22.70 24.78 4/23/07 16,75 418 583.03 274.06 411.44 400.32 424.02 23.21 25.19 4/23/07 16,88 421 584.01 274.32 413.17 404.62 428.46 23.30 25.37 4/23/07 17,00 424 584.96 274.64 415.05 408.92 432.99 23.66 25.68 4/23/07 17,13 427 585.36 274.73 416.61 412.86 437.03 23.75 25.82 4/23/07 17,25 430 585.36 274.73 418.08 416.53 440.80 23.75 25.82 4/23/07 17,38 433 585.36 274.73 419.37 419.89 444.27 23.75 25.82 4/23/07 17.50 436 585.36 274.73 420.80 423.19 447.77 23.75 25.82 4/24/07 17.63 439 585.36 274.73 422.36 426.50 451.19 23.75 25.82 4/24/07 17,75 442 585.36 274.73 423.97 429.58 454.35 23.75 25.82 4/24/07 17,88 445 585.36 274.73 425.48 432.39 457.32 23.75 25.82 4/24/07 18.00 448 585.36 274.73 427.18 435.11 460.25 23.75 25.82 4/24/07 18,13 451 585.41 274.73 428.96 437.64 462.96 23.75 25.82 4/24/07 18,25 454 585.54 274.73 430.79 439.95 465.40 23.75 25.82 4/24/07 18,38 457 585.59 274.73 432.53 442.04 467.53 23.75 25.82 4/24/07 18,50 460 585.59 274.73 434.18 443.94 469.62 23.75 25.82 4l25107 18,63 463 585.59 274.73 435.92 445.89 471.66 23.75 25.82 4/25/07 18,75 466 585.59 274.73 437.66 447.79 473.66 23.75 25.82 4/25/07 18,88 469 585.59 274.73 439.27 449.47 475.39 23.75 25.82 4/25/07 19,00 472 585.59 274.73 441.09 451.41 477.48 23.75 25.82 4/25/07 19,13 475 585.63 274.73 442.7 453.09 479.25 23.75 25.82 4/25/07 19.25 478 585.63 274.73 444.35 454.81 481.03 23.75 25.82 4/25/07 19,38 481 585.63 274.73 445.91 456.44 482.76 23.75 25.82 4/25/07 19,50 484 585.63 274.73 447.74 458.3 484.71 23.75 25.82 4/26/07 19,63 487 585.72 274.73 449.48 460.2 486.71 24.02 26.04 4/26/07 19,75 490 585.90 274.73 451.22 462.06 488.67 24.48 26.49 4/26/07 19.88 493 585.99 274.73 452.91 463.78 490.62 24.89 26.9 4/26/07 20,00 496 586.12 274.73 454.65 465.64 492.66 25.34 27.34 4/26/07 20.13 499 586.30 274.73 456.35 467.54 494.66 25.8 27.75 4/26/07 20,25 502 586.39 274.73 458.04 469.4 496.7 26.21 28.11 4/26/07 20,38 505 586.48 274.73 459.42 471.26 498.66 26.57 28.47 4/26/07 20.50 508 586.66 274.73 461.12 473.16 500.7 26.98 28.83 4/27/07 20.63 511 586.75 274.73 462.68 474.97 502.47 27.25 29.1 4/27/07 20.75 514 586.80 274.73 464.11 476.65 504.3 27.44 29.23 4/27/07 20.88 517 586.80 274.73 465.31 478.19 505.76 27.44 29.23 4/27/07 21,00 520 586.80 274.73 466.56 479.68 507.36 27.44 29.23 4/27/07 21,13 523 586.80 274.73 467.76 481.22 509 27.44 29.23 4/27/07 21.25 526 586.80 274.73 468.97 482.81 510.64 27.44 29.23 4/27/07 21.38 529 586.80 274.73 470.13 484.35 512.24 27.44 29.23 4/27/07 21.50 532 586.80 274.73 471.38 485.98 513.97 27.44 29.23 4/28/07 21.63 535 586.80 274.73 472.67 487.7 515.66 27.44 29.23 4/28/07 21.75 538 586.80 274.73 473.88 489.38 517.48 27.44 29.23 4/28/07 21,88 541 586.80 274.73 474.99 491.01 519.17 27.44 29.23 4/28/07 22.00 544 586.80 274.73 476.24 492.77 520.95 27.44 29.23 4/28/07 22.13 547 586.93 274.73 477.58 494.59 522.9 27.44 29.23 4/28/07 74 Table 0.1 continued 22.25 550 587.02 274.73 478.78 496.31 524.63 27.44 29.23 4/28/07 22.38 553 587.07 274.73 479.9 497.89 526.27 27.44 29.23 4/28/07 22.50 556 587.07 274.86 480.88 499.25 527.74 27.44 29.23 4/29/07 22,63 559 587.07 274.86 481.86 500.7 529.25 27.44 29.23 4/29/07 22,75 562 587.07 274.86 482.88 502.15 530.76 27.44 29.23 4/29/07 22,88 565 587.07 274.86 483.78 503.51 532.09 27.44 29.23 4/29/07 23.00 568 587.29 274.86 484.94 505.14 533.73 27.44 29.23 4/29/07 23.13 571 587.74 274.86 486.36 507.04 535.77 27.44 29.23 4/29/07 23,25 574 588.37 274.99 487.75 508.99 537.82 27.66 29.23 4/29/07 23.38 577 588.86 274.99 488.99 510.8 539.73 28.16 29.23 4l29/07 23.50 580 589.45 274.99 490.24 512.57 541.68 28.71 29.32 4/30/07 23,63 583 589.54 275.04 490.91 513.75 542.88 28.71 29.36 4/30/07 23.75 586 589.76 275.04 491.72 515.02 544.21 28.71 29.36 4/30/07 23.88 589 590.12 275.04 492.52 516.33 545.41 28.71 29.36 4/30/07 24,00 592 590.66 275.04 493.45 517.73 546.96 28.71 29.36 4/30/07 24.13 595 591.38 275.04 494.52 519.36 548.74 28.71 29.36 4/30/07 24.25 598 592.19 275.04 495.68 521.09 550.56 28.71 29.36 4/30/07 24.38 601 592.72 275.04 496.44 522.35 551.85 28.71 29.36 4/30/07 24,50 604 593.62 275.04 497.56 524.03 553.76 28.76 29.36 5l1/07 24.63 607 594.52 275.04 498.67 525.75 555.53 29.3 29.36 5/1/07 24,75 610 595.19 275.04 499.56 527.29 557.13 29.53 29.36 5/1/07 24,88 613 595.82 275.04 500.37 528.74 558.64 29.67 29.36 5/1/07 25.00 616 596.95 275.04 501.3 530.46 560.59 30.17 29.41 5/1/07 25.13 619 597.93 275.13 502.46 532.18 562.46 30.62 29.86 5/1/07 25.25 622 598.74 275.13 503.49 533.82 564.19 30.99 30.13 5/1/07 25,38 625 599.15 275.35 504.16 535.13 565.52 31.03 30.17 5/1/07 25,50 628 599.64 275.35 504.92 536.53 566.99 31.21 30.17 5/2/07 25,63 631 599.95 275.35 505.59 537.85 568.45 31.35 30.17 5/2/07 25.75 634 600.18 275.35 506.17 539.16 569.83 31.44 30.17 5/2/07 25.88 637 600.27 275.35 506.66 540.38 571.07 31.44 30.17 5/2/07 26.00 640 600.36 275.35 507.24 541.74 572.45 31.49 30.17 5/2/07 26.13 643 600.72 275.35 507.86 543.19 574 31.71 30.17 5/2/07 26,25 646 601.03 275.35 508.48 544.69 575.6 32.03 30.17 5/2/07 26,38 649 601.12 275.35 508.93 546 576.67 32.08 30.17 5/2/07 26,50 652 601.17 275.35 509.38 547.36 578.31 32.31 30.17 5/3/07 26,63 655 601.17 275.35 509.78 548.72 579.86 32.53 30.17 5/3/07 26.75 658 601 . 17 275.35 510.09 550.12 581.33 32.76 30.17 5/3/07 26.88 661 601.17 275.35 510.27 551.21 582.66 32.85 30.17 5/3/07 27.00 664 601.17 275.35 510.58 552.8 584.17 33.17 30.17 5/3/07 27.13 667 601.26 275.35 510.94 554.38 585.86 33.58 30.17 5/3/07 27.25 670 601.35 275.35 51 1.25 555.92 587.55 33.99 30.17 5123/07 27.38 673 601.39 275. 35 51 1.38 557.33 588.97 34.22 30.17 5/3/07 27.50 676 601.39 275.35 511.43 558.59 590.34 34.49 30.17 5/4/07 27.63 679 601.39 275.35 511.47 560 591.85 34.81 30.17 5/4l07 27,75 682 601.44 275.35 511.52 561.4 593.36 35.13 30.17 514107 27.88 685 601.44 275.35 511.52 562.67 594.65 35.31 30.17 5/4/07 28.00 688 601.44 275.35 511.56 564.03 595.76 35.72 30.17 5/4/07 75 Table D1 continued 28.13 691 601.62 275.53 511.7 565.71 597.45 36.31 30.17 5/4/07 28,25 694 601.70 275.53 511.96 567.2 599 36.76 30.17 5/4/07 28,38 697 601.84 275.53 512.01 568.65 600.33 37.04 30.17 5/4/07 28,50 700 601.84 275.53 512.01 569.92 601.66 37.36 30.17 5/5/07 28,63 703 601.84 275.53 512.01 571.28 603.09 37.72 30.17 5/5/07 28.75 706 601.93 275.53 512.01 572.59 604.42 38.08 30.17 5/5/07 28,88 709 601.93 275.53 512.01 573.77 605.44 38.31 30.17 5/5/07 29,00 712 601.93 275.53 512.01 575.04 606.64 38.58 30.17 5/5/07 29,13 715 601.93 275.58 512.01 576.17 607.75 38.86 30.17 5/5/07 29.25 718 601.93 275.75 512.01 577.21 608.77 39.04 30.17 5/5/07 29,38 721 601.93 275.75 512.01 578.16 609.66 39.18 30.17 5/5/07 29.50 724 601.93 275.75 512.01 579.02 610.41 39.22 30.17 5/6/07 29,63 727 601.93 275.75 512.01 579.84 611.08 39.31 30.17 5/6/07 29,75 730 601.93 275.75 512.01 580.93 612.05 39.68 30.17 5/6/07 29,88 733 601.93 275.75 512.01 581.65 612.45 39.72 30.17 5/6/07 30,00 736 601.93 275.75 512.01 582.65 613.25 39.9 30.17 5/6/07 30,13 739 601.93 275.75 512.01 583.74 614.14 40.36 30.17 5/6/07 30.25 742 601.93 275.75 512.01 584.82 614.94 40.81 30.17 5/6/07 30,38 745 601.93 275.75 512.01 585.73 615.43 41.04 30.17 5/6/07 30.50 748 601.97 275.75 512.01 586.32 616.01 41.5 30.17 5/7/07 30,63 751 602.15 275.75 512.01 587.36 616.49 41.86 30.17 5/7/07 30,75 754 602.33 275.75 512.01 588.13 616.94 42.22 30.17 5/7/07 30,88 757 602.33 275.75 512.01 588.54 616.98 42.22 30.17 5/7/07 31,00 760 602.47 275.75 512.01 589.22 617.43 42.68 30.17 5/7/07 31.13 763 602.78 275.75 512.01 590.03 617.91 43.22 30.17 5/7/07 31,25 766 603.05 275.75 512.01 590.62 618.27 43.68 30.17 5/7/07 31,38 769 603.28 275.75 512.01 591.07 618.49 44 30.17 5/7/07 31,50 772 603.37 275.75 512.01 591.35 618.54 44.27 30.17 5/8/07 31,63 775 603.50 275.75 512.01 591.71 618.58 44.64 30.31 5/8/07 31.75 778 603.73 275.75 512.01 591.89 618.85 44.82 30.44 5/8/07 31,88 781 603.73 275.75 512.01 591.94 618.85 44.82 30.44 5/8/07 32,00 784 603.73 275.75 512.01 592.03 618.85 44.95 30.44 5/8/07 32.13 787 603.95 275.75 512.01 592.21 618.85 45.23 30.67 5/8/07 32,25 790 604.22 275.75 512.01 592.3 618.85 45.5 30.89 5/8/07 32.38 793 604.31 275.75 512.01 592.3 618.85 45.59 30.94 5/8/07 32.50 796 604.31 275.75 512.01 592.3 618.85 45.59 30.94 5/9/07 32,63 799 604.49 275.75 512.01 592.3 618.85 45.77 31.07 5/9/07 32.75 802 604.67 275.75 512.01 592.3 618.85 45.82 31.21 5/9l07 32,88 805 604.67 275.75 512.01 592.3 618.85 45.82 31.21 5/9/07 33,00 808 604.71 275.75 512.01 592.3 618.85 45.82 31.21 5/9/07 33.13 811 604.80 275.75 512.01 592.3 618.85 45.82 31.21 5/9/07 33.25 814 604.98 275.75 512.01 592.3 618.85 45.82 31.21 5/9/07 33.38 817 605.21 275.75 512.01 592.3 618.85 45.82 31.21 5/9/07 33.50 820 605.30 275.75 512.01 592.3 618.85 45.82 31.21 5/10/07 33,63 823 605.48 275.75 512.01 592.3 618.85 45.82 31.21 5/10/07 33.75 826 605.57 275.75 512.01 592.3 618.85 45.82 31.21 5/10/07 33,88 829 605.70 275.75 512.01 592.3 618.85 45.82 31.21 5/10/07 76 Table 0.2 Respirometer Calculated Data: Case A Gas Production Rate Gas Production Rate (mUhr) Time W8 W8 Day (h n) WSN ‘lz (WSN) 8 (rep A) (rep 8) WM DI 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00 0.04 0.13 0.09 0.13 0.00 0.09 4 2.34 1.88 2.29 2.57 2.77 1.32 2.05 8 0.68 0.17 0.20 0.51 0.58 0.15 0.02 12 0.53 0.09 0.42 0.53 0.58 0.02 0.04 13 0.47 0.09 0.47 0.47 0.51 0.00 0.04 0.00 16 0.54 0.13 0.49 0.48 0.52 0.00 0.06 0.13 19 0.55 0.12 0.49 0.47 0.52 0.00 0.06 0.25 22 0.54 0.07 0.43 0.41 0.44 0.00 0.01 0.38 25 0.54 0.06 0.43 0.41 0.44 0.00 0.00 0.50 28 0.48 0.09 0.40 0.42 0.52 0.00 0.00 0.63 31 0.51 0.15 0.48 0.51 0.55 0.00 0.03 0.75 34 0.50 0.18 0.48 0.50 0.55 0.06 0.05 0.88 37 0.48 0.15 0.45 0.42 0.44 0.03 0.01 1.00 40 0.43 0.12 0.40 0.33 0.39 0.00 0.00 1.13 43 0.54 0.15 0.49 0.39 0.37 0.00 0.00 1.25 46 0.49 0.06 0.42 0.33 0.40 0.00 0.00 1.38 49 0.51 0.05 0.39 0.21 0.38 0.00 0.00 1.50 52 0.57 0.07 0.45 0.45 0.41 0.00 0.00 1.63 55 0.63 0.13 0.46 0.44 0.48 0.00 0.00 1.75 58 0.63 0.09 0.42 0.41 0.46 0.00 0.00 1.88 61 0.63 0.11 0.42 0.41 0.43 0.00 0.00 2.00 64 0.72 0.12 0.43 0.44 0.47 0.00 0.00 2.13 67 0.67 0.15 0.43 0.44 0.49 0.00 0.00 2.25 70 0.75 0.13 0.44 0.45 0.49 0.00 0.00 2.38 73 0.73 0.12 0.42 0.42 0.44 0.00 0.00 2.50 76 0.84 0.16 0.45 0.47 0.46 0.00 0.00 2.63 79 0.82 0.18 0.43 0.47 0.49 0.00 0.00 2.75 82 0.85 0.18 0.45 0.41 0.52 0.00 0.00 2.88 85 0.85 0.20 0.45 0.48 0.49 0.00 0.00 3.00 88 0.89 0.22 0.46 0.50 0.49 0.00 0.00 3.13 91 1.00 0.33 0.54 0.56 0.59 0.00 0.00 3.25 94 0.99 0.30 0.51 0.51 0.55 0.00 0.00 3.38 97 0.90 0.22 0.43 0.47 0.43 0.00 0.00 3.50 100 0.94 0.27 0.51 0.48 0.55 0.00 0.00 3.63 103 0.93 0.25 0.47 0.48 0.50 0.00 0.00 3.75 106 0.96 0.24 0.48 0.45 0.47 0.00 0.00 3.88 109 0.88 0.24 0.46 0.33 0.43 0.00 0.00 4.00 112 0.99 0.30 0.52 0.54 0.52 0.00 0.03 4.13 115 1.09 0.34 0.60 0.54 0.58 0.00 0.12 4.25 118 1.06 0.36 0.61 0.54 0.55 0.00 0.09 4.38 121 1.05 0.33 0.58 0.52 0.53 0.00 0.06 77 Table 02 continued 4.50 124 1.05 0.31 0.58 0.45 0.49 0.00 0.05 4.63 127 1.15 0.37 0.66 0.54 0.58 0.00 0.10 4.75 130 1.17 0.37 0.67 0.52 0.47 0.00 0.08 4.88 133 1.23 0.40 0.73 0.56 0.56 0.00 0.10 5.00 136 1.38 0.51 0.82 0.63 0.65 0.00 0.18 5.13 139 1.41 0.51 0.80 0.64 0.67 0.26 0.18 5.25 142 1.36 0.46 0.80 0.59 0.62 0.17 0.15 5.38 145 1.44 0.48 0.80 0.59 0.59 0.14 0.13 5.50 148 1.48 0.49 0.85 0.59 0.64 0.17 0.16 5.63 151 1.45 0.45 0.82 0.56 0.56 0.11 0.09 5.75 154 1.36 0.40 0.79 0.48 0.35 0.03 0.03 5.88 157 1.26 0.33 0.73 0.41 0.52 0.00 0.00 6.00 160 1.29 0.39 0.79 0.47 0.47 0.00 0.00 6.13 163 1.26 0.36 0.79 0.41 0.44 0.00 0.00 6.25 166 1.21 0.34 0.79 0.41 0.43 0.00 0.00 6.38 169 1.24 0.39 0.80 0.42 0.44 0.00 0.00 6.50 172 1.36 0.48 0.92 0.50 0.58 0.00 0.00 6.63 175 1.38 0.48 0.95 0.53 0.59 0.00 0.00 6.75 178 1.39 0.49 0.95 0.51 0.56 0.00 0.00 6.88 181 1.41 0.51 0.95 0.53 0.56 0.00 0.00 7.00 184 1.57 0.58 1.06 0.62 0.67 0.00 0.00 7.13 187 1.72 0.68 1.19 0.71 0.67 0.00 0.00 7.25 190 1.48 0.62 1.21 0.72 0.84 0.00 0.00 7.38 193 1.70 0.61 1.20 0.68 0.77 0.00 0.00 7.50 196 1.84 0.68 1.29 0.79 0.86 0.00 0.00 7.63 199 1.88 0.73 1.34 0.83 0.89 0.00 0.00 7.75 202 1.89 0.75 1.35 0.83 0.90 0.00 0.00 7.88 205 1.90 0.76 1.38 0.83 0.93 0.00 0.00 8.00 208 1.90 0.74 1.40 0.89 0.95 0.00 0.00 8.13 211 2.06 0.91 1.58 1.07 1.14 0.00 0.00 8.25 214 1.96 0.82 1.49 1.00 1.04 0.00 0.00 8.38 217 1.89 0.77 1.49 1.00 0.95 0.00 0.00 8.50 220 1.93 0.81 1.55 1.03 1.08 0.00 0.00 8.63 223 1.81 0.80 1.55 1.03 1.07 0.00 0.00 8.75 226 1.94 0.80 1.57 1.04 1.15 0.00 0.00 8.88 229 1.90 0.78 1.56 1.04 1.08 0.00 0.00 9.00 232 1.97 0.80 1.59 1.10 1.21 0.00 0.12 9.13 235 2.05 0.86 1.71 1.19 1.27 0.26 0.26 9.25 238 2.05 0.81 1.66 1.18 1.21 0.17 0.16 9.38 241 2.03 0.74 1.61 1.15 1.20 0.11 0.09 9.50 244 2.11 0.78 1.64 1.16 1.24 0.12 0.10 9.63 247 2.20 0.82 1.69 1.24 1.26 0.12 0.14 9.75 250 2.22 0.79 1.64 1.19 1.27 0.09 0.07 9.88 253 2.27 0.82 1.69 1.24 1.33 0.09 0.11 10.00 256 2.34 0.85 1.31 1.21 1.39 0.12 0.12 78 Table 02 continued 10.13 259 2.44 0.91 1.50 1.36 1.51 0.17 0.16 10.25 262 2.50 0.91 1.56 1.36 1.48 0.12 0.12 10.38 265 2.44 0.87 1.46 1.31 1.44 0.06 0.06 10.50 268 2.50 0.89 1.47 1.34 1.48 0.09 0.09 10.63 271 2.69 1.00 1.59 1.46 1.58 0.14 0.12 10.75 274 2.56 0.98 1.52 1.42 1.57 0.09 0.09 10.88 277 2.60 0.98 1.46 1.40 1.54 0.05 0.06 11.00 280 2.74 1.09 1.47 1.51 1.64 0.15 0.15 11.13 283 2.81 1.13 1.47 1.56 1.70 0.15 0.15 11.25 286 2.86 1.17 1.60 1.55 1.65 0.15 0.14 11.38 289 2.86 1.15 1.65 1.54 1.66 0.09 0.10 11.50 292 2.93 1.18 1.62 1.48 1.67 0.11 0.09 11.63 295 3.07 1.25 1.63 1.53 1.73 0.14 0.12 11.75 298 3.08 1.28 1.59 1.48 1.67 0.11 0.10 11.88 301 3.10 1.28 1.57 1.43 1.63 0.08 0.08 12.00 304 3.17 1.33 1.65 1.40 1.63 0.08 0.09 12.13 307 3.20 1.35 1.71 1.45 1.63 0.13 0.13 12.25 310 3.23 1.37 1.58 1.42 1.54 0.09 0.09 12.38 313 3.25 1.37 1.56 1.42 1.49 0.08 0.08 12.50 316 3.26 1.41 1.53 1.43 1.52 0.10 0.10 12.63 319 3.32 1.48 1.56 1.46 1.53 0.11 0.09 12.75 322 3.26 1.49 1.52 1.44 1.52 0.09 0.09 12.88 325 3.20 1.49 1.47 1.46 1.48 0.01 0.03 13.00 328 3.19 1.52 1.46 1.51 1.54 0.11 0.10 13.13 331 3.23 1.65 1.54 1.60 1.64 0.15 0.14 13.25 334 3.04 1.59 1.46 1.56 1.35 0.08 0.07 13.38 337 2.86 1.61 1.40 1.51 1.69 0.05 0.05 13.50 340 2.68 1.65 1.40 1.54 1.52 0.06 0.06 13.63 343 2.07 1.67 1.40 1.54 1.58 0.08 0.06 13.75 346 1.29 1.67 1.37 1.57 1.60 0.06 0.06 13.88 349 0.69 1.62 1.29 1.44 1.52 0.00 0.00 14.00 352 0.42 1.70 1.37 1.61 1.64 0.11 0.09 14.13 355 0.27 1.73 1.37 1.68 1.70 0.15 0.15 14.25 358 0.22 1.74 1.35 1.68 1.73 0.15 0.14 14.38 361 0.14 1.62 1.26 1.60 1.63 0.09 0.10 14.50 364 0.15 1.62 1.20 1.59 1.66 0.11 0.08 14.63 367 0.15 1.54 1.16 1.57 1.64 0.08 0.07 14.75 370 0.17 1.39 1.07 1.59 1.64 0.07 0.08 14.88 373 0.16 1.12 1.00 1.55 1.61 0.06 0.03 15.00 376 0.30 0.89 1.03 1.65 1.72 0.14 0.15 15.13 379 0.33 0.67 0.95 1.69 1.70 0.18 0.16 15.25 382 0.34 0.52 0.88 1.69 1.73 0.17 0.16 15.38 385 0.27 0.34 0.76 1.61 1.70 0.11 0.09 15.50 388 0.24 0.30 0.71 1.60 1.67 0.09 0.11 15.63 391 0.30 0.27 0.70 1.62 1.69 0.14 0.12 15.75 394 0.23 0.15 0.61 1.49 1.60 0.06 0.06 15.88 397 0.21 0.12 0.58 1.51 1.54 0.00 0.00 79 Table 02 continued 10.13 259 2.44 0.91 1.50 1.36 1.51 0.17 0.16 10.25 262 2.50 0.91 1.56 1.36 1.48 0.12 0.12 10.38 265 2.44 0.87 1.46 1.31 1.44 0.06 0.06 10.50 268 2.50 0.89 1.47 1.34 1.48 0.09 0.09 10.63 271 2.69 1.00 1.59 1.46 1.58 0.14 0.12 10.75 274 2.56 0.98 1.52 1.42 1.57 0.09 0.09 10.88 277 2.60 0.98 1.46 1.40 1.54 0.05 0.06 11.00 280 2.74 1.09 1.47 1.51 1.64 0.15 0.15 11.13 283 2.81 1.13 1.47 1.56 1.70 0.15 0.15 11.25 286 2.86 1.17 1.60 1.55 1.65 0.15 0.14 11.38 289 2.86 1.15 1.65 1.54 1.66 0.09 0.10 11.50 292 2.93 1.18 1.62 1.48 1.67 0.11 0.09 11.63 295 3.07 1.25 1.63 1.53 1.73 0.14 0.12 11.75 298 3.08 1.28 1.59 1.48 1.67 0.11 0.10 11.88 301 3.10 1.28 1.57 1.43 1.63 0.08 0.08 12.00 304 3.17 1.33 1.65 1.40 1.63 0.08 0.09 12.13 307 3.20 1.35 1.71 1.45 1.63 0.13 0.13 12.25 310 3.23 1.37 1.58 1.42 1.54 0.09 0.09 12.38 313 3.25 1.37 1.56 1.42 1.49 0.08 0.08 12.50 316 3.26 1.41 1.53 1.43 1.52 0.10 0.10 12.63 319 3.32 1.48 1.56 1.46 1.53 0.11 0.09 12.75 322 3.26 1.49 1.52 1.44 1.52 0.09 0.09 12.88 325 3.20 1.49 1.47 1.46 1.48 0.01 0.03 13.00 328 3.19 1.52 1.46 1.51 1.54 0.11 0.10 13.13 331 3.23 1.65 1.54 1.60 1.64 0.15 0.14 13.25 334 3.04 1.59 1.46 1.56 1.35 0.08 0.07 13.38 337 2.86 1.61 1.40 1.51 1.69 0.05 0.05 13.50 340 2.68 1.65 1.40 1.54 1.52 0.06 0.06 13.63 343 2.07 1.67 1.40 1.54 1.58 0.08 0.06 13.75 346 1.29 1.67 1.37 1.57 1.60 0.06 0.06 13.88 349 0.69 1.62 1.29 1.44 1.52 0.00 0.00 14.00 352 0.42 1.70 1.37 1.61 1.64 0.11 0.09 14.13 355 0.27 1.73 1.37 1.68 1.70 0.15 0.15 14.25 358 0.22 1.74 1.35 1.68 1.73 0.15 0.14 14.38 361 0.14 1.62 1.26 1.60 1.63 0.09 0.10 14.50 364 0.15 1.62 1.20 1.59 1.66 0.11 0.08 14.63 367 0.15 1.54 1.16 1.57 1.64 0.08 0.07 14.75 370 0.17 1.39 1.07 1.59 1.64 0.07 0.08 14.88 373 0.16 1.12 1.00 1.55 1.61 0.06 0.03 15.00 376 0.30 0.89 1.03 1.65 1.72 0.14 0.15 15.13 379 0.33 0.67 0.95 1.69 1.70 0.18 0.16 15.25 382 0.34 0.52 0.88 1.69 1.73 0.17 0.16 15.38 385 0.27 0.34 0.76 1.61 1.70 0.11 0.09 15.50 388 0.24 0.30 0.71 1.60 1.67 0.09 0.11 15.63 391 0.30 0.27 0.70 1.62 1.69 0.14 0.12 15.75 394 0.23 0.15 0.61 1.49 1.60 0.06 0.06 15.88 397 0.21 0.12 0.58 1.51 1.54 0.00 0.00 79 Table D2 continued 21.88 541 0.00 0.00 0.37 0.54 0.56 0.00 0.00 22.00 544 0.00 0.00 0.42 0.59 0.59 0.00 0.00 22.13 547 0.04 0.00 0.45 0.61 0.65 0.00 0.00 22.25 550 0.03 0.00 0.40 0.57 0.58 0.00 0.00 22.38 553 0.02 0.00 0.37 0.53 0.55 0.00 0.00 22.50 556 0.00 0.04 0.33 0.45 0.49 0.00 0.00 22.63 559 0.00 0.00 0.33 0.48 0.50 0.00 0.00 22.75 562 0.00 0.00 0.34 0.48 0.50 0.00 0.00 22.88 565 0.00 0.00 0.30 0.45 0.44 0.00 0.00 23.00 568 0.07 0.00 0.39 0.54 0.55 0.00 0.00 23.13 571 0.15 0.00 0.47 0.63 0.68 0.00 0.00 23.25 574 0.21 0.04 0.46 0.65 0.68 0.07 0.00 23.38 577 0.16 0.00 0.41 0.60 0.64 0.17 0.00 23.50 580 0.20 0.00 0.42 0.59 0.65 0.18 0.03 23.63 583 0.03 0.02 0.22 0.40 0.40 0.00 0.01 23.75 586 0.07 0.00 0.27 0.42 0.44 0.00 0.00 23.88 589 0.12 0.00 0.27 0.44 0.40 0.00 0.00 24.00 592 0.18 0.00 0.31 0.47 0.52 0.00 0.00 24.13 595 0.24 0.00 0.36 0.54 0.59 0.00 0.00 24.25 598 0.27 0.00 0.39 0.58 0.61 0.00 0.00 24.38 601 0.18 0.00 0.25 0.42 0.43 0.00 0.00 24.50 604 0.30 0.00 0.37 0.56 0.64 0.02 0.00 24.63 607 0.30 0.00 0.37 0.57 0.59 0.18 0.00 24.75 610 0.22 0.00 0.30 0.51 0.53 0.08 0.00 24.88 613 0.21 0.00 0.27 0.48 0.50 0.05 0.00 25.00 616 0.38 0.00 0.31 0.57 0.65 0.17 0.02 25.13 619 0.33 0.03 0.39 0.57 0.62 0.15 0.15 25.25 622 0.27 0.00 0.34 0.55 0.58 0.12 0.09 25.38 625 0.14 0.07 0.22 0.44 0.44 0.01 0.01 25.50 628 0.16 0.00 0.25 0.47 0.49 0.06 0.00 25.63 631 0.10 0.00 0.22 0.44 0.49 0.05 0.00 25.75 634 0.08 0.00 0.19 0.44 0.46 0.03 0.00 25.88 637 0.03 0.00 0.16 0.41 0.41 0.00 0.00 26.00 640 0.03 0.00 0.19 0.45 0.46 0.02 0.00 26.13 643 0.12 0.00 0.21 0.48 0.52 0.07 0.00 26.25 646 0.10 0.00 0.21 0.50 0.53 0.11 0.00 26.38 649 0.03 0.00 0.15 0.44 0.36 0.02 0.00 26.50 652 0.02 0.00 0.15 0.45 0.55 0.08 0.00 26.63 655 0.00 0.00 0.13 0.45 0.52 0.07 0.00 26.75 658 0.00 0.00 0.10 0.47 0.49 0.08 0.00 26.88 661 0.00 0.00 0.06 0.36 0.44 0.03 0.00 27.00 664 0.00 0.00 0.10 0.53 0.50 0.11 0.00 27.13 667 0.03 0.00 0.12 0.53 0.57 0.14 0.00 27.25 670 0.03 0.00 0.10 0.51 0.56 0.14 0.00 27.38 673 0.01 0.00 0.04 0.47 0.47 0.08 0.00 27.50 676 0.00 0.00 0.02 0.42 0.46 0.09 0.00 27.63 679 0.00 0.00 0.01 0.47 0.50 0.11 0.00 81 Table D2 continued 16.00 400 0.36 0.22 0.68 1.62 1.72 0.10 0.12 16.13 403 0.42 0.24 0.71 1.66 1.73 0.20 0.20 16.25 406 0.43 0.24 0.70 1.65 1.72 0.20 0.18 16.38 409 0.39 0.15 0.63 1.56 1.63 0.11 0.10 16.50 412 0.39 0.12 0.61 1.49 1.46 0.12 0.11 16.63 415 0.49 0.16 0.65 1.56 1.61 0.15 0.15 16.75 418 0.48 0.17 0.67 1.51 1.64 0.17 0.14 16.88 421 0.33 0.09 0.58 1.43 1.48 0.03 0.06 17.00 424 0.32 0.11 0.63 1.43 1.51 0.12 0.10 17.13 427 0.13 0.03 0.52 1.31 1.35 0.03 0.05 17.25 430 0.00 0.00 0.49 1.22 1.26 0.00 0.00 17.38 433 0.00 0.00 0.43 1.12 1.16 0.00 0.00 17.50 436 0.00 0.00 0.48 1.10 1.17 0.00 0.00 17.63 439 0.00 0.00 0.52 1.10 1.14 0.00 0.00 17.75 442 0.00 0.00 0.54 1.03 1.05 0.00 0.00 17.88 445 0.00 0.00 0.50 0.94 0.99 0.00 0.00 18.00 448 0.00 0.00 0.57 0.91 0.98 0.00 0.00 18.13 451 0.02 0.00 0.59 0.84 0.90 0.00 0.00 18.25 454 0.04 0.00 0.61 0.77 0.81 0.00 0.00 18.38 457 0.02 0.00 0.58 0.70 0.71 0.00 0.00 18.50 460 0.00 0.00 0.55 0.63 0.70 0.00 0.00 18.63 463 0.00 0.00 0.58 0.65 0.68 0.00 0.00 18.75 466 0.00 0.00 0.58 0.63 0.67 0.00 0.00 18.88 469 0.00 0.00 0.54 0.56 0.58 0.00 0.00 19.00 472 0.00 0.00 0.61 0.65 0.70 0.00 0.00 19.13 475 0.01 0.00 0.54 0.56 0.59 0.00 0.00 19.25 478 0.00 0.00 0.55 0.57 0.59 0.00 0.00 19.38 481 0.00 0.00 0.52 0.54 0.58 0.00 0.00 19.50 484 0.00 0.00 0.61 0.62 0.65 0.00 0.00 19.63 487 0.03 0.00 0.58 0.63 0.67 0.09 0.07 19.75 490 0.06 0.00 0.58 0.62 0.65 0.15 0.15 19.88 493 0.03 0.00 0.56 0.57 0.65 0.14 0.14 20.00 496 0.04 0.00 0.58 0.62 0.68 0.15 0.15 20.13 499 0.06 0.00 0.57 0.63 0.67 0.15 0.14 20.25 502 0.03 0.00 0.56 0.62 0.68 0.14 0.12 20.38 505 0.03 0.00 0.46 0.62 0.65 0.12 0.12 20.50 508 0.06 0.00 0.57 0.63 0.68 0.14 0.12 20.63 511 0.03 0.00 0.52 0.60 0.59 0.09 0.09 20.75 514 0.02 0.00 0.48 0.56 0.61 0.06 0.04 20.88 517 0.00 0.00 0.40 0.51 0.49 0.00 0.00 21.00 520 0.00 0.00 0.42 0.50 0.53 0.00 0.00 21.13 523 0.00 0.00 0.40 0.51 0.55 0.00 0.00 21.25 526 0.00 0.00 0.40 0.53 0.55 0.00 0.00 21 .38 529 0.00 0.00 0.39 0.51 0.53 0.00 0.00 21.50 532 0.00 0.00 0.42 0.54 0.58 0.00 0.00 21 .63 535 0.00 0.00 0.43 0.57 0.56 0.00 0.00 21.75 538 0.00 0.00 0.40 0.56 0.61 0.00 0.00 80 Table D2 continued 27.75 682 0.02 0.00 0.02 0.47 0.50 0.11 0.00 27.88 685 0.00 0.00 0.00 0.42 0.43 0.06 0.00 28.00 688 0.00 0.00 0.01 0.45 0.37 0.14 0.00 28.13 691 0.06 0.06 0.05 0.56 0.56 0.20 0.00 28.25 694 0.03 0.00 0.09 0.50 0.52 0.15 0.00 28.38 697 0.05 0.00 0.02 0.48 0.44 0.09 0.00 28.50 700 0.00 0.00 0.00 0.42 0.44 0.11 0.00 28.63 703 0.00 0.00 0.00 0.45 0.48 0.12 0.00 28.75 706 0.03 0.00 0.00 0.44 0.44 0.12 0.00 28.88 709 0.00 0.00 0.00 0.39 0.34 0.08 0.00 29.00 712 0.00 0.00 0.00 0.42 0.40 0.09 0.00 29.13 715 0.00 0.02 0.00 0.38 0.37 0.09 0.00 29.25 718 0.00 0.06 0.00 0.35 0.34 0.06 0.00 29.38 721 0.00 0.00 0.00 0.32 0.30 0.05 0.00 29.50 724 0.00 0.00 0.00 0.29 0.25 0.01 0.00 29.63 727 0.00 0.00 0.00 0.27 0.22 0.03 0.00 29.75 730 0.00 0.00 0.00 0.36 0.32 0.12 0.00 29.88 733 0.00 0.00 0.00 0.24 0.13 0.01 0.00 30.00 736 0.00 0.00 0.00 0.33 0.27 0.06 0.00 30.13 739 0.00 0.00 0.00 0.36 0.30 0.15 0.00 30.25 742 0.00 0.00 0.00 0.36 0.27 0.15 0.00 30.38 745 0.00 0.00 0.00 0.30 0.16 0.08 0.00 30.50 748 0.01 0.00 0.00 0.20 0.19 0.15 0.00 30.63 751 0.06 0.00 0.00 0.35 0.16 0.12 0.00 30.75 754 0.06 0.00 0.00 0.26 0.15 0.12 0.00 30.88 757 0.00 0.00 0.00 0.14 0.01 0.00 0.00 31.00 760 0.05 0.00 0.00 0.23 0.15 0.15 0.00 31.13 763 0.10 0.00 0.00 0.27 0.16 0.18 0.00 31.25 766 0.09 0.00 0.00 0.20 0.12 0.15 0.00 31.38 769 0.08 0.00 0.00 0.15 0.07 0.11 0.00 31.50 772 0.03 0.00 0.00 0.09 0.02 0.09 0.00 31.63 775 0.04 0.00 0.00 0.12 0.01 0.12 0.05 31.75 778 0.08 0.00 0.00 0.06 0.09 0.06 0.04 31.88 781 0.00 0.00 0.00 0.02 0.00 0.00 0.00 32.00 784 0.00 0.00 0.00 0.03 0.00 0.04 0.00 32.13 787 0.07 0.00 0.00 0.06 0.00 0.09 0.08 32.25 790 0.09 0.00 0.00 0.03 0.00 0.09 0.07 32.38 793 0.03 0.00 0.00 0.00 0.00 0.03 0.02 32.50 796 0.00 0.00 0.00 0.00 0.00 0.00 0.00 32.63 799 0.06 0.00 0.00 0.00 0.00 0.06 0.04 32.75 802 0.06 0.00 0.00 0.00 0.00 0.02 0.05 32.88 805 0.00 0.00 0.00 0.00 0.00 0.00 0.00 33.00 808 0.01 0.00 0.00 0.00 0.00 0.00 0.00 33.13 811 0.03 0.00 0.00 0.00 0.00 0.00 0.00 33.25 814 0.06 0.00 0.00 0.00 0.00 0.00 0.00 33.38 817 0.08 0.00 0.00 0.00 0.00 0.00 0.00 33.50 820 0.03 0.00 0.00 0.00 0.00 0.00 0.00 82 Table 02 continued 33.63 823 0.06 0.00 0.00 0.00 0.00 0.00 0.00 33.75 826 0.03 0.00 0.00 0.00 0.00 0.00 0.00 33.88 829 0.04 0.00 0.00 0.00 0.00 0.00 0.00 83 mvém 8.88 .66 86 86 8. .8 8.8 :84 66.8 8. 86 8.88 88 86 666 8.8 8.8 888 8.8 8.8 66. 86 8.88 8.6 86 86 8.8 8.8 8.8 8.8 .688 8 88 8.88 86 86 666 8.8 8.8 :6. 8.8 8.8 86 86 8.88 86 86 666 8.8 8.8 8... 8.8 8.8 8 :6 8.88 6.6 86 86 8.8 ....8 86. 8. .m 888 8 86 8.8.6 8... 86 86 8. .8 8.8 86. R8 8.8 8 88 8.8.6 8... 86 666 8.8 84.8 86. 8.8 86. 8 88 8.88 88 86 666 86. 8. .8 88. 8.8 8... 8. 88 8.8.6 846 86 86 88. 8.8 8. .. .68 86. 8 88 8.88 86 86 86 86. 8.6. 86. 888 R... 8 :8 8.88 86 86 86 86. 8... 86 8.8 88. 8 668 8:88 868 86 666 8.... 86. 86 8.6. 88. 8 8.. 8.88 88 886 86 88. 86. 88 8... 8. .. 8 8.. 8.88 6.8 86 666 8... 8.... 8.6 86. .66. 6.. 8.. 8:88 86.. 86 666 86. R8. 866 66.... 86 8 8.. 8:88 8.. 86 66.6 8.6 8... 86 848. 8: 8 R... 8.88 v... 6.6 86 86 866 .6... 86. 86 8 8.. 8.88 86 86 666 86 846 86 86 86 8 86 8.88 4.6 666 666 8.8 8.6 88 6.8 666 8 86 8.8.6 86 86 666 88 8.6 .... ...6 88 8 86 8.88 86 66.6 86 :8 .8 6.6 86 8.. 8 86 888 86 666 666 8.. 6.8 86 88 8.. 6. :6 8.8.6 666 86 666 86 66.. 666 8.. 86 8. 666 8.8.6 86 8... 86 .46 86 86 8.6 86 6 8.8.6 86 .3 .66 86 86 8.6 886 R8 .. 8.8.6 86 86 666 666 86 86 86 666 6 33 28>. .\. .6 z; awn”: 26%.. m z .x. m; 28> “an mun”. 3.5 $0 028.:an qu 238.:an _.-m ammo ”San. Bum ..30Eo..iww¢ ad 338... 84 50.0.0 00.06 00 .5 .0. 00.00. 86.00.. 56. ..0 00.00? 65.00. 000 00.0 50.0.0 55. ..6 0 r .5 00... 0.. .00.. 06.00.. 00.00 06.00.. 05.00.. 600 00.0 50.0.0 60.06 50.0 00... ..0.00 00.00 05.00 05.00.. 00. ..0. 000 50.0 50.0.0 50.00 06.0 00.0 00.00 ..0.00 00.60 .002. 50.00 9.0 00.0 50.0.0 00.00 08.0 00.0 00.00 00.00 00.00 00.0.... 00.00 0.0 00.0 50.0.0 00.60 60.0 2.0 ..0.00 00.00 ..0.05 50.0... 60.60 000 58.0 50.0.0 00.00 60.0 00.0 05.00 00.50 50.55 00.00.. 00. ..0 600 00.0 50.0.0 00. ..0 ..0.0 00.0 05.00 ..060 06.65 00.09 00.00 000 00.5 50.0.0 00.00 00.6 00.0 00.00 06. .0 00.05 00.00.. 00.00 00.. 50.5 50.0.0 00.00 66.6 00.0 50.55 00.05 00.00 00.00.. 56.00 00.. 00.5 50.0.0 .050 0 .. .6 00.0 5...05 00.05 ..0.00 00.50 05.00 00.. 00.5 50.0.0 60.00 00.6 00.0 00.05 00.05 00.60 00.60 00.05 60.. 5...5 50. ...0 50.60 05.0 00.0 00.00 05.05 00. ..0 6... ..0 05.05 00.. 00.5 50. ...0 00.00 00.0 00.0 06.50 90.00 00.00 0 F .00 00.05 05.. 00.0 50. ...0 0.00 00.0 00.0 00.60 00.00 60.50 05.60 06.05 05.. 50.0 50. ...0 50. ..0 0...0 00.0 00.00 50.00 00.60 06. ..0 00.00 00.. 00.0 50. ...0 0...00 00.0 00.0 0...00 05.00 06.00 00.05 50.00 60.. 00.0 50. ...0 50.0.. 00.0 00.0 00.50 06.00 00.00 00.05 66.00 00.. 5...0 50.5.0 3.0.. 00.0 00.0 55.00 00.00 0...06 00.05 0.....0 00.. 00.0 50. ..0.0 60.5. 00.0 00.0 55.00 06.60 00.06 00.05 60.00 00.. 00.0 50. ..0.0 00.0.. 06.0 00.0 06. ..0 ..0. ..0 00.66 ..6.50 50 .00 06.. 50.0 50. ..0.0 0...0.. 0 v .0 00.0 60.06 00.00 00. ..6 00.60 60.60 66.. 00.0 50. ..0.0 0...6.. 00.0 00.0 3.56 00.06 80.00 00.00 00. ..0 06.. 00.0 50. F0.0 56.0. 00.0 00.0 00.06 00.06 00.00 00.00 50.06 00.. 5...0 50.00.0 65.0.. 00.0 00.0 00.06 00.06 0...00 00.50 00.56 00.. 00.0 50.00.0 00.08 00. r 00.0 00. ..6 00.66 06.60 5.00 08.06 00.. 00.6 50.00.0 00. E. 00. .. 00.0 50.00 00.06 06.00 05.00 00.06 60.. 50.6 50.00.0 00.0. 00. .. 00.0 00.50 00.00 06.00 60.00 05. ..6 00w 00.6 50.00.0 00.0 00. .. 00.0 80.00 ..0.00 05.00 00.06 05.00 0.... 00.6 50.00.0 .00 60.0 00.0 06.60 00.50 50.50 00.06 00.50 0:. 5...6 50.00.0 56.0 60.0 00.0 00.00 00.00 00 .00 00.66 00.00 00.. 00.6 8888 8.0 8.8. 85 ROEE Ov.OR O...O_. 3O ORE: VNOS. VRNNF OO.N: 3&9... 3O O0.0.. RoEE OvOR O...O.. v...O ORE: VNOE. ..RNNF OO.N: ~3O... OVO RE.O _. RoEE OvOR O...O.. 3 .O ORE: VN.O.~.. VR.NN.. OO.N: 30... EOO O0.0.. RoEE O0.0R E0.0.. v...O ORE»... VNOS. VR.NN.. OO.N: 3‘.va NOO O0.0.. ROEE ER..~R ..0.0.. v...O ORE: O...va VRNNR OO.N: EEO... ONO R...O.. RORE OO.VR VRO v...O VREVF ..0.0.V_. OE.NN.. OO.N: 30... .NO O0.0.. RORE O0.0R ..E.O v...O VRES. NONE. OE.NN.. OO.N: 30... ONO OO.N.. RORE OO...R .....O .V...O OO.Ev.. EON: NO.NNF OO.N: O0.0.... E..O RE.N_. RORE O0.0R .....O 3O OE.Ov.. NO. ..v... OR. ..N.. OO.N: O0.0_._. N..O OO.N_. RORE EE.OE .....O 3O OO.$V_. VOOE. O... ..N.. ON.NvP O0.0.... OOO OO.N.. RORE R0.0E R...O v...O ENS; OR.OOF O0.0N.. 3. NE. O0.0.... VOO R_..N.. ROEE EPRE .....O 3O VNOE. O0.00.. OR.O.... NO...3 O0.0.... OOO OO.N.. ROEE vNEE _._..O 3O OVNS. OO.RO.. VOOE. ONE; O0.0: EON OO..... ROEE OO.E .....O 30. VNévr RE.EO.. NOR: NO...3 O0.0.._. NON RE.: ROEE R0.0E .....O 3O OR.OO.. O...OO.. OO.E: 3...: O0.0.... OON OO..... ROEE OO.NE E..O v...O F0.00.. RN.¢O.. OR.O_.F ONéS. O0.0_... ¢ON OO._... ROEE Ov...E .....O V...O NO.RO.. .V_..OO.. NE..V..v Er...v.. O0.0.._. OON R....... ROEE VOOE ..FO v...O E0.00.. VEéOP R0.0_._. O0.0.V.. O0.0.._. ERN OO._... ROEE ON.OO .....O 3O OO..‘O.. 9.69. N.. .N: O0.0v.. O0.0.... NRN O0.0.. ROEE N0.00 _....O 3O EO. 5.. ..0.0N.. OE.O..P E0.0v.. O0.0.... OEN RE.O.. ROEE OR.EO .._..O 3 .O O0.0N. OR.ENr O...OO.. OR.OOR O0.0 ..F .EN O0.0.. ROEE OE.OO .._..O 3. .O eRRNv OOéNw EE.RO.. O...OOF ..N.O..P OEN O0.0w ROEE OE.VO .....O 3 .O OE.ON.. EN.ONF 3 .EO.. N0.00.. OO.v_... EON RP.O.. ROEE O0.00 F...O v...O O0.0N_. RN. ..N.. OYVOF OO.RO.. ON..V.... NON O0.0.. RO\vE O F .NO .....O EuO O0.0N.. ON.O.... RE.NO.. N¢.EO.. EYO .... OVN O0.0 ROEE O0.00 O0.0 O0.0 OO.RP.. VR.E.... ..E.OO.. NR..VO.. OO.N: 3N RE.O ROFE OE.O.V OVO OO.N OO..V.... O0.0w.. ON.OO RE.NO.. .‘OO: OVN O0.0 ROEE OO.Rv EN.O OO.N Ov. .. 2. FN. _. 3 .....EO EE.OO_. .VN.OO.. EON O0.0 ROEE ..VOV VOO RON N0.00.. Ov.OO_. OOOO RV.ON.. RE.RO.. NON R...O 8:22:00 Od $30.. 86 RO. .. ..E OVOR O...O.. v...O OR.E¢_. OEO: VR.NN.. O0.0v.. 30: R9. OO.E.. RO... ..E OYOR O...OP v...O ORE: OEO: #R.NN.. OO.N: 30: Ev OO.E.. RO... ..E OvOR O w.O.. EHO OR.E.V.. OEO: VR.NN.. OO.va 30... OOv RPEP ROE ..E OVOR O...O.. 3O ORE: OEO: VR.NN.. OO.N: 3O .... EOO OO.E.. ROE ..E OYOR O F .O.. v_..O ORE: EVE: VR.NN.. OO.N: 3O 5. NOO O0.0.. ROE _.E O...OR OP.O.. v...O ORE: EVE: VR.NN_. OO.N: 30: OOO RE.O.. ROE SE OYOR O .. .O.. 3O ORE: «NOS. VRNNR OO.N: 30... EO OOOF ROE ..E OvOR O...O_. .1. .O ORE: VN.O.V.. VRNNP OO.N: 30... OOO O0.0.. ROE ..E OYOR O .. .O.. v...O ORE: .VNOE VRNNF OO.N: 3O 2. ERO R _. .O.. ROEE OYOR O...OP 3O ORE: VNO: VRNNF OO.N: 30: NRO O0.0_. ROEE OvOR OP.O.. S. .O ORE: VN.O$ VR.NN.. OO.N: 3O .... OEO OO.3 ROEE OVOR OF.O.. 3. .O ORE: .VNOVF VR.NN.. OO.N: 30... #EO RE.v.. ROEE OVOR O...O.. v...O ORE: .VN.O$ VR.NN.. OO.N: 30: OEO OO..V.. ROEE OYOR Ow.O.. 3O ORE: VNOS. QR.NN.. OO.N: 30: EOO OO.v.. ROEE OvOR O .. .O.. 3. .O OREE. VNOE. VR.NN.. OO.NS. 30... NOO R .. .3. ROEE OvOR OF.O.. 3. .O ORE: VNOE. VR.NN.. OO.N: 30... OVO OO.v.. 8:528 on 032 87 Table D.4 Respirometer Calculated Data: Case B-1 Gas Production Rate Gas Production Rate (mUhr) 88 Time Time WS ‘la W3 W8 (days) (hrs) WSN N 8 (rep A) (rep BL WN DI ‘la (WSN) 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4 1.94 2.06 1.57 2.06 2.14 1.63 1.18 1.57 8 0.21 0.44 0.07 0.35 0.21 0.11 0.03 0.01 0.00 12 0.16 0.30 0.00 0.27 0.16 0.00 0.00 0.00 0.17 16 0.17 0.34 0.01 0.33 0.28 0.00 0.00 0.00 0.33 20 0.17 0.34 0.11 0.33 0.25 0.00 0.00 0.00 0.50 24 0.22 0.38 0.16 0.35 0.31 0.00 0.00 0.00 0.67 28 0.31 0.44 0.24 0.41 0.37 0.00 0.02 0.03 0.83 32 0.30 0.46 0.26 0.42 0.38 0.00 0.07 0.16 1.00 36 0.29 0.42 0.24 0.38 0.33 0.00 0.03 0.09 1.17 40 0.31 0.45 0.27 0.39 0.36 0.00 0.04 0.13 1.33 44 0.31 0.42 0.24 0.33 0.27 0.00 0.01 0.07 1.50 48 0.27 0.39 0.21 0.32 0.28 0.00 0.00 0.04 1.67 52 0.31 0.44 0.26 0.36 0.34 0.00 0.00 0.11 1.83 56 0.32 0.44 0.26 0.35 0.31 0.00 0.01 0.09 2.00 60 0.26 0.37 0.19 0.27 0.26 0.00 0.00 0.03 2.17 64 0.30 0.41 0.24 0.32 0.29 0.00 0.00 0.06 2.33 68 0.32 0.41 0.22 0.31 0.24 0.00 0.00 0.04 2.50 72 0.32 0.44 0.27 0.33 0.30 0.00 0.00 0.04 2.67 76 0.44 0.52 0.35 0.41 0.41 0.00 0.00 0.16 2.83 80 0.44 0.50 0.36 0.40 0.39 0.00 0.00 0.14 3.00 84 0.37 0.45 0.30 0.35 0.32 0.00 0.00 0.08 3.17 88 0.42 0.49 0.32 0.36 0.34 0.00 0.00 0.09 3.33 92 0.41 0.48 0.32 0.36 0.31 0.00 0.00 0.08 3.50 96 0.49 0.50 0.35 0.39 0.40 0.00 0.00 0.13 3.67 100 0.69 0.59 0.46 0.45 0.50 0.00 0.00 0.24 3.83 104 0.66 0.57 0.43 0.44 0.48 0.00 0.02 0.19 4.00 108 0.57 0.48 0.36 0.35 0.37 0.00 0.02 0.12 4.17 112 0.59 0.49 0.38 0.38 0.40 0.00 0.00 0.14 4.33 116 0.54 0.52 0.41 0.40 0.39 0.00 0.02 0.14 4.50 120 0.50 0.55 0.44 0.19 0.47 0.00 0.06 0.19 4.67 124 0.55 0.62 0.49 0.60 0.50 0.00 0.09 0.24 4.83 128 0.55 0.60 0.50 0.50 0.51 0.00 0.08 0.23 5.00 132 0.45 0.54 0.42 0.33 0.41 0.00 0.02 0.14 5.17 136 0.51 0.58 0.47 0.25 0.45 0.00 0.00 0.18 5.33 140 0.50 0.61 0.48 0.54 0.43 0.00 0.00 0.17 5.50 144 0.56 0.65 0.50 0.43 0.53 0.00 0.03 0.25 5.67 148 0.58 0.70 0.53 0.41 0.56 0.00 0.07 0.26 5.83 152 0.62 0.74 0.56 0.62 0.58 0.00 0.10 0.29 6.00 156 0.53 0.65 0.48 0.49 0.50 0.00 0.02 0.19 6.17 160 0.57 0.68 0.52 0.53 0.53 0.00 0.00 0.24 6.33 164 0.61 0.74 0.56 0.57 0.56 0.00 0.03 0.26 6.50 168 0.58 0.72 0.54 0.56 0.56 0.00 0.01 0.24 Table D4 continued 6.67 172 0.57 0.82 0.61 0.65 0.57 0.00 0.03 0.26 6.83 176 0.68 0.84 0.64 0.68 0.70 0.00 0.09 0.35 7.00 180 0.62 0.76 0.59 0.61 0.62 0.00 0.04 0.28 7.17 184 0.64 0.78 0.60 0.64 0.66 0.00 0.07 0.32 7.33 188 0.63 0.75 0.62 0.64 0.66 0.00 0.03 0.32 7.50 192 0.67 0.77 0.63 0.69 0.70 0.00 0.08 0.35 7.67 196 0.70 0.77 0.67 0.72 0.73 0.00 0.09 0.40 7.83 200 0.65 0.73 0.61 0.69 0.70 0.00 0.10 0.35 8.00 204 0.67 0.75 0.65 0.75 0.75 0.00 0.03 0.40 8.17 208 0.70 0.77 0.64 0.78 0.80 0.04 0.13 0.44 8.33 212 0.64 0.73 0.61 0.75 0.75 0.10 0.08 0.42 8.50 216 0.59 0.68 0.58 0.75 0.74 0.06 0.08 0.40 8.67 220 0.59 0.69 0.60 0.77 0.79 0.10 0.10 0.44 8.83 224 0.53 0.67 0.60 0.76 0.78 0.08 0.08 0.43 9.00 228 0.50 0.61 0.57 0.75 0.79 0.09 0.10 0.43 9.17 232 0.48 0.64 0.59 0.76 0.81 0.12 0.11 0.48 9.33 236 0.39 0.55 0.57 0.69 0.73 0.06 0.05 0.41 9.50 240 0.32 0.50 0.54 0.68 0.73 0.00 0.06 0.41 9.67 244 0.37 0.51 0.58 0.70 0.79 0.10 0.11 0.47 9.83 248 0.36 0.42 0.52 0.62 0.76 0.03 0.05 0.39 10.00 252 0.19 0.27 0.43 0.51 0.63 0.00 0.00 0.32 10.17 256 0.17 0.26 0.44 0.50 0.64 0.00 0.00 0.32 10.33 260 0.08 0.17 0.38 0.43 0.52 0.00 0.00 0.25 10.50 264 0.05 0.15 0.38 0.43 0.52 0.00 0.00 0.29 10.67 268 0.00 0.15 0.38 0.45 0.53 0.00 0.00 0.31 10.83 272 0.00 0.12 0.36 0.42 0.51 0.00 0.00 0.32 11.00 276 0.00 0.03 0.31 0.36 0.39 0.00 0.00 0.26 11.17 280 0.00 0.05 0.31 0.38 0.37 0.00 0.00 0.27 11.33 284 0.00 0.02 0.28 0.28 0.32 0.00 0.00 0.24 11.50 288 0.00 0.02 0.28 0.22 0.35 0.00 0.00 0.30 11.67 292 0.00 0.05 0.27 0.38 0.38 0.00 0.00 0.33 11.83 296 0.00 0.07 0.25 0.22 0.31 0.00 0.00 0.33 12.00 300 0.00 0.03 0.19 0.32 0.19 0.00 0.00 0.24 12.17 304 0.00 0.06 0.22 0.24 0.25 0.00 0.00 0.35 12.33 308 0.00 0.02 0.13 0.15 0.16 0.00 0.00 0.27 12.50 312 0.00 0.08 0.16 0.17 0.20 0.00 0.00 0.33 12.67 316 0.00 0.00 0.07 0.26 0.09 0.00 0.00 0.23 12.83 320 0.01 0.09 0.17 0.21 0.18 0.00 0.13 0.35 13.00 324 0.00 0.00 0.00 0.02 0.00 0.00 0.03 0.18 13.17 328 0.00 0.00 0.01 0.05 0.01 0.00 0.07 0.18 13.33 332 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.07 13.50 336 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.09 13.67 340 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13.83 344 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 14.00 348 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 14.17 352 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 14.33 356 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 89 Table 04 continued 14.50 360 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 14.67 364 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 14.83 368 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15.00 372 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15.17 376 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15.33 380 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15.50 384 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15.67 388 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 15.83 392 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 16.00 396 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 16.17 400 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 16.33 404 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 16.50 407 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 90 .233 .33 33.3 33.. 33.. 3.3 3.. 3.3 3.3 3. 33.3 .233 .33 33.3 3... 33.. 33.3 3.. 33.3 33.3 33. 33.3 .233 ..3 33.3 33 .33 333 3.. 33.. ..3 33 .33 .233 ..3 33.3 33.3 33.3 33.3 3.. 33.. .3. 33 33.3 .233 ..3 33.3 33.3 33.3 33.3 3.. 3.. .3. 33 3.3 .233 ..3 33.3 3.3 33.3 33.3 3.. 33.. .3. 3 . ..3 .233 ..3 33.3 3.3 33.3 333 3.. 3.. .3. 33 33.3 .233 ..3 33.3 .33 3.3 3.3 3.. 3.. 33.. 3. 33.3 .233 ..3 33.3 3.3 ..3 .33 3.. 3.. 3... N. .33 .233 ..3 33.3 3.3 ..3 3.3 3.. 3.. 3... 33 33.3 .233 ..3 33.3 3.3 ..3 3.3 3.. 3.. 3... 3 33.3. .233 ..3 33.3 3.3 .3 3.3 3.. 3.. 3... 33 ..3 .233 .3 33.3 3.3 ...3 3.3 3.. 3.. 3... 33 33.3 .233 .3 33.3 3.3 33.3 ..3 3.. 3.. 33.. 33 33.. .233 33.3 33.3 3.3 33.3 33.. 3.. 33.3 3.. 33 .3. .233 33.3 33.3 3.3 33.3 33.. 3.. .33 .3.. 3 33.. .233 33.3 33.3 3.3 33.3 3.... 3... 33.3 33.3 3.. 3.. .233 33.3 33.3 3.3 33.3 .3. .3. 33.3 3.3 33 .... .233 33.3 33.3 3.3 33.3 3.. 33.3 .33 33.3 33 33.. .233 33.3 33.3 33 .33 33.. 33.3 ..3 33.3 3 33.3 .233 33.3 33.3 33 33.3 33.3 33.3 33 33.3 3 .33 .233 33.3 33.3 33 33.3 .3 3.3 33 33.3 3 33.3 .233 33.3 33.3 3.3 33.3 .3 3.3 3.3 33.3 3. 33.3 .233 33.3 33.3 3.3 33.3 .3 3.3 33 33.3 N. ..3 .233 3.3 33.3 33 33.3 3.3 3.3 33 33 3 33.3 .233 3.3 3.3 ..3 3.3 33.3 33.3 ..3 3.3 v .233 3 3 3 3 3 3 3 3 3 no. no. 2 was 233 .3 .225. .3 23 m 25 z u. 3; £25. £33. “5% .23.”. SE. 330 9:33:50 330 623.2:an NE 6230 "Sun. Bum. 3.2.6.33”. Od 333... 91 3C\N\3 .n.. vnN C.... .C.3 .vN. .N.. n0... 3v.n. CNN 3..C 3C. ..3 .n.. CN.N 00C. C30 03. .. .N.. 0C.C. vnN. VNN CC.C 3923 .n.. 00.. v0.0 vn.0 0.... .N.. 3nd. N..N. CNN n0.n 39.3 .n.. 03.. 3nd .00 NYC. .N.. 00.0 .n. .. 0.N 30.0 39.3 .n.. 30.. n30 Nn.0 V3.0 .N.. CC.0 00.C. N.N C00 39.3 .n.. 30.. Nn.0 0 . .0 nn.0 .N.. 00.0 C..C. CCN nn.0 3923 .n.. 30.. 03.3 n06 30.0 .N.. NN.0 C3.C VCN 3.0 3C\Cn\0 .n.. 30.. 00.3 n06 03.0 .N.. 3.0 33C CCN CC.0 3C\Cn\0 .n.. n0.. nN.3 C3... nn.0 .N.. #03 NC.C 0C. nn.3 3C\Cn\0 .n.. .N.. 00.0 3.4V 3.3 .N.. .C.3 0n.0 NC. 30.3 3980 .n.. 00C .00 N30 CN.3 .N.. vn.0 n0.3 00. C0.3 3C\Cn\0 .n.. .0.C 00.0 C0.n 00.0 .N.. no.0 nN.3 v0. nn.3 3C\Cn\0 .n.. 00C CC.0 0N.n 30.0 .N.. 30.0 30.0 C0. 3..3 3C\CN\0 .n.. CYC 0nd VNn and .N.. 0V0 C00 03. CC.3 3C\CN\0 .n.. CVC v0.v 0..n 0.0 .N.. 0.0 0N0 N3. nn.0 3C\CN\0 .n.. Cv.C CC.v 00.N n10 .N.. C0... 00.0 00. 30.0 3C\CN\0 .n.. CYC v0.n Cn.N Cn.0 .N.. ....g N..0 #0. C00 3C\CN\0 .n.. CYC 00.n Cn.N .N.0 .N.. NC.v 00.? C0. nn.0 3C\CN\0 .n.. CvC Nn.n Cn.N nC.0 .N.. C0.n .3.v 00. 3.0 3C\0N\0 .n.. Cv.C 0..n Cn.N 36 .N.. .3.n 006 N0. CC.0 3C\0N\0 .n.. CYC 0C.n Cn.N and .N.. 00.n n0 .V 0?. nn.0 3C\CN\0 .n.. Cv.C N0.N 0n.N 006 .N.. Cnn NNé 3. 30.0 3C\CN\0 .n.. CvC 00.N 0n.N 30.? .N.. 0N.n voé CV. C0.0 3C\0N\0 .n.. CYC 00.N 0n.N 306 .N.. 0N.n cod 0n. nn.0 3C\CN\0 .n.. CvC 0V.N 0n.N 306 .N.. 0N.n voé Nn. 3..0 3C\3N\0 .n.. CvC .vN 0n.N 30% .N.. 0N.n 0C.n CN. CC.0 3C\3N\0 .n.. Cv.C Nn.N Cn.N n0.v .N.. .N.n C0.n VN. nné 3C\3N\0 3.. CC.C N0. 00.. N..v .N.. 00.N C0.n CN. 30.3. 3C\3N\0 00C CC.C N0. N0. an .N.. 00.N nN.n 0.. C06 3C\3N\0 .CC CC.C n0.. n3.. 03.n .N.. .vN 0C.n N. . nné 3C\3N\0 .C.C CC.C Nn.. 00.. n0.n .N.. nN.N n0.N 0C. 3...» 0025.50 0.0 030.. 92 3933 060 nN.0N 0C.30 n . .06 .060 0N.. 03.03 00.n0 N0n nn6. 3933 0..n 00.3N .060 0n66 N0.N0 0N.. 00.N3 60.C0 06n 3.6. 3903 0..n N3.0N 0 . .N0 00.N6 30.C0 0N.. 06.00 .n.33 660 CC6. 3993 00.N 06.0N 63.00 00.C6 00.00 0N.. 6N.00 C0.n3 C6n n0.n. 3993 00.N 00.nN .C.30 00.00 .300 0N.. n0.N0 3N.C3 0nn 30.n. 3993 00.N 00 .NN 3n60 3C.3n 06.60 0N.. n0.00 03.00 Nnn C00. 3993 00.N 06. .N 0C.N0 36.0n 00.N0 0N.. 00.00 00.n0 0Nn nn.n. 3993 00.N 0n.CN 33.06 N0.nn C0.C0 0N.. 33.n0 N0.C0 6Nn 3 . .n. 3903 00.N C6.0. C0.36 Nn.Nn C3.06 0N.. n3.C0 .0.30 CNn Con. 3903 00.N 60.0. .n.06 00.Cn 60.06 0N.. 06.06 .060 0.0 n0.N. 3903 n0.N 0n.3. 00.N6 0N.0N N066 0N.. n0.06 06. .0 N.n 30.N. 3903 C0 .N Cn.0. 30.C6 03.3N n0 .N6 0N. . 6906 00.06 0on C0 .N. 3903 C0.N .n.0. 00.0n 3n.0N 60.C6 0N.. 30.C6 n0.06 6Cn nn.N. 3903 06.N .66. n0.0n 00.6N 60.0n 0N.. 66.0n .0.n6 CCn 3..N. 3963 06.N N0.n. N06n 00.nN 00.0n 0N.. CN.0n 6C. .6 00N CC.N. 3963 .6.N C0.N. 00.Nn .0.NN NC.0n 0N.. 0.6n 03.0n NON n0. .. 3963 0 . .N N3... C0.Cn 6C. .N 00.Nn 0N. . CC.Nn .6.0n 00N 30... 3963 0..N 0C... 6n.0N 0C.CN 0N..n 0N.. 3..Cn 0n6n 60N C0... 3963 6C.N nn.C. .3.3N 30.0. 06.0N 0N. . 0N.0N nn.Nn CON nn. .. 3963 33.. 00 .0 60.0N n0.3. N3.3N 0N. . 06.0N on.Cn 03N 3.... 3993 00.. N00 0N6N N6.0. CC.0N 0N.. 036N 3n.0N N3N CC... 3993 0n.. 00.3 03.NN 0n.0. 3n6N 0N.. 6N.nN n0.0N 00N 000. 3993 .n.. 00.0 0C. .N 3C6. 00.NN 0N. . 00. .N 00.6N 60N 30C. 3993 .n.. 0 . .0 00.0. 00.N. 0C. .N 0N.. 00.0. C0.NN CON C0.C. 3993 .n.. N0.0 6N0. nC.N. C3.0. 0N.. 00.0 . 3n. .N 00N 0nd. 3903 .n.. 00.6 .C.3. nN. .. n00. 0N.. 36.3. 3C.CN NON 3..C. 39N3 .n.. 06.6 N0.0. 36.C. 0n.3. 0N.. 00.0. 00.0 . 06N CC.C. 39N3 .n.. n.6 30.6. .0.0 0n.0. 0N.. nn.0. 00.3. 66N n00 39N3 .n.. 06.n 63.0. 00.0 n ..0. 0N.. N.6. 60.0. C6N 30.0 39N3 .n.. 00.N 63.N. N..0 CC6. .N.. 0C.n. 3..0. 0nN C0.0 39N3 .n.. 00.N N0... C0.3 6Cn. .N.. 0..N. 0.6. NnN nn.0 0035200 0.0 030... 93 39N .3 CC.0 06.06 0N.0C. C..n0 Nn .0. . on. C0 .6n. 06.3n. 036 C00. 39N .3 CC.0 3N.06 6N.3C. 0C.N0 00.0.. on. C06n. 06.3n. N36 nn.0. 39N .3 CC.0 00.36 .C.0C. 00.C0 N06. . Cn.. .66n. 06.3n . 006 3.0. 39. .3 CC.0 33.36 .C.0C. 00.00 0N.n.. Cn.. Nn6n. 06.30. 606 CC.0. 39 . .3 CC.0 33.36 0 . .6C. No.00 C0.. .. C0,. 6. 6n. 0630. C06 n00. 39 . .3 CC.0 00.36 nn.nC. 00.30 .N.C.. Cn.. 00.nn. 06.3n. 006 30.0. 39 . .3 CC.0 00.36 06.NC. C000 n0.0C. Cn.. 36.nn. 06.3n. N06 C00. 39 . .3 CC.0 00.36 00. .C. 6C.00 06.3C. Cn.. CN.nn. 06.3n. 066 nn.0. 39 . .3 CC.0 60.36 6.. .C. No.00 0C.0C. Cn.. 06.Nn. 06.30. 666 3.0. 39C .3 CC.0 60.36 .0.CC. 00.n0 60.6C. Cn.. 0...n. 0n.3n. C66 CC.0. 39C .3 N00 .6.36 00.00 N0.N0 C. .no. on. 06.0N. 00.0n. 0n6 n0.3. 39C .3 0.0 03.06 3n.00 C0.C0 0.. .C. on. 0C.3N. .0.0n. Nn6 30.3. 39C .3 00.3 NC.06 CC.30 00.03 0.00 on. 30 .6N. 0060. 0N6 C03. 390 .3 00.3 00.06 0C.00 6n.33 30.30 on. N0.NN. .n.nn. 6N6 nn.3. 39C .3 00.3 .N.06 0.00 n0.03 0C.00 on. 00 .CN. 00. .n. CN6 3.3. 3903 00.3 n..06 06.60 .663 00.60 on. 60.0.. 030N. 0.6 CC.3. 3903 C03 00.66 N0.n0 0C.n3 nN.n0 on. 00.0.. 03.3N. N.6 n00. 3903 0C.3 3N66 00.N0 on. .3 C0. .0 on.. 6n6.. NN.0N. 0C6 30.0. 3903 .00 .006 .6. .0 66.00 00.00 on. .C.N.. 00.NN. 6C6 C00. 3903 .00 C . 06 6000 30.30 6N.00 Cn.. CC.C.. N6.CN. CC6 nn .0. 3903 .00 N0.N6 06.00 06.00 0300 C0,. C0.3C. 0C.0.. 00n 3.0. 3993 .00 00.6 .n.00 00.60 0.00 on. 30.0C. 00.0.. N0n CC.0. 3903 03.0 n .. .6 6C.30 0n.n0 N0.n0 C0.. 0n .nC. nN.n .. 00n 00.0. 3903 3N0 30.0n n . .00 .n. .0 06. .0 on. 03.CC. 6. .C.. 60n 30.0. 3903 33.0 30.0n 0C.00 NN.00 0n.03 Cn.. C0.30 6C.3C. C00 C00. 3903 00.0 06.3n .N. .0 60.30 .0.33 on. 3C.00 3. 6C. 03n nn.0 . 3903 nN.0 nN0n nC03 00.00 00.03 on. N..N0 ....C. N3n 3.0. 3933 00.0 . ..0n no.33 6000 0003 on. n . .00 0C.00 00n CC.0. 3933 33.6 3300 .363 3..N0 30. .3 on. CC.00 63.60 600 006. 3933 nN6 0..Nn 3C.N3 nC.C0 .n.00 Cn.. .0.N0 C.. .0 C0n 30.6. 3933 600 n0.Cn N000 C0.36 00.00 0N. . 00.03 N630 00n C06. Saczcoo 0d 050... 94 393.3 300 00.00 N.. .N. n6.0N. 06.60. 00. . Cn.0n. .3.3n. CCO 30.6N 3C3 .3 CC.0 3N.00 60.CN. 00.nN. 00.00. .0.. .060. 06.30. 000 C0 .6N 3C3 .3 CC.0 00.60 60.CN. 30.NN. 00.00. .0.. .060. 0630. N00 00.6N 393 .3 CC.0 N660 60.CN. 60. .N. 00.00. .0.. 33.60. 06.30. 000 3 . 6N 390 .3 CC.0 0.60 60.CN. 3N.CN. 00.00. .0.. 33.60. 06.30. 600 CC6N 390.3 CC.0 30.00 60.CN. 0N.0.. 00.00. .0.. 33.60. 06.30. C00 00.nN 390 .3 CC.0 .0.00 60.CN. .C.0.. N3.0n. .0.. 33.60. 06.30. 030 30.nN 390 .3 CC.0 N..00 60.CN. 33.0.. N3.0n. .0.. 33.60 . 06.3n. N30 C0.0N 390.3 CC.0 00.N0 60.CN. 30.0.. N3.0n. .0.. 33.60. 06.30. 000 nn.nN 390 .3 CC.0 30.N0 60.CN. 06.6.. N300. .0.. 33.60. 06.30. 600 3..nN 390 .3 CC.0 N0.N0 60.CN. 30.0 . . N3.0n. .0.. 33.60. 06.30 . C00 CC.0N 390 .3 CC.0 00.N0 60.CN. 60.N.. N3.0n. .0.. 33.60. 06.30. 000 n0.NN 390 .3 CC.0 6C.N0 60.CN. .0.... 00.00. .0.. 33.60. 0630. N00 30.NN 390 .3 CC.0 00. .0 60.CN. ...C.. 60.00. .0.. 33.60. 06.30. 060 C0.NN 390 .3 CC.0 00. .0 60.CN. 3.0C. 60.00. .0.. 33.60. 06.30. 660 nn.NN 390 .3 CC.0 00. .0 60.CN. 0 . .0C. C0 .00. .0.. 33.60. 0630. C60 3. .NN 396.3 CC.0 00. .0 60.CN. 06.3C. 0C.nn. .0.. 33.60. 06.30. 000 CC.NN 396.3 CC.0 3n. .0 03.CN. CO0C. 0C.nn. 06.. 33.60. 06.30. N00 00. .N 396 .3 CC.0 N0.C0 60 .CN. .009 3N.Nn. C0.. 33.60. 06.30. 0N0 30. .N 396 .3 CC.0 .000 00.0.. 0. 6C. 6. .Nn. C0.. N360. 06.3n. 6N0 C0. .N 396.3 CC.0 03.06 0.0.. 00.NC. .6..0. C0.. C060. 0630. CNO nn..N 396 .3 CC.0 N006 .N.0.. 00. .C. 6000. C0.. C060. 06.30. 0.0 3.. .N 390 .3 CC.0 66.06 CN.3.. N0.CC. NO0N. C0. . C060 . 06.30. N .0 CC. .N 390 .3 CC.0 66.06 0. .0. . 60.00 0 . .0N. C0. . C060. 06.30. 0C0 00.CN 390 .3 CC.0 66.06 60.0.. C . .00 360N. C0.. C060 . 06.30. 600 30.CN 390 .3 CC.0 3.06 36.6.. 0N00 N0.3N. C0.. C0 .60. 06.30. CCO C0.CN 390 .3 CC.0 3.06 N0.n.. 60.30 0NON. C0.. C060. 0630. 006 00.CN 390 .3 CC.0 3.06 00 .N.. 03.00 00.6N. C0.. C060. 06.30. N06 3..CN 39N .3 CC.0 0C06 00.... 00.00 C0.nN. C0. . C060 . 06.30 . 006 CC.CN 39N .3 CC.0 60.06 .00.. 6.00 .0. .N. C0.. C060. 06.30. 606 00.0. 39N .3 CC.0 N306 N60C. 3 .60 0C.CN. C0.. C0 .60. 06.30. C06 30.0. 00:52.60 0 d 0.3.0... 95 39NN3 C0. .. .n.00 N.. .N. .0 .0N. 06.60. 00.0 66.00. .3.3n. 6N3 n0.0N 39NN3 C0... .n.00 N...N. .0.0N. 06.60. 00.0 66.00. .3.30. CN3 30.0N 39NN3 C0. .. .n.00 N...N. .0.0N. 06.60. 00.0 66.00. .3.30. 0.3 C0.0N 39NN3 C0. .. .n.00 N...N. .0.0N. 06.60. 00.0 66.00. .3.30. N .3 00.0N 39NN3 C0. .. .n.00 N...N. .0 .0N. 0660. 00.0 66.00. .3.30. 0C3 3..0N 39.N3 C0. .. .n.00 N...N. .0.0N. 06.60. 00.0 66.00. .3.30. 6C3 CC.0N 39.N3 C0. .. .n.00 N.. .N. .0.0N. 06.60. 00.0 66.00. .3.3n. CC3 n0.0N 39.N3 C0. .. .n.00 N...N. .0.0N. 06.60. 00.0 66.00. .3.30. 000 30.0N 39.N3 C0. .. .n.00 N. . .N. .0.0N. 06.60. 00.0 66.00. .330. N00 C0.0N 39.N3 C0. .. .0.00 N.. .N. .0.0N. 06.60. 00.0 66.00. .3.3n. 000 00.0N 39.N3 C0. .. .n.00 N.. .N. .0.0N. 06.60. 00.0 66.00. .3.3n. 600 3 .0N 39CN3 C0. .. .0.00 N.. .N. .0 .0N. 06.60. 00.0 66.00. .3.3n. C00 CC.0N 39CN3 C0. .. .n.00 N.. .N. .0.0N. 06.60. 00.0 66.00. .3.3n. 030 00.3N 39CN3 C0. .. 0N.00 N. . .N. .0.0N. 06.60. 00.0 66.00 . .330. N30 30.3N 39CN3 C0. .. 0N.00 N.. .N. .0.0N. 06.60. 00.0 66.00. .3.30. 000 C0.3N 39CN3 C0. .. 0N.00 N...N. .0.0N. 0660. 00.0 66.00. .3.30. 600 nn.3N 39CN3 C0... 0N.00 N.. .N. .0.0N. 06.60. 00.0 66.00. .330. C00 3..3N 390 .3 C0. .. 0N.00 N.. .N. .0.0N. 06.60. 00.0 66.00. .3.3n. 000 CC.3N 390 .3 C0. .. NN.00 N...N. .0.0N. 06.60. 00.0 66.00. .3.30. N00 n0.0N 390 .3 C0. .. n..00 N...N. .0.0N. 06.60. 00.0 66.00. .3.3n. 060 30.0N 390 .3 .0. .. n3.N0 N...N. .0.0N. 06.60. 03.0 66.00. .3.3n. 660 C0.0N 390 .3 06. .. 0N.N0 N.. .N. .0 .0N. 06.60. 03.0 V6.00. .3.3n. C60 nn.0N 390 .3 0N. .. 00. .0 N...N. 00.0N. 06.60. 00.0 66.00. .3.3n. 000 3..0N 390 .3 0.... CN. .0 N...N. 6NON. 06.60. 30.0 66.00. .3.3n. N00 CC.0N 390 .3 .C. .. 00.C0 N...N. NC.0N. 0660. 00.0 66.00. .3.3n. 0N0 00.0N 390 .3 03.0. C000 N.. .N. 30.0N. 06.60. 0C.n 66.00. .3.3n. 6N0 30.0N 390 .3 N00. 0 . .00 N...N. n . .0N. 06.6n. 33.N 66.00. .3.3n. CNO C0.0N 390 .3 0 ..C. 60.00 N...N. N0.3N. 06.6n. 00.N 66.00. .3.3n. 0.0 nn.0N 390.3 .C.C. 0.00 N...N. 0n.3N. 06.6n. 60N 66.00. .3.30. N.0 3..0N 3C3 .3 .00 C330 N...N. NC.3N. 06.6n. 06.N 66.00. .3.30. 0C0 CC.0N 393.3 N00 60.30 N...N. 06.0N. 06.6n. Nn.N 66.00. .3.3n. 6C0 00.6N 3333338 3.3 3.33. 96 390N3 C0... .n.00 N...N. .0.0N. 06.60. 00.0 66.00. .3.3n. 063 3000 390N3 C0. .. .n.00 N...N. .0.0N. 06.60. 00.0 66.00. .3.3n. C63 C0.C0 390N3 C0... .n.00 N...N. .0.0N. 0660. 00.0 66.00. .3.3n. 003 00.C0 390N3 C0... .n.00 N...N. .0.0N. 06.60. 00.0 66.00. .3.3n. N03 3..Cn 39NN3 C0... .n.00 N...N. .0.0N. 06.60. 00.0 66.00. .3.30. 0N3 CC.Cn 0025.50 0.0 030.3 97 Table 0.6 Respirometer Calculated Data: Case B-2 Gas Production Rate Gas Production Rate (mUhr) Time Time WSN WSN WS Adan) (my (rep A) (rep 8) V: N “’s s 3" ”(“3” °' 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4 1.44 1.28 1.34 1.26 1.21 1.28 1.06 1.15 0.00 8 0.01 0.01 0.04 0.04 0.02 0.01 0.00 0.05 0.17 12 0.01 0.00 0.01 0.02 0.00 0.00 0.00 0.04 0.33 16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.67 24 0.00 0.00 0.04 0.10 0.00 0.00 0.00 0.01 0.83 28 0.10 0.03 0.11 0.10 0.06 0.00 0.00 0.07 1.00 32 0.03 0.04 0.04 0.03 0.01 0.00 0.00 0.00 1.17 36 0.03 0.01 0.02 0.02 0.00 0.00 0.00 0.00 1.33 40 0.04 0.03 0.02 0.02 0.00 0.00 0.00 0.00 1.50 44 0.04 0.04 0.01 0.05 0.00 0.00 0.00 0.00 1.67 48 0.07 0.07 0.00 0.07 0.01 0.00 0.00 0.00 1.83 52 0.08 0.08 0.00 0.08 0.07 0.00 0.00 0.02 2.00 56 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 2.17 60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.33 64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.50 68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.67 72 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 2.83 76 0.04 0.05 0.00 0.06 0.02 0.07 0.00 0.00 3.00 80 0.02 0.02 0.00 0.02 0.02 0.03 0.00 0.00 3.17 84 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.33 88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.50 92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.67 96 0.04 0.03 0.00 0.07 0.02 0.07 0.00 0.00 3.83 100 0.14 0.10 0.00 0.11 0.12 0.12 0.00 0.01 4.00 104 0.03 0.04 0.00 0.02 0.03 0.04 0.00 0.03 4.17 108 0.01 0.01 0.00 0.02 0.00 0.00 0.00 0.00 4.33 112 0.06 0.04 0.00 0.06 0.04 0.08 0.00 0.00 4.50 116 0.04 0.05 0.00 0.05 0.02 0.05 0.00 0.01 4.67 120 0.07 0.07 0.00 0.04 0.03 0.00 0.02 0.02 4.83 124 0.10 0.09 0.00 0.10 0.09 0.13 0.08 0.07 5.00 128 0.01 0.01 0.00 0.01 0.01 0.02 0.00 0.00 5.17 132 0.02 0.00 0.00 0.00 0.00 0.01 0.00 0.00 5.33 136 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 5.50 140 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.67 144 0.05 0.03 0.00 0.02 0.00 0.06 0.00 0.00 5.83 148 0.08 0.07 0.00 0.06 0.01 0.07 0.00 0.00 6.00 152 0.01 0.01 0.00 0.01 0.00 0.02 0.00 0.00 6.17 156 0.03 0.02 0.00 0.02 0.00 0.04 0.00 0.00 6.33 160 0.07 0.05 0.00 0.04 0.00 0.07 0.00 0.00 6.50 164 0.03 0.02 0.00 0.02 0.00 0.01 0.00 0.00 6.67 168 0.13 0.12 0.00 0.03 0.07 0.09 0.00 0.00 98 Table 0.6 continued 6.83 172 0.16 0.15 0.00 0.18 0.12 0.16 0.00 0.00 7.00 176 0.08 0.07 0.00 0.06 0.02 0.06 0.00 0.00 7.17 180 0.07 0.05 0.00 0.04 0.01 0.06 0.04 0.00 7.33 184 0.09 0.09 0.00 0.08 0.08 0.13 0.06 0.00 7.50 188 0.10 0.08 0.00 0.08 0.03 0.08 0.01 0.00 7.67 192 0.18 0.17 0.00 0.16 0.11 0.16 0.09 0.00 7.83 196 0.17 0.16 0.00 0.14 0.13 0.17 0.08 0.00 8.00 200 0.11 0.10 0.00 0.10 0.03 0.08 0.01 0.00 8.17 204 0.06 0.05 0.00 0.05 0.00 0.06 0.00 0.00 8.33 208 0.10 0.09 0.00 0.09 0.08 0.14 0.00 0.00 8.50 212 0.11 0.10 0.00 0.10 0.04 0.10 0.00 0.00 8.67 216 0.19 0.17 0.00 0.17 0.12 0.16 0.04 0.00 8.83 220 0.20 0.18 0.00 0.19 0.13 0.07 0.04 0.00 9.00 224 0.18 0.15 0.00 0.15 0.09 0.23 0.08 0.00 9.17 228 0.16 0.15 0.00 0.16 0.08 0.14 0.03 0.00 9.33 232 0.18 0.16 0.00 0.16 0.12 0.21 0.06 0.00 9.50 236 0.25 0.24 0.00 0.24 0.16 0.21 0.10 0.00 9.67 240 0.29 0.26 0.01 0.28 0.19 0.25 0.13 0.00 9.83 244 0.34 0.30 0.00 0.31 0.23 0.31 0.17 0.00 10.00 248 0.29 0.26 0.00 0.26 0.17 0.24 0.09 0.00 10.17 252 0.30 0.28 0.00 0.28 0.19 0.27 0.12 0.00 10.33 256 0.33 0.28 0.00 0.29 0.20 0.31 0.14 0.00 10.50 260 0.38 0.35 0.00 0.34 0.23 0.33 0.16 0.00 10.67 264 0.44 0.40 0.00 0.41 0.28 0.38 0.20 0.00 10.83 268 0.47 0.41 0.00 0.42 0.32 0.42 0.23 0.01 11.00 272 0.46 0.38 0.00 0.41 0.27 . 0.38 0.19 0.06 11.17 276 0.48 0.43 0.00 0.43 0.28 0.40 0.19 0.04 11.33 280 0.51 0.46 0.00 0.44 0.34 0.47 0.24 0.07 11.50 284 0.51 0.47 0.00 0.44 0.30 0.41 0.19 0.04 11.67 288 0.51 0.46 0.00 0.43 0.25 0.37 0.16 0.00 11.83 292 0.60 0.54 0.00 0.51 0.37 0.51 0.27 0.06 12.00 296 0.56 0.51 0.00 0.42 0.29 0.44 0.18 0.01 12.17 300 0.62 0.56 0.00 0.49 0.33 0.48 0.22 0.00 12.33 304 0.61 0.56 0.00 0.48 0.35 0.51 0.23 0.01 12.50 308 0.66 0.59 0.00 0.50 0.34 0.52 0.25 0.00 12.67 312 0.72 0.65 0.00 0.52 0.38 0.55 0.27 0.03 12.83 316 0.76 0.71 0.00 0.56 0.44 0.61 0.29 0.06 13.00 320 0.75 0.57 0.00 0.47 0.33 0.55 0.22 0.00 13.17 324 0.75 0.76 0.00 0.48 0.40 0.57 0.25 0.00 13.33 328 0.77 0.73 0.00 0.49 0.39 0.57 0.27 0.00 13.50 332 0.80 0.74 0.00 0.49 0.40 0.58 0.28 0.00 13.67 336 0.88 0.82 0.00 0.56 0.48 0.66 0.35 0.00 13.83 340 0.91 0.83 0.00 0.57 0.50 0.68 0.37 0.02 14.00 344 0.85 0.81 0.00 0.50 0.42 0.61 0.32 0.06 14.17 348 0.83 0.78 0.00 0.49 0.42 0.58 0.29 0.00 14.33 352 0.83 0.79 0.00 0.50 0.45 0.64 0.34 0.07 14.50 356 0.87 0.81 0.00 0.51 0.44 0.62 0.32 0.05 99 Table D.6 continued 14.67 360 0.92 0.88 0.01 0.59 0.53 0.64 0.40 0.15 14.83 364 0.91 0.87 0.00 0.56 0.54 0.66 0.41 0.14 15.00 368 0.83 0.78 0.00 0.52 0.44 0.58 0.33 0.07 15.17 372 0.76 0.75 0.00 0.48 0.42 0.50 0.28 0.04 15.33 376 0.77 0.74 0.00 0.49 0.48 0.55 0.32 0.08 15.50 380 0.72 0.68 0.00 0.46 0.42 0.47 0.27 0.05 15.67 384 0.77 0.75 0.00 0.53 0.52 0.51 0.33 0.13 15.83 388 0.77 0.65 0.00 0.53 0.51 0.48 0.32 0.13 16.00 392 0.61 0.57 0.00 0.38 0.38 0.32 0.18 0.03 16.17 396 0.61 0.56 0.00 0.40 0.40 0.30 0.17 0.00 16.33 400 0.59 0.53 0.00 0.37 0.38 0.26 0.15 0.00 16.50 404 0.56 0.50 0.00 0.36 0.37 0.22 0.10 0.00 16.67 408 0.64 0.58 0.00 0.45 0.47 0.32 0.19 0.04 16.83 412 0.64 0.58 0.00 0.43 0.45 0.29 0.17 0.10 17.00 416 0.49 0.47 0.00 0.34 0.33 0.16 0.04 0.02 17.17 420 0.48 0.50 0.00 0.38 0.36 0.18 0.02 0.00 17.33 424 0.41 0.49 0.00 0.37 0.38 0.23 0.11 0.00 17.50 428 0.31 0.51 0.00 0.40 0.38 0.23 0.09 0.00 17.67 432 0.34 0.63 0.00 0.50 0.49 0.34 0.19 0.15 17.83 436 0.27 0.59 0.00 0.49 0.46 0.33 0.16 0.16 18.00 440 0.09 0.43 0.00 0.39 0.34 0.20 0.06 0.04 18.17 444 0.03 0.33 0.00 0.36 0.26 0.16 0.00 0.00 18.33 448 0.00 0.18 0.00 0.34 0.26 0.21 0.01 0.00 18.50 452 0.00 0.07 0.00 0.29 0.19 0.13 0.00 0.00 18.67 456 0.00 0.12 0.00 0.40 0.29 0.22 0.00 0.00 18.83 460 0.00 0.05 0.00 0.40 0.27 0.22 0.02 0.00 19.00 464 0.00 0.04 0.00 0.36 0.21 0.20 0.00 0.00 19.17 468 0.00 0.02 0.00 0.42 0.26 0.25 0.04 0.00 19.33 472 0.00 0.02 0.00 0.43 0.30 0.31 0.08 0.00 19.50 476 0.00 0.00 0.00 0.42 0.26 0.26 0.05 0.00 19.67 480 0.00 0.00 0.00 0.44 0.27 0.28 0.06 0.00 19.83 484 0.00 0.00 0.00 0.43 0.24 0.30 0.05 0.00 20.00 488 0.00 0.00 0.00 0.37 0.21 0.24 0.04 0.00 20.17 492 0.00 0.00 0.00 0.39 0.20 0.25 0.02 0.00 20.33 496 0.00 0.00 0.00 0.35 0.19 0.24 0.00 0.00 20.50 500 0.00 0.00 0.00 0.32 0.18 0.24 0.00 0.00 20.67 504 0.00 0.00 0.00 0.24 0.21 0.22 0.07 0.00 20.83 508 0.00 0.00 0.00 0.17 0.11 0.21 0.00 0.00 21.00 512 0.00 0.00 0.00 0.19 0.24 0.26 0.00 0.00 21.17 516 0.00 0.00 0.00 0.18 0.27 0.25 0.05 0.00 21.33 520 0.00 0.00 0.00 0.19 0.31 0.24 0.04 0.00 21 .50 524 0.00 0.05 0.00 0.18 0.33 0.19 0.18 0.00 21.67 528 0.00 0.01 0.00 0.03 0.29 0.10 0.10 0.00 21.83 532 0.00 0.00 0.03 0.20 0.32 0.10 0.11 0.00 22.00 536 0.00 0.00 0.04 0.00 0.22 0.02 0.04 0.00 22.17 540 0.00 0.00 0.00 0.10 0.16 0.00 0.00 0.00 22.33 544 0.00 0.00 0.00 0.01 0.25 0.00 0.00 0.00 100 Table 0.6 continued 22.50 548 0.00 0.00 0.00 0.00 0.23 0.00 0.00 0.00 22.67 552 0.00 0.00 0.00 0.02 0.30 0.00 0.12 0.00 22.83 556 0.00 0.00 0.00 0.02 0.33 0.00 0.12 0.00 23.00 560 0.00 0.00 0.00 0.00 0.23 0.00 0.02 0.00 23.17 564 0.00 0.00 0.00 0.00 0.22 0.00 0.01 0.00 23.33 568 0.00 0.00 0.00 0.00 0.28 0.00 0.04 0.00 23.50 572 0.00 0.00 0.00 0.00 0.30 0.00 0.07 0.00 23.67 576 0.00 0.00 0.00 0.00 0.31 0.00 0.12 0.00 23.83 580 0.00 0.00 0.00 0.03 0.31 0.00 0.09 0.00 24.00 584 0.00 0.00 0.00 0.00 0.25 0.00 0.05 0.00 24.17 588 0.00 0.00 0.00 0.00 0.27 0.00 0.06 0.00 24.33 592 0.00 0.01 0.00 0.00 0.33 0.00 0.14 0.00 24.50 596 0.00 0.00 0.00 0.00 0.25 0.00 0.08 0.00 24.67 600 0.06 0.12 0.07 0.16 0.45 0.07 0.35 0.09 24.83 604 0.00 0.03 0.11 0.00 0.27 0.00 0.17 0.11 25.00 608 0.00 0.00 0.03 0.00 0.13 0.00 0.09 0.02 25.17 612 0.00 0.00 0.02 0.00 0.09 0.00 0.11 0.02 25.33 616 0.00 0.00 0.03 0.00 0.11 0.00 0.12 0.04 25.50 620 0.00 0.00 0.02 0.00 0.08 0.00 0.12 0.03 25.67 624 0.00 0.00 0.08 0.00 0.13 0.00 0.19 0.10 25.83 628 0.00 0.00 0.08 0.00 0.09 0.00 0.19 0.07 26.00 632 0.00 0.00 0.04 0.00 0.05 0.00 0.14 0.04 26.17 636 0.00 0.00 0.02 0.00 0.02 0.00 0.12 0.02 26.33 640 0.00 0.00 0.03 0.00 0.05 0.00 0.15 0.04 26.50 644 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.01 26.67 648 0.00 0.00 0.02 0.00 0.00 0.00 0.10 0.02 26.83 652 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 27.00 656 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 27.17 660 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 27.33 664 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 27.50 668 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 27.67 672 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 27.83 676 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 28.00 680 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 28.17 684 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 28.33 688 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 28.50 692 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 28.67 696 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 28.83 700 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 29.00 704 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 29.17 708 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 29.33 712 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 29.50 716 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 29.67 720 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 29.83 724 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 30.00 728 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 30.17 732 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 101 Table 0.6 continued 30.33 736 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 30.50 740 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 30.67 743 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 102 .233 33.3 33.3 .3 333. 3.3 33.33 33.33 33.33 3. 33.3 .2333 33.3 33.3 33.3 3.3 3.3 ..33 33.33 33.33 33. 33.3 .233 3.3 .3. 33.3 33.. 3.3 3.3 33.33 .333 33 .33 .233 .33 33.. 33.3 3.3 3...3 .333 33.33 33.33 33 33.3 .233 33.3 3... 33.3 33.3 33.3 3.3 3.33 3.33 33 33.3 .233 3.3. .33 33.3 3.3 33.3 33.3 33.3 33.33 33 ...3 .23 .3 3.3. 3.3 3.3 3.3 33.3 33.3 3.33 .333 33 33.3 .23.3 .33. 3.3 33... 33.3 33.3 33.3 33.33 3.33 3. 33.3 .23 .3 3.3. 3.3 33.. ... 33.3 33.3 33.33 33.3 3. .33 .233 33.3. 3.3 N... ... 33.3 33.3 33.3 33.3 33 33.3 .233 3.... 3.3 33.. .... 33.3 33.3 33.33 3.33 33 33.3 .233 33.3. 3.3 3... .... 33.3 33.3 33.33 3.33 33 ...N .33.3 3.3 33 33.. ... 33.3 33.3 33.33 3.33 33 33.3 .33 .3 3.3 3.3 33.3 .... 33.3 33.3 3.3 3.33 33 33. .23 .3 33.3 3.3 33.3 ... 33.3 33.3 3.3 3.33 33 .3. .33.3 33.3 3.3 33.3 .... 33.3 33.3 .33 3.33 33 33.. .233 3.3 3.3 33.3 .... 33.3 33.3 33.3. 3.33 33 33.. .23 .3 33.3 3.3 33.3 .... 33.3 33.3 33.3. 3.33 33 .... .2. .3 33.3 33 33.3 ... 33.3 33.3 3.... 3.33 33 33.. 2.3 33.3 3.3 33.3 33.3 33.3 33.3 .33. 3333 3 33.3 .2. .3 3.3 3.3 33.3 33.3 3.3 33.3 3.3. 3.33 3 .33 2.3 .33 3.3 33.3 33.3 3... 33.3 33.3. 33.33 3 33.3 2.3 33.. 3.3 .33 33.3 3.3 .33 33.3 3.3 3. 33.3 .2. .3 .33 3.3 3.3 33.3 33.3 3.. 33.3 33.3 3. ...3 .33.3 33.3 3.3 3.3 33.3 33.3 33.3 33.3 33.3 3 33.3 .23.3 3.3 3.3 3.3 .33 .33. 33... 33.3. 33.3. 3 .23.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 3 333 s. 2.3 3.: 2.3.: 3.2. 3.5.; 2.3.5.... 2.3.; “MM.” 3.33 3.5 330 02.33.50 330 303.3830 0 330 "San. 33m 33232331 30 203... 103 50.000 00.050 05.05 00.00 — 00.000 ..0.00 ..0.0..N N0.50N 00.00.. 0mm 50 50.0N\0 00.000 V0.05 00.03 50.5 FN 90.00 0.2000 ..N.0VN 00.0V.. VNN 00.0 50.000 00.000 V5.V0 00.00.. 30. ..00 ..0.00 3.00.. 00.VNN 00.003 000 00.0 5000.0 V0000 00.00 00.003 55.00.. 30.00 0N.50.. 0...00N V_....N.. 0.0 50.0 50.000 00.000 ..0.V0 05.V_... 0.....5.. 30.00 0N.00? 00.00.. 30.0.... New 00.0 50.000 00.NON NV.00 V5.00. 00.50. .0.00 0V.0V.. 0...N0.. V0.00. 000 00.0 50.000 00.0VN 50.0V 55.00 0V.0V.. 30.00 00.0n.. 00.00.. 50.50 V00 5...0 50\VN\0 05.0—.0 00. 3V 00.00 00.003 30.00 0.30: 00.003 NV. ..0 000 00.0 5030.0 NV.00~ 00.00 N .. . ..0 50.0: 05.00 0...00.. 0V.0V—. 00.00 003 00.5 50\VN\0 00. ..0.. 00.V0 00.05 00.00.. 05.00 30.00. 00.00.. V0.00 N03 50.5 5030.0 00.V0—. 0m. ..0 V5.00 00.00 05.00 00.00 V0.00. 00.05 003 00.5 50\VN\0 00.0V_. V0.00 V5.00 00.00 00.00 00.00 30.00.. 00. ..5 V0. 00.5 50\VN\0 00 .00.. 5...0N 0...00 00.00 0V.00 00. 30 00.0.... 00.50 00.. 5...5 50.00.0 00.NN.. V0.00 ..0.0V 5.05 «5.00 00.05 V. .0: V0.00 05.. 00.5 50.0%0 00. w ..r V0.00 00.0V 00.00 30.00 V0.05 ..0.V0.. cm. ..0 05.. 00.0 50.000 00.00.. 00.0.. V0. V 03.00 00.00 00.00 N500 .0.00 00. 50.0 50.0Q0 00. ..0 00.0.. 00.00 00.V0 0V.5V 0N.V0 00.V0 03.00 V0.. 00.0 50.000 00.00 5V.0.. 3N.00 00.0V 00.0V 0... ..0 0 .. . ..0 00.N0 003 00.0 59.80 00.05 V0.0.. V0.00 00.0V ..0.0V V0.00 00.50 00.00 003 5...0 50\NN\0 5V.00 00.03 00.00 5V.00 00.NV 30.00 00.V0 N —. .0V 00.. 00.0 50\NN\0 30.00 0V.N—. V0.VN 00.00 «N. ..V «0.00 00.N0 00.5V 0V.. 00.0 50\NN\0 00.00 00. ..P 05. .0 0V. 30 NN. «V 00.00 V0.05 05.0V VV.. 50.0 50\NN\0 00.00 00.0 5V.0.. 00.00 mm. «V 00.0V 50.05 00.0V 0V.. 00.0 50.NN\0 00.0V 00.0 NV.5.. 5N.0N «N. ..V 05.0V 00.V5 00.NV 00.. 00.0 50\NN\0 00.0V 30.5 00.0.. 05.NN NN. ..V 05.0... V0 .N5 00.0V ~03 5...0 50. ..N\0 00. V 50 .0 3.3 0V.0N NN. —.V 00. ..V 0V.05 00.00 003 00.0 50200 00.00 30.0 00.Nw 00.0.. mm. ..V V3.0V V0.00 05.00 VN.. 00V 502.80 00.00 V0.V 0...... 00.0.. mm. ..V 30.00 00.00 00.50 0N.. 50.V 50:00 00.00 00.0 05.0 50.3. «N. ..V 50.00 0N.V0 V0.50 0.... 00.V 50;N\0 50. ..0 0V.0 00.0 00.0.. mm. ..V 00.00 00.N0 00.00 NZ. 00V 50:.N\0 V0.00 ..0.N 00.5 55. 3.. mm. ..V .._..V0 00.00 N000 003 5...V 003—5:00 5.0 050... 104 50. 30.0 50.000 00.000 00.00V 00.000 30.V0 00.00V VV.000 03.000 000 00.33 5030.0 30.000 00.030 V0 .000 00.000 03.V0 00.00V 03. 300 00.000 0V0 53.3 5050.0 50.000 35.000 00.V00 00.0V0 00.00 53. 30V 05.000 00.000 VVO 00.V3 50.000 05.050 00.000 00.050 00.0V0 V0.00 0 3 .0VV 00.000 00.000 0V0 00.03 50.000 00.500 00.000 00.000 00. 300 00.00 00. 333.3 00.000 00. ..00 000 50.03 50.000 00.000 00.050 30.000 00.000 00.00 03.50V 5V.000 00. 300 000 00 .03 50.000 00.000 05.000 30.5V0 V5.0 30 50. 30 00.00V 50.050 00. 300 000 00.03 50.000 00.0V0 00.V00 00.000 0V.V00 05. 30 00.00V 00.000 00. 300 V00 5 3.03 5900.0 50.V00 00.0V0 30.000 50.V00 00. 30 5V.00V 00.000 00. 300 000 00.03 50.000 35.000 00.500 00. 300 00.000 V0. 30 00.00V 00.V00 00. 300 030 00.03 5000.0 00.0 30 05.000 30.030 00.050 0V.00 00.VOV 50.0V0 00. 300 030 50.03 50.000 50.030 00.000 03.V00 V0000 50.00 00.00V 00.0V0 00.000 000 00.03 50.000 0V.000 50.030 05.000 00.0V0 35.00 00.00V 00.000 V0.050 V00 00 .03 50.000 00.000 00.000 00.000 00.000 V0.00 00.0 3V V0000 05.050 000 53.03 5000.0 0V.000 00 .003 30 .000 00.000 V0.00 50 .0 3V 00.000 30.050 000 00.03 50.000 00.000 00.00.. 55.550 03.000 00.00 05.5 3.3 00 .000 V0000 000 00. 33 50.000 00.050 30.003 00. 350 00.00V 00.50 05.03V 00.030 3V.000 000 50.33 50.000 33.000 03 .053 00.000 30.55V 00.00 00.0 3V 0V.000 00.0V0 V00 00. 33 50.000 00.500 00.053 VV. 300 30. 30V 00.00 00.0 3V V0.00V 00.000 000 00. 33 50.000 50.0V0 00 .003 00.000 00.0VV 00.00 0 3 .V3V 00 .00V 50 .000 050 5 3. 33 5950.0 00. 3V0 V0003 00.000 0 3 .00V 00.00 00. 3 3V 00.50V 30. 3 30 050 00. 33 5950.0 00.000 300.33 V0.VVO 30. 3 3V 00.00 00.VOV 00. 30V 00.000 000 00.03 5250.0 5V.000 3.03 30.000 0V.000 00.00 00.000 V5.00V 03.300 V00 50.03 5950.0 05.030 00.003 00.000 00.V50 30.00 00.050 00.0 3V 00.000 000 00 .0 3 5950.0 00 .000 3V.V03 VV. 300 00.000 30.00 30.000 00.000 00.0V0 000 00 .03 5950.0 00. 30V 00.033 00.030 50 .000 30.00 00.VVO 0V.050 0V.000 000 5 3 .03 50.000 00.05V 50 .003 V5 .000 0V.000 30.00 30.000 00.000 00 .5 30 0V0 00.0 3 50.000 00.00V 03.003 30.V03 00.000 30.00 30.000 V5000 30.000 VVO 00.0 50.000 00.0VV 30.V0 30.003 00.V00 30.00 53.000 0V.030 0 3.003 0V0 50.0 50.000 00.00V 00.50 05.053 00.000 30.00 00.000 00.000 VV.V53 000 00.0 5900.0 VV.00V 35.30 05.003 00.000 30.00 00.500 05.V50 03.003 000 00.0 0035.000 5.0 030.3 105 50.0.0 50.0V0 0 3 .00V 30.000 00.0V0 00.05 00.005 00.0V0 30.VVV 05V 00.03 50.0.0 05.0V0 00. 30V 00.000 0 3 .5V0 30.05 00.005 03.000 00.0VV 05V 00 .03 50.0.0 00 .0V0 00.0VV 30.000 35.VVO 00.05 00.V05 00.V00 0 3 .50V 00V 5 3 .03 50.V.0 00.000 05.0VV 00.500 00.0V0 30.05 00.VV5 00.000 30.00V VOV 00.03 50.V.0 00.000 00.VVV 0V.V00 00.000 00.05 03 .005 00.000 50.00V 00V 00.03 50.V.0 00.000 00.0VV 0V.000 00.500 V0.V5 0 3 .505 00.000 00.00V 00V 50.03 50.V.0 30 .000 00.00V 00.000 00.V00 0V.V5 00.535 05.V30 00.00V 00V 00.03 50.V.0 03.000 0V.50V 00.000 00.000 50.V5 00.005 03.000 V3 .0 3V 0VV 00.03 50.V.0 00.000 5 3 .00V 35.550 00.000 00.05 30.000 00.000 V0.0 3V VVV 5 3.03 50.0.0 00 .000 00.00V 3 3.050 00.500 V0.05 30 .000 50.000 00.0 3V 0VV 00.0 3 50.0.0 00.530 V0.00V 00.000 00.V00 0 3 .05 00.550 0V.000 00.0 3V 00V 00.53 50.0.0 0V.0 30 00.50V 05.000 0V.5 30 0V.05 00.000 30.050 00.50V 00V 50.53 50.0.0 00.500 00.00V 00.000 00.500 00. 35 30.000 05.050 00.VOV 00V 00.53 50.0.0 05.000 00.00V 00.000 V0 .005 0V. 35 00.VVO 00. 300 VV.00V VOV 00.53 50.0.0 V0005 00.0 3V 0V.VVO 00.005 00.05 00.000 00. 300 00.00V 00V 5 3 .53 50.0.0 3 3 .V05 00.5 3V 0V.500 00.055 00 .05 V3. 300 00.0V0 30.000 0 3V 00.53 50.0.0 00.005 0V.V3V 00.000 03.005 30.00 00.000 50.000 00.000 0 3V 00.03 50.0.0 0V.005 00. 3 3V 00. 300 0V.V05 0V.00 0V.500 00.530 00.V00 00V 50.03 50.0.0 00.005 50.00V V5 .0 30 00.0V5 0 3.00 55.000 00.V00 30.000 VOV 00 .03 50.0.0 00 .055 00.00V 00.000 05.005 05.00 00.V50 00.005 00. 300 00V 00.03 50.0.0 00.005 00. 30V 00.50V 00.005 30.00 00.000 05.055 00.000 000 5 3 .03 50. 3.0 00.005 30.000 0V.00V 00.005 00.50 00.000 00.005 00.000 000 00.03 50.3.0 05.005 00.000 3 3. 30V 03.005 00 .50 00. 3V0 50.005 03.000 000 00.0 3 50.3.0 3 3 .0V5 V5.000 00.05V 00.035 30.00 5V.000 30.005 00.500 V00 50.03 50.3.0 00.0V5 00.000 0 3 .VOV 03.505 50.00 00.000 03.005 00.000 000 00.0 3 50.3.0 05.005 05.050 00.00V 00.005 V0.00 30.0 30 00.035 00.000 050 00.03 50.3.0 05.005 V0000 00.0VV 00.V00 50.00 00.000 30.000 00.000 050 5 3 .03 50. 30.0 00.V05 5 3. 300 00 .00V 00.000 0 3 .00 00.00V 00.000 00.000 000 00.0 3 50. 30.0 00.035 00.000 30.00V 0V.000 30.00 0 3 .VOV 00.050 30.V00 V00 00.V3 50. 30.0 50.035 0 3 .0V0 00.00V 00.050 30.00 00.05V 03.000 30.000 000 50.3 50. 30.0 5V.005 00 .000 00. 3 3V 5V.000 50.V0 V3 .00V 0 3 .0V0 0V.000 000 00.V3 00:35:00 5.0 0.00... 106 50.0 3.0 V3 .0 303 00.000 00.005 05.03 3 00.V0 5V.0V0 V0050 3 00.000 000 50.V0 50.0 3.0 50.33 00 .550 V0005 00.5033 00.V0 V0.0V0 00.V503 V0500 000 00.V0 50.0 3.0 00.000 30.000 00.V05 00. 3 3 33 00.00 00.VVO V00503 00.050 000 00.V0 50.0 3.0 0 3 .500 30.000 00.005 50.0003 00.00 VV.0V0 00. 3503 00.000 000 5 3 .0 50.0.0 00.050 00.000 00. 305 00. 3003 VV.00 35.0V0 00.0503 V3000 V00 00.V0 50.0.0 03. 350 0V.0V0 00 .000 00 .0003 53.00 50.000 00.0003 05 .5V0 000 00.00 50.0.0 00.000 00. 3V0 0 3 .000 000003 00.00 50.000 03 .5003 00.500 050 50.00 50.0.0 00.000 03.000 00.000 30.5003 50.00 05.V00 0V.0003 0 3 .000 050 00.00 50.0.0 V0.5V0 00.000 03.000 50.V003 50.00 00.000 V0.0003 50.030 000 00.00 50.0.0 V0.0V0 0V.000 30.000 00.0303 50.00 00.000 00.0003 00.000 V00 53.00 50.0.0 00.V00 50.530 05.000 05.500 50.00 03.000 00 .000 3 00 .V00 000 00.00 50.0.0 00.500 00.0 30 V0000 00.000 50.00 0V.500 0V.000 3 50.V00 000 00.00 50.0.0 03. 300 V0000 00.050 30.050 50.00 00.000 50.0003 3V.V50 000 50.00 50.0.0 0 3 .0 30 V0.V00 00.050 00. 300 50.00 00 .000 0 3.0003 00.V00 0V0 00 .00 50.0.0 55.000 00. 300 03.000 3V. 300 50.00 00.000 03 .0V03 05.000 VVO 00.00 50.0.0 VV.V00 35.50V 03.000 0V. 3V0 50.00 0V. 300 00 .V00 3 3 3 .5V0 0V0 5 3 .00 50.5.0 35.000 00.VOV 00.000 00.000 50.00 0V.000 00.0003 00.000 000 00.00 50.5.0 50.000 5V. 30V 00.5V0 00.000 00.00 V0 .0 30 3V.5 303 05.000 000 00. 30 50.5.0 00.000 30.00V V0.0V0 00.030 30.30 V5.530 3V.0003 55.000 000 50.30 50.5.0 00.000 0 3 .00V 50.000 0V.500 50. 30 30.030 00.3003 00.V30 V00 00. 30 50.5.0 00. 300 00. 30V 50.V00 00.000 55.00 00.V30 00.000 V0500 000 00. 30 50.5.0 00.050 00.05V 05.000 00.000 50.00 300 30 00.000 30.000 0 30 5 3. 30 50.0.0 30050 05.05V 35.500 00.000 30.05 00.030 00.000 00.00V 0 30 00. 30 50.0.0 00.000 00.05V 00.V00 00. 300 00.05 0 3 .000 00.050 00.50V 000 00.00 50.0.0 00.000 0 3 .05V V0000 05.050 00.05 00.000 V5050 50 .00V V00 50.00 50.0.0 00. 300 0V.50V 00.0 30 00.050 05.05 00. 300 00.000 V0.V5V 000 00.00 50.0.0 00.000 3 3.00V 00.530 00.000 00.05 V0005 00.V00 00 .00V 00V 00 .00 50.0.0 53.000 00.00V 05.030 00.000 00.05 00.005 0V.000 00.00V 00V 53.00 50.0.0 00.000 00.00V V5.0 30 00.000 30.05 50.005 VV.000 30.00V 00V 00.00 50.0.0 05.000 03 .00V 00. 3 30 03 .000 05.55 00.005 00.000 00.VOV VOV 00.03 50.0.0 00.5V0 00.00V 03.000 05.000 00.55 00.555 00.5V0 00 .0VV 00V 50.03 3333338 ..3 2333 107 50.0 3.0 V0.550 3 0V.000 00.000 30.000 3 00.00 00.000 30.0V3 3 00.005 V05 00.00 50.0 3.0 00.5503 03.000 V0000 30.3003 00.00 00.V00 00.0V33 V0.V05 005 50.00 50.0 3.0 03 .0503 00.000 50.0V0 0 3 .0003 00.00 V0000 00.0V3 3 30 .005 035 00.00 50.0 3.0 03 .0503 V0. 300 30.500 00.0003 00.00 30. 300 03.0V3 3 0V.005 035 00.00 50.0 3.0 00.0503 00.030 00.000 0V.0003 00.00 0V.000 00.5033 0V. 305 005 53.00 50.V3.0 0V.0503 00.000 00. 300 00.5003 00.00 33.030 V0003 3 00.005 V05 00.00 50.V 3.0 03.0503 00.000 0 3 .0 30 050003 00.00 05.530 00.0033 30.055 005 00.00 50.V 3.0 35.V503 0V.005 00.000 00.000 3 5V.00 00.0 30 0V. 3033 00.055 000 50.00 50.V 3.0 00.V50 3 00.005 00.000 00.000 3 00.00 00V 30 5V.003 3 00.555 000 00.00 50.V 3.0 30.0503 30.005 00.005 50.V003 03.00 00.030 30.5033 00.055 000 00.00 50.V 3.0 0V.050 3 00. 355 00 .005 05.000 3 50.50 05.000 00.003 3 00.V55 V00 5 3 .00 50.0 3.0 V0. 350 3 00.005 00.005 00. 300 3 50.50 00.500 00.003 3 50.055 000 00.00 50.0 3.0 03 .050 3 00.005 00.005 00.000 3 50.50 00 .V00 00.003 3 00.055 050 00.50 50.0 3.0 00.000 3 05.5V5 00.055 3V.0V0 3 50.50 00.000 5 3 .0 3 3 3 00.005 050 50.50 50.0 3.0 05.0003 55.005 30.055 00.0V0 3 50 .50 0V.000 0V0 3 3 3 50.005 000 00.50 50.0 3.0 00.0003 00.005 05.005 05.0V03 50.50 VV.000 35.03 33 00.V05 V00 00.50 50.0 3.0 000003 00.V05 05.005 00.VV03 50.50 00.000 00.0333 30.005 000 53.50 50.0 3.0 000003 00.535 V0005 00. 3V03 50.50 00.000 00 .503 3 0V. 305 000 00.50 50.0 3.0 00.0003 30.005 03.005 00 .0003 50.50 00. 300 00.003 3 50.005 000 00.00 50.0 3.0 03.0003 V3005 00.305 000003 50.50 00 .050 03.0033 30.505 0V0 50.00 50.0 3.0 05.5003 03.V00 5V.5V5 00.030 3 50.50 0V.050 00.0033 V0005 VVO 00.00 50.0 3.0 05.0003 00.000 50.0V5 00.3003 50.50 00.050 0V.0003 03.V05 0V0 00.00 50.0 3.0 00.0003 30.550 00.005 030003 50.50 V0.050 05.0003 03.005 000 5 3 .00 50.3 3.0 0V.V003 33.000 00.005 00.0503 0V.50 03.000 00.V003 00.0V5 000 00.00 50. 3 3.0 0V.0003 00.000 05.005 00.0003 00.50 00.000 00.0003 30.0V5 000 00.00 50. 3 3.0 30. 3003 00.5V0 05.005 V0.0V03 50.50 V0000 0V.0003 30.0V5 V00 50.00 50. 3 3.0 00.0V03 00.000 00.V05 000003 30.00 05.000 05.0003 V5.V05 000 00.00 50. 3 3.0 0V.0V03 30.000 50.305 00.3303 00.00 00 .000 0V.V003 0V.005 030 00.00 50.3 3.0 300003 00.V30 03 .035 50.V03 3 05.00 50.000 00.0003 00.305 030 53.00 50.0 3.0 00.0003 00.V00 00.35 50.5533 00.V0 V0000 0 3 .0003 30.0 35 000 00.00 50.0 3.0 3 3.0003 03.000 00.035 00.003 3 00.V0 30. 300 000503 00.005 V00 00.V0 3333338 .3 333. 108 50.00.0 00.003 3 00.0V0 00.0003 0 3 .000 3 00. 30 30.000 00. 300 3 55.500 0V0 00.00 50.00.0 5V.003 3 50.0V0 5V.0003 V0. 300 3 00. 30 00.000 00.050 3 0 3 .V00 VVO 00.V0 50.00.0 05.003 3 00.0V0 V0. 3003 00.000 3 0V. 30 0V.050 00.000 3 05 .000 0V0 50.V0 50.00.0 V0003 3 05.5V0 50.00 3 3 30.0003 V0.30 00.050 0V.V00 3 00.5V0 000 00.V0 50.00.0 V3 .V03 3 05.5V0 00.3033 0V.0003 03. 30 V0050 03.0V03 00.0V0 000 00.V0 50.00.0 00.003 3 50.5V0 V0003 3 00.0003 00.00 00. 350 030003 0V.0V0 000 53.V0 50.0 3.0 00003 3 00.5V0 00.003 3 050003 00.00 05.000 00.3003 00. 3V0 V00 00.V0 50.0 3.0 03.3033 0V.5V0 50.0V33 300003 00.00 05.500 00.3303 00.000 000 00.00 50.0 3.0 50.000 3 50.5V0 35.0033 V0000 3 0V.00 0V.000 55.0003 05 .500 030 50.00 50.0 3.0 000003 00 .0V0 00.03 33 00.5003 03.00 0 3 .000 00.0003 00.000 030 00.00 50.0 3.0 00.5003 00.0V0 00.003 3 050003 00.00 00.000 00.3003 00.000 000 00.00 50.0 3.0 V3 .0003 00.0V0 00.0003 5 3.0003 00.00 00.000 50.0503 03. 300 V00 5300 50.0 3.0 0 3 .000 3 0V.VVO 00.050 3 00 .000 3 00.00 00.500 50.0003 30.000 000 00.00 50.0 3.0 0 3 .V003 00.0V0 00.0003 00.V003 50.00 0 3 .000 05.V003 30.000 005 00.00 50.0 3.0 00.000 3 00.000 0V.0V0 3 V0.V00 3 00.00 00.000 50.0V03 00 .000 005 50.00 50.0 3.0 V0. 3003 30.000 00.0003 00.0003 00.00 05.000 5V.5003 00.000 005 00.00 50.0 3.0 00.0003 00. 300 050003 VV.0003 00.00 0 3 .0V0 00.0003 00.030 V05 00.00 50.0 3.0 000003 0 3 .000 03.3303 00.3003 00.00 V0.5V0 05.0003 0V0 30 005 53.00 50.5 3.0 050003 00.000 00.000 00 .0003 00.00 00.0V0 00.0 303 30.030 055 00.00 50.5 3.0 30.5003 03 .30 03.500 50.0503 00.00 30.0V0 000003 00030 055 00. 30 50.5 3.0 50.000 3 00.500 30.050 00.550 3 00 .00 V0 .0V0 00.0003 00 .500 005 50. 30 50.5 3.0 000003 V3. 300 50.000 V3 .0503 00.00 30.0V0 3V.003 3 V0000 V05 00. 30 50.5 3.0 00.V00 3 00.V00 00.000 50.V50 3 00.00 V5000 00.00 3 3 00 .000 005 00. 30 50.5 3.0 53.V003 00.000 00. 3V0 V0.0503 00.00 30.500 30.V03 3 00. 300 005 53. 30 50.0 3.0 00.0003 00.000 V5000 00.3503 00.00 V0000 00.053 3 00.005 005 00. 30 50.0 3.0 00.000 3 00 .050 50 .000 00.050 3 00.00 3V.V00 3V.05 3 3 00.505 0V5 00.00 50.030 0V. 3003 00.050 00.000 03.0003 00.00 00 .000 000033 05.V05 VV5 50.00 50.0 3.0 50.000 3 00.000 00.000 30.500 3 00.00 00. 300 00.003 3 00.005 0V5 00.00 50.020 V0.0503 55.500 30.000 0V.000 3 00.00 00.000 00.00 3 3 00. 305 005 00.00 50.0 3.0 00.0503 05. 300 00. 300 V0.0003 00.00 V0000 00.003 3 05.005 005 53.00 50.0 3.0 00.050 3 V0.0V0 00.050 00.000 3 00.00 30.500 3V.00 3 3 00.005 005 00.00 33:03.00 5.0 030... 109 50. 30.0 00.0V33 5V.000 30.3003 30.VOV3 00.00 VV.0533 V0.0003 00. 3V03 050 53.0V 50. 30.0 00.0V3 3 5V.000 33.0003 00.VOV3 00.00 05003 3 35.V003 00.0003 000 00.0V 50. 30.0 30.0V33 0V.000 00.0V03 03.VOV3 00.00 0V.0033 00.V003 00.0003 V00 00.00 50.30.0 00.03 3 3 3.000 0 3 .5V03 00.00V3 00.00 V0.0V3 3 0 3 .0003 00.V003 000 50.00 50.30.0 00.5V33 00.V00 00.0V03 03.00V3 00.00 35.V033 00.0003 V0.0303 000 00.00 50.30.0 V0.5V33 V0.V00 V0.VV03 00.00V3 00.00 03.0033 05.3003 00.0303 000 00.00 50.30.0 V3.5V33 50.V00 05.0V03 00.00V3 00.00 00.5333 00.0003 V0.0003 0V0 53.00 50. 30.0 05.03 3 50.V00 50. 3V03 00.00V3 00.00 00.003 3 00.0003 0V.0003 VVO 00.00 50.30.0 03.0V3 3 0V.V00 05.0003 VV. 30V3 00.00 00.3033 00.0003 0 3 .V00 0V0 00.00 50. 30.0 00.0V33 V0000 30.5003 50.00V3 00.00 V3.0003 V3.0003 05.500 000 50.00 50. 30.0 00.333 3 00.000 00.0003 00.000 3 00.00 00.0003 05.000 3 33.300 000 00.00 50. 30.0 00.0V33 00.000 0V.V003 50.0003 00.00 00.0503 00.0003 00.050 000 00.00 50.30.0 30.0V33 00.000 55.0003 V3.0003 00.00 00.3503 03.V003 00.000 V00 5300 50. 30.0 00.0V33 55.000 00.3003 000003 00.00 00.V003 000003 33.000 000 00.00 50. 30.0 00. 3V33 00.000 00.0003 0V.000 3 00.00 00.0003 53.3003 03.500 030 00.50 50. 30.0 00.0V3 3 V3000 00.0003 05.5003 00.00 V0.0003 00.0503 05.000 030 50.50 50. 30.0 00.5033 V3000 30.0003 00.5003 00.00 03.0Vo3 00.0503 5V.VVO 000 00.50 50. 30.0 0V.00 33 V3 .000 00.0003 00.500 3 00.00 00. 3V03 00.0503 00.000 V00 00.50 50.30.0 03.0033 V3000 30.0003 00.0003 00.00 03.0003 00.0003 50.000 000 53.50 50.30.0 V0.0033 V3000 00.0003 000003 00.00 00.3003 050003 30000 000 00.50 50. 30.0 000033 V3000 00.3003 030003 00.00 05.0003 00.0V03 00.000 000 00.00 50. 30.0 00.003 3 V3 .000 0 3 .0003 00.000 3 00.00 00.000 3 0V.000 3 00.0 30 000 50.00 50.30.0 00.V033 V3000 30.0303 000003 00.00 30.0303 33.5303 V5.500 V00 00.00 50. 30.0 VV.0033 V3000 00.0303 000003 00.00 05.32 0V.0003 00.300 000 00.00 50.30.0 00.0033 00.000 00.5303 500003 00.00 00.3303 00.00V3 05.000 050 53.00 50. 30.0 500033 00. 300 00.0303 000003 00.00 00.5003 00.V5V3 00.000 050 00.00 50. 30.0 0003 33 00. 300 000303 00.V003 3V.00 0V.0003 00.00V3 00.000 000 00.00 50.30.0 03.0333 00.000 00.V303 000003 50.00 00.000 30.0VV3 05.050 V00 50.00 50.30.0 00.V333 03.000 30.0303 000003 03.00 30.000 50.00V3 33.350 000 00.00 50.30.0 00.0333 55.0V0 030303 500003 00.00 V0300 00.03V3 53.000 000 00.00 50.30.0 00.3333 00.0V0 00.0303 030003 00.30 V0000 50.00V3 55.300 000 53.00 00:35:00 5.0 030... 110 50.30.0 00.0033 00.500 3V.0003 V3.03V3 00.00 00. 3V03 00.0303 0V.5003 0003 00.0V 50.30.0 0V.0033 V0.500 00. 3003 00.03V3 00.00 00.0003 30.0303 50.3003 0003 53.0V 50.30.0 00.0033 55.000 00.3003 00.03V3 00.00 V0.0003 5V.3303 500033 0003 00.0V 50.30.0 00.0033 0V.000 V0.0003 00.V3V3 00.00 00.0303 00.0303 V0.0033 V003 00.VV 50.30.0 050033 30.000 00.0503 03.V3V3 00.00 00.00V3 00.0303 V0.V033 0003 50.V 50.30.0 3 3.003 3 30.000 00.0503 0V0 3V3 00.00 00.00V3 V0.0003 V0053 3 0503 00.VV 50.30.0 05.5033 30.000 00.0503 00.03V3 00.00 00.05V3 00.0003 000533 0503 00.VV 50.30.0 00.5033 30.000 0V.0503 00.03V3 00.00 50.VOV3 0V.0003 000033 0003 53.VV 50.30.0 50.0033 30.000 00.0503 00.03V3 00.00 50.30V3 V0.5003 00.0033 V003 00.VV 50.30.0 30.0033 30.000 00.5503 V5.33V3 00.00 00.50V3 3V.5003 05.5033 0003 00.0V 50.30.0 00.0033 30.000 30.0503 00.33V3 00.00 00.00V3 00.0003 500033 0003 50.0V 50.30.0 00.00 33 30.000 05.0503 3V.0 3V3 00.00 00.00V3 000003 00.03 3 0003 00.0V 50.30.0 50.V033 30.000 V0.0503 3V.03V3 00.00 03.0003 0V.0003 00. 3V33 0V03 00.0V 50.30.0 05.V033 30.000 00.0503 V0.03V3 00.00 0V.0003 00.0003 3V.5033 VVo3 53.0V 50.30.0 00.V033 30.000 00.0503 00.03V3 00.00 00.0003 00.V003 0V.0033 0V03 00.0V 50.30.0 00.V03 3 30.000 V0.0503 00.00V3 00.00 00.V003 00.V003 3.503 3 0003 00.0V 50. 30.0 00.V033 30.000 55.V503 00.00V3 00.00 00.0V03 30.V003 000033 0003 50.0V 50. 30.0 5V.V03 3 30.000 55.0503 00.00V3 00.00 00.5003 00.0003 00.53 33 0003 00.0V 50.30.0 5V.V033 30.000 30.0503 53.00V3 00.00 V5.0303 000003 300333 V003 00.0V 50.30.0 03.V033 30.000 0V. 3503 55.00V3 00.00 00.0003 00.0003 00.5033 0003 53.0V 50.30.0 00.0033 30.000 00.0003 V0.00V3 00.00 00. 3003 0V.0003 030033 0303 00.0V 50.30.0 00.0033 00.000 00.0003 3V.00V3 00.00 00.0503 30.3003 000003 0303 00. 3V 50.30.0 03.0033 V5000 0V.0003 00.50V3 00.00 35.5003 03.3003 00. 3003 0003 50. 3V 50.30.0 00.003 3 30000 00.V003 00.50V3 00.00 3 3.0003 0V.0003 00.0003 V003 00. 3V 50.30.0 V0.0033 30.000 V0.0003 00.00V3 00.00 50.VV03 05.0003 V0.0003 0003 00. 3V 50.30.0 50.3033 5V.000 03.3003 00.00V3 00.00 00.0003 50.0003 00.0503 000 53. 3V 50. 30.0 0V. 303 3 5V.000 VV.0003 00.00V3 00.00 3 3.0003 00.0003 05.0003 000 00. 3V 50.30.0 03.3033 5V.000 V0.5003 00.00V3 00.00 00.0303 00.5003 03.V003 000 00.0V 50. 30.0 00.00 3 3 5V.000 00.0003 VV.00V3 00.00 30.0003 53.5003 0V.0003 V00 50.0V 50. 30.0 V0003 3 5V.000 0V.V003 00.00V 3 00.00 05.303 3 3V.0003 00.0003 000 00.0V 50.30.0 V3.0033 5V.000 03.0003 03.00V3 00.00 50.0033 30.0003 00.5V03 050 00.0V 3333338 ..3 233. 111 50. 30.0 00.0533 00.000 00.0003 00.00V3 00.00 V0.0353 00.0003 5V.03V3 0003 00.00 50.30.0 30.053 3 00.000 00.0003 00.00V3 00.00 00.5353 00.0003 05.03V3 0303 00.00 50.30.0 00.003 3 V5000 00.0003 V3.50V3 00.00 00.5353 05.5003 00.00V3 0303 53.00 50. 30.0 00.003 3 00.000 00.0003 00.00V3 00.00 V5.0353 00.5003 500003 0003 00.00 50. 30.0 00.0033 00.300 03.0003 05.VOV3 00.00 50.0353 00.5003 50.0003 V003 00.0V 50. 30.0 03.0033 00. 300 05.0003 00 .00V3 00.00 00.0353 0V.0003 3V.0003 0003 50.0V 50. 30.0 50.003 3 55.000 00 .0003 00. 30V3 00.00 00.0 353 500003 5V.0503 0033 00.0V 50. 30.0 0V.003 3 00.000 00.0003 30. 30V3 00.00 00.0 353 0V.0003 0 3 .000 3 003 3 00.0V 50.30.0 00.0033 00.000 03.0003 03.00V3 00.00 00.3353 00.V003 00.0003 0033 53.0V 50. 30.0 30.003 3 V3 .000 0 3.0003 50.00V3 00.00 00.0053 VV.V003 30.000 3 V033 00.0V 50. 30.0 50.003 3 V3 .000 0 3 .0003 3500V3 00.00 0V.5053 30.0003 00.0V03 003 3 00.0V 50. 30.0 0V.503 3 00.000 00.0003 00.50V3 00.00 00.0053 000003 30000 3 0533 50.0V 50. 30.0 00.0033 00.000 V0.0003 VV.00V3 00.00 05.0003 00. 3003 V0.0003 0533 00.0V 50. 30.0 00.0033 00.000 V0.0003 00.00V3 00.00 30.0003 03.3003 V5.0003 0033 00.0V 50.30.0 35.003 3 00.000 03.0003 V0.00V3 00.00 V5.0003 00.0003 00.0303 V03 3 530V 50. 30.0 00.003 3 00.000 03.0003 50.VOV3 00.00 030003 00.0 303 00.0003 003 3 00.0V 50. 30.0 00.003 3 00.000 0 3 .0003 VV.VOV3 00.00 00.0503 0V0 303 00.000 3 00 3 3 00.5V 50. 30.0 0V.003 3 00.000 03.0003 30.00V3 00.00 000503 00.0 303 000003 003 3 50.5V 50.30.0 00.003 3 00.000 0 3 .0003 30.00V3 00.00 00.0003 00.0303 30.0003 0V3 3 00.5V 50.30.0 00.003 3 00.000 00.0003 00.00V3 00.00 03.0003 03.0303 50.0003 VV3 3 00.5V 50.30.0 00.0033 0V.000 00.5003 50.00V3 00.00 00. 3003 00.5303 03.0503 0V33 53.5V 50.30.0 3 3.003 3 00.000 00.0003 00. 30V3 00.V0 30.0V03 50.0303 00.0003 003 3 00.5V 50.30.0 30.V03 3 50.000 0V.0003 50. 30V3 V0.V0 03.0003 00.0303 000003 0033 00.0V 50.30.0 00.003 3 V0.500 00.0003 00.00V3 00.00 00.0003 05.0303 030003 0033 50.0V 50.30.0 03.0033 00.500 03.0003 00.03V3 00.00 00.V303 03.0303 00.0V03 V033 00.0V 50.30.0 V0.0033 00.500 00.V003 V0.03V3 00.00 00.V003 05.V303 00.0V03 0033 00.0V 50.30.0 03 003 3 50.500 0V.V003 0V0 3V3 00.00 00.V003 5V.V303 05.0003 03 33 5 3 .0V 50.30.0 030033 00.500 30.V003 00.53V3 00.00 00.0003 33.V303 00.0003 0333 00.0V 50.30.0 50.303 3 00.500 000003 00.5 3V3 00.00 30.0503 05.0303 00.V003 003 3 00.0V 50.30.0 00.303 3 0V.500 00.0003 00.53V3 00.00 00.0003 0V.0303 V0.0303 V033 50.0V 50.30.0 00.3033 30.500 00.0003 05.03V3 00.00 00.3003 00.0303 330303 0033 00.0V 33333333 ..3 333. 112 50. 30.0 000533 00.000 00.0003 00.50V3 0V.033 50.0053 00.0003 00. 3VV3 0003 50.00 50. 30.0 00.0533 0V.000 00.0003 00.50V3 00.003 00.0053 33.0003 00.0VV3 0003 00.00 50. 30.0 000533 0V.000 00.0003 00.50V3 0V.003 50.0053 00.0003 00.0VV3 0003 00.00 50.30.0 00 .0533 0V.000 00. 000 3 00.50V3 05.503 50.0053 00.0003 00.0VV3 V003 5 3 .00 50. 30.0 000533 00.000 00.0003 00.50V3 00.503 00.0053 00.0003 00.0VV3 0003 00.00 50.30.0 00.0533 00.000 00.0003 00.00V3 00.003 00.0053 05.0003 05.0VV3 0503 00.00 50. 30.0 000533 00. 300 000003 0V.00V3 50.V03 00.0053 00.0003 00.0VV3 0503 50.00 50. 30.0 000533 00.050 00. 3003 00.00V3 00.003 00.V053 30.3003 V0.00V3 0003 00.00 50. 30.0 0V.0533 00.050 00. 3003 00.VOV3 00003 00.V053 00. 3003 00.00V3 V003 00.00 50.30.0 00.0533 05.050 00. 3003 V5. 30V3 00.303 00.0053 00. 3003 05.00V3 0003 53.00 50.30.0 00.0533 00.050 00. 3003 V0.00V3 V0.303 00.0053 30.3003 00.00V3 0003 00.00 50.30.0 030533 00.050 05. 3003 03.00V3 50.003 00.0053 05.0003 V0.00V3 0003 00.30 50.30.0 00. 3533 00. 350 00. 3003 0V.00V3 35.00 30.0053 V0.0003 00.00V3 0V03 50.30 50.30.0 0V. 3533 V0050 30.3003 V0. 30V3 V0.00 00. 3053 00.0003 05.00V3 VV03 00. 30 50.30.0 0V. 3533 00.000 30.3003 00.0VV3 00.00 00.3053 00.0003 03.00V3 0V03 00. 30 50.30.0 00.3533 55.500 5V. 3003 03.5VV3 00.00 V0.0053 00.0003 00.00V3 0003 53.30 50.30.0 00.3533 00.000 0V. 3003 00.0VV3 VV.50 00.0053 00.0003 00.VOV3 0003 00. 30 50.30.0 50.3533 00.000 00. 3003 0V.0VV3 V0.00 55.0353 00.0003 00.00V3 0003 00.00 50.30.0 05.0533 05.V00 30.3003 00. 3VV3 00.00 03.0353 00.0003 00.00V3 V003 50.00 3333338 .3 333. 113 Table D.8 Respirometer Calculated Data: Case C Gas Production Rate Gas Production Rate (mL/hr‘b Days {I121 w,s,N W,M,S,N W,M,S w,s M,S,N w,s 3,8: M o 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4 5.00 4.84 4.45 3.83 2.45 2.06 2.19 2.29 0.00 8 0.23 0.25 0.17 0.13 0.00 0.04 0.01 0.13 0.17 12 0.78 0.47 0.28 0.11 0.00 0.00 0.00 0.10 0.33 18 4.29 1.02 1.15 0.31 0.00 0.03 0.00 0.18 0.50 20 2.46 1.43 4.42 1.38 0.01 0.03 0.00 0.16 0.67 24 0.00 0.51 1.13 5.38 0.00 0.06 0.00 0.19 0.83 28 0.00 0.30 0.00 2.98 0.19 0.04 0.00 0.16 1.00 32 0.00 0.31 0.00 0.01 0.08 0.00 0.00 0.10 1.17 36 0.00 0.35 0.00 0.00 0.00 0.00 0.00 0.09 1.33 40 0.00 0.47 0.00 0.00 0.00 0.00 0.00 0.18 1.50 44 0.00 0.54 0.00 0.00 0.00 0.00 0.00 0.20 1.67 48 0.00 0.84 0.00 0.00 0.00 0.00 0.00 0.25 1.83 52 0.00 0.66 0.00 0.00 0.00 0.00 0.00 0.30 2.00 58 0.00 0.58 0.01 0.00 0.00 0.04 0.00 0.28 2.17 80 0.00 0.62 0.00 0.00 0.00 0.03 0.00 0.28 2.33 84 0.00 0.70 0.00 0.00 0.00 0.10 0.00 0.35 2.50 88 0.02 0.64 0.00 0.00 0.00 0.05 0.00 0.30 2.87 72 0.16 0.65 0.00 0.00 0.00 0.02 0.00 0.31 2.83 78 0.15 0.62 0.00 0.00 0.25 0.07 0.00 0.34 3.00 80 0.03 0.55 0.00 0.00 0.17 0.04 0.02 0.32 3.17 84 0.17 0.61 0.10 0.00 0.26 0.11 0.14 0.38 3.33 88 0.17 0.66 0.19 0.00 0.32 0.21 0.12 0.44 3.50 92 0.09 0.58 0.16 0.01 0.30 0.15 0.07 0.39 3.67 98 0.12 0.53 0.21 0.02 0.35 0.15 0.04 0.39 3.83 100 0.10 0.50 0.22 0.00 0.37 0.20 0.11 0.48 4.00 104 0.09 0.45 0.22 0.00 0.31 0.20 0.08 0.46 4.17 108 0.15 0.49 0.28 0.00 0.36 0.26 0.13 0.51 4.33 112 0.15 0.49 0.31 0.00 0.37 0.31 0.14 0.56 4.50 118 0.14 0.47 0.30 0.00 0.34 0.30 0.13 0.56 4.87 120 0.24 0.52 0.44 0.00 0.49 0.37 0.22 0.68 4.83 124 0.19 0.50 0.48 0.00 0.47 0.34 0.19 0.71 5.00 128 0.23 0.52 0.42 0.00 0.51 0.37 0.19 0.75 5.17 132 0.32 0.53 0.49 0.00 0.59 0.42 0.23 0.87 5.33 136 0.34 0.51 0.49 0.00 0.62 0.43 0.27 0.93 5.50 140 0.41 ' 0.59 0.57 0.00 0.73 0.51 0.32 1.06 5.67 144 0.44 0.59 0.58 0.00 0.81 0.55 0.34 1.17 5.83 148 0.45 0.71 0.67 0.00 0.98 0.88 0.36 1.36 6.00 152 0.39 0.67 0.85 0.22 1.02 0.65 0.31 1.49 8.17 156 0.45 0.74 0.66 0.30 1.12 0.73 0.84 1.84 6.33 160 0.49 0.84 0.72 0.43 1.21 0.84 0.36 1.83 6.50 184 0.57 0.95 0.79 0.61 1.32 0.91 0.38 2.04 8.87 188 0.71 1.19 0.95 0.80 1.52 1.05 0.48 2.37 8.83 172 0.80 1.30 1.07 0.81 1.82 1.14 0.53 2.87 114 Table D.8 continued 7.00 176 0.68 1.31 1.00 0.45 1.63 1.08 0.45 2.80 7.17 180 0.85 1.53 1.26 0.19 1.93 1.30 0.58 3.19 7.33 184 0.93 1.69 1.37 0.02 2.10 1.41 0.62 3.50 7.50 188 1.06 1.83 1.54 0.04 2.25 1.50 0.66 3.82 7.67 192 1.24 2.14 1.90 0.00 2.57 1.73 0.84 4.25 7.83 196 1.40 2.40 2.14 0.00 2.75 1.87 0.93 4.63 8.00 200 1.39 2.50 2.25 0.01 2.83 1.87 0.89 4.84 8.17 204 1.64 2.80 2.60 0.00 3.14 2.05 1.01 5.21 8.33 208 1.84 3.11 2.96 0.00 3.41 2.24 1.11 5.56 8.50 212 1.92 3.32 3.22 0.00 3.52 2.25 1.12 5.71 8.67 216 2.03 3.45 3.50 0.00 3.65 2.29 1.16 5.81 8.83 220 2.31 3.80 3.98 0.00 3.89 2.49 1.30 5.97 9.00 224 2.43 3.96 4.23 0.00 3.94 2.46 1.33 5.93 9.17 228 2.65 4.20 4.55 0.00 4.06 2.49 1.42 5.83 9.33 232 2.88 4.43 4.90 0.00 4.19 2.53 1.50 5.65 9.50 236 3.07 4.59 5.11 0.00 4.23 2.50 1.56 5.35 9.67 240 3.42 4.83 5.46 0.00 4.42 2.54 1.74 5.01 9.83 244 3.67 5.09 5.51 0.00 4.51 2.53 1.82 4.61 10.00 248 3.80 5.08 5.35 0.00 4.45 2.43 1.80 3.94 10.17 252 3.87 5.10 5.12 0.00 4.47 2.27 1.87 3.45 10.33 256 3.97 5.06 4.73 0.00 4.58 2.17 1.90 2.95 10.50 260 3.94 4.91 4.18 0.00 4.55 1.97 1.90 2.55 10.67 264 4.02 4.87 3.58 0.01 4.66 1.90 2.01 2.42 10.83 268 3.95 4.61 2.75 0.00 4.58 1.83 2.04 2.35 11.00 272 3.67 4.16 1.64 0.00 4.33 1.54 1.91 2.10 11.17 276 3.49 3.68 0.66 0.00 4.13 1.40 1.89 2.00 11.33 280 3.19 3.25 0.27 0.00 4.04 1.36 1.89 2.01 11.50 284 2.88 2.72 0.19 0.00 3.85 1.29 1.81 1.95 11.67 288 2.64 2.37 0.20 0.13 3.90 1.34 1.76 1.96 11.83 292 2.13 1.85 0.23 0.25 3.84 1.46 1.83 2.01 12.00 296 1.52 1.40 0.21 0.15 3.62 1.44 1.71 1.87 12.17 300 0.94 1.26 0.28 0.10 3.50 1.58 1.72 1.89 12.33 304 0.29 1.23 0.30 0.09 3.32 1.74 1.76 1.86 12.50 308 0.15 1.27 0.37 0.09 3.08 1.83 1.84 1.89 12.67 312 0.19 1.35 0.50 0.10 2.94 2.08 2.05 2.01 12.83 316 0.16 1.42 0.56 0.22 2.81 2.20 2.14 1.96 13.00 320 0.00 1.33 0.48 0.05 2.46 2.11 2.09 1.89 13.17 324 0.00 1.50 0.60 0.06 2.39 2.18 2.25 1.95 13.33 328 0.00 1.66 0.70 0.05 2.33 2.25 2.30 2.00 13.50 332 0.00 1.90 0.87 0.06 2.29 2.28 2.37 2.12 13.67 336 0.01 2.19 1.05 0.08 2.27 2.33 2.44 2.25 13.83 340 0.09 2.46 1.19 0.18 2.18 2.36 2.48 2.30 14.00 344 0.07 2.67 1.26 0.11 1.92 2.29 2.45 2.14 14.17 348 0.06 2.85 1.37 0.10 1.86 2.29 2.48 1.91 14.33 352 0.08 3.07 1.51 0.10 1.77 2.31 2.48 1.77 14.50 356 0.08 3.19 1.61 0.09 1.64 2.25 2.46 1.63 14.67 360 0.09 3.25 1.73 0.03 1.55 2.16 2.45 1.53 14.83 364 0.20 3.44 2.02 0.00 1.69 2.35 2.53 1.61 115 Table 0.8 continued 15.00 368 0.10 3.35 2.04 0.02 1.54 2.17 2.22 1.46 15.17 372 0.08 3.29 2.18 0.07 1.52 2.17 2.04 1.47 15.33 376 0.13 3.33 2.33 0.07 1.56 2.17 1.85 1.50 15.50 380 0.10 3.32 2.44 0.06 1.55 2.10 1.54 1.49 15.67 384 0.21 3.35 2.60 0.26 1.62 2.13 1.46 1.60 15.83 388 0.26 3.47 2.70 0.15 1.63 2.13 1.29 1.65 16.00 392 0.23 3.33 2.74 0.11 1.61 2.09 1.08 1.65 16.17 396 0.26 3.25 2.76 0.09 1.61 2.04 0.92 1.66 16.33 400 0.29 3.17 2.78 0.10 1.69 2.05 0.83 1.60 16.50 404 0.34 3.14 2.86 0.10 1.71 1.98 0.76 1.33 16.67 408 0.44 3.08 2.92 0.09 1.95 2.04 0.76 1.19 16.83 412 0.51 3.01 2.97 0.08 2.20 2.01 0.78 1.11 17.00 416 0.48 2.82 2.96 0.13 2.41 1.89 0.72 1.06 17.17 420 0.49 2.67 2.86 0.16 2.68 1.75 0.66 1.06 17.33 424 0.54 2.54 2.87 0.12 2.96 1.60 0.65 1.11 17.50 428 0.56 2.36 2.80 0.09 3.00 1.49 0.63 1.15 17.67 432 0.66 2.29 2.85 0.16 2.53 1.49 0.69 1.29 17.83 436 0.73 2.13 2.81 0.16 1.64 1.38 0.69 1.37 18.00 440 0.69 1.86 2.62 0.05 0.91 1.21 0.58 1.09 18.17 444 0.76 1.75 2.57 0.11 0.66 1.15 0.57 0.81 18.33 448 0.78 1.56 2.44 0.07 0.57 1.09 0.57 0.66 18.50 452 0.80 1.42 2.36 0.09 0.58 1.04 0.55 0.58 18.67 456 0.93 1.38 2.33 0.10 0.63 1.04 0.60 0.61 18.83 460 0.95 1.32 2.25 0.09 0.63 1.01 0.62 0.68 19.00 464 0.91 1.21 2.16 0.10 0.61 0.88 0.55 0.59 19.17 468 0.90 1.12 2.32 0.15 0.59 0.74 0.52 0.57 19.33 472 0.95 1.08 2.14 0.08 0.61 0.76 0.56 0.60 19.50 476 1.00 1.03 1.82 0.05 0.61 0.64 0.52 0.58 19.67 480 1.17 1.14 1.77 0.15 0.80 0.66 0.64 0.70 19.83 484 1.18 1.10 1.59 0.13 0.83 0.63 0.62 0.72 20.00 488 1.18 1.04 1.39 0.06 0.80 0.52 0.55 0.66 20.17 492 1.24 1.00 1.24 0.06 0.84 0.49 0.57 0.70 20.33 496 1.34 1.10 1.10 0.08 1.00 0.56 0.61 0.73 20.50 500 1.34 1.06 0.91 0.05 1.04 0.51 0.59 0.73 20.67 504 1.48 1.17 0.80 0.08 1.22 0.59 0.65 0.88 20.83 508 1.61 1.29 0.72 0.14 1.39 0.66 0.73 0.96 21.00 512 1.57 1.25 0.55 0.08 1.39 0.68 0.69 0.90 21.17 516 1.67 1.34 0.48 0.09 1.55 0.75 0.72 0.98 21.33 520 1.82 1.49 0.47 0.13 1.75 0.89 0.80 1.06 21.50 524 1.89 1.69 0.46 0.13 1.85 1.00 0.82 1.13 21.67 528 1.99 1.87 0.46 0.14 2.02 1.09 0.85 1.17 21.83 532 2.00 2.00 0.40 0.10 2.10 1.32 0.74 1.21 22.00 536 2.02 2.10 0.28 0.01 2.11 1.34 0.76 1.16 22.17 540 2.07 2.19 0.25 0.00 2.27 1.47 0.80 1.18 22.33 544 2.16 2.14 0.30 0.00 2.50 1.75 0.89 1.33 22.50 548 2.27 1.76 0.32 0.00 2.62 1.73 0.92 1.35 22.67 552 2.40 1.27 0.43 0.00 2.83 1.69 1.00 1.50 22.83 556 2.49 0.78 0.44 0.00 3.02 1.42 1.09 1.59 116 Table D8 continued 23.00 560 2.51 0.48 0.42 0.00 3.12 1.05 1.15 1.61 23.17 564 2.66 0.47 0.46 0.00 3.29 0.79 1.40 1.71 23.33 568 2.66 0.44 0.48 0.00 3.34 0.55 1.44 1.78 23.50 572 2.63 0.38 0.46 0.00 3.38 0.36 1.48 1.82 23.67 576 2.71 0.43 0.53 0.09 3.56 0.40 1.62 1.97 23.83 580 2.68 0.42 0.53 0.14 3.63 0.42 1.69 2.03 24.00 584 2.60 0.34 0.44 0.07 3.62 0.36 1.67 1.97 24.17 588 2.51 0.27 0.43 0.02 3.73 0.39 1.73 2.01 24.33 592 2.52 0.39 0.47 0.08 3.91 0.51 1.88 2.13 24.50 596 2.35 0.38 0.48 0.06 3.94 0.49 1.96 2.16 24.67 600 2.34 0.47 0.56 0.07 4.08 0.59 2.13 2.22 24.83 604 2.25 ' 0.51 0.63 0.07 4.23 0.70 2.32 2.24 25.00 608 1.99 0.46 0.56 0.06 4.16 0.69 2.36 2.10 25.17 612 1.93 0.47 0.66 0.23 4.35 0.83 2.58 2.07 25.33 616 1.71 0.62 0.61 0.13 4.33 0.89 2.72 1.66 25.50 620 1.58 0.56 0.62 0.09 4.34 0.80 2.78 0.98 25.67 624 1.52 0.68 0.69 0.11 4.40 0.97 2.77 0.64 25.83 628 1.30 0.66 0.63 0.05 4.05 1.00 2.65 0.39 26.00 632 0.84 0.55 0.51 0.04 3.09 0.89 2.38 0.25 26.17 636 0.69 0.63 0.60 0.04 3.20 0.91 2.30 0.27 26.33 640 0.52 0.43 0.61 0.00 3.22 0.99 2.18 0.30 26.50 644 0.44 0.53 0.62 0.00 3.14 0.90 2.03 0.26 26.67 648 0.49 0.64 0.76 0.00 3.08 0.95 2.00 0.33 26.83 652 0.41 0.57 0.79 0.00 2.66 0.97 1.94 0.38 27.00 656 0.47 0.54 0.85 0.00 1.32 0.94 1.86 0.37 27.17 660 0.44 0.69 0.89 0.00 0.74 0.96 1.83 0.38 27.33 664 0.43 0.60 0.95 0.00 0.49 0.99 1.88 0.41 27.50 668 0.44 0.69 1.01 0.00 0.32 1.02 1.89 0.38 27.67 672 0.50 0.67 1.09 0.00 0.33 1.13 1.99 0.42 27.83 676 0.49 0.70 0.88 0.00 0.36 1.25 2.05 0.44 28.00 680 0.43 0.57 0.72 0.00 0.24 1.23 1.99 0.30 28.17 684 0.41 0.49 0.64 0.00 0.25 1.33 2.02 0.27 28.33 688 0.45 0.57 0.63 0.15 0.32 1.50 2.09 0.30 28.50 692 0.31 0.49 0.49 0.05 0.24 1.49 1.94 0.16 28.67 696 0.33 0.48 0.46 0.02 0.21 1.53 1.83 0.11 28.83 700 0.28 0.55 0.41 0.01 0.22 1.63 1.74 0.11 29.00 704 0.25 0.51 0.34 0.00 0.20 1.68 1.65 0.07 29.17 708 0.25 0.56 0.34 0.00 0.22 1.84 1.58 0.09 29.33 712 0.24 0.57 0.29 0.00 0.20 1.94 1.44 0.09 29.50 716 0.27 0.62 0.26 0.00 0.22 2.01 1.48 0.00 29.67 720 0.36 0.76 0.36 0.00 0.29 2.23 1.56 . 0.22 29.83 724 0.34 0.84 0.39 0.00 0.30 2.29 1.58 0.23 30.00 728 0.45 0.85 0.35 0.00 0.36 2.29 1.54 0.18 30.17 732 0.40 0.91 0.33 0.00 0.28 2.29 1.53 0.16 30.33 736 0.38 0.95 0.34 0.00 0.36 2.31 1.51 0.16 30.50 740 0.41 1.01 0.34 0.00 0.29 2.35 1.45 0.16 30.67 744 0.46 1.15 0.39 0.00 0.38 2.48 1.61 0.23 30.83 748 0.57 1.23 0.46 0.00 0.37 2.62 1.63 0.27 117 Table 0.8 continued 31.00 752 0.48 1.29 0.36 0.00 0.34 2.59 1.54 0.19 31.17 756 0.52 1.36 0.37 0.00 0.35 2.66 1.55 0.20 31.33 760 0.51 1.39 0.36 0.00 0.33 2.71 1.53 0.17 31.50 764 0.54 1.46 0.37 0.00 0.37 2.79 1.54 0.19 31.67 768 0.64 1.65 0.46 0.00 0.39 2.91 1.62 0.26 31.83 772 0.64 1.70 0.47 0.00 0.35 3.03 1.64 0.29 32.00 776 0.64 1.68 0.42 0.00 0.32 2.99 1.52 0.23 32.17 780 0.63 1.81 0.44 0.00 0.25 3.03 1.49 0.23 32.33 784 0.66 1.81 0.45 0.00 0.28 3.14 1.41 0.26 32.50 788 0.62 1.87 0.41 0.00 0.14 3.13 1.09 0.22 32.67 792 0.75 2.10 0.53 0.00 0.25 3.30 0.92 0.33 32.83 796 0.66 2.21 0.56 0.11 0.22 3.36 0.74 0.33 33.00 800 0.65 2.21 0.47 0.10 0.17 3.28 0.39 0.24 33.17 804 0.59 2.32 0.50 0.05 0.14 3.31 0.24 0.25 33.33 808 0.53 2.25 0.48 0.06 0.14 3.34 0.13 0.27 33.50 812 0.58 2.27 0.56 0.08 0.13 3.37 0.17 0.33 33.67 816 0.54 2.46 0.57 0.07 0.19 3.41 0.12 0.33 33.83 820 0.52 2.58 0.57 0.07 0.14 3.40 0.10 0.33 34.00 824 0.42 2.57 0.51 0.04 0.04 3.23 0.01 0.22 34.17 828 0.49 2.71 0.47 0.03 0.07 3.19 0.01 0.25 34.33 832 0.54 2.75 0.55 0.04 0.10 3.07 0.03 0.27 34.50 836 0.54 2.82 0.61 0.04 0.09 2.79 0.02 0.28 34.67 840 0.73 2.98 0.79 0.05 0.21 2.22 0.12 0.38 34.83 844 0.86 3.15 0.79 0.06 0.22 1.31 0.15 0.42 35.00 848 0.90 3.24 0.75 0.03 0.15 0.73 0.02 0.35 35.17 852 1.00 3.33 0.76 0.03 0.01 0.38 0.10 0.30 35.33 856 1.10 3.35 0.82 0.03 0.18 0.32 0.10 0.40 35.50 860 1.24 3.40 0.89 0.04 0.11 0.26 0.09 0.39 35.67 864 1.41 3.51 0.96 0.17 0.13 0.33 0.13 0.49 35.83 868 1.56 3.55 1.03 0.13 0.20 0.34 0.17 0.53 36.00 872 1.55 3.54 0.97 0.05 0.11 0.27 0.09 0.44 36.17 876 1.64 3.71 0.99 0.06 0.14 0.14 0.10 0.49 36.33 880 1.51 3.47 0.87 0.01 0.06 0.27 0.02 0.35 36.50 884 1.48 3.42 0.86 0.00 0.00 0.15 0.00 0.34 36.67 888 1.56 3.33 1.03 0.00 0.00 0.23 0.00 0.45 36.83 892 1.58 3.34 1.10 0.00 0.06 0.31 0.00 0.55 37.00 896 1.55 3.00 1.15 0.00 0.11 0.30 0.00 0.53 37.17 900 1.51 2.54 1.19 0.00 0.00 0.32 0.00 0.55 37.33 904 1.50 1.53 1.24 0.00 0.11 0.32 0.00 0.57 37.50 908 1.48 1.00 1.28 0.00 0.00 0.31 0.00 0.56 37.67 912 1.57 0.74 1.51 0.00 0.19 0.44 0.00 0.59 37.83 916 1.59 0.55 1.59 0.00 0.17 0.47 0.11 0.40 38.00 920 1.50 0.41 1.57 0.00 0.06 0.35 0.04 0.19 38.17 924 1.48 0.32 1.61 0.00 0.12 0.35 0.02 0.14 38.33 928 1.51 0.37 1.73 0.00 0.13 0.42 0.09 0.19 38.50 932 1.52 0.29 1.76 0.00 . 0.06 0.38 0.03 0.14 38.67 936 1.66 0.35 1.97 0.00 0.24 0.48 0.15 0.25 38.83 940 1.59 0.28 2.06 0.00 0.14 0.47 0.12 0.24 118 Table D.8 continued 39.00 944 1.57 0.26 2.04 0.00 0.14 0.40 0.03 0.15 39.17 948 1.48 0.17 2.02 0.00 0.05 0.35 0.00 0.09 39.33 952 1.51 0.19 2.12 0.00 0.16 0.37 0.07 0.13 39.50 956 1.47 0.17 2.15 0.00 0.09 0.34 0.02 0.08 39.67 960 1.53 0.20 2.31 0.00 0.09 0.39 0.04 0.15 39.83 964 1.55 0.23 2.39 0.00 0.16 0.43 0.08 0.12 40.00 968 1.41 0.15 2.32 0.00 0.05 0.31 0.01 0.08 40.17 972 1.44 0.16 2.42 0.00 0.04 0.38 0.00 0.13 40.33 976 1.39 0.17 2.41 0.00 0.16 0.39 0.00 0.08 40.50 980 1.33 0.10 2.42 0.00 0.02 0.33 0.00 0.03 40.67 984 1.39 0.19 2.57 0.00 0.06 0.38 0.00 0.09 40.83 988 1.44 0.19 2.65 0.00 0.14 0.45 0.00 0.15 41.00 992 1.38 0.16 2.62 0.00 0.08 0.40 0.00 0.07 41.17 996 1.38 0.18 2.72 0.00 0.09 0.43 0.00 0.10 41.33 1000 1.28 0.12 2.72 0.00 0.07 0.44 0.01 0.09 41.50 1004 1.34 0.17 2.81 0.00 0.08 0.42 0.00 0.09 41.67 1008 1.39 0.18 2.90 0.00 0.17 0.47 0.06 0.14 41.83 1012 1.39 0.19 2.99 0.00 0.12 0.46 0.06 0.13 42.00 1016 1.32 0.14 2.96 0.00 0.06 0.39 0.01 0.06 42.17 1020 1.29 0.09 3.01 0.00 0.03 0.39 0.00 0.07 42.33 1024 1.26 0.11 3.05 0.00 0.10 0.34 0.00 0.07 42.50 1028 1.22 0.07 3.04 0.00 0.02 0.24 0.00 0.00 42.67 1032 1.27 0.11 3.24 0.00 0.00 0.25 0.00 0.05 42.83 1036 1.29 0.12 3.43 0.00 0.17 0.19 0.00 0.01 43.00 1040 1.25 0.12 3.48 0.00 0.03 0.08 0.00 0.00 43.17 1044 1.25 0.09 3.48 0.00 0.05 0.09 0.00 0.03 43.33 1048 1.11 0.01 3.43 0.00 0.04 0.08 0.00 0.04 43.50 1052 1.27 0.13 3.37 0.00 0.00 0.05 0.00 0.09 43.67 1056 1.33 0.17 3.40 0.00 0.17 0.05 0.00 0.15 43.83 1060 1.38 0.20 3.57 0.00 0.16 0.11 0.00 0.15 44.00 1064 1.36 0.13 3.47 0.00 0.13 0.16 0.00 0.11 44.17 1068 1.27 0.13 3.40 0.00 0.10 0.11 0.00 0.09 44.33 1072 1.31 0.14 3.28 0.00 0.09 0.09 0.00 0.09 44.50 1076 1.35 0.15 2.88 0.00 0.11 0.13 0.00 0.10 44.67 1080 1.42 0.18 2.57 0.00 0.16 0.16 0.00 0.15 44.83 1084 1.43 0.15 2.60 0.00 0.19 0.17 0.11 0.17 45.00 1088 1.38 0.12 2.56 0.00 0.13 0.15 0.08 0.14 45.17 1092 1.43 0.13 2.60 0.00 0.13 0.15 0.07 0.13 45.33 1096 1.47 0.15 2.60 0.00 0.06 0.15 0.06 0.13 45.50 1100 1.41 0.07 2.57 0.00 0.14 0.10 0.01 0.07 45.67 1104 1.48 0.13 2.66 0.00 0.13 0.12 0.04 0.12 45.83 1108 1.45 0.09 2.63 0.00 0.10 0.10 0.03 0.08 46.00 1112 1.46 0.09 2.62 0.00 0.08 0.08 0.00 0.05 46.17 1116 1.52 0.09 2.68 0.00 0.13 0.11 0.01 0.00 46.33 1120 1.48 0.08 2.60 0.00 0.11 0.09 0.03 0.17 46.50 1124 1.49 0.10 2.57 0.00 0.11 0.07 0.00 0.08 46.67 1128 1.64 0.13 2.60 0.00 0.17 0.13 0.04 0.13 46.83 1132 1.70 0.17 2.51 0.04 0.26 0.21 0.16 0.24 119 Table D.8 continued 47.00 1136 1.73 0.14 2.20 0.16 0.12 0.13 0.09 0.13 47.17 1140 1.81 0.18 1.99 0.17 0.28 0.18 0.14 0.20 47.33 1144 1.70 0.12 1.82 0.07 0.18 0.10 0.06 0.12 47.50 1148 1.56 0.05 1.68 0.00 0.03 0.01 0.00 0.00 47.67 1152 1.69 0.13 1.69 0.00 0.10 0.00 0.00 0.01 47.83 1156 1.75 0.13 1.65 0.00 0.13 0.00 0.00 0.05 48.00 1160 1.72 0.11 1.47 0.00 0.06 0.00 0.00 0.00 48.17 1164 1.75 0.17 1.40 0.00 0.14 0.00 0.00 0.02 48.33 1168 1.73 0.14 1.19 0.00 0.16 0.04 0.00 0.05 48.50 1172 1.77 0.20 1.07 0.00 0.14 0.00 0.00 0.00 48.67 1176 1.92 0.25 1.02 0.00 0.28 0.10 0.00 0.15 48.83 1180 1.95 0.22 0.89 0.00 0.29 0.11 0.11 0.15 49.00 1184 1.80 0.16 0.63 0.00 0.17 0.01 0.00 0.03 49.17 1188 1.83 0.12 0.49 0.00 0.19 0.00 0.05 0.02 49.33 1192 1.82 0.12 0.29 0.00 0.22 0.03 0.07 0.05 49.50 1196 1.84 0.11 0.21 0.00 0.22 0.01 0.04 0.02 49.67 1200 1.99 0.14 0.29 0.00 0.36 0.11 0.16 0.15 49.83 1204 1.86 0.15 0.24 0.00 0.34 0.09 0.14 0.12 50.00 1208 1.88 0.09 0.17 0.00 0.30 0.03 0.09 0.05 50.17 1212 1.81 0.09 0.16 0.00 0.31 0.01 0.11 0.05 50.33 1216 1.80 0.08 0.13 0.00 0.34 0.00 0.13 0.06 50.50 1220 1.67 0.06 0.11 0.00 0.34 0.08 0.14 0.04 50.67 1224 1.58 0.10 0.19 0.15 0.44 0.09 0.22 0.10 50.83 1228 1.19 0.10 0.17 0.18 0.45 0.07 0.23 0.08 51.00 1232 0.87 0.06 0.15 0.13 0.44 0.03 0.25 0.05 51.17 1236 0.63 0.07 0.12 0.15 0.48 0.01 0.28 0.03 51.33 1240 0.41 0.06 0.12 0.13 0.49 0.01 0.30 0.02 51.50 1244 0.16 0.05 0.09 0.10 0.49 0.00 0.31 0.00 51.67 1248 0.14 0.08 0.15 0.19 0.61 0.02 0.41 0.08 51.83 1252 0.05 0.09 0.15 0.22 0.68 0.05 0.44 0.08 52.00 1256 0.01 0.08 0.10 0.19 0.69 0.01 0.39 0.04 52.17 1260 0.04 0.07 0.09 0.15 0.70 0.00 0.38 0.02 52.33 1264 0.03 0.08 0.10 0.23 0.56 0.02 0.38 0.03 52.50 1268 0.02 0.06 0.07 0.20 0.35 0.00 0.34 0.01 52.67 1272 0.10 0.12 0.18 0.31 0.27 0.09 0.36 0.14 52.83 1276 0.10 0.11 0.16 0.31 0.13 0.09 0.36 0.11 53.00 1280 0.03 0.06 0.06 0.23 0.01 0.00 0.18 0.01 53.17 1284 0.01 0.02 0.02 0.18 0.00 0.00 0.07 0.00 53.33 1288 0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.00 53.50 1292 0.00 0.01 0.01 0.24 0.00 0.00 0.00 0.00 53.67 1296 0.02 0.06 0.09 0.28 0.00 0.00 0.03 0.01 120 APPENDIX E GAS CHROMATOGRAPH CALIBRATION CURVES 121 % CH4 Table E.1 Gas Chromatograph Calibration Data - Methane Samgll'eflze P733223” Area Height 100 5.622 290,824 19,131 75 5.792 231,558 14,555 50 5.943 154,392 10,120 50 (LD) 5.920 166,176 10,668 25 5.410 68,240 5,514 L0 = lab duplicate 100 ¢ 90 -ll-- ___,Ai________ _____ _m _i" 7 / so 2“ .. / y = 3.3032E-04x R2 = 0.93503 70 _. _______, A“ , 50 ""— 4—‘_— / V — 4° 47 f / 30 —’ / 20 -fi— 10 0 50.000 100.000 150.000 200.000 250.000 300.000 GC Peak Area Figure E.1 Methane Calibration Curve The trend line was set to a zero-intercept. 122 350.000 % C02 Table E.2 Gas Chromatograph Calibration Data - Carbon Dioxide Sample Size Peak time . (PL) ( min.) Area Height 100 8.170 391,603 20,814 100 (LD) 8.188 394,110 20,909 75 8.123 296,020 16,444 50 8.285 202,706 12,209 25 8.168 108,070 7,143 25 (LB) 8.517 121,700 6,926 LD = lab duplicate 100 / 90 " if / 80 7 7 7 / 7° y = 2.5147E-04x R2 = 0.99310 60 ~- ~ 50+- 40 30 *9 20 1o - A 0 50.000 100.000 150.000 200.000 250.000 300.000 350.000 400.000 450.000 GC PeakArea Figure E.2 Carbon Dioxide Calibration Curve The trend line was set to a zero-intercept. 123 APPENDIX F GAs CHROMATOGRAPHY DATA 124 Tables F.1, F .2, F.3 and FA present the gas chromatography data for Cases A, B-1, B-2 and C, respectively. The samples are listed in the order in which they were collected and analyzed, to maintain any evidence of situational effects. For example, it can be deduced that the methane present in the de- ionized water sample (Tables F.1, F .2 and F.3) is residual from the preceding sample. “lsothermic” refers to a malfunction in the temperature ramp. These analyses were carried out at an oven temperature of 40°C rather than the regular 40°C to 120°C ramp. The only significant affect was a delayed peak time; the peak areas are comparable and therefore the results were judged valid. Readings were marked as ‘below the detection limit’ for those resulting in a negative value on a calibration curve. The gas chromatograph was first operational at the very last days of Case A, for which calibration samples were also analyzed on 5/9/07. Equipment malfunctioned before the wastewaterlseed/nutrients flask could be analyzed; the trial was over before the problems were remedied. For Case B-1, equipment malfunctioned following the fifth sample analysis (which also had an unidentified peak at 7.737 minutes). Testing was resumed several days later once the equipment was replaced. All flasks analyzed on the first day were re—sampled during this second day of testing. For Case C, gas samples from each flask were tested three days apart to test for methane fluctuations, which were considerable for some flasks (see also Table 4.5). 125 Table F.1 Gas Chromatography Data: Case A Sample Peak Date Sample ID Slze (pli Time Area % (gas) 5/9/07 Wastewater, Seed 100 5.421 188,866 62.4 CH4 “6”) 8.028 37,212 9.4 002 Wastewater, Seed 100 5.718 220,889 73.0 CH4 (rep B) 8.511 43,752 11.0 002 5/10/07 CH4 75 5.408 194,676 84.3 CH4 C02 75 5.571 1,276 0.4 CH4 7.915 286,545 72.1 C02 CH4 50 5.464 130,148 43.0 CH4 8.086 11,584 2.9 002 002 50 7.949 193,482 48.7 002 Seed 100 5.425 195,331 64.5 CH4 8.065 33,827 8.5 002 112 (Wastewater, 100 5.783 142,342 47.0 CH4 seed' Numents) 8.555 35,201 8.9 002 Wastewater, Nutrients 100 5.788 113,680 37.6 CH4 8.548 19,387 4.9 002 De'i°"ized Water 100 5.849 78,102 25.8 CH4 126 Table F.2 Gas Chromatography Data: Case B-1 Sample Peak Date Sample Size (uL) Time Area % (gas) 6/1/07 CH4(isothermic) 50 6.868 156,819 51.8 CH4 002 50 8.743 229,834 57.8 002 Wastewater, Seed, 100 5.851 164,196 54.2 CH4 Numems 8.665 30,678 7.7 coz Wastewater, Seed 100 5.803 144,777 47.8 CH4 (rep 8’ 8.602 21,276 5.4 002 H 13290333233; 1°° 3:33.? 33:33: ”Suki; 8.560 27,369 6.9 C02 6/7/07 CH4 (isothermic) 50 6.983 136,269 45.0 CH4 002 50 7.977 203,189 51.1 002 Wastewater, Seed, 100 5.724 214,741 70.9 CH4 V’Numems 8.511 26,599 6.7 002 Wastewater, 100 5.722 14,538 4.8 CH4 Numents 8.397 15,953 4.0 002 Seed 100 5.695 207,282 68.5 CH4 8.492 14,105 3.5 002 Wastewater, Seed, 100 5.700 197,445 65.2 CH4 Numems 8.477 30,746 7.7 002 1/2 (Wastewater, 100 5.689 134,902 44.6 CH4 seed’ Numems) 8.431 15,592 3.9 002 De-ionized Water 100 5.817 17,254 5.7 CH4 Wastewater, Seed 100 5.667 206,199 68.1 CH4 (rep B) 8.444 21,691 5.5 002 CH4 75 5.673 223,581 73.9 CH4 8.477 4,586 1.2 002 127 Table F.3 Gas Chromatography Data: Case B-2 Sample Peak Date Sample Size (uL) Time Area % (gas) 7/13/07 602 50 9.199 210,200 52.9 002 002 50 9.027 193,959 48.8 002 CH4 50 5.798 121,183 40.0 CH4 CH4(isothermic) 75 7.337 237,352 78.4 CH4 Wastewater, Seed, 100 5.816 179,418 59.3 CH4 Numents(rep A) 8.619 26,214 6.6 002 Wastewater, Seed 100 6.162 85,328 28.2 CH4 9.086 9,157 2.3 002 1/2 (Wastewater, 100 6.213 117,078 38.7 CH4 seed'Numents) 9.161 15,120 3.8 002 Seed, Nutrients 100 6.207 207,459 68.5 CH4 9.199 24,659 6.2 602 Seed 100 6.135 171,570 56.7 CH4 9.088 14,026 3.5 002 Wastewater, Seed, 100 6.113 226,356 74.8 CH4 Nutrientsuep 8’ 9.079 31,383 7.9 002 De-ionized Water 100 6.257 16,982 5.6 CH4 128 Table F.4 Gas Chromatography Data: Case C Sample Peak Date Sample Size (EL) Time Area % Ages) 808/07 CH4 50 6.66 170,266 56.2 CH4 coz 50 8.679 193,748 48.7 002 Manure, Seed 100 5.954 214,560 70.9 CH4 8.827 50,627 12.7 002 Manure. Seed. 5.897 191,580 63.3 CH4 . 100 Nutnents 8.734 55,393 13.9 002 Wastewater, Manure, 100 5.935 175,228 57.9 CH4 Seed, Nutrients 8.756 84,255 21.2 C02__ Wastewater, Seed, 5.963 82,791 27.3 CH4 . 100 Nutnents 8.754 45,745 11.5 C02 Manure 100 5.899 192,828 63.7 CH4 8.737 55,904 14.1 C02 Wastewater, Manure, 5.862 188,31 1 62.2 CH4 100 Seed 8.673 92,910 23.4 C02 Seed, Nutrients 100 5.968 184,817 61.0 CH4 8.873 92,910 23.4 COL Wastewater, Seed 1 00 6.1 1 9 15,806 5.2 CH4 8.909 39,333 9.9 002 8mm CH4 75 6.467 238,939 78.9 CH4 002 50 9.305 184,557 46.4 002 Wastewater. Seed. 6.060 190,201 62.8 CH4 Nutrients 100 9.105 114,662 28.8 002 Wastewater, Manure, 100 6.393 120,978 40.0 CH4 seGd' Numems 9.405 57,958 14.6 COL Manure. Seed. 6.372 234,058 77.3 CH4 Nutrients 100 9.428 73,680 18.5 C02 Manure. Seed 100 6.321 235,355 77.7 CH4 9.372 60,933 15.3 C02 Manure 100 6.355 213,580 70.5 CH4 9.398 77,922 19.6 002 129 Table F.4 continued 8/31/07 continued Seed. Nutrients 100 6.417 247,295 81.7 CH4 9.502 60,663 15.3 002 Wastewater, Seed 100 65:” 52'916 17'5 CH4 9.513 106,658 26.8 coz Wastewater. Manure. 5.917 177,918 58.8 CH4 Seed 100 8.72 85,738 21.6 002 LD Manure, Seed 100 5.837 199,465 65.9 CH4 8.665 52,157 13.1 coz LD = Lab Duplicate 130 APPENDIX G QUALITY ASSURANCE AND QUALITY CONTROL 131 Quality assurance and quality control measures for the parameters analyzed in-house included lab duplicates and standards, when applicable. Lab duplicates were utilized in all testing. Table 6.1 gives the average percent relative range of the lab duplicates for the various parameters. Standards were available for COD, total phosphorus and gas chromatography testing. Table 6.2 gives the average percent recovery for these tests. Table 0.1 Percent Relative Range for Duplicates Average Standard No. of 0 Parameter A 2:52“ Deviation Analyses Total Solids 6.57% 9.68% 4 Volatile Solids 2.50% 2.91% 3 COD 5.29% 3.39% 7 Total Phosphorus 8.64% 2.1 1% 3 Respirometer o o (cumulative gas) 2'74 /° 1'45 /° 3 Gas Chromatography 17.91% 1.79% 2 Table 6.2 Percent Recovery for Standards Avera e Standard No. of Parameter % Recogery Deviation Analyses COD 104.1% 2.7% 10 Total Phosphorus 94.8% 12.8% 3 Gas 94.2% (0H4) 9.47% (CH4) 9 Chromatography 101.0% (002) 8.52% (002) 8 132 APPENDIX H ANAEROBIC DIGESTION FEASIBILITY PROTOCOL 133 H.1 Processor’s Goals and Objectives Obtain the following information from the food processor and compare these goals and expectations with reasonable deliverables. See Appendix J for assessment worksheets. 1. Determine the processor’s interest in anaerobic digestion. a. If a regional digester or co-digestion is being pursued, the protocol must be carried out for all contributors, and a representative substrate must be tested. Check all governing regulations, as some locales prohibit the mixing Of certain waste streams. b. There should be no difference in assessment for individual treatment vs. energy Objectives. i. An energy study may conclude ‘only adequate for treatrnent’. ii. A treatment study may also conclude ‘adequate for energy recovery.’ 0. Methane potential can only be an estimate; there are several determining factors in full-scale operation such as mixing effects which cannot be accounted for in lab-scale testing. 2. Determine the desired biogas applications. There are many indirect considerations for electric generation which should be addressed upfront. (This is outside the scope of this protocol. Consult an appropriate professional.) For example, if the electric 134 power will be sold back to a common grid, the utility company may assess significant hook-up fees. 3. Identify the discharge requirements: the COD (mg/L) and/or BOD (mg/L) as per regulations for applicable effluent discharge. BOD is the conventional measurement of wastewater quality, however COD is easier to measure and more representative of anaerobic treatment potential than BOD. a. It is assumed that fruit and vegetable processing waste streams contain below the regulated limits for nitrogen and phosphorus (and other nutrients and metals). If this is not the case, these nutrients must also be factored in at this step. b. The required COD or BOD discharge concentrations will be compared with waste stream concentrations to determine the degree of treatment required. If adequate treatment cannot be achieved by anaerobic digestion alone, an alternate treatment or additional aerobic unit must be considered. See Section H.3.2 to estimate treatment potential. 4. Assess the relative economic status of the project. a. Some operating costs and methane cost savings are discussed throughout the protocol. Digestion of any given waste may require regular addition of an alkalinity source, 135 nitrogen, phosphorus or metals and thus, an added operating cost. This may be a significant or negligible cost depending on the nutrient and level Of deficiency. b. These considerations may be used to supplement a full cost- benefit analysis (which is beyond the scope of this protocol). 5. Determine the processor’s timeline for operational treatment or compliance. a. This protocol may require several months for sampling and testing. Further pilot-scale testing may be recommended, which would require several months additional. b. Full-scale system design and permit applications may take over a year. c. Construction, start-up and stabilization may require over a year additional. H.2 Plant Profile Obtain the following information from the food processor. See Appendix J for plant assessment worksheets. 1. Determine the plant’s average monthly energy usage (natural gas in thm/month, and/or electricity in kWh/month). This can be calculated from billing costs. 136 Identify the plant’s wastewater streams (by commodity or location in the plant). Characterize the fluctuation in flow and COD loading throughout the year and average temperature of each stream. a. If necessary, convert the units of COD (or BOD) to kg/day and wastewater flow to malday. Identify waste streams that are most appropriate for anaerobic digestion, with high soluble organic loading. i. Determine if streams currently may be combined to equilibrate COD and volume loadings or may be readily combined by installing piping. Alternately, consider if streams with low organic loading could be readily separated and diverted, such as storm water. ii. A high peak in volume or COD may require a large equalization tank, adding to construction costs. Identify the commodities processed and the fluctuation in volume processed throughout the year. See Appendix I for assessment worksheets. b. Correlate this with the data from section H.1.2 above. If data for section H.1.2 iS not available, the plant’s commodity data and water use may be used to approximate ranges for BOD loading and waste stream flow using published data for each commodity (ex: gal/day per ton 137 processed). Weight these accordingly for each commodity processing rate per year (tons/month * # of months/year). List any known cleaners, sanitizers or chemical additives used in processing that may be present in the different waste streams. lf certain compounds are only used in Specific areas (waste streams) specify which. a. Compounds may include (but are not limited to): Oxidizing sanitizers o Hyperchlorites, chlorine, chloramines - Organic bromine - Iodine, alcohol-iodine, iodophors 0 Hydrogen peroxide, peroxy acids Biocides and non-oxidizing sanitizers 0 Organic acids (e.g. acetic acid, propionic acid, formic acid, carboxylic acids) 0 Acid anionic sanitizers o Acid-quat sanitizers o Quaternary ammonium compounds Any compounds present may serve as potential sources of toxicity that may interfere with anaerobic digestion. It may be possible for a full scale digester may acclimate and adapt to such toxicity. 138 c. If specific concentrations can be determined, compare the present levels to a known l050 (inhibitive concentration) if available. See Blum and Speece (1991). d. For concentrations near the l05o level, anaerobic treatment and methane production may be severely retarded. An alternate wastewater treatment Should be pursued if the chemical(s) of concern cannot be replaced with one(s) less toxic. H.3 COD Conversion to Heat and Electric Potential 1. If historical plant data is unavailable (section H.2.3), analyze the processing plant’s average daily wastewater COD concentration and daily water volume usage. Characterize COD levels for as many commodities as possible. If time does not permit testing of all commodities, consult published COD estimates to identify ‘high’ and ‘low’ COD level commodities in order to ensure that representative commodities are tested at the very least. Take samples during a transition period to include at least two commodities. Using results from only the ‘worst’ commodity (i.e. that with the highest COD) may provide overestimated results in methane potential. a. Test COD using Hach Method 8000. i. Collect field duplicates. 139 ii. Verify testing methods using lab duplicates. The percent difference should be less than 20%. b. Compare test results against published commodity ranges. (See _Commogitv Report and Categorization of Michigan crogs.) 2. Consider the average and peak COD loading (kg/m3/d) and assume an appropriate reactor type based on Table H.1 below, with a given COD removal treatment efficiency (e.g. 80 to 90%): Table H.1 Types of Anaerobic Digesters Reactor Type COD loading* COD removal rates* COHtaCt (ANCP)** 1_5 kg/mgld 70-95% Filters 5_20 kg/m3/d 70-90% EFB" 10-40 kglmsld 60'35% *Totzke (2006) ** ANCP = Anaerobic Contact Process UASB = Up-flow Anaerobic Sludge Blanket EFB = Expandedl fluidized bed 3. Calculate a COD removal rate (kg/d) based on reactor treatment efficiency using equation H.1. COD removal rate (kg/d) = minimum %COD removal (%I 100) * average COD influent (kg/m3) * flow rate (ma/d) [H.1] 4. Based on COD removal, calculate the heating and electric potentials. 140 a. For estimated heating potential see equation H.2 (Speece, 1996x Btu/d = 12x106 Btu l 1000 kg COD removed * COD removal rate (kg/d) [H.2] b. For estimated electric wattage potential see equation H.3 (Speece, 1996): MWhr = (1 MWI107 Btu) * (12x106/ 1000 kg COD removed) * COD removal rate (mm*umw mm 5. Compare these results to the processor’s energy needs (section H.1). If the results are appropriate for the processor’s intended anaerobic applications, continue on to section H4. H4 Substrate Characterization Tests The COD conversions to Btu and MW estimates do not account for variability in substrate biodegradability. To properly assess the anaerobic digestibility of a given waste stream, several other parameters must be analyzed. Historical data should be available (Often collected monthly and annually per regulations). 1. Retrieve historical wastewater effluent data for the past 1 to 2 years. 141 2. Collect wastewater effluent samples, throughout the season if possible. Samples must be representative of both the dominant commodity(s) and those with the highest COD loading (which may be more seasonal, e.g. pumpkins). 3. Test the samples for the parameters listed in Table H.2. Table H.2 Substrate Characterization Analyses Analysis Method Suggested Range Source pH pH meter 6.5 to 8.2 Speece, 1996 Alkalinity Hach 8203 2000 to 3000 Speece, 1996 mglL CaCO3 COD Hach 8000 > 1000 mglL COD Speece, 1996 (EPA approved) Total Nitrogen EPA-350.1, 353.2, 3 to 5 mg/L N per Bouallagui et al., series 351.3, 3502/3513 100 mg/L COD 2004b Ammonia EPA-350.1 Speece, 1996 > 4° ‘° 7° "‘Q’L ”“4 Calli, et al. 2005 < 1500 mg/L NH4 Total Phosphorus Hach 8190 0.5 to 1 mg/L P per Bouallagui et al., 100 mg/L COD 2004b Total Solids (TS) Hach 8271 < 10% for batch tests Carucci et al., 2005 (EPA approved) Volatile Suspended Solids (VSS) Hach 8158, 8164 Calculate VSS:TS. The higher, the better. Sulfide EPA-376.2 >2mgLS <200 rqu S Isa et al., 1986 Sulfate EPA-375.4 < 5000 mglL $04 for treatment < 300 mg/L $04 for biogas applications Isa et al., 1986 4. If processed commodities include foods high in polyphenols or long chain fatty acids (> 100 mglL), then pretreatment may be required (see Chapter 2: Literature Review), which would raise capital and/or Operating costs depending on the chosen treatment method. 142 a. High-phenol foods include (www.kirkmanlabs.com): Apricots Berries Cherries Dill Licorice (Anise) Mint Olives Oranges Pineapple Peppers Red grapes Tomatoes 5. Analyze the test results and assess the implications for the processor’s goals as described below. a. If pH is too low, then acetate production does not occur and methane will not be produced. If pH iS too high, then less ammonia (NH3) ionizeS to ammonium (NH4+) and becomes toxic. Estimate the alkalinity amendment required using equation H.4. This is only a rough estimate, and alkalinity production will not be accurately represented at a lab scale. 143 Added alkalinity mglL [day = 10%(influent COD mglL) - influent alkalinity mg/L [H.4] i. Low-protein waste will generate little to no alkalinity during digestion. ii. Consider the cost of alkalinity treatment per year and include as an operating cost. Cost can vary widely with alkalinity source and potentially be significant. See Speece (1996) for treatment options and cost calculations. iii. Alkalinity Should be tested and determined later during full-scale reactor operation in proportion VFA levels, and residual alkalinity calculated. c. COD/NIP Should be approximately 100/4/1 by weight (Bouallagui et al., 2004b). Low N or P levels will ultimately limit digestion, but may take more than 20 to 40 days to manifest in a large scale system. i. Co-digestion with a nutrient-rich substrate may help. Otherwise, nutrients must be added. E.g. manure and yogurt are high in phosphorus; manure and beans are high in nitrogen. ii. Estimate the cost of nutrient addition per year. The cost will depend on which compound(s) are chosen as a nutrient source. These costs account for 144 operating costs and are calculated by equations H5 and H6. Cost of N addition ($lyr) = [Required N (kg N/1000 kg COD) *COD loading (kg/day) - Available N (mg/L) *1 kgl1000 mg*wastewater loading (Uday)] *cost of N ($lkg as N) * days Of operation/yr [H.5] 00st of P addition ($lyr) = [1/4 *Required N (kg Nl1000 kg COD) * COD loading (kg/day) - Available P (mg/L) * 1kg/1000 mg * wastewater loading (Uday)] * cost of P ($Ikg as P) * days of operation/yr [H.6] d. Total solids >10% can inhibit digestion, particularly in batch tests. e. The % Volatile solids is the organic fraction, which is available for biodegradation. f. High sulfide concentrations will produce H28 gas, and sulfate concentrations will promote sulfate reducing bacteria which produce H28 gas. The biOgas may need to be pretreated. i. For example, Tennessee air permits required less than 1800 ppm H2S so an industrial digester installed a biogas scrubber (Rosdil, 2006). 145 ii. Some internal combustion engines can utilize biogas if the hydrogen sulfide is less than 60 ppm. iii. Hydrogen sulfide at 800 to 1000 ppm can be fatal to humans. 9. High salt concentrations may inhibit digestion. Over time, a digester may be able to acclimate to a higher degree. h. High phenol or LCFA concentrations may require pretreatments (see Chapter 2: Literature Review), which would raise capital and/or operating costs, depending on the chosen treatment method. 6. If initial test concentrations are within the acceptable ranges, continue to Section H.5. If some of the concentrations are outside the appropriate ranges, estimate the costs to rectify these issues. a. If the required nutrient addition or toxicity treatment is economically prohibitive, the waste-stream is inappropriate for anaerobic treatment. H.5 Anaerobic Respirometry The respirometer is used to conduct the biodegradability tests (similar to ' serum bottles). Microbial seed, nutrient media and wastewater substrate are measured out in multiple reaction flasks. Flasks are stirred and incubated at a constant temperature in a water-bath. The respirometer measures individual real-time biogas production for each flask. Computer software calculates 146 progressive gas production rates and cumulative gas production. Gas samples of the headspace are collected by syringe and analyzed by gas chromatograph to determine the percent methane production. The specific procedure is presented below. 1. Collect an appropriate feed stock sample from the processing plant. Synthesized feed solution CANNOT be used. The full array of processing waste constituents cannot be replicated and may include disinfectants or toxic compounds that could disrupt anaerobic digestion, the affects of which must be properly analyzed. Any solid waste in the sample Should be removed or processed to a liquid consistency and diluted to a total solids content of 1 to 5%. To test the biodegradability of intact solid constituents consider implementing a bench—scale reactor instead, as high solids content can inhibit batch systems. Identify an anaerobic seed source. Possible resources include a local anaerobic digester, a lagoon at the food processing plant showing evidence of anaerobic activity, manure (rumen) slurry or a lab culture. a. TO maximize biological activity, collect fresh seed just before setting up the respirometer. Color can serve as an indicator of anaerobe quality. Active seed will exhibit a dark black color; inactive or unviable seed may be grey or light Olive green. 147 Refrigerate the seed sample if time necessitates. Anaerobes will remain dormant yet viable at low temperatures. A longer refrigeration period will result in a longer start-up time; in this case such a delay is not the result of toxicity or acclimation but from the anaerobes Slow reactivation. Set up the respirometer. See Appendix I for the respirometer set- up procedure and the Challenge System respirometer manual. Collect gas samples from the head space of each reaction flask. Analyze the samples via gas chromatography and record the CH4 and 002 fractions throughout normal reactor operation. At a minimum, sample the flasks during peak gas production and at the end of the run. Designate one gas-collection syringe for all sampling to ensure the same operation and sample volume for each flask. Between samplings flush the syringe with ambient air several times (rather than headspace gas), to minimize the volume drawn from the flasks and reduce negative pressure in the respirometers bubble counters. 148 d. Use gas cylinders of standardized composition (CH4 and 002) to establish a calibration curve. Verify calibration with each sampling event. If methane production remains low or unstable 15 days after startup, consider the following amendments. a. Add a greater volume of seed to each flask. b. Add more micronutrients (S, Fe, Ni, 00) c. If solid waste is being tested, be sure to dilute to < 5% TS. End the respirometer test once all flasks cease gas production. Test the pH and COD of each flask. Analyze the respirometer results. a. Graph the cumulative biogas production (mL) vs. time (days). b. Graph the biogas production rate (mUhr) vs. time (days). c. Calculate the approximate percent theoretical methane production. i. Subtract out methane production from the seed control. ii. The theoretical (maximum possible) methane production is 395 mL CH4 per 1000 mg COD at 35°C. d. Compare methane potential to current energy usage. Use the results from sections H.2.2 or H.3.1 (COD) and section 149 H.5.7 (respirometer) to reassess the economic benefit of an anaerobic system (first evaluated in section H35). 1 thm can be provided by 96.7 ft3 natural gas. If the overall respirometer results are poor (after allowing 30 for seed acclimation), then conduct a toxicity test (section H.6) to determine if substrate components are a source of methanogen inhibition. Poor results are constituted by: a. < 60% CH4 fraction in biogas b. < 60% theoretical biogas produced. lf respirometer methane production is good, then proceed to Section H.7 to interpret the overall results. H.6 Toxicity Test lf overall respirometer tests are poor, conduct a toxicity test. 1. See Speece (1996) and/or Owen et al. (1979) for toxicity test methods. The basis of the test is to monitor gas production rate while adding increasing levels of substrate. If the methane production rate decreases as the substrate level added increases, this is an indication of toxicity. lf toxicity is confirmed, conclude ‘no further study’ is necessary and report anaerobic digestion to be an inappropriate treatment technique for this substrate. 150 lf toxicity is not an issue, essential nutrients may be lacking or the seed-to-substrate ratio in the reaction flasks may be too large to distinguish gas production from the substrate. Consider a different respirometer set-up and run the test again with fresh seed. H.7 Interpretation 1. Compare the predicted COD destruction and methane production to the intended treatment goals and biogas applications. Compare methane results to theoretical methane production and energy potential. Consider implications of various results, including economic and environmental consequences. a. If nutrients are lacking and respirometer results are poor, co- digestion may be worth considering. b. Re-evaluate the protocol for the blended substrate conditions. If conclusions support anaerobic digestion, the processor should then conduct a pilot scale reactor study. Small batch tests such as the respirometer provide are not representative of large-scale mixing effects or sustained alkalinity needs. Pilot scale reactors must be tested before full-scale projects are pursued. 151 APPENDIX | RESPIROMETER SET-UP PROCEDURE 152 I.1 Flask Allocation Determine the desired flask assignments including which will serve as controls and which as duplicates. Then determine the appropriate volume allocation of substrate, seed (if used) and nutrient solution (if used) for each flask, using the following guidelines. When any constituent is not used for a particular flask, that volume should be replaced with de-ionized water. First, allocate the substrate. Include between 150 and 250 mg COD. More than 150 mg Should insure a significant net biogas volume; less than 250 mg should insure that the trial finishes in less than 45 days, though this will also depend on the seed activity. This COD amount will correspond to a given volume of substrate based on its COD concentration (mg/L). Subtract this substrate volume from the working flask volume, where the working volume is equal to the total volume less 10% for the headspace. This remaining volume consists of the seed and nutrient solution: VSeed + Nutrients = 0-9 VTotal - VSubstrate [31] where VSubstrate = 200 mg COD / X mglL CODSubstrate The seed and nutrient volume is subdivided at a ratio of 1 part seed to 4 parts nutrient solution. Resazurin, an oxygen indicating dye, should be added to each flask for a final concentration of 1 mglL. For 600 mL flask volumes, add approximately 0.5 mg. As resazurin iS a fine powder, it is easiest to first mix a concentrated solution (1000 mglL) dissolving 10 mg in 10 mL of water and then pipetting 0.5 mL into each flask. 153 Most flasks will not include all three components. For these cases, replace any component (or partial volume, e.g. 1/2 nutrients or 1/2 [wastewater, seed, nutrientsj) with de-ionized water. This insures the different flasks have comparable dilutions. l.2 Nutrient and Metal Solutions The nutrient solution is composed of mineral and metal solutions. This is such because the trace metals are at such a low concentration in the nutrient solution that it is necessary to mix a more concentrated metal solution first. The nutrient solution is taken from Shelton and Tiedje (1984). Measure out one liter of de-ionized water into an Erlenmeyer flask with a stir bar on a stir plate. Add to the flask the following measured amounts. 0 0.500 g MnCIz - 4H20 . 0.050 g H3B03 o 0.050 g ZnCl2 . 0.030 g CuCl2 . 0.010 g NazMoO4 . 2Hzo1 o 0.500 g COCI2 ° 6H20 o 0.050 g NiCIz ° 6H20 0.050 g NaZSe03 1 In the original text, this is denoted ‘Na2M04- 2H20’, and is assumed to be an error. 154 This constitutes the metal solution. Only a small fraction will be used for the nutrient solution; the remaining can be stored for later testing. New mineral solution should be made for each respirometer trial. For the mineral solution, measure out enough de-ionized water to satisfy the flask allocation requirements of nutrient solution, and pour into an Erlenmeyer flask with a stir bar on a stir plate. Add to the flask the following amounts per liter of water. . 0.270 g KH2PO4 o 0.350 g K2HPO4 . 0.530 g NH4CI o 0.075 g CaCI2 ° 2H20 . 0.100 g MgClz - 6H20 2 o 0.020 g FeClz ° 4H20 In the original text, this is denoted ‘MgCI - 6H20’, and is assumed to be an error. Once all is dissolved, pipette 1 mL of metal solution into the mineral solution. Transfer this mixed solution into glass jars with autoclavable caps. Measure out the volume of de—ionized water required for the flask allocations into similar glass containers. Sparge the headspace of each container with nitrogen gas for at least ten seconds and cap tightly. Autoclave the containers for ten minutes to drive off any dissolved oxygen. Once the containers have cooled to room temperature (can be the following day). carefully transfer the solution to a 155 large Erlenmeyer flask taking care not to aerate it. Continuously sparge the flask headspace with nitrogen gas while stirring gently with a stir bar and stir plate. Add 1.20 g NaHCO3 per liter of solution, and cover the flask with parafilm. I.3 Flask Set-up Remove the wastewater sample(s) from storage to warm up. Collect the seed sample at this time (if possible) and leave it at ambient temperature (or remove from storage and warm to ambient temperature. Add a stir bar to each clean reaction flask and then measure out the flask constituents, doing one at a time for all flasks. Cap the flasks tightly, with a new septum in each cap. Take care not to over tighten the caps and break them. The color of the resazurin in the flasks should turn from blue to pink as the seed (and sometimes the wastewater) is added, and again from pink to ‘colorless’ as the flasks are placed in the water bath and stirred. This color change is indicative of reducing conditions and microbial activity. As soon as possible, fill the water bath and place in the flasks, and then start the water bath heater. It is best to bring up the flask temperatures gradually with the water bath, rather than place the flasks in a pre-heated bath and potentially shock the system. Vent the flasks at this time and hook them up to the respective gas counters. Set up the software program and start data collection immediately. The first eight to twelve hours, the gas pressure will equilibrate as the temperature rises. Thus, the reported gas rates will not be representative of true seed activity or actual gas production during this 156 equilibration period. After this initial start up period, check that the seeded flasks have returned to septic conditions and are no longer tinted pink; any pink flasks at this point may indicate a loose cap. 157 APPENDIX J PROCESSING PLANT ASSESSMENT WORKSHEETS 158 Worksheet 1 of 3 Plant Name: Contact Info: Assessment Date: Completed By: 1. Have you taken any measures to reduce water use or waste production? Yes No Please explain: 2. Have you considered anaerobic digestion? Yes No Please explain: 3. Anaerobic digestion can potentially produce methane (natural gas). Does the plant use natural gas? No Yes, approximately thms per month 4. a. What is the current wastewater treatment method? b. Are there discharge requirements? BOD (mg/L) Other 5. Please provide the plant’s current process-flow diagram(s). Please note: All identifying information will be kept in strict confidence. (Page 1 of 2) 159 6. Please list in the table below any cleaners, sanitizers or chemical additives used in processing. lf certain compounds are only used in specific processing lines (and waste streams) please specify which. Such compounds may include (but are not limited to): Oxidizing sanitizers . Hyperchlorites, Chlorine, chloramines 0 Organic bromine o Iodine, alcohol-iodine, iodophors 0 Hydrogen peroxide, peroxy acids Biocides agd non-oxidizing sanitizers 0 Organic acids (e.g. acetic acid, propionic acid, formic acid, carboxylic acids) Acid anionic sanitizers Acid-quat sanitizers Quaternary ammonium compounds Chemical Used Processing Line! Application Frequency Waste stream ID ex: metered in or Please note: All identifying information will be kept in strict confidence. (Page 2 of 2) ' 160 eon. >oz goo new m=< .n.. :3... >2... ...< 3.2 as“. :2. 33E. SEE. 33E. .263 Eammcmms. E23900 moan. ... cE:.o> a... "or... a...» ...o owmwemoem... 33.00—5:00 583... "n... .3339. 30> EC...— Smn. .m>< anbm 3mm; 03.39. mm coszLoE. cos... me 9:25 .8998 can; Lon. «mocmxeoz, 9.0 So _E 88.0 :3 Rama—too No.60 EOEwwmmm< 6E. 83:00 8:62 Em... n no N 32.9.6.5 161 can >oz «00 new m=< .3. .5... >2... .z.< ..ms. 8". :2. .28.. uOmmOOOLn. OE:_o> .m>< .28.. nemwoooen. oE:.o> .m>< .28.. 8389.”. 0E:_o> .m>< .28.. oommwooed OE:_o> .m>< .28.. commoooen. OE:_o> .m>< .28.. umwmcooen. 0E:_o> .m>< mm...OZ "R...OEEoo in “.92an0 ”Sun. EoEmmomm< 6...... 63:00 ”cEmz EmE who. ” 8883.82. 162 REFERENCES 163 REFERENCES Al-Masri, M. R. 2001. Changes in Biogas Production due to Different Ratios of some Animal and Agricultural Wastes. Bioresource Technology 77(1): 97- 100. Alvarez, P. M., F. J. Beltran, and E. M. Rodriguez. 2005. Integration of Ozonation and an Anaerobic Sequencing Batch Reactor (AnSBR) for the Treatment of Cherry Stillage. Biotechnology Progress 21 (5): 1543-1551. Angelidaki, I. and B. K. Ahring, 1992. Effects of Free Long-Chain Fatty Acids on Thermophilic Anaerobic Digestion. Applied Microbiology and Biotechnology 37(6): 808-812. Angelidaki, l., L. Ellegaard, and B. K. Ahring. 1999. A Comprehensive Model of Anaerobic Bioconversion of Complex Substrates to Biogas. Biotechnology and Bioengineering 63(3): 363-372. Aquino, S. F. and D. C. Stuckey. 2007. Bioavailability and Toxicity Of Metal Nutrients during Anaerobic Digestion. Journal of Environmental Engineering 133(1): 28-35. Blum, D. J. W. and R. E. Speece. 1991. A Database of Chemical Toxicity to Environmental Bacteria and Its Use in Interspecies Comparisons and Correlation. Research Journal Of the Water Pollution Control Federation. 63: 198-207. Borja, R., B. RincOn, F. Raposo, J. R. Dominguez, F. Millan, and A. Martin. 2004. Mesophilic Anaerobic Digestion in a F luidized-Bed Reactor of Wastewater from the Production of Protein Isolates from Chickpea Flour. Process Biochemistry 39(12): 1913-1921. Bouallagui, H., Y. Touhami, R. Ben Cheikh, and M. Hamdi. 2005. Bioreactor Performance in Anaerobic Digestion of Fruit and Vegetable Wastes. Process Biochemistry 40(3-4): 989-995. Bouallagui, H., M. Torrijos, J. J. Godon, R. Moletta, R. Ben Cheikh, Y. Touhami, J. P. Delgenes, and M. Hamdi. 2004a. Microbial Monitoring by Molecular Tools of a Two-phase Aerobic Bioreactor Treating Fruit and Vegetable Wastes. Biotechnology Letters 26(10): 857-862. 164 Bouallagui, H., O. Haouari, Y. Touhami, R. Ben Cheikh, L. Marouani, and M. Hamdi. 2004b. Effect of Temperature on the Performance of an Anaerobic Tubular Reactor Treating Fruit and Vegetable Waste. Process Biochemistry 39(12): 2143-2178. Bouallagui, H., R. Ben Cheikh, L. Marouani, and M. Hamdi. 2003. Mesophilic Biogas Production from Fruit and Vegetable Waste in a Tubular Digester. Bioresource Technology 86(1): 85-89. Bove, R. and P. Lunghi. 2006. Electric Power Generation from Landfill Gas using Traditional and Innovative Technologies. Energy Conservation and Management 47(11-12): 1391-1401. Calli, B., Mertoglu, B., lnanc, B., Yenigun, 0.2005. Effects of High Free Ammonia Concentrations on the Performances of Anaerobic Bioreactors. Process Biochemistry 40: 1 285.1 292. Carucci, G., F. Carrasco, K. Trifoni, M. Majone, and M. Beccan. 2005. Anaerobic Digestion Of Food Industry Wastes: Effect of Codigestion on Methane Yield. Journal of Environmental Engineering 131(7): 1037-1045. Conklin, A., H. D. Stensel, and J. Ferguson. 2006. Growth Kinetics and Competition Between Methanosarcina and Methanosaeta in Mesophilic Anaerobic Digestion. Water Environment Research 78(5): 486-496. Converti, A., A. Del Borghi, M. Zilli, S. Ami, and M. Del Borghi. 1999. Anaerobic Digestion of the Vegetable Fraction of Municipal Refuses: Mesophilic Versus Thermophilic Conditions. Bioprocess Engineering 21(4): 371-376. Demirer, G. N. and S. Chen. 2005. Anaerobic Digestion of Dairy Manure in a Hybrid Reactor with Biogas Recirculation. World Journal Of Microbiology & Biotechnology 21 (8-9): 1509-1514. Demirer, G. N., M. Duran, T. H. Erguder, E. Guven, O. Ugurlu, and U. Tezel. 2000. Anaerobic Treatability and Biogas Production Potential Studies of Different Agro-industrial Wastewaters in Turkey. Biodegradation 11(6): 401-405. Dhouib, A., F. Aloui, N. Hamad, and S. Sayadi. 2006. Pilot-plant Treatment Of Olive Oil Mill Wastewaters by Phanerochaete chrysospon‘um Coupled to Anaerobic Digestion and Ultrafiltration. Process Biochemistry 41(1): 159- 167. DiStefano, T. D. and A. Ambulkar. 2006. Methane Production and Solids Destruction in an Anaerobic Solid Waste Reactor due to Post-reactor Caustic and Heat treatment. Water Science & Technology 53(8): 33-41. 165 Dolfing, J. and W. G. B. M. Bloemen. 1985. Activity Measurements as a Tool to Characterize the Microbial Composition Of Methanogenic Environments. Journal of Microbiological Methods 4(1): 1-12. Duran, M. 2006. Improved Pathogen Inactivation and Dewaterability at Elevated (63°C) Thermophilic Temperature. In Anaerobic Treatment of High- Strength Industrial Wastes: A Practical Course. Milwaukee, WI: Marquette University. Fitzgerald, P. A. 1996. Comprehensive Monitoring of a Fluidized Bed Reactor for Anaerobic Treatment of High Strength Wastewater. Chemical Engineering Science 51 (1 1): 2829-2834. Han, S.-K., S.-H. Kim, and H-8. Shin. 2005. UASB Treatment of Wastewater with VFA and Alcohol Generated during Hydrogen Fermentation of Food Waste. Process Biochemistry 40(8): 2897-2905. Hwang, P.-C. and S.-S Chang. 1991. The Influence of Glucose Supplement on the Degradation of Catechol. Water Science 8 Technology 23(7-9): 1201- 1209. Isa, Z., S. Grusenmeyer, and W. Verstraete. 1986. Sulfate Reduction Relative to Methane Production in High-Rate Anaerobic Digestion: Technical Aspects. Applied and Environmental Microbiology 51(3): 572-579. Jensen, J. 2006. Opportunities from Emerging Greenhouse Gas Markets. In Anaerobic Treatment of High-Strength Industrial Wastes Practical Course Proceedings. Milwaukee, WI: Marquette University. Khoufl, S., F. Aloui, and S. Sayadi. 2006. Treatment of Olive Oil Mill Wastewater by Combined Process Electro-Fenton Reaction and Anaerobic Digestion. Water Research 40(10): 2007-2016. Kiely, G., G. Tayfur, C. Dolan, and K. Tanji. 1997. Physical and Mathematical Modeling of Anaerobic Digestion of Organic Wastes. Water Research 31 (3): 534-540. Kim, S.-H., S.-K. Han and H.-S. Shin 2004. Two-phase Anaerobic Treatment System for Fat-containing Wastewater. Journal Of Chemical Technology & Biotechnology 79(X): 63—71. Lepistd, S. S. and J. A. Rintala. 1997. Start-up and Operation of Laboratory- Scale Thermophilic Upflow Anaerobic Sludge Blanket Reactors Treating Vegetable Processing Wastewaters. Journal of Chemical Technology & Biotechnology 68(3): 331-339. 166 Logan, B. E., S.-E. Oh, I. S. Kim, and S. Van Ginkel. 2002. Biological Hydrogen Production Measured in Batch Anaerobic Repirometers. Environmental Science & Technology 36(11): 2530-2535. Mohan, P. K., G. Nakhla, and E. K. Yanful. 2006. Biokinetics of Biodegradation of Surfactants under Aerobic, Anoxic and Anaerobic Conditions. Water Research 40(3):533-540. Owen, W. F., D. C. Stuckey, J. B. Healy, Jr., L. Y. Young, and P. L. McCarty. 1979. Bioassay for Monitoring Biochemical Methane Potential and Anaerobic Toxicity. Water Research 13(6): 485-492. Penaud, V., J. P. Delgenes, and R. Moletta. 1999. Thermo-chemical Pretreatment of a Microbial Biomass: Influence of Sodium hydroxide Addition on Solubilization and Anaerobic Biodegradability. Enzyme and Microbial Technology 25(3—5): 258-263. Rosdil. 2006. Biological Energy Recovery System at Bush Brothers and Company. In Anaerobic Treatment of High-Strength Industrial Wastes Practical Course Proceedings. Milwaukee, WI: Marquette University. Schiraldi, 0., M. Giuliano, and M. De Rosa. 2002. Perspectives of Biotechnological Applications of Archaea. Archaea 1(2): 75-86. Shelton, D. R. and J. M. Tiedje. 1984. General Method for Determining Anaerobic Biodegradation Potential. Applied and Environmental Microbiology 47(4): 850-857. Sorge, G. 2006. Biogas Handling and Use. In Anaerobic Treatment Of High- Strength Industrial Wastes Practical Course Proceedings. Milwaukee, WI: Marquette University. Speece, R. E. 1996. Anaerobic Biotechnology for Industrial Wastewaters. Nashville, TN: Archae Press. Speece, R. E. 2006. Advances in Anaerobic Biotechnology. In Anaerobic Treatment of High-Strength Industrial Wastes Practical Course Proceedings. Milwaukee, WI: Marquette University. Spanjers, H., J. C. Bouvier, P. Steenweg, l. Bisschops, W. van Gils, and B. Versprille. 2006. Implementation of ln-Iine Infrared Monitor in Full-scale Anaerobic Digestion Process. Water Science & Technology 53(4-5): 55- 61. 167 Stewart, D. J., M. J. Bogue, and D. M. Badger. 1984. Biogas Production from Crops and Organic Wastes. New Zealand Journal of Science 27(3): 285- 294. Tekin, A. R. and A. C. Dalgic. 2000. Biogas Production from Olive Pomace. Resources, Conservation and Recycling 30(4): 301-313. Totzke, D. E. 2006. Process Start-Up, Monitoring, and Control. In Anaerobic Treatment Of High-Strength Industrial Wastes Practical Course Proceedings. Milwaukee, WI: Marquette University. Viswanath, P., S. S. Devi, and K. Nand. 1992. Anaerobic Digestion of Fruit and Vegetable Processing Wastes for Biogas Production. Bioresource Technology 40(1): 43-48. Weiland, P. 1993. “One- and Two-Step Anaerobic Digestion of Solid Agroindustrial Residues.” Water Science & Technology 27(2): 145-151. Woese, C. R. and G. E. Fox. 1977. Phylogenetic Structure of the Prokaryotic Domain: the Primary Kingdoms. Proceedings of the National Academy of Science. 74(11): 5088-5090. Xu, H.-L., J.-Y. Wang, and J.-H. Tay. 2002. A Hybrid Anaerobic Solid-Liquid Bioreactor for Food Waste Digestion. Biotechnology Letters 24(10): 757- 761. Yacob, S., Y. Shirai, M. A. Hassan, M. Wakisaka, and S. Subash. 2006. Start-up Operation of Semi-commercial Closed Anaerobic Digester for Palm Oil Mill Effluent Treatment. Process Biochemistry 41 (4): 962-964. 168 IS I I I II “III ”III/l I I,” . 1293 02956 4964 III” I ..an........: r.