

This is to certify that the
thesis entitled

CUSTOMIZABLE VULNERABILITY ANALYSIS AND
CLASSIFICATION

presented by

BRENT LEE HOLTSCLAW

LIBRARY
Michigan State
University

has been accepted towards fulfilment
of the requirements for the

M.S. degree in COMPUTER SCIENCE

CLNEdm,

Major Rfofessord Signature
Moy & 2008
Hay—

Date

MSU is an affirmative-action, equal-opportunity employer

PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.
MAY BE RECALLED with earlier due date if requested.

DATE DUE

DATE DUE

DATE DUE

6/07 p:/CIRC/DateDue.indd-p.1

CUSTOMIZABLE VULNERABILITY ANALYSIS AND CLASSIFICATION
By

Brent Lee Holtsclaw

A THESIS
Submitted to
Michigan State University
in partial fulfillment of the requirements
for a degree of
MASTER OF SCIENCE

Department of Computer Science

2008

ABSTRACT
CUSTOMIZABLE VULNERABILITY ANALYSIS AND CLASSIFICATION
By
Brent Lee Holtsclaw
Due to the many complications within the various vulnerability databases, my

thesis presents a tool, VACT, which scans the vulnerability databases, searches for
specified vulnerabilities by the classification given, and returns the selected
vulnerabilities in a downloadable and statistical form. VACT allows for one to gather
customizable trend analysis results from a user defined search of vulnerability databases.
The user selects each classification used within the search. The search is conducted by
comparing the classification to the vulnerabilities description. Trend analysis results are

returned by separating the statistics of the vulnerabilities found per year selected.

ACKNOWLEDGEMENTS

I would like to thank my parents for all of the support that I have received while
obtaining my advanced degree. I am lucky to have such wonderful parents. In addition, I
would like to thank my family for all of the encouragement that I received. A special
thank you goes out to Caity,

I would like to thank Dr. Enbody. It has been a real pleasure having him as an advisor
and professor. Early in my academic career, his introduction to programming class
helped to draw me into computer science. His patient, straightforward approach to
teaching and advising has been very beneficial. I could not have completed my thesis
without all of his knowledge and help. I would also like to thank the faculty within the
Computer Science Department for all of the knowledge that I gained as a result of their

teaching.

TABLE OF CONTENTS

LISTOF TABLESoo oottt v
LISTOF FIGURESooiiiiiitnec et s st vi
INTRODUCGTION ..ottt sttt sttt 1
Chapter 1: Purpose/Backgroundc.ccoceeieiiniiiiniiniiiineeccnteeseeete e 4
BT MOBIVALION ..ottt et ettt ebteset et e e e neennes 4
1.2 Vulnerability Classification Techniquescccoecveviieiiiiniininiinieceene S
1.3 Vulnerability Databasescccoueririirniiniiiinciecieceee s 14
1.4 Trend analysiscoveierieniinieiciecee e e e 27
Chapter 2:VACT OVEIVIEWc.ccoiuiiiiiiiiciiiie ettt 35
2.1 FTAMEWOTK ...ttt 35
2.2 Classification and Searchcccccoccviviiiiiniininiiniiiinnecee e 36
2.3 Trend Analysisooieviiiiiiiiiiiiii e 37
Chapter 3: Classification and Searchcccoereriiiiiiiiiiicee e 40
3T SHALEZY . c.veovreeiiiiieeiet ettt et ettt st ne e r e n e eesaeennen 40
3.2 USer INterfacecovviiiiiiiiiiiiiniiiccc e 41
3.3 FUNCHONALILY....c.ceuviiiiiiicici et 42
B4 EffICIENCY ..oouveiviiiiiiectccet ettt e et s 42
3.5 Naive Bayesian Classification..............cooeeeiiiriiniiiiiniiceeeteeee e 43
Chapter 4: Trend Analysisc.ccocoeviiviiriiiiiiiiiiiieec et 46
4.1 Evaluation of FEatures............ccoccceriiiiiiniiiiiceiccicieeet et 46
4.2 EffICIENCY .euveniiiitiiiiccctc ettt et s 49
Chapter 5: Real World EXample...........ccoooiiiiniiiniiiciccicecnenescee e 50
ST PIODIEM . 50
S22 RESUILS ..ot e e 50
Chapter 6: CONCIUSION........ccecirieiiirtcieeteetee ettt st saas e st eensens 75
APPENDICESoooiiieiieeeeee ettt et sttt s 76
Setting UP VACT ... 77
VACT COE ...ttt st s et 78
BIBLIOGRAPHY ...ttt er ettt sttt 96

LIST OF TABLES

Table 1.1. Vulnerability classification ideas..........c...coercvevnininiinnininninii, 5

Table 1.2. List of Abbreviations associated with vulnerability databases and

IdentifiCAtIONS.covriiviiiciiiit s 6
Table 1.3. CWE classifications used by NVD ..o 18
Table 1.3 cONtiNUEd...........ccoiiiriiiiiiii s 19

Table 5.1. Summary of results and classifications from VACT pertaining to Microsoft 52

Table 5.2. Summary of results and classification from VACT pertaining to Apple 53

LIST OF FIGURES

Figure 1.1. A snapshot of a node within CWE tier 1cccocovciiiininnininiicncnccnee 10
Figure 1.2. Another screenshot of CWE tier L...........ccoooviiiiicnncnieceecceeeene 11
Figure 1.3. A snapshot of the upper portion of CWE tier 2............cccccecuvvvvevvinienrcennnne. 12
Figure 1.4. A snapshot of CWE tier 3........cccooviiiiiiiieniniic e 12
Figure 1.5. A screenshot of US-CERT vulnerability search feature.............ccoeeenceenn. 16
Figure 1.6. A screenshot of the US-CERT search results for buffer and overflow and
2006.......cuoii et e n e et b et ens 17
Figure 1.7. A screenshot of NVD vulnerability search..........c.ccoocoveiininninncnnrenennnen 20
Figure 1.8. A screenshot of the search results returned from NVD when buffer overflow
is typed into the keyword search and the year 2006 is specified.............cccoovevevreverernennns 22
Figure 1.9. A screenshot of the search results returned from NVD when the CWE
category of buffer errors is selected from the list of vulnerability classifications............ 22
Figure 1.10. Illustration of NVD vulnerability categorization confusion......................... 23
Figure 1.11. OSVDB vulnerability search...........c.ccccooevmireennenirncennceeeseeee 24
Figure 1.12. The search results returned when searching for buffer overflows for the year
2006.......ceiiiiiiti et s a et e e 25
Figure 1.13. Secunia vulnerability search............ccccoceireniiinmnenincnicccrc e 26

Figure 1.14. A screenshot of results from buffer overflow2006 as the key word search 27

Figure 1.15. Criteria selection when using the NVD statistics query page 29
Figure 1.16. The statistical results of choosing buffer errors from the Vulnerability

Category and selecting the time period of January 2003 through March 2008................. 30
Figure 1.17. The graphical results of choosing buffer errors from the Vulnerability

Category and selecting the time period of January 2003 through March 2008................. 31
Figure 1.18. A section of the CWE trend analysis...........c.cocecrveneennenninnines e 32
Figure 2.1. A Screenshot of VACT when first initializedc.ocoevrvnireininennnne, 36
Figure 2.2. Results page from VACTcccoceviriiiiiinecieeece et 38

Figure 2.2 CONUNUEAooviviiiiiiiiiiieiit e 39

Figure 3.1 A screenshot of VACT when first initialized.............ccoooooeiiinriiinnn, 41
Figure 3.2. Psuedo code showing how a vulnerability’s probability is computed
according to the naive Bayesian classificationccocoovvivvnnmneinciiniice, 44
Figure 4.1. Results page from VACTcccooiiviiiiiiniiiii s 47
Figure 4.1 continued ..o 48
Figure 5.1. VACT results searching for Microsoft and Microsoft windows within US-

(1 31 2 SO SPS 54
Figure 5.2. VACT results searching for Microsoft windows xp and Microsoft windows
vista Within US-CERTcccooiniiiminiinininiiiiiicesi s sssnens S5
Figure 5.3. VACT results searching for Microsoft xp and Microsoft vista within US-

L) 21 3y OO 56
Figure 5.4. VACT results searching for windows xp and windows vista within US-CERT
... 57
Figure 5.5. VACT results searching for xp and vista within US-CERT.......................... 58
Figure 5.6. VACT results searching for apple and mac os x within US-CERT 59
Figure 5.7. VACT results searching for apple mac os x within US-CERT 60

Figure 5.8. VACT results searching for Microsoft and Microsoft windows within NVD
... 61

Figure 5.9. VACT results searching for Microsoft windows xp and Microsoft windows
vista Within NVDccoiiniiiiiiic s 62

Figure 5.10. VACT results searching for Microsoft xp and Microsoft vista within NVD
... 63

Figure 5.11. VACT results searching for windows xp and windows vista within NVD. 64

Figure 5.12. VACT results searching for xp and vista within NVD.......................oo. 65
Figure 5.13. VACT results searching for apple and mac os x within NVD 66
Figure 5.14. VACT results searching for apple mac os x within NVD........................... 67

Figure 5.15. VACT results searching for Microsoft and Microsoft windows within
OSVDB ... e 68

vii

Figure 5.16.

VACT results searching for Microsoft windows xp and Microsoft windows

vista Within OSVDBccoooiiiiiiiiiiir s e 69
Figure 5.17. VACT results searching for Microsoft xp and Microsoft vista within

L0 0 D) - SO 70
Figure 5.18. VACT results searching for windows xp and windows vista within OSVDB
... 71
Figure 5.19. VACT results searching for xp and vista within OSVDB........................... 72
Figure 5.20. VACT results searching for apple and mac os x within OSVDB 73
Figure 5.21. VACT results searching for apple mac os x within OSVDB 74

viii

INTRODUCTION

My thesis generates trend analyses from user-defined searches of online
vulnerability databases. There are many challenges in extracting trends from the various
vulnerability databases. Vulnerability databases vary on which vulnerability information
is kept within the database. They also differ on the way that the data is classified and
how one is allowed to search through the data. In addition, no vulnerability database
offers trend analysis on a user-defined search. To help provide consistency within these
factors, the thesis presents a tool, Vulnerability Analysis and Classification Tool
(VACT), which combines vulnerability database search with trend analysis tools to
enhance the ability of the end user to search through vulnerabilities and conduct analysis.

There are many different vulnerability databases that exist to help raise awareness
of the various know vulnerabilities. The government runs some while private
organizations or universities run others. Each database is set up with different standards
and capabilities. Take US-CERT for example, the Vulnerability Notes Database contains
only severe vulnerabilities. ("US-CERT Vulnerability Notes Database.") On the other
hand, Secunia contains advisories and virus information. ("Search Advisory,
Vulnerability, and Virus Database.") Just as each database contains its own set of
vulnerabilities, there are multiple vulnerability schemes to fulfill the various needs of
researchers, developers, and systems administrators which provides an interesting
scenario when searching for vulnerabilities to suit an individual’s needs. Therefore, one
goal is to provide users with a tool that allows a customizable search to harvest the

desired vulnerabilities.

Browsing and searching are two main ways that one is able to use in order to find
specific vulnerabilities within a vulnerability database. Neither feature follows a
universal standard, but they use similar concepts. When browsing a database one is able
to view vulnerabilities according to some kind of vulnerability classification that is
defined within the database. The classification schema allows the vulnerability databases
to presort vulnerabilities by common characteristics. The search feature acts like a search
engine allowing the users to input a search string to find within the various
vulnerabilities. The variance within searches comes from the way that the vulnerability
database searches for vulnerabilities. For example, Open Source Vulnerability Database
will search for the string within titles while USCERT will search for the keyword within
the vulnerability’s information. ("OSVDB: The Open Source Vulnerability Database.")
To take away ambiguity when searching for certain characteristics, the Vulnerability
Analysis and Classification Tool allows a user the ability to not only search by key words
but to also make up a classification. Through our own trials, we have found that an
efficient way to return these results is to do a string search using vulnerability
descriptions.

To improve the effectiveness of the tool, trend analysis from the searched results
is provided. This is a feature missing from many vulnerability databases. The one
exception comes within National Vulnerability Database which is sponsored by the
National Institute of Science and Technology. ("National Vulnerability Database.")
Although it will give some trend analysis pertaining to the vulnerabilities, it does not
allow the user any freedom. All analysis must be picked from predefined classifications,

which can be improperly calculated at times. Some organizations which are not

vulnerability databases, such as Common Weakness Enumeration, also deliver a trend
analysis of vulnerabilities. The analysis done by CWE is done by the year and cannot be
customized. Our main goal of trend analysis is to return graphs and statistics that can
help the user better visualize the results and save the user from any low level
computation.

The thesis begins by telling a quick story that motivated this project. We then
provide background information about vulnerability classification. Next we provide the
reader with insight into the overall capabilities of the tool by providing a breakdown of
the steps and decisions that were taken when making the tool. Once we show what the
tool does, we then explain how it differs from the current offerings of vulnerability
searches and trend analyses. The focus is then shifted to detail the methodologies used to
determine both the search and trend analysis results returned. We then describe a real life
scenario and how our tool could help out. To round things out the results of some
scenarios posed within the search and trend analysis section are put forward as well as the
results to the real life scenario. Finally the thesis is finished up with a conclusion which

pulls together all of ideas within the thesis.

Chapter 1: Purpose/Background

1.1 Motivation

The thesis was motivated by a simple question posed by Dr. Enbody to classify
the number of buffer-type vulnerabilities that occurred over the past year. He specifically
wanted to obtain the number of buffer vulnerabilities, the number of compromising
buffer vulnerabilities, and the number of compromising vulnerabilities. Compromising
vulnerabilities were defined as vulnerabilities that would allow a user to gain control of a
system or gain elevated privileges within a system. The first issue arose when we tried to
find what classification techniques are used to classify vulnerabilities. After searching
the literature and examining vulnerability databases online, we found that there are many
different classification schemes. Not only did we not see a common classification for
vulnerabilities, but we also found discrepancies within vulnerability databases. As we
sorted through the initial problems, we found another problem with the data. We needed
to sort through the results of the vulnerabilities to compute our own statistics and graphs.
As this simple task continued to grow in complexity, it was apparent that a tool to help

automate this process would be a worthwhile contribution to the community.

1.2 Vulnerability Classification Techniques
The word vulnerability has a very strong tone with it as it dictates that a flaw is
evident within the subject at hand.
® Within computer security, the term does not change meaning as it applies to a
“set of transitions which take a system from an allowed state to a disallowed
state” (Bishop)
Another key term that will come into play later in the thesis is an exploit.
® An exploit is a set of commands which take advantage of a vulnerability.
(Engle)
Due to the complexity and abundance of various vulnerabilities and exploits that exist,
vulnerability databases have been created by various entities to help share the knowledge

with users.

Vulnerability Classification

Name Abbreviation
Bishop
Common Weakness Enumeration CWE

Table 1.1. Vulnerability classification ideas

Tables 1.1 and 1.2 are provided to help distinguish the concepts and databases
presented throughout chapter one. Table 1.1 contains the current vulnerability
classification techniques and ideas. Table 1.2 contains the vulnerability databases
introduced within the chapter. It also contains the vulnerability identifications that are
used. The various databases contain vulnerabilities according to various naming

conventions and standards which are recognized by the vulnerability identifications.

Vulnerability Identification

Name

Abbreviation

Common Vulnerabilities and Exposers CVE
Bugtraq

Internet Security Systems' X-Force

organization ISS X-Force
Nessus Script

Open Source Vulnerability Database OSVDB

Snort Signature

Secunia Advisory

French Security Incidence Response
Team

FrSIRT Advisory

Open Vulnerability and Assessment

Language OVAL

Computer Incident Advisory Capability CIAC Advisory

Computer Emergency Response Team CERT

The United States Computer Emergency

Readiness Team CERT VU

MilwOrm

Common Configuration Enumeration CCE

Common Vulnerability Scoring System CVSS

Vulnerability Databases

Name Abbreviation Searchable Identification

Bugtraq

Microsoft Bulletins

French Security Incidence Response

Team FrSITR

US-CERT Vulnerability Note Database US-CERT CVE, CERT VU

National Vulnerabilities Database NVD CVE, CCE, CVSS
CVE, OSVDB, Bugtraq,
ISSX-Force, Nessus Script,
Snort Signature, FrSIRT
Advisory, OVAL, CIAC
Advisory, CERT, CERT VU,

Open Source Vulnerability Database OSVDB MilwOrm

Secunia CVE, Secunia

Table 1.2. List of Abbreviations associated with vulnerability databases and identifications.

Many key terms and ideas within this thesis hinge on the previous work that was
accomplished by Matt Bishop. Bishop a professor at University of California, Davis,
specializes in computer security and vulnerability analysis. In a paper from 1999, Bishop

defines five important properties to vulnerability classification:

1. Similar vulnerabilities are classified similarly. For example, all
vulnerabilities arising from race conditions should be grouped together.
However, we do not require that they be distinct from other
vulnerabilities. For example, a vulnerability involving a race condition
may require untrusted users having specific access permissions on files or
directories. Hence it should also be grouped with a condition for improper
or dangerous file access permissions.

2. Classification should be primitive. Determining whether a
vulnerability falls into a class requires a “yes” or “no” answer. This means
each class has exactly one property. For example, the question “does the
vulnerability arise from a coding fault or an environmental fault” is
ambiguous; the answer could be either, or both. For our scheme, this
question would be two distinct questions: “does a coding fault contribute
to the vulnerability” and “does an environmental fault contribute to the
vulnerability.” Both can be answered *yes” or “no” and there is no
ambiguity to the answers.

3. Classification terms should be well-defined. For example, does a
*“coding fault” arise from an improperly configured environment? One can
argue that the program should have checked the environment, and
therefore an “environmental fault” is simply an alternate manifestation of
a “coding fault.” So, the term “coding fault” is not a valid classification
term.

4. Classification should be based on the code, environment, or other
technical details. This means that the social cause of the vulnerability
(malicious or simply erroneous, for example) are not valid classes. This
requirement eliminates the speculation about motives for the hole. While
valid for some classification systems, this information can be very difficult
to establish and will not help us discover new vulnerabilities.

5. Vulnerabilities may fall into multiple classes. Because a vulnerability
can rarely be characterized in exactly one way, a realistic classification
scheme must take the multiple characteristics causing vulnerabilities into
account. This allows some structural redundency in that different
vulnerabilities may lie in the same class; but as indicated in 1, above, we
expect (and indeed desire) this overlap.(Bishop)

These properties help to provide a straightforward way of creating vulnerability
classifications. The same properties are reiterated in another paper in which Bishop was

an author seven years later.(Engle)

Although Bishop presents a great plan for vulnerability classification, when one
really evaluates the classification rubric, it presents itself as a guideline rather than as
specific classifications. Various interpretations can make classifications that are both
broad and specific. One will find an assortment of interpretations when searching
through the various classifications that are used within the different vulnerability
databases.

In addition to the work presented by Bishop, two branches of The MITRE
Corporation help to provide structure to vulnerability classification. The Common
Weakness Enumeration, CWE, division of The MITRE Corporation, offers a community-
developed dictionary of software weakness types. ("Common Weakness Enumeration.")
While Common Vulnerability Enumeration, CVE provides a common naming convention
for vulnerabilities. ("Common Vulnerabilities and Exposures.")

With the help of CVE and researchers, CWE continues to build a classification
tree of vulnerabilities. Even though there is a current layout and structure, CWE
continually accepts new research and vulnerabilities to help expand the tree to make it as
comprehensive as possible. The layout is “currently using what could roughly be
described as a three-tiered approach, in which (1) the lowest level consists of the full
CWE List (hundreds of nodes) that is primarily applicable to tool vendors and detailed
research efforts; (2) a middle tier consists of descriptive affinity groupings of individual
CWEs (25-50 nodes) useful to software security and software development practitioners;
and (3) a more easily understood top level consi‘sting of high-level groupings of the

middle-tier nodes (5-10 nodes) to define strategic classes of vulnerabilities and which is

useful for high-level discourse among software practitioners, business people, tool
vendors, researchers, etc.”("Process.")

CWE produces a body of work that is the closest we have seen completely
implementing Bishops properties. The problem is that it is not used as a database
standard. Several databases such as National Vulnerability Database have implemented a
partial CWE list. Figures 1.1 and 1.2 illustrate the level of detail that exists within CWE.
Figure 1.1 is a high level classification with an associated description and relationships to
similar classifications. Figure 1.2 illustrates a specific classification. The classification
levels can also be seen within Figures 1.1 and 1.2. Figure 1.2 is referred to as a child of
Figure 1.1. In addition to the description and relationships, Figure 1.2 has associated
examples. Figures 1.3 and 1.4 illustrate CWE tier 2 and tier 3. The tiers represent the

various levels of classification that exists within CWE.

Failure to "C(A)Ahsti‘airnA'(.)béraEtirrmis within the Bounds of an Allocated

Memory Buffer
Weakness ID 119 (Weakness Class) Status: Draft

Description Summary
The software may potentially allow operations, such as reading or writing, to be
performed at addresses not intended by the developer.
Extended Description
When software permits read or write operations on memory located outside of an

allocated range, an attacker may be able to access/modify sensitive information,
cause the system to crash, alter the intended control flow, or execute arbitrary code.

Affected Memory
Resource
Relationships Nature Type ID Name
childof 118 Range Errors
chidof ¥ 635 Weaknesses Used by NVD
chidof @ 633 Weaknesses that Affect Memory
Parentof @ 133 String Errorg
ParentOf 123 Write-what-where Condition
Parentof A 124 n inning Violation (‘Buffer Underwrite'
Parentof TR 125 Out-of-bounds Read
Parentof TH 128 rap-@r rror
ParentOf 129 Unch (s ndexin
ParentOf 131]Incorrect Calculation of Buffer Size
Parentof B 132 Miscal Il Terminati
ParentOf 466 Return of Pointer Value Qutside of Expected Range
ParentOf ‘ 120 Unbounded Transfer ('Classic Buffer Qverflow')
Related CAPEC-ID Attack Pattern Name
Attack 100 Overflow Buffers
Patterns 10 Buffer Overflow via Environment Variables
14 Client-side Injection-induced Buffer Overflow
42 MIME Conversion
24 Filter Failure through Buffer Overflow
8 Buffer Overflow in an API Call
44 Overflow Binary Resource File
9 Buffer Overflow in Local Command-Line Utilities
45 Buffer Overflow via Symbeolic Links
46 Overflow Variables and Tags
47 Buffer Overflow via Parameter Expansion

Figure 1.1. A snapshot of a node within CWE tier 1

10

Incorrect Calculation of Butfer Size

Weakness ID 131 (Weakness Class) Status: Draft
Description Summary

The software does not correctly calculate the size to be used when allocating a buffer,
which could lead to a buffer overflow.

Observed Reference Description
Examples CVE-2004-1363 substitution overflow: buffer overflow using environment variables that

are expanded after the length check is performed

CVE-2004-0747 substitution overflow: buffer overflow using expansion of environment
vanables

CVE-2005-2103 substitution overflow: buffer overflow using a large numbaer of
substitution strings

CVE-2005-3120 transformation overflow: product adds extra escape characters to
incoming data, but does not account for them In the buffer length

- -0899 transformation overflow: buffer overflow when expanding ">" to "Bgt:",
etc.

- - 4 expansion overflow: buffer overflow using wildcards
CVE-2001-0248 expansion overflow: long pathname + glob = overflow
CVE-2001-0249 expansion overflow: long pathname + glob = overflow
CVE-2002-0184 special characters in argument are not properly expanded
CVE-2004-0434 small length value leads to heap overflow
- -1347 multiple variants
- -04 needs closer investigation, but probably expansion-based
- -094Q needs closer investigation, but probably expansion-based
Context This is a broad category. Some examples include: (1) simple math errors, (2) incorrectly
Notes updating parallel counters, (3) not accounting for size differences when "transforming”

one input to another format (e.g. URL canonicalization or other transformation that can
generate a result that's larger than the original input, i.e. “expansion”).

This level of detail 1s rarely available in public reports, so it is difficult to find good

examples.
Relationships Nature Type ID Name
childof B 119 Failure to Constrain rations within th n fan All
Memory Buffer
Source PLOVER - Other length calculation error
Taxonomies
Applicable C
Platforms C++
Related CAPEC-ID Attack Pattern Name
Attack 47 Buffer Overflow via Paramater Expansion
Patterns

Figure 1.2. Another screenshot of CWE tier |

11

B@®@Location - (1)
« @ Configuration - (16)
=@ Code - (17)
E@.Source Code - (18)
‘#@ Data Handling - (19)
@@ Secunty Features - (254)
®® Time and State - (361)
@@ Error Handling - (388)
@ B Failure to Fulfill API Contract (aka 'API Abuse') - (227)
» A use of Inherently Dangerous Function - (242)
= M Indicator of Poor Code Quality - (398)
= A Insufficient Encapsulation - (485)
= A Always-Incorrect Control Flow Implementation - (670)
= 8 Insufficient Control Flow Management - (691)
=@ ?Ee/omect Code - (503)
. Compiler Removal of Code to Clear Buffers - (14)
=W violation of Secure Design Principles - (657)
« B Design Principle Violation: Failure to Use Least Privilege - (250)
« A Design Principle Violation: Not Failing Securely - (636)
« MR Design Principle Violation: Not Using Economy of Mechanism - (637)
» WA Design Principle Violation: Not Using Complete Mediation - (638)
» B Design Principle Violation: Insufficient Compartmentalization - (653)
« M Design Principle Violation: Reliance on a Single Factor in a Security
Decision - (654)
» M Design Principle Violation: Failure to Satisfy Psychological Acceptability -
(655)
» MADesign Principle Violation: Reliance on Security through Obscurity - (656)
= WM Design Principle Violation: Lack of Administrator Control over Security -
(671)
B ® Environment - (2)
©@®@ Technology- specific Environment Issues - (3)
» @ J2EE Environment Issues - (4)
@@ .NET Environment Issues - (519)
2 ® Motivation/Intent - (504)

Figure 1.3. A snapshot of the upper portion of CWE tier 2

=@ Location - (1)
» @ Configuration - (16)
@@ Code -(17)
@@ Environment - (2)
B ® Motivation/Intent - (504)
® @ Intentionally Introduced Weakness - (505)
» @ Inadvertently Introduced Weakness - (518)

Figure 1.4. A snapshot of CWE tier 3

12

Common Vulnerabilities and Exposures, CVE, “is a list of information security
vulnerabilities and exposures that aims to provide common names for publicly known
problems. The goal of CVE is to make it easier to share data across separate vulnerability
capabilities (tools, repositories, and services) with this ‘common enumeration.’”
("Common Vulnerabilities and Exposures.") In other words CVE provides a common
naming convention to reference vulnerabilities.

CVE does not include any zero day vulnerabilities. A zero day vulnerability is a
newly released vulnerability. Instead, vulnerabilities must go through a process to get
onto the CVE list. After a vulnerability is discovered, it goes through “three stages: the
initial submission stage, the candidate stage, and the entry stage.” ("How We Build the
CVE List.") Their website provides a complete tutorial on the CVE List building
process.

The CVE List building process is stringent with the vulnerabilities which are
given a common name. To encompass vulnerabilities without CVE names, other
organizations offer identification to vulnerabilities which are identified within CVE and
ones that are not. Security Focus features a zero day vulnerability database, bugtraq. The
database allows users to send in all vulnerabilities that are found. Bugtraq offers an up-
to-date email system to provide all subscribers a chance to view and discuss new
vulnerabilities. Microsoft Bulletins features Microsoft specific vulnerabilities. French
Security Incidence Response Team, FrSITR, also keeps a zeroday list of reported
vulnerabilities. USCERT provides a truncated list of vulnerabilities by selecting only the
vulnerabilities which are identified as critical. Secunia offers a vulnerability list which

includes both vulnerabilities and virus information. It is important to note that in addition

13

to their own naming convention, each of the databases listed above still offers the CVE
name for vulnerability which is identified by compiles to CVE standards.

Other notable standards which are used by some of the vulnerability databases
include the Common Vulnerability Scoring System, CVSS, and Common Configuration
Enumeration, CCE. “The Common Vulnerability Scoring System provides an open
framework for communicating the characteristics and impacts of IT vulnerabilities. Its
quantitative model ensures repeatable accurate measurement while enabling users to see
the underlying vulnerability characteristics that were used to generate the scores.” ("NVD
Common Vulnerability Scoring System Support v2.") CVSS is calculated with using the
following metrics: Vulnerability Severity, Access Vector, Authentication,
Confidentiality, Integrity, Availability, and Access Complexity. “The CCE List provides
unique identifiers to security-related system configuration issues in order to facilitate fast
and accurate correlation of configuration data across multiple information sources and
tools.” ("About CCE.")

1.3 Vulnerability Databases

Within the next section we are going to take a closer look into some of the
vulnerability databases. Not only does this help one get a better picture of the types of
vulnerability databases that exist but it also shows how vulnerability databases differ.
The description will feature what types of vulnerabilities that can be found within the
database as well as any classification schemes that are used. Another attribute of the
description will be an evaluation of the search functionality within the database.

The US-CERT Vulnerability Notes Database contains vulnerabilities that meet a

“certain severity threshold” which is severe for all users. In other words, the database

14

contains severe vulnerabilities for software and operating systems that many users
interact with on a daily basis. One is able to view the vulnerabilities within seven
predetermined metrics: Name, ID Number, CVE name, Date Public, Date Published,
Date Updated, and Severity Metric. Even though US-CERT does not offer any
classification, the search feature is very good. It does a full text search allowing the user
to input complex queries. Figure 1.5 shows a snapshot of the US-CERT vulnerability
notes search page. Figure 1.6 shows a snapshot of the results returned when searching
for buffer overflow 2006. The US-CERT Vulnerability Notes Database is a truncated list
of CVE vulnerabilities. Therefore, one is only able to get a subset of CVE vulnerabilities
as a result. Another downfall comes as the results from the search as featured in figure 5
contain vulnerabilities from years other than 2006 with no indication of the number of
vulnerabilities that have been returned. The user must do extra work to know how many
vulnerabilities fit into the search results. In addition, extra time must be sent filtering

through the results to find the ones that are from 2006.

15

VN ulnerability

Notes
ules

Jatabase

Search
Vulerabihity

Home | FAQ | Contact | Privacy Policy

US-CERT

UNITED STATES COMPUTER EMERGENCY READINESS TEAM

Search US-CERT Vulnerability Notes

Search for US-CERT Vulnerability Notes that contain the following word(s):

Notes

Vulnembility
Notes Help
Intormation

View Notes By

Name

1D Nuinber

CVE Name

Date Public

Date Published
Date Updated
Seventy Meinc

Other
Documents
Techmcal Alens

Technical
Bulletins

Alents

Sccunty Tips

[Search |

Searches are case insensitive, and they march whole words in a full texr index. You can use logical
constructs such as and. or and not, as well as parentheses and wildcards like asterisk and queston mark.

Limut results to: 50

Sort results by: ® Relevance
“ Oldest first (roughly by modified date)
Newest first (roughly by modified date)

Word options: _JFind exact word matches only
T1Find word vaniations as detined by thesaurus
Example queries mclude
o rsaref and (sshoor sshy
o ¢gi-bin and not (us of apuche)
o Windows 97 or Windows 2000 or Windows XP
o buffer over*

More detailed help is also available.

Produced 2068 v US-CERT. a gor crament organuzation
Dinelainacrs aned vopy ight inf wiiation

Figure 1.5. A screenshot of US-CERT vulnerability search feature

16

US-CERT

UNITED STATES COMPUTER EMERGENCY READINESS TEAM

Vulaerabiin Search Results

Date
D Public Name
ulnerabbity V1U=65457703-11 2008 Microsoft Office Web Components Spreadsheet Active X control URL parsing stack buffer overflow
V2196240 02:19:2007 Sowcefire Snort DCE RPC preprocessor does not properly reassemble fragmented packets
Vulnerabalsry V1=311192 12 01:2006 VUPlayer malformed plaviist buffer overfiow

;{L"{ﬁ \La"01121 06272006 Gracenote CDDB ActiveX control buffer overfiow

TSRS \Ta="3€45 06 19°2006 gzip contains a bss buffer overfiow in its LZH handing

IWWNENEE 2135545 06:04:2007 Java Runtime Emironment Image Parsing Code buffer overflow vulnerabity
VU=451380 09122006 Adobe Flash Player kong string buffer overflow

Name VU=220288 01/04:2007 OpenOffice fails to properly process WMF and EMF files

D Number VUn441785 02:222007 SupportSoft ActiveX controls contain multiple buffer overflows

CVE Name VTU=1494%7 12:20:2006 Sun Java JRE vuinerabie to arbitrary code execution via an undetermined error

V12592796 027232007 Mozlla Network Security Services (NSS) fals to properly handle the chent master key

Date Publc

VU=377812 02/23-2007 Mozlla Network Security Services (NSS) fals to property process malformed SSLv2 server messages

Figure 1.6. A screenshot of the US-CERT search results for buffer and overflow and 2006

The National Vulnerabilities Database, NVD, which is sponsored by the National
Institute of Science and Technology, is a very interesting database to study. Itis a CVE
and CCE vulnerability database. Table 1.3 shows which CWE vulnerability
classifications are integrated into NVD. Table 1.3 is mainly composed of CWE tier 2
vulnerability classifications. It is interesting to note that because the list is a truncated
version, classifications such as Other and Not in CWE exist. The user is able to do a
keyword search with any of the one of the CWE metrics from table 2 specified, any of the
metrics within CVSS specified, the product specified, the vendor specified, or the date

specified. Figure 1.7 helps to illustrate the search and browsing features of NVD.

17

Name

Description

ication . .
Authenticatio Failure to properly authenticate users.
Issues
Credentials Failure to properly create, store, transmit, or protect passwords and other credentials.
Management
Permissions,

Privileges, and
Access Control

Failure to enforce permissions or other access restrictions for resources, or a privilege
management problem.

Buffer Errors

Buffer overflows and other buffer boundary errors in which a program attempts to put
more data in a buffer than the buffer can hold, or when a program attempts to put data
in a memory area outside of the boundaries of the buffer.

Failure to verify that the sender of a web request actually intended to do so. CSRF

ggos:fésslnte attacks can be launched by sending a formatted request to a victim, then tricking the
Fo? o victim into loading the request (often automatically), which makes it appear that the
(ngm?)' request came from the victim. CSRF is often associated with XSS, but it is a distinct
issue.
erss-'Slle Failure of a site to validate, filter, or encode user input before returning it to another
Scripting user’s web client
(XSS) '
Crvptographic An insecure algorithm or the inappropriate use of one; an incorrect implementation of
ryplograp an algorithm that reduces security; the lack of encryption (plaintext); also, weak key or
Issues . .
certificate management, key disclosure, random number generator problems.
Path Traversal When user-supplied input can contain “..” or similar characters that are passed through

to file access APIs, causing access to files outside of an intended subdirectory.

Code Injection

Causing a system to read an attacker-controlled file and execute arbitrary code within
that file. Includes PHP remote file inclusion, uploading of files with executable
extensions, insertion of code into executable files, and others.

Format String

The use of attacker-controlled input as the format string parameter in certain functions.

Vulnerability
Configuration | A general configuration problem that is not associated with passwords or permissions.
Information
Leak / Exposure of system information, sensitive or private information, fingerprinting, etc.
Disclosure

Failure to ensure that input contains well-formed, valid data that conforms to the
Input ARG . . o Lo .

. application’s specifications. Note: this overlaps other categories like XSS, Numeric

Validation .

Errors, and SQL Injection.
Numeric Integer overflow, signedness, truncation, underflow, and other errors that can occur
Errors when handling numbers.
OS Command | Allowing user-controlled input to be injected into command lines that are created to
Injections invoke other programs, using system() or similar functions.

Table 1.3. CWE classifications used by NVD

18

Name Description
Race The state of a resource can change between the time the resource is checked to when it
Conditions is accessed.
Resource The software allows attackers to consume excess resources, such as memory
Management exhaustion from memory leaks, CPU consumption from infinite loops, disk space
Errors consumption, elc.
S — When user input can be embedded into SQL statements without proper filtering or
QL Injection . h
quoting, leading to modification of query logic or execution of SQL commands.
Link Failure to protect against the use of symbolic or hard links that can point to files that
Following are not intended to be accessed by the application.
Other NVD is only us}ng a subset of CWE for mapping instead of the entire CWE, and the
weakness type is not covered by that subset.
Not in CWE The weakness type is not covered in the version of CWE that was used for mapping.
Insufficient There is insufficient information about the issue to classify it; details are unkown or
Information unspecified.
A vulnerability is characterized as a “Design error” if there exists no errors in the
Design Error implementation or configuration of a system, but the initial design causes a

vulnerability to exist.

Table 1.3 continued

19

e X,

Namona\ Vulmerab”xty Dat;abase

mating vulnerability managerENt%@8ity measurement, and compliance checking

Checklists Product Dictionary

CVE and CCE Vulnerability Database Advanced Search

(CCE support s nder devaopment)

Search) Reset Values

management kemcrd search:
data. This data enables
of

Choose & Vandor or Product

09 Ot Wharbiteg - SO31Ch star date Aoy Morh [y Your ¥
148 chaciit Search end date AoyMaonh . Ay Your ¥
z?szm Vuinerabity Types: @ Software Flaws (CVE
6K vl Netes

Misconfigurations (CCE), under development

CVSS Version 2 Metrics:
13879 inarable Producs

unupana B vty sevwity
Bumﬁm/m Access Vector

Ay
=
=
Ay

NVD provides four maiing Confidentiaity

T 10 the puble. F0r. 1., E

infommation and o

subscription instructions avalabilty oy 3
t WD Mading

‘Vulnerability Category: Any v

‘Show only vuinerabilties that [] us-CERT Technical Alerts

adebisconn.] 0 US-CERT Vulngrabiity Notes
associated resources o o

WV < 2 et of the

Figure 1.7. A screenshot of NVD vulnerability search

Despite the positive features of NVD, there are some other features which cause
confusion. The search engine provides many search options while the key word search is
not very extensive. In fact, when searching for buffers overflows, there were some
vulnerabilities that were identified as buffer overflow vulnerabilities that were not being
returned. Figure 1.8 illustrates the search results returned when typing buffer overflow

into the search with the year of 2006 specified. There are 583 vulnerabilities that are

20

returned. However, if one selects just buffer errors from 2006 as specified within Figure
1.9, only 30 vulnerabilities are returned. When limiting the buffer errors to the keywords
buffer overflow, only 19 vulnerabilities are returned for 2006. As 23 classifications have
been chosen to represent a subset of CWE, many of the vulnerabilities have not been set
to fall into any of these categories after searching for them which leads to inaccurate
results. Another problem that was found with NVD comes within the XML downloads.
On the site, there is a place where one can download the various years’ worth of CVE
data. The problem comes when one tries using the categorization aspects within the
CVE. The categories are inconsistent with the new CWE categories. Figure 1.10
illustrates the vulnerability classifications that are found in the XML of the 2007
download. The file is not using the CWE vulnerability classification standard. Instead it
lists twelve classifications which are illustrated on the left of Figure 1.10. Next to the
twelve classifications, is the number of times that the classification is found within the
vulnerabilities. Within the XML file, some vulnerabilities fall into several of the
classifications while others do not fall into any of the listed classifications. The right side
of Figure 1.10 shows the exact classifications that are found associated each vulnerability
is associated with, as well as the number of times that classification is found within the
vulnerabilities. According to Bishop, allowing multiple categories can be a good thing so
this may prove to be a problem. However, NVD is using two different vulnerability
classification metrics. Another concern is that 542 of the vulnerabilities are classified as

unknown.

21

Sponsored by
DMS National Cyber Security Division/US-CERT

National Vulnerahility Database
automating vulnerability management"etlirity measurement, and compliance checking
lmwc\ Metrics Dak- fe-di Statistics
o [statit

-
There are 583 matching records. Displaying matches 1 through 20.
Next 20 Matches |

lcve-2006-6917
. Summary: Multiple buffer overflows in Computer Associates (CA) BrightStor ARCserve
Backup R11.5 Server before SP2 allows remote attackers to execute arbitrary code in the
Tape Engine (tapeeng.exe) via a crafted RPC request with (1) opnum 38, which is not
bt it - properly handied in TAPEUTIL.dl 11.5.3884.0, or (2) opnum 37, which is not properly
Misiagumor, ';:’““'7 handled in TAPEENG.dHl 11.5.3884.0.

measurement,
Published: 12/31/2006
compliance (e.9. FISMA). voc sovarity: 10.0 (Hi

imary: Stack-based buffer overflow in http.c in Karl Dahlke Edbrowse (aka Command

Sum:
line editor browser) 3.1.3 allows remote attackers to execute arbitrary code by operating an
FTP server that sends directory listings with (1) long user names or (2) long group names.
2/31/2006
; 10.0 (Hi

data. This data enables
automation of

Summary: Buffer overflow in the Bluetooth Stack COM Server in the Widcomm Bluetooth
stack, as packaged as Widcomm Stack 3.x and earfier on Windows, Widcomm
Last updated: o/is/0s BTStackServer 1.4.2.10 and 1.3.2.7 on Windows, Widcomm Bluetooth Communication
CVE Publication rate: Software 1.4.1.03 on Windows, and the Bluetooth implementation in Windows Mobile or
15 vuinarabiities £ dav_ . Windows CE on the HP IPAQ 2215 and 5450, allows remote attackers to cause a denial of

Figure 1.8. A screenshot of the search results returned from NVD when buffer overflow is typed into the
keyword search and the year 2006 is specified

Sponsored by LA
DHS National Cyber Security Division/US-CERT Ve

National Vulnerability Database

.unon'unnr) vulnerability managermen firity measurement, and compliance checking
Product Dictionary Impact Metrics Data Feeds Statistics

Home. m/sur SCAP Validated Tools |SCAP Events [About [Contact |Vendor Comments

There are 30 matching records. Displaying matches 1 through 20.

Buffer overflow in the parse_expression function in parse_config in OpenSER
1.1.0 allows attackers to have an unknown impact via a long str parameter
Published: 12/26/2006

oval:o e.oval:def:1816
y: Double free in Microsoft Windows 2000, XP, 2003, and Vista allows
local users to gain privileges by calling the Messageox function with a
MB_SERVICE_NOTIFICATION message with crafted data, which sends a HardEror message
NVD contains: to Client/Server Runtime Server Subsystem (CSRSS) process, which is not property handied
20603 when invoking the UserHardError and GetHardErrorText functions in WINSRV.
Published: 12/21/2006

160 chacklists CVSS Severity: 6,9 (Medum)

Resource Status

Figure 1.9. A screenshot of the search results returned from NVD when the CWE category of buffer errors
is selected from the list of vulnerability classifications.

22

° i = input buffer 602 « other42
fnput buffer 614 e input bound 67 * input bound, design 5
* inputbound74 * unknown 542 + input bound buffer 2
« envl5 « design, config 6
* unknown 542 « design723 * input, config 20
* env2S * input 4107 * input bound, other 1
. « config37 * input buffer, other 1,
* design 952 + exception271 « access, input buffer 3,
. * design,raced » input buffer, design 3
[]
input 4352 e race34 * input,racel
* config68 » input bound, exception1 + input,env S
N . 361 e access 202 * input, exception,env1
exception « input, design128 * input buffer, exception 3
* race39 * Input, exception 49 * exception,envl
« design,env3 » input buffer, config 2
* access 305 « design, exception 28 « access, input, design 3
e other44 - access, design49 * access, exception7

access, input 38
access, config 3

* inputbound buffer 2

Figure 1.10. Illustration of NVD vulnerability categorization confusion

Open Source Vulnerability Database,OSVDB, offers an extensive vulnerability
database which incorporates: Bugtraq ID, CVE ID, ISS X-Force ID, Nessus Script ID,
Related OSVDB ID, Snort Signature ID, Secunia Advisory ID, FrSIRT Advisory ID,
OVAL ID, CIAC Advisory, CERT, CERT VU, Security Tracker, and MilwOrm ID.
OSVDB has made several vulnerability classifications which include Location, Attack
Type, Impact, Solution, Exploit, Disclosure, OSVDB. The search feature allows the user
to select any the vulnerability classifications, select a reference point, input key words to
find within the title or text, the vendor or product name, or a time period. Figure 1.11
illustrates the elaborate search capabilities. The limitation of OSVDB comes within the
search. Keywords are only allowed to be found within the vulnerability titles. By
allowing only keywords to be searched for within the title, one is not able to get access to
all vulnerabilies. OSVDB lists it’s vulnerability classification within the title. If one

picks search terms that are too general or specific for the title, they will not receive the

23

proper results. Figure 1.12 contains the three search results that are returned for buffer
overflow for the year of 2006. It is hard to believe that only three of the vulnerabilities

from 2006 were buffer overflows.

Advanced Search

Vulnerability Titde: @mfmdﬁ_f
Oidosure ateRange: T "
Referance: S = SR
To: .

Vendor/Product: r ““ - ;

Vulnerability Classification

Lecation Attach Type Impact Solution
D Authentication Management
O M
Dohvmnl Access Required Cryptographic D No Solution
D) Denial of Service D
Local Access Required DH" y Workaround
DRmou/Nmork Access Required packing D Loss of Confidentiality D Patch
0O Information Disclosure 0 D
Local/Remote D Loss of Intagrity Upgrade
D)) Infrastrycture 0 . D)
Dialup Access Required 0 Loss of Availability Change Defauk Setting
D Input Manipulation D D
Wireless D : Unknown Third Party Solution
Db Misconfiguration 0o,
Mobile Phone D Race Condid Discontinved Product
DUnknoon Lecation D dee Londidon DSohmn Unknown
Other
D Unknown
Exploit —__ Dledlesre)
O avthentication Required
O osvos verted O eracuonTaquiny
D Vendor Verified D Contant Dupandunc
Vul
D Exploit Available D Vendor Disputed E] wu " :’;“m
ormifie
D Exploit Unavailable DTMrd Party Verfied D Web Relotad
te
D Exploit Rumored / Private D Coordinated Disclosure D C. o
D Exploit Unknown D Uncoordinated Disclosure D 'm;m]
DTMrd Darty Disputed estPractice
D E] Myth/Fake
Discovered in the Wild D
Security Software

Figure 1.11. OSVDB vulnerability search

24

nostg provded by
ERED
ouss

o
Search OSvDB Browse Vendors Project Info Help OSVDB! Sporsors [RELL\NEIAAY

Sart b,
Resuits: 3 Narrow S=arch Show Desinptions m
Search Query: vuln title: buffer overflow s date: January 1, 2006 ¢ date: December 31, 2006
OSVDB 1D Disclosure Date Title
0

iy e

Ganers! Searcn (Go) 23872 2006-03-10
OSVDE © Lootup “ao) NETGEAR WG111v2 Wireless Driver (WG111v2.5YS) Beacon Request
Verdor Sewcn) 30473 20061116 pigrer Overfiow

Figure 1.12. The search results returned when searching for buffer overflows for the year 2006

Secunia offers an advisory, vulnerability, and virus database. Browsing options
include historic advisories, listed by product, and listed by vendor. Categorization within
Secunia includes Impact, Critical Levels, and Where. Users are allowed to input key
words as well as select an option from the different categorizations when searching
through the database. Figure 1.13 shows a snapshot of the advanced search part of the
website. Figure 1.14 shows the results returned when searching for buffer overflow
2006. 2006 was added into the search to find vulnerabilities only from the year 2006.
However, vulnerabilities from 2007 are featured on within the results in figure 1.14.

Overall, Secunia offers a great search tool combined with basic classifications.

25

Secunia Verified Vulnerability Intelligence

Figure 1.13. Secunia vulnerability search

26

Stay Secure i
where it matters.
Home Corporate Website Jobs Blog Advertise [|[search
solutions For [search Advisory, Vulnerability, and Virus Database "
ity Professionals |
Search: [Simple Search] |
sramsteni [s |
Froe Solutions For | Y00 0o enclose search tems wih and for beter search resuls - ;
|
Qoer Communtes | @ al Content O secunia Advisories O Virus Information B ——
Journalists & Media
Software Inspectors | Search within: Secunia PST
 Headline Scan | Patch | Track
$can Onine Free Download
persona s Get ¢ | 2 Software/0s
CVE reference
Secunia Advisories Do you think it's
Important to read
v ar Setup/User Gudes for
Historic Advisones From local network applications for use
Listed By Product From remote within your network?
Lsted By Vendor Local system
Yes, [do t althe
statisics | Graphs Ot
nia Researct QYes, butldot
Report Vylnerabilit rarely
About Aduisones Qko

IFound: 483 Secunia Security Advisories, displaying 1-25]
Sort by: Match, Title, Date
Title Date
man Itiple Product: ActiveX Controls Buffer Overflow 2007-02-23
JustSystems Multiple Products Buffer Overflow Vulnerability 2006-12-0S
Borland Products idsgl32.dll Buffer Overflow Vulnerability 2006-11-29
JustSystems Ichitaro Document Property Buffer Overflow Vulnerability 2006-10-18
Ipswitch IMail Server SMTP Service Buffer Overflow Vuinerability 2006-09-07
Ichitaro Document Viewer Buffer Qverflow Vuinerability 2006-08-21
Microsoft Visual Basic for Applications Buffer Overflow 2006-08-08
PowerArchiver DZIPS32.0LL Buffer Overflow Vulnerability 2006-07-25
Microsoft Office Image Filters Buffer Overflow Vulnerabilities 2006-07-11
Microsoft Excel Multiple Buffer Overflow Vulnerabilities 2006-07-06
McAfee Securi nter Subscription Manager Buffer rflow 2006-08-01
Alien Aren 06 Gold Edition Multiple Vulnerabiliti 2006-03-08
Symantec Support Tool ActiveX Control Vulnerabilities 2006-10-06
Microsoft Word Code Execution Vulnerabilities 2006-09-0S
Mandriva update for xine-lib 2006-06-26
Microsoft Office Multiple Code Execution Vulnerabilities 2006-03-14
F-Secure Anti-Virus Archive Handling Vulnerabilities 2006-01-19
Graphviz GD GIF Handling Buffer Overflow Vulnerability 2008-02-13
Yisual Studio Crystal Reports RPT Processing Buffer Overflow 2007-09-11
Media Player Classic FLI File Processing Buffer Overflow 2007-08-24
Microsoft DirectX RLE Compressed Targa Image Processing Buffer Qverfiow 2007-07-19
Avava Products GDB "DWARF" Buffer Overflow Vuinerabilities 2007-07-04
isco Products PHP "htmlentiti " and "htmispecialchars()" Buffer Qverflow 2007-04-26
1BM Lotus Domino Script Insertion and Buffer Qverflows 2007-03-28
Gentoo mqv Buffer Qverflow Vulnerability 2007-03-27
Next 25 matches >>

Figure 1.14. A screenshot of results from buffer overflow2006 as the key word search

1.4 Trend analysis

NVD is the only vulnerability database with any sort of trend analysis. Figure
1.15 shows the trend selections that one can make. The image shows that the capabilities
are basically the same as the search, but there is no key word search. Therefore, the user
is not able to gain any trend analysis from customized search results. Figure 1.16
demonstrates the statistical results while Figure 1.17 shows the graphs of the results from
choosing buffer errors from the Vulnerability Category and selecting the time period of
January 2003 through March 2008. Figure 1.16 indicates that the statistics are not being
calculated correctly. Within the statistics given, it claims that there are 29 buffer error

vulnerabilities in 2006 which constitutes to 0% of the makeup of vulnerabilities. It is not

27

possible for 29 vulnerabilities to constitute for 0% of the vulnerabilities in 2006. The
error is due to the high number of vulnerabilities in 2006. There should still be some way

to computer the actual value or provide a more accurate computation.

28

Sponsored by

onal Cyber Security Division/US-CERT y »

National Vulnenrability Database

mating vulnerability manager@Rt¥e€elitity measurement, and compliance checking
Vulnerabilities Checklists Product Dictionary
e b e

CVE and CCE Statistics Query Page
(CCE support s under development)

This 15 general purpose vuinsrabiity generation engine. Use it to graph and chart vulnerabilities discovered
withn a product or to graph and chart sats of vuinerabilties containing particuiar characterstics (e g. remotely
explortable buffer overflows). These calculations may take up to several mnutes to be generated depending on the
complexity of the statistic requested

Important Note: Linux dstributions are often made up of a large collectons of ndependently developed software and
it 1s sometimes difficuit to determine which software packages should be considered part of the operating system and
which should be considered independent but merely included along with the operating system. In additon, some
vuinerabilties occur within the Linux kemel and for those vuinerabiities we do not enumerate al of the hundreds of
Linux distributions. Thus, the statistics related to Linux must be interpreted carefully. We will be working to provide
better statistics for Linux distnbutions.

Vendor ABCEFHIKLNOORTIUWXIA
Product ABCE

Version = - Choose & Vendor or Product - ~

Search start date: AnyMorth v Any Year v

Search end date AnyMorth v Any Yesr v

V88 Version 2 Metrics:

Vulnerabilty Seventy Ay v

Access Vector Ay v
Authentication Any v

Confidentialty: Ary v

Integnty: Any v

Avaiabiity Ay, v

Access Complexity Any v

Vulnerabiity Category: Ay v

Use only vunerabities that ® Software Flaws (CVE)
have the following

Misconfigurations (CCE), under development
associated resources TR —

O US-CERT Technical Alerts
O US-CERT Vulnerabiity Notes
© US-CERT Technical Alerts or Vulnerabiiity Notes
O QvaL Quenes
alculate Statshcs
[(Reset
Cusgoimer iobce 8 Frrac Stat s

furecy Statemest / Securty Nobay.
comments o suggestons to 2id@ngtger

Figure 1.15. Criteria selection when using the NVD statistics query page

29

— . A
National Vulnerability Database
automating vulnerability managementiseelivity measurement, and compliance checking
Vulnerabilities Checklists

z Product Dictionary
|1SAP/SCAP [SCAP Validated Tools

Statistics Results Page
New Q
Calculating general vulnerability statistics

Calculating user requested vuinerability statistics
Generating tables and graphs

|ScAP Events

Below are a table and graphs with data matching the characteristics you specified on the Statistics Query Page.
You have asked for statistics on vulnerabilities with the following limitations:

« Occurred after January, 2003
« Occurred before April, 2008
« Has the following vuinerability type: Buffer Errors

Table of Data Matching the Above Limitations
Year 2008 12007 2006 2005 2004 zno;\‘
#ofvuins 174 387 30 24 17

s |
| %ofTotal 9% 6% 0% 0% 1% 3% |

Figure 1.16. The statistical results of choosing buffer errors from the Vulnerability Category and selecting
the time period of January 2003 through March 2008

30

Graph of Data Matching the Above Limitations

-
3

i
|
i,,..
i
:

1

-

a

«

~N

% of Total Vuinersbilites Meeting Specified Limitstions
)

2008 2007 2008 2085 2004 2083

Your [Reformat Graph |

Figure 1.17. The graphical results of choosing buffer errors from the Vulnerability Category and selecting
the time period of January 2003 through March 2008

31

CWE also offers a form of trend analysis.(Christey) Because CWE is not a
vulnerability database, they only offer the statistics of CVE vulnerabilities broken down
into 41 classifications. The trend analysis is more of a statistical study which offers only
tables. A sample of the analysis is shown by Figure 1.18. The rows are ordered by the
classifications used while the columns indicate the totals from 2001 until 2006. Anyone
that uses the provided trend analysis has no concept of which vulnerabilities fall into the
classifications used in the analysis. Therefore, the user would have a hard time making
any changes to the classifications. One is also able to find the importance of a graph after

reading from the large tables as it is hard to put the tables into perspective.

Table 1: Overall Results

Rank tlaw TOIAL 2001 2002 2003 2004 2005 20006

Total 18809 1432 2138 1190 2546 4559 6944

{1] xss 13.8% [EER o5 7> (2) o07.5% (2) 10.9% (2) 16.0% (1) 18.5% (1)
2595 31 187 89 278 728 1282

{2] buf 12.6% 10.5% (1) 20.4% (1) 22.5% (1) 15.4% (1) 09.8% (3) 07.8% (4)
2361 279 436 268 392 445 541

(3] sql-inject 09.3% 03.0% (4) 05.6% (3) 12.9% (2) 13.6% (2)
1754 6 38 36 142 588 944

(4] php-indude 05.79% (IR . . i 02.1% (6) 13.1% (3)
1065 1 7 12 36 9 913

[5] dot 04.79% 08.9% (2) 05.1% (4) 02.9% (5) 04.2% (4) 04.3% (4) 04.5% (5)
888 127 110 34 106 196 315

{6] infoleak 03.4% 02.6% (9) 04.2% (S) 02.8% (6) 03.8% (S5) 03.8% (S5) 03.1% (6)
646 37 89 33 98 175 214

[7) dos-malform 02.8% 04.8% (3) 05.2% (3) 02.5% (8) 03.4% (6) 01.8% (8) 02.0% (7)
521 69 111 30 86 83 1492

[8] Wk 01.8% 04.5% (4) 02.1% (9) 03.5% (3) 02.8% (7) o1.9% (7) (GG
341 64 45 92 72 87 31

[9] format-string 01.7% 03.2% (7) 01.8% (10) 02.7% (7) 02.4% (8) 01.7% (9) 00.9% (11)
317 46 39 32 62 76 62

{10] aypt 01.5% 03.8% (5) 02.7% (6) 01.5% (9) [s> (100 00s% (13)
278 55 58 18 22 69 56

[11] priv 01.3% 02.5% (10) 02.2% (8) 01.1% (12) 01.3% (11) 01.5% (11) 00.8% (14)
299 36 46 13 33 67 54

{12]) perm 01.3% 02.7% (8) 01.8% (11) 01.3% (11) 00.9% (15) 01.1% (13) 01.1% (9)
241 39 39 15 249 48 76

Figure 1.18. A section of the CWE trend analysis

32

OSVDB has announced plans for a statistics project to for Google Summer of
Code 2008.

This project is to create a flexible framework that can provide useful statistics on
vulnerabilities from OSVDB. This project should take in consideration all of the
fields and classifications in OSVDB.

-Should create and generate standard/most popular graphs and charts each day
and make available

-Should create statistics that allows very flexible/detailed stats to be dynamically
generated on demand by user

-Some examples of statistics required:

-# Vulns based on Disclosure Year

-Detailed stats based on each vuln classification options (ALL OPTIONS)

-# of vulns by Vendor

-# of vulns by Product

-# of vulns that do not have a solution (and by vendor)

-Time from when a vuln was discovered and then disclosed

-Create stats application that allows user to dynamically generate stats based on
their own requirements.

-Trend the number of vulns released per day ("OSVDB GSoC 2008 Project
Ideas.")

Although this has not yet been implemented, it helps to illustrate the need for
vulnerability analysis. From the list of features that are provided, VACT will be able to
accomplish all tasks except for finding the time from when a vulnerability was
discovered and then disclosed and the number of vulnerabilities released per day. The
user will be able to use the options within VACT to accomplish all other trends.

Below is a summarization of the problems that were found within the

vulnerability databases.

° Each vulnerability database only allows one search at a time
° There is no way to obtain a copy of the search results
° Each of the vulnerability databases returned a different number of results

when searching for buffer overflow within the year 2006.

° US-CERT contains a truncated list of vulnerabilities

33

NVD does not follow the vulnerability classifications
OSVDB only searches through the vulnerability title
US-CERT, Secunia, and OSVDB do not offer trend analysis

NVD trend analysis is not customizable

34

Chapter 2:VACT Overview

2.1 Framework

Customizability is an important characteristic of this project which sets it apart
from other tools. One way to provide customization is to use a powerful yet simple
programming language that can allow the user to make some changes without the need to
develop a tool to for the task that is being accomplished. VACT requires no
programming knowledge to work, however the knowledge of programming allows one to
customize the tool. Another way to aid users is to provide a flexible tool that has enough
range to supply useful information to a variety of users.

The purpose of VACT is to provide a quick and easy way to search through and
analyze vulnerabilities. VACT brings together vulnerability classification, vulnerability
search, and trend analysis. In order for this to happen, the tool needs to provide a
common interface so that the user does not have to search through various vulnerability
databases for vulnerabilities. For the interface to be successful, it must be able to
accommodate the needs of many different users. To make this possible we rely on a
simple, robust front end solution.

In order to provide a solid framework, Python is the chosen programming
language. It offers a powerful yet robust object-oriented environment. VACT is set up
so that it must gather vulnerabilities from vulnerability databases and then parse through
a large amount of text. Python does especially well with string processing and Internet

retrieval.

35

2.2 Classification and Search

We found a lot of disparity within the classification schema of vulnerability
databases. Even within all the various classification options, we were not able to select
the vulnerabilities out of the databases that we wanted. We could not find a vulnerability
database that could find buffer errors within the past year that allowed privilege
elevations. Therefore, a main feature within the Vulnerability Analysis and
Classification Tool is to allow the user to specify the classifications. Our approach
allows the user to preselect all the keywords that are necessary and then perform a search.
Another feature for user convenience, which no vulnerability databases have the ability to
do is to allow the user to perform multiple vulnerability searches for comparison. Figure
2.1 shows of screenshot of Vulnerability Analysis and Classification Tool. Within the
figure, one is able to see the simplicity of the design. Section 3.2 explains the user

interface in detail.

Vulnerability Analysis and Classification Tool

- [(Add Variable

Start Date: January E'L 2008 [Z]
EadDate: | January _ [~]| 2008 [~]
@ US Cert
) National Vulnerability Database
) Open Source Vulnerabiity Database

| Add Search || Find Vulnerabilites |

Figure 2.1. A Screenshot of VACT when first initialized

36

Allowing the user to specify the classification creates a better tool than if it were
using preclassified vulnerabilities. Even though CWE has so many great features, it is
constantly changing. From December 2007 to April of 2008, CWE has gone from draft 7
to draft 9. As the drafts changed so have the various classification schemas that are used
within the drafts. The classifications given do not have all the possible vulnerabilities
listed with them, therefore, one would have to classify each vulnerability according to the
classification tree within CWE that is being used. Another limitation to using CWE is
that when a new classification is made, the classification is not instantly changed within
the table. Allowing users to search for vulnerabilities by making their own classifications
alleviates the problems stated above as the user now has the freedom to use CWE as a
reference or make up their own classifications.

2.3 Trend Analysis

After the vulnerabilities are gathered, VACT returns the results to the user in
graphical form. Figure 2.2 illustrates an example of an output page returned to a user.
The user is also given an option to download a CSV file containing the vulnerabilities
found to match the classification criteria. A simple set of statistics are also returned from
the search. The statistics include the total number of vulnerabilities, the total number of
vulnerabilities within each category, and a breakdown of which characteristics are found
within the vulnerabilities. There are currently no vulnerability databases which allow a
user to download the vulnerability search results or that retums a user trend analysis
information based upon the vulnerability search results. Section 4.1 will explain the

trend analysis functionality in farther detail.

37

Results
Analysis 1

Num of Vulnerabilties
~N®

!
00 01 02 03 04 05 06 07 08
Year

2000 2001 2002 2003 2004 2005 2008 2007 2008 total
Total 31 300 374 257 339 284 416 356 67 2404
Matching 1 62 121 58 63 66 93 113 23 601
Percent 3.2 20.7 32.4 23.0 18.6 23.2 22.4 30.9 34.3 25.0

Analysis 2

Num of Vulnerabifities

Year

2000 2001 2002 2003 2004 2005 2005 2007 2008 total
Total 31 300 374 257 339 284 416 366 67 2404
Matchingl 64 121 61 65 69 94 113 23 611
Percent 3.2 21.3 32,4237 19.2 23.2 22.6 30.9 34.3 25.4

Figure 2.2. Results page from VACT

Analysis 3

SequqEIBUINA JO WNN

00 01 02 03 04 05 06 07 08

Year

2000 2001 2002 2003 2004 2005 2006 2007 2008 total

31

300 374 257 339 284 416 368 87 2404

64
3.2 21.333.224.1 22.1 25.4 25.0 32.8 34.3 26.7

Total

75 72 102 120 23 843

62

124

Matehing 1

Percent

ISUPQTIGUINA 1O WNN

0C 01 C2 03 04 35 06 C7 02

Yex

Figure 2.2 continued

39

Chapter 3: Classification and Search

3.1 Strategy

As one has gathered from the background, two key components of Vulnerability
Analysis and Classification Tool are the classification and search feature. The
implementation of these tasks consist of three sections. The first task is gathering the
user’s vulnerability classification schema that will be searched. The next task is a behind
the scenes act of gathering the database information. The third and final task is
performing the search upon the gathered data.

Before going into detail of how the search is configured, I will first talk about the
search strategy that is being used. String search was chosen on the basis that it offers a
simple yet effe;:tive search and the vulnerability descriptions offer enough detail to make
it happen. When making this choice there were a few tradeoffs that needed to be
considered. Vulnerabilities are submitted to the various databases by various researchers
and organizations, so the wording is not always consistent between vulnerability
descriptions. Another important consideration that we take into account is that the
descriptions accurately depict the vulnerability. Before someone submits a vulnerability
and offers a description, they must have enough knowledge of the situation to know
where the error is occurring. Therefore, we argue that if one has enough knowledge to
find and submit a vulnerability, then the person is able to accurately describe where the

application is failing.

40

3.2 User Interface

Vulnerability Analysis and Classification Tool uses a web-based interface to
interact with the user. It is composed of an html form which relies on JavaScript to help
add words and new search boxes. As seen in figure 3.1, the user interface allows for the
user to input classification variables for a search, add another search, and submit the
search queries. For any individual search, the user is allowed to specify the vulnerability
database, the time frame to search, and any classification words or phrases that should be
used within the search. To add a word or phrase, the user must input it into the associated
textbox and select Add Word. The Add Word button calls a JavaScript function which
adds the word or phrase into the html form. Finally the user is allowed to submit the
search. Clicking the Submit button sends the associated form of search variables to the

python search and analysis code.

Vulnerability Analysis and Classification Tool

~ [Addvariable]

Start Date: ' January [+] 2008 [+]
EndDate: January [~]] 2008 [~]

@ US Cert

' National Vulnerability Database

"> Open Source Vulnerability Database

[Add Search | | Find Vulnerabilities |

Figure 3.1 A screenshot of VACT when first initialized

41

3.3 Functionality

Upon reception of the search form, the database variables must be obtained.
There are two main methods to obtain the vulnerability information from the
vulnerability databases are crawling through the web site to gather the information that is
necessary and downloading a premade file meant for download. Crawling through the
site is necessary as some sites do not allow one to download the information that is
available. Once the vulnerabilities are downloaded, no matter what the source, they are
put into a Python dictionary. The dictionary uses the vulnerability name followed by the
date as a key and a tuple containing the vulnerability description as a set paired with the
date for the value.

The search function accepts the dictionary of vulnerabilities as well as the list of
the classification words. The function loops through each vulnerability checking for each
classification term in the list. If the classification is not found within the vulnerability
description, then it is removed from the dictionary of vulnerabilies. Once the search has
completed, we send the results to the trend analysis.

3.4 Efficiency

The runtime of VACT is dominated by the amount of data that must be
downloaded. To illustrate the runtime of the search function, several test scenarios have
been setup. The first test set uses the US-CERT vulnerabilities, which is composed of
nearly 2,400 vulnerabilities. The vulnerabilities must be downloaded using the web
crawler method. The second test set contains the 2007 NVD vulnerabilities which
contains over 6,000 vulnerabilities. The third test set contains the NVD vulnerabilities

from 2003-2007. The third test set contains over 22,000 vulnerabilities.

42

Downloading the first set of vulnerabilities, took an average time to be close to 1
minute and 30 seconds. While downloading the second set, from NVD took an average
of 1 minute and 45 seconds. The third set took the longest at 5 minutes to download.
Therefore, we recommend a preconfigured download if at all possible. The composition
of the dictionary from each set of vulnerabilities took an average of one second to fill.
Using the same vulnerabilities within the setup above, tests were run to see how long it
would take to return the search results after the vulnerabilities are gathered. In the test,
various trials were done by varying the classifications from 1-6 words and the number of
searches from 1-6 searches. For example, one test contained four searches consisting of
(buffer and overflow), (buffer), (overflow), and (exception, microsoft, the, a, and, .dll).
The search for the example just like all other searches returned the results of all searches
within two seconds for each trial set of vulnerabilities. Another test was run on the third
set to make sure that there would be no problems searching the data. The third set was
set to run with twelve search words. The search was returned within one second.

3.5 Naive Bayesian Classification

String search is a fast and efficient way to match key words, yet there is a
limitation to the string search. There are some vulnerability classifications which cannot
be summarized within a reasonable amount of key words. To help with any such cases,
Vulnerability Analysis and Classification Tool includes a generic naive Bayesian
approach. Naive Bayesian is a classification algorithm that uses the probability of
occurrence to classify an attribute. The naive Bayesian classification will take a csv that
is returned from the string search as an input. The descriptions of each classification are

combined into a dictionary with the words as the key and the number of occurances as the

43

value. Once the dictionary is filled, the common words are stripped out. The Algorithm
is now ready to find words that only occur once and only in one class. When a single
word is found, it is tagged as unknown. The unknown words are added together as a
special case that will handle words that do not belong into each class. We now have the
words all sorted and categorized according to classification, the next step is to compute
the probabilities of each class. P(c) is computed for each class by taking the number of
occurrences of each class and dividing it by the sum of class occurrences. P(word | ¢) is
computed for each word within the class by taking the occurrence of the word and
dividing it by the total words in each class. Now that the probability of a classification
and probability of a word within a classification are computed, the algorithm is ready to
classify vulnerabilities. Figure 3.2 shows pseudo code used to compute the probability of
a vulnerability description belongs to a classification. After computing the probability of
each classification, the best one is returned and the vulnerability is associated within that

classification.

For each class:

Pclass = P(c)

For words in sentence:
Pclass = Pclass * P(word |)

Figure 3.2. Psuedo code showing how a vulnerability’s probability is computed according to the naive
Bayesian classification

Naive Bayesian classification is offered as a classification aide to help enhance
the string search. Naive Bayesian, as any other approaches, has its limitations. The
largest limitation is that it is confined to the classifications that are given to the algorithm.
If only two classifactions are given, any vulnerability must fall into one of the two
possible classifications. When running the algorithm after computing the probabilities of

44

the classifications, the user may find that the probability of a vulnerability does not fall
into its original classification. Despite the limitations to naive Bayesian classification, it

presents users a way to search find new words and vulnerability classifications.

45

Chapter 4: Trend Analysis

4.1 Evaluation of Features

The second key element within the thesis is the trend analysis as there is currently
no implementation which encompasses the user’s search results. The trends given are
simple and efficient. They help to give the user a basic overview of how the
classification schema presented fits in with the vulnerabilities. The trend analysis works
by processing the results that are returned by the search and turning them into graphs,
statistics, and a CSV file.

The results page for searching US-CERT for buffer overflow, buffer and overflow
for the years 2000-2008 can be seen in Figure 4.1. Accompanying each search is a graph
with the number of matching vulnerabilities. The matching vulnerabilities are the
vulnerabilities that match the classification as defined within the search. The table
associated with the graph shows the total number of vulnerabilities found per year, the
number of matching vulnerabilities found per year, and the percent of vulnerabilities
which are matching per year. If a user clicks on the words Analysis, then a CSV
containing the matching vulnerabilities will become available. For example, the CSV for
Analysis 1 would contain 601 entries. The CSV file contains the identification number of
the vulnerability within the database searched, the date the vulnerability was published,

and the description of the vulnerability.

46

Results
Analysis 1

Num of Vulnerabiities

“nwbse

[Wbutier ovediow
00 01 02 03 04 05 06 07 08
Year

2000 2001 2002 2003 2004 2005 2005 2007 2008 total
Total 31 300 374 257 339 284 416 356 67 2404
Matching 1 62 121 5¢ 63 66 93 113 23 601
Percent 3.2 20.7 32.4 23.0 18.6 23.2 22.4 30.9 34.3 25.0

Analysis 2

=3

“NWANDNDOO =@

Num of Vulnerabifties

00 01 02 03 04 05 06 07 08
Year

2000 2001 2002 2003 2004 2005 2004 2007 2008 total
Total 31 300 374 257 339 284 416 356 67 2404
Matchingl 64 121 61 65 69 94 113 23 611
Percont 3.2 21.3 32,4 23.7 19.2 23.2 22.5 30.9 34.3 25.4

Figure 4.1. Results page from VACT

47

Analysis 3

13
1
gn
X1
E
A
F A
2% AnAn
S 4 U dHH
iR
27 ARA N E
a0 -0 208878
00 01 03 04 05 06 07 08
Year

2000 2001 2002 2003 2004 2005 2006 2007 2008 total
Total 31 300 374 257 338 284 416 368 87 2404
Matehing 1 64 124 62 75 72 102 120 23 643
Percent 3.2 21.3 33.2 24.1 22.1 25.4 25.0 32.8 34.3 26.7

Figure 4.1 continued

The graphs are computed with the aid of PyChart. (Saito) PyChart is a graphing
utility written by Yasushi Saito. VACT contains a function linking the search results to

the graphing utility. Once the images are created, they are displayed within the results

48

page. Referring back to Figure 4.1, one can see that the graphs given are a breakdown of
the vulnerabilities over time. The bar chart plots are returned per vulnerability
classification searched one in terms of years. The results from each search are also put
into a large bar chart.

The CSV file is made by writing the categories used within the search to file. The
basic format includes vulnerability id, vulnerability date, and vulnerability description.
Because the dictionary contains the key of vulnerability name, vulnerability date with the
value of the vulnerability description, it only takes one loop through each of the values to
create the CSV. While looping through to create the CSV, the vulnerabilities are counted
by their associated year. Therefore creating the graphs becomes easy as counting the
values contained within each list. The set of statistics returned includes the breakdown of
vulnerabilities per year as well as the total vulnerabilities found.

4.2 Efficiency

In the last chapter, we found that VACT is limited by the time it takes to
download the vulnerability lists from each database being searched. Even with the
download time being the dominate factor, we would like the trend analysis to be efficient
like the searching. To perform the trend analysis test setup, the same sets of
vulnerabilities are being used that were used within the search (USCERT vulnerabilities,
NVD 2007 vulnerabilities, and NVD 2003-2007 vulnerabilities). Each set of
vulnerabilities was used as a result set that was passed to the trend analysis. Generating
the statistics and writing to the CSV file, took less than 20 seconds. Creating graphs for

each of the sets took an average time of 5 seconds.

49

Chapter 5: Real World Example

5.1 Problem

Every now and again there is an article stating which operating system provides
the best security. Many times the writer of the article bases the fact on the number of
possible vulnerabilities that exist within the various operating systems. At one point, the
author based the security on how fast that vulnerabilities have been patched. One is able
to use Vulnerability Analysis and Classification Tool to verify that the user is giving
accurate results.

5.2 Results

When searching for the results I was faced with some interesting problems.
Should the results come from US CERT because they deal only with severe
vulnerabilities, NVD because they offer all CVE vulnerabilities or OSVDB because it
offers the most vulnerabilities. To show the flexibility and Why authors might report
various results, I decided to compute the results from each database. Another problem
comes within the classification that was used to find the resulting set of vulnerabilities.
The set of vulnerability classifications that were decided upon is illustrated within Tables
5.1 and 5.2. Both tables provide a summary for the results obtained using VACT. Table
5.1 is specific to the Microsoft classifications that are used while Table 2 is specific to the
Apple search classifications that are used.

Figures 5.1-5.18 display the results returned by VACT. The data obtained from
VACT illustrates a vast difference not only with the databases, but also within the
classification that is used for the search. There is currently no quick and easy way to

achieve the same results within the individual vulnerability databases. Within each

50

vulnerability database, the search would need to be run a minimum of 13 different times
using the various classifications indicated within Tables 5.1 and 5.2. After each search,
the user would need to record the results returned to gather the statistics. The individual
would then need to compute the trends. Even after going through this process, the user
would not have lists of vulnerabilities found by each classification.

When viewing Table 5.1, one will find that Microsoft classifies 474
vulnerabilities within US-CERT, 852 Vulnerabilities within NVD and 771 vulnerabilities
within OSVDB. One will also find this variance throughout the search results. To gain
an accurate scope of the vulnerabilities, one would need to look through the CSV files to
find the discrepancies within the vulnerabilities returned to obtain an overall count of

vulnerabilities for both Microsoft and Apple.

51

NVD

Search String Results Percent of Total VACT Figure

Microsoft 1116 4.08 5.8
microsoft, windows 432 1.58 5.8
microsoft, windows, xp 260 0.95 5.9
microsoft, windows, vista 46 0.17 5.9
microsoft, xp 552 2.02 5.10
microsoft, vista 46 0.17 5.10
windows xp 399 1.46 5.11
windows vista 55 0.20 5.11
Xp 1887 6.90 5.12
Vista 67 0.25 5.12

US-CERT

Search String Results Percent of Total VACT Figure

Microsoft 422 19.19 5.1
microsoft, windows 131 5.96 5.1
microsoft, windows, xp 32 1.46 5.2
microsoft, windows, vista 2 0.09 5.2
microsoft, xp 131 5.96 5.3
microsoft, vista 2 0.09 5.3
windows xp 40 1.82 5.4
windows vista 6 0.27 5.4
Xp 319 17.74 5.5
Vista 6 0.27 5.5

osvDB

Search String Results Percent of Total VACT Figure

Microsoft 1128 271 5.15
microsoft, windows 376 0.90 5.15
microsoft, windows, xp 167 0.40 5.16
microsoft, windows, vista 40 0.10 5.16
microsoft, xp 490 1.18 5.17
microsoft, vista 40 0.10 5.17
windows xp 276 0.66 5.18
windows vista 51 0.12 5.18
Xp 2079 5.00 5.19
Vista 72 0.17 5.19

Table 5.1. Summary of results and classifications from VACT pertaining to Microsoft

52

NVD
Search String Results Percent of Total VACT Figure

Apple 524 1.92 5.13
mac os x 442 2.62 5.13
apple, mac os x 264 .97 5.14
US-CERT
Search String Results Percent of Total VACT Figure
Apple 139 6.32 5.6
mac os x 64 291 5.6
apple, mac os x 54 2.46 5.7
osvDB
Search String Results Percent of Total VACT Figure
Apple 351 0.84 5.20
mac os x 477 1.15 5.20
apple, mac os x 102 0.25 5.21

Table 5.2. Summary of results and classification from VACT pertaining to Apple

53

Results
Analysis 1

80.01
& 70.0]
60.0M
8 50.0-1
S 40.0]
‘g 30.0-1

20.0
i 10.0]

o

00 01 02 03 04 OS5 06 07 OB
Year

rabdi

2009 2001 2002 2003 2004 2005 2008 2007 2008 total

Total 31 249 385 197 339 254 326 383 72 2199
Matching 5 31 62 47 64 54 88 6] 10 422
Percent 16.1312.4518.¢0 23.88 18.8821.26 23,00 14.4713.88 19,19

Analysls 2
'gzoo-
3
5
2 10,01
2
o [@ microsolt windows |
00 01 02 03 04 08 08 07 08
Vew

2060 2001 2002 2503 2004 2005 20C3 2007 20C8 total

Total 3] 249 355 197 339 254 326 358 722199
Matching O 13 10 18 26 1B 19 26 1 131
Percent 0.00 5.22 2.74 9.14 7.67 7.08 $.63 7.10 1.3 5.6

Figure 5.1. VACT results searching for Microsoft and Microsoft windows within US-CERT

54

Analysis 3

8.0-
$ 707
3 6.0
€ 5.0
; 4.0
3 30

20

1.0

ﬂl%‘a [B microseR windows xp |
06 07 08

2000 2001 2002 2003 2004 2005 2008 2007 2008 total

Total 31 249 365 197 339 254 3265 366 722199
Matching 0 2 6 6 8 5 3 i 1 32
Percent 0.00 0.80 1.64 3.05 2.35 1.97 0.92 0.27 1.39 1.46

Analynis 4

g

Num of Vulne rabifties
9

[@ micresot wedows vista |

T T T T 1
00 01 CQ 03)4 05 0¢ 07 08
You

2000 2001 2002 2003 2004 2005 2005 2007 2008 total

Total 31 249 385 197 339 254 328 388 722199
Matchmg © O O© O © © O 2 0 2
Percent 0,00 0,00 0.00 0.00 0.00 0.00 0.00 0.55 0.00 0.09

Figure 5.2. VACT results searching for Microsoft windows xp and Microsoft windows vista within US-
CERT

55

Analysis 5

: i
2 20.0 i
[
% H
5
< 10.0-
GUUI T'UQIDm’crosoﬁxp]
00 01 02 03 04 05 06 07 08

Yeur

2000 2001 2002 2003 2004 2005 2005 2007 2008 total

Total 31 249 385 167 339 254 328 368 722196
Matching 5 6 26 20 28 16 22 6 2 131
Percent 16.13 2.41 7,1210.15 8.28 6.30 6.75 1.64 2.78 5.96

Analyais 6

)

n
-]
]

Num of Vuinerabities
P
1

{ 3 microsoft vista |

(-]

T T 1 T T 71 T
00 01 02 03 04 05 06 07 08
Year

2000 2001 2002 2003 2004 2005 2008 2007 2008 total

Total 31 249 365 197 3390 254 326 386 722196
Matcchmg ©0 0 O O© ¢ o O 2 O 2
Percent 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0.55 0.00 0.0¢

Figure 5.3. VACT results searching for Microsoft xp and Microsoft vista within US-CERT

56

Analysis 7

2

Num of Vulnenabilties

[B windows xp |

00 01 0203 04 05 08 07 08
Year

2000 2001 2002 2003 2004 2005 2006 2007 2008 total

Total 31 249 365 197 339 254 326 366 722199
Matching 0 4 7 8 12 5 4 1 1 &0
Percent 0.00 .81 1.92 3.05 3,54 1,97 1.23 0.27 1.39 1.82

Analysis 8

3

>
b

= N W
T 393

Num of Vuinerabilities

[@ windows wista |

Q

1 17T 1T T 1T 7
00 01 02 03 04 03 08 07 08

Year

2000 2001 2002 2003 2004 2005 200€ 2007 2008 total
Total 31 249 385 197 339 254 326 366 722189

Matching o 0 o o O© 0 o S 1 6
Percent 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.37 1.39 0.27

Figure 5.4. VACT results searching for windows xp and windows vista within US-CERT

57

Analynis 9

8
1

Num of Yulnera

o-

00 01 02 03 04 05 06 07 08
Year

2000 2001 2002 2003 2004 2005 2006 2CO07 2008 total

Total 31 249 355 187 339 254 326 355 T2 219
Matching 10 35 112 %4 72 27 3% 31 9 390
Percent 32.2614.4530.68 27.41 21.2410.6311.96 8.4712.5017.74

Analysis 10

8.0

-
.

Num of Vulnerabiltes
T 39

o

T T 1T 1 T T 1T

00 01 02 03 04 05 08 07 O8
Year

2000 2001 2002 2C03 2004 2005 2008 2007 20408 total

Total 31 249 365 197 339 254 328 356 722199

Matching 0 0 0 0 0 0 0 5 1 8
Percent 0.CO 0.00 0.00 0.00 0.00 0.0C Q.00 1.37 1.35 0.27

Figure 5.5. VACT results searching for xp and vista within US-CERT

58

Analysis 11

Num ot Vuinerabdities
- N W &
© o o o
T3 33 %

73 apple

00 01 02 03 04 03 08 07 08
Year

2000 2001 2002 2003 2004 2005 2006 2007 2008 total

Total 31 249 385 197 339 254 326 388 722199
Matching 1 1 3 6 12 21 42 48 5 139
Percent 3.23 0.40 0.82 3.05 3.54 8.2712.8813.11 6.94 8.32

Analysis 12

;g 20.0

B

e

i

S 0.0

k]

3

o
00 01 02 03 04 05 08 07 08
Yeoor

2000 2001 2002 2003 2004 2005 2005 2007 2008 total

Total 31 249 3I55 197 339 254 328 355 722199
Matching O 1 2 0 11 6 21 11 2 64
Percent 0.00 0.40 0.55 .00 3.24 6.30 6.44 3.01 2.78 2.91

Figure 5.6. VACT results searching for apple and mac os x within US-CERT

59

Analysis 13

8
N

Numn of Vuinerabeities
°
N

0~ | G apple mac os x |
00 01 C2 02 04 05 08 07 08
Year
2000 2001 2002 2003 2004 2005 2005 2007 2008 total
Total 31 249 IS5 197 339 254 326 3868 722199

Matchang ©¢ O O 0 7 15 20 10 2 354
Percent 0.00 0.00 0.00 0.00 2,08 5.81 6.13 2.73 2,78 2.48

Figure 5.7. VACT results searching for apple mac os x within US-CERT

60

Analysis 1

8
3

Num of Vulnerabdties

o
00 01 02 03 04 05 06 07 08
Year
2000 2001 2002 2003 2004 2005 2006 2007 2008 total
Total 1020 1679 2170 1541 2478 5007 3555 656 196 27342

Matching 60 78 172 &1 92 126 285 287 7 1116
Percent 5.88 4.53 7.93 3.96 3.71 2.52 3.98 3.90 3.57 4.08

Analysils 2

g
3

Num of Vidnarabilities

| 8 microsol windows |
00 01 02 03 04 05 0€ 07 08
Yeur

2000 2001 2002 2003 2004 2005 2003 2007 2008 total

Total 1020 1679 2170 1541 2478 S007 6655 85965 186 27342
Matching 17 22 45 19 44 59 102 120 4 432
Percent 1.67 1.31 2.07 1.23 1.78 1.18 1.53 1.82 2.04 1.58

Figure 5.8. VACT results searching for Microsoft and Microsoft windows within NVD

61

Analysis 3

80.0
l°70.0"* 4

$0.07 1
gao.o- 7
3 3007 147

20.0 : 2

= Ll

oAnn bl s 'll!ﬁanosonmlonuo]
00 01 02 03 04)SOE C7 08
Yeu

2000 2001 2002 2003 2004 2005 2006 2007 2008 total

Total 1020 1679 2170 1541 2478 5007 8655 6596 186 27342
Matching 3 3 2¢ 9 33 33 80 N 4 260
Percent 0.29 0.18 1.11 0.58 1.33 0.66 1.20 1.08 2.04 0.95

Analysis 4

g 5
b S

Nurn of Vulr weabiblies
a
o
1

g
T 8

| @ microsol windons vista
00 01 02 03 04 (5 08 07 02

2000 2001 2002 2003 2004 2005 2003 2007 2008 total

Total 1020 1679 2170 1541 2478 5007 6555 6596 195 27342
Matcang 0 O O O 0 O 1 43 2 48
Percent 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.65 1.02 0.17

Figure 5.9. VACT results searching for Microsoft windows xp and Microsoft windows vista within NVD

62

Analysis 5

Num of Vulnerabiites
8
N

pU UL o (O)
00 01 02 03 04 05 06 07 08

Yoeur

Q

2000 2001 2002 2003 2004 2005 2006 2007 2008 total

Total 1020 1679 2170 1541 2478 5007 8555 6596 195 27342
Matching 14 21 74 21 S4 81 183 140 4 552
Percent 1.37 1,25 3.4]1 1,36 2,18 1,22 2.45 2,12 2.04 2.02

Analysis 6
40.0- \
: s
\
. A
5 30.07] §
\
S 2007 \
kd N
Ewr §
N
\ , .
=\ B\ L
011111Tr"r[g"mm“m]
00 01 02 03 04 05 08 07 08

Year

2000 2001 2002 2003 2004 2005 2006 2007 2008 total

Total 1020 1679 2170 1541 2478 S007 6655 6506 196 27342
Matchmg O © 0 O 0 0 1 &8 2 46
Percent 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.65 1.02 0.17

Figure 5.10. VACT results searching for Microsoft xp and Microsoft vista within NVD

63

Analysis 7

Num of Vuinarabifties
58882338828

{3 windows xp |

00 01 02 03 04 0S 06 07 08
Year

2000 2001 2002 2003 2004 2005 2008 2007 2008 total

Total 1020 1678 2170 1541 2478 S007 6555 6506 196 27342
Matching S 20 38 7 57 S9 95 93 5 39N
Percent 0.4% 1,19 1,75 1.75 2,30 1.18 1.43 1.41 2.55 1.45

Analysis 8
50.0

£ 00

8

2 30.0

3

>

3 20.07

§ 10.07

T —r—T [@ windows vista |
00 0° 02 03 04 05 08 07 08

Year

2000 2C01 2002 2003 2004 2005 2008 2007 2008 total

Total 1020 1679 2170 1541 2478 5007 6855 6598 165 27342
Matching (o] 0 o) 0 0 1 1 81 2 55
Percent 0.CO 0.00 0.00 0.00 0.00 0.02 0.02 0.77 1.02 0.20

Figure 5.11. VACT results searching for windows xp and windows vista within NVD

64

Analysis 9

g 8 8 8
9.9 9 3 3

Num of Vulnerabifties
8

00 01 02 03 04 03 08 07 08
Year

2000 2001 2002 2003 2004 2005 2008 2007 2008 total

Total 1020 1678 2170 1 541 2478 5007 3855 8586 1643 27342
Matching 50 6% 18 120 192 320 431 463 20 1887
Percent 4.90 5.66 9.03 7.79 7.75 6.39 6.48 7.0210.20 6.%

Analysis 10

50.0-
[
K
& 40.07]
% 30.07
-5 20.0
§ 10.0]

ot (W vista]
00 01 02 4 0% 06 07 08
Year

2000 200t 2002 2003 2004 2005 2006 2007 2008 total

Total 1020 1679 2170 1541 2478 5007 6455 6506 196 27342
Matchmg O © O O O 2 10 53 2 @67
Percent 0.00 0.00 0.00 0.00 0.00 0.04 0.15 0.80 1.02 0.25

Figure 5.12. VACT results searching for xp and vista within NVD

65

Analysis 11

w 200.0™
£
3
¢
2
3 100.0-
-
:
-

00 010203040508 07 08
Year

2000 2001 2002 2003 2004 2005 20068 2007 2008 total

Total 1020 1679 2170 1541 2478 5007 6655 6506 196 27342
Matching 8 10 30 27 32 €8 126 222 1 524
Percent 0.78 0.60 1.38 1.75 1.20 1.33 1.89 3.37 0.51 1.92

Analysis 12

100.0
o-‘»ﬂ.ﬁﬂ

00 01 02 03 04 05 08 07 08
Year

Num of Vulnerabilties

2000 2001 2002 2003 2004 2005 2008 2007 2008 total

Total 1020 1679 2170 1541 2478 5007 6555 6596 156 27342
Marching 0 4 8 19 350 113 108 140 O 442
Percent 0.00 0.24 0.37 1.23 2.02 2.26 1.62 2.12 0.00 1.62

Figure 5.13. VACT results searching for apple and mac os x within NVD

66

Analysis 13

£
2 120 01
c
£
S
T
£
2
o 7] appe mac oS X

00 01 02 03 04 05 0¢ 07 08

2000 2001 2002 2003 2004 2005 2006 2007 2008 total

Total 1020 1679 2170 1541 2478 S007 8855 6566 196 27342
Matching o o 1 3 16 29 84 131 0 264
Percent 0.00 0.00 0.05 0.19 0.65 0.58 1.28 1.99 0.00 0.97

Figure 5.14. VACT results searching for apple mac os x within NVD

67

Analysis 1

g
(T

Num of Vuine rabifties
8
T

B microsoft

?

00 01 02 03 04 05 08 07 08
Yeoar

2000 2001 2002 2003 2004 2005 2008 2007 2008 total

Total 1360 1675 2320 2739 4773 7467 10547 8342 2357 41580
Matching 90 77 180 86 125 102 222 183 40 1128
Percent 6.62 4.60 8,19 3.61 2,62 1.37 210 2.19 1.70 2.71

Analysis 2

$0.0M
a 80.0

3 €0.0-

2 50,01

5

> 40.0

S 30.01
20.0

10.07]
[@ microsoft windows |
00 01 G2 03 04 05 08 07 08
Year

2000 2001 2002 2003 2004 2005 2006 2007 2008 total

Total 1 360 1675 2320 2739 4773 7467 10547 8342 2357 41580
Matching 24 17 44 27 49 46 71 90 8 376
Percent 1.78 1.01 1.0 0.99 1.03 0.82 0.67 1.08 0.3¢4 0.%0

Figure 5.15. VACT results searching for Microsoft and Microsoft windows within OSVDB

68

Analysis 3

$0.0
Lo _
gso.o—
2 20.07]
°
§|0.0“ B
U?F']IEIJ :'QWMWM$tOI
00 01 02 03 04)5 O¢ C7 08

2000 2001 2002 2003 2004 2005 2008 2007 2008 total

Total 1350 1675 2320 2739 4773 7467 10547 8342 2357 41580
Matching 2 4 28 6 16 14 S0 42 S5 1&7
Percent 0.15 0.24 1.21 0.22 0.34 0.19 0.47 0.50 0.21 .40

Analysls 4
X071
i
3
3 2007
3
>
2 1007
3
2
o { B microsoR windows vista |

T LB
00 01 02 03 04 05 06 07 08

Year

2000 2001 2002 2003 2004 2005 2006 2007 2008 total

Total 1350 1675 2320 2739 4773 7457 10547 8342 2357 41580
Matchmg @ O ©0 O O O 1 33 §8 40
Percent 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.40 0.25 0.10

Figure 5.16. VACT results searching for Microsoft windows xp and Microsoft windows vista within
OSVDB

69

Analysis 5

¥ 100.0- _
2 .
¢
:
k]
Pl
T T T T l'[Dmiaosoﬁpr
00 01 02 03 04 05 08 07 08
¥

1
Yo
2000 2001 2002 2003 2004 2005 2005 2007 2008 total

Total 1360 1675 2320 2739 4773 7467 10547 8342 2357 41580

Matching 18 22 94 45 49 35 123 86 18 490
Percent 1.32 1.31 4.051.641.03 047 1.171.030.76 1.18

Analysis 6

8
bt

Num of Vulneratstties
° 3
N bt

TTTTTT*
00 01 020304 05
Year
2000 2001 2002 2003 2004 2005 2008 2007 2008 total
Total 1350 1675 2320 2739 4773 7457 10547 8342 2357 41580

Makkhing 0 O ¢ O O O 1 33 & 40
Percent 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.40 0.25 0.10

A g [B microeot vista |
07 08

Figure 5.17. VACT results searching for Microsoft xp and Microsoft vista within OSVDB

70

Analysis 7

[@ windows xp]
00 01 02 03 04 05 08 07 08
Year
2000 2001 2002 2003 2004 2005 2005 2007 2008 total
Total 1360 1675 2320 2739 4773 7467 1 0547 8342 2357 41580

Matching 4 14 I}V 17 28 33 64 70 12 278
Percent 0.2% 0.84 1.42 0.62 0.61 0.44 0.61 0.84 0.51 0.56

Analysis 8

40.0-

30.0

10.0-

Num of Vuinerabilties
-
Nt

(=]

2000 2001 2002 2003 2004 2005 2005 2007 2008 total

Total 1380 1875 2320 2739 4773 7487 10547 8342 2357 41580
Matching 0o 0 o 6 o0 o 1 42 8 51
Percent 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.50 0.34 0.12

Figure 5.18. VACT results searching for windows xp and windows vista within OSVDB

71

Analysis 9

Num of Vulnerabilities
g 2 8§ 8
2999 9 3

00 01 02 03 04 05 08 07 06
Year

2C00 2001 2002 2003 2004 2005 2008 2007 2008 total

Total 1350 1675 2320 2739 4773 7467 10547 8342 2357 41580
Matching 75 B3 193 164 287 278 465 432 102 2079
Percent 5.51 4.96 8.32 5.89 6.01 3.72 4.41 5.18 433 5.00

Analysis 10

40.0™

Num of Vuinerabiities

L A S A RREEE | -l:m
00 01 02 03 04 05 08 07 08

Year

2000 2001 2002 2003 2004 2005 2006 2007 2008 total

Total 1360 1875 2320 2739 4773 7487 10547 8342 2357 41580
Matching 0 (o} 0 0 0 1 16 44 11 72
Percent 0.00 0.00 0,00 0.00 0.00 0.01 0.15 0.53 0.47 0.17

Figure 5.19. VACT results searching for xp and vista within OSVDB

72

Analysis 11

g
3

Num of Vuinerabdities

o 7 _apple
00 01 02 03 04 05 06 07 08
Yaar

2000 2001 2002 2003 2004 2005 2006 2007 2008 total

Total 1330 1675 2320 2739 4773 7467 10547 8342 2357 41580
Matchung 10 S 21 18 24 2 50 121 83 351
Percent 0.74 0.30 0.9] 0.58 0.50 0.28 0.47 1.45 3.52 0.84

Analysis 12

\
g N\
. \
= Y &Y
glO0.0‘ N NN
N N B
-g Y &) A
> Y L) A
‘BEEVE\
3 \B-EVE\I
g \B\B\EB\B\
Z \E\B\B\B"
. NNNNN
00 01 02 03 04 05 08 07 08
Year

2000 2001 2002 2003 2004 2005 2006 2007 2008 total

Total 1350 1679 2320 2739 4773 7467 10547 8342 2357 41560
Matching 0 8 5 27 48 105 108 139 37 477
Percent 0.00 0.48 0,22 0.9% 1.01 1.4) 1.02 1.87 1.57 1.15

Figure 5.20. VACT results searching for apple and mac os x within OSVDB

73

Analysia 13
; 40.0
E 30.077
5 20.0
]
5 10.07

o { B appie mac os x |
00 01 C2 02 04 0S 08 07 08
Year

2000 2001 2002 2003 2004 2005 2006 2007 2008 total

Total 135018786 2320 273¢ 4773 7437 10547 8342 2357 41560
Matching 0 0 0 Py 3 7 13 42 3% 102
Parcent 0.C0 0.00 0.00 0.07 0.06 0.0% 0.12 0.50 1.48 0.25

Figure 5.21. VACT results searching for apple mac os x within OSVDB

74

Chapter 6: Conclusion

Vulnerability Analysis and Classification Tool offers a unique way to find basic
statistics on sets of vulnerabilities. There is currently no vulnerability database that is
able to provide the statistical results on a user’s vulnerability classification schema. By
providing a customizable schema and basic framework, it can suit the needs of various
users. The tool also saves the user disc space by downloading the needed vulnerabilities
at each run. The tradeoff to downloading the necessary vulnerabilities comes as the

download time is the constraint of the tools runtime.

75

APPENDICES

76

Setting up VACT

The steps listed below will help setup VACT.

1. Obtain a copy of Python. VACT was tested and run using Python 2.5.

2. Obtain a copy of Mod Python. Instructions for the setup and installation of Mod
Python can be obtained at www.modpython.org.

3. Create a csv folder within the web directory. Give the folder
APACHE_RUN_USER and APACHE_RUN_GROUP permissions. | found both to be
www-data.

4. Download and install Pychart (Saito)

5. Copy files into web directory.

77

VACT Code

initial.py

HHHEHE
#Call init to print out the initial user page for VACT
#Be sure to have the javascript.js file within the same directory
HHHHRE
def init():

text =
<!'DOCTYPE himl PUBLIC "-//W3C//DTD XHTML 1.0 Transitional/EN"
"http://www.w3.org/TR/xhtml 1/DTD/xhtml 1 -transitional .dtd">
<html xmlns="http://www.w3.0rg/1999/xhtm]">
<head>
<script language="javascript" src="javascript.js" type="text/javascript"></script>
<script language="javascript" src="contentloader.js" type="text/javascript"></script>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>Vulnerability Search Tool</title>
</head>

nwon

<body onload="addSearch()">

<h3 align="center">Vulnerability Analysis and Classification Tool</h3>
<div style="width:330px; margin-left:auto; margin-right:auto;">

<form action="vact_ui.py/process” method="POST">

<div id="mainDiv" style="padding:10px; width:330px; text-align:left">
</div>

<input style="margin-left:20px" type="button" name="addSearch" value="Add Search”
onclick="mSearch()" />

<input type="hidden" value="-1" name="numSearch" id="numSearch" />
<input type="submit" value="Find Vulnerabilities" />

</form>

</div>

</body>

</html>

78

javascript.js

/*#**********

mSearch is called initially when the webpage is first loaded.
The purpose is to call addSearch.
************/
function mSearch() {
addSearch();
}

/*************

addSearch is called to add another Scarch setup to the webpage
t*t****#*****/
function addSearch() {
//nitail calls to establish where to add search and which search elements to add
var div = document.getElementByld('mainDiv');
var ser = document.getElementByld('numSearch’);
var num = (document.getElementByld('numSearch’).value -1) + 2;
ser.value = num;

//Create the new search

var newdiv = document.createElement('div');
var dividName = 'searchDiv'+num;
newdiv.setAttribute('id’.dividName);
newdiv.innerHTML = makeDiv(num);
div.appendChild(newdiv);

minput = document.createElement('input’);
name = "wbcount"+num;
minput.setAttribute('name’,name);
minput.setAttribute('id',;name);
minput.setAttribute(‘type’,'hidden’);
minput.setAttribute('value',0);
div.appendChild(minput);

}

/****#*****t*

addWord will add the users input into the search form
*********t**/
function addWord(num)({
var id = document.getElementByld(‘'searchWords'+num);
var text = document.getElementsByName('wb'+num)([0];
var hidden = document.getElementByld('wbcount'+num);
if (text.value '="){
minput = document.createElement(‘input’);
name = 'wb' + num +"var"+hidden.value;
minput.setAttribute('name’,name);
minput.setAttribute(‘type','hidden’);
minput.setAttribute('value',text.value);
id.appendChild(minput);
id.innerHTML += text.value + '
';
text.value =",
hidden.value = Number(hidden.value) + 1;

}

return false:

79

}

/***************

makeDiv is called by addSearch. MakeDiv is responsible for creating the year and database content.
makeDiv takes a number as input to create the search for the associated number
#**********/
function makeDiv(num){
var text;
text = '<input type="text" name="wb' + num + ' /> :<input type="button" value="Add
Variable" onclick="return addWord(' + num +)" />\n
<div id="searchWords' + num + ""></div>

var month = new
Array("January","February”,"March"," April","May","June","July"," August","September","October","Nove
mber”,"December");
text += "Start Date: <select name='sdmonth" + num + "'>";
for (m in month){
n = parselnt(m) + 1
text += '<option value="'+ n + '">' + month[m] + '</option>\n";
)
text += "</select><select name="sdyear” + num + ">";
var startyear = 2008;
var endyear = 1998;
for (var i = startyear;i>=endyear;i--){
text += '<option value=""+ String(i) + "> + String(i) + '</option>\n’;
}

text += "</select>
";
text += "End Date: <select name='edmonth” + num + "*>";
for (m in month){

n = parselnt(m) + 1

text += '<option value="'+ n + ">' + month[m] + '</option>\n";
}
text += "</select><select name="'edyear” + num +
var startyear = 2008;
var endyear = 1998;
for (var i = startyear;i>=endyear;i--){

text += '<option value=""+ String(i) + "">' + String(i) + '</option>\n";

>

}

text += "</select>
";
var sources = new Array("US Cert", "National Vulnerability Database”, "Open Source
Vulnerability Database");
for (s in sources){
if (s == 0){
text += '<input type="radio" checked="checked" name="source’ + num + "
value="" + sources[s] + " />' + sources(s] + '
\n";
}
else{
text += '<input type="radio” name="source' + num + " value="" + sources[s] + "
/>' + sources[s] + '
\n';
}
}

text += "
";

return text;

80

vact.py

import porterstem
import copy

import datetime
import time

import sys

from webinfo import *
from pychart import *

HHHH
#Function takes in list of db entries and years,
#Returns dictionary of vulnerabilities for each db
H#H#HHH
def getDBvuls(db,year):

#inital variable to help determine which db were selected by the user and the timeframe selected by the
user

CERT = False

NVD = False

OSVDB = False

nvdstart = 2008

nvdend = 1999

osstart = 2008

osend = 1999

certdict = {)

nvddict = {}

osdict = {}

for i in range(0,len(db)):
if db[i] == "US Cert":

CERT = True
elif db[i] == "National Vulnerability Database":
NVD = True

if int(year[i][0]) < nvdstart:
nvdstart = int(year({i}[0])
if int(year[i][1]) > nvdend:
nvdend = int(year{i][1])
elif db[i] == "Open Source Vulnerability Database™:
OSVDB = True
if int(year[i][0]) < osstart:
osstart = int(year[i][0])
if int(year([i](1]) > osend:
osend = int(year[i][1])
else:
return "Improper variables specified %s" %(dbli])

#Download the USCERT vulnerabilities

if CERT:
trial =[]
url = 'http://www kb.cert.org/vuls/bypublished?open&start="
base = 'http://www .kb.cert.org/vuls/id/
pat = [['VU#d+, 3, 0, []],["\d+Ad+Ad+ \d+:\d+:\d+ \w+",0,0.[]]]
patt = [["Overview</H3>.+", 17, 0, ['<tt>','</tt>']]]
num = |

81

x = True
while(x):
a = gethtml(url+str(num),pat,patt,base)
x = a.bool
if x:
trial.append(a)
a.start()
else:
del a
num += 30

for ain trial:
a.join()

#Populate dictionary with vulnerabilities
#Key = vulnerability name, vulnerability date
#Value = (set of vulnerability description,datetime clement of date)
for a in trial:
for i in range(0,len(a.results[0])):
try:
certdict[a.results[0][i])+', '+a.results[1][i]] =
(set(),datetime.date(int(a.results[1]{i][6:10]),int(a.results[1][i][0:2]),int(a.results{ 1][i][3:5])))
for word in a.results[2][i].split():
certdict[a.results[0][1]+", "+a.results[1][i]][0].add(word.lower())
except:
pass

for a in trial:
trial.remove(a)
dela

#Download the NVD vulnerabilities
if NVD:

trial =[]
url = "http://nvd.nist.gov/download/nvdcve-"
entry = [‘entry’, ['name="[a-zA-Z0-9\-]+",6,-1,[]], ['published="[0-9\-]+", 11, -1, []]]
features = ['descript’]
#find which years need to be downloaded
if not(nvdstart >= 2002 and nvdstart <= int(time.ctime()[-4:])):
nvdstart = 2002
if not(nvdend >= nvdstart and nvdend <= int(time.ctime()[-4:])):
nvdend = int(time.ctime()[-4:])

for num in range(nvdstart,nvdend+1):
try:
a = getxml(url+str(num)+".xml" entry,features)
trial.append(a)
a.start()
except:
pass

for a in trial:
a.join()

82

#Populate dictionary with vulnerabilities
#Key = vulnerability name, vulnerability date
#Value = (set of vulnerability description,datetime element of date)

for a in trial:
for i in range(0,len(a.results[0))):

try:

nvddict(a.results[0][i][0]+', '+a.results[1][i][0]] =
(set(),datetime.date(int(a.results[1][i][0]{0:4)),int(a.results[1][i][0][5:7]).int(a.results[1][i][0][8:10])))
for word in a.results[2][i].split():
nvddict[a.results{0][i}[0]+', "+a.results[1][i][0]][0].add(word.lower())

except (IndexError):

pass

for ain trial:
trial.remove(a)
del a

#Download the OSVDB vulnerabilities
if OSVDB:
trial =[]
url = 'http://osvdb.org/browse/by_disclosure_date/'
base ="
pat = [['style="">\d+'9,0,[]]. ['Disclosed:[0-9\-1+',11,0,[1], ['Description:</p>[\n]<p>[()>\W\-
<IN =\ N44,14,0,0,011
patt =[]
num = |
if osstart <= int(time.ctime()[-4:]):
yr = osstart
else:
yr = int(time.ctime()[-4:])
x =True
if not (osend <= int(time.ctime()[-4:])):
osend = int(time.ctime()[-4:])
while(x) :
turl = url + str(yr)+ '?page="+ str(num)
a = gethtml(turl,pat,patt,base)
x = a.bool
if x:
trial.append(a)
a.start()
else:
del a
num += 1
if not x and yr <= osend:
num = |
yr+=1
x = True

for ain trial:
a.join()

#Populate dictionary with vulnerabilities

#Key = vulnerability name, vulnerability date
#Value = (set of vulnerability description,datetime element of date)

83

for ain trial:
for i in range(0,len(a.results[0])):

osdict[a.results[0][i]+, '+a.results[1][i]] =
(set().datetime.date(int(a.results[1][1][0:4]),int(a.results[1][1][5:7]),int(a.results[1][1][8:10})))
for word in a.results[2][i].split():
osdict|a.results[0][1]+", '+a.results[1][1]][0].add(word.lower())
except (IndexError):
pass

for a in trial:
trial.remove(a)
del a

return [certdict,nvddict,osdict]

HHRHHHHHE

#searchVuls searches the downloaded vulnerabilities from getDBvuls with the users criteria

#The input takes the list of databases specified within the search, the list of vulnerabilities for getDBvuls,
#the list of months from the search within a tuple, the list of years from the search with a tuple, and the
#list of search words specified by the user.

#The output contains the list of the number of returned vulnerabilities from each search while totlist
contains the total number of vulnerabilities within each search

R

def searchVuls(db.vuls.month,year,search):

slist = {]
temp = []
rlist =[]
totlist = []

for i in range(0,len(db)):
if int(monthli][0]) > 11 or int(month([i][0}) < O:
d1 = datetime.date(int(year{i][0])+1,1,1)
else:
d1 = datetime.date(int(year([i][0]),int(month[i][0]),1)
if int(monthli][1]) > 10 or int(month[i][1]) < 0:
d2 = datetime.date(int(year{i][1])+1,1,1)
else:
d2 = datetime.date(int(year{i][1]).int(month(i][1])+1,1)

if db[i] == "US Cert":

temp = strsearch(search(i],copy.deepcopy(vuls[0]).(d2.d1))
elif db[i] = "National Vulnerability Database":

temp = strsearch(search([i],copy.deepcopy(vuls[1]),(d2.d1))
elif db[i] == "Open Source Vulnerability Database™:

temp = strsearch(search[i],copy.deepcopy(vuls[2]),(d2.d1))
slist.append(temp)
temp.start()

for i in range(0.len(slist)):
slist[i].join()

if db[i] == "US Cent":

y.x = compute(slist[i].content,i,vuls[0].year[i])
elif db[i] == "National Vulnerability Database":

84

y,x = compute(slist[i].content,i,vuls| 1],year[i])
elif db[i] == "Open Source Vulnerability Database”:
y,x = compute(slist[i].content,i,vuls[2].ycar[i])
rlist.append(y)
totlist.append(x)

return rlist,totlist

HHRHEHHRR
#makehtml constructs the output page for the user.
#The input includes the list of search values returned per year for each search (searchVuls rlist),
#the list of total values per year for each search(searchVuls totlist), and the list of years specified by the
user within the search
HHEHHHHEH
def makehtml(slist,tlist,year):
row0 =[]
rowl =[]
row2 =[]
row3 =[]

for x in range(0,len(slist)):
tab0 = '<td ALIGN="left"> </td>'
tabl = '<td ALIGN="left">Total</td>'
tab2 = '<td ALIGN="left">Matching</td>'
tab3 = '<td ALIGN="left">Percent</td>'
for y in range(0,(int(year{x][1])+1-int(year[x][0]))):
tab0 += '<td ALIGN="right">%d</td>" %(int(year[x]{0]) + y)
tabl += '<td ALIGN="right">%d</td>" %(tlist[x][y])
tab2 +='<td ALIGN="right">%d</td>' %(slist[x][y])
if not tlist[x][y] == 0:
tab3 +='<td ALIGN="right">%.2f</td>" %(slist[x][y}/float(tlist|x][y])* 100)
else:
tab3 += '<td>0</td>'
tab0 += '<td ALIGN="right">total</td>'
tabl +='<td ALIGN="right">%d</td>' %(sum(tlist[x]))
tab2 +=‘<td ALIGN="right">%d</td>' %(sum(slist[x]))
try:
tab3 += '<td ALIGN="right">%.2f</td>" %(sum(slist[x])/float(sum(tlist|x]))*100)
except:
tab3 += '<td ALIGN="right">0.00</td>'
row(.append(tab0)
row l.append(tabl)
row2.append(tab2)
row3.append(tab3)
init ="""
<!'DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>VACT Analysis</title>
</head>
<body>
<h2 align="center">Results</h2>

85

nun

top =
<div>
<h3 align="center" style="text-decoration:none">Analysis %d</h3>
<table>
<tr>
<td></td>
<td>
<table>

table = """
<tr>
s
</tr>

bottom = """
</table>
</td>
<Jtr>
</table>
</div>

non

nun

end =
<div align="center">

</div>
</body>
</html>

won

html = init

for i in range(0,len(slist)):
html += top % (i.i+1,i)
html += table %(row0[i])
htm! += table %(row1(i])
html += table %(row2]i])
html += table %(row3[i})
html += bottom

html +=end

return html

HHHHHHEHER

#compute will turn the search results into CSV files associated by search and return the statistics per year
#The input for compute is the dictionary of search results, the search number, the dictionary of total
vulnerabilies, and the years for the search

#The output will be the CSV files with the csv webroot directory and the statistical files for the total
vulnerabilities and specified vulnerabilities

HUSHERIEH

def compute(mdict,snum,tdict,year):

slist =[]

tlist =[]
diff = int(year[1]) - int(year[0])

86

try:
f = open(('/var/www/csv/results'+str(snum)+'.csv'),'w’)
except:
f = open(str(snum)+'.csv','w’)
for i in range(int(year[0]),int(year[1])+1):
slist.append(0)
tlist.append(0)

for key in mdict.keys():
x = int(year|[1]) - int(mdict{key][1].year)
if x <= diff and x >=0:
slist[x] +=1
temp =""
for i in mdict[key][0]:
temp = "%s %s" %(temp,i)
temp = temp|[1:]
f.write('%s,%s\n' %(key,temp.replace(’,,")))
f.close()
for key in tdict.keys():
x = int(year[1]) - int(tdict[key][1].timetuple()[0])
if x <= diff and x >=0:
tlist[x] +=1
slist.reverse()
tlist.reverse()
return slist,tlist

AR
#generateGraphs will compute the graphs of each search and then a graph containing all search results
#The input is the statistics that are returned from searchVuls for the search results and total results in
addition to the search terms
#The output is a graph within the csv webroot directory named by the search number
HHHHEHAHA
def generateGraphs(slist, year, search):
theme.scale_factor = 2
theme.reinitialize()
data =]

smin = int(min([year[i][0] for i in range(0,len(year))]))
smax = int(max(([year[i]{ 1] for i in range(0,len(year))])))
alldata = [}
for i in range(smin,smax+1):

alldata.append([str(i)[2:]])
all_lab =[]
allmax =[]

for i in range(0,len(slist)):
#make individual graphs
ylist = [}
for j in range(int(year{i][0]),int(year[i][1])+1):
ylist.append(str(j)[2:])
data = zip(ylist,slist[i])
try:
mymax = int(max(slist[i]))
except:
mymax =0
allmax.append(mymax)

87

if mymax ==0:
mymax = |
lab=""
for x in search[i}:
lab = "%s %s" %(lab,x)
all_lab.append(lab)
can = canvas.init("/var/www/csv/"+str(i)+".png")
ar = area.T(x_coord = category_coord.T(data, 0), y_range = (0, mymax),
x_axis = axis.X(label="Year"),
y_axis = axis.Y(label="Num of Vulnerabilities"))

ar.add_plot(bar_plot.T(data = data, label = lab))
ar.draw(can)
can.close()

#compute data for combined graph

for i in range(0.len(slist)):

j=0

for k in range(0,int(year[i}[0])-smin):
alldata(k).append(0)

for k in range(int(year(i][0])-smin,int(year[i][1])-smin+1):
alldata[k].append(slist[i](j])
j+=1

for k in range(int(year(i][1])-smin+1,smax-smin+1):
alldata[k].append(0)

theme.scale_factor = 4
theme.reinitialize()
theme.get_options()

can = canvas.init("/var/www/csv/all.png")
if not (max(allmax) > 0):
allmax.append(1)
chart_object.set_defaults(area.T, size = (300,240), y_range = (0,max(allmax)),
x_coord = category_coord.T(alldata, 0))
chart_object.set_defaults(bar_plot.T, data = alldata)

ar = area.T(x_axis=axis.X(label="Year"),
y_axis=axis.Y (label="Num of Vulnerabilities"))

for i in range(0,len(all_lab)):
ar.add_plot(bar_plot.T(label=all_lab[i], hcol=i+1, cluster=(i,len(all_lab))))

ar.draw(can)
can.close()

HHHHHHHHEE
#User can input the search results in text form
#The results must list the databases, years, months, and search terms
#All input must be separated with <>
#If the search terms contain multiple words per line separate the words with $%3$
HHHHHHHHHE
if len(sys.argv) == 5:
#split up the input

88

db = sys.argv[1].split('<>")
years =[]
for i in sys.argv([2].split('<>"):
years.append((i.split(',)[0].i.split(,)(1]))
months = (]
for i in sys.argv[3].split('<>'):
months.append((i.split(',)[0],i.split(,)[1]))
strings = (]
for i in sys.argv([4].split('<>"):
strings.append(i.split('$%$’))

#Call the series of functions generate the search
vuls = getDBvuls(db,years)

rlist tlist = searchVuls(db,vuls,months,years.strings)
generateGraphs(rlist, years, strings)

out = makehtml(rlist,tlist,years)

89

vact_ui.py

import initial
import os
import time
import string

#The initial search page 127.1.1.1/vact_ui
def index(req):
return initial.init();

#The form within the initial search page is set to send results to /vact_ui/process.py
#process will sort through the user for and send it to the search then return the results
def process(req):

searches = int(req.form['numSearch'])

strings = []
sources =[]
years = []

months =[]

for i in range(0,searches+1):
sources.append(req.form('source'+str(i)])
years.append((req.form['sdyear'+str(i)] +',' + req.form['edyear'+str(i)]))
months.append((req.form['sdmonth'+str(i)] + ',' + req.form['edmonth'+str(i)]))
temp =]
try:
for j in range(0,int(req.form(['wbcount'+str(i)])):
#req.form['wb'+str(i)+'var'+str(j))
try:
temp.append(str(req.form(['wb'+str(i)+'var'+str(j)]).lower())
except:
return "You are missing a search word in search %d" %(i+1)
except:
return "You are missing a search word in search %d" %(i+0)
strings.append(string.join(temp,'$%$"))

req.content_type = 'text/html’

argl = string.join(sources,'<>')

arg2 = string.join(years,'<>")

arg3 = string.join(months,'<>')

arg4 = string.join(strings,'<>")

#Uncomment to print search start time

#req.write(time.ctime())

req.write("python /var/www/vact.py '%s' '%s' '%s’ '%s'™ %(argl,arg2,arg3,arg4))
out =os.popen("python /var/www/vact.py ‘%s' '%s' '%s' '%s'"" %(argl,arg2,arg3,arg4))
temp = out.read()

temp = str(len(out.readlines())) + temp

out.close()

return temp

90

webinfo.py

import re

import urllib

import xml.dom.minidom
import datetime

from threading import Thread

HHHHEHHHHE
#igethtml is made to crawl through a website
#url is the website that it is initially crawling
#f_patterns are the re patterns that should be parsed from the initial url
#s_patterns are the re patterns tha should be parsed from the secondary search
#baseurl is the url to which results from the first page can be passed to download another page
#gethtml works by first downloading the content of a page and searching for re values specified by the user
#1n our case it is looking for the vulnerability date, ID number and description
#Because not all vulnerability descriptions are listed on the initial page, the function will
#download and strip the description of a page specified from the first
HHHHHHHH
class gethtmi(Thread):
def __init__ (self,url,f_patterns,s_patterns,baseurl):

Thread.__init__(self)

self.url = url

self.f_patterns = f_patterns

self.s_patterns = s_patterns

self.baseurl = baseurl

self.bool = True
try:
data = getsource(self.url)
except:
try:
data = getsource(self.url)
except:
data=""
results =[]
for i in range(0,len(self.f_patterns)):
#print self.patterns(i]
results.append(stripPattern(data,self.f_patterns[i]))
#print 'ok\n’

if len(results{0]) == 0:
self.results = (]
self.bool = False

else:
self.results = results

def run (self):
if not self.bool:
return
temp =[]
for j in range(0,len(self.s_patterns)):
for i in range(0,len(self.results[0])):
#print self.baseurl+results[0][i]
try:
temp.append(stripPattern(getsource(self.bascurl+self.results[0][i]),self.s_patterns[j])[0])
except (IndexError):
temp.append("")

91

#print 'done\n’
self.results.append(temp)
temp =]

HHHHH
#getxml is designed to download and parse xml from a website
#The main goal is to find the vulnerability information set by the user
#The url is where to download the file
#The entry is where to find the various xml entries. Each vulnerability is contained within an entry
#features contains the real expression values to parse the features from each entry
HitiHH
class getxml(Thread):
def __init__ (self.url,entry features):

Thread.__init__(self)

self.url = url

self.entry = entry

self.features = features

self.results =[]

def run (self):
data = getsource(self.url)
results = []
try:
temp = xml.dom.minidom.parseString(data)
except:
self.results = [[]]
return

temparray = [}
entrys = temp.getElementsByTagName(self.entry[0])
for i in range(1,len(self.entry)):
for e in entrys:
temparray .append(stripPattern(e.toxmli('utf-8'),self.entry[i]))
results.append(temparray)
temparray = (]

for i in range(0,len(self.features)):
for e in entrys:
x = e.getElementsByTagName(self.features[i])
if x =[]:
temparray.append(‘'unknown’)
else:
cattext ="
for child in x[0].childNodes:
cattext += child.toxml('utf-8")
temparray.append(cattext)
results.append(temparray)
temparray =[]
self.results = results

HitHHHHAHH

#strsearch takes in the search specified by the user, the dictionary to search within and the dates specified
by the user

#search is a list of the search words, content is a dictionary with the key name , date of the vulnerability
values is tuple(set(description),datetime.date object)

HHHHHRHE

92

class strsearch(Thread):
def __init__ (self string,content.date=(datetime.date(2010,12.31).datetime.date(1970,1,1))):
Thread.__init__(self)
self.string = string
self.content = content
self.date = date
def run(self):
for rows in self.string:
logic = makeSets(rows)
print logic
for desc in self.content.keys():
try:
if not (eval(logic)):
self.content.pop(desc)
elif self.content[desc][1] > self.date[0] or self.content[desc][1] < self.date[1]:
self.content.pop(desc)
except:
#print desc
#print self.content[desc][0]
self.content.pop(desc)

HHHHHHHHERE
#Not currently implemented within the code
#modifystring will modify the string to a users requirements
#the input is a list of strings with a list of replacements
#For each word within the list it will make any replacements
TR
def modifystring(Istring,replacements):
temp = (]
p = PorterStemmer()
for string in Istring:
sentence ="
for word in string.split():
word = word.lower()
for key in replacements.keys():
word = word.replace(key,replacement[key])
if (False): # change to true to get porterstem of word
word = p.stem(word,0,len(word)-1)
sentence = sentence + word + '’
temp.apppend(sentence)
return temp

#Retrives a webpage or file from the web
#Input the URL of the webpage
#Retum the page content

def getsource(url):
file = urllib.urlopen(url)
data = file.read()
file.close()
return data

HHHHHHHHRHEHEHHHHHHRHHHHHEHERREHEHEHEHHHH R

#Finds a repeating pattern within the text
#Input string of text, real expression pattern, beginning result concatination,

93

#ending result concatination, symbols which need removed
#Return List of requested pattern found within text

def stripPattern(string, ex_list):
Pattern = re.findall(ex_list[0],string)
for r in range(0,len(Pattern)):
if (ex_list[2] == 0):
Pattern[r] = Pattern[r][ex_list[1]:]
elif not (ex_list[1] == 0 and ex_list[2] == 0):
Pattern(r] = Pattern[r][ex_list[1]): ex_list[2]]
for i in ex_list[3]:
Pattern{r] = Pattern[r].replace(i."")
return Pattern

HEHBEHEHEHEHHERER

#Will make an array of sets and the logic for search from user input

#makeSets is called by strsearch

#1t takes in the users input and converts it into a logical comparison to make within the search dictionary
HHHAHEHHRHEHRAEH

def makeSets(string):
wordlist = re.findall('[O>\wW\-:</N\';=\"*#,]+' string)
condcount =0
wordcount = 0
logic =""
for word in wordlist:
#print word
while word(0] == '(":
logic = logic + ('
word = word[1:]
while word[0] ==")"
logic = logic + ')’
word = word[1:]
if len(word) == 0:
pass
elif word.lower() == 'and"
logic = logic + 'and '
condcount += 1
elif word.lower() =='or"
logic = logic + 'or'
condcount += 1
elif (condcount < wordcount):
count =0
while word[len(word)-1) ==")"
word = word[:-1]
count += 1
if not(len(word) == 0):
logic = logic + ' and "%s" in self.content[desc][0]' % (word)
for i in range(0,count):
logic = logic +')'
else:
count =0
while word[len(word)-1] ==")"
word = word|:-1]
count += 1

94

logic = logic + ""%s" in self.content[desc](0]" %(word)
for i in range(0,count):

logic = logic +')'
wordcount += 1

return logic

95

BIBLIOGRAPHY

"About CCE." Common Configuration Enumeration. 18 Mar 2008. The MITRE
Corporation. 15 Mar 2008 <http://cce.mitre.org/about/index.html>.

Bishop, Matt, “Vulnerabilities Analysis,” Proceedings of the Symposium on Recent
Advances in Intrusion Detection (Sep. 1999): 125-36

Christey, Steve, Robert A. Martin. " Vulnerability Type Distributions in CVE." Common
Weakness Enumeration. The MITRE Corporation. 15 Mar 2008
<http://cwe.mitre.org/documents/vuln-trends/index.html>.

"Common Vulnerabilities and Exposures.” Common Vulnerabilities and Exposures. 14
Apr 2008. The MITRE Corporation. 15 Mar 2008 <http://cve.mitre.org/>.

"Common Weakness Enumeration." Common Weakness Enumeration. 6 May 2008. The
MITRE Corporation. 15 Mar 2008 <http://cwe.mitre.org/>.

Engle Sophie, Sean Whalen, Damien Howard, and Matt Bishop, “Tree Approach to
Vulnerability Classification”, Technical Report CSE-2006-10, Dept. of Computer
Science, University of California at Davis, Davis, CA 95616-8562 (May 2006).

"How We Build the CVE List." Common Vulnerabilities and Exposures. 14 April 2008.
The MITRE Corporation. 15 Mar 2008
<http://cve.mitre.org/cve/identifiers/build.html>.

"National Vulnerability Database.” National Vulnerability Database. NIST. 15 Mar 2008
<http://nvd.nist.gov/nvd.cfm?advancedsearch>.

"NVD Common Vulnerability Scoring System Support v2." National Vulnerability
Database. 28 July 2007. NIST. 15 Mar 2008 <http://nvd.nist.gov/cvss.cfm>.

"OSVDB GSoC 2008 Project Ideas." OSVDB Blog. 3 Mar 2008. OSVDB. 20 Mar 2008
<http://osvdb.org/blog/?p=231>.

"OSVDB: The Open Source Vulnerability Database.”" OSVDB: The Open Source
Vulnerability Database. OSVDB. 15 Mar 2008
<http://osvdb.org/search/advsearch>.

"Process." Common Weakness Enumeration. 11 Sep 2007. The MITRE Corporation. 15
Mar 2008

Saito, Yasushi. "Pychart." Pychart. 15 Mar 2008 <http://home.gna.org/pychart/>.

96

"Search Advisory, Vulnerability, and Virus Database." Search Advisory, Vulnerability,
and Virus Database. Secunia. 15 Mar 2008
<http://secunia.com/search/?search=&adv_search=1>.

"US-CERT Vulnerability Notes Database." US-CERT Vulnerability Notes Database. 2
July 2007. US-CERT. 15 Mar 2008 <http://www .kb.cert.org/vuls>.

97

s
N‘

3 02956 5060

(A

