

:

fi
1,ij

This is to certify that the

thesis entitled

CUSTOMIZABLE VULNERABILITY ANALYSIS AND

CLASSIFICATION

presented by

BRENT LEE HOLTSCLAW

L
I
B
R
A
R
Y

M
i
c
h
i
g
a
n
S
t
a
t
e

U
n
i
v
e
r
s
i
t
y

has been accepted towards fulfillment

of the requirements for the

MS. degree in COMPUTER SCIENCE

(Zaficm,
Major Bfofessorlg Signature

Mnu L 200 5’ _
. . / ,

Date

MSU is an affirmative-action. equal-opportunity employer

PLACE IN RETURN BOX to remove this checkout from your record.

To AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

6/07 p:lC|RC/DateDue.indd-p.1

CUSTOMIZABLE VULNERABILITY ANALYSIS AND CLASSIFICATION

By

Brent Lee Holtsclaw

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for a degree of

MASTER OF SCIENCE

Department of Computer Science

2008

ABSTRACT

CUSTOMIZABLE VULNERABILITY ANALYSIS AND CLASSIFICATION

By

Brent Lee Holtsclaw

Due to the many complications within the various vulnerability databases, my

thesis presents a tool, VACT, which scans the vulnerability databases, searches for

specified vulnerabilities by the classification given, and returns the selected

vulnerabilities in a downloadable and statistical form. VACT allows for one to gather

customizable trend analysis results from a user defined search of vulnerability databases.

The user selects each classification used within the search. The search is conducted by

comparing the classification to the vulnerabilities description. Trend analysis results are

returned by separating the statistics of the vulnerabilities found per year selected.

ACKNOWLEDGEMENTS

I would like to thank my parents for all of the support that I have received while

obtaining my advanced degree. I am lucky to have such wonderful parents. In addition, I

would like to thank my family for all of the encouragement that I received. A special

thank you goes out to Caity.

I would like to thank Dr. Enbody. It has been a real pleasure having him as an advisor

and professor. Early in my academic career, his introduction to programming class

helped to draw me into computer science. His patient, straightforward approach to

teaching and advising has been very beneficial. I could not have completed my thesis

without all of his knowledge and help. I would also like to thank the faculty within the

Computer Science Department for all of the knowledge that I gained as a result of their

teaching.

TABLE OF CONTENTS

LIST OF TABLES .. v

LIST OF FIGURES ... vi

INTRODUCTION .. 1

Chapter I: Purpose/Background ... 4

1.1 Motivation ... 4

1.2 Vulnerability Classification Techniques ... 5

1.3 Vulnerability Databases .. 14

1.4 Trend analysis ... 27

Chapter 22VACT Overview .. 35

2.] Framework .. 35

2.2 Classification and Search .. 36

2.3 Trend Analysis .. 37

Chapter 3: Classification and Search .. 40

3.] Strategy .. 40

3.2 User Interface .. 41

3.3 Functionality .. 42

3.4 Efficiency .. 42

3.5 Naive Bayesian Classification ... 43

Chapter 4: Trend Analysis .. 46

4.1 Evaluation of Features ... 46

4.2 Efficiency .. 49

Chapter 5: Real World Example ... 50

5.1 Problem ... 50

5.2 Results ... 50

Chapter 6: Conclusion ... 75

APPENDICES .. 76

Setting up VACT .. 77

VACT Code .. 78

BIBLIOGRAPHY ... 96

LIST OF TABLES

Table 1.1. Vulnerability classification ideas .. 5

Table 1.2. List of Abbreviations associated with vulnerability databases and

identifications. ... 6

Table 1.3. CWE classifications used by NVD ... 18

Table 1.3 continued ... 19

Table 5.1. Summary of results and classifications from VACT pertaining to Microsoft 52

Table 5.2. Summary of results and classification from VACT pertaining to Apple 53

LIST OF FIGURES

Figure 1.1. A snapshot of a node within CWE tier 1 ... 10

Figure 1.2. Another screenshot of CWE tier 1 ... 1 1

Figure 1.3. A snapshot of the upper portion of CWE tier 2 ... 12

Figure 1.4. A snapshot of CWE tier 3 .. 12

Figure 1.5. A screenshot of US-CERT vulnerability search feature 16

Figure 1.6. A screenshot of the US-CERT search results for buffer and overflow and

2006... 17

Figure 1.7. A screenshot of NVD vulnerability search .. 20

Figure 1.8. A screenshot of the search results returned from NVD when buffer overflow

is typed into the keyword search and the year 2006 is Specified 22

Figure 1.9. A screenshot of the search results returned from NVD when the CWE

category of buffer errors is selected from the list of vulnerability classifications............ 22

Figure 1.10. Illustration of NVD vulnerability categorization confusion 23

Figure 1.11. OSVDB vulnerability search ... 24

Figure 1.12. The search results returned when searching for buffer overflows for the year

2006... 25

Figure 1.13. Secunia vulnerability search .. 26

Figure 1.14. A screenshot of results from buffer overflow2006 as the key word search 27

Figure 1.15. Criteria selection when using the NVD statistics query page 29

Figure 1.16. The statistical results of choosing buffer errors from the Vulnerability

Category and selecting the time period of January 2003 through March 2008 30

Figure 1.17. The graphical results of choosing buffer errors from the Vulnerability

Category and selecting the time period of January 2003 through March 2008 31

Figure 1.18. A section of the CWE trend analysis ... 32

Figure 2.1. A Screenshot of VACT when first initialized ... 36

Figure 2.2. Results page from VACT ... 38

vi

Figure 2.2 continued ... 39

Figure 3.1 A screenshot of VACT when first initialized .. 41

Figure 3.2. Psuedo code showing how a vulnerability’s probability is computed

according to the naive Bayesian classification ... 44

Figure 4.1. Results page from VACT ... 47

Figure 4.1 continued ... 48

Figure 5.1. VACT results searching for Microsoft and Microsoft windows within US-

CERT .. 54

Figure 5.2. VACT results searching for Microsoft windows xp and Microsoft windows

vista within US-CERT .. 55

Figure 5.3. VACT results searching for Microsoft xp and Microsoft vista within US-

CERT .. 56

Figure 5.4. VACT results searching for windows xp and windows vista within US-CERT

... 57

Figure 5.5. VACT results searching for xp and vista within US-CERT.......................... 58

Figure 5.6. VACT results searching for apple and mac os x within US-CERT 59

Figure 5.7. VACT results searching for apple mac os x within US-CERT 60

Figure 5.8. VACT results searching for Microsoft and Microsoft windows within NVD

... 61

Figure 5.9. VACT results searching for Microsoft windows xp and Microsoft windows

vista within NVD .. 62

Figure 5.10. VACT results searching for Microsoft xp and Microsoft vista within NVD

... 63

Figure 5.11. VACT results searching for windows xp and windows vista within NVD. 64

Figure 5.12. VACT results searching for xp and vista within NVD................................ 65

Figure 5.13. VACT results searching for apple and mac os x within NVD 66

Figure 5.14. VACT results searching for apple mac os it within NVD 67

Figure 5.15. VACT results searching for Microsoft and Microsoft windows within

OSVDB ... 68

vii

Figure 5.16. VACT results searching for Microsoft windows xp and Microsoft windows

vista within OSVDB ... 69

Figure 5.17. VACT results searching for Microsoft xp and Microsoft vista within

OSVDB ... 70

Figure 5.18. VACT results searching for windows xp and windows vista within OSVDB

... 71

Figure 5.19. VACT results searching for xp and vista within OSVDB 72

Figure 5.20. VACT results searching for apple and mac os it within OSVDB 73

Figure 5.21. VACT results searching for apple mac os it within OSVDB 74

viii

INTRODUCTION

My thesis generates trend analyses from user-defined searches of online

vulnerability databases. There are many challenges in extracting trends from the various

vulnerability databases. Vulnerability databases vary on which vulnerability information

is kept within the database. They also differ on the way that the data is classified and

how one is allowed to search through the data. In addition, no vulnerability database

offers trend analysis on a user-defined search. To help provide consistency within these

factors, the thesis presents a tool, Vulnerability Analysis and Classification Tool

(VACT), which combines vulnerability database search with trend analysis tools to

enhance the ability of the end user to search through vulnerabilities and conduct analysis.

There are many different vulnerability databases that exist to help raise awareness

of the various know vulnerabilities. The government runs some while private

organizations or universities run others. Each database iS set up with different standards

and capabilities. Take US-CERT for example, the Vulnerability Notes Database contains

only severe vulnerabilities. ("US-CERT Vulnerability Notes Database") On the other

hand, Secunia contains advisories and virus information. ("Search Advisory.

Vulnerability, and Virus Database") Just as each database contains its own set of

vulnerabilities, there are multiple vulnerability schemes to fulfill the various needs of

researchers, developers, and systems administrators which provides an interesting

scenario when searching for vulnerabilities to suit an individual’s needs. Therefore, one

goal is to provide users with a tool that allows a customizable search to harvest the

desired vulnerabilities.

Browsing and searching are two main ways that one is able to use in order to find

specific vulnerabilities within a vulnerability database. Neither feature follows a

universal standard, but they use similar concepts. When browsing a database one is able

to view vulnerabilities according to some kind of vulnerability classification that iS

defined within the database. The classification schema allows the vulnerability databases

to presort vulnerabilities by common characteristics. The search feature acts like a search

engine allowing the users to input a search string to find within the various

vulnerabilities. The variance within searches comes from the way that the vulnerability

database searches for vulnerabilities. For example, Open Source Vulnerability Database

will search for the String within titles while USCERT will search for the keyword within

the vulnerability’s information. ("OSVDB: The Open Source Vulnerability Database")

To take away ambiguity when searching for certain characteristics, the Vulnerability

Analysis and Classification Tool allows a user the ability to not only search by key words

but to also make up a classification. Through our own tn'als, we have found that an

efficient way to return these results is to do a string search using vulnerability

descriptions.

To improve the effectiveness of the tool, trend analysis from the searched results

is provided. This is a feature missing from many vulnerability databases. The one

exception comes within National Vulnerability Database which is sponsored by the

National Institute of Science and Technology. ("National Vulnerability Database")

Although it will give some trend analysis pertaining to the vulnerabilities, it does not

allow the user any freedom. A11 analysis must be picked from predefined classifications,

which can be improperly calculated at times. Some organizations which are not

vulnerability databases, such as Common Weakness Enumeration, also deliver a trend

analysis of vulnerabilities. The analysis done by CWE is done by the year and cannot be

customized. Our main goal of trend analysis is to return graphs and statistics that can

help the user better visualize the results and save the user from any low level

computation.

The thesis begins by telling a quick story that motivated this project. We then

provide background information about vulnerability classification. Next we provide the

reader with insight into the overall capabilities of the tool by providing a breakdown of

the steps and decisions that were taken when making the tool. Once we show what the

tool does, we then explain how it differs from the current offerings of vulnerability

searches and trend analyses. The focus is then shifted to detail the methodologies used to

determine both the search and trend analysis results returned. We then describe a real life

scenario and how our tool could help out. To round things out the results of some

scenarios posed within the search and trend analysis section are put forward as well as the

results to the real life scenario. Finally the thesis is finished up with a conclusion which

pulls together all of ideas within the thesis.

Chapter 1: Purpose/Background

1.1 Motivation

The thesis was motivated by a Simple question posed by Dr. Enbody to classify

the number of buffer-type vulnerabilities that occurred over the past year. He Specifically

wanted to obtain the number of buffer vulnerabilities, the number of compromising

buffer vulnerabilities, and the number of compromising vulnerabilities. Compromising

vulnerabilities were defined as vulnerabilities that would allow a user to gain control of a

system or gain elevated privileges within a system. The first issue arose when we tried to

find what classification techniques are used to classify vulnerabilities. After searching

the literature and examining vulnerability databases online, we found that there are many

different classification schemes. Not only did we not see a common classification for

vulnerabilities, but we also found discrepancies within vulnerability databases. As we

sorted through the initial problems, we found another problem with the data. We needed

to sort through the results of the vulnerabilities to compute our own statistics and graphs.

As this simple task continued to grow in complexity, it was apparent that a tool to help

automate this process would be a worthwhile contribution to the community.

1.2 Vulnerability Classification Techniques

The word vulnerability has a very strong tone with it as it dictates that a flaw is

evident within the subject at hand.

0 Within computer security, the term does not change meaning as it applies to a

“set of transitions which take a system from an allowed state to a disallowed

state” (Bishop)

Another key term that will come into play later in the thesis is an exploit.

0 An exploit is a set of commands which take advantage of a vulnerability.

(Engle)

Due to the complexity and abundance of various vulnerabilities and exploits that exist,

vulnerability databases have been created by various entities to help share the knowledge

with users.

Vulnerability Classification

Name Abbreviation

Bishop

Common Weakness Enumeration CWE

‘ Table 1.1. Vulnerability classification ideas

Tables 1.1 and 1.2 are provided to help distinguish the concepts and databases

presented throughout chapter one. Table 1.1 contains the current vulnerability

classification techniques and ideas. Table 1.2 contains the vulnerability databases

introduced within the chapter. It also contains the vulnerability identifications that are

used. The various databases contain vulnerabilities according to various naming

conventions and standards which are recognized by the vulnerability identifications.

Vulnerability Identification

Name Abbreviation

Common Vulnerabilities and Exposers CVE

Bugtraq

Internet Security Systems' X-Force

organization ISS X-Force

Nessus Script

Open Source Vulnerability Database OSVDB

Snort Signature

Secunia Advisory

French Security Incidence Response

Team FrSIRT Advisory

Open Vulnerability and Assessment

Language OVAL

Computer Incident AdvisorLCapability CIAC Advisory

Commiter Emergency Response Team CERT

The United States Computer Emergency

Readiness Team CERT VU

Mi1w0rm

Common Configuration Enumeration CCE

Common VulnerabilityScoring System CVSS

VulnerabilitLDatabases

Name Abbreviation Searchable Identification

Bugtraq

Microsoft Bulletins

French Security Incidence Response

Team FrSITR

US-CERT Vulnerability Note Database US-CERT CVE, CERT VU

National Vulnerabilities Database NVD CVE, CCE, CVSS

CVE, OSVDB, Bugtraq,

ISSX-Force, Nessus Script.

Snort Signature, FrSIRT

Advisory, OVAL, CIAC

Advisory, CERT, CERT VU,

Open Source Vulnerability Database OSVDB Milerm

Secunia CVE, Secunia

Table 1.2. List of Abbreviations associated with vulnerability databases and identifications.

Many key terms and ideas within this thesis hinge on the previous work that was

accomplished by Matt Bishop. Bishop a professor at University of California, Davis,

specializes in computer security and vulnerability analysis. In a paper from 1999, Bishop

defines five important properties to vulnerability classification:

1. Similar vulnerabilities are classified similarly. For example, all

vulnerabilities arising from race conditions Should be grouped together.

However, we do not require that they be distinct from other

vulnerabilities. For example, a vulnerability involving a race condition

may require untrusted users having specific access permissions on files or

directories. Hence it should also be grouped with a condition for improper

or dangerous file access permissions.

2. Classification should be primitive. Determining whether a

vulnerability falls into a class requires a “yes” or “no” answer. This means

each class has exactly one property. For example, the question “does the

vulnerability arise from a coding fault or an environmental fault" is

ambiguous; the answer could be either, or both. For our scheme, this

question would be two distinct questions: “does a coding fault contribute

to the vulnerability” and “does an environmental fault contribute to the

vulnerability.” Both can be answered “yes” or “no” and there is no

ambiguity to the answers.

3. Classification terms should be well-defined. For example, does a

“coding fault” arise from an improperly configured environment? One can

argue that the program Should have checked the environment, and

therefore an “environmental fault” is simply an alternate manifestation of

a “coding fault.” So, the term “coding fault” is not a valid classification

term.

4. Classification should be based on the code, environment, or other

technical details. This means that the social cause of the vulnerability

(malicious or simply erroneous, for example) are not valid classes. This

requirement eliminates the speculation about motives for the hole. While

valid for some classification systems, this information can be very difficult

to establish and will not help us discover new vulnerabilities.

5. Vulnerabilities may fall into multiple classes. Because a vulnerability

can rarely be characterized in exactly one way, a realistic classification

scheme must take the multiple characteristics causing vulnerabilities into

account. This allows some structural redundency in that different

vulnerabilities may lie in the same class; but as indicated in 1, above, we

expect (and indeed desire) this overlap.(Bishop)

These properties help to provide a straightforward way of creating vulnerability

classifications. The same properties are reiterated in another paper in which Bishop was

an author seven years 1ater.(Engle)

Although Bishop presents a great plan for vulnerability classification, when one

really evaluates the classification rubric, it presents itself as a guideline rather than as

specific classifications. Various interpretations can make classifications that are both

broad and specific. One will find an assortment of interpretations when searching

through the various classifications that are used within the different vulnerability

databases.

In addition to the work presented by Bishop, two branches of The MITRE

Corporation help to provide structure to vulnerability classification. The Common

Weakness Enumeration, CWE, division of The MITRE Corporation, offers a community-

developed dictionary of software weakness types. ("Common Weakness Enumeration")

While Common Vulnerability Enumeration, CVE provides a common naming convention

for vulnerabilities. ("Common Vulnerabilities and Exposures")

With the help of CVE and researchers, CWE continues to build a classification

tree of vulnerabilities. Even though there is a current layout and structure, CWE

continually accepts new research and vulnerabilities to help expand the tree to make it as

comprehensive as possible. The layout is “currently using what could roughly be

described as a three-tiered approach, in which (1) the lowest level consists of the full

CWE List (hundreds of nodes) that is primarily applicable to tool vendors and detailed

research efforts; (2) a middle tier consists of descriptive affinity groupings of individual

CWES (25-50 nodes) useful to software security and software development practitioners;

and (3) a more easily understood top level consisting of high-level groupings of the

middle-tier nodes (5-10 nodes) to define strategic classes of vulnerabilities and which is

useful for high-level discourse among software practitioners, business people, tool

vendors, researchers, etc.”("Process.")

CWE produces a body of work that is the closest we have seen completely

implementing Bishops properties. The problem is that it is not used as a database

Standard. Several databases such as National Vulnerability Database have implemented a

partial CWE list. Figures 1.1 and 1.2 illustrate the level of detail that exists within CWE.

Figure 1.1 is a high level classification with an associated description and relationships to

similar classifications. Figure 1.2 illustrates a specific classification. The classification

levels can also be seen within Figures 1.1 and 1.2. Figure 1.2 is referred to as a child of

Figure 1.1. In addition to the description and relationships, Figure 1.2 has associated

examples. Figures 1.3 and 1.4 illustrate CWE tier 2 and tier 3. The tiers represent the

various levels of classification that exists within CWE.

Fatimato"car.strai'n"6aersua.;s Mann'e‘eamiagar stixiia‘carea "

Memo Buffer

Weakness ID 119 (Weakness crass) Statue: Draft

Description W

The software may potentially allow operations, such as reading or writing, to be

performed at addresses not intended by the developer.

e e rt 1

When software permits read or write operations on memory located outside of an

allocated range, an attacker may be able to access/modify sensrtive information,

cause the system to crash, alter the Intended control flow, or execute arbitrary code.

Affected Memory

Resource

Relationships Nature Type ID Name

ChiIdOf 118 Range Errog

ChildOf W 635 flgaknesses gags! by NVQ

ChiIdOf O 633 Weaknesses that Affect Memory

ParentOf Q 133 fitring firrgg

ParentOf Wt: 123 Write-what-wherg Condition

DarentOf m 124 'nnin Viol ion ' ffer nderwrite'

DarentOf m 125 Out-of-bounds Read

ParentOf m 128 r - r rr r

DarentOf 129 n h r n xin

ParentOf 131 Incorrect Calculation of Buffy Size

DarentOf 132 Mi 1 II T rmin i

DarentOf 466 Return of Pointer Value Outside of Expected Ranqg

parentOf ‘ 120 n n Tr n f ' i if r rfl w'

Related CAPEC-ID Attack Pattern Name

Attack _1_0_Q Overflow Buffers

hum LQ Buffer Overflow via Environment Variables

L1 Client-side Injection-induced Buffer Overflow

5; MIME Conversion

21 Filter Failure through Buffer Overflow

g Buffer Overflow in an API Call

fi Overflow Binary Resource File

2 Buffer Overflow in Local Command-Line Utilities

15 Buffer Overflow via Symbolic Links

35 Overflow Variables and Tags

91 Buffer Overflow via Parameter Expansion

Figure 1.1. A snapshot of a node within CWE tier 1

10

Incorrert (Zaluilation of Buffer Size

Weakness ID 131. (Weakness Class)

Desa'lptlon

Observed

Examples

Context

Notes

Reladonshlps

Source

Taxonomles

Applicable

Platforms

Related

Attack

Patterns

Mm

Status: Draft

The software does not correctly calculate the size to be used when allocating a buffer,

which could lead to a buffer overflow.

Reference

Q!E~2004-0747

CVE-2005-2 103

CVE-2005-3 120

CVE-ZOOQ-QBQQ

- - 4

CVE-2001-og4g

QE-ZQQL-Oz49

QE-2002-0184

CVE-2004-0434

- - 47

- - 4

~ - 4

Description

substitution overflow: buffer overflow using envrronment variables that

are expanded after the length check is performed

substitution overflow: buffer overflow using expansion of environment

variables

substitution overflow: buffer overflow using a large number of

substitution strings

transformation overflow: product adds extra escape characters to

incoming data. but does not account for them in the buffer length

transformation overflow: buffer overflow Mien expanding ”>" to "nigh".

etc.

expansion overflow: buffer overflow using im'ldcards

expansion overflow: long pathname + glob - overflow

expansion overflow: long pathname + glob - overflow

special characters in argument are not properly expanded

small length value leads to heap overflow

multiple variants

needs closer investigation. but probably expansion-based

needs closer investigation. but probably expansion-based

This is a broad category. Some examples include: (1) Simple math errors, (2) incorrectly

updating parallel counters, (3) not accounting for size differences when "transforming"

one input to another format (e.g. URL canonicalization or other transformation that can

generate a result that's larger than the original input, i.e. "expansion").

This level of detail is rarely available in public reports, so it is difficult to find good

examples.

Nature Type 10 Name

ChildOf 119 Failurg to angtrain Qgemtigns within the Boungg gf an Allfigtgg

Mgmgry Buffer

PLOVER - Other length calculation error

C

C++

CAPEC-ID Attack Pattern Name

_4_7 Buffer Overflow via Parameter Expansion

Figure 1.2. Another screenshot of CWE tier 1

11

EILQLocation - (1)

- @Configuration — (16)

EiOCode - (17)

EJQSource Code - (18)

:13 Data Handling — (19)

IO Security Features - (254)

IGTime and State - (361)

I8 Error Handling - (388)

[B Failure to Fulfill API Contract (aka 'API Abuse') - (227)

- .Use of Inherently Dangerous Function - (242)

IMIndicator of Poor Code Quality - (398)

I-Insufficient Encapsulation - (485)

IMAI‘ways-Incorrect Control Flow Implementation - (670)

I-Insufficient Control Flow Management - (691)

i516 me/Object Code - (503)

- Compiler Removal of Code to Clear Buffers - (14)

BMViolation of Secure Design Principles - (657)

- .Design Principle Violation: Failure to Use Least Privilege - (250)

- “Design Principle Violation: Not Failing Securely - (636)

- .Design Principle Violation: Not Using Economy of Mechanism — (637)

- “Design Principle Violation: Not Using Complete Mediation - (638)

- Design Principle Violation: Insufficient Compartmentalization - (653)

- .Design Principle Violation: Reliance on a Single Factor in a Security

Decision —(654)

- Design Principle Violation: Failure to Satisfy Psychological Acceptability -

(655)

- .Design Principle Violation: Reliance on Security through Obscurity - (656)

It'llDesign Principle Violation: Lack of Administrator Control over Security -

(671)

E16 Environment - (2)

EIGTechnology-specific Environment Issues - (3)

- @JZEE Environment Issues - (4)

IO .NET Environment Issues - (519)

BOMotivation/Intent - (504)

Figure 1.3. A snapshot of the upper portion of CWE tier 2

ECLocation -(1)

- ©Configuration - (16)

(9 Code - (17)

IC Environment — (2)

BC Motivation/Intent - (504)

I0 Intentionally Introduced Weakness - (505)

- @Inadvertently Introduced Weakness - (518)

Figure 1.4. A snapshot of CWE tier 3

12

Common Vulnerabilities and Exposures, CVE, “is a list of information security

vulnerabilities and exposures that aims to provide common names for publicly known

problems. The goal of CVE is to make it easier to share data across separate vulnerability

capabilities (tools, repositories, and services) with this ‘common enumeration.”

("Common Vulnerabilities and Exposures") In other words CVE provides a common

naming convention to reference vulnerabilities.

CVE does not include any zero day vulnerabilities. A zero day vulnerability is a

newly released vulnerability. Instead, vulnerabilities must go through a process to get

onto the CVE list. After a vulnerability is discovered, it goes through “three stages: the

initial submission stage, the candidate stage, and the entry stage.” ("How We Build the

CVE List") Their website provides a complete tutorial on the CVE List building

process.

The CVE List building process is stringent with the vulnerabilities which are

given a common name. To encompass vulnerabilities without CVE names, other

organizations offer identification to vulnerabilities which are identified within CVE and

ones that are not. Security Focus features a zero day vulnerability database, bugtraq. The

database allows users to send in all vulnerabilities that are found. Bugtraq offers an up-

to-date email system to provide all subscribers a chance to view and discuss new

vulnerabilities. Microsoft Bulletins features Microsoft specific vulnerabilities. French

Security Incidence Response Team, FrSITR, also keeps a zeroday list of reported

vulnerabilities. USCERT provides a truncated list of vulnerabilities by selecting only the

vulnerabilities which are identified as critical. Secunia offers a vulnerability list which

includes both vulnerabilities and virus information. It is important to note that in addition

13

to their own naming convention, each of the databases listed above still offers the CVE

name for vulnerability which is identified by compiles to CVE standards.

Other notable standards which are used by some of the vulnerability databases

include the Common Vulnerability Scoring System, CVSS, and Common Configuration

Enumeration, CCE. “The Common Vulnerability Scoring System provides an open

framework for communicating the characteristics and impacts of IT vulnerabilities. Its

quantitative model ensures repeatable accurate measurement while enabling users to see

the underlying vulnerability characteristics that were used to generate the scores.” ("NVD

Common Vulnerability Scoring System Support v2.") CVSS is calculated with using the

following metrics: Vulnerability Severity, Access Vector, Authentication,

Confidentiality, Integrity, Availability, and Access Complexity. “The CCE List provides

unique identifiers to security-related system configuration issues in order to facilitate fast

and accurate correlation of configuration data across multiple information sources and

tools.” ("About CCE")

1.3 Vulnerability Databases

Within the next section we are going to take a closer look into some of the

vulnerability databases. Not only does this help one get a better picture of the types of

vulnerability databases that exist but it also shows how vulnerability databases differ.

The description will feature what types of vulnerabilities that can be found within the

database as well as any classification schemes that are used. Another attribute of the

description will be an evaluation of the search functionality within the database.

The US-CERT Vulnerability Notes Database contains vulnerabilities that meet a

“certain severity threshold” which is severe for all users. In other words, the database

14

contains severe vulnerabilities for software and operating systems that many users

interact with on a daily basis. One is able to view the vulnerabilities within seven

predetermined metrics: Name, ID Number, CVE name, Date Public, Date Published,

Date Updated, and Severity Metric. Even though US-CERT does not offer any

classification, the search feature is very good. It does a full text search allowing the user

to input complex queries. Figure 1.5 shows a snapshot of the US-CERT vulnerability

notes search page. Figure 1.6 shows a snapshot of the results returned when searching

for buffer overflow 2006. The US-CERT Vulnerability Notes Database is a truncated list

of CVE vulnerabilities. Therefore, one is only able to get a subset of CVE vulnerabilities

as a result. Another downfall comes as the results from the search as featured in figure 5

contain vulnerabilities from years other than 2006 with no indication of the number of

vulnerabilities that have been returned. The user must do extra work to know how many

vulnerabilities fit into the search results. In addition, extra time must be sent filtering

through the results to find the ones that are from 2006.

15

Home l FA 0 lContact l Priynn Policy

US-CERT
UNITED STATES COMPUTER EMERGENCY READINESS TEAM

Vulnerability

am Search US-CERT Vulnerability Notes
lamb”)

Search Search for US-CERT Vulnerability Notes that contain the following wordtsi:

Vulnerability

Nole) r __JSearch

V ”lmmb‘l” Searches arr mse insrnsiIii-r. and they match whole words in a full Ir.” index. You run use logical

—-£fl?'$:ln constructs such as and. or and not. as we’ll its (mrrmhrsrs and H ildt unis lilu' asn'n'st (mil quewmn mark.

t 'I [0

Limit results to: I 50

View Notes By

Ni! Sort results by: 9' Relevance

ID Number ' Oldest tirst (roughly by moditied date)

Newest tirst (roughly by iiiodilied date)

CVE Name .

Word options: .1 Find exact word matches only

Date Public '7 Find word variations as detined by thesaurus

Date Published

Example queries includtr

[Mite liptldtcd

O rsaref and (ssh or ssli

Sen-rig Metric . .

o cgi-bin and not (us or upuchci

Other 0 Windows 9'? or Window» 2WD or Windows XP

”utilmcnts
0 buffer over‘

W More detailed help is also available.

Technical

Bulletins

Alerts

Secung' Tips

Printed 21le by USCERT. a pm crnmcnt organization

DINLIHIL‘!‘ .in-J tumnglii int-«iiutiuii

Figure 1.5. A screenshot of US-CERT vulnerability search feature

16

US-(IERT
UNlTED STATES COMPUTER EMERGENCY READINESS TEAM

Yin—habit; Search Results

Database Date

ID M: Na.

Wealth!) $1954.12 0311 2008 Microsoft 05cc Web Coupooelss Spreadsheet ActsveX control L'RL parsing stack bufier overflow

' \17a196240 0219:2007 Sowcefic Snort DCE RPC preprocessor does not properly reassemble fiagmented packets

Enbe'hht‘.‘ $333119; 12 01-2006 VUPlaycr wormed plan/Est infer overflow

M \‘L‘n'Ol 121 06-2: '2006 Gracenote CDDB Actich comrol Met overflow

VL'=“3.‘_4§ 06192006 32'»cm a bss bufi‘er overflow ii is LZH handing

\1‘3138545 0604:2007 Java Ruin: Emiounent Image Fusing Code We: overflow uberabh'y

V'L's4513fl 09122006 Adobe Flash Player long sting btfl'er overflow

VL'IZBOZSS 01’04’2007 OpusOfiee fed: to propaiy process “W and EMF fies

“Is-141785 0212272007 StpponSofi ActiveX comrols coma: mid: btfi'er overflows

\1'811945" 125203006 Sui Java IRE miserable to arbitrary code amnion via an mdetauiied error

\L‘n592‘96 0203-2007 Malia Network Secu'ty Services (NSS) fiis to property but]: the tiers master key

VL'8377812 02123-2007 Moziu Network Sealiy Senices (NSS) fiis to propa‘ly process maI'onned SSLvZ serves messages

Figure 1.6. A screenshot of the US-CERT search results for buffer and overflow and 2006

The National Vulnerabilities Database, NVD, which is sponsored by the National

Institute of Science and Technology, is a very interesting database to study. It is a CVE

and CCE vulnerability database. Table 1.3 shows which CWE vulnerability

classifications are integrated into NVD. Table 1.3 is mainly composed of CWE tier 2

vulnerability classifications. It is interesting to note that because the list is a truncated

version, classifications such as Other and Not in CWE exist. The user is able to do a

keyword search with any of the one of the CWE metrics from table 2 specified, any of the

metrics within CVSS specified, the product specified, the vendor specified, or the date

specified. Figure 1.7 helps to illustrate the search and browsing features of NVD.

17

Name Description

Authentication

Issues

Failure to properly authenticate users.

Credentials

Management

Failure to properly create, store, transmit, or protect passwords and other credentials.

Permissions,

Privileges, and

Access Control

Failure to enforce permissions or other access restrictions for resources, or a privilege

management problem.

Buffer Errors

Buffer overflows and other buffer boundary errors in which a program attempts to put

more data in a buffer than the buffer can hold, or when a program attempts to put data

in a memory area outside of the boundaries of the buffer.

Failure to verify that the sender of a web request actually intended to do so. CSRF

Exisésstite attacks can be launched by sending a formatted request to a victim, then tricking the

Forgery victim into loading the request (often automatically), which makes it appear that the

(CSRF) request came from the Victim. CSRF is often associated with XSS. but it is a distinct

issue.

gross-.Site Failure of a site to validate, filter, or encode user input before returning it to another

cripting user's web client
(XSS) '

Cryptographic An insecure algorithm or the inappropriate use of one; an incorrect implementation of

Issues an algorithm that reduces security; the lack of encryption (plaintext); also, weak key or

certificate management, key disclosure, random number generator problems.

Path Traversal

When user-supplied input can contain “..” or similar characters that are passed through

to file access APIs, causing access to files outside of an intended subdirectory.

Code Injection

Causing a system to read an attacker-controlled file and execute arbitrary code within

that file. Includes PHP remote file inclusion, uploading of files with executable

extensions, insertion of code into executable files. and others.

Format String
The use of attacker-controlled input as the format string parameter in certain functions.

Vulnerability

Configuration A general configuration problem that is not associated with passwords or permissions.

Information

Leak / Exposure of system information, sensitive or private information, fingerprinting, etc.

Disclosure

Failure to ensure that input contains well-formed, valid data that conforms to the
Input . . ,

. . application 5 speCIfications. Note. this overlaps other categories like XSS, Numeric
Validation . .

Errors, and SQL Injection.

Numeric Integer overflow, signedness, truncation, underflow, and other errors that can occur

Errors when handling numbers.

08 Command Allowing user-controlled input to be injected into command lines that are created to

Injections invoke other programs, using systemQ or similar functions.

Table 1.3. CWE classifications used by NVD

18

Name Description

Race The state of a resource can change between the time the resource is checked to when it

Conditions is accessed.

Resource The software allows attackers to consume excess resources, such as memory

Management exhaustion from memory leaks, CPU consumption from infinite loops, disk space

Errors consumption. etc.

SQL Injection When user input can be embedded into SQL statements without pr0per filtering or

quoting, leading to modification of query logic or execution of SQL commands.

Link Failure to protect against the use of symbolic or hard links that can point to files that

Following are not intended to be accessed by the application.

Other NVD is only using a subset of CWE for mapping instead of the entire CWE, and the

weakness type is not covered by that subset.

Not in CWE The weakness type is not covered in the version of CWE that was used for mapping.

Insufficient There is insufficient information about the issue to classify it; details are unkown or

Information unsyecified.

A vulnerability is characterized as a “Design error" if there exists no errors in the

Design Error implementation or configuration of a system, but the initial design causes a vulnerability to exist.

Table 1.3 continued

19

g porisorvd try

’ DHS National Cytier Security DWISIOIII'US‘CERI

National Vulnerability Dababase
uutoniutiiiq VUIIIL‘IdbliIly iiiariugeme , . nty measurement, and Compliance Liletkllh‘j

Impact Metrirs

[scare-ms

CVE and CCE Vulnerablllty Database Advanced Search

[CCE ruppart is under development]

NVD is the U.S.

govemmontra osi of

standards basgd m -__._ReSEIValues

vulnerabiflty management Keyword search

data. This data ”BUGS Try a vendor name. product norm. nr version umber

automation Of ry I m standard vulnerabilny name

~ type in rnu pl: eyvardi separated by rpacu

le’ibfity . Only vulnerabilities that match ALL keyword! in" be returned

managiment, seconty

”fitment-W Vendor ABCE F.HIK LN 00 RT UWXZNI

compliance (3.9. FISMA).

Produa LBLELHLKHHLTMLZE

Version “ Choose I Vendor or Drodud ‘

30009 Qflll null! Btu Search start date Ahy Month VV- EMT, J

148mm Search and date AnyMo-i'h v myéa, v
33 _ . , ,

I W Vu'nerabllvv TYPGS‘ El Software Flaws (M)

2158W .

317‘ Misconngurations (CCE). under development

WI CV38 Version 2 Metrics:

13879mm

Last updated: Halli/08 Vulnerability Severity Am: H v

CVE Publication rate: ‘ ,

15 mabitlas/day Access Vector Any v

Authentication Any v

NVD ”my“; four mailing Confidentiality: Any 7 v’

lists to the able. For We m . '

information and g v AT"? s , V.

subscription instructions Availability AW .,

ease visit NVD Maili '
fists —J Access Complexity Arry v

Workload Index Vulnerability Category AW 7 7 7'

Vulnerabit Worldoad
: may '—'—"' Show only vulnerabilities that E] US-CERT Technical Alerts

have the followmg [3 us-cem Vulnerabilit Notes

“mm Us associated resources: l: OVAL DefinltIOUS

Whisanmrliu-tnffiu

Figure 1.7. A screenshot of NVD vulnerability search

Despite the positive features of NVD, there are some other features which cause

confusion. The search engine provides many search options while the key word search is

not very extensive. In fact, when searching for buffers overflows, there were some

vulnerabilities that were identified as buffer overflow vulnerabilities that were not being

returned. Figure 1.8 illustrates the search results returned when typing buffer overflow

into the search with the year of 2006 specified. There are 583 vulnerabilities that are

20

returned. However, if one selects just buffer errors from 2006 as specified within Figure

1.9, only 30 vulnerabilities are returned. When limiting the buffer errors to the keywords

buffer overflow, only 19 vulnerabilities are returned for 2006. As 23 classifications have

been chosen to represent a subset of CWE, many of the vulnerabilities have not been set

to fall into any of these categories after searching for them which leads to inaccurate

results. Another problem that was found with NVD comes within the XML downloads.

On the site, there is a place where one can download the various years’ worth of CVE

data. The problem comes when one tries using the categorization aspects within the

CVE. The categories are inconsistent with the new CWE categories. Figure 1.10

illustrates the vulnerability classifications that are found in the XML of the 2007

download. The file is not using the CWE vulnerability classification standard. Instead it

lists twelve classifications which are illustrated on the left of Figure 1.10. Next to the

twelve classifications, is the number of times that the classification is found within the

vulnerabilities. Within the XML file, some vulnerabilities fall into several of the

classifications while others do not fall into any of the listed classifications. The right side

of Figure 1.10 shows the exact classifications that are found associated each vulnerability

is associated with, as well as the number of times that classification is found within the

vulnerabilities. According to Bishop, allowing multiple categories can be a good thing so

this may prove to be a problem. However, NVD is using two different vulnerability

classification metrics. Another concern is that 542 of the vulnerabilities are classified as

unknown.

21

Sponsored by - ‘ V l NlSI-

DHS National Cybor Security Division/US-CERT y N I 1.111 1 n.

si 011"atrium1.,

National Vulner‘ability Database
autuiiiatinq vulnerability managemenMSeuity int-usurenient ("1d coniplidrite cliet king

Vulnerabilit . Checklists Product Dictionary Impact Metrics, DataFeeds Statlstlcs

There are 583 matching records. Displaying matches 1 through 20.

NVD is the U5. ,_ "‘ '
. ; Next20M teh

government repostory of a as

standards based CV}; 2006- 9911

wxfimm Summary: Multiple buffer overflows in Computer Assooates (CA) BrightStor ARCserve

Backup R115 Server before SP2 allows remote attackers to execute arbitrary code in the

Tape Engine (tapeeng.exe) via a crafted RPC request With (1) opnum 38, which IS not

properly handled in TAPEUI'IL.dll 11.538840, or (2) opnurn 37, which is not properly

"“an “cm" handled In TAPEENG.dll 11.538840.

“a“m" published: 12/31/2006

CVSS Sever! : 1

automation of

when ‘

compiance (e.g. FISMA).

Resource Status CVERQ‘LG’ 5299

m oontaInS' Summary: Stack-based buffer overflow in http.c in Karl Dahlke Edbrowse (aka Command

30603 Eli II I I'll! line editor browser) 3.1.3 allows remote attackers to execute arbitrary code by operating an

FTP server that sends directory listings With (1) long user names or (2) long group names.

15°m Published: 12/31/2006

CVSS Se ' ' H h

QVLJQQG 0‘19“

3259mm Summary: Buffer overflow in the Bluetooth Stack COM Server In the widcomm Bluetooth

14148W Stack, as packaged as Widcomm Stack 3.x and earlier on Windows, Widcomm

Last updated. 00/13/08 BTStackServer 1.4.2.10 and 1.3.2.7 on Windows, Widcomm Bluetooth Communication

CVEPu mtg; Software 1.4.1.03 on Windows, and the Bluetooth implementation in Windows Mobile or

15 “mural rim. 7 Windows CE on the HP IPAQ 2215 and 5450, allows remote attackers to cause a denial of

Figure 1.8. A screenshot of the search results returned from NVD when buffer overflow is typed into the

keyword search and the year 2006 is specified

Sponriso . , \ ¥

DHS National Cyber Security Division/US-CERT . ' .. I

31... l... 1 mm1:1hnnlur”

National Vulnerability Database

automating vulnerability managemeht, rity measurement, and compliance checking

Vulnerabilities ' Product Dictionary Impact Metrics Data Feeds

MIS on and Overview

There are 30 matching records Displaying matches 1 through 20.

NVD is the U.s. fi"’“—“‘

government repository of 13-93139“flicfigij

standardo hasad (y 2006 6149

vulnerabity management

data. This data enables

Summary: Buffer overflow in the parse_expressron function in parse-config in OpenSER

1.1.0 allows attackers to have an unknown impact Via a long st: parameter.

”mum?" °f Published: 12/26/2006

man” . cvss Severn - Huh
management, security

measurement, and CVE- 2006 9696 Qgflgmiiilr .9vol.gel:1§1§s

compiance (9.9. FISMA). Summary: Double free vulnerability in Microsoft Windows 2000, XP, 2003, and Vista allows

‘ , local users to gain privrleges by calling the Messagesox function With 3

MBSERVICENOTIFICATION message With crafted data, which sends a HardError message

NVD contains: to Client/Server Runtime Server Subsystem (CSRSS) process, which IS notVproperly handled

30603 1218!! l I '11 when invoking the UserHardError and GetHardErrorText functions in WINSRV .DLL

Published: 12/21/2006

“OW CVSSSeverit(y: a 9 SMediumz

Figure 1.9. A screenshot of the search results returned from NVD when the CWE category of buffer errors

is selected from the list of vulnerability classifications.

22

. i ffe 4 - input buffer 602 - other 42

.npUt bu r 61 - input bound 67 - Input bound, design 5

° input bound 74 - unknown 542 - input bound buffer 2

- 311! 15 - design, mfigfi

. u n known 542 - design 723 - input, config 20

0 gm, 25 - input 4107 - input bound, other 1

- con 2 37 - input er, at r 1,. fi buff he

' d 95'8“ 952 - exception 271 - access, input buffer 3,

- - design, race 4 - input buffer, design 3
0

mm” 4352 - race 34 - input, racel

° config 68 - input bound, exception 1 - input, any 5 ‘

. . 361 - access 202 - input, exception, env 1

exception - input, design 128 - input buffer, exception 3

0 r3 ce 39 - Input, exception 49 - exception, gm 1

- design, 3933 - input buffer,m2

° access 305 - design, exception 28 - access, input, design3

- access, design 49 - access, exception 7

o Other 44 - access, input 38

° input bound buffer 2 - access. confie 3

Figure 1.10. Illustration of NVD vulnerability categorization confusion

Open Source Vulnerability Databasc,OSVDB, offers an extensive vulnerability

database which incorporates: Bugtraq ID, CVE ID, 188 X—Force ID, Nessus Script ID,

Related OSVDB ID, Snort Signature ID, Secunia Advisory ID, FrSIRT Advisory ID,

OVAL ID, CIAC Advisory, CERT, CERT VU, Security Tracker, and Milerm ID.

OSVDB has made several vulnerability classifications which include Location, Attack

Type, Impact, Solution, Exploit, Disclosure, OSVDB. The search feature allows the user

to select any the vulnerability classifications, select a reference point, input key words to

find within the title or text, the vendor or product name, or a time period. Figure 1.1 l

illustrates the elaborate search capabilities. The limitation of OSVDB comes within the

search. Keywords are only allowed to be found within the vulnerability titles. By

allowing only keywords to be searched for within the title, one is not able to get access to

all vulnerabilies. OSVDB lists it’s vulnerability classification within the title. If one

picks search terms that are too general or specific for the title, they will not receive the

23

proper results. Figure 1.12 contains the three search results that are returned for buffer

overflow for the year of 2006. It is hard to believe that only three of the vulnerabilities

from 2006 were buffer overflows.

Advanced Search

l I“ iifliWor‘ds. v_

'.__ w, ,H— .u-.. .‘

 7-- -__...- q~-w_,._“

Disclosure Date Range: L. V _

RBfBl'Bl'lW! ' _- :Any: ._ _ *_ V

Text: “WWW _._- ~ _ M J

Vendor/product: i

Vulnerability Classification

Location lit-tad: Tue M Hidden

D Authentication Management

Dc n
UPhysical Access Required NPM'OP ‘ D No solution

B ‘ Denial of Service D

Local Access Required D H . k' Workaround

D Remote/Network Access Required 1:“ m? D' ' D Loss of Confidentiality Ci patch

mm! n i r

Butall Remote Din; o u "u . D Loss oflnteority D Upgrade

strum

D Dialup Access Required U: . M ‘ "lad D Loss of Availability D Change Default Setting

DWireless D “:9“: nil.“ P; on D Unknown D Third Party Solution

i360 l" on

UMobile Phone U R C 9m U Discontinued Product

UUnirnoen Location D 0:. on on D Solution Unknown

or

DUnknown

,___m fi' om

Cl ~ 3 -DOSVDB Verified D Authentication equared

D Content Dependent

Vendor Verified D V ' D d

t

D Euplolt Malia ble D Vendor Disputed D we n “.2" “

OHM C

DExploit Unavailable DThird Party Verified D n b R I d

to

D Exploit Rumored / Private U Coordinated Disclosure . . .

U D D Concern

Exploit Unkno en Un coordinated Disclosure D

D . . Best Practice

Third Party Disputed

U D Midi/Fake

Discovered in the Wild D

Security Softgare

[seordi] New]

Figure l.1l. OSVDB vulnerability search

24

noun-o Weedad by

0su [I n Search OSVDB Browse Vendor: Prejcct Info Help OSVDBI Sporsor: ddNQ~ %‘ ., 5 he 0-

EMILANS)W!

User Status

‘,» MCOUM

_ Calf”? be

Resuzts: 5 : t‘iarrozv‘Searcb any. Doctriptmn: Score :1] m

Search Query: vuln title: buffer overflow r. date: Mummy 1, 2006 9 date: December H, 2006

OSVDB ID Disclosure Date 11th

231;; 2006-0303 .. -

()UiLk heartlnw

Wm ' ‘ Wool 231112 20060340

”m '°L°°'“° :93 NETGEAR W6111v2 Wireless Driver (woulvzsvs) Beacon Request
m 2006-11-16 M mo

me {Gal erOve W

Alth‘l'lIHt‘lllt‘lll‘a

‘5» ‘1:ab;-,qi~.§nrn;f ..,—,_..‘ i'fi'ili‘i..’"“i' Arm r» v; s -.=_ :[zr-qmi-i—n,‘ ‘r\.'r'.'1,'::i£ .g->',nj—“., , n H.214; ‘Z m-wjri-n V0""._'r.: _,r..‘.').a- array;

1"": o“ir'rf+r..req .{". #".v"_ rm. ur,‘ parlirr it! ,5; —r.. 4‘5Q"Vhiiv”'r'7il’l r ea'lr- .a K'J- i7="-i.df"t’, 06'1", tzh'l‘ ‘arl‘r‘.\"'v' l

"" r’ r ;e“ev.‘--a:i-1';runceraze. .l-an'va-e:a':im;'u:-v:r ;‘-ra. tx‘ Reflex-Li'ir'u‘ta’tr‘s. '3'! on v

; 'Fu;,' 3'“ If": "raw “ 7F 3* “71.15“ ‘u'nvs'31.‘t w' I-”: ll. -"- ’T'lh'rru ‘ -

Drivgq fitgtgmgcg Tgrmg of 913

Figure 1.12. The search results returned when searching for buffer overflows for the year 2006

Secunia offers an advisory, vulnerability, and virus database. Browsing options

include historic advisories, listed by product, and listed by vendor. Categorization within

Secunia includes Impact, Critical Levels, and Where. Users are allowed to input key

words as well as select an option from the different categorizations when searching

through the database. Figure 1.13 shows a snapshot of the advanced search part of the

website. Figure 1.14 shows the results returned when searching for buffer overflow

2006. 2006 was added into the search to find vulnerabilities only from the year 2006.

However, vulnerabilities from 2007 are featured on within the results in figure 1.14.

Overall, Secunia offers a great search tool combined with basic classifications.

25

SECU n IS Verified Vulnerability Intelligence

§can Onling El Headline

Personal 1P5“ Gent E] Software/OS

Network (3511 Body Text

 CVE reference

Secunia Advisories

M

Historic Advusones

gifted fix Prgdgg’g

thgd fl! Vendor

mostly: Z graph;

§egnia Research

Report VUinel’abliltt

Abom Advusones

Figure 1.1 3. Secunia vulnerability search

26

ix'av Remus '

where It matters.

Home MM Log Mailing List; _§§ flLog Advemse J Seard'i

Solutions For [Search Advisory. Vulnerability, and Virus Database JW

nt' Profession I ‘ Search 18 mole Searchl i » --- iBEA—J : l . _ :: ‘
§eg|nty Vendors F ii Search J l .. , . i

Free Solutions For You can enclose search terms with " and ‘ for better search results. i "1 - - ~ - ‘1 .‘

99W 9 All Content 0 Seounia Adwsones 0 virus lnlonnation L..._..__._.._.l

Journalists a Media

Software Inspectors 59"!" within: Secunia PSI

Scan | Patch | Track

Free Download

Setunla Poll

Do you think it's

important to read

Setup/User GUIdes for

applications for use

within your network?

ores, I do it all the

me

OYes, but I do it

rarely

IFound: 483 Secunia Security Advisories, displaying 1-25]

Sort by: Match, ling,m

ml: not;
m nt Iti l Pr d cts Su ortSo ActiveX on rols Buffer 0v rflow 2007-02-23

JustSystems Multiple Products Buffer Overflow Vulnerability 2006-12-05

Borland Products idsql32.dll Buff_e_r Overflow Vulnerabim 2006-11-29

gistSvstems lchitaro Document Property Btfir Overflow Vulnerability 2006-10-18

IDSWitch Mail Server SMTP Serwce Buffer Overflow Vulnerability 2006-09-07

Ichitaro Document Viewer Buffer Overflow Vulnerability 2006-08-21

Microsoft Visual BaSlC for Applications Buffer Overflow 2006-08-08

EowgrArchiver DZIPSBZDLL Buffer Overflow Vulnerability 2006-07-25

Microsoft Office lmaqe Filters Buffer Overflow Vulnerabilities 2006-07-11

Microsoft Excel Multiple Buffer Overflow Vulnerabilities 2006-07-06

McAfeg SecurityCenter Subscription Manager Buffer Overflow 2006-08-01

Alien Arena 2006 Gold Edition Multiple Vulnerabilities 2006-03-08

Svmantec Support Tool Activex Control Vulnerabilities 2006-10-06

Microsoft Word Code Execution Vulnerabilities 2006-09-05

Mandriva update for xine-lib 2006-06-26

Microsoft Office Multiple Code Execution Vulnerabilitijes 2006-03-14

F-Secure Anti-Virus Archive Handlinq Vulnerabilitie_s 2006-01-19

gflphwz GD GIF Handling Buffer Overflow Vulnerability 2008-02-13

aI t di C stal Re orts RPT Processm Buffer ve low 2007-09-11

Media Player Classm FLI File Processing Buffer Overflow 2007-08-24

Migrfioft Directx RLE Compressed Targa Image Processing guffer Qvgrflgu 2007-07-19

Avgxa Products (308 "DWARF" Buffer Overflow Vulnerabilities 2007-07-04

Qiscp Products PHP "htmlentitigsm and "htmlspgcialghgrst 1" Suffer Qvgrflows 2007-04-26

15M Lotus Domino Script Insefiion and Buffer Qvgrflgws 2007-03-28

gentoo mqv Buffer Overflow Vulnerability 2007-03-27

Next 25 matches >>

Figure 1.14. A screenshot of results from buffer overflow2006 as the key word search

1.4 Trend analysis

NVD is the only vulnerability database with any sort of trend analysis. Figure

1.15 shows the trend selections that one can make. The image shows that the capabilities

are basically the same as the search, but there is no key word search. Therefore, the user

is not able to gain any trend analysis from customized search results. Figure 1.16

demonstrates the statistical results while Figure 1.17 shows the graphs of the results from

choosing buffer errors from the Vulnerability Category and selecting the time period of

January 2003 through March 2008. Figure 1.16 indicates that the statistics are not being

calculated correctly. Within the statistics given, it claims that there are 29 buffer error

vulnerabilities in 2006 which constitutes to 0% of the makeup of vulnerabilities. It is not

27

possible for 29 vulnerabilities to constitute for 0% of the vulnerabilities in 2006. The

error is due to the high number of vulnerabilities in 2006. There should still be some way

to computer the actual value or provide a more accurate computation.

28

I Sponsuie" l2]

0H5 Natmm 0,:w Sec-mt., Division/USCERT

National Vulnerability Database
utitoiiiatii q vi ll‘iai lity iiiiiit'iqe ment sé'rtiiity ~asure-iiiunt, andt ")111pl' am»: i, wet » ii:t_i

Vulnerahllltiu checklists Product DIdlonary Impact Metrm Data Feeds

'm-cv'rr. . "r i me ~ -. ”K‘N'fll ~12: 1“ r‘vnv s g a. «w-

CVE and CCEStatisticsmQueryPage

It“ Ill-Rb

This 15 a general purpose vulnerability statistics generation engine Use it to graph and chart vulnerabilities discovered

Wlthlr‘ a product or to graph and chart sets of vulnerabilities containing particular characteristics (e g. remotey

exploitable buffer overflows) These calculations may take up to several minutes to be generated depending on the

complexiity of the statistic requested

Important Note Linux distributions are often made up of a large collections of independently developed software and

it is sometimes difficult to determine which software packages should be conSidered part of the operating system and

which should be conSIdered independent but merely included along Wlll‘i the operating system in addition, some

vulnerabilities occur Wllhll‘l the Linux kernel and for those vulnerabilities we do not enumerate all of the hundreds of

Linux distributions. Thus, the statistics related to Linux must be interpreted carefully. We will be working to provrde

batter statistics for Linux distributions.

Vendor ufiuuumuweza

Product flfifl‘lflflflfilflflfll

VOIiMI " chnou a Vendor or Product "

Search start date: AnyMonmv AnyYeor v

Search and date: Any Month v AriyYeor v

CV88 Verslon 2 Metrics:

Vulnerability Severity: Any _ v

Access Vector Any 7 i i v

Authentication: Any v

Confidentiality: Any 7 iv

1ntegrity: Any v

Availability. 4 Any vi

Access Complexity: Any v

Vulnerability Category: Any i ., i ii i v

/\

Use only vulnerabilities that Kg: Software Flaws (CVE)

have the followmg Misconfigurations (CCE), under development

assouated resources; ';

J US-CERT Technical Alerts

0 US-CERT Vulnerability Notes

0 US-CERT Technical Alerts or Vulnerability Notes

0 OVAL Queries

l I [(2 li Pmnq Smyrna; (‘ 25335;}; am

Send comments or rugqutwn: to rigging 92!

Figure 1.15. Criteria selection when using the NVD statistics query page

29

Sponsored by “ \ ¥

‘9' DHS Martional Cyber Security Division/US-CERT _ ' ~

National Vulnerability Database

automating VUlllefdblle managemen‘tmrity measurement and compliance LlIchlng

Vulnerabilities , #3 v Product Dictionary

Home luv/scu- Lemma...

Statistics Results Page

Impact Metrics

[WM-u 1m Vim"“-"fifwbm:3 3,,

New QWJ

Calculating general vulnerability statistics

Calculating user requested vulnerability statistics

Generating tables and graphs

Below are a table and graphs with data matching the characteristics you specified on the Statistics Query Page.

You have asked for statistics on vulnerabilities with the following limitations:

9 Occurred after January, 2003

o Occurred before April, 2008

0 Has the following vulnerability type: Buffer Errors

Table of Data Matching the Above Limitations

Year 2008 2007 2006 2005 2004 2003 ‘

a or Vulns 174 . 387 30 24 17 46 l

%ofTotal9% 6% 0% 0% 1% 3%!
Figure H6. The statistical results of choosing buffer errors from the Vulnerability Category and selecting

the time period of January 2003 through March 2008

30

Graph of Data Ilatchhrg the Above Unanimous

 ¥ l l l
 i i l

3 l l !

A

‘ 8
l

a

t V 1

u
d
v
m
m
m
o
i
‘
u
u
w
m

j

I

 A
V“

u
a
r
w
m
a
u
w
w
m

2008 2.07 2'“ 2'5 2.04 2.3

m

Figure l.l7. The graphical results of choosing buffer errors from the Vulnerability Category and selecting

the time period of January 2003 through March 2008

31

CWE also offers a form of trend analysis.(Christey) Because CWE is not a

vulnerability database, they only offer the statistics of CVE vulnerabilities broken down

into 41 classifications. The trend analysis is more of a statistical study which offers only

tables. A sample of the analysis is shown by Figure 1.18. The rows are ordered by the

classifications used while the columns indicate the totals from 2001 until 2006. Anyone

that uses the provided trend analysis has no concept of which vulnerabilities fall into the

classifications used in the analysis. Therefore, the user would have a hard time making

any changes to the classifications. One is also able to find the importance of a graph after

reading from the large tables as it is hard to put the tables into perspective.

Table 1: Overall Results

TUIAl)()0l 1““))UU.$ 2004)U(l.'))UUI)

Total 18009 1432 2138 1190 2546 4559 6944

[1] xss 13.8% _08.7% (2) 07.5% (2) 10.9% (2) 16.0% (1) 18.5% (1)

2595 31 187 89 278 728 1282

[2) but 12.6% 19.5% (1) 20.4% (1) 22.5% (1) 15.4% (1) 09.8% (3) 07.8% (4)

2361 279 436 268 392 445 541

t 3] sql-lnjoct 09.3% ' ' 03.0% (4) 05.6% (3) 12.9% (2) 13.6% (2)

1754 36 142 588 944

[4) php-lndude 05.796 1. . 02.1% (6) 13.1% (3)

1065 1 7 12 36 96 913

[5) dot 04.7% 08.9% (2) 05.1% (4) 02.9% (5) 04.2% (4) 04.3% (4) 04.5% (5)

888 127 110 34 106 196 315

[6] lnfoloak 03.4% 02.6% (9) 04.2% (5) 02.8% (6) 03.8% (5) 03.8% (5) 03.1% (6)

646 37 89 33 98 175 214

[7) dos-malform 02.8% 04.8% (3) 05.2% (3) 02.5% (8) 03.4% (6) 01.8% (8) 02.0% (7)

521 69 111 30 86 83 142

[8] Int: 01.8% 04.5% (4) 02.1% (9) 03.5% (3) 02.8% (7) 01.9% (7) -

341 64 45 42 72 87 31

[9] twat-string 01.796 03.2% (7) 01.8% (10) 02.7% (7) 02.4% (8) 01.7% (9) 00.9% (11)

317 46 39 32 62 76 62

[10] crypt 01.5% 03.8% (5) 02.7% (6) 01.5% (9) _01.5% (10) 00.8% (13)

278 55 58 18 22 69 56

[11] 9811! 01.3% 02.5% (10) 02.2% (8) 01.1%(12) 01.3%(11) 01.5%(11) 00.8%(14)

249 36 46 13 33 67 54

[12] perm 01.3% 02.7% (8) 01.8% (11) 01.3% (11) 00.9% (15) 01.1% (13) 01.1% (9)

241 39 39 15 24 48 76

Figure 1.18. A section of the CWE trend analysis

32

OSVDB has announced plans for a statistics project to for Google Summer of

Code 2008.

This project is to create a flexible framework that can provide useful statistics on

vulnerabilities from OSVDB. This project should take in consideration all of the

fields and classifications in OSVDB.

-Should create and generate standard/most popular graphs and charts each day

and make available

-Should create statistics that allows very flexible/detailed stats to be dynamically

generated on demand by user

-Some examples of statistics required:

-# Vulns based on Disclosure Year

-Detailed stats based on each vuln classification options (ALL OPTIONS)

-# of vulns by Vendor

-# of vulns by Product

-# of vulns that do not have a solution (and by vendor)

-Time from when a vuln was discovered and then disclosed

-Create stats application that allows user to dynamically generate stats based on

their own requirements.

-Trend the number of vulns released per day ("OSVDB GSoC 2008 Project

Ideas")

Although this has not yet been implemented, it helps to illustrate the need for

vulnerability analysis. From the list of features that are provided, VACT will be able to

accomplish all tasks except for finding the time from when a vulnerability was

discovered and then disclosed and the number of vulnerabilities released per day. The

user will be able to use the options within VACT to accomplish all other trends.

Below is a summarization of the problems that were found within the

vulnerability databases.

0 Each vulnerability database only allows one search at a time

0 There is no way to obtain a copy of the search results

0 Each of the vulnerability databases returned a different number of results

when searching for buffer overflow within the year 2006.

0 US-CERT contains a truncated list of vulnerabilities

33

NVD does not follow the vulnerability classifications

OSVDB only searches through the vulnerability title

US-CERT, Secunia, and OSVDB do not offer trend analysis

NVD trend analysis is not customizable

34

Chapter 2:VACT Overview

2.1 Framework

Customizability is an important characteristic of this project which sets it apart

from other tools. One way to provide customization is to use a powerful yet simple

programming language that can allow the user to make some changes without the need to

develop a tool to for the task that is being accomplished. VACT requires no

programming knowledge to work, however the knowledge of programming allows one to

customize the tool. Another way to aid users is to provide a flexible tool that has enough

range to supply useful information to a variety of users.

The purpose of VACT is to provide a quick and easy way to search through and

analyze vulnerabilities. VACT brings together vulnerability classification, vulnerability

search, and trend analysis. In order for this to happen, the tool needs to provide a

common interface so that the user does not have to search through various vulnerability

databases for vulnerabilities. For the interface to be successful, it must be able to

accommodate the needs of many different users. To make this possible we rely on a

simple, robust front end solution.

In order to provide a solid framework, Python is the chosen programming

language. It offers a powerful yet robust object—oriented environment. VACT is set up

so that it must gather vulnerabilities from vulnerability databases and then parse through

a large amount of text. Python does especially well with string processing and Internet

retrieval.

35

2.2 Classification and Search

We found a lot of disparity within the classification schema of vulnerability

databases. Even within all the various classification options, we were not able to select

the vulnerabilities out of the databases that we wanted. We could not find a vulnerability

database that could find buffer errors within the past year that allowed privilege

elevations. Therefore, a main feature within the Vulnerability Analysis and

Classification Tool is to allow the user to specify the classifications. Our approach

allows the user to preselect all the keywords that are necessary and then perform a search.

Another feature for user convenience, which no vulnerability databases have the ability to

do is to allow the user to perform multiple vulnerability searches for comparison. Figure

2.] shows of screenshot of Vulnerability Analysis and Classification Tool. Within the

figure, one is able to see the simplicity of the design. Section 3.2 explains the user

interface in detail.

Vulnerability Analysis and Classification Tool

1 [Add Variable]

Start Date: LJariuary" [2)[2008 3..

W995 930991-181 NE}

51' US Cert

: National Vulnerabiity Database

’3 Open Source Vinnerabiity Database

[Add Search] LFind Vulnerabilities]

Figure 2.1. A Screenshot ofVACT when first initialized

36

Allowing the user to specify the classification creates a better tool than if it were

using preclassified vulnerabilities. Even though CWE has so many great features, it is

constantly changing. From December 2007 to April of 2008, CWE has gone from draft 7

to draft 9. As the drafts changed so have the various classification schemas that are used

within the drafts. The classifications given do not have all the possible vulnerabilities

listed with them, therefore, one would have to classify each vulnerability according to the

classification tree within CWE that is being used. Another limitation to using CWE is

that when a new classification is made, the classification is not instantly changed within

the table. Allowing users to search for vulnerabilities by making their own classifications

alleviates the problems stated above as the user now has the freedom to use CWE as a

reference or make up their own classifications.

2.3 Trend Analysis

After the vulnerabilities are gathered, VACT returns the results to the user in

graphical form. Figure 2.2 illustrates an example of an output page returned to a user.

The user is also given an option to download a CSV file containing the vulnerabilities

found to match the classification criteria. A simple set of statistics are also returned from

the search. The statistics include the total number of vulnerabilities, the total number of

vulnerabilities within each category, and a breakdown of which characteristics are found

within the vulnerabilities. There are currently no vulnerability databases which allow a

user to download the vulnerability search results or that returns a user trend analysis

information based upon the vulnerability search results. Section 4.] will explain the

trend analysis functionality in farther detail.

37

Results

Analysis 1

u
n
b
—
I
—
l
-
l

‘
M
U

N
u
n
o
q
u
l
n
o
i
a
b
i
i
l
i
o
s

H
M
U
§
U
O
N
O
O

Ibuflorovorflow

000102030405060708

Year

20002001 2002 2003 2004 2005200620072008total

Total 31 300 374 257 339 234 416 366 67 2404

Matchlnql B2 121 59 63 66 93 113 23 601

Percent 3.2 20.7 32.4 23.0 18.6 23.2 22.4 30.9 34.3 25.0

Analysis 2

H
u
m

0
1
V
i
d
n
o
r
a
b
i
fl
i
o
s

000102030405060708

Year

2000 2001 2002 2003 2004 2005 2006 2007 2008 total

Total 31 300 374 257 339 284 416 366 67 2404

Matchtnql 64 121 61 65 69 94 HS 23 611

Percent 3.2 21.3 32.4 23.7 19.2 23.2 22.6 30.9 34.3 25.4

Figure 2.2. Results page from VACT

38

39

Figure 2.2 continued

0C01 C20

.

V.
v 0435NC703

2
:
3

0
.
5
8
3
.
1
9
2
.
»
.
.
.

a
m
i
a
fi
m
m
fi
m
fi

Percent 3.2 21.3 33.2 24.1 22.1 25.4 25.0 32.8 34.3 26.7

31

Matching! 64 124 62 75

300 374 257 339 284 416 36

72

2000 2001 2002 2003 2004 2005 2006 2007 2008 total

102 120 23 643

2404Total 667

Year

000102030405060708

2
:
3
2
<
1
5
.
B
e
a
c
o
n

Analysis 3

Chapter 3: Classification and Search

3.1 Strategy

As one has gathered from the background, two key components of Vulnerability

Analysis and Classification Tool are the classification and search feature. The

implementation of these tasks consist of three sections. The first task is gathering the

user’s vulnerability classification schema that will be searched. The next task is a behind

the scenes act of gathering the database information. The third and final task is

performing the search upon the gathered data.

Before going into detail of how the search is configured, I will first talk about the

search strategy that is being used. String search was chosen on the basis that it offers a

simple yet effective search and the vulnerability descriptions offer enough detail to make

it happen. When making this choice there were a few tradeoffs that needed to be

considered. Vulnerabilities are submitted to the various databases by various researchers

and organizations, so the wording is not always consistent between vulnerability

descriptions. Another important consideration that we take into account is that the

descriptions accurately depict the vulnerability. Before someone submits a vulnerability

and offers a description, they must have enough knowledge of the situation to know

where the error is occurring. Therefore, we argue that if one has enough knowledge to

find and submit a vulnerability, then the person is able to accurately describe where the

application is failing.

40

3.2 User Interface

Vulnerability Analysis and Classification Tool uses a web-based interface to

interact with the user. It is composed of an html form which relies on JavaScript to help

add words and new search boxes. As seen in figure 3.], the user interface allows for the

user to input classification variables for a search, add another search, and submit the

search queries. For any individual search, the user is allowed to specify the vulnerability

database, the time frame to search, and any classification words or phrases that should be

used within the search. To add a word or phrase, the user must input it into the associated

textbox and select Add Word. The Add Word button calls a JavaScript function which

adds the word or phrase into the html form. Finally the user is allowed to submit the

search. Clicking the Submit button sends the associated form of search variables to the

python search and analysis code.

Vulnerability Analysis and Classification Tool

i [Add Variable]
l 4.-.

Start Date: 11:115de Efl 2008 E]

EndDatcr .-s’:m@rx--__ElZOP§E
CO? US Cert

{’3' National Vnhaabiity Database

C" Open Source Vdnaabiily Database

[Add Search] [Find Vulnerabilities]

Figure 3.] A screenshot of VACT when first initialized

41

3.3 Functionality

Upon reception of the search form, the database variables must be obtained.

There are two main methods to obtain the vulnerability information from the

vulnerability databases are crawling through the web site to gather the information that is

necessary and downloading a premade file meant for download. Crawling through the

site is necessary as some sites do not allow one to download the information that is

available. Once the vulnerabilities are downloaded, no matter what the source, they are

put into a Python dictionary. The dictionary uses the vulnerability name followed by the

date as a key and a tuple containing the vulnerability description as a set paired with the

date for the value.

The search function accepts the dictionary of vulnerabilities as well as the list of

the classification words. The function loops through each vulnerability checking for each

classification term in the list. If the classification is not found within the vulnerability

description, then it is removed from the dictionary of vulnerabilies. Once the search has

completed, we send the results to the trend analysis.

3.4 Efficiency

The runtime of VACT is dominated by the amount of data that must be

downloaded. To illustrate the runtime of the search function, several test scenarios have

been setup. The first test set uses the US-CERT vulnerabilities, which is composed of

nearly 2,400 vulnerabilities. The vulnerabilities must be downloaded using the web

crawler method. The second test set contains the 2007 NVD vulnerabilities which

contains over 6,000 vulnerabilities. The third test set contains the NVD vulnerabilities

from 2003-2007. The third test set contains over 22,000 vulnerabilities.

42

Downloading the first set of vulnerabilities, took an average time to be close to 1

minute and 30 seconds. While downloading the second set, from NVD took an average

of 1 minute and 45 seconds. The third set took the longest at 5 minutes to download.

Therefore, we recommend a preconfigured download if at all possible. The composition

of the dictionary from each set of vulnerabilities took an average of one second to fill.

Using the same vulnerabilities within the setup above, tests were run to see how long it

would take to return the search results after the vulnerabilities are gathered. In the test,

various trials were done by varying the classifications from 1-6 words and the number of

searches from 1-6 searches. For example, one test contained four searches consisting of

(buffer and overflow), (buffer), (overflow), and (exception, microsoft, the, a, and, .dll).

The search for the example just like all other searches returned the results of all searches

within two seconds for each trial set of vulnerabilities. Another test was run on the third

set to make sure that there would be no problems searching the data. The third set was

set to run with twelve search words. The search was returned within one second.

3.5 Naive Bayesian Classification

String search is a fast and efficient way to match key words, yet there is a

limitation to the string search. There are some vulnerability classifications which cannot

be summarized within a reasonable amount of key words. To help with any such cases,

Vulnerability Analysis and Classification Tool includes a generic naive Bayesian

approach. Naive Bayesian is a classification algorithm that uses the probability of

occurrence to classify an attribute. The naive Bayesian classification will take a csv that

is returned from the string search as an input. The descriptions of each classification are

combined into a dictionary with the words as the key and the number of occurances as the

43

value. Once the dictionary is filled, the common words are stripped out. The Algorithm

is now ready to find words that only occur once and only in one class. When a single

word is found, it is tagged as unknown. The unknown words are added together as a

special case that will handle words that do not belong into each class. We now have the

words all sorted and categorized according to classification, the next step is to compute

the probabilities of each class. P(c) is computed for each class by taking the number of

occurrences of each class and dividing it by the sum of class occurrences. P(word | c) is

computed for each word within the class by taking the occurrence of the word and

dividing it by the total words in each class. Now that the probability of a classification

and probability of a word within a classification are computed, the algorithm is ready to

classify vulnerabilities. Figure 3.2 shows pseudo code used to compute the probability of

a vulnerability description belongs to a classification. After computing the probability of

each classification, the best one is returned and the vulnerability is associated within that

classification.

For each class:

Pclass = P(c)

For vsonds in sentence:

Pclass = Pclass ‘ P(word | c)

Figure 3.2. Psuedo code showing how a vulnerability’s probability is computed according to the naive

Bayesian classification

Naive Bayesian classification is offered as a classification aide to help enhance

the string search. Naive Bayesian, as any other approaches, has its limitations. The

largest limitation is that it is confined to the classifications that are given to the algorithm.

If only two classifactions are given, any vulnerability must fall into one of the two

possible classifications. When running the algorithm after computing the probabilities of

44

the classifications, the user may find that the probability of a vulnerability does not fall

into its original classification. Despite the limitations to naive Bayesian classification, it

presents users a way to search find new words and vulnerability classifications.

4S

Chapter 4: Trend Analysis

4.1 Evaluation of Features

The second key element within the thesis is the trend analysis as there is currently

no implementation which encompasses the user’s search results. The trends given are

simple and efficient. They help to give the user a basic overview of how the

classification schema presented fits in with the vulnerabilities. The trend analysis works

by processing the results that are returned by the search and turning them into graphs,

statistics, and a CSV file.

The results page for searching US-CERT for buffer overflow, buffer and overflow

for the years 2000-2008 can be seen in Figure 4.1. Accompanying each search is a graph

with the number of matching vulnerabilities. The matching vulnerabilities are the

vulnerabilities that match the classification as defined within the search. The table

associated with the graph shows the total number of vulnerabilities found per year, the

number of matching vulnerabilities found per year, and the percent of vulnerabilities

which are matching per year. If a user clicks on the words Analysis, then a CSV

containing the matching vulnerabilities will become available. For example, the CSV for

Analysis 1 would contain 601 entries. The CSV file contains the identification number of

the vulnerability within the database searched, the date the vulnerability was published,

and the description of the vulnerability.

46

Results

Analysis 1

4
.
.
.
.
.
.

‘
N
u

N
u
n

0
1
V
u
l
n
a
m
b
fl
i
o
s

‘
n
u
n
u
a
q
a

Ibufleroverflow

000102030405060706

Year

2000 2001 2002 2003 2004 2005 2006 2007 2006 total

Total 31 300 374 257 339 284 415 366 67 2404

Matchlnql 62 121 59 63 66 93 113 23 1301

Percent 3.2 20.7 32.4 23.0 18.6 23.2 22.4 30.9 34.3 2.5.0

Andy-in 2

H
u
m

0
1
V
u
l
n
e
r
a
b
i
l
i
t
i
e
s

Year

2000 2001 2002 2003 2004 2005 2013-5 2007 2008 total

Total 31 30-0 374 257 339 284 416 368 67 2404

Matchingl 64 121 61 65 69 94 113 23 611

Percent 3.2 21.3 32.4 23.7 19.2 23.2 22.6 30.9 34.3 25.4

Figure 4.1. Results page from VACT

47

Analysis 3

130—-

“:20-

£110-

! eo-

Eg -,
I I

3 so— ; 2
° 40~ 5 I

Ear 5 g

20- 5 g a

10- ’

- .
U I I l l I

oomoeosmosoeome

Year

2000 2001 2002 2003 2004 2005 2006 2007 2008 total

Total 31 300 374 257 339 284 416 366 67 2404

Matching! 64 124 52 75 72 102 120 23 543

Percent 3.2 21.3 33.2 24.1 22.1 25.4 25.0 32.8 34.3 26.7

N
u
r
n
0
|
V
d
n
o
m
b
m
l
o
c

Figure 4.l continued

The graphs are computed with the aid of PyChart. (Saito) PyChart is a graphing

utility written by Yasushi Saito. VACT contains a function linking the search results to

the graphing utility. Once the images are created, they are displayed within the results

48

page. Refem'ng back to Figure 4.1, one can see that the graphs given are a breakdown of

the vulnerabilities over time. The bar chart plots are returned per vulnerability

classification searched one in terms of years. The results from each search are also put

into a large bar chart.

The CSV file is made by writing the categories used within the search to file. The

basic format includes vulnerability id, vulnerability date, and vulnerability description.

Because the dictionary contains the key of vulnerability name, vulnerability date with the

value of the vulnerability description, it only takes one loop through each of the values to

create the CSV. While looping through to create the CSV, the vulnerabilities are counted

by their associated year. Therefore creating the graphs becomes easy as counting the

values contained within each list. The set of statistics returned includes the breakdown of

vulnerabilities per year as well as the total vulnerabilities found.

4.2 Efficiency

In the last chapter, we found that VACT is limited by the time it takes to

download the vulnerability lists from each database being searched. Even with the

download time being the dominate factor, we would like the trend analysis to be efficient

like the searching. To perform the trend analysis test setup, the same sets of

vulnerabilities are being used that were used within the search (USCERT vulnerabilities,

NVD 2007 vulnerabilities, and NVD 2003-2007 vulnerabilities). Each set of

vulnerabilities was used as a result set that was passed to the trend analysis. Generating

the statistics and writing to the CSV file, took less than 20 seconds. Creating graphs for

each of the sets took an average time of 5 seconds.

49

Chapter 5: Real World Example

5.1 Problem

Every now and again there is an article stating which operating system provides

the best security. Many times the writer of the article bases the fact on the number of

possible vulnerabilities that exist within the various operating systems. At one point, the

author based the security on how fast that vulnerabilities have been patched. One is able

to use Vulnerability Analysis and Classification Tool to verify that the user is giving

accurate results.

5.2 Results

When searching for the results I was faced with some interesting problems.

Should the results come from US CERT because they deal only with severe

vulnerabilities, NVD because they offer all CVE vulnerabilities or OSVDB because it

offers the most vulnerabilities. To show the flexibility and why authors might report

various results, I decided to compute the results from each database. Another problem

comes within the classification that was used to find the resulting set of vulnerabilities.

The set of vulnerability classifications that were decided upon is illustrated within Tables

5.1 and 5.2. Both tables provide a summary for the results obtained using VACT. Table

5.1 is specific to the Microsoft classifications that are used while Table 2 is specific to the

Apple search classifications that are used.

Figures 5.1-5.18 display the results returned by VACT. The data obtained from

VACT illustrates a vast difference not only with the databases, but also within the

classification that is used for the search. There is currently no quick and easy way to

achieve the same results within the individual vulnerability databases. Within each

50

vulnerability database, the search would need to be run a minimum of 13 different times

using the various classifications indicated within Tables 5.1 and 5.2. After each search,

the user would need to record the results returned to gather the statistics. The individual

would then need to compute the trends. Even after going through this process, the user

would not have lists of vulnerabilities found by each classification.

When viewing Table 5.1, one will find that Microsoft classifies 474

vulnerabilities within US—CERT, 852 Vulnerabilities within NVD and 771 vulnerabilities

within OSVDB. One will also find this variance throughout the search results. To gain

an accurate scope of the vulnerabilities, one would need to look through the CSV files to

find the discrepancies within the vulnerabilities returned to obtain an overall count of

vulnerabilities for both Microsoft and Apple.

51

NVD

US-CERT

OSVDB

Search String

Microsoft

microsoft, windows

microsoft, windows, xp

microsoft, windows, vista

microsoft, xp

microsoft, vista

windows xp

windows vista

XP

Vista

Search String

Microsoft

microsoft, windows

microsoft, windows, xp

microsoft, windows, vista

microsoft, xp

microsoft, vista

windows xp

windows vista

Xp

Vista

Search String

Microsoft

microsoft, windows

microsoft, windows, xp

microsoft, windows, vista

microsoft, xp

microsoft, vista

windows xp

windows vista

Xp

Vista

Results

1116

432

260

46

552

46

399

55

1887

67

Results

422

131

32

2

131

40

319

Results

1128

376

167

40

490

40

276

51

2079

72

Percent of Total

4.08

1.58

0.95

0.17

2.02

0.17

1.46

0.20

6.90

0.25

Percent of Total

19.19

5.96

1.46

0.09

5.96

0.09

1.82

0.27

17.74

0.27

Percent of Total

2.71

0.90

0.40

0.10

1.18

0.10

0.66

0.12

5.00

0.17

VACT Figure

5.8

5.8

5.9

5.9

5.10

5.10

5.11

5.11

5.12

5.12

VACT Figure

5.1

5.1

5.2

5.2

5.3

5.3

5.4

5.4

5.5

5.5

VACT Figure

5.15

5.15

5.16

5.16

5.17

5.17

5.18

5.18

5.19

5.19

Table 5.1. Summary of results and classifications from VACT pertaining to Microsoft

52

NVD

US-CERT

OSVDB

Search String

Apple

mac os x

apple, mac os x

Search String

Apple

mac os x

apple, mac os x

Search String

Apple

mac os x

apple, mac os x

Results

524

442

264

Results

139

64

54

Results

351

477

102

Percent of Total

1.92

2.62

.97

Percent of Total

6.32

2.91

2.46

Percent of Total

0.84

1.15

0.25

VACT Figure

5.13

5.13

5.14

VACT Figure

5.6

5.6

5.7

VACT Figure

5.20

5.20

5.21

Table 5.2. Summary of results and classification from VACT pertaining to Apple

53

Results

Analysis 1

.. eon-r

g 70.01

a con-4

3 50.0-

3 40.0-

‘g 30.0-

2 20.0-

10.0“

0.. [I Microsoft]

@0102030405060706

Your

2003 2001 2002 2003 2004 2005 2006 2007 2008 total

Total 31 249 335 197 339 254 326 366 72 2199

Matching 5 31 62 47 64 54 88 61 10 422

Percent 16.13 12.45 16.99 23.861838 21.216263916371339 19.19

Andy-lo 2

3' 20w

3.-

3
3 10.0“
D

05 [I memoir windows]

mmmmmmmwu

Vet

2060 2001 2002 2303 2004 2005 2006 200'? 2008 total

Total 31 249 365 197 339 254 326 1936 722199

Matching 0 13 10 18 26 18 19 26 1 131

Percent 0.00 5.22 2.74 9.14 7.67 7.09 5.83 7.10 1.39 5.96

Figure 5. l. VACT results searching for Microsoft and Microsoft windows within US-CERT

54

Analysis 3

8.0-

; 7.0“

g 6.0--

9 5.0—

5 4.0‘

5 3m

2w

1.0- \
“
\
\
“
“
“
\
\
\
\
\
\
\
\
“
\
\
\
\
N

 “
“
m
“
\
\
“
‘
\
‘

[U mmmmxp]

8
L
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

E

f

i
i a

cavioeoaormC001

2000 2001 2002 2003 2004 2005 2006 2007 2006 total

Total 31 249 365 197 339 254 326 366 722199

Matching 0 2 6 6 8 5 3 1 1 32

Percent 0.00 0.80 1.64 3.05 2.36 1.9? 0.92 0.27 1.39 1.46

Andy-ls 4

33’

H
u
m

o
i
V
u
l
n
o
m
h
i
i
l
i
u

‘
1

 C

i

I i l [i

WOICQCBMOSWO?“

200020012002200320042005200620072008tota|

Total 3! 249 365 197 339 254 326 366 722199

Matchm90000000202

Percent 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.55 0.00 0.09

Figure 5.2. VACT results searching for Microsoft windows xp and Microsoft windows vista within US-

CERT

55

Analyst. 5

F!

3 ‘
1

9

N
u
r
n
o
l
V
u
l
n
e
r
a
b
i
l
t
i
o
s

 [U nicrosoflxp]

 C
1

11
1

00

2000 2001 2002 2003200420052006 20072008 total

Total 31 249 365 197 339 254 326 366 722199

Matching 5 6 26 20 28 16 22 6 2 131

Percent 16.13 2.41 7.1210.15 8.26 6.30 6.75 1.84 2.78 5.96

Analysi- 6

2.05 g

g
E b}

S 1.0— {.33

> s:
3 :5:

5 l5 .

0 T i T 7 l r I 1 [El microsofl V1518]

W 01 02 03 O4 06 M 07 00

You

2000 2001200220032004200520062007 2006 total

Total 31 249 365 197 339 254 326 366 722199

Matching 0 0 0 0 0 O O 2 0 '2

Percent 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.55 0.00 0.09

Figure 5.3. VACT results searching for Microsoft xp and Microsoft vista within US-CERT

56

Analysis 7

51

M
o
m

o
i
v
u
m
r
a
b
i
l
t
i
o
s

 [El windowsxp]

W0102030405W0703

Year

20002001200220032004200520062007200810031

Total 31 249 365 197 339 254 326 366 722199

Matching 0 4 7 6 12 5 4 1 1 40

Percent 0.00 1.61 1.92 3.05 3.54 1.97 1.23 0.27 1.39 1.82

Analysis 8

9
‘

.
9

9
’

N
u
n
o
f
V
u
h
e
r
a
b
i
l
t
i
u

.
.

u

‘
1

‘
1

‘
l

'
1

"
l

 [I windowsvista]

C
I

1 l T l 101

000102030405060708

Year

20002001200220032004200520062007200810tal

Total 31 249 385 197 339 254 328 366 722199

Matching 0 0 0 0 0 0 0 5 1 6

Percent 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.37 1.39 0.27

Figure 5.4. VACT results searching for windows xp and windows vista within US-CERT

57

Analylln 9

5 .‘8‘ ‘1

N
u
n
o
l
v
m
r
a

 o-

000102030405060700

Your

20C0 2001 2002 2003 2004 M5 2006 2007 2008 total

Total 31 249 365 197 339 254 326 366 722199

Matching 10 36 112 54 72 27 39 31 9 390

Percent 32.251446306821411 212410631196 8.4712.5017.74

Analytic 10

5.0—

Ma
no

qu
in

er
ab

il
li

es

‘l
"l

‘1

d I

J

2000 2‘00! 2002 212-20 2004 2005 20013 21037 2W8 total

Total 31 249 365 197 339 254 326 366 722199

Matching O 0 0 O O 0 0 5 1 6

Percent 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.37 1.39 0.27

Figure 5.5. VACT results searching for xp and vista within US-CERT

S8

Analytic l 1

M
0
1
V
u
l
fl
fl
a
b
‘
m

.
5

N
)

U
&

9
.o

.0
9

‘l
'1
'

"1
f1

‘1

 lappie
000102080405060708

Year

200020012002200320042005 2006 20072008toul

Total 31 24.9 365 197 339 254 3126 3'36 722199

Matching 1 l 3 0 12 21 42 48 5 139

Percent 3.23 0.40 0.82 3.05 3.54 82712881311 6.94 6.32

Andy-lo 12

320.0"

25

G

%.> 0.0'7

‘o’

.5
0.. mucosa

000102030406060703

Yea

2000 2001 2002 2003 2004 2005 2005 2007 2008 total

Total 31 24.9 355 197 339 254 326 355 72 2199

Matching 0 1 2 0 11 16 21 11 2 64

P0100111 0.00 0.40 0.55 0.00 3.24 6.30 6.44 3.01 2.78 2.91

Figure 5.6. VACT results searching for apple and mac os x within US-CERT

59

Analynln 13

3 3

N
u
m

0
!
V
d
m
r
a
b
i
fl
i
e
s

6 ‘
1

 0" [annuamacoux]

WO1QNNOSNO7OO

You

200020012002 2W3 ”04200520062007 2W8 COIN

TORI 31 249 355 197 339 254 325 3'53 722199

Matching O O O 0 '7 15 2O 10 2 54

Percent 0.00 0.00 0.00 0.00 2.06 5.91 6.13 2.73 2.78 2.46

Figure 5.7. VACT results searching for apple mac os x within US-CERT

60

Analyst. 1

 0.. [I microsott]

000102000405N0700

Year

2000 2001 2002 2003 2004 2005 2006 2007 2008 total

Total 10201679 21701541 2478 5007 6555 6596 196 27342

Matching 60 '76 1'72 61 92 1'26 265 257 '7 1116

Percent 5.88 4.53 7.93 3.96 3.71 2.52 3.98 3.90 3.57 4.08

Analysts 2

c

.g 1030*

3

e

E
s

‘5

E
Z

c- [I mmmm |

wmumuwmwm

You

20002001 2002 20032004 2005 2006 2007 2008 beta!

Total 1020 1679 2170 1541 2478 5007 6655 6596 196 273412

Matching 1'7 22 45 19 44 59 102 120 4 432

Percent 1.67 1.31 2.07 1.23 1.78 1.18 1.53 1.82 2.04 1.58

Figure 5.8. VACT results searching for Microsoft and Microsoft windows within NVD

61

 \
\
\
\
“
“
\
\
\
\
\
\
\
\
“
\
\
\
\
\

[12 Worm: KO]
\
0

00010203003110

Year

08

2000 2001 2002 2003 2004 2005 2006 2007 2008 tout

Total 1020 1679 2170 1541 2478 5007 6655 6596 1915 27342

Matching 3 3 24 9 33 33 80 71 4 260

Percent 0.29 0.18 1.11 0.5-8 1.33 0.66 1.20 1.08 2.04 0.95

Analytic 4

8 ‘7

3 ‘1

N
u
m

o
l
V
d
n
o
r
a
b
i
i
l
i
v
s

3
8

b
b

1
1

 [I mmttw‘ndomvish I

G T 1111

WOIOEOGOJEISNWOS

2000 2001 2002 2003 2004 2005 2006 2007 2008 total

Total 1020 1679 2170 1541 2478 5007 6655 6596 196 27342

Matchma000000143246

Percent 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.65 1.02 0.17

Figure 5.9. VACT results searching for Microsoft windows xp and Microsoft windows vista within NVD

62

Analysis 5

1"‘1

N
u
m

c
l
V
u
l
m
r
a
b
i
i
t
i
e
s

8 ‘i
’

 [[1pr}

q
t

 u r ’1‘

0405000700

Year

111

000102

[11111

2000 2001 2002 2003 2004 2005 2006 2007 2008 total

Total 1020 1679 2170 1541 2478 5007 6655 6596 196 27342

Matching 14 21 74 21 54 61 163 140 4 552

Percent 1.37 1.25 3.41 1.36 2.18 1.22 2.45 2.12 2.04 2.02

Analyalsfi

«3r 3:

g 1
\

I1,3011“ §

1 .
>200" 3

'5 1

5103‘ S

1
s . .

n '31 Q

olilTTTl'l'FrEmmmwml

1130102030406060700

200020012002200320042005200620072008 total

Total 1020 1679 2170 1541 2478 5007 6655 6596 196 27342

Matching 0 O 0 0 0 0 1 43 2 46

Percent 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.65 1.02 0.17

Figure 5.10. VACT results searching for Microsoft xp and Microsoft vista within NVD

63

Analytic ‘7

 lflwiedow‘w]
000102030405060708

You

200020012002200320042005200620072006 total

Total 1020 1679 21701541 2478 5007 6665 6596 196 27342

Matching 5 20 38 27 57 59 95 93 5 399

Percent 0.49 1.19 1.75 1.75 2.301.18 1.43 1.41 2.55 1.46

Analysis 8

50.0"“

1
.
5

40.0“

n
b
u
l
t

3 30.1w

‘5

 1 T1 [Iwindowsvistaj

02030406060700

Your

1

000

2000 2001 2002 2003 2004 2005 2005 $307 2008 total

ToLa110201679 2170 15411 2478 5007 6655 6596 196 27342

Matching 0 0 0 0 0 1 1 51 2 55

Percent 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.77 1.02 0.20

Figure 5.1 l. VACT results searching for windows xp and windows vista within NVD

64

Analylln 9

.
§
§
.
§

3
1
3
3
3

N
u
n

0
1
V
u
l
n
e
r
a
b
i
i
t
i
o
s

8

”01020004050607“

Year

2000 2001 2002 2003 2004 2005 2006 2007 21308 total

Total 1020 1679 2170 1541 2478 5007 6655 6596 196 27342

14314211an 50 95 196 120 192 320 431 463 20 1887

Percent 4.90 5.66 9.03 7.79 7.75 6.39 6.48 7.021020 6.90

Andy-1| 10

50.o~
0

g ..
E 40.0

% sonfi

> —1

.5 20.0

g 10.0"

o T T
1 1 T

000102030405060708

Your

200020012002200320042005200620072008 total

Tota11020167921701541 3.1478500766556596 196 27342

Matching 0 0 O 0 0 2 10 53 2 67

P0110111 0.00 0.00 0.00 0.00 0.00 0.04 0.15 0.80 1.02 0.25

Figure 5.12. VACT results searching for xp and vista within NVD

65

Analysts 1 1

§ 3

N
u
m

0
1
V
u
l
n
o
n
b
i
i
t
i
o
s

_
3

‘
1

 .3..-

000102030405080708

You

2000 2001 2002 2003 2004 2005 2006 2007 2008 total

Total 10201679 2170 1541 2478 5007 6655 6596 196 27342

Matcnmo 8 10 30 27 32 68 126 222 1 524

Percent 0.78 0.60 1.328 1.75 1.29 1.36 1.89 3.37 0.51 1.92

Analyils l2

_‘3
‘

a

N
o
n

0
1
v
a
m
m
b
l
l
t
i
e
s

 mason]

a

00 01 02 00 04 05 06 07 00

Year

2000 2001 2002 2003 2004 2005 2006 2007 2008 total

Total 1020 1679 2170 1541 2473 5007 6655 6596 196 27342

Matching 0 4 8 19 50 113 108 140 0 442

Percent 0.00 0.24 0.37 1.23 2.02 2.26 1.62 2.12 0.00 1.62

Figure 5.13. VACT results searching for apple and mac os x within NVD

66

Andy“: 13

1000-1

h
i
m

0
1
V
u
l
m
r
a
h
i
l
l
i
n
s

 U wenacosr]

0001 02000405060706

200020012002200320042005200620072008 total

Totalto201679217015412478500766556596 19627342

Matching 0 0 1 3 16 29 B4 131 0 264

Porcent 0.00 0.00 0.05 0.19 0.65 0.58 1.26 1.99 0.00 0.97

Figure 5.14. VACT results searching for apple mac os x within NVD

67

Andy.“ 1

_§ ?

M
o
m

0
1
v
a
m
m
b
i
t
i
o
s

8 ‘
L

 [I microwflj

m0102080405060708

You

200020012002200320042005 20062007 2008 total

Total 1360 1675 2320 2739 4773 746? 1054? 8342 2357 41580

Matching 90 '77 190 99 125 102 222183 401128

Forum 6.62 4.00 3.19 3.61 2.62 1.37 2.10 2.19 1.70 2.71

Analyst. 2

90.01

a 00.0-1

L- 70.0“

g 60.0"1

3 50m

3mm

3 30W

20m

10.0- [E microsoflm'ndm 1

wmmmmwmwm

Vow

2000 2001 2002 2003 2004 2005 20062007 2008 total

Total 1360 1675 2320 2739 4773 7467 10547 8342 2357 41580

Matching 24 17 44 27 49 46 71 90 8 376

Percent 1.76 1.01 1.90 0.99 1.03 0.62 0.67 1.08 0.34 0.90

Figure 5.15. VACT results searching for Microsoft and Microsoft windows within OSVDB

68

Analytic 3

M
o
l
v
u
n
o
m
b
i
fl
m

a
3

8
8

8

'1
’

‘
1

‘
1

‘
1

'1
'

.
4
a
n
a
n

 121r:1 [limoohrmlomm]

000102

C
l

1

C71.1
You

8
4
:
3

8 8
4
m

2000 2001 2002 2003 2004 2005 2006 2007 2008 total

Total 1360 1675 2320 2739 4773 7467 10547 8342 2357 415-80

Matcnmg 2 4 28 6 16 14 50 42 5 167

Percent 0.15 0.24 1.21 0.22 0.34 0.19 0.47 0.50 0.21 0.40

Analysts 4

mod "

.1

3
E
! 20.0“

6
>

3103‘

5
2

- [I mmmm]

U 1 1 11T

morozoaowsosmoa

Year

2000 2001 2002 2003 2004 2005 2006 2007 2008 total

Total 1360 167.5 2320 2739 4773 7467 10547 8342 2357 41580

Matching 0 0 0 0 0 0 1 33 6 40

Fervent 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.40 0.25 0.10

Figure 5.16. VACT results searching for Microsoft windows xp and Microsoft windows vista within

OSVDB

69

Analysis 5

f3
“ 3

N
u
m

0
!
v
m
r
a
b
i
l
t
i
u

C
D

11111 l1[Dmicrosollxp]

02000405060708

You

H

2
4
:
:

2000 2001 200220032004 2005 2006 2007 2008 total

Total 1360 1675 2320 2739 4773 7467 10547 8342 2357 41580

Matching 18 22 94 45 49 35 123 86 18 4.90

Percent 1.32 1.31 4.05 1.64 1.03 0.47 1.17 1.03 0.76 1.18

Andy-In 6

S ‘
i

1
3r

'4

N
u
m

o
f
V
u
l
n
o
n
b
-
i
h
h
s

3 O

-
‘
I
’
l
l
]

n
I alBr-umcofl' vista]

T 1 T 11 T

oomozoaoaoa as8 9
,

2000 2001 2002 2003 2004 2005 2006 2007 2008 total

Total 1360 1675 2320 2739 4773 7457 10547 8342 2357 41580

Matching 0 0 0 0 0 0 1 33 5 40

Percent 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.40 0.25 0.10

Figure 5.17. VACT results searching for Microsoft xp and Microsoft vista within OSVDB

70

Analytic 7

 [ll windowsjp]

00 01 02 03 04 05 W 07 00

Your

200020012002 2003 2004 2005 2006 2007 2008 total

Total 1350 1675 2320 2739 4773 7457 10547 3342 2357 41530

Matching 4 14 33 17 29 33 64 70 12 276

Percent 0.290.841.42 0.62 0.61 0.44 0.61 0.84 0.51 0.66

Analytic 8

40.05

R

i 30.04

E

«E> 20.0“

'6

g 10.0“

0111111 [Imndowswstaj

00 0‘ 02 03 04 05 00 07 00

Year

2000 2001 2002 2003 2004 2005 2006 200‘? 2008 total

Total 1360 1675 2320 2739 4773 7467 10547 8342 2357 415-80

Matching 0 0 O 0 0 O 1 42 8 51

Percent 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.50 0.34 0.12

Figure 5.18. VACT results searching for windows xp and windows vista within OSVDB

71

Andy-Is 9

§
§
§

3
5
.
.

3
1
:
?

N
u
m

o
l
V
u
l
n
e
r
a
b
i
t
i
o
s

000102030405000706

Year

2000 2001 2002 2003 2004 2005 2006 2007 2008 total

Total 1360 1675 2320 2739 4773 7467 10547 8342 2357 41580

Matching 75 83 193 164 287 278 465 432 102 2079

Percent 5.51 4.96 8.32 5.99 6.01 3.72 4.41 5.18 4.33 5.00

Analyul- 10

.. 40.0-

:2

g 30.0-

_g

g 20.0“

'6

5 10.0—

o , T
1 1 1

000102030406060708

Year

2000 2001 2002 2003 2004 2005 2006 2007 2008 total

Total 1360 1675 2320 2739 4773 7467 10547 8342 2357 41580

Matching 0 O 0 0 0 1 16 44 11 72

Percent 0.00 0.00 0.00 0.00 0.00 0.01 0.15 0.53 0.47 0.17

Figure 5.19. VACT results searching for xp and vista within OSVDB

72

Analyst: 11

é a

N
u
n
d
v
a
n
-
t
a
b
l
a
“

 o—
l.“-

000102030400000708

You

2000 2001 2002 2003 2004 2006 2006 2007 2008 total

Total 13601675 2320 2739 4773 7467 10547 8342 2357 41580

Matching 10 5 21 16 24 21 50 121 B3 351

Percent 0.74 0-30 0.91 0.58 0.50 0.28 0-47 1.45 3.52 0.84

Analynln 12

\

g \

. N

9" \ K N.
‘3")qu \ ‘ \

lg \. \ N

\ K N

> \ '4 \

. \ 5 \

B ‘1 \. \ \ .

g 1 \ \ K \ \

Z s K s x s s

0" .\ N \ "~ N ‘~ [Inuit-.051]

000102000405000700

Your

2000 20012002 200320042005 200620-07 2008 total

Total 1350 1675 2320 2739 4773 7467 10547 8342 2357 41580

Matching 0 8 5 27 48 105 108 139 37 477

Percent 0.00 0.48 0.22 0.99 1.01 1.41 1.02 1.67 1.57 1.15

Figure 5.20. VACT results searching for apple and mac os x within OSVDB

73

Andy-II 13

40.0“

1 .-E 30

i 20.0"

‘6

E 10.0“

0" [Dapflcmxosx]

0001 QOSO‘CBNO7M

YOU

21300 2001 2002 2003 2004 2005 2006 2037 2008 total

Total 1303 1675 2323 2739 4773 7467 10547 8342 2357 41560

Matching 0 0 0 2 3 7 13 42 35 102

Pancant 0.00 0.00 0.00 0.07 0.06 0.09 0.12 0.50 1.48 0.25

Figure 5.21. VACT results searching for apple mac os it within OSVDB

74

Chapter 6: Conclusion

Vulnerability Analysis and Classification Tool offers a unique way to find basic

statistics on sets of vulnerabilities. There is currently no vulnerability database that is

able to provide the statistical results on a user’s vulnerability classification schema. By

providing a customizable schema and basic framework, it can suit the needs of various

users. The tool also saves the user disc space by downloading the needed vulnerabilities

at each run. The tradeoff to downloading the necessary vulnerabilities comes as the

download time is the constraint of the tools runtime.

75

APPENDICES

76

Setting up VACT

The steps listed below will help setup VACT.

1. Obtain a copy of Python. VACT was tested and run using Python 2.5.

2. Obtain a copy of Mod Python. Instructions for the setup and installation of Mod

Python can be obtained at www.modpython.org.

3. Create a csv folder within the web directory. Give the folder

APACHE_RUN_USER and APACHE_RUN_GROUP permissions. I found both to be

www-data.

Download and install Pychart (Saito)

5. Copy files into web directory.

77

VACT Code

initial.py

##W

#Call init to print out the initial user page for VACT

#Be sure to have the javascript.js file within the same directory

##4##

def init():

text =

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional/IEN"

"http://www.w3 .org/TR/xhtml l/DTD/xhtml l -transitional.dtd">

(html xmlns="http://www.w3.org/l 999/xhtml ">

<head>

<script Ianguage="javascript" src="javascript.js" type="text/javascript"></script>

<script language="javascript" src="contentloader.js" type="text/javascript"></script>

<meta http-equiv="Content-Type" content="text/html; charset=iso—8859-l " />

<title>Vulnerability Search Tool</title>

</head>

I! H I!

<body onload="addSearch()">

<h3 align="center">Vulnerability Analysis and Classification Tool</h3>

<div style="width:330px; margin-leftzauto; margin—right:auto;">

<form action="vact_ui.py/process" method="POST">

<div id="mainDiv" style="padding:10px; width:330px; text-align:left">

</div>

<input style="margin-left:20px" type="button" name="addSearch" value="Add Search"

onclick="mSearch()" />

<input type="hidden" value="- l " name="numSearch" id="numSearch" />

<input type="submit" value="Find Vulnerabilities" />

</form>

</div>

</body>

</html>

78

javascript.js

/************

mSearch is called initially when the webpage is first loaded.

The purpose is to call addSearch.

************/

function mSearch() {

addSearchO;

l

/*************

addSearch is called to add another Search setup to the webpage

*************l

function addSearchO {

//lnitail calls to establish where to add search and which search elements to add

var div = document.getElementByld('mainDiv‘);

var ser = document.getElementByld('numSearch’);

var num = (document.getElementByld('numSearch’).value -l) + 2;

ser.va|ue = num;

//Create the new search

var newdiv = document.createElement('div’);

var divldName = 'searchDiv'+num;

newdiv.setAttribute('id',divldName);

newdiv.innerHTML = makeDiv(num);

div.appendChild(newdiv);

minput = document.createElement('input');

name = "wbcount"+num;

minput.setAttribute('name',name);

minput.setAttribute('id'.name);

minput.setAttribute('type'.'hidden');

minput.setAttribute('value'.0);

div.appendChild(minput);

l

/****#*******

addWord will add the users input into the search form

************/

function addWord(num){

var id = document.getElementByld('searchWords'+num);

var text = document.getEIementsByName(’wb‘+num)[O];

var hidden = document.getElementById(‘wbcount‘+num);

if (text.value != "H

minput = document.createElement(‘input“);

name = 'wb' + num +"var"+hidden.value;

minput.setAttribute(‘name',name);

minput.setAttribute('type','hidden‘);

minput.setAttribute('value'.text.value);

id.appendChild(minput);

id.innerHTML += text.value + '
‘;

text.value = ";

hidden.value = Number(hidden.value) + l;

l

return false:

79

l

l***************

makeDiv is called by addSearch. MakeDiv is responsible for creating the year and database content.

makeDiv takes a number as input to create the search for the associated number

***************/

function makeDiv(num)[

var text;

text: '<input type="text" name="wb' + num + /> <input type="button" value="Add

Variable" onclick="return addWord(' + num + ')" />\n
<div id="searchWords' + num + "'></div>
;

var month = new

Array("January","February","March"."April","May","lune","July","August"."September","October","Nove

mber","December");

text += "Start Date: <select name=‘sdmonth" + num + "'>";

for (rn in month){

n = parselnt(m) + 1

text += '<option value="' + n + >' + month[m] + '</option>\n';

l

text += "</select><select name=‘sdyear" + num + "'>":

var startyear = 2008;

var endyear = I998;

for (var i = startyear;i>=endyear;i--){

text += '<option value="’ + String(i) + "'>' + String(i) + '</option>\n';

l

text += "</select>
";

text += "End Date: <select namez’edmonth" + num + "'>";

for (m in month){

n = parselnt(m) + 1

text += '<option value="' + n + >' + month[m] + '</option>\n';

l

text += "</select><select name=‘edyear" + num +

var startyear = 2008;

var endyear = 1998;

for (var i = stanyear;i>=endyear;i--){

text += '<option value="' + String(i) +

>N;

>' + String(i) + '</option>\n';

l

text += "</select>
";

var sources = new Array("US Cert", "National Vulnerability Database". "Open Source

Vulnerability Database");

for (s in sources){

if (5 == 0){

text += '<input type="radio" checked="checked" name="source' + num +

/>' + sources[s] + '
\n';value="' + sources[s] +

1

else{

text += '<input type="radio" name="source‘ + num + value: + sources[s] +

/>' + sources[s] + '
\n';

l

l

text. += "
";

return text;

80

vact.py

import porterstem

import copy

import datetime

import time

import sys

from webinfo import *

from pychart import *

##1##

#Function takes in list of db entries and years,

#Retums dictionary of vulnerabilities for each db

##4##

def getDBvuls(db.year):

#inital variable to help determine which db were selected by the user and the timeframe selected by the

user

CERT = False

NVD = False

OSVDB = False

nvdstart = 2008

nvdend = 1999

osstart = 2008

osend = I999

certdict = [}

nvddict = {]

osdict = l}

for i in range(0,len(db)):

if dbli] 2: "US Cert":

CERT = True

elif db[i] == "National Vulnerability Database":

NVD = True

if int(year[i][0]) < nvdstart:

nvdstart = int(year[i][0])

if int(year[i][l]) > nvdend:

nvdend = int(year[i][1])

elif db[i] == "Open Source Vulnerability Database":

OSVDB = True

if int(year[i][0]) < osstart:

osstart = int(year[i][0])

if int(year[i][I]) > osend:

osend = int(year[i][lD

else:

return "Improper variables specified %s" %(dblil)

#Download the USCERT vulnerabilities

if CERT:

trial = [1

url = 'httpzllwww.kb.cert.org/vuIs/bypublished?open&start='

base = 'httpzl/www.kb.cert.org/vuls/id/‘

pat: [[‘VU#\d+', 3, 0, []],["\d+/\d+/\d+ \d+:\d+:\d+ \w+",0.0.[]]]

patt = [["Overview<lH3>.+", l7, 0. ['<tt>','</tt>']]]

num = l

81

x = True

while(x):

a = gethtml(url+str(num).pat,patt.base)

x = a.bool

if x:

trial.append(a)

a.start()

else:

del a

num += 30

for a in trial:

a.join()

#Populate dictionary with vulnerabilities

#Key = vulnerability name, vulnerability date

#Value = (set of vulnerability description,datetime element of date)

for a in trial:

for i in range(0,len(a.results[0])):

try:

certdictla.results[0][i]+' , '+a.results[l][i]] =

(set().datetime.date(int(a.resu|ts[l][i][6:10]),int(a.results[I][i][O:2]).int(a.results[1][i][3:5])))

for word in a.results[2][i].split():

certdict[a.results[0][i]+' , '+a.results[l][i]][0].add(word.lower())

except

pass

for a in trial:

trial.remove(a)

del a

#Download the NVD vulnerabilities

if NVD:

trial = []

url = "http://nvd.nist.gov/download/nvdcve-"

entry = ['entry', ['name="[a-zA-ZO-9\-]+"',6,-l,[]], ['published="[0-9\-]+"', l l, -i. [l]]

features = ['descript']

#find which years need to be downloaded

if not(nvdstart >= 2002 and nvdstart <= int(time.ctime()[-4:])):

nvdstart = 2002

if not(nvdend >= nvdstart and nvdend <= int(time.ctime()[-4:])):

nvdend = int(time.ctime()l-4:])

for num in range(nvdstart.nvdend+ l):

try:

a = getxml(url+str(num)+".xml".entry.features)

trial.append(a)

a.start()

except

pass

for a in trial:

a.join()

82

#Populate dictionary with vulnerabilities

#Key = vulnerability name, vulnerability date

#Value = (set of vulnerability description,datetime element of date)

for a in trial:

for i in range(0,len(a.results[0])):

try:

nvddict[a.results[0][i][0]+' , '+a.results[l][i][0]] =

(set(),datetime.date(int(a.results[l][i][0][0:4]),int(a.resu|ts[l][i][0]lS:7]),int(a.results[l][i][0][8:10])))

for word in a.results[2][i].split():

nvddictla.results[0][i][0]+' , '+a.results[l][i][0]][0].add(word.lower())

except (lndexError):

pass

for a in trial:

trial.remove(a)

del a

#Download the OSVDB vulnerabilities

if OSVDB:

trial = []

url = 'http://osvdb.org/browse/by_disclosure_date/'

base = "

pat = [['style="">\d+',9.0.[l]. ['Disclosed:[0-9\—]+'.l l,O,[]]. ['Description:</p>[\n]<p>[()>\w\-

:</?\';=\".*#.]+',0,0,[]]]

Pa“ = []

num = 1

if osstart <= int(time.ctime()[-4:]):

yr = osstart

else:

yr = int(time.ctime()[-4:])

x = True

if not (osend <= int(time.ctime()[-4:])):

osend = int(time.ctime()[-4:])

whi|e(x) :

turl = url + str(yr)+ "?page=' + str(num)

a = gethtm|(turl,pat,patt,base)

x = a.bool

if x:

trial.append(a)

a.start()

else:

del a

num += 1

if not x and yr <= osend:

num = 1

yr += 1

x = True

for a in trial:

a.join()

#Populate dictionary with vulnerabilities

#Key = vulnerability name, vulnerability date

#Value = (set of vulnerability description,datetime element of date)

83

for a in trial:

for i in range(0.|en(a.results[0])):

osdictla.results[0][i]+' , '+a.results[l][ill =

(set().datetime.date(int(a.resu|ts[l][i][0:4]).int(a.results[l][i][5:7]),int(a.results[l][i][8: l0])))

for word in a.results[2][i].split():

osdictla.results[0][i]+' , '+a.results[l][i]][0].add(word.lower())

except (lndexError):

pass

for a in trial:

trial.remove(a)

del a

return [certdict,nvddict.osdict]

WW

#searchVuls searches the downloaded vulnerabilities from getDBvuls with the users criteria

#The input takes the list of databases specified within the search, the list of vulnerabilities for getDBvuls,

#the list of months from the search within a tuple, the list of years from the search with a tuple, and the

#list of search words specified by the user.

#The output contains the list of the number of returned vulnerabilities from each search while totlist

contains the total number of vulnerabilities within each search

WWW

def searchVuls(db.vuls.month.year,search):

slist = []

temp = [l

rlist = []

totlist = l]

for i in range(0,len(db)):

ifint(month[i][0]) > II or int(month[i]|0]) < 0:

dl = datetime.date(int(year[i][0])+l , l ,1)

else:

dl = datetime.date(int(year[i][0]).int(month[i][O]), I)

if int(month[i][l]) > ID or int(month[i][l]) < 0:

d2 = datetime.date(int(year[i][l])+] , l , l)

else:

d2 = datetime.date(int(year[i][l]),int(month[i][l])+ l .I)

if db[i] == "US Cert":

temp = strsearch(search[i],copy.deepcopy(vuls[0]).(d2,d l))

elif db[i] = "National Vulnerability Database":

temp = strsearch(search[i],copy.deepcopy(vuls[l]).(d2.d l))

elif db[i] == "Open Source Vulnerability Database":

temp = strsearch(search[i],copy.deepcopy(vuls[2]).(d2.dl))

slist.append(temp)

temp.start()

for i in range(0.len(slist)):

slist[i].join()

if db[i] = "US Cert":

y,x = compute(slist[i].content,i.vuls[0].year[il)

elif db[i] == "National Vulnerability Database":

84

y.x = compute(slist[i].content,i,vuls[l],year|i])

elif db[i] = "Open Source Vulnerability Database":

y,x = compute(slist[i].content,i.vulsl2Lyearlil)

rlist.append(y)

totlist.append(x)

return rlist,totlist

##WW

#makehtml constructs the output page for the user.

#The input includes the list of search values returned per year for each search (searchVuls rlist),

#the list of total values per year for each search(searchVuls totlist), and the list of years specified by the

user within the search

##########

def makehtml(slist.tlist,year):

rowO = []

rowl = []

row2 = []

row3 = []

for x in range(0,len(slist)):

tabO = '<td ALlGN="left"> </td>'

tabl = '<td ALlGN="left">Total</td>'

tab2 = '<td ALlGN="left">Matching</td>'

tab3 = '<td ALIGN="left">Percent</td>'

for y in range(0,(int(year[x][l])+] -int(year[x][0]))):

tabO += '<td ALlGN="right">%d</td>' %(int(year[x][0]) + y)

tabl += ‘<td ALIGN="right">%d</td>' %(tlist[x][y])

tab2 += '<td ALIGN="right">%d</td>' %(slist[x][y])

if not tlist[x][y] == 0:

tab3 += '<td ALIGN="right">%.2f</td>' %(slistlx][y]/float(tlist[x][y])"‘ 100)

else:

tab3 += '<td>0<ltd>'

tabO += '<td ALlGN="right">total</td>'

tabl += '<td ALIGN="right">%d</td>' %(sum(tlist[x]))

tab2 += '<td ALIGN="right">%d</td>' %(sum(slist[x]))

try:

tab3 += '<td ALlGN="right">%.2f</td>' %(sum(slistlx])/float(sum(tlistlx]))* 100)

except

tab3 += '<td ALlGN="right">0.00</td>'

row0.append(tab0)

row I .append(tabl)

row2.append(tab2)

row3.append(tab3)

init =

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0] Transitional/IEN"

"http://www.w3.orgfl‘R/html4/loose.dtd">

<html>

<head>

<title>VACT Analysis</title>

</head>

<body>

<h2 align="center">Resultsdh2>

85

top =

<div>

<h3 align="center" style="text-decoration:none">Analysis %d</h3>

<table>

<tr>

<td></td>

<td>

<table>

table = """

<tr>

%s

</tr>

bottom = """

</table>

</td>

</tr>

</table>

</div>

end =

<div align="center">

</div>

</body>

</html>

html = init

for i in range(0,len(slist)):

html += top % (i.i+l,i)

html += table %(row0[i])

html += table %(rowl[i])

html += table %(row2[i])

html += table %(row3[i])

html += bottom

html += end

return html

WWW

#compute will turn the search results into CSV files associated by search and return the statistics per year

#The input for compute is the dictionary of search results, the search number. the dictionary of total

vulnerabilies. and the years for the search

#The output will be the CSV files with the csv webroot directory and the statistical files for the total

vulnerabilities and specified vulnerabilities

W

def compute(mdict,snum,tdict,year):

slist = []

tlist = []

diff = int(year[H) - int(year[0])

86

try:

f = open(('/var/www/csv/results'+str(snum)+'.csv'),'w')

except

f = open(str(snum)+'.csv','w')

for i in range(int(year[0]).int(year[l])+ l):

slist.append(O)

tlist.append(0)

for key in mdict.keys():

x = int(year[1]) - int(mdictlkeyll l].year)

if x <= diff and x >=0:

slistlx] += 1

temp =

for i in mdict[key][0]:

temp = "%s %s" %(temp,i)

temp = temp[l :]

f.write(’%s,%s\n' %(key,temp.replace(',',")))

f.close()

for key in tdict.keys():

x = int(year[l]) - int(tdict[key]l l].timetuple()[0])

if x <= diff and x >=0:

tlist[x] += 1

slist.reverse()

tlist.reverse()

return slist,tlist

WWW

#generateGraphs will compute the graphs of each search and then a graph containing all search results

#The input is the statistics that are returned from searchVuls for the search results and total results in

addition to the search terms

#The output is a graph within the csv webroot directory named by the search number

##########

def generateGraphs(slist, year, search):

theme.scale_faetor = 2

theme.reinitialize()

data = []

smin = int(min([year[i][0] for i in range(0,len(year))]))

smax = int(max(([year[i][l] fori in range(0,len(year))])))

alldata = [1

for i in range(smin,smax+l):

alldata.append([str(i)[2:]])

all_lab = []

allmax = []

for i in range(0,len(slist)):

#make individual graphs

ylist = []

for j in range(int(year[i][0]),int(year[i][l])+]):

ylist.append(str(j)[2:])

data = zip(ylist,slist[i])

try:

mymax = int(max(slist[i]))

except

mymax = 0

allmax.append(mymax)

87

if mymax == 0:

mymax = l

lab = '"'

for x in searchli]:

lab = "%s %s" %(lab,x)

all_lab.append(lab)

can = canvas.init("/var/www/csv/"+str(i)+".png")

ar = area.T(x_coord = category_coord.T(data, 0), y_range = (0, mymax),

x_axis = axis.X(label="Year"),

y_axis = axis.Y(label="Num of Vulnerabilities"))

ar.add_plot(bar_plot.T(data = data, label = lab))

ar.draw(can)

can.close()

#compute data for combined graph

for i in range(0,len(slist)):

j = 0
for k in range(0.int(year[i][0])-smin):

alldata[k1.append(0)

for k in range(int(year[i][0])-smin,int(year[i][l])-smin+ l):

alldata[k1.append(slist[i][j])

j+=l

for k in range(int(year[i][l])—smin+ l .smax-smin+l):

alldata[k].append(0)

theme.scale_factor = 4

theme.reinitialize()

theme.get_options()

can = canvas.init("lvar/www/csv/all.png")

if not (max(allmax) > O):

allmax.append(l)

chart_object.set_defaults(area.T, size = (300,240), y_range = (O,max(allmax)),

x_coord = category_coord.T(alldata, 0))

chart_object.set_defaults(bar_plot.T, data = alldata)

ar = area.T(x_axis=axis.X(label="Year"),

y_axis=axis.Y(label="Num of Vulnerabilities"))

for i in range(0,len(all_lab)):

ar.add_plot(bar_plot.T(label=all_lab[i], hcol=i+l, cluster=(i,len(all_lab))))

ar.draw(can)

can.close()

WW

#User can input the search results in text form

#The results must list the databases. years. months. and search terms

#All input must be separated with <>

#If the search terms contain multiple words per line separate the words with $%$

MW

if len(sys.argv) == 5:

#split up the input

88

db = sys.argv[l].split('<>')

years = [l

for i in sys.argv[2].split('<>'):

years.append((i.split('.')[0],i.split('.')[l]))

months = []

for i in sys.argv[3].split(‘<>'):

months.append((i.split(',')[0],i.split(',')[l]))

strings = []

for i in sys.argv[4].split('<>'):

strings.append(i.split('$%$‘))

#Call the series of functions generate the search

vuls = getDBvuls(db.years)

rlist.t|ist = searchVuls(db.vuls.months,years.strings)

generateGraphs(rlist, years, strings)

out = makehtmlfilist,tlist.years)

89

vact_ui.py

import initial

import os

import time

import string

#The initial search page 127. l . l . l/vact_ui

def index(req):

return initial.init();

#The form within the initial search page is set to send results to /vact_ui/process.py

#process will sort through the user for and send it to the search then return the results

def process(req):

searches '= int(req.form['numSearch'])

strings = []

sources = []

years = [1

months = []

for i in range(0,searches+ l):

sources.append(req.fonnI'source'+str(i)])

years.append((req.form['sdyear'+str(i)] + + req.forrn['edyear’+str(i)]))

months.append((req.form['sdmonth'+str(i)] + + req.form['edmonth'+str(i)]))

wmp=n

try:

for j in range(0,int(req.form['wbcount'+str(i)])):

#req.form['wb'+str(i)+'var'+str(j)]

try:

temp.append(str(req.form['wb'+str(i)+'var'+str(j)]).lower())

except

return "You are missing a search word in search %d" %(i+l)

except

return "You are missing a search word in search %d" %(i+0)

strings.append(string.join(temp.'$%$'))

req.content_type = 'text/html‘

argl = string.join(sources,'<>')

arg2 = string.join(years,'<>')

arg3 = string.join(months,'<>')

arg4 = string.join(strings,'<>')

#Uncomment to print search start time

#req.write(time.ctime())

req.write("python Ivar/www/vactpy '%s' '%s‘ '%s' '%s’" %(argl .arg2,arg3,arg4))

out =os.popen("python /var/www/vact.py '%s’ "’/cs' '%s' %s'" %(argl,arg2,arg3.arg4))

temp = out.read()

temp = str(len(out.readlines())) + temp

out.close()

return temp

90

webinfo.py

import re

import urllib

import xml.dom.minidom

import datetime

from threading import Thread

##W

#gethtml is made to crawl through a website

#url is the website that it is initially crawling

#f_pattems are the re patterns that should be parsed from the initial url

#s_pattems are the re patterns tha should be parsed from the secondary search

#baseurl is the url to which results from the first page can be passed to download another page

#gethtml works by first downloading the content of a page and searching for re values specified by the user

#In our case it is looking for the vulnerability date. ID number and description

#Because not all vulnerability descriptions are listed on the initial page. the function will

#download and strip the description of a page specified from the first

##########

class gethtml(Thread):

def _init__ (self,url,f_pattems.s_pattems,baseurl):

Thread._init_(self)

self.url = url

self.f_pattems = f_pattems

self.s_pattems = s_pattems

self.baseurl = baseurl

self.bool = True

try:

data = getsource(self.url)

except

try:

data = getsource(self.url)

except

data =

results = []

for i in range(0,len(self.f_pattems)):

#print self.pattems[i]

results.append(stripPattem(data.seIf.f_pattems[i]))

#print 'ok\n'

if len(results[0]) = 0:

self.results = []

self.bool = False

else:

self.results = results

def run (self):

if not self.bool:

return

temp = [l

for j in range(0,len(self.s_pattems»:

for i in range(0,len(self.results[0])):

#print self.baseurl+results[0][i]

try:

temp.append(stripPattern(getsource(self.baseurl+self.results[0]Ii]),self.s_pattems[j])[0])

except (lndexError):

temp.append("")

91

#print 'done\n'

self.results.append(temp)

mmp=n

##4##

#getme is designed to download and parse xml from a website

#The main goal is to find the vulnerability information set by the user

#The url is where to download the file

#The entry is where to find the various xml entries. Each vulnerability is contained within an entry

#features contains the real expression values to parse the features from each entry

##m

class getxml(Thread):

def _init___ (self,url,entry,features):

Thread._init_(self)

self.url = url

self.entry = entry

self.features = features

self.results = I]

def run (self):

data = getsource(self.url)

results = []

try:

temp = xml.dom.minidom.parseString(data)

except

self.results = [[1]

return

temparray = []

entrys = temp.getElementsByTagName(self.cntry[0])

for i in range(l,len(self.entry)):

for e in entrys:

temparray.append(stripPattem(e.toxml('utf—8'),self.entry[i]))

results.append(temparray)

temparray = []

for i in range(0,len(self.features)):

for e in entrys:

x = e.getElementsByTagName(self.features[i])

if x == [1:

temparray.append('unknown')

else:

cattext = ”

for child in x[0].childNodes:

cattext += child.toxml('utf—8')

temparray.append(cattext)

results.append(temparray)

temparray = []

self.results = results

#########

#strsearch takes in the search specified by the user, the dictionary to search within and the dates specified

by the user

#search is a list of the search words, content is a dictionary with the key name , date of the vulnerability

values is tuple(set(description),datetime.date object)

W

92

class strsearch(Thread):

def _init___ (self.string,content.date=(datetime.date(20 l 0. l 2.3 l).datetime.date(I970, l ,l))):

Thread._init_(self)

self.string = string

self.eontent = content

self.date = date

def run(self):

for rows in self.string:

logic = makeSets(rows)

print logic

for desc in self.eontent.keys():

try:

if not (eval(logic)):

self.eontent.pop(desc)

elif self.eontent[desc][l] > self.date[0] or self.eontent[descll l] < self.date[1]:

self.content.pop(desc)

except

#print desc

#print self.eontent[desc][0]

self.eontent.pop(desc)

#######m#

#Not currently implemented within the code

#modifystring will modify the string to a users requirements

#the input is a list of strings with a list of replacements

#For each word within the list it will make any replacements

WWW

def modifystring(lstring.replacements):

temp = []

p = PorterStemmer()

for string in lstring:

sentence 2 "

for word in string.split():

word = word.lower()

for key in replacements.keys():

word = word.replace(key,replacement[key])

if (False): # change to true to get porterstem of word

word = p.stem(word,0,len(word)- l)

sentence = sentence + word + ' ’

temp.apppend(sentence)

return temp

#Retrives a webpage or file from the web

#lnput the URL of the webpage

#Retum the page content

def getsource(url):

file = urllib.urlopen(url)

data = file.read()

file.close()

return data

MWWWWWWWWW#

#Finds a repeating pattern within the text

#lnput string of text, real expression pattern, beginning result concatination,

93

#ending result concatination, symbols which need removed

#Retum List of requested pattern found within text

def stripPattem(string, ex_list):

Pattern = re.findall(ex_list[0],string)

for r in range(0,len(Pattem)):

if (ex_list[2] == 0):

Pattem[r] = Pattem[r][ex_list[l]:]

elif not (ex_list[1] == 0 and ex_list[2] == 0):

Pattem[r] = Pattem[r][ex_list[l]: ex_list[2]]

for i in ex_list[3]:

Pattem[r] = Pattem[r].replace(i."")

return Pattern

WW

#Will make an array of sets and the logic for search from user input

#makeSets is called by strsearch

#lt takes in the users input and converts it into a logical comparison to make within the search dictionary

Wit

def makeSets(string):

wordlist = re.findall('[()>\w\-:</?\';=\".*#,]+',string)

condcount = 0

wordcount = 0

logic =

for word in wordlist:

#print word

while word[0] == '(':

logic = logic + '('

word = word[1 2]

while word[0] == ')':

logic = logic + ')'

word = word[I :]

if len(word) == 0:

pass

elif word.lower() 2: 'and':

logic = logic + ' and '

condcount += 1

elif word.lower() == 'or':

logic = logic + ' or '

condcount += l

elif (condcount < wordcount):

count = 0

while word[len(word)-l] == ' ':

word = word[:-l]

count += l

if not(len(word) == 0):

logic = logic + ' and "%"s in self.eontent[desc][01‘ %(word)

for i in range(0,count):

logic = logic + ')'

else:

count = 0

while word[len(word)-l] == ' ':

word = word[:-l]

count += 1

94

logic = logic + '"%s" in self.eontent[desc][OJ’ %(word)

for i in range(0,count):

logic = logic + ')'

wordcount += I

return logic

95

BIBLIOGRAPHY

"About CCE." Common Configuration Enumeration. 18 Mar 2008. The MITRE

Corporation. 15 Mar 2008 <http://cce.mitre.org/about/index.html>.

Bishop, Matt, “Vulnerabilities Analysis,” Proceedings of the Symposium on Recent

Advances in Intrusion Detection (Sep. I999): 125-36

Christey, Steve, Robert A. Martin. " Vulnerability Type Distributions in CVE." Common

Weakness Enumeration. The MITRE Corporation. 15 Mar 2008

<http://cwe.mitre.org/documents/vuln-trends/index.html>.

"Common Vulnerabilities and Exposures." Common Vulnerabilities and Exposures. 14

Apr 2008. The MITRE Corporation. 15 Mar 2008 <http://cve.mitre.org/>.

"Common Weakness Enumeration." Common Weakness Enumeration. 6 May 2008. The

MITRE Corporation. 15 Mar 2008 <http://cwe.mitre.org/>.

Engle Sophie, Sean Whalen, Damien Howard, and Matt Bishop, “Tree Approach to

Vulnerability Classification”, Technical Report CSE-2006-IO, Dept. of Computer

Science, University of California at Davis, Davis, CA 95616-8562 (May 2006).

"How We Build the CVE List." Common Vulnerabilities and Exposures. 14 April 2008.

The MITRE Corporation. 15 Mar 2008

<http://cve.mitre.org/cve/identifiers/build.html>.

"National Vulnerability Database." Nationaerulnerabilitv Database. NIST. 15 Mar 2008

<http://nvd.nist.gov/nvd.cfm?advancedsearch>.

"NVD Common Vulnerability Scoring System Support v2." National Vulnegibility

Database. 28 July 2007. NIST. 15 Mar 2008 <http://nvd.nist.gov/cvss.cfm>.

"OSVDB 080C 2008 Project Ideas." OSVDB Blog. 3 Mar 2008. OSVDB. 20 Mar 2008

<http://osvdb.org/blog/?p=23 l >.

"OSVDB: The Open Source Vulnerability Database." OSVDB: The Open Source

Vulnerability Database. OSVDB. 15 Mar 2008

<http://osvdb.org/search/advsearch>.

"Process." Common Weakness Enumeration. l I Sep 2007. The MITRE Corporation. 15

Mar 2008

Saito. Yasushi. "Pychart." Pychart. IS Mar 2008 <http://home.gna.org/pychart/>.

96

"Search Advisory, Vulnerability, and Virus Database." Search Advisory, Vulnerability,

and Virus Database. Secunia. 15 Mar 2008

<http://secunia.com/search/?search=&adv_search= l >.

"US-CERT Vulnerability Notes Database." US-CERT Vulnerability Notes Database. 2

July 2007. US-CERT. 15 Mar 2008 <http://www.kb.cert.org/vuls>.

97

""“'“iiii

7an um

i

‘ Hl .‘

Ensiiv‘tuiariATE

lllllll

1293 02956 5050

