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ABSTRACT

INTEGRATION OF A STATISTICAL METHOD IN ONE WAY DELAY

TREND DETECTION FOR AVAILABLE BANDWIDTH ESTIMATION

By

Mahnaz Shafii

In this thesis, available bandwidth estimation tools including Delphi, Spruce,

Pathchirp, and Pathload are evaluated. Each method has disadvantages in

satisfying the requirements of fast, accurate and non-intrusive. Among all,

Pathload is the most reliable tool that considers the IC/CS phenomenon.

Pathload sends multiple trains called fleets. Each train consists of 1200 same-

size packets, with the same inter-packet time gaps. After each fleet is sent,

statistical evaluation of the inter-packet time gaps at the destination compared to

the inter-packet time gaps at the sender determines whether the trend of the

inter-packet time gaps in that fleet has been increasing, non-increasing, or

undetenninable. The transmission rate for the next fleet is adjusted based on the

trend of the current fleet until the results converge. One challenge of Pathload is

that the underlying one way delay detection (0WD) and the method of handling

lC/CS effect is far from perfect. In this thesis, the previously proposed algorithm

for efficient 0WD trend detection based on a statistical method is implemented

into the Pathload. Then, the enhanced Pathload is compared to Pathload.

Experiments in our laboratory network and across several Internet paths clearly

show that our enhanced Pathload significantly outperforms tests using Pathload

with its original 0WD trend detection algorithm.
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CHAPTER 1

Introduction

1.1. Importance of Network Performance Measurements

As the lntemet evolves, it is essential to have a clear understanding on the

performance of the network. There are a number of terms that are commonly

used to refer to various aspects of network performance. Depending on the

application, the manner in which data is sent across the network may be more

important than the raw speed at which it is transported. Performance

measurements involve the introduction of traffic into the network for the purpose

of monitoring delay between specific end-points. The most important

performance metrics that are monitored include connectivity, delay, packet loss

rate, and available bandwidth. Available bandwidth estimation is the most

problematic measurement where accuracy is difficult to achieve, particularly in

high-speed networks. Due to various technical problems and privacy issues,

obtaining an accurate estimate of available bandwidth from routers is not



possible. Therefore, estimation of available bandwidth requires an end-to-end

measurement.

Bandwidth characteristics are important in several applications such as

o Peer-to-peer applications, where knowledge of available bandwidth is

required before allowing peers to join the network.

. Overlay networks, where knowledge of available bandwidth of overlay

links is required for configuration of the routing tables and optimal route

selection.

. Network providers’ charge, where the price is based on the available

bandwidth provided to the costumers.

0 Adaptive applications; in which applications need to know current network

conditions in order to modify their output and maximize network use.

0 Proxy selection: After predicting the available bandwidth, the proxy can

select the appropriate upper bound of transmission rate.

. Congestion avoidance algorithms and intelligent routing systems:

Implementation of connection-oriented protocols, such as the widely-used

TCP protocol, and intelligent routing systems generally require the

knowledge of available bandwidth in order to adjust the transmit speed.

Due to existing limitations on available bandwidth, better utilization of

available network resources is crucial. For real time multimedia applications and



congestion control transports, end-to-end 008 is the most critical issue [14].

Such applications are very sensitive to the availability of bandwidth, and an

accurate available bandwidth measurement method improves their performance

dramatically.

Measurements of available bandwidth are very difficult as they require time

accuracy for the measurement. Unlike the capacity measurement, linear

regression on the dataset of a number of measurements during a given time

frame is impossible [5]. Because the network traffic changes frequently,

convergence over a longer period of time is not a good estimate for available

bandwidth. Inaccurate estimate of available bandwidth lead to buffer overflows,

queuing delays, network clogging and other related problems that add up

considerably over a period of time.

1.2. Notions for Measuring Traffic in Network Links

In this section definitions of some important terms that describe network

performance are provided. Table 1 shows some selected network notions in

measuring traffic in a network.

Capacity and the available bandwidth are the two important metrics that are

commonly associted with a path. Consider path P of store-and-forwarding links,

between two network hosts SND and RCV. Considering the route between SND

and RCV is fixed, and there is no multi-path forwarding during the measurement,

available bandwidth A and capacity C are defined as:



Capacity of a link i is the maximum transmission rate of a link when there is

no cross traffic. Capacity of a path p with H number of hops isC = min Ci.

i=1 .....H

Available bandwidth of a link i is maximum transmission rate of the link when

cross traffic exists. Available bandwidth of a path p is the minimum available

bandwidth among all links in the pathA= min Ai. Available bandwidth

i=1,...,H

measurements ideally should not influence the throughput of the cross traffic of

 

 

the path.

Term Definition

Latency A measure of how long It takes for a Single packet to

get from one machine to another machine

 

The amount of time required to push all of the

Transmission Delay 07 packet's bits into a link 01 = L / C,- (L: packet size; 0,:

capacity of the link)

 

Available bandwidth The amount of bandwidth left-over after the cross

 

 

 

 

 

 

 

traffic

Narrow link Link with the lowest capacity along a path

Tight link Link with the least available bandwidth in a path

A stream consists of K packets of size L, sent at a

Stream constant rate R

Fleet N streams sent from sender to receiver

SLoPS _ .

(Self-Loading Periodic A periodic stream sent to a path at a constant rate R

Streams)

Packet Train A sequence of manually configured data packets    
 

Table 1: Selected Network Notions



What makes the measurement of available bandwidth hard is, first, that there

is no consensus on how to precisely define it. Secondly, available bandwidth has

a dynamic nature; meaning, it varies with time and exhibits high variability in a

wide range of timescales.

Because unused bandwidth of a path changes with time, available bandwidth

measurements average unused bandwidth over some time interval T [6]:

T+t

A.(t,T)=-1]: l(C,-—/1.(t))dt (1)

where Ai(t,T) is the available bandwidth at link i at time t, Ciis the link’s

capacity, and xi,- is the link cross traffic.

To estimate the available bandwidth many methods have been developed [7-

10]; from which, many use One-Way Delay OWD trend detection techniques.

One-Way Delay OWD is the time for a packet or periodic stream of k packets

to travel from sender to receiver and is defined as:

0WD,k 2d,. +Dr+T (2)

k

where at,-k is the queuing delay of packet k at link i (dik = %—; q!‘ : queue size

i

at link i ) and T is the propagation delay of the link . Therefore, end-to-end one-

way delay of packet k for path p that consists of H links is [11]:

k H qu L
0WDp=Zdi+Dr+T=Z—é—+E+T (3)

i=1 i=1 i 1

Based on the above definition, OWD variation is:





H H

AOWD = 0WD];+1 — 0WD; = 2d,?” — d," = 2M," (4)

i=1 i=1

Because the transmission delay term is canceled out, AOWD is independent

of clock offset.

Based on the SLoPS methodology, when stream’s rate is greater than

available bandwidth, one-way delays of a periodic packet show an increasing

trend. On the other hand, when the stream’s rate is less than the available

bandwidth, the stream packets will encounter equal OWDs.

To estimate available bandwidth of a path, many of the measurement tools use

the trend of change in OWD. In the next section, we will look into some tools that

use this method to measure available bandwidth.

Although knowledge of available bandwidth is the most important network path

008 characterization, other practical metrics have been reported in literature. For

example, Chobanyan et al. in [12] and [13] use the metric of “crossing probability”

to create random time-series statistical techniques for available bandwidth

behavior. They claim that a single estimate of expected value of available

bandwidth is not representative for describing the complex picture of available

bandwidth dynamics. Therefore, they build a probabilistic framework for network

path 008 characterization and use the notion of “crossing probability”, defined as

chances of a real-time task execution to fail because of not having enough

available bandwidth in a path. Knowing crossing probability helps network

applications response proactively to a changing network environment and



improves resource planning. In their attempts, they provide parametric and non-

parametric models for computation of cross probability.

In their parametric model, they use a statistical parametric model to describe

available bandwidth and use that model for computation of cross probability. On

the other hand, for their non-parametric method, they use a moving block

bootstrap [14]; which considers dependence between observations of indicators

and provides high confidence intervals around the non-parametric estimator of a

crossing probability.

1.3. Available Bandwidth measurement Techniques and

Methodologies

In measurement of available bandwidth, several methods and techniques have

been proposed and various measurement tools have been developed and

evaluated. One common technique to estimate available bandwidth is to use

end-to-end probing. Some of the requirements for a reliable probing tool are:

0 Fast estimation of available bandwidth within few R'ITs

o Accurate measurements

0 Non intrusive; low network overhead

0 Being robust to multiple congested links

0 Not require path topology such as link speed or capacity

Among available bandwidth measurement methods, probe gap and probe

rate are the most commonly used methods. Therefore, in the following sections,



these methods are described and a comparative analysis in terms of accuracy,

intrusiveness, and response time of active probing tools are performed.

1.3.1. Probe Gap Model in Available Bandwidth Measurement

Probe Gap Model uses a single probing rate and it infers the available bandwidth

from the time gap between the arrivals of two successive probes at the receiver

[6]. In this method, two successive packets are sent with a certain time gap AS.

This packet pair gets to the receiver with time gap Ar. The difference between

the two time gaps A, — Asis time required to transfer the cross traffic at the

bottleneck. If no cross traffic exists, A, =As and available bandwidth during

sending time is C . When cross traffic exists, a portion of the available bandwidth

A —A

is utilized with the rate of -—’X———§—C . Therefore, available bandwidth AB in

S

presence of cross traffic is:

AB=C—él—A:—AiC (5)

S

The weakness of the PGM method is its assumption of a known capacity C

for the path and that the bottleneck has both the smallest capacity (narrow link)

and the smallest available bandwidth (tight link). Moreover, in many cases

Interrupt Coalescence1 distorts PGM measurements as PGM fails to detect the

 

l Interrupt coalescence is a technique in which network interface card groups multiple packets

received in a short time interval in a single interrupt and the sending host CPU learns about the

departure of several packets through a single interrupt.



IC [15]. Delphi, IGl, and Spruce are examples of measurement tools based on

PGM: 7

Delphi is based on direct probing technique [16]; therefore, every probing

stream provides an estimation of the available bandwidth. This measurement tool

uses a Multifractal Wavelet Model (MWM) to estimate the cross traffic rate [17].

MWM is based on the idea that intemet traffic is a self-similar process which

shows a fractal structure; meaning, short time patterns are similar to long term

patterns. Delphi sends a stream of exponentially spaced packets, called chirp,

and computes the queuing delay of each packet. In this tool, using the MWM,

either the cross-traffic intensity is directly estimated or its parameters on a larger

timescale are reconstructed based on the sampled traffic in small time intervals.

The main advantage of this model is its real-time adaptation to the current

traffic. However, it requires some knowledge of the tight-link beforehand [18].

Initial Gap Increase (IGI) algorithm uses a sequence of packet trains to

identify the average input probing gap for which the average output gap is equal

to the average input probing gap [19]. At that point, called the turning point, the

interference introduced by bottleneck cross-traffic is zero mean and the probing

rate is the available bandwidth. This method completely neglects the interference

of cross-traffic with the probe-gap at the nodes other than the bottleneck node

over the entire path. For this reason, lGl fails to estimate available bandwidth

accurately where many links are heavily congested.

Spruce is also based on direct probing technique [6]. Spruce sends probing

pairs with a known intra-pair gap set to the bottleneck link transmission delay of



the packet and inter-pair delay set to an exponentially distributed random

variable to maintain the average probing rate below 5 percent of capacity (Figure

1).

 

 

v *7

In In
BottleneckflC-Em

intra-pair gap i =
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Figure 1: The Spruce Model for Estimation of Available Bandwidth

Each probing rate generates an estimate for available bandwidth using the

following formula:

4441—5011] (6)
81'

where g,- is the input inter-pair gap and go is the output inter-pair gap of the

link. Finally, Spruce averages the last 100 samples of packet-pair available

bandwidths to estimate the overall available bandwidth. Again, the main

disadvantage of Spruce is its dependency on the knowledge or assumption of the

capacity of the bottleneck link.

1.3.2. Probe Rate Model in Available Bandwidth Measurement

In the Probe Rate Model (PRM), sender transmits a periodic probing stream and

the receiver observes the dispersion of packets.

Probing packets delay increases when the probing rate is higher than the

available bandwidth in the path. In contrast, if sender sends probes to a receiver

10



at a rate less than available bandwidth, probes will experience similar delays.

PRM is based on the observation that the delays of successive probing packets

increase when the probing rate exceeds the available bandwidth in the path.

Therefore, available bandwidth can be measured by searching for the turning

point at which the probe sending and receiving rates start matching.

PRM assumes FIFO queuing at all routers along the path, cross traffic follows

a fluid model and average rates of cross traffic change slowly.

TOPP, PathChirp, and Pathload implement this technique for available

bandwidth measurements [20].

Train of Packet Pairs (TOPP) [21], implemented in a tool called DietTopp [22],

sends streams of packet pairs, uniformly increasing their input rates in each

iteration. The rate is changed by modifying the input gap of each pair. The

available bandwidth is estimated as the maximum input rate gets larger than the

measured rate at the destination. Because TOPP uses packet pairs of different

spacing well-separated in time, it does not make use of delay correlation

information obtainable from packet trains with closely spaced packets. Therefore,

TOPP is found to be very sensitive to the cross-traffic packet size and being very

slow [23].

PathChirp uses probing trains with exponentially decreasing inter-packet

spacing and calculates available bandwidth from the queuing delay signature of

the arriving chirp [24]. Pathchirp is based on iterative probing. Instead of sending

periodic packet streams, Pathchirp sends streams of exponentially spaced

packets called chirps, so by rapidly increasing the probing rate within each chirp,

11



it estimates the available bandwidth dynamically. The main advantage of this

approach is to minimize the probing traffic load. Indeed, a single chirp is able to

probe the network at different rates. Based on several comparative evaluation of

available bandwidth measurement tools, although Pathchirp reacts properly to

the cross-traffic variation but widely overestimates available bandwidth [20, 25].

Self-Loading Periodic Streams (SLoPS) [11], implemented in a tool called

Pathload, sends streams of equally spaced packets. Instead of changing the

input rate linearly or exponentially, it performs a binary search for the maximum

feasible transmission rate which is the available bandwidth of the path.

One advantage of Pathload over other measurement tools is that it considers

Interrupt Coalescence and Context Switch phenomena, which to the best

knowledge of the author is the only working tool with this consideration.

Therefore, the next chapter is fully devoted to description of Pathload, its

advantages, and challenges in estimation of available bandwidth. Also, additional

algorithms implemented in Pathload’s successor Pathvar [27], which aims to

measure the variability of the available bandwidth, are described.

12



CHAPTER 2

Available Bandwidth Estimation Using Pathload

Pathload is an active available bandwidth measurement tool developed by Jain

and Dovrolis [11, 15, 26].

For this study our foucs is on Pathload because it does not considerably

increase the network delays, losses and utilization. Moreover, Pathload was one

of the first tools to consider the variability of the available bandwidth process.

This is why it estimates a variation range of available bandwidth rather than a

single estimate.

Pathload uses two types of connection between end-points: UDP and TCP.

UDP is used for sending and receiving of periodic packet streams and TCP is

used as a control channel to transfer messages regarding the characteristics of

each stream such as end of measurement or abortion. ln Pathload, sender sends

several fleets to the receiver. Each fleet consists of 12 streams. Each stream

consists of 100 packets. To avoid congestion, sender waits for the previous

stream acknowledgment, before sending the next stream. After receiving each

13



stream, receiver will eliminate the effect of IC/CS, as will be described. Then,

OWD of remaining packets is determined. After receiving 12 streams, receiver

determines the OWD of the fleet and send the information to sender for next fleet

rate adjustment.

UDP
 

 

 

 

 

 

  

 

 

   

my) 1 f K‘VC

‘ TCP (control channel) '

100 packets

( nin- n IC/CS J

ac/rJfigo— OWD J

aC/r /->go 9 ‘

“\ 9 “\

Fleet # I I Kg

\ ack (Ago
/ ——18:an 5

 Rate Adjustment < I] Fleet OWD I

F/eet # 2

Heet# n

Figure 2: Pathload connection between sender and receiver

Pathload introduces a measurement technique based on Self—Loading

Periodic Streams (SLoPS). Figure 3 illustrated the idea of SLoPS. Suppose

sender SND transmits a periodic packet stream to receiver RCV. If the stream

rate R is larger than available bandwidth A, an overload happens in the tight link

of the path; and therefore, the queue of the tight link gradually increases. As a

result, queing delay for packet k+1 would be more than the previuos packet k.

Based on equatiuon 4, AOWDs of the stream packets are expected to have an

14



increasing trend (a?!c <df+1). On the otherhand, if RS A, with every new

stream that is introduced to the link, the backlog of tightlink will not increase.

Threfore A0WD 3 do not show an increasing trend.

If R<=A; If R>A;

M M92 M

1m

1,, A

 

 

 

 

 

 

 

 

B

@
9
9
9
9

“p

 

 
 

Figure 3: Illustration of Self-Loading Periodic Streams (SLoPS)

Because of significant variability of available bandwidth in different time scales,

developers of Pathload improved their measurement tool to track the available

bandwidth variation with relative errors up to 10-20%. For that, they developed

and evaluated two estimation algorithms in an available measurement tool called

Pathvar [27]. For very short time scales or in bottlenecks with limited flow

multiplexing, where the available bandwidth distribution may not be Gaussian,

the algorithm is iterative and non-parametric. For situations where the available

15



bandwidth follows the Gaussian distribution, the algorithm is parametric; and

therefore, much faster. Depending on the time scale, Pathvar invokes either the

non-parametric or the parametric algorithm. When time scales is larger than 100

msec, Pathvar automatically switches from parametric to non-parametric

algorithm.

In both algorithms, the sender generates N1 probing streams of rate R1 and N2

probing streams of R2 to track two low percentiles for available bandwidth

variation. The receiver, on the other hand, calculates the fraction f1 and f2 of

streams that are greater than the realization of the available bandwidth random

variable in the corresponding time interval.

In the non-parametric approach, the information about each iteration fn is sent

back to the sender, which then sets the probing rate Rm accordingly. Adjustment

of probing rate in non-parametric algorithm of Pathvar is very similar to Pathload,

as it is described in 2.3.1.

In the parametric approach, using Cumulative Distribution Function, the

expected value of an indicator variable I(R) is calculated. Finally, using an

inverse mapping method, the corresponding probing rate is estimated.

Detection of OWD trend is the most important part of any algorithm based on

SLoPS. OWD trend detection in Pathload is based on a statiscal analysis which

is described next.

16



2.1. OWD Trend Detection in Pathload

OWD trend detection in Pathload consists of trend decision in a stream, and an

overall decision in a fleet. Based on the trend decision in a fleet, Pathload uses a

rate adjustment algorithm to adjust the rate of each successive fleet based on the

trend determined by the previous fleet. In the following sections, these algorithms

are described.

2.1.1. OWD Trend Detection in a stream

Pathload uses two statistical criteria to determine a streamAOWD trend:

Pairwise Comparison Test (PCT) and Pairwise Difference Test (PDT). For these

criteria, knumber ofOWD measurements in a stream is partitioned to F = Jk

groups of consecutive measurements. Then, in each group the median of 0WD

measurements is computed as Dk. Metrics that PCT and PDT use are:

1‘

2(1)}: > Dk—l)

k=2
 

 

SPCT = I‘ —l (7)

D —D

SPDT = r 1‘ 1 (8)

ZIDk —Dk—1|
k=2

In the current release of Pathload, the PCT metric shows an increasing trend

ifSPCT > 0.66, while the PDT shows an increasing trend ifSPDT > 0.55.

Similarly, the PCT metric shows no trend, ifSPCT < 0.54; while the PDT shows a

no trend, ifSPDT < 0.45.

17



The decision on AOWD trend is made based on both criteria as:

If (SPCT > 0.66 and SPDT 20.45) or (SPDT > 0.55 and SPCT 2 0.54) -> I

(increasing trend)

If (SPCT < 0.54 and SPDT S 0.55) or (SPDT < 0.45 and SPCT S 0.66) 9 N

(no trend)

Othenrvise 9 U (undetermined) -> stream is discarded
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Figure 4: A Hypothetical AOWD vs. Packet number

Figure 4 shows a hypothetical case of AOWD vs. packet number. This graph

obviously shows an overall increasing trend forAOWD. Although PCT fails to

recognize the increasing trend, PDT is greater than 0.54. Therefore, based on

the above decision criteria, the overall trend is “I ”.
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2.1.2. OWD Trend Detection in a fleet

Overall decision on AOWD trend of a fleet is made by the receiver. If a large

fraction of the streams (f >07) in a fleet show “I”, the entire fleets is

determined as an increasing fleet type. If a large fraction of the streams

( f > 0.7 ) in a fleet show “ N ", the entire fleet is determined as no trend type. If a

fleet does not have a majority of “I ” or “N ” ( f S 0.7 ), the fleet is determined as

grey-region type.

2.1.3. Rate Adjustment Algorithm

Pathload adjusts the rate of each successive fleet based on the trend determined

by the previous fleet. The rate adjustment algorithm in Pathload results in three

different orderings between R (rate) and A (available bandwidth): Increasing

Trend I that is whereR > A; Not Increasing TrendN ’ whereR < A; and grey-

region G; where there is no strict ordering between R and A.

The key state variables used in rate adjustment algorithm are:

0 Rm": Lowest rate that has been shown to be higher than the available

bandwidth up to the measured time interval.

o R'"’": Highest rate that has been shown to be less than the available

bandwidth up to the measured time interval.

o G’"’”: Lowest rate that has been shown to be in grey region.

0 Gma": Highest rate that has been shown to be in grey region.
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Figure 5: Rate Adjustment, Grey Region, and Available Bandwidth variability in

Pathload

The iterative estimation algorithm of Pathload terminates when the rate of two

successive fleets is less than a user-specified resolution; or, the available

bandwidth varies in a grey-region, which is larger than the user-specified

resolution.

2.2. Trend Detection Challenges in Pathload

Pathload has been validated by several research studies and, in comparison with

other available bandwidth estimation tools; it has been shown to be the most

accurate [7]. However, literature shows several challenges and pitfalls in

available bandwidth estimation using Pathload:

1- Pathload is the most intrusive tool and, in some cases, can be very slow [20].

2- In the presence of lC/CS, Pathload throws away significant part of

measurement information [28].
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3- When the slow link is not in the middle of the path, trend detection in Pathload

faces difficulties and measurements are more vulnerable to lC/CS effect [29-

31].

4- PCT/PDT test in Pathload is not as accurate as what their authors claim.

When the experimental setup is not as friendly as shown in [11], the

PCT/PDT test shows significant inaccuracy [29, 30].

Although Pathload is not the ideal tool for available bandwidth estimation, it

remains as one of the most powerful tools today- Therefore, addressing the

challenges described above, can lead to a powerful upgrade to Pathload for

available bandwidth estimation. In the next chapter, the author will describe a

novel statistical integration into Pathload to address the above challenges.
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CHAPTER 3

A Novel Approach for Efficient OWD Trend Detection

In this chapter, the proposed OWD trend detection in [29, 30] is reviewed. This

method uses a simple algorithm of dealing with the lC/CS effect together with a

trend detection algorithm based on a simple linear regression model and p-value

reported by t-test. First, we review some related statistical notions for OWD trend

detection; and then, we describe how this algorithm works and how it deals with

IC effect. Finally, in the following chapter, we present the results of our

integration of this algorithm into Pathload.

3.1. Statistical Notions for OWD Trend Detection

. Null hypothesis: Denoted by Ho, represents a theory that has been put

forward, either because it is believed to be the or because it is to be used

as a basis for argument, but has not been proved. In our trend detection
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approach, the null hypothesis is the assumption that a train of packets

does not contain any OWD trend.

Alternative hypothesis: Denoted by H1, is the hypothesis that is contrary to

the null hypothesis. Usually the alternative hypothesis is the hypothesis

that supports your prediction. In our trend detection approach, the

alternative hypothesis is the assumption that a train of packets have an

increasing OWD trend.

Hypothesis testing: Use of statistics to determine the probability that a

given hypothesis is true. In our trend detection approach, we use

hypothesis testing to determine if packets of a train contain any OWD

trend.

t-distribution: a special probability distribution in estimating the mean of a

normally distributed population when the sample size is small or the

population standard deviation is not known. In our OWD trend detection

technique t-distribution is used because in some cases the number of

sample points is as low as 4 packets. Please refer to appendix 1 for

detailed discussion of t-distribution.

Linear regression: An attempt to model the relationship between two

variables by fitting a linear equation to observed data. One variable is

called “response variable” (dependant) and the other one is called

“predictor" (explanatory). In our OWD trend detection, one way delay of a

packet is “response variable” and the packet index is the “predictor". Using
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3.2.

linear regression method, best-fit linear line across data points of one-way

packet delays and the packet index is found. (see appendix 2)

T-test: Any hypothesis testing in which with the null hypothesis being true,

the test statistics has a t-distribution. In our OWD trend detection, t-test is

a test of whether the slope of a linear regression line differs significantly

fmmO.

p-value: In hypothesis testing under the null hypothesis, p-value is the

probability of obtaining a result at least as extreme as a given data point.

The p-value provides an objective measure of the strength of the evidence

which the data supplies in favor of the null hypothesis. A small p-value

provides evidence against the null hypothesis. Therefore, in our OWD

trend detection p-values smaller than 0.01 reject the null hypothesis and

votes on existence of a trend for OWD. See Appendix 3 for calculation of

p-value for a t-distributed dataset.

ICICS Elimination Procedure

To decrease per-packet interrupt and Context Switch overhead, Network

Interface Cards use Interrupt Coalescence (IC); which is generating a single

interrupt for multiple packets sent or received in a short interval. IC; however,

introduces queuing delays and alters interval time spacing of trains. In our way of

handling IC/CS, we use the following idea:

At the presence of IC, successive OWDs in the same burst decreases [15]
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Therefore, When OWDs of back-to-back receiving packets with similar packet

pair delays is strictly linear with a negative slope; we put them in one group and

discard all such packet but the very last packet.
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Figure 6: Our Interrupt Coalescence Elimination Technique

Figure 6 shows OWD’s in 100-packet train with and without IC. The red solid

line shows how we eliminate the IC effect. After elimination, cleariy the overall

increasing trend has been preserved.

3.3. OWD Trend Detection using t-test

Here is a simple way of describing our incorporated t-test method in

Pathload:

After TCP/UDP established the connection and the settings between the

sender and receiver, sender starts sending 100 back-to-back packets in a

train. Depending on network cross traffic, receiver receives a portion of
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these 100 packets. After receiving each packet, the receiver immediately

checks for IC/CS, as described in the previous sub-chapter.

In our method, one needs to keep track of packet indices. If there is a

sudden dramatic change in OWD of two back-to-back receiving packets or

a gap more than 4 packet indexes, the packets so far received are put in a

sub-train. Then, we plot the best fit least square line across data points. As

explained in appendix 2, using simple linear regression we can find the

slope coefficient of the line. It is know that the slope of linear regression

follows a t-distribution. Here, the null hypothesis is that a train does not

have any trend. For each sub-train of packets, we obtain the p-value of the

t-test for judgment in trend presence.

 

[ TCP/UDP established the connection I

I

I SND sends 100 b.t.b packets in a train I
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Figure 7: OWD Trend Detection Using T-test
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At the end, the majority vote for the p-values of a train determines the

OWD trend for that specific train. In our code, we consider the threshold of

0.01 for p-value; meaning, if the p-value is more than 0.01, the decision for

that sub-train would be “no trend”. If splitting of packets lead to a sub-train

of less than 4 packets, the decision for that sub-train will be “Unclear”.

3.3. Packet loss

To recover from instantaneous overflows, routers discard packets. When there

are packet losses, Pathload throws away lots of information. Because our

algorithm splits trains into sub-trains, it handles packet loss efficiently. Therefore,

there we will much less reported unclear trains. This leads to much less number

of required fleets, which ultimately results in less measurement time.
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Figure 8: Packet loss in a fleet
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CHAPTER 4

Experimental Evaluation

In this chapter, the efficiency of our OWD detection algorithm integrated in

Pathload (we call it enhanced-Pathload) and Pathload's PCT/PDT test are

compared.

4.1. Laboratory Network Testing

We experimented within our laboratory network which consists of two 100 Mbps

capacity segments. The sender and receiver are placed at two ends of the

segments with a switch connecting the segments. We wanted to have both

Pathload's PCT/PDT test and our approach to have absolutely equal conditions.

We conducted a series of real measurement experiments in our laboratory

network where we were able to evaluate the efficiency of both OWD

measurement methods in the absence of any cross-traffic; therefore, possessed

some verification information about available bandwidth behavior. Moreover, we
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could investigate the efficiency of both methods when CPU-load changes at the

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

receiver side.

Pathload PCT/PDT Enhanced Pathload

test # # of Fleets Latency [s] Low-BW High-8W # of Fleets Latency [s] Low-BW High-8W

1 6 11.87 95.60 97.10 6 12.44 95.40 95.40

2 14 18.69 96.40 96.40 6 11.77 95.60 95.60

3 17 22.39 96.20 96.20 6 11.77 95.60 95.60

4 13 18.54 96.80 96.80 6 11.78 95.70 95.70

5 11 16.61 98.76 109.20 6 11.78 95.60 95.60

6 13 18.53 18.53 96.60 6 11.77 95.60 97.10

7 20 25.27 25.27 96.60 6 11.77 95.60 97.10

8 5 11.00 98.67 109.60 6 11.77 95.60 97.10

9 12 17.56 96.20 96.20 6 11.77 95.60 97.10

10 6 11.77 95.60 97.10 6 11.77 94.00 95.60

11 40 44.62 98.60 99.24 6 11.77 95.60 95.60

12 14 119.50 96.40 96.40 6 11.77 95.60 95.60

13 6 11.77 95.60 97.10 6 11.92 96.00 96.00

14 62 65.99 100.43 109.20 7 12.75 96.20 96.20

15 6 11.95 96.00 97.50 4 9.86 96.90 96.90

Average 18 28.40 87.00 99.42 6 11.78 95.64 96.15          
Table 2 : Pathload PCT/PDT and Enhanced Pathload Performance in Absence of

Cross Traffic or a Significant CPU-Load

The result of Pathload PCT/PDT and enhanced Pathload in absence of cross

traffic is tabulated in Table 2. For the enhanced Pathload, average number of

fleets required to estimate the available bandwidth is significantly less than the

Pathload PCT/PDT. Also, lower and higher bounds for bandwidth estimation are

much closer in enhanced Pathload; whereas, Pathload PCT/PDT estimates a

wider range for available bandwidth. Furthermore, the results of enhanced

Pathload are much more consistent for the number of measurements conducted.

Table 3 shows the efficiency of Pathload PCT/PDT and enhanced Pathload

when there is 7% or 14% CPU-load on the receiver computer. This configuration
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clearly shows how well enhanced Pathload perform when Pathload PCT/PDT is

unable to estimate the available bandwidth.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pathload PCT/PDT Enhanced Pathload I

test # F122:3 Latency Low-BW HEEL" # of Fleets Latency LBO‘XVI' Hag/3'

1 7 11.05 59.4 60.9 7 9.09 96.0 96.0

2 2 7.16 > 93.8 7 7.77 95.6 95.6

3 3 8.90 48.7 97.0 6 6.79 95.6 95.6

4 1 5.66 > 0 6 6.90 95.6 95.6

5 5 10.85 99.4 109.2 15 16.26 95.6 95.6

6 2 6.17 > 0 5 5.83 93.8 93.8

7 13 16.91 59.7 61.2 6 6.94 96.1 96.1

8 16 19.77 24.8 49.6 6 6.96 94.2 95.8

9 Unable U U U 6 6.82 95.2 95.2

10 1 5.53 > 0 6 6.83 96.0 96.0

11 7 12.81 97.1 98.2 6 6.78 91.0 97.1

12 7 12.81 97.1 99.4 6 6.80 95.6 95.6

13 7 11.22 17.0 11.2 6 6.90 95.6 95.6

14 3 6.86 > 0 9 9.93 82.4 97.5

15 Unable U U U 12 13.37 96.0 96.2

o . . Pathload PCT/PDT Enhanced Pathload

test # F122:5 Latency Low-BW HBigwh- # of Fleets Latency Lgvv HEW

1 Unable U U U 13 14.12 80.4 86.5

2 5 10.95 48.80 97.50 16 17.83 94.4 99.8

3 9 14.88 95.60 95.60 6 8.94 94.0 94.0

4 5 11.12 97.40 97.40 15 17.93 95.1 96.4

5 Unable u u u 13 13.26 81.3 81.5

6 Unable u u u 11 11.51 30.9 31.0

7 Unable U U U 5 7.92 94.0 94.0

8 7 12.82 23.80 28.50 6 8.92 96.1 96.1

9 Unable U U U 6 6.94 95.6 95.6

10 2 8.02 97.00 97.00 10 11.29 89.3 89.3

11 9 15.49 14.14 14.14 9 24.20 >7.21

12 Unable U U U 6 6.97 95.6 95.6

13 3 9.90 97.40 97.40 21 23.59 86.1 96.4

14 8 24.61 16.89 17.21 8 8.82 95.6 95.6

15 9 13.62 17.54 17.71 15 16.15 90.4 90.5           
Table 3 : Pathload PCT/PDT and Enhanced Pathload Performance with CPU-Load at

the Receiver

According to these results, in the presence of CPU-load, Pathload most of the

time either fails or reports a wrong available bandwidth (for our configuration in a

100 Mbs path with no cross traffic we expect an available bandwidth of 90 to 99
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Mbs). On the other hand, our enhanced Pathload perform much reliable in the

presence of CPU-load.

4.2. Long Distance Testing In Presence of Internet Traffic

For our long distance testing, Pathload PCT/PDT and enhanced Pathload were

evaluated between two Linux machines in Southfield, MI and Tullahoma, TN. The

tests were conducted in a week day between 9 AM. and 6 RM, when the

lntemet traffic is usually high. Each test was repeated 30 times for each of the

Pathload OWD detection methods alternatively; meaning, immediately after the

first test with Pathload PCT/PDT, the enhanced Pathload was tested. Then, the

Pathload PCT/PDT, and so on. The reason for such sequential testing was to

have almost similar lntemet traffic for the two methods. If any of the methods

could not determine the available bandwidth by 50 fleets, that measurement was

aborted and categorized as “measurement with no result”.

The results of our tests are tabulated in Table 4 and Table 5. The detailed

results of the measurements with no CPU-load are tabulated in Appendix 4.

We started the tests with no CPU-load on the receiver machine and evaluated

the Pathload OWD detection methods. As seen in the tables, the two methods

very well predict the available bandwidth with 100% effiCiency. Please note that

in the presence of lntemet traffic, the correct estimate for available bandwidth is

not known. Therefore, here the efficiency is defined as number of attempts that

the code could report a reasonable available bandwidth over the whole number

of attempts.
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Pathload PCT/PDT

CPU load on % of measurements Avg # of Fleets Avg Latency of

the receiver with a result when applicable measurement [s

0 1 00% 6.5 39

20-25% 100% 6.8 41

45-50% 93% 7.6 45

70-75% 82% 7.2 44

95-100% 70% 7.8 51

0-100% 15% 34.7 84     
Table 4 : Pathload PCT/PDT Performance in Long Distance in the Presence of lntemet

Traffic with varying CPU—Loads at the Receiver Machine

 

 

 

 

 

 

 

 

 

Enhanced Pathload

CPU load on % of measurements with Avg # of Fleets when Avg Latency of

the receiver a result applicable measurement [3]

0 100% 6.0 39

20-25% 100% 5.8 39

45-50% 100% 6.2 41

70-75% 100% 5.8 40

95—100% 100% 6.1 42

0-100% 100% 17.4 55     
Table 5 : Enhanced Pathload Performance in Long Distance in the Presence of Internet

Traffic with varying CPU-Loads at the Receiver Machine

We continued our tests by increasing the CPU-load on the receiver machine.

As expected, Pathload PCT/PDT started having difficulties in determining the

available bandwidth with more load on the CPU. The efficiency of Pathload

PCT/PDT decreased significantly when the receiver machine had more than 95%

CPU-load. Also, for those times Pathload PCT/PDT was able to determine the

available bandwidth, it required more number of fleets and consequently more

measurement time. On the other hand, for the same conditions, the enhanced

Pathload performed very well to the point we can claim it was independent of the

CPU-load. The latency of the measurements and the number of fleets required
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for enhanced Pathload stayed almost the same across different CPU-loads on

the receiver machine.

At the end, we evaluated the performance of Pathload PCT/PDT and enhanced

Pathload when the CPU-load changed frequently during a single measurement.

To do that, we increased the CPU-load on the receiver machine from 0 to 100%

every 10 seconds. In this condition, performance of Pathload PCT/PDT was very

poor and could only determine the available bandwidth for 15% of

measurements.

On the other hand, the enhanced Pathload could very well adapt itself with the

changing conditions on the CPU-load. Although, the latency of the

measurements and number of fleets required increased, it was able to determine

the available bandwidth 100% of the times.
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CHAPTER 5

Conclusions and Future work

1.1. Conclusions

In thesis we integrate a previously proposed statistical method in One Way Delay

(OWD) detection into an open source and widely accepted available bandwidth

measurement tool, Pathload.

Pathload introduces a technique based on Self Loading Periodic Stream

(SLoPS). The algorithm is based on sending a stream of packets to the receiver

which causes queuing delays. At some point, congestion happens; and therefore,

the OWD increases. The process of estimating the available bandwidth is then

transformed into identifying the turning point at which the OWD sees an

increasing trend.

Based on literature and our investigations, Pathload PCT/PDT method for

OWD detection has some shortcomings, especially in the presence of CPU-load.
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Also, interrupt coalescence (IC) and context switch (CS) in Pathload is far from

ideal.

In our enhanced Pathload algorithm, the process of OWD is handled by a

simple linear regression model and p-value reported by t-test, as proposed in [29,

30]. This algorithm perform better than the algorithm used in Pathload because

1- Pathload throws away lots of packets because it only considers the

median of each group of packets. However, the replaced algorithm throws

away packets only when there is a decreasing trend.

2- Pathload uses empirical thresholds for PCT/PDT tests with no statistical

motivation. Therefore, there is no reasoning to perform well for an arbitrary

network path. The replaced algorithm, however, set a threshold in the p-

value space based on a statistical motivation. In this algorithm, for each

train of packets we obtain p-value of the t-test as our final quantity for

judging trend presence.

3- Interrupt coalescence elimination procedure in the replaced algorithm is

more robust and is done in a much simpler manner.

We conducted a series of real measurement experiments in our laboratory

network and in the presence of lntemet traffic with different CPU-loads on the

receiver machine. In our laboratory network, we created a route with no cross

traffic or CPU load on the measurement units. Our measurement, in this setup,

shows how well our enhanced Pathload performs compare to Pathload

PCT/PDT. Similarly, In the presence of lntemet traffic, our integrated algorithm
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performs better especially when the CPU-load on the receiver side is heavy or

changes frequently.

1 .2. Future Work

In the future work of this research, the integrated OWD trend detection

algorithm can be further refined and verified. Moreover, it is promising to explore

the performance of the described OWD algorithm into other methods of available

bandwidth measurement.

Also, performance of the enhanced Pathload, introduced in this thesis, can be

compared among broader range of available methods for available bandwidth

measurement to establish it creditability among other methods.

Because we believe Pathload is among the best available measurement tools

today, we recommend future researches address other challenges that Pathload

faces in available bandwidth measurement. For example, trend detection in

Pathload still faces difficulties when the slow link is not in the middle of a path.

Also, because Pathvar considers variability of available bandwidth in a greater

detail, we recommend implementation of the OWD trend detection technique

used in this thesis into Pathvar and computation of “crossing probability”, as

recommended in [12] and [13].

We conclude this dissertation with a hope that our newly developed package

improves the estimation of available bandwidth; which consequently, results in

better 008 for large class of data-intensive applications.

Also, we hope this thesis motivates future efforts to use/integrate the OWD

trend detection used in this thesis.
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APPENDIX 1

T-distribution

Suppose x1,x2 ,...,x,, are normally distributed variables with expected value of

,u and variance of 02. For this dataset sample mean can be defined as:

— x1+x2 +...+xn
x:

n

 

Therefore, sample variance can be defined as:

1

n—l

52: 
265' — 32

Let's note zas:

 

where n is number of samples. It can be shown that z is normally distributed

with mean 0 and variance 1.

Gosset introduced a similar quantity as:

 

51-71T:

Sn

W

 



In T exact standard deviation is replaced by the random variable 5,, . Gosset

showed that T has the probability density function of

DF-I-l DFl

Pi 2 i 2 +
mr[g)

[l+é;
] 2

 
 

 

f(t)=

where DF is degrees of freedom defined as DF = n —1 and F is the gamma

function defined as:

F(x) = th_le_hdh

0

The distribution of T is now called the t-distribution. The lack of dependence

0” .U and 0' is what makes the t-distribution important.
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APPENDIX 2

Slope and Y-intercept of a Linear Regression Line

Suppose that we are given a sequence of observations:

(xlay1)v (xmyn)

To predict variable y as a function of x, we assume that y can be approximated

by a linear function of x: f(x) = ,60 + fllx

To find the line that fit the data the best, we use the method of least squared.

Therefore, the loss function for our approximation can be written as:

" 2

L = 26.- — we + fllxl)
i=1

To get the best fit to the dataset L needs to be minimized over ,60 and ,61:

6L_"
5’5; - -§2(yi — ('60 + 73139)) = O

5% = “121206 “ (’60 1' fllxi))xi : 0

Solving for ,60 and ,6] , we get:
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APPENDIX 3

P-value Calculation in a T-distributed Dataset

Here are the steps to calculate the P-Value:

1- Using OWDs of packets in a sub-train, calculate standard error of the slope

SE using the following equation:

 

Z (yi " (fllxi 1' flo))2

SE: 71—2

2 (xi " x—i)2

where yi is the value of the dependent variable for observation i , flo and ,6]

 

 

are y-intercept and slope of regression line to the data as calculated in appendix

2, xi is the observed value of the independent variable for observation 1’ , x-,IS

the mean of the independent variable, and n is the number of observations.

3- Calculate degrees of freedomDF using DF = n — 1; where n is the number of

observations.
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4- Calculate t-score t of the test statistics using I: iii—11;; where ,61 is the slope

of regression line and SE is the standard error of the slope.

5- Calculate tcdf(t, n) from the following equation:

Ff: +1)

tcdf(t, v) = j 2 1 1 dx
)1 1

-00 1(2) «lnrr x2 _2+_

2 1+—

72

where, t is the t-score of the dataset and F is the gamma function defined as:

 

 

F(x) = Ixh—lcfhdh

0

6- Calculate p-value using: p =1 — tcdf(t, n)
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APPENDIX 4

Measurements Between TN and MI

Following table is sample results of the Pathload PCT/PDT and Enhanced

Pathload measurements when there is no load on the receiver machine CPU:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pathload PCT/PDT Enhanced Pathload

# of Low- High- # of Low- High-

test # Fleets Latency BW BW Fleets Latency BW BW

1 6 34.65 4.81 4.81 6 36.52 4.62 4.70

2 6 32.88 4.88 4.88 6 35.87 4.53 4.62

3 6 35.75 4.80 4.89 6 35.98 4.66 4.75

4 7 40.73 4.76 4.74 6 35.39 4.68 4.76

5 6 25.27 4.32 4.42 6 35.94 4.69 4.77

6 5 30.39 4.85 4.85 6 36.18 4.00 4.08

7 5 30.81 4.97 4.97 6 35.35 4.71 4.80

8 7 39.80 4.88 4.88 6 35.83 4.38 4.47

9 6 35.31 4.89 4.89 6 36.57 4.69 4.69

10 6 34.81 4.86 4.96 6 36.58 4.69 4.77

11 6 35.74 4.80 4.89 6 35.32 4.62 4.71

12 6 39.67 4.89 4.89 6 37.47 4.33 4.42

13 5 29.69 4.93 4.93 6 35.32 4.62 4.71

14 5 30.46 4.84 4.84 6 35.57 4.58 4.68

15 8 47.41 4.29 4.84 5 27.28 3.41 3.13

16 6 23.08 4.13 4.19 6 54.80 2.04 2.04

17 6 60.98 2.63 2.73 6 39.17 3.43 3.50

18 8 45.86 3.17 3.21 6 32.92 4.64 4.64

19 8 48.40 4.19 4.71 6 41.90 3.53 3.53

20 7 38.69 4.53 4.71 6 37.29 4.12 4.20

21 5 30.49 4.84 4.84 6 36.70 4.68 4.68

22 8 42.16 4.31 4.50 6 62.47 2.75 2.84

23 6 35.75 4.80 4.80 5 31.62 4.65 4.65

24 8 48.63 4.18 4.70 7 48.65 3.84 3.93            
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TN to Ml -No cpuload Pathload PCT/PDT Enhanced Pathload

25 7 40.24 4.34 4.86 7 48.93 3.17 3.52

26 8 41.21 4.53 4.62 6 49.90 3.10 3.22

27 6 35.34 4.88 4.88 6 35.34 4.62 4.71

28 6 35.61 4.85 4.85 6 31.67 4.49 4.58

29 8 47.69 4.18 4.88 6 40.03 4.10 4.18

30 7 68.17 2.68 2.74 6 35.66 4.66 4.75

Aveme 6.47 38.86 4.47 4.60 6.00 38.61 4.17 4.23       

As explained in this thesis, when there is no CPU-load on the receiver

machine, both Pathload and enhanced Pathload perform well. However, by

increasing the CPU-load on the receiver enhanced Pathload outperforms

Pathload (refer to the main text).
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