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ABSTRACT

MECHANICAL DOMAIN PARAMETRIC AMPLIFICATION
IN MULTI-DEGREE-OF-FREEDOM SYSTEMS

By
Nicholas J. Miller

Parametric amplification, or amplification of an oscillator’s resonance by
periodic variations in its parameters, can exist in both degenerate and non-
degenerate forms in multi-degree-of-freedom mechanical systems. In particu-
lar, micro-electro-mechanical systems are prime for parametric amplification
since common forms of electrostatic forcing produce parametric effects. In this
thesis we demonstrate degenerate parametric amplification in a macro-scale
mechanical system, and discuss the application of both degenerate and non-
degenerate amplification in multi-degree-of-freedom systems. We present a
formulation of expressions for parametric amplification of primary and com-
bination resonances of multiple-degree-of-freedom systems. We also show that
for systems with appropriate frequency separation, degenerate parametric am-
plification can be used to produce resonance quality enhancement during fre-
quency sweeps, thus allowing us to enhance the resonance quality observed
during a sweep without prior knowledge of resonance location. This technique
is applied to a multi-degree-of-freedom chemical mass sensor. Simulations are
presented. We also show that under proper excitation conditions, parametric
excitation can be used to transfer energy between system modes, but this ef-
fect is dependent on the phase between the forcing on the participating modes.
The results show that with proper conditions, including phase, it is possible
to suppress the vibration amplitude of a forced mode to O(€), by effectively

transferring the forcing to another mode.
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CHAPTER 1

Introduction

1.1 Parametric Excitation, Amplification, and Resonance

In this thesis we discuss parametric amplification in mechanical systems. By
parametric amplification, we mean the increase in energy of a resonator by a
periodic variation of the parameters of that resonator. If we view the variation
in a parameter as an input, or applied signal, we can say that we are exciting
or forcing the system parametrically, or through its parameters. This we term
parametric excitation. Parametric amplification, to reiterate our statement
above, is the amplification of a resonator’s response as a result of parametric
excitation. In a simple RLC circuit, for example, the resistance, capacitance,
and inductance may be varied to produce an amplified output. In a mechanical
device, the mass, damping coefficient, and stiffness may be varied. A para-
metric amplifier, however, cannot produce power gain if the only time varying
component is a locally passive resistance or damping coefficient [3]. Typically,
it is only the capacitance in electrical circuits and stiffness in mechanical de-
vices that are parametrically pumped.

In order to illustrate this principle, consider the example of a simple me-
chanical resonator, say a cantilevered beam which is experiencing a small force

at its fundamental resonant frequency. The beam will vibrate in response with
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an amplitude proportional to the magnitude of the force, and the total energy of
the beam will settle at a constant value. Now, imagine that the stiffness of the
beam begins to vary with time in the following way. When the beam reaches its
peak deflection, let the stiffness of the beam be suddenly increased above the
nominal value. This sudden increase in stiffness corresponds to a sudden in-
crease in potential energy. The potential energy is subsequently converted into
kinetic energy as the beam is pulled back to its center position. As it crosses
the centerline, let the stiffness be suddenly reduced to its original value. This
reduction in stiffness occurs without detriment to the system’s energy because
there is no potential energy when the beam deflection is zero, i.e., all the beam’s
energy is stored as kinetic energy at that time. Let this cycle continue, and it
is plain to see that this variation in stiffness effectively ’pumps’ energy into
the beam. The total energy will continue to increase, as well as the amplitude
of oscillation, until the effect saturates due to either increasing dissipation, or
nonlinear effects. It is important to note that the variation in stiffness is peri-
odic with a period half that of the beam motion, yet it increases the resonator
motion at its fundamental frequency. As Mumford wrote, “This principle may
be broadly stated thus: The energy of an oscillating system may be increased by
supplying energy at a frequency which differs from the fundamental frequency
of the oscillator” [4].

The above example is an illustration of a so-called degenerate parametric
amplification. In this specific case, the pump frequency is twice that of the
resonator. In the general degenerate case, however, energy can be pumped into
a single resonator at its fundamental frequency, from the family of frequencies,
wp = &n&’ where wyg is the resonator’s fundamental frequency, also known as
the signal frequency, and 7 is a nonzero positive integer, n = 1, 2....

It is also important to note the phase of the parametric variation. In the
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example above, the parametric variation is in phase with the beam motion.
If, on the other hand it were out of phase by 90 degrees, the stiffness would
increase as the beam crosses the centerline, and thus result in no change in
energy. Meanwhile, the stiffness would decrease as the beam reaches its peak,
causing a decrease in the potential energy. The effect is not an increase in
energy, but a decrease of the beam’s energy, and therefore attenuation of the
motion.

The non-degenerate species of parametric amplification is a bit more com-
plex, and so we will not attempt to illustrate it with a thought experiment
here. As far as general introductions are concerned, suffice it to say that
non-degenerate amplification does not have a phase dependence between the
pump and the resonator. Nor does it require the same frequency relation-
ship between the pump frequency and the resonator’s fundamental frequency.
Non-degenerate amplification does, however, require multiple parametrically
coupled resonators. By parametrically coupled, we mean coupled with time-
varying parameters. This mode of parametric amplification is best explained
by example of its most common manifestation, the three-frequency amplifier.
Herein two resonators are parametrically coupled. One of the two resonators
is directly forced, and the other is not. This setup is called a three-frequency
amplifier because, not surprisingly, it has three frequencies. The forced res-
onator’s fundamental frequency (or signal frequency) is termed wg, the pump
frequency, wp, and the unforced resonator frequency, or idler, resonator, w;.
The frequency condition for three-frequency non-degenerate amplification is
w; = (ws + Twp), where 7 is an integer, typically taken to be -1. Both degen-
erate and non-degenerate parametric amplification are are thoroughly treated
in [5, 3, 6]. Degenerate amplification is demonstrated in a mechanical system

in [7], among others, and non-degenerate amplification is demonstrated in a
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mechanical system in [8].

Above, we briefly glossed over the notion that the amplified response could
be saturated by nonlinearities in the system. We recall this here to make one
last note before moving forward with our discussion of parametric amplifica-
tion. Parametric amplification is a linear, frequency specific, signal amplifi-
cation technique. Accordingly, in this thesis, we consider only linear system
models, limiting our analysis to below the threshold where parametric pump-
ing destabilized the zero solution. Beyond this threshold lies parametric res-
onance, the situation where the parametric excitation alone, i.e., without any
direct excitation, causes the resonator to oscillate. In linear investigations of
parametrically excited systems the threshold between parametric amplifica-
tion and parametric resonance manifests itself as a singularity, in the amplifi-
cation or gain induced by parametric pumping. At this singularity the linear
equations predict infinite gain which is, of course, not possible. Accordingly,
when we encounter this singularity in our analysis we will simply regard it
as the boundary where our solution fails. For further discussion of parametric

resonance, we refer the reader to [9].

1.2 A Brief History

The most commonplace example of parametric excitation is probably a child’s
swing, wherein the child pumps the swing’s oscillation by varying the position
of his or her center of mass. This idea must be very old indeed, but with regard
to the science and engineering community, the first observation of this phe-
nomenon is attributed to Faraday in 1831 [4]. Faraday observed parametric ef-
fects in waves upon a surface of water. In 1859 Melde performed an experiment
wherein he tied a tuning fork to a fine string, the motion of the tuning fork be-

ing parallel to the length of the string. The vibration of the tuning fork varied
4






the tension in the string, and thus its stiffness, causing sustained transverse
vibrations in the string at half the frequency of the tuning fork [4]. Strictly
speaking, these examples are not of parametric amplification, but parametric
resonance.

Analogous experiments to those of Faraday and Melde were carried out with
electrical circuits, eventually leading to a successful parametric amplifier at-
tributed to Alexanderson. This device used variable inductance, and was used
in radio telephones [10]. In the mid 20th century the variable capacitor, or
varactor, was created, and proved to have much better noise properties than
variable inductance elements [5].

Noise issues are in fact one of the big motivators for parametric amplifi-
cation. In 1957, Heffner and Wade were the first to consider the theoretical
noise, gain, and bandwidth properties [4]. The noise properties were, however,
more dramatically summed up by Caves. In his work on noise in linear ampli-
fiers, he states “an ideal degenerate paramp [parametric amplifier] is noiseless”
[11]. In 1958 the theoretical low-noise properties were experimentally verified
at the Bell Telephone Laboratories by Engelbrecht [4]. Real parametric ampli-
fiers are, of course, non-ideal, so Caves’s statement is not possible to realize.
Nevertheless, they do not suffer from Johnson, Shot, or 1/f noise because they
are not based on semiconductor junction effects and resistors [12]. This results
in low-noise amplifiers. Despite these favorable low-noise properties, paramet-
ric amplifiers could not compete with Metal-Semiconductor Field Effect Tran-
sistors, or MESFETS, for microwave applications [12], and were subsequently
abandoned.

While parametric amplifiers are no longer commonly used in microwave ap-
plications, parametric amplification has certainly found a new home in optical

and micro-mechanical systems. In fact, it could be argued that parametric
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amplification persists as a part of a general vibrational control theory which
utilizes parametric excitation, which is potential applicable to a wide variety
of systems. This type of vibrational control uses high frequency, zero mean,
parameter variation in order to change the locations of the averaged poles of a
plant system [13, 14]. This is done without feedback or disturbance measure-
ment, but has the potential to both stabilize the plant and reject disturbances.
Certainly, parametric resonance amplification could be viewed as the act of
moving the poles of the averaged system closer to the imaginary axis, thus re-
ducing the effects of dissipation and increasing resonance quality. This specific
technique, parametric amplification, rather than the general technique of vi-
brational control, has become of interest in a variety of areas lately because
the effect is often either inherent, or can be easily designed into a system to

increase performance.

1.3 Current Interest in Parametric Amplification

Parametric Amplification currently has possible applications in electrical, me-
chanical, optical, thermal, and acoustic areas. Generally, the interest is in
sensor applications because the low noise properties of parametric amplifiers
offer the possibility of very clean sensor signals. Parametric effects have been
utilized in thermal IR sensors [15], and acoustic parametric amplification has
been shown using bulk acoustic waves (BAWSs) [16]. Optical parametric ampli-
fication is used to amplify small signals in lasers [17]. In the electrical field,
parametric amplifiers have gained renewed interest in application to Joseph-
son junction arrays [18].

Mechanical parametric amplification finds its major outlet in MEMs ap-
plication, beginning with the seminal work by Rugar and Griitter [7], wherein

electrostatic forcing was used to parametrically amplify the oscillation of a can-
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tilevered beam. Rugar and Griitter employed degenerate parametric amplifi-
cation and demonstated its phase dependant gain and noise-squeezing proper-
ties. Following this line, parametric excitation has been employed in MEMs-
based parametric amplifiers and filters [12, 19]. Some of the benefits of MEMs-
based amplifiers include the ability to operate in environments where CMOS
technology fails. High temperature environments such as combustion cham-
bers, and particle bombardment environments such as nuclear reactors are
some examples [12]. Other mechanical applications include electric force mi-
croscopy [20], atomic force microscopy [7, 21], and magnetic resonance force
microscopy [22]. Kaajakari and Lal use parametric excitation in a microactu-
ator, inducing torsional displacement in a micro rotor [23]. Currently there
is also a great deal of interest in the rich dynamics of large systems of para-
metrically coupled resonators [24, 25, 26]. There is also significant effort to
employ parametric amplification to boost the quality factor of resonators used
in MEMs sensors [22, 27]. This will be the focus of chapter 3, where modal Q)
enhancement by parametric amplification in multi-degree-of-freedom systems
will be considered.

1.4 Methods of Implementation in Mechanical Systems

Parametric amplification requires the periodic variation of some parameters
of the resonator who’s response is being amplified. There is certainly some
flexibility in the choice of parameter variation, though in mechanical systems
stiffness is nearly universally chosen. The methods of stiffness variation, how-
ever, are quite diverse.

Rugar and Griitter used the nonlinearity of electrostatic forcing to produce
parametric effects. When the resonator amplitude is of sufficient magnitude

that the first two terms of the Taylor series are contributary, the nonlinear
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electrostatic force modulates the cantilever stiffness. This approach is common,
and is used in [7, 12, 28, 29].

Another common source of parametric excitation is base excitation, as in
the classical base excited pendulum. Here the reaction forces induced by the
acceleration of the base creates a time varying stiffness. This method was used
by the author and others with a fixed-free beam in [1], and is demonstrated
here in section 2.1.

Lorentz forces are used on a cantilever in [30]. Here, a magnetic field is
coupled to a current at the tip of the cantilever running perpendicular to the
longitudinal direction. This creates an axial force on the cantilever which mod-
ifies the transverse stiffness of the cantilever. The current can then be easily
utilized to modulate the stiffness creating parametric amplification or reso-
nance.

Quadratic nonlinear stiffness is employed in [21]. The quadratic nonlinear-
ity creates a modulated stiffness with frequency twice that of the direct excita-
tion, thus producing a degenerate parametric effect. The quadratic stiffness is
generated by the curved geometry of the region that connects the cantilever to
the base.

Local heating induced by a low-power laser beam is used on silicon disk
resonators in [31]. The local heating at the periphery of the disk causes a
significant change in the effective stiffness. Modulating the laser in this way
yields parametric effects.

Roukes accomplishes parametric amplification of a nano scale fixed-fixed
beam by applying an axial load through the beam supports[32]. This methos
is in the same vein as Melde’s string and tuning fork experiment. In both
cases the axial force modifies the stiffness of the resonator, thus parametrically

pumping transverse vibrations.



Centrifugal forcing of transversely vibrating cantilevered beams can also
exhibit parametric effects. The centrifugal force can be used to either harden

or soften the beam’s intrinsic stiffness in a time varying manner.

1.5 Outline

The remainder of this thesis is organized in the following way. Chapter 2
presents the background material. Degenerate parametric amplification of
a single degree of freedom system is presented. In addition, we present an
experiment wherein parametric amplification is demonstrated on a macro-
scale cantilevered beam. The Manley-Rowe equations are presented. These
equations describe the average power relationships between resonances under
parametric amplification, and respresent the pre-existing general solution to
parametric amplification in multi-degree-of-freedom systems. Nondegenerate
amplification is also presented in the context of the three-frequency amplifier.
In chapter 3, we consider parametric amplification of multi-degree-of-freedom
systems. Here we develop an expression that describe the vibration behavior
of such a system under both direct and parametric excitation. This is done
using perturbation techniques. This analysis is accompanied by a numerical
example where we employ parametric amplification to provide resonance qual-
ity enhancement to frequency sweeps in a resonant multi-degree-of-freedom
chemical mass sensor. This device was presented by DeMartini et al. in [2].
Finally, in chapter 4, conclusions and a discussion of possible future work are
presented.

The major contributions of this work include the formulation of O(1) ex-
pressions for parametric amplification of primary and combination resonances
of multiple-degree-of-freedom systems. These expressions give more specific

descriptions of the device behavior than the Manley-Rowe equations. Specif-
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ically, these expressions provide amplitude, phase, gain, stability, and local
frequency response information. The Manley-Rowe equations, on the other
hand, provide only the average power transfered to the resonators from the
parametric pump. In addition, we demonstrate that systems with appropri-
ate frequency conditions allow parametric amplification to be piggy-backed on
frequency sweeps, thus allowing us to enhance the resonance quality observed
during a sweep without prior knowledge of resonance location. We also show
that under proper excitation conditions, parametric excitation can be used to
transfer energy between system modes, but this effect is dependent on the
phase between the forcing on the participating modes. This effect is not cap-
tured by Manley-Rowe. This result shows that with proper conditions, includ-

ing phase, it is possible to suppress the vibration amplitude of a forced mode to

O(e).
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CHAPTER 2

Background: Analysis of Parametric
Amplification

In the introduction we presented an intuitive explanation of degenerate para-
metric amplification. Here, we explore both degenerate and nondegenerate
amplification from an analytical perspective. Both cases, that is degenerate
and non-degenerate, will be encountered in the application of this technique
to multi-degree-of-freedom systems discussed in chapter 3. In this chapter we
begin with degenerate parametric amplification in section 2.1. Degenerate am-
plification is presented in the context of an experiment done in cooperation
with Rhoads et al., and presented in [1]. As such, the discussion of amplifica-
tion is preceded by a short discussion of modeling, wherein the source of the
parametric excitation is shown. In section 2.2, the Manley-Rowe equations are
presented as preliminary results to the discussion of nondegenerate parametric
amplification, which follows in section 2.3. Non-degenerate parametric ampli-

fication is presented in its most common form, the three-frequency amplifier.

2.1 Degenerate Amplification

As we are illustrating degenerate parametric amplification by example, we be-

gin our discussion with a detour into system modeling. We consider a fixed-free
11



Figure 2.1. Experimental setup [1].

cantilever beam subject to base excitation in both the transverse and the lon-

gitudinal directions. This model devel t was first pr d in [1], and is
reproduced here with permission of the authors. As we will see in 2.1.1, this
longitudinal base excitation prod p ic effects. Analysis of d

ate parametric amplification is presented in 2.1.2. The results of the analysis
are presented alongside the results of the experiment in 2.1.3.
2.1.1 Modeling

Now, consider the fixed-free beam shown in figure 2.1. The beam is a spring
steel beam, clamped at one end to the excitation table of a vibration exciter.
The beam is oriented vertically, while the exciter is oriented at an angle @ =

12
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. This an se motion, the relative
80°. This provides both longitudinal and base motion, the relati

magnitudes of which depend on a. A schematic representation of the system is
shown in figure 2.2.

The Lagrangian for the this system can be approximated by
;1 biezclons . 1
- 5pA [(u + u,,)2 + (0 + up)2] - §E1(1/)')2, @.1

where u,v, and ¥ are defined in the figure.

() and (o)’ represent time and

space derivatives with respect to time, ¢, and arc length, s. u), and vp specify

the imposed base motion in the longitudinal and transverse directions. p, A,
E, and I represent the beam’s density, cross-sectional area, modulus of elastic-

ity, and cross-sectional moment of inertia, respectively. Applying the extended
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Hamilton’s principle with an imposed inextensibility constraint gives

6H = 5/:" /Ol {Z+ -;-,\ [1 ~(1+)% - (»u’)?]}dsdt

ty [l (2.2)
+ / / (Qubu + Quév) dsdt,
3] 0

where [ is the beam’s undeformed length, ) is the Lagrange multiplier used
to impose the inextensibility constraint, and (), and @), represent u and v
components of the non-conservative forces and conservative forces that are not
included in the potential energy formulation. Assuming that damping only has
appreciable effects on the transverse motion, these forces can be approximated
by

Qu = —pAg, Qy=—ci, (2.3)

where g is the acceleration due to gravity, and c is the viscous damping coeffi-

cient. Applying the kinematic constraint

’U,

tan(y) = 17— (2.4)

and the extended Hamilton’s principle gives the partial differential equations

pAD + cv + EIv? — v pAiip(s — 1) — v/ pAiiy, @5

—v"pAg(s —1) —v'pAg = —paip.
To reduce the number of free parameters, it is convenient to rescale this equa-
tion by the substitutions enumerated in table 2.1, where v is some additional
characteristic length, e.g. the width or thickness of the beam. The reduced
distributed parameter model is given by

b+ b+ 0™ — D5 — 1)8" — i
l ! (2.6)
_PAGE oy pAEL, '
EI EI =P

14



Table 2.1. SCALING SUBSTITUTIONS

. 4
§=4% =4 T= EETAI

5= L ) up 5= a=cT

Sy " T g PTy €T A

Here, the time and length derivatives have been redefined in terms of new time
and length variables, { and $. Since the frequencies of excitation are near the
beams first natural frequency, and twice that, and yet both are still signifi-
cantly below the beam’s second natural frequency, we simplify the system still
further by ignoring all but the first mode. Accordingly we use a Galerkin pro-
jection to reduce (2.6) to a lumped parameter model by assuming a separable

solution and projecting equation (2.6) onto the first mode shape. Thus, we let
b = 2(£)®(8), 2.7
where ® is normalized such that fol ®2d5 = 1. And so, equation (2.6) becomes

50 + 630 + 20" — %Qiip(g —1)20" — 22§ 29/

l
pAgl3
El
We then take the inner product of this equation with the assumed mode shape,

o.

1 1 1 ]
3 / d2ds+és / ®2ds + 2 / dDVds—
0 0 0

(2.8)

A

P20 = —dy,

(5 —1)20" —

.l
1’1911,,2 / (3 —1)0d" + d'd3 (2.9)
0
A l3 1 . 1
~ P29 | (5-1)89" + 80'ds = —f;,,f dds,
EI 0 0
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Here we also choose a specific form for the base motion,

Tp = A cos(@t + ¢) + B cos(201), (2.11)

and, the final lumped-parameter model is

42 4+ 2+ [e/\192 cos(Q7 + ¢) + Ao cos(2Q¢)] z
(2.12)

= em Q2 cos(Qr + ¢) + enpN? cos(2Q7),
with parameters defined in table 2.2. From equations (2.10) and (2.11), and
table 2.2, we can see that the longitudinal component of the base motion, ﬁp, is
responsible for the parametric excitation via A\; and 9. Similarly, the trans-

verse component of the base motion, ¥p, is responsible for the direct excitation

via 71 and 79.

2.1.2 Analysis

The time-vary nature of equation (2.12) prevents a tractable closed-form solu-
tion, and so the method of averaging [33] is used to give an approximate solu-
tion. Parametric amplification is a resonant effect, so we assume the frequency
condition

Q=1+c¢co. (2.13)

In addition, we expect that the steady state response will be near the frequency
of the resonant direct excitation term. This motivates the constrained coordi-
nate change
2(1) = X(7) cos (Q7) + Y (7) sin (Q27) ,
(2.14)
(1) = =X (7)Qsin (27) 4+ Y (7)Q cos (7).
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Table 2.2. Nondimensional parameter definitions. Note that ¢ respresents a 'small’
parameter introduced for analytical purposes and w represents the system’s 'physical’
base excitation frequency.

R d(e)
= wpt =22
T=wot, (¢) =
o=wl, Q=-—
wo
1 3 1 1
w? = / sods - PA9 ([ 9a7(s — 1)ds + f dd'ds
0 ET \Jo 0
¢
EC = 2—(4)()

A ; 1 1
EA] = w ( / ®d"(5 —1)ds + / <I><I>’d.§)
0 0

® : 1 1
EAg = ﬁ"ﬂlsﬂ’. ( / 08" (5 — 1)ds + / <I><I)’d§)
0 0

en = A cos(a) fol ®ds,  eng = 4Bcos(a) fol ®ds

Subsequently, the method of averaging gives the following equations

X’ = —16 (AgY +40Y + 4CX - 2771 sin ¢) ’
zll (2.15)
Y = -3¢ (Ao X — 40X + 4CY — 2m; cos §) .

The steady state solutions of equations (2.15) give the steady state solutions to
equation (2.12) by use of equation (2.14). We find that the system has a steady
state solution with amplitude and phase given by

a = VX2+Y2
n? [A3 + 16(¢2 + 02) + 8)2 (0 cos 2¢ — ( sin 2¢)]
[22 - 16(02 + ¢2)]?
17
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- Y (A9 —40)sin¢ — 4( cos ¢
= t —| = t . 2.17
4 arca‘“[x] arcan[()\2+4a)cos¢—4§sin¢ @17
Defining gain as _
G = mmpon (2.18)
Cpump of f
the gain at resonance, (0 = 0), is given by
A2 +16¢2 — 8Xp(sin2
G(o = 0) = 4¢, [ 22 g 20 sin 29 2.19)
(A5 — 16¢2)2

The gain expression, equation (2.19), is only valid for the range of parame-
ters where equations (2.15) have a stable fixed point. This parameter space is

defined by Ao < Ag crit,
No.crit = 41/0% + (2 (2.20)

The Ao threshold also coincides with the singularities in the amplitude and
gain equations, equations (2.16) and (2.19). Figure 2.3 shows ’\2,crit in the o,
A2 plane around the area of operation. Ag ;; is shown for various values of
(. These curves are the so-called wedges of instability, which divide the stable
parameter space (below the wedges), from the unstable parameter space (above
the wedges). Above the wedges the real device will enter parametric resonance,
a phenomenon that is not captured by the linear model used here.

In addition to the amplitude and gain formulas presented here, we can also
develop an expression for the quality factor of a resonator under degenerate
parametric amplification. This is done by looking for the detuning value, (o),
where the amplitude, equation (2.16), is 3dB lower than the peak. Thus we

consider the equation

T m
V2i(o =01,p=—-=)=a(lc=0,¢ = —=) (2.21)
) 4 4
We assume a phase value of ¢ = —% to express the effective quality factor

under maximum gain. It also proves necessary in order to make the equation
18
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Figure 2.8. Wedge of instability near ¢ = 0. Note that parametric amplification
requires that the operating point be below the wedge, as parametric resonance occurs
above [1].

soluble. Accordingly, we find that

1

Q = (2.22)
2¢0
,
1
0y = Z\/(44—,\2)(—2)\2+\/4)\%+(/\2+4<)2) (2.23)

Here we find that the quality factor, (), under no pump, Ay = 0, gives the
classical result, Qg = 7:_C We also find that under parametric excitation,
the quality factor is monotonically increasing for pump values in the allowed
range, 0 < A9 < Ag crit-
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2.1.3 Experimental Results

In this experiment, a spring steel beam, (190 mm X 19 mm X 0.5mm,
fi = 11.5 Hz, fo = 73.3 Hz), was excited via base motion at an orienta-
tion of @ = 80°. The base motion was imposed by an MB Dynamics vibration
exciter (model PM-500), and measured using a three-axis accelerometer (Ana-
log Devices ADXL105EM-3) mounted directly on the exciter table. The beam
response was measured using two strain gauges (Measurements Group Inc.
Micro Measurements Division, EA-13-129LZ-120) mounted in a half-bridge
configuration. The damping ratio of the beam was determined to be between
€¢ =~ 0.005 and €( ~ 0.009, using the log decrement method. For the theo-
retical plots, €( = 0.007 was used. Figure 2.4 shows the measured magnitude
frequency response of the beam for three different pump values along with the
theoretical response. These curves have been normalized by maz{a|\o = 0},
the maximum of the unpumped response amplitude, such that the unpumped
system has unit amplitude at the natural frequency. The result is that the the-
oretical curves have been normalized by the theoretical critical pump value,
and the measured data has been normalized by the measured critical pump
value. Figure 2.5 (a) shows the beam with no pump (A9 = 0), and figure 2.5
(b) shows the beam with the pump on (A # 0). The gain at resonance due to
parametric amplification is described by equation (2.19), and plotted in figure
2.6. Here, the gain is plotted against pump amplitude, assuming a phase of
—45° which is associated with maximum gain. The measured pump ampli-
tudes were obtained from the accelerometer data. The theoretical gain curve
becomes unbounded as the pump amplitude approaches critical, but the real
system is not truly linear. It is only linear for small displacements, and so,
we expect some finite measured gain as the pump reaches critical. The mag-
nitude of the gain depends on both the magnitude of the nonlinearity and also
20
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Figure 2.4. Frequency response for three parametric pump amplitudes [1]. The con-
tinuous lines indicate theoretical results, the points indicate measured data.

the magnitude of the forcing, since such amplitude dependence is characteris-
tic of nonlinear systems. For the case here, we see that the beam reaches a
gain of about 3. It should be possible to obtain larger gain by increasing the
dynamic range of the parametrically amplified device, i.e., decreasing the non-
linear stiffness and noise floor. This investigation however, is beyond the scope
of this work, and is left as a future endeavor.

The phase dependence of the gain in degenerate parametric amplification is
illustrated in figure 2.7. Here, the response amplitude, normalized to 1 when
the phase is zero, is plotted against the phase. Figure 2.7 shows the measured
and theoretical phase dependence of the resonator amplitude. In line with the
theoretical prediction, the measured data shows maxima and minima occur-

ring near —45° and 45° respectively. This phase dependence is repeated on
21
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180° intervals.

2.2 The Manley-Rowe Equations

In the illustration of degenerate parametric amplification above, power is de-
livered to a single resonator through parametric forcing. In a more general sit-
uation, where there are multiple parametrically coupled resonators, the power
relationships are not so obvious. The Manley-Rowe equations, first detailed by
Manley and Rowe in 1956 [34], can provide some insight, however. While these

equations describe the average power relationships at different frequencies for

1 gesgt i

s and

by use of a small signal assumption, these
equations can be used to analyze power transfer in multiple parametrically
coupled resonators. Again, by parametrically coupled, we mean coupled with
periodically time-varying coefficients. The derivation for these equations can
be found in [34, 3, 5], and will not be repeated here. The Manley-Rowe equa-

tions assume that, given two nonzero incommensurate frequencies, wj and wo,

the natural fre ies of all led r tors as well as the parametric vari-
ation frequency have nonzero values given by mw) + nw9. Where m and n are

integers, positive, negative, or zero. Then the average power at these frequen-
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Figure 2.6. Gain vs normalized pump amplitude [1]. The pump amplitude is normal-
ized such that )\; i = 1. The continuous line indicates theoretical result, the points
indicate measured data.

cies must obey the Manley-Rowe equations,

(o o] +00

P,
> Y e, @20
B mwi + W9
+00 (o 9]
P,
>y —=2— Bimn (2.25)
mwi + w9

m=—o00n=0
Py n is the average power at frequency mw; + nuwsg, with the sign convention
being that positive Pp, n, means power is absorbed by the nonlinear or time-
varying parametric element, and power given out is negative. Or, alternatively,
positive P, , implies that power is drawn from frequency mw; + w9, and

negative Py,  implies that power is given to frequency mw) + nws.
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2.3 Nondegenerate, Three-Frequency Amplifier

Though the Manley-Rowe equations describe power transfer for an arbitrary
number of parametrically coupled resonators, let us now consider the sim-
plest case where we have only two parametrically coupled resonators. Two
parametrically coupled resonators can act as a three-frequency parametric
amplifier operating in the non-degenerate mode (as mentioned in 1.1), and
80 here we present the three-frequency amplifier to explain, by illustration,
non-degenerate parametric amplification. Non-degenerate amplification will
be examined again in chapter 3, where we discuss a more general system of
parametric resonators.

The three-frequency amplifier is made up of two parametrically coupled res-
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onators, a signal resonator and an idler resonator. The signal resonator has
fundamental frequency ws > 0, and is directly forced by the amplifier input
signal. The idler resonator has fundamental frequency w; > 0, and is unforced.
The three frequencies of the three-frequency amplifier are the fundamental fre-
quency of each of the resonators and the frequency of variation of the coupling
parameters, wp > 0. So, with regard to the Manley-Rowe equations we have
signal power P; at frequencies +ws, idler power P; at frequencies tw;, and
pump power P, at frequencies wp. As there can only be two incommensurate
frequencies we take

Ws + Twp, Ws > —Twp
w; = (2.26)

_wS - TUJP, wS < —T(L)p

where 7 is an integer. The Manley-Rowe equations, then, reduce to

P P;

L S (2.27)
ws Wws+Twp

P 3

Ip B _ 0. (2.28)

Wp Ws+Twp
Some insight into the three-frequency amplifier can be obtained by rewriting

equations (2.27) and (2.28) as
Py=—rP—2 _ —p,“P (2.29)

wg + Twp Ws

When ws > —7Twp, it is clear from (2.29) that Ps and P, must have oppo-
site signs. Thus the parametric excitation absorbs power from one resonator,
and delivers power to the other. We can rewrite this frequency condition as
wp = ‘ﬁ:—w“". The pump frequency, or frequency of parametric variation, wp,
is commensurate with the difference of the resonator frequencies. Thus we say
that the resonators are being pumped at a combination resonance of the differ-

ence type. In this situation, the device is said to be stable because, as we will
25



see, the parametric excitation cannot destabilize the resonators; it only affects
the coupling between them.

When ws < —Twp, it must be that 7 < 0, and that P; and P; both have
the same sign. Thus both resonators gain energy if Pp > 0 and lose energy if
Py, < 0. In this case the frequency condition can be rewritten as wp = 9—’;#
The pump frequency is commensurate with the sum of the resonator frequen-
cies. Thus we say that the resonators are being pumped at a combination res-
onance of the sum type. In this configuration the device is potentially unsta-
ble because the parametric excitation can destabilize the system. The three-
frequency amplifier is usually constructed with 7 = —1 while maintaining the
parametric excitation level beneath the instability threshold. Other values of
T are theoretically possible, however, there are practical difficulties associated
with those modes of operation [3], however.

Electrical examples of three-frequency amplifiers can be found in [3, 5].
Micro-mechanical examples can be found in [19, 8]. Generally, either type of
system can be described with equations (2.30) and (2.31).

T + 2eCswst + wg(l + €6 cos(wpt))z — eyd cos(wpt)y =
€A cos(wst + @) (2.30)
U+ 2eGw;y + wi2(1 + €d cos(wpt))y — eyd cos(wpt)r = 0 (2.31)

where T is the motion of the signal resonator, which has fundamental frequency
wg, and y is the motion of the idler resonator, which has fundamental frequency
w;. The signal to be amplified is applied as an input into the signal resonator
at the resonators fundamental frequency, and the two resonators are para-
metrically coupled with coupling strength 7. The coupling term is sinusoidal
with pump strength 9, and pump frequency wp which satisfies the relationship
wiz = (wp - ws)2 + €o. That is, the pump frequency is near w; + wsg, the
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Figure 2.8, Wedges of instability for the non-degenerate resonator, for w, = 1, w; =
15,¢(, =001, =00l,y=1,e=1

first combination resonance of the sum type. If we examine the stability of the
system in the wp, 0 plane, we find that there are wedges of instability at 2w;,
2ws, and w; + ws. Figure 2.8 shows the wyp, 0 plane in the area of the wedges
mentioned. Again, above the wedges is unstable, and below is stable. There are
more wedges at lower values of wp, but the wedges shown, which are also the
highest frequency wedges, are the most robust under increasing dissipation,
and so are the ones usually used for parametric forcing. The wedge located at
2w is associated with the principle resonance of the signal resonator. Choos-
ing a pump frequency under this wedge will degenerately amplify the signal
resonator. Similarly, the wedge at 2w; is associated with the principle res-
onance of the idler resonator. The wedge at w; + ws is associated with the
combination resonance, and choosing a pump frequency under this wedge will
non-degenerately amplify both the signal and idler resonators.

So, by choosing the pump frequency as defined above and applying the

27






method of multiple scales to equations (2.30) and (2.31), we find that the equa-

tions have a solution of the form

z(t) = a(et)sin(wst) + b(et) cos(wst), (2.32)
y(t) = c(et)sin(w;t) + d(et) cos(w;t), (2.33)

where a, b, ¢, and d are governed by the slow flow equations

) A
d = —(wsa+ X4 + — cos(¢), (2.34)
s 2ws
v A .
V = —(wsb+ —c+ — , 2.35
Cswsb + 4wsc+ s sin(¢) (2.35)
v o
C, = Eb - C,-wic - gw—;d, (2.36)
6 o
For the case of zero mistuning, 0 = (), this set of slow flow equations has a
stable fixed point where
A2C2w4
lzg| = 8\/ 1t (2.38)
(16¢swsGiw; — (719)?)?
A2(v4)?
lyol = 2 (2.39)
(16¢swsGiw; — (75)2)2
This fixed point is stable for
4 Y-
5 < 3V Cawslii (2.40)

v
Equations (2.38) and (2.39) show that, as the pump magnitude approaches the

critical value, the amplitudes of the signal and idler resonators approach infin-

ity. The gain curve for the signal resonator is presented in figure 2.9. Again,

gain is defined as amplitude with the pump divided by the amplitude with-
120l prumpo .

out the pump, G = T;(ﬁn#mzl' Note that the expressions for |z¢| and |yg|

are independent of the phase between parametric and direct forcing. Also, we
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Figure 2.9. Gain of the non-degenerate resonator, for w, = 1, w; = 1.5, {, = 0.01,
G=00,y=1e=1

see that sufficient pump amplitude will destabilize the system, as the Manley-
Rowe equations suggest.

Let us momentarily consider parametrically forcing the system near a com-
bination resonance of the difference type. This suggests the frequency con-
dition wiz = (wp + ws)2 + €0. The method of multiple scales again gives a
solution in the form of equations (2.32) and (2.33), but with slow flow equations

) A
d = —(swsa+ ‘Y—d + — cos(¢), (2.41)
S S
() A
¥ = —(wsb— 7—-c + — sin(¢), (2.42)
S S
, ¥4 o
¢ = —b— (w,c— —d, (2.43)
4w; Gics 2w;
)
d = -Lg + 7 - Gw;d. (2.44)
4w 2w;
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These equations have a fixed point where, for zero mistuning (¢ = 0),

A2C2w4
= 8 L1 , 2.45
ol (16Cows s + (10)2)2 (249
A2’y252
l = 2 . 2.46
ol \/(lﬁcswsciwz- T (02 49

This fixed point is stable for all values of 4, thus confirming the claim we made
in section 2.2 while discussing the Manley-Rowe result for the combination
resonance of the difference type. Additionally, we see pumping the system de-
creases the amplitude of the signal resonator and increases the amplitude of
the idler. Thus we see confirmation of the Manley-Rowe result which states
that, for positive pump power, the time-varying stiffness element will take
power from the signal resonator and provide power to the idler.
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CHAPTER 3

Parametric Amplification in

Multi-Degree-of-Freedom Systems

In this chapter we anaylze parametric amplification of multi-degree-of-freedom
systems with distinct modal frequencies. We also assume that the parametric
excitation has uniform and periodic time dependence. That is, the time vary-
ing stiffnesses of the system can be written as KzA(t), where K is a constant
matrix, Z is the vector of system coordinates, and A(t) is a periodic scalar
function. This analysis is presented in section 3.1. In section 3.2, an exam-
ple system is presented, in which parametric amplification is demonstrated.

Numerical analysis of this is presented in section 3.2.1.

3.1 Analysis

Assuming small damping and forcing, and assuming small arbitrary paramet-

ric excitation, an N degree of freedom system can be described by
Mz" + eCt' + K1z + eKo(T)z = €F (1), 3.1)

Where z is an N X 1 vector and M, C, K1, and K9(7) are the N x N mass,
damping, constant stiffness, and variable stiffness matrices, respectively. F'(7)

is the N X 1 forcing vector. Though the system is linear, the solution cannot
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be expressed as a tractable form of the transition matrix, and so, an approx-
imation method is required. In this work we employ the method of multiple
scales, after Nayfeh and Mook [33]. This method lends itself to identification
and treatment of the various frequency conditions that arise. The complete
first order multiple scales analysis is contained in appendix A, where the sys-
tem is considered under five different frequency conditions. These five condi-
tions correspond to the cases where the parametric excitation frequency is near
an isolated primary resonance, an isolated combination resonance of the sum
type, an isolated combination resonance of the difference type, simultaneous
near both a combination resonance of the sum type and a combination reso-
nance of the difference type, and, finally, near two combination resonances of
the difference type. When we say that the parametric excitation frequency is
near a resonance, we mean to imply that the frequency is near the tip of an
instability wedge corresponding to that resonator. In the case of a multiple de-
gree of freedom system, these resonators are simply the modes of the system.
As we will see, the first case is analogous to the simple degenerate paramet-
ric amplifier discussed in section 2.1, and the second case is analogous to the
three-frequency amplifier discussed in section 2.3.

In the presentation of this analysis, some of the steps have been left to
the appendix since such steps are comprised of simple algebraic manipulation
which add little to the discussion. So, to begin, let us clarify what is meant
by the modes of the system. More precisely, we are referring to the modes
of the unperturbed system, Mz"” + K 1z = 0, which are represented by the
coordinates y = U Tz U is the similarity transform that decouples Mz" +
Kiz = 0, and is normalized such that U TMU = I. Thus we express the
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equation of motion, (3.1) as
N
g + Wiy = ez [ - ery;- —Arjy; +UjpFj| 7=1..N, (3.2
J=1
where Z = UTCU and A = U TK2U . Here y, is the amplitude and wy

is the frequency of the rth

mode. Note that the parametric forcing, Arjyj,
carries modal contribution factors since A is the transformation of K9 by U.
Let us consider an isolated primary resonance, the first of the five cases
listed above, and let this resonance be associated with the kth mode. Also,
let Apj = 7rjcos(Q + ¢) + byj cos(20) and F; = Ajcos(Q + ¢) +
Bj cos(2€2t), where 02 = w,% + €o. While only the 2() component of A,;
and the {2 component of F:, are required for parametric amplification, we have
included the other terms because the parametric and direct forcings will share
the same frequency content when they are both provided by the same mecha-
nism. For example, electrostatic forcing provides direct and parametric forcing

which are both proportional to the applied voltage squared.
The O(1) solution of the multiple scales equations gives

Yo = Xi(et)cos(02t) + Yy (et) sin(Q), 3.3

where . is the O(1) solution of . The slowly time varying amplitudes, X},

Y}, of the sinusoids are governed by

1 O + 20 F
= 2 Zkk T <7 A
X} 2Zkak + 10 Y, + 20, sin(¢), (3.4)
Okk — 20 1 F
Y] = ——-—kk4ﬂ Xk = 5 ZkkYi —23 cos(¢), (3.5)
where Fy = Z;\[:l UjiA; is the effective force acting on the kth mode. To

arrive at these equations it is necessary to assert the frequency conditions
wi Fwj, 1#£]

wi:l:Qj#wk, i=1...N7ék
33
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Here (), represents all frequencies present in the parametric forcing, Ag;.
These frequency conditions are required to isolate the k*® mode from all oth-
ers. To see this result, consider equation (3.2). The —Zj, ]-y;- term will couple
modes (to first order) only if those modes have the same frequencies. Thus
we assert that no two modal frequencies are the same. The —Aj;y; term
will modulate the modal frequencies by the pump frequency, and potentially
couple modes. Since we are considering an isolated mode, we generate these
frequency conditions so that the k*® mode will not be coupled to any other

mode. The above system has one fixed point, where

lyol = 2 [(Fﬁ(aﬁk + 40222, — 40231051 sin(26) + 402 +

1
400k cos(2¢))) /(‘sl%k —4(c? + Q2Z£k))2:| 2, 3.7

_ _1 [ (Ogk — 20) sin(¢) — 2Q2Z cos(9)
Yo = tan (<5kk+2a>cos<¢)—mzkksin(qs))‘

This fixed point is stable for

|6kk] < 24/02 + Q222 3.9)

When this fixed point is stable, it represents the steady state solution of y, to

3.8)

first order. We can then compare this steady state solution to the case where
no parametric excitation is applied. We describe this as the gain resulting from
parametric amplification, G (the ratio of |y;(| with the pump and |yj(| without
the pump), which can be expressed as

82, + 40222, — 40 Z; 8y sin(29)

G(O’ = 0) = 2QZkk (leck — 4Q2Z£k)2

(3.10)

for zero detuning, (¢ = 0). Figure 3.1 shows normailzed gain curves for a
range of phase values, ¢, ranging from = to 7. This range represents the

entire spectrum of phase values since the phase dependence is cyclical. the
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Figure 3.1. Gain curves for multiple scales solution, case 1.

maximum gain occurs at :41, and the minimum gain occurs at ’1'- Inspection of

these results show that this frequency condition produces behavior identical to

the d -ate lification le in section 2.1. Here we are degenerately
amplifying a single mode of the system, while all other modes are unaffected
by this mode’s response. The other modes, however, may be coupled among

themselves due to the parametric excitation.

For the second case, when the itation fr is near an i com-
bination resonance of the sum type (wg + wp), we take A; = &, cos(2Qt)
and F; = Ajcos(wgt + 6) + Bjcos(wpt + 1) + Cj cos(Qt + ¢), where
20 = wp + 1/w? + €0 and wE = (2Q — wp)? — €o. In this case, we are
only using the necessary frequency in the parametric term, A, 3 with the un-
derstanding that any other fre ies included here will li the fre-

quency conditions, but not change the result. Thus we assert that the para-
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metric excitation frequency is near the sum of the frequencies for modes p and
g. Also, we have added direct forcing at the corresponding modal frequencies.
Considering the modes p and ¢, we again find that the O(1) equations give

sinusoids with slow amplitude variation.

ypo = Xp(et) cos(wpt) + Yy(et) sin(wpt) (3.11)
Yoo = Xg(et) cos((2Q — wp)t) + Yy(et) sin((2Q2 — wp)t) (3.12)

where 3,0 and y,0 denote the O(1) solutions of modes p and q. The slowly
time varying amplitudes are governed by the differential equations

5pq F
r _ Opq F
Yp = L;Xq - §prYp - 5 cos(?) (3.14)
1 g Fy .
X, = _§quxq - 2w Y, + 4qup 2, sin(#) (3.15)
0 F
' = qp A

where F)y = Z;VZI UjqAjand Fg = Z?’:I U,pB; are the effective forcing
values for modes p and q. To arrive at these equations it is necessary to assert

that, again, no two modes have the same frequency, and

lw; £ Q)| # |lwp| i #q, 3.17)
lwi £ Q| # |lwgl i #p. (3.18)

Again, here, Qj represents all frequencies present in the parametric force.
These conditions state that no mode will couple to the pth or qth mode by
modulation of its frequency by any frequency in the parametric force. Note
that this condition does not contradict the conditions for the first case as long
as k # p, q. So, we can have parametric excitation near both the combination
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resonance and a principle resonance, and the two will not interact. Further-
more, if we are near multiple combination resonances, they will not interact
as long as each combination resonance belongs to a distinct pair of resonators.

The slow flow equations for this case have a fixed point with modal amplitudes

lypo| = 2 [(Fj&f,q +4F3(0% + Z2,w2) + 4F g Fp3bpq(0 cos(8 + ) —

1
2
Zgqugsin(6 + 10))) /(1602 Zg + (Epgbap — 4prquwpwq)2)J
(3.19)
and
ol = 2 \/Fgagp +4F%Z2,w2 — 4F g Fp Zpplgpwpsin(f + ) 520
Yq0l = . 3.
This fixed point is stable for
ApZpp Zgq (02 + W2 (Zpp + Zgq)?

we(Zpp + Zgq)?
Thus, parametric excitation near a combination resonance of the sum type can
only be made unstable if the signs of dpq and dgp are the same. This will be the
case for a symmetric parametric excitation matrix, K9 in equation (3.1). This
frequency condition produces behavior similar to the non-degenerate example
in chapter 2, except here both resonators (modes) are forced. Three-frequency
amplification is possible if one of these two modes remains unforced to act as
the idler resonator.

In the third case, where the excitation frequency is near an isolated combi-
nation resonance of the difference type (wg — wp), we take the same excitation
form as in the second case. Here we find that the result is the same as in the

second case except for the substitutions wp — —wp and 1 — —1). Thus we
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have a steady state with amplitudes

lyp0 = 2 [(Ff,éf,q +4Fg (0% + Z2w?) + 4FAFpdyq(o cos( — ) —

1
. 2
Zgqwqsin(d — w))) /(16022202 + (8pgbap + 4Zp,,zqu,,wq)2)]

(3.22)
and
ol = 2 F262, + 4F2 72 w2 + 4F g\Fp Zppbqpwpsin(6 — 1) .
K 1602Z2,w2 + (6pgbqp + 4 Zpp Zgqupwq)? P
which are stable for
4wpZppZaq(02 + W2 (Zpp + Zgq)?

wq(Zpp + Z4q)?
We see that combination resonances of the difference type can only be made
unstable if the signs of Jpq and 6qp are different. Consequently, when K>,
the parametric excitation matrix, is symmetric, we cannot destabilize a combi-
nation resonance of the difference type. We can, however, move vibration en-
ergy from one mode to another while pumping near a combination resonance
of the difference type. To see this, consider the case where we have F'y # 0,
Fp # 0, and sin(6 — %) = —1. A choice of dpg = 8gp = 2 Zpup will
drive |yq0| — 0, and |yy| will go to some finite value. In addition, note that
this choice of parametric excitation remains in the stable region. Note that to
do this we require that the mode to which the energy is transfered be forced,
and that this forcing have a specific phase relative to the forcing of the mode
whose amplitude is to be suppressed.

The fourth and fifth cases are more complicated. Here the parametric ex-
citation is near a combination resonance belonging to three resonators. The
analysis for these cases provide slow flow equations, but we have not been able

to produce analytic stability conditions or other results from these equations.
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3.2 Parametrically Amplified Frequency Sweeping: An
Application Illustrated by Example

We now consider an example application of the above results. DeMartini et
al. have presented a novel sensing strategy for a resonant chemical-mass sen-
sor [2]. This sensing scheme employs vibration localization in a multi-degree-
of-freedom mechanical microresonator to allow identification of resonant fre-
quency shifts in an array of chemical sensors. Yet, while this device gathers
information from an entire array of chemical sensors, it employs only a single
input and a single output. An experimental proof of concept is presented by
DeMartini et al. [2]. An S.E.M. image of the device is shown in figure 3.2.

In these types of mass sensors, i.e., those that identify the presence of the
target analyte by induced shifts in resonant frequency, damping in the res-
onators is an important issue. The minimum detectable mass of such devices
is inversely related to the square root of the quality factor of the resonator [35].
The dominant source of damping in cantilever beam type resonators operating
in air or liquid is dissipation associated with the surrounding fluid [36, 37]. As
a result, it is not uncommon to see proof of concept testing in partial vacuum.
Those who have reported extremely high sensitivity, such as Yang et al. [38]
for example, exclusively (to the author’s knowledge) operate in partial vacuum.
DeMartini et al. were forced to do their proof of concept testing in vacuum as
well “since the resonances were not sufficiently prominent at 1 atm, due to the
small () values associated with the resonance peaks of interest.” [2].

This, of course, is somewhat problematic because the vacuum prevents the
device from interacting with its environment, which is necessary to sense for
the presence of the target analyte. Various methods have been employed in

order to circumvent this problem. Burg et al. designed a resonant mass sen-
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sor that operates in an external vacuum while channeling fluid from the envi-
ronment in micro channels on the inside of the resonator [39]. The inside of
the resonator is functionalized, so that the target analyte sticks to it, chang-
ing its resonant frequency by altering its mass and stiffness. Because the
resonator operates in external vacuum, the damping caused by fluid drag is
largely averted. Tamayo et al. applied derivative feedback to cantilever mass
sensors in order to combat fluid damping [40]. This technique was applied to a
cantilever in both air (¢) of 100), and liquid (Q) of 1). The effective () of the
cantilever in liquid was increased to about 625. Mertz et al. also applied con-
trol to a microcantilever to regulate its response [41]. Dufour et al. showed that
operating a cantilever in the strong-axis bending mode rather than the weak-
axis bending mode reduces the effecting damping significantly [42]. Gallacher
et al. [27] achieved () enhancement with parametric amplification.

Although some, or even all, of these methods could potentially be applied to
the single input single output sensor, and indeed many are being investigated,
here we explore only parametric amplification in an effort to, like Gallacher
et al., improve the quality of a resonant sensor. This seems appropriate since
this sensor has both the required frequency separation and the need for high
quality resonances. We begin with a description of the device presented by
DeMartini et al., which amounts to a summary of [2]. As such, many of the
figures have been borrowed with permission from [2].

This single input single output sensor consists of several small resonators
(cantilevered microbeams) coupled to a collective base, or shuttle mass,
through which both forcing and sensing are applied. The device is designed
in such a way that each of the sensing resonators exhibits localized behavior as
a result of frequency separation of the system’s various modes. This localized

behavior is observed through the response of the shuttle mass, and so it is pos-
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sible to observe frequency shifts in the sensing resonators by monitoring only
the response of the shuttle mass.

Figure 3.2 shows a scanning electron micrograph of the device built for proof
of concept. The shuttle mass, labeled SM, is attached to ground by four folded
beam supports, labeled S, and forced by banks of interdigitated comb drives,
labeled CD. The shuttle mass is connected to four microbeams, labeled M. The
microbeams each have different lengths to allow for frequency separation. A
lumped mass model used for the following analysis is shown in figure 3.3. The
shuttle mass is represented by M, and the microbeams by m,. The equations

of motion are easily determined to be

T+ m; (T + 2;) + Chi \T+ 2;) +pT + Kpx = , (3.25
Mi (& + %) (& + %) .4k £(t) 3.95)
i 1

m; (£ + ) + cp (T + 25) + ¢i2i + kjz; =0, i=1,...,N (3.26)
where 2; is the relative displacement of the ith subsystem, given by
2, =Yy; — T, i=1,...,N. 3.27)

Nondimensionalizing equations (3.25) and (3.26), and shifting the zero value of
T, the equations of motion for this system can be written in the standard way.

Mz" +C + Kz = F(7), (3.28)

where M is the effective mass matrix, C the damping matrix, K the stiffness
matrix, T the compiled state vector, and F'(7) the forcing vector. For the sin-
gle input, single output sensor, only the first element of the forcing vector is
nonzero.

Figure 3.4 shows the desired frequency response for the system. That is,
the qualitative frequency response which is in keeping with the necessary fre-
quency separation and inertia ratio conditions which are required for this sen-

sor scheme. Figure 3.4 (a) shows the frequency response magnitude for both
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the shuttle mass and the microbeams and figure 3.4 (b) shows the phase for
the shuttle mass only. In the shuttle mass magnitude response there are five
resonance peaks, one for the bulk mode of the device, labeled 1, and one for
each localized mode which corresponds to a single microbeam, labeled A-D. The
corresponding experimentally obtained frequency response is shown in figure
3.5. Note that the experimental frequency response contains both the inplane
modes predicted by theory, but also some out of plane modes, labeled 2 and 3,
which were not captured by the model, but were predicted by finite element
software.

In order to illustrate this device’s function as a mass sensor, a 38pg plat-
inum patch was deposited on the shortest microbeam, the one associated with
resonance D. An SEM image of the platinum patch is shown in figure 3.6. Fig-
ure 3.7 shows experimentally obtained frequency responses in the neighbor-
hood of the microbeam resonances, both with and without the platinum patch
load. Because of the coupled nature of the device, all the resonance peaks move
as a result of the platinum patch being applied to only one beam. Yet, the lo-
calized behavior of the modes ensures that the resonance associated with the
microbeam carrying the load is shifted a great deal more than the others. Fig-
ure 3.8 shows the shift in resonance D as a result of the platinum patch. The
shift is 124 Hz. Figure 3.9 shows the shift in the next resonance, resonance C,
which shifts about 3 Hz. The shift in resonance D was about 40 times that of
the other peaks.

3.2.1 Numeric Analysis

In order to illustrate parametric amplification in the single input single output
sensor, and support the analysis above, we now consider a four microbeam nu-

meric model, using equations (3.25) and (3.26), with parameters chosen similar
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Figure 3.2. An SEM of the SISO device [2]
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Figure 3.3. Lumped mass model of SISO device [2]
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Figure 3.4. Frequency response. a) Magnitude, b) Phase [2].
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21

to the device presented by Demartini et al. [2]. We feel that this model captures
the qualitative features of a general device, and so simulation results using this

model provide a good qualitative under ding of the techni The bode plot

for the numerical model is shown in figure 3.10. Note that the frequency re-
sponse contains the same features as those in figure 3.10, i.e., those amenable
to mass sensing. A close up of the microbeam resonances is shown in figure
3.11. The resonant peaks shown in figure 3.11 correspond to those labeled A,
B, C, and D in figure 3.4. In this model, these four resonances have achievable
Q values of 97, 60, 65, and 56, respectively. The bulk mode has a () value of
46.

For this example, we assume that the parametric excitation is applied at
the device input, in the same way as the direct excitation. This could be ac-
complished via electrostatic forcing or feedback. We feel that this is in keep-
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Figure 8.6. SEM image of platinum patch [2].

ing with the single input single output nature of this device, but also may be
the simplest way to introduce parametric forcing to existing devices. Thus we
take (K?2);; = 0 cos(2§2t) to be the only nonzero component of the paramet-
ric forcing matrix (see equation (3.1)). Here we denote the input coordinate

to be z;. Also the forcing vector F' will have only one nonzero component,

F; = Acos(t + ¢). As such we expect d parametric Li
tion on primary r and the bination r will not generate
b the modes iated with binati will ex-

perience no direct forcing. Under this configuration, the stability regions in

the (2, § plane are shown in figure 3.13, where the device is unstable above the

curve, and stable below it. Again, recall that d is the amplitude of the paramet-

ric forcing term. Here, in figure 3.13, the pump magnitude on the 3 —axis has

been scaled such that a value of 1 corresponds to the pump value where the
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Figure 3.10. Bode plot for SISO model used for simulation
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Figure 3.11. Close up of beam resonances
magnitude of the time varying stiffr hes that of the stiffness

term. That is, the shuttle mass suspension stiffness, k}, (see figure 3.3) is no
longer locally passive for all time when €4 Ui2i / wiz > 1. This curve was pro-
duced using Floquet techniques. Note that because the factor of 2 is explicitly
included in the parametric forcing term, principle resonance tongues appear

at the fundamental frequencies of the modes, rather than at twice the funda-

mental fr as in the di ion of parametric amplification in chapter 2.

Also, the binati appear at the average of the frequen-
cies of the two combinationally resonant modes, rather than the sum.

The (2, 6 plane shown in figure 3.12 has been divided up into three regions,
where the wedges correspond with different behaviors. In region I, the pri-
mary instability wedge is located at the frequency of the primary bulk mode
of the device. The additional wedges come from the infinite number of wedges
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that stack up as the frequency approaches zero. Again, because each principle
resonance produces a wedge at () = %, forn = 1,2, ...., there are an infi-
nite number in close proximity as 0 — 0. The wedges in region II are the
result of the complicated interactions of the half frequency principle wedges
of the microbeams (n = 2), and the combination wedges generated by inter-
actions of the frequencies in regions I and III. Region III contains ten wedges
associated with the principle and combination resonance of the microbeams by
themselves.

As the frequency range of the microbeam resonances is the area of primary
interest, Figure 3.13 shows the stability boundary in the €2, 4 plane for this
region. The ten wedges are labeled by number, 1-10. Recalling that the mi-
crobeam resonances were labeled A, B, C, and D, we can identify the resonances
associated with each tongue. Tongue 1 is a principle resonance tongue for res-
onance A. Tongue 2 is a combination resonance between A and B. Tongue 3 is
a principle resonance for B, and tongue 4 is a combination resonance for A and
C. Tongue 5 is a combinations resonance for both B and C, and tongue 6 is a
combination resonance for A and D. Tongue 7 is a combination resonance for B
and D, and tongue 8 is a principle resonance for C. Tongue 9 is a combination
resonance for C and D, and finally, tongue 10 is a principle resonance for D.

The dotted line in figure 3.13 shows the multiple scales prediction of the
stability boundary. Note that, on the boundary, the pump value is significantly
greater than the threshold of passivity (€U2/w? = 1). Thus, in the bulk
mode equation, equation (3.2) with 7 = 7, we have exceeded the O(¢) assump-
tions. However, in the higher mode equations, since wr > w; (r # 1), we are
merely approaching the limit of the O(¢) assumptions on the pump amplitude.
For this reason, in figure 3.13, the multiple scales solution does capture the
tongues fairly accurately, but does not capture the boundary feature labeled B,
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Figure 3.13. Stability boundary around beam frequencies. Gray regions are unstable,
white regions are stable
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which is associated with lower frequencies. The reason for the large pump am-
plitude is the modal contribution. The parametric excitation is being applied at
the shuttle mass and the shuttle mass has a small displacement in the modes
associated with the microbeams (by virtue of the designed vibration localiza-
tion). Consequently, the modal contribution to the parametric pump amplitude
is small, and the parametric excitation needs to be larger to compensate.

The multiple scales analysis suggests that pumping the system beneath,
but close to, the tongues in region III of the {2, § plane will result in () en-
hancement of the microbeam resonances. This effect is illustrated by the nu-
meric simulations presented here. Figure 3.15 shows the simulated frequency
response of the SISO model from quasi-static frequency sweeps for the pumped
and unpumped cases along with the multiple scales prediction of the pumped
case. The pump value, §(§2), is shown in figure 3.14. Note that the pump value
is below the stability boundary. The () factors for resonances A, B, C, and D
increased from 98.8, 89.4, 102.0, and 125.7 to 261.2, 220.6, 207.3, and 241.3
respectively. Each resonance experiences somewhat different levels of gain be-
cause the proximity of each resonance’s corresponding instability wedge to the
pump vs. frequency curve in figure 3.14 is different. The pumping amplitudes,
relative to the corresponding stability threshold, for each resonance is 75.9%,
75.4%, 13.8%, and 71.9% respectively. Figure 3.16 shows a close up of the first
resonance. From this figure we can see that the perturbation solution is indeed
close to the real solution.

The parametrically amplified frequency sweeping technique we have illus-
trated here provides resonance quality enhancement without dependence on
complete knowledge of the system parameters. We only require that the res-
onances we wish to amplify do not couple to other modes under degenerate

parametric amplification and that we do not exceed the threshold of stability.
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Figure 3.15. Numerical simulation of the pumped system
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Figure 3.16. Close up of the first resonance for the numerical simulation of the
pumped system

This sets the technique presented here apart from other approaches. Moving
the poles by feedback control requires knowledge or estimation of those poles,
and since our system functions by changes in resonant frequencies, these ap-
proaches may be more difficult to implement. Even vibrational control, as pre-
sented in [13, 14], requires that one know the system poles in order that they
may be place properly by control. Still, this frequency sweeping method is
closely related to vibrational control, and indeed could be thought of as placing
poles by vibrational control. The difference, however, is that rather than plac-
ing all the poles with one parametric forcing signal, we are placing the poles

one pair at a time as we come upon them, so to speak, in the frequency sweep.
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CHAPTER 4

Conclusions and Future Work

In this thesis we discussed parametric amplification in multi-modal mechani-
cal systems. Parametric amplification is an important issue in micro-electro-
mechanical systems because such systems often require high resonance quality
and are often forced in a manner where parametric effects are present. For ex-
ample, it is often desirable to build devices on silicon-on-insulator wafers for
ease of fabrication. It is also often convenient to force such devices electrostat-
ically by applying a voltage between the device above the insulator, and the
substrate below. Again, this is often done because it is simple and convenient.
Such electrostatic forcing inherently produces parametric effects which can be
taken advantage of. It is common, however, to think of parametric amplifica-
tion in the form that it was presented by Rugar and Griitter [7], namely, degen-
erate amplification of a single resonator. We introduced degenerate parametric
amplification in this way, showing, for the first time known to the author, para-
metric amplification in a macro-scale system. In this work we also show that
parametric excitation has more versatility than this. Here we demonstrate
that, for devices with proper frequency separation, one can use degenerate
parametric amplification to piggy-back () enhancement on a frequency sweep.
This parametric effect can raise peak levels and quality factors of resonance

peaks while leaving the nonresonant frequency response unchanged. Such a
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technique could be very useful for devices which rely on resonance location via
frequency sweeping such as the single-input-single-output chemical-mass sen-
sor we discussed in chapter 3. In addition, we showed that non-degenerate
parametric amplification can be employed to either amplify the response of a
resonator (or mode) with the use of an idler resonator (or mode), or to move
energy between forced modes. Thus under the non-degenerate scheme it may
be possible to move all the energy from one mode to another so that, despite
being forced near resonance, that mode has no response.

Directions for future research suggested by this work include experimental
validation of this non-degenerate vibration suppression technique. The para-
metrically amplified frequency sweeps in the single-input-single-output device
discussed above also require experimental validation. To do this, it may also
be necessary to explore alternative methods for introducing the parametric ex-
citation since, as mentioned earlier, the application of parametric excitation to
the input of the device does not efficiently accord with the modal contribution
factors. In addition, the experiment presented in section 2.1 demonstrates lim-
itations on achievable parametric amplification which do not agree with the
theory presented. The reason is, as previously discussed, that the analysis as-
sumes a linear system, and the experimental system will behave nonlinearly
under large displacements. This suggests an investigation into the dynamic
range of parametrically amplified devices including the limiting factors of both
noise and nonlinearity. Noise properties in general warrant some inspection as
the effect of noise on the parametric amplification-parametric resonance bifur-
cation boundary is not clearly understood. Furthermore, the phenomenon of

stochastic resonance may have potential applications in MEMs sensors.
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APPENDIX A

Multiple Scales Analysis

Consider the equation
Mz + eCz + Kz + eKa(t)z = €F(t)

where M, C, and K are the N X N mass, damping, and stiffness matrices,
respectively. Ko(t) and F'(t) are the periodic stiffness matrix and forcing vec-
tor. Let U be a matrix such that UT MU = I and UTK U = A, where A is
a diagonal matrix of the natural frequencies of the system. Now, we partially
decouple the system with the change of coordinates x = Uy,

UTMUjj+ eUTCUy + UTK Uy + eUTKoUy = UTF
N

yr + wgyr = CZ[— Zriy; — Arjy; + Uer]} r=1.N
J=1

where Z = UTCU and A = UTK oU. Applying the method of multiple
scales after [33], we make the substitutions

yr = yr0(To, T1) + eyr1(To, T1) + O(€?)
gr = Doyro + €D1yro + €Doyr + O(€?)
iir = D3y, + 2¢DgD1yr0 + €D3yr1 + O(e?)
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where T = t and 17 = €t. Then, we have

D3y +2¢DoDyyro + eD3yr1 + wlyro + ew?yry =
N .
€ =1 [ — Zrjyj — Brjy; + Uj F

for r = 1...N. We now consider five different cases.

A.1 Case 1: Near an isolated primary resonance, 2 =~ w;
Here we take

Arj = 7rjcos(QTp + @) + 4y cos(2QTp)

Fj = Ajcos(QTp + ¢) + Bj cos(2Q7Tp)

Q% = w,% + eo.
Then, for O(1), we have

Dfyko + Qyro = 0
Dgyr0+w,?yr0 =0 r=1.N#k

and thus
Yko = Re{Ck(Tl)eiQTo}

Yro = RC{O,-(Tl)elerO}
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So, for O(¢), this gives

N
Diyr1 +9%yp; = oce'T0 — 2i0c) M0 - Z {iijijje“"jTO
Jj=1
1 - o .
5Tk (e““’f*")TO*‘f” + el Q)To+¢z)

+% B (ei(wj-i-ZQ)TO 4 ei(wj—2Q)T0)

—UjrAjcos(QTp + ¢) — Ujp B COS(?QT())]

N
2 . ! iwrT . 1w, T,
Dgyrl +wiyr, = —2iwrcer10 — E [zij,_jcje 770 4
j=1

1 (- ; (w0 — i
_2_7ch1_ (ez(uJ+Q)To+dn + ez(wJ Q)T0+¢n)

+_;_ 6 5c; (ei(wj+2Q)T0 N ei(wj—2Q)T0>
"'UjrAj cos(Tp + ¢) — UjrBj COS(QQTO):I .

From these equations we can determine the frequency separation criteria.
Here we see that we require that wj be distinct from all frequencies, that
lwj £ wi| # |wr|, and that |w; £ 2wg| # |wr| for 7,j = 1...N # k. Elimi-
nating secular terms gives from the O(¢) equation gives

Re{ackeimb - 2chLemT0 — i Z ™0 4
1 :
§5kkck€_mT0 — F 4 cos(Ty + <p)} =0

Re{ — 2iwrc + reirTo iwrerc,,ei“TTO} =0
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where F'y = ngzl UjiAj. Thus we have the slow-flow equations
[X,’i] _ i[—mzkk ékk+2o] [xk] s Fasnid)

Yk 40 Jkk — 20 —QQZkk Yk ‘FA: cos(¢)

X,l- _ l -Zr‘r 0 Xr

Y; 2 0 —Zrr Yr
where X; = Re{c;} and Y; = Im{c;}. Hence, c; — 0, and i, has a fixed
point

leg| = 2 [(F};(ézk + 40272, — 40234654 sin(29) + 402 +

]
406y, COS(2¢))) /(O — 4(0% + sz’%k))2] 2

—1 [ (Okx — 20) sin(@) — 2QZ}, cos(¢)
~tan ((5kk + 20) cos(¢) — 2QZx Siﬂ(d’))

62, + 40272 — 4QZy 0k sin(20)
2 2 )2
(% — 492Z}%)

Zeg

Glo=0) = QQZkk\[

This is stable for §5; < 24/ 02 + Qzsz. Note that Zyyg = —Zc.

A2 Case 2: Near an isolated resonance of the sum type,
Q= wp+ wg
Here we take

Apj = 0pjcos(20Tp)
Fj = Ajcos((2Q — wp)Tp + 0) + Bjcos(wpTp + ) +

Cj cos(QTp + @)
wp + y/w2 + €0
Q = > :
w:‘; = (202 - wp)2 — €0.
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Thus, for O(1), we have

D%ypg + wgypo =0
Dqu() + (202 — wp)zyqo =0

and
Ypo = Re{op(Tl)eprO}
Yq0 = Re{cq(T 1)ei(29“wP)T0}.

So, for O(e),

N

2 . ! _iwpTy . iwTi

Dgypl +wpypl = —2zwpcpe’ P70 — E [zijpjcje 370
j=1

41 i, (ei(wj+2Q)T0 4 ei(wj—2Q)T0) 3
2

Ujp(Aj cos((2Q2 — wp)Tp + 0)

+Bj cos(wpTy + ) + C;j cos(Tp + ¢))]

D§yq1 +(2Q - wp)zyql = ocqe’(m-wp)TO -

2i(29 — wp)cye! (X =p)To
N ' . |
— Z [iw]‘qucjerTO + %5(1]6] (el(wj+ZQ)TO + el(wj~2Q)T0)
j=1
~Ujq(A; cos((222 — wp)To + 6) + Bj cos(wpTp + ¥)

+C; cos(QTp + ¢))] .

Here we find the frequency conditions, |w; 20| # |wr|, 7,5 = 1...N, except
2() — wq = wp. Also note that this frequency condition can exist simultane-

ously with that of case 1, and so we can have these two cases coexist without
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coupling. Again, removing secular terms yields
: . 1 :
Fpg cos(wpTy + ¢)} =0
Re{ acqei(m"“’P)TU —2i(29Q — wp)c;ei(m—“’P)TO -
(20 — wp)qucqei(zg-“’P)TO -
1 :
5 Sapp e~ (2-wp)Tp | "4 cos((2Q — wp)Tp + o)} =0

where F)y = Zf:l UjqAj, and Fg = Z;\I:l UjpBj. Thus we have the

slow-flow equations

X! = —%zqqxq n 2:qu + ZZ)’; v, + "282;(0)
Y] = —-2%(1)((, - %zqqu + :%’; > — —%@
X, = f—Z}QI — -;-Zp,,X,, + E%@

Y, = %Xq - %Z,,,,Yp - Fb—zzﬂ’—)

where X; = Re{c;} and Yj = Im{c;}. This system has a fixed point where

o] = 2\/}1235311 + 4F 23w — AF AFp Zppdgppsin(6 + 1)
gl =

lepl =2 [(Fjagq +4F(0® + Z2,w2) + AF g Fpdpq(o cos(6 + ) —

1
. 2
Zgqwgsin(6 + 1/)))) /(1602212,1,(.03 + (Opqdgp — 4prquwpwq)2)

This fixed point is stable for

Qwp Zyp Zgq(0% + Wi Zpp + Z4q)?)

wq(Zpp + Zgq)?
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Thus, the combination resonance of the sum type can only be made unstable

when dpq and dgp are of the same sign.

A.3 Case 3: Near an isolated resonance of the difference
type, 2 = w, — wp

This case results in the same solution as case 2 except with the change wp —
—wp and 1) — —1). Here, the stability condition becomes
Qwp ZypZaq(0% + w2 (Zpp + Z4q)?)

we(Zpp + Zgq)?

Thus, the combination resonance of the difference type can only be made un-

stable when d,4 and dgp are of different signs.

A4 Case 4: Near w, + w, and w, — wy
Let

Apj = 6rjcos(QTp)
Fj = Ajcos((2 — wq)Tp + 6) + Bj cos(wgTp + ¥) +
Cjcos((2 + wq)Tp + )
= Wptwg+ €0] =ws —wg + €09
~ (- wq)2 — 2¢(Q — wy)oy
~ (Q+ wq)2 — 2¢(Q2 + wyq)o.

tnew 'EENJ o)
?

Thus, for O(1),

D%ypo + (2 - wq)2yp0 =0
Digyqo + witigo =0

Dijyso + (2 +wg)?ys0 = 0
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and

yp0 = Re cp(Tl) (2~ “’q)TO}

{
Ygo = Re{cq(Tl)eiquo}
{

Yso = Re Cs(Tl)el(Q—qu)TO}

So, for O(e),
D(Q)ypl +(Q - wq)2yp1 =2(2 - wq)olcpei(Q—WQ)TO —
(Q _ U-)q) ;) i(Q—wq)TO

i(w; +Q)T; i(w; — T
_Z[""J picje T 25101 J( T 4 il )0)

UJP(A] cos((2 — wq)Tp + 0) + Bj cos(wqTp + )

+Cjj cos((Q + wq)To + ¢))]

N
2 . ! _iwg Ty w; T
Djyq1 +waYql = —2iwgcgeT0 — Z [WJqucye 370 4

Jj=1
1 i(w; +Q)Tq (W — Q)T
%3¢ (e (@t Tp 4 (ilw;=) 0) -
Ujq(Aj cos((Q — wq)Tp + 6) + B; cos(wgTp + )
+C; cos((Q + wq)Tp + ¢))]
D%ysl +(Q + wq)2y31 = 2(9 + wq)02csei(ﬂ+“’q)T0 —
2i( + wq)c'sei(9+“’q)T0
N
— Z [iijSjCjeijO + %é‘sjcj (e’l(wj-i-Q)TO + ei(wj—Q)T())
—Ujs(Aj cos(( — wq)To + 6) + Bj cos(wgTo + )

+Cj cos((2 + wq)Tp + d)))] :
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Eliminating secular terms gives
Re {2(0 - wq)alcﬁei(n—“"q)TO - 2i(2 — wq)c;,ei(ﬂ_“’q)TO
—i(Q — wq)prcpei(Q_“’q)TO - %6pche"i(a"“’q)7b +
Fpcos(($2 —wq)To + 9)} =0
Re { - incheiquo - iquqchei“‘lTU - -;—5qpcpe_i“"lT0 —
%Jqscsei“’qTo + Fpgcos(wqTp + 1//)} =0
Re {2(0 + wq)agcsei(9+“’q)T0 - 2i(2 + wq)c’seim“’"‘l)TO
—i(Q+ wq)Zsscsei(Q+“’q)T0 - -;-dschei(Q“qu)TO +

Fo cos((2 4 wq)To + d))} =0

which results in the slow flow equations

Xy = ~3ZpXp+ oYyt %Yq + % sin(9)
YI; = —01Xp — %pr}’p + %Xq ~ 22—’: cos(6)
X; = —%ZSSXS + o9Ys — g:quYq + %sin(gﬁ)
Y] = —09Xs— %ZssYs + :wiquq - —2%% cos(¢)
X(’I = fwi’;)fp - ;SWL:)@ - %quXq + i—i sin(1))
Y, = fZZ Xp+ j:z Xs — %quyq — i—i cos(¥).
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A.b Case 5: Near w; — wp and w, — wy

Let
Apj = 6pjcos(2Tp)
Fj = Ajcos((wg — Q)Tp + 0) + B; cos(wgTp + ¥) +
Cjcos(( + wq)Tp + ¢)
) = wg—wp+ €0 =ws —wqg + €02
wg ~ (wg— 0)? + 2e(wqg — oy
Wl = (Q+ wq)2 — 2€(2 + wyq)oa.
Thus, for O(1),
2 2 —
Dgypo + (wg — Q) ypo =0
Difyqo + wayqo = 0
Dgyso + (2 + wq)2y30 =0
and

o = Re{opT)ea Vo

yso = Re

{
Yoo = Re{cq(Tl)eiquo}
{

cs(Ty )ei(Q-’rwq)To } )
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So, for O(¢),

D%ypl +(wg — Q)2yp1 = —2(wq — Q)Ulopei(wq—n)ro _
2i(wg — Q) cyeta=VTo
N

- Z [z'wj ijCjewJTO + §5pjcj (ez(wJ+Q)T0 RIC Q)TO)

j=1
—Ujp(Aj cos((wg — Q2)Tp + 0) + Bj cos(wgTo + ¥)
+C;cos((@-+ wTo + 0)|

. N .
J=1

1 (W (w0 —

§6qjcj (e’(“’]+Q)TO + ez(wJ Q)T()) _

Ujq(Aj cos((wqg — Q)Tp + 6) + B; cos(wgTp + )
+Cj cos((Q + wq)Tp + ¢))]

D2y, +(2+ wg)ys1 = 2(Q + wy)oacse’FHwa)To
2i( + wy) e Hea)To

_Z[zw] 8Jc]e wi Ty 0 4+ 63] J( (j+Q)T0+ei(uj—Q)T0)

UJS(AJ cos((wq — )T + 0) + B; cos(wqTp + ¥)
+C; cos(( + wq)Tp + ¢))] .
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Eliminating secular terms gives
Re { — 2(wg — Q)alopei(”q"Q)TO — 2i(wg — Q)c;,ei(‘*’q—Q)TO
—i(wg — Q)propei(“’q“ﬂ)TO - %5I,chei(wq_Q)T0 +
Fp cos((wg — )Tp + 0)} =
Re { — 2iwqc;ei‘”qT0 - z'quqchei‘”qTO - %5qpopei“’qT0 —
—;—5qscsei“’qT0 + Fp cos(wqTp + 1,/))} =
Re {2(Q + wq)agcsei(n+wq)T0 -2i(2+ wq)c'sei(n+“’q)T0
-+ wq)Zsscsei(Q+“’q)T0 - %qucqei(ﬂﬂ"qﬂb +
Focos((Q2+ wg)Tp + ¢)} =0

which results in the slow flow equations

X;, = —-;—prXp —01Yp — %Yq + i—p sin(0)
YI; = 01Xp — %pryp + %Xq - —21:'7,, cos(6)
Xy = ~3ZuXs+0oVs fws}@ + i—; sin(¢)
Y] = —09Xs— -l-ZsaYs ZZXQ - i—scos(qb)
X = fz’; Y, — ff —zqqxq + o o sm(z/))

0, 0, F
! qap qs
Y! = X Xs — —Z Y, — — V).
q 4(Uq 4(.dq 8 2 9974 2¢Uq COS( )
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