

This is to certify that the thesis entitled

LABORATORY SUBGRADE RESILIENT MODULUS DESIGN VALUES FOR THE STATE OF MICHIGAN

presented by

Colin Patrick Sessions

has been accepted towards fulfillment of the requirements for the

MS

degree in

Civil and Environmental Engineering

- 101.0

Date

MSU is an affirmative-action, equal-opportunity employer

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE	DATE DUE	DATE DUE

5/08 K /Proj/Acc&Pres/CIRC/DateDue indd

LABORATORY SUBGRADE RESILIENT MODULUS DESIGN VALUES FOR THE STATE OF MICHIGAN

Ву

Colin Patrick Sessions

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree

MASTER OF SCIENCE

Department of Civil and Environmental Engineering

2008

ABSTRACT

LABORATORY SUBGRADE RESILIENT MODULUS DESIGN VALUES FOR THE STATE OF MICHIGAN

By

Colin Patrick Sessions

The Michigan Department of Transportation (MDOT) currently uses several different procedures for determining the resilient modulus (MR) of the roadbed soil. Therefore, a consistent procedure is needed to unify the state and to meet the requirements of the Mechanistic-Empirical Pavement Design Guide (M-E PDG). To do this, the State of Michigan was divided, by soil type, into 15 clusters and 99 areas. Disturbed soil samples were collected from 75 areas along with 10 undisturbed Shelby tube samples. The samples were then tested in the laboratory to determine the natural moisture content, grain size distribution, and Atterberg limits. Selected samples were chosen to undergo cyclic load triaxial tests to determine the MR value. Empirical correlations were then developed for estimating the MR value for the different soil types by comparing them to the results of the moisture content, grain size distribution, dry unit weight, and Atterberg limits.

TO MY PARENTS

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Dr. Gilbert Baladi, for his effort, guidance, and patience during this study. I would also like to extend my thanks to the other members of my advisory committee, Dr. Neeraj Buch, Dr. Karim Chatti, and Dr. Syed Waqar Haider.

I would also like to extend my thanks to the Michigan Department of Transportation (MDOT) for their financial support. Thanks also to the MDOT technical advisory group headed by Mr. Dave Weber for all their valuable comments. Many thanks are due to my officemate and co-researcher Tyler Dawson for all his help and support. As well as the undergraduate students who assisted in the laboratory.

Finally, I would like to thank my parents for their encouragement and support throughout my college career. Without them this thesis would not be possible.

TABLE OF CONTENTS

LIST	OF TA	BLES	viii					
LIST	OF FIG	GURES	x					
	PTER 1							
		TION AND RESEARCH PLAN						
1.1		ground						
1.2		em Statement						
1.3	-	tives						
1.4		rch Plan						
1.5	Thesis Layout							
СНА	PTER 2							
REV	IEW							
2.1		w of MDOT Practices						
2.1	Role	of Roadbed Resilient Modulus in the M-E PDG	14					
	2.2.1	Procedures for Determining the Resilient Modulus of the Roadbed	15					
		Soil for Design Level One – Laboratory Testing						
	2.2.2	Procedures for Determining the Resilient Modulus of the Roadbed	17					
		Soil for Design Level Two						
	2.2.3	Procedures for Determining the Resilient Modulus of the Roadbed Soil for Design Level Three	18					
2.3	Litera	ture Review	19					
	2.3.1	Resilient Modulus and the Soil Classification Systems	19					
2.4	Labor	ratory Testing	20					
	2.4.1	Resilient Modulus Test Procedure	21					
	2.4.2	Issues with Current Test Standards	26					
2.5	Field	Testing	27					
	2.5.1	"						
	2.	5.1.1 California Bearing Ratio						
		5.1.2 Dynamic Cone Penetrometer						
	2	5.1.3 Plate Load Test	29					
	2	5.1.4 Pocket Penetrometer	30					
		5.1.5 Pocket Vane Shear Tester						
	2.5.2	Nondestructive Testing						
	2	5.2.1 Backcalculation of Resilient Modulus from Deflection Data	32					
	2.:	5.2.2 Backcalculation of K Value Using Pavement Surface Deflections	34					
2.6		lations Between Backcalculated Modulus, Laboratory-Based						
		llus, DCP, and Soil Physical Properties						
	2.6.1	Correlations Between Laboratory and Backcalculated	40					
		Resilient Modulus						

	2.6.2	Resilient Modulus and Physical Soil Properties	42
СНА	PTER 3		
FIEL	D AND	LABORATORY INVESTIGATIONS	
3.1		uction	44
3.2		Delineation	
3.3		ped Soil Sampling	
3.4		Testing	
	3.4.1	Penetration Resistance Using Pocket Penetrometer	
	3.4.2	Pocket Vane Shear Tester	
	3.4.3	Falling Weight Deflectometer (FWD)	61
3.5	Labor	atory Testing	
	3.5.1	Moisture Content	62
	3.5.2	Grain Size Distribution	63
	3.:	5.2.1 Sieve Analysis	63
	3.:	5.2.2 Hydrometer Analysis	64
	3.5.3	Atterberg Limits	64
	3.5.4	Cyclic Load Triaxial Test	68
СНА	PTER 4		
DAT	'A ANAI	LYSES AND DISCUSSION	
4.1	Introd	uction	80
4.2		T Practice	
4.3	Field	Data Analyses and Discussion	83
4.4	Soil C	Classification	86
4.5	Cyclic	C Load Triaxial Test Results	87
	4.5.1	Poorly Graded Sand (SP)	90
	4.:	5.1.1 Univariate Analyses	91
	4.:	5.1.2 Multivariate Analyses	98
	4.:	5.1.3 Validation	102
	4.5.2	Silty Sand (SM)	103
		5.2.1 Univariate Analyses	
		5.2.2 Multivariate Analyses	
	4.:	5.2.3 Validation	
	4.5.3	Clayey Sand (SC), Low Plasticity Clay (CL), and	117
		Low Plasticity Silt (ML)	
		5.3.1 Univariate Analyses	
		5.3.2 Multivariate Analyses	
		5.3.3 Validation	
		Poorly Graded Sand – Silty Sand (SP-SM)	
		5.4.1 Univariate Analyses	
	_	5.4.2 Multivariate Analyses	
	4.5.5		
		5.5.1 Univariate Analyses	
	4 4	5.5.2 Multivariate Analyses	142

	4.5.6 Gravelly Sand (SG)	144
4.6	4.5.6 Gravelly Sand (SG)	145
СНА	APTER 5	
	ICLUSIONS AND RECOMMENDATIONS	
5.1	Summary	150
5.2	Conclusions	
5.3	Recommendations	152
Appe	endix A	159
Appe	endix B	166
Refe	rences	181

LIST OF TABLES

2.1	MDOT procedures for determining resilient modulus
2.2	Models relating material index and strength properties to MR
2.3	Comparison between three soil classification systems21
2.4	Typical resilient modulus values for unbound granular and subgrade materials . 23
	C *
2.5	Regression coefficients for δ_r^*
2.6	Range of k value for soil type, density, and CBR
3.1	Soil percentages for each area within the 15 clusters
3.2	Locations of pocket penetrometer and vane shear tests
3.3	Locations of Shelby tube samples
3.4	Laboratory test results
3.5	Laboratory MR test results
4.1	Sample backcalculated k and MR values
4.2	Number of samples per soil type
4.3	Location of SP subgrade soils
4.4	Locations of SM subgrade soils
4.5	Location of SC, CL, and ML subgrade soils
4.6	Locations of SP-SM subgrade soils
4.7	Locations of SC-SM subgrade soils
4.8	Locations of SP-SM subgrade soils
4.9	Damage factor calculation
4.10	Design resilient modulus values for M-E PDG design level 3

5.1	Summary of predictive equations for each soil type	154
A.1	AASHTO soil classification system	160
A.2	Possible AASHTO soil classifications per USCS group	165
A.3	Possible USCS classification per AASHTO group	165
B.1	Laboratory resilient modulus results	167

LIST OF FIGURES

2.1	MDOT regions	12
2.2	Range of soil support values, structural coefficients, and resilient	13
2.3	Soil classification related to strength parameters	24
2.4	Resilient modulus testing apparatus for soils	25
2.5	Resilient modulus concept	25
2.6	Schematic of a dynamic cone penetrometer	29
2.7	Photo of plate load testing apparatus	30
3.1	Western portion of the Upper Peninsula	46
3.2	Eastern portion of the Upper Peninsula	47
3.3	Northern portion of the Lower Peninsula	48
3.4	Southern portion of the Lower Peninsula	48
3.5	Wet sieve test	63
3.6	Dry sieve test	64
3.7	Liquid and plastic limit apparatus	69
3.8	Vibrating table setup	70
3.9	Stress influence with depth	71
3.10	Cyclic load test setup	73
3.11	Typical cyclic load test results	74
4.1	Pocket penetrometer versus vane shear tester	85
4.2	Typical particle size distribution curves	88
4.3	Resilient moduli at 10 and 15 psi cyclic axial stresses	89

4.4	Grain size distribution curves for SP soils
4.5	Resilient modulus versus the percent passing sieve number 10 for SP soils 96
4.6	Resilient modulus versus the percent passing sieve number 10 for SP1 & SP2 96
4.7	Resilient modulus versus the dry unit weights for one SP soil sample 97
4.8	Resilient modulus versus the dry unit weight for 20 SP soil samples 97
4.9	Resilient modulus versus the dry unit weight for SP1 and SP2 soil samples 98
4.10	Resilient modulus versus the moisture content of one SP soil sample99
4.11	Resilient modulus versus SVSP1 and SVSP2
4.12	Predicted resilient modulus values for the validation points
4.13	Resilient modulus versus water contents of the SM soil samples
4.14	Resilient modulus versus dry unit weight of 13 SM soil samples
4.15	Resilient modulus versus the degree of saturation of SM soil samples 109
4.16	Resilient modulus versus the liquid limits of SM soils
4.17	Resilient modulus versus the average particle size at thirty percent passing 112
4.18	Resilient modulus versus the sample variable for SM (SVSM) subgrade 113
4.19	Resilient modulus versus the moisture index of the test sample
4.20	Measured and calculated resilient modulus values, Equation 4.5
4.21	Measured and calculated resilient modulus values, Equation 4.6
4.22	Resilient modulus versus the moisture contents of the samples
4.23	Resilient modulus versus degree of saturation for SC, CL, and ML soils 122
4.24	Resilient modulus versus dry unit weight for SC, CL, and ML soils
4.25	Resilient modulus versus degree of saturation
4.26	Laboratory measured and calculated MR values for SC, CL, and ML soils 127

4.27	Resilient modulus versus moisture content for SP-SM soils
4.28	Resilient modulus versus the dry unit weight of the test samples
4.29	Eight gradation curves of the SP-SM subgrade samples
4.30	Resilient modulus versus percent passing sieve number 200 for SP-SM soils 132
4.31	Resilient modulus versus the sample variable model, SP-SM soils
4.32	Resilient modulus versus SVSP-SM soils
4.33	Resilient modulus versus moisture content for SC-SM soils
4.34	Resilient modulus versus saturation for SC-SM soils
4.35	Resilient modulus versus the dry unit weight for SC-SM soils
4.36	Resilient modulus versus liquid limit for SC-SM soils
4.37	Resilient modulus versus SVSC-SM soils
4.38	Locations of SP-SM subgrade soils
5.1	Recommended M-E PDG level 3 design modulus values for the western 155 portion of the Upper Peninsula
5.2	Recommended M-E PDG level 3 design modulus values for the eastern 156 portion of the Upper Peninsula
5.3	Recommended M-E PDG level 3 design modulus values for the northern 157 portion of the Lower Peninsula
5.4	Recommended M-E PDG level 3 design modulus values for the southern 158 portion of the Lower Peninsula
A.1	AASHTO Atterberg limit ranges
A.2	Casagrande's plasticity chart
A.3	USCS coarse grained soil classification
A.4	USCS fine grained soil classification

CHAPTER 1

INTRODUCTION AND RESEARCH PLAN

1.1 Background

The state of Michigan is geographically located within the glaciated section of North America and most of its soil has developed from glacial deposits. The ice sheet advanced over the state in three lobes, one along Lake Michigan, one along Lake Huron and the third along Lake Erie. A branch from Lake Huron lobe advanced southwesterly and connected to the other two lobes. During the advance of ice a large amount of soil and bedrock along the path of each ice lobe were pulverized and incorporated into the ice sheet to be later redeposited. When the Wisconsin ice sheet retreated to the north, these materials (known as glacial drift) were superimposed on sedimentary rock of the Michigan Basin in the Lower Peninsula and the Eastern part of the Upper Peninsula and on igneous and metamorphic rocks in the Western part of the Upper Peninsula. The thickness and composition of the drift varies from one location to another. For example, the thickness of the drift in the Alpena area is only few inches whereas it is more than 1200 ft thick in the Cadillac area. The glacial drift also varies from clay to gravel; the granular texture may be segregated or mixed heterogeneously with boulders and clays. Because of these complex arrangements, about one hundred and sixty-five different soil types were formed and are being used for engineering purposes by the Michigan Department of Transportation (MDOT) (MDOT 1970). The engineering and physical characteristics of these soils vary significantly from those of gravel and sand in the Western side of the Lower Peninsula, to clay in the Eastern side and to varved clay in the Western part of the Upper Peninsula.

For a given type of roadbed soil, its mechanical (engineering) properties (the resilient modulus (MR) and the plastic properties) are a function of the physical parameters (moisture content, grain size, grain angularity, Atterberg limits, etc.) of the soil and have a major impact on the performance of pavement structures. In the past, MDOT funded several research projects to study the engineering properties of certain types of roadbed soils (Goitom 1981, Lentz 1979). The results of those studies will be incorporated into the results of this research.

In this study, the MR of various roadbed soil types will be determined in the laboratory using cyclic load triaxial tests and in the field using the Falling Weight Deflectometer (FWD) deflection data. Statistical correlations between the laboratory and field MR will be obtained. The major objective of this study is to determine whether or not the MR of a given roadbed soil type can be estimated using the results of simple tests.

In the laboratory, the MR of a given soil type is calculated as the ratio of the applied deviatoric stress, σ_d , (the difference between the axial and lateral stresses) to the recoverable axial strain (ε_r) of the soil (Goitom 1981, Lentz 1979, Young and Baladi 1977, and Yau and Von Quintus 2002). Mathematically, the MR is expressed as follows:

$$MR = \frac{\sigma_d}{\varepsilon_r}$$
 Equation 1.1

1.2 Problem Statement

The roadbed soils in the state of Michigan consist of glacial soils with distinct seasonal stiffness changes due to temperature (possible frozen condition) and moisture levels. MDOT's current pavement design process follows the procedure outlined in the 1993 American Association of State Highway and Transportation Officials (AASHTO) Design Guide. One of the inputs of said procedure is the effective value of the resilient

modulus of the roadbed soil, which is a function of seasonal changes. The pending new AASHTO Mechanistic-Empirical Pavement Design Guide (M-E PDG) procedure is even more stringent for defining MR in terms of seasonal effects. Currently, MDOT's various regions provide the "adjusted" MR value used for pavement design. The MR value is derived from either backcalculated deflection data or a correlation with known Soil Support Values (SSV).

1.3 Objectives

The main objectives of this study are to:

- Evaluate the existing processes used by all regions of MDOT for determining the MR value of the roadbed soil for flexible pavement design and the modulus of subgrade reaction (k) for rigid pavement design.
- Determine the needed modifications to make the process compatible with the M-E
 PDG.

1.4 Research Plan

To accomplish the objectives, a research plan consisting of five tasks was developed and is presented below.

Task 1— Review and Information Gathering

In this task, the research team will become familiar with MDOT's current and historical processes/procedures for selecting MR and k values for the design of flexible and rigid pavements. The information could be obtained by calling the various regions and talking to the soil engineers. The research team will also obtain information from MDOT that is needed for the other tasks in this study. These include:

- The locations of FWD tests that were conducted in the past and the availability of the measured deflection data and the pavement cross-section data that existed at the time of testing.
- 2. The depth of frost penetration especially in the northern part of the Lower Peninsula and in the Upper Peninsula.
- 3. The repeated load triaxial test data that were obtained as part of research projects that were sponsored by MDOT from 1975 to 1979. The data will be digitized and tabulated along with the roadbed soil type and will be used in later tasks.
- 4. Traffic data in terms of average daily traffic (ADT) and percent commercial.
 The effort of this task should produce:
- Tabulation of the procedures used by the various Regions for selecting MR and k
 values and the basis of such selection. Based on the information, differences and
 similarity in these procedures will also be tabulated.
- 2. Tabulation of the range and typical MR and k values used by the regional soil engineers for the various soil types.
- 3. A brief summary of the background and the development of the SSV-resilient modulus chart provided in Figure 2.
- 4. Assessment of the adequacy and sufficiency of the existing process for estimating MR and k values to be used in the new M-E PDG.
- For all available deflection data, tabulation of the locations of all FWD tests that were conducted in the past and the pavement cross-section that existed at the time of testing.
- 6. A map or a chart showing the depth of frost penetration where data are available.

7. Tabulation of the cyclic stress, confining pressure, vertical and horizontal deformations and strains, and the resilient modulus of the various roadbed soils included in the MDOT sponsored research projects during the period of 1975 to 1979.

Task 2— Partitioned State Map

Based on the MDOT Field Manual of Soil Engineering, the information obtained from the various regions in Task 1, the trunkline locations, and the soil maps of the US Soil Conservation Services (USCS), the state will be partitioned into geological zones for the purpose of field testing and soil sampling. The state will be divided into a maximum of 15 coarse clusters where the soil within any given cluster would have similar range of engineering and physical characteristics. Each coarse cluster will then be divided into areas to narrow the range of the soil characteristics. A maximum of 99 areas will be produced. The results will be presented to members of the technical advisory group (TAG) for review and possible modification. The main use of the partitioned soil map is to determine the locations of field testing and soil sampling.

Task 3— Field and Laboratory Testing and Soil Sampling

In this task, the research team will finalize the field sampling and the laboratory testing plans based upon the information obtained in Tasks 1 and 2. The total number of tests to be conducted is based purely on cost and available budget. The field sampling and the laboratory testing plans are presented in three subtasks below.

Subtask 3.1 - Soil Sampling Plan

From each area on the State Partitioned map, soil samples will be obtained. In areas where the roadbed soil is predominantly sand, only disturbed bag samples will be collected. In clay areas, both disturbed and undisturbed thin Shelby tube sample will be

obtained. In total, 75 disturbed roadbed soil samples and 11 undisturbed (Shelby tube) samples will be collected. All samples will be transported to the laboratory for testing as presented in Subtask 3.2 below.

Subtask 3.2 – Laboratory Testing Plan

The laboratory plan consists of moisture content, sieve analysis, Atterberg limits, and cyclic load triaxial tests. All tests will be conducted according to MDOT, AASHTO or ASTM standard test procedures. Results of the laboratory testing will be analyzed (see Task 4) to determine:

- 1. Soil classification For each of the 75 disturbed samples (bag samples), the soil will be subjected to sieve analyses to determine the breakdown fractions between sand and clay/silt particles. Any sample where the fine fraction (passing sieve number 200) is more than seven percent, plastic and liquid limit tests will also be conducted. Results of the sieve analyses and Atterberg limit tests will be used to:
 - Classify the soil according to the AASHTO and the USCS soil classification systems.
 - Develop, if possible, statistical correlations between the resilient modulus of the roadbed soils and the gradation and Atterberg limits of the material.
- 2. Cyclic load triaxial tests For each location where Shelby tubes were collected, repeated load triaxial tests will be conducted. The samples will be tested at three moisture contents to simulate the effects of seasonal changes on the resilient modulus of the soils. The water content of the samples will be changed to the desired level by either drying or by using back pressure technique in the triaxial cell. For sand subgrade soils, the test specimens will be compacted at three moisture contents and

subjected to cyclic load triaxial tests. Since, the resilient moduli of sand roadbed soils are heavily dependent upon the deviatoric stress; the laboratory tests will be conducted at three stress states which will be estimated through mechanistic analyses to simulate the probable in-situ field conditions.

Subtask 3.3 -Field Test Plan

This plan consists of Falling Weight Deflectometer (FWD) tests. The FWD tests will be conducted at the network- and project-levels. At the network level, one FWD tests will be conducted at 500 feet interval along the state trunkline. At the project level, 20 FWD tests will be conducted within \pm 50 ft from all locations where Shelby tubes (undisturbed soil samples) will be extracted.

All FWD tests will be conducted in the spring and in the late summer – early fall seasons). For those areas where FWD tests were conducted in the past and the deflection and pavement cross-section data are available at MDOT, the data will be used and the number of FWD tests (to be conducted in those areas in this study) will be reduced depending on the availability of spring and fall deflection data.

It should be noted that analyses of various damage models including AASHTO indicate that the two point FWD testing (spring and fall seasons) is adequate to assess the relative pavement damage caused by the roadbed soil due to different degrees of saturation.

Task 4 – Data Analyses

The data analysis, in this study, will be accomplished according to the three subtasks presented below. First, it should be noted that for all soil types, the relationship between the MR and k found in the M-E PDG was used. Since the relationship applies to

all MR and k values, the analyses stated in the subtasks below will be conducted on the MR values and the results will be converted to k values.

Subtask 4.1 – Backcalculation of Layer Moduli

All deflection data, whether collected during this study or other studies, will be used (depending on the availability of the pavement cross-section data) to backcalculate the layer moduli using the MICHBACK computer program. Although the moduli of all pavement layers will be backcalculated, only the resilient modulus of the roadbed soils will be subjected to further analyses. The moduli of the pavement layers will be reported without further analyses. For each test area on the partition map, two sets of moduli will be backcalculated; one set is based on the spring deflection data and the other on the late summer-early fall data. The two sets will be further analyzed to estimate the seasonal damage factor as presented in task five below.

Subtask 4.2 – Laboratory Test Data

Results of the cyclic load tests conducted on Shelby tube and reconstituted bag samples at three moisture contents were analyzed to determine the laboratory values of the resilient modulus of the roadbed soil. Results of the analyses were used to assess the impact of moisture (season) on pavement damage and to compare the values to those obtained from backcalculation.

In addition, the digitized cyclic stress-strain data of those research studies that were sponsored by MDOT from 1975 to 1979 were analyzed. This pool of information will be used as supplement to verify the relationships or to increase the pool of data to develop more accurate relationships.

The Atterberg limits (liquid limit, plastic limit, and plasticity index) and sieve analysis data will be used to classify the soil and to develop correlations to MR whenever possible. Correlations will also be developed between the laboratory and the backcalculated MR values.

Task 5— Damage Assessment Analyses

The damage assessment analyses (noted in subtask 4.1) was conducted based on the seasonal MR and k values obtained from the backcalculation of the FWD deflection data. The purpose of the analyses was to determine the effective MR and k values to be used in the design and rehabilitation of flexible and rigid pavements. The effective roadbed resilient modulus is an equivalent modulus that would result in the same damage as if the various seasonal resilient modulus values were used (Huang 2004). In the analyses, three methods will be used as follows:

1. The existing AASHTO 1993 damage model shown below.

$$u_f = 1.18 \times 10^8 \times (MR)^{-2.32}$$
 Equation 1.2

Where u_f = relative seasonal damage

2. The existing damage model in the M-E Design Guide, which is based on Miner's hypothesis of cumulative damage represented by the following equation.

$$D_{r} = \sum \frac{n_{ijklmn}}{N_{ijklmn}}$$
 Equation 1.3

Where, $D_r = \text{damage ratio}$

 n_{ijklmn} = actual number of load repetitions

 N_{ijklmn} = allowable number of load repetitions, for the i^{th} age, the j^{th} season, the k^{th} ,axle combination, the l^{th} ,load level, the m^{th} temperature and the n^{th} traffic path.

3. Mechanistic analyses of stresses and strains induced in the roadbed soil due to traffic load. The magnitudes of the induced stresses and strains for various roadbed moduli were compared as to arrive at a damage model or to verify the above models.

1.5 Thesis Layout

This thesis is composed of five chapters and three appendices as follows:

Chapter 1 – Introduction

Chapter 2 – Review

Chapter 3 – Field and Laboratory Investigation

Chapter 4 – Data Analysis

Chapter 5 – Conclusions and Recommendations

Appendix A –Soil Classification Systems

Appendix B – Laboratory Resilient Modulus Results

CHAPTER 2

REVIEW

This review chapter consists of two parts; review of the existing MDOT practices regarding the determination of MR and literature review.

2.1 Review of MDOT Practices

As shown in Figure 2.1, MDOT divides the State of Michigan into seven self administered regions; Superior, North, Bay, Grand, University, Southwest and Metro. The practices of each region in determining the MR of roadbed soils differs slightly from one region to another. Table 2.1 summarizes the procedures used by each region. In general, the soil engineers use Figure 2.2 to estimate the MR of roadbed soils. The chart in Figure 2.2 is based on the soil support values (SSV) and the USDA soil classification system. It provides correlations between the SSV, the AASHTO layer coefficient for subbase and base materials and the resilient modulus.

Table 2.1 MDOT procedures for determining resilient modulus

Region	Procedure	Typical MR Values (psi)
Bay	Soil boring & visual identification 360	
Grand	FWD data (if available) or soil boring & visual identification	2700 - 8600
Metro	Soil boring & visual identification	3000 - 4500
North	FWD data (if available) or soil boring & visual identification	2500 - 6000
Southwest	California Bearing Ratio correlation	ons
Superior	Soil boring & visual identification	4500 - 7000
University	Soil boring & visual identification	3000 - 4000

11

Figure 2.1 MDOT regions (MDOT)

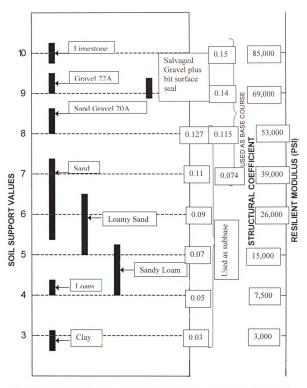


Figure 2.2 Range of soil support values, structural coefficients, and resilient modulus for various materials (MDOT)

2.2 Role of Roadbed Resilient Modulus in the M-E PDG

The required inputs to the 2002 Design Guide can be broadly classified under four main categories - general, traffic, climatic and structural inputs. The Design Guide uses a three level hierarchical approach for selecting traffic and structural inputs. This gives designers the flexibility of using very specific or very general input data for the design process, depending on the agency's resources and the requirements of each specific design project (Coree et. al 2005).

The procedure for level one design can be thought of as "first class" and requires high accuracy inputs. The level one procedure will typically be used for obtaining inputs for the design of pavement sections subjected to heavy traffic or wherever there is safety and/or economic consequences of early failure. The procedure requires laboratory or field testing, such as the dynamic modulus testing of hot-mixed AC or site-specific axle load spectra data collections, or FWD deflection testing. Hence, the inputs for level one design require more resources and time than other two levels.

Level two is an intermediate design level whose required inputs are similar to those used for many years in the earlier editions of the AASHTO design guides. This level is used when resources and/or testing equipment are not available to obtain level one input. The required design data inputs for level two could be selected from an agency database, derived from a limited testing program, or estimated through correlations. Examples would be dynamic modulus estimated from binder, aggregate, and mix properties, or PCC elastic moduli estimated from unconfined compressive strength tests.

The required pavement design inputs for level three have the lowest level of accuracy. This design level might be used for pavement sections where there are

minimal consequences of early failure (low volume roads). The data inputs consist of typical default or average values used by the agency.

Further, the input data requirements can vary from one input parameter to another, which makes the procedure more flexible. For example, on a given project, the pavement designer could use level one for the subgrade resilient modulus input and level three for the traffic distribution data. Regardless of the selected input level, the 2002 design process is the same (Prozzi and Hong 2006).

Finally, regardless of the design level used, the resilient modulus of the roadbed soil is a required input to the pavement structural response model. It has a significant effect on the computed pavement responses and on the dynamic modulus of subgrade reaction, k-value, which is computed internally by the Design Guide software. The resilient modulus of the roadbed soil can be measured directly from the laboratory or obtained through correlations with other material parameters such as California Bearing Ratio (CBR) and Dynamic Cone Penetrometer (DCP). The procedures for obtaining the resilient modulus for the various design levels are described in the following subsections (NCHRP 2004).

2.2.1 Procedures for Determining the Resilient Modulus of the Roadbed Soil for Design Level One

For level one design, the resilient modulus of the roadbed soil is determined using cyclic load triaxial tests in accordance with one of the following standard test methods:

 NCHRP 1-28A, "Harmonized Test Methods for Laboratory Determination of Resilient Modulus for Flexible Pavement Design." AASHTO T307, "Determining the Resilient Modulus of Soil and Aggregate Materials."

The stress conditions used in laboratory testing must represent the range of stress states likely to be developed beneath the pavements. Stress states used for modulus testing are based upon the depth at which the material will be located within the pavement system (i.e., the stress states for specimens to be used as base or subbase or subgrade may differ considerably).

The M-E PDG recommends Equation 2.1 for calculating MR. The nonlinear elastic coefficients and exponents of the model are determined by using linear or nonlinear regression analyses to fit the model to laboratory generated MR test data (NCHRP 2004):

$$MR = k_1 P_a \left(\frac{\theta}{P_a}\right)^{k_2} \left(\frac{\tau_{oct}}{P_a} + 1\right)^{k_3}$$
 Equation 2.1

Where, MR = resilient Modulus (psi);

$$\theta = _{\text{bulk stress}} = \sigma_1 + \sigma_2 + \sigma_3;$$

 $\sigma_1 = _{\text{major principal stress}};$

 $\sigma_2 = \frac{1}{1000}$ intermediate principal stress;

 $\sigma_3 = \frac{1}{\text{minor principal stress/confining pressure}}$

$$\tau_{oct} = \frac{1}{3} \sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_1 - \sigma_3)^2 + (\sigma_2 - \sigma_3)^2}$$

Please note that the above described procedure for level one design applies equally to reconstruction and rehabilitation where destructive material samples can be obtained. Alternatively, for pavement rehabilitation, nondestructive deflection tests can be performed and the MR values can be determined using back calculation routine.

2.2.2 Procedures for Determining the Resilient Modulus of the Roadbed Soil for Design Level Two

The MR values for pavement design level two can be estimated using existing direct or indirect correlation equations between MR and other material parameters.

Indirect correlation implies, for a given soil, correlating parameter A to B and then B to the soil MR. Table 2.2 provides a list of correlation equations included in the M-E PDG. Further, the Design Guide software allows the use of the following two options:

- Input a representative value of MR and use Enhanced Integrated Climatic Model (EICM) to adjust the MR value for the effect of seasonal climate (i.e., the effect of freezing, thawing, and so on).
- Input an MR value for each month (season) of the year (total of 12 months).

The primary use of EICM in this design procedure is to estimate the temperature and moisture profiles within the pavement system throughout its design life. The estimated temperature and moisture profiles within the subgrade layers can also be used to modify the representative MR to account for the effects of climate. The procedure for pavement design level two is applicable to new, reconstruction, and rehabilitation design.

Table 2.2 Models relating material index and strength properties to MR (NCHRP 2004)

Strength/index property	Model	Comments	Test Standard
CBR	$MR = 2555 (CBR)^{0.64}$	CBR = California bearing ratio	AASHTO T193
R-value			AASHTO T190
AASHTO layer coefficient	$MR = 30,000 \left(\frac{ai}{0.14}\right)$	ai = AASHTO layer coefficient	AASHTO guide for the design of pavement structures
PI and gradation	$CBR = \frac{75}{1 + 0.728(wPI)}$	wPI = P200*PI P200 = percent passing sieve No. 200 PI = plasticity index	AASHTO T27, AASHTO T90
DCP	$CBR = \frac{292}{DCP^{1.12}}$	DCP = DCP index, mm/blow	ASTM D6951

2.2.3 Procedures for Determining the Resilient Modulus of the Roadbed soil for Design Level Three

For level-three design, the MR value is determined based on the classification of the soil. Table 2.4 provides a list of MR values that are recommended in the M-E PDG. For this design level one typical representative MR value at the optimum moisture content is required. Users have the option to use the EICM to modify the MR value for the effect of climate.

This design level can be used for new, reconstruction, and rehabilitation projects.

The material type can be obtained from historical boring record, material reports or county soil maps. The bedrock depth is important and it should be investigated.

The MR values presented in Table 2.4 are approximate and should be cautiously used. The reason is that these values are based on the assumption of a semi-infinite media. For a finite roadbed soil thickness (less than 5ft), the MR of the lower and weaker material should be used to obtain a composite MR value.

2.3 Literature Review

Early in this study, an extensive literature review was conducted to study and summarize the results reported by previous investigators regarding:

- The advantages and shortcomings of the laboratory and field test procedures used to determine the MR of roadbed soils.
- The relationships between the laboratory determined and the backcalculated resilient modulus using deflection data.
- The resilient characteristics of various types of roadbed soils.
- The factors affecting the MR of roadbed soils including moisture contents (seasonal effects), particle size, Atterberg limits, and grain size distribution.
- The reported correlations between MR and the modulus of subgrade reaction (k) of roadbed soils.
- The reported correlations, if any, between the results of simple tests such as Atterberg
 Limits, grain size distribution, pocket penetrometer, and hand held shear vane and the
 MR of the roadbed soils.

Results of the literature review are summarized below.

2.3.1 Resilient Modulus and the Soil Classification Systems

There are currently several common soil classification systems. The most popular of these are the United States Department of Agriculture (USDA), the Unified Soil

Classification System (USCS), and the AASHTO soil classification system (Holtz and Kovacs 1981). Table 2.3 provides comparison between the three classification systems. Such comparison chart is important because it allows the users of one highway authority to compare their roadbed soils to another agency that uses different classification system.

Nevertheless, several correlations between the soil classification systems and the resilient modulus of the roadbed soils can be found. These include:

- The data in Figure 2.2, which is used mainly by MDOT.
- The data in Table 2.4 of the AASHTO mechanistic-empirical pavement design
 procedure (M-E PDG), which provide estimate of a typical range of values of the
 resilient modulus of roadbed soils based on their AASHTO classification system and
 USCS.
- The data in Figure 2.3, which provide estimates of various roadbed soil parameters based on their AASHTO and USCS classification systems (NHI 1998).

Although the data in Table 2.4 and Figure 2.3 provide, for each soil classification, a range of values, the exact value to be used in the pavement design process is a decision that must be made by the engineer on the job.

2.4 Laboratory Testing

The resilient modulus (MR) of a soil is an index that describes its stress-strain relation under cyclic loads (Maher et. al 2000). Mechanistic-based pavement and overlay design procedures require as input the subgrade MR to determine layer thicknesses and the overall system response to traffic loads. MR can be obtained in the laboratory and from the backcalculation of nondestructive deflection test (NDT) data. The laboratory

Table 2.3 Comparison between three soil classification systems (USDA 1992)

USDA	USDA Classification Percent Passing Sieve Numb			Number	Liquid	Plastic		
texture	exture USCS AASHT		4	10	40	200	Limit	Limit
Muck	PT	A-8	100	100	90-100	40-100	0-14	NP
Sand	SP-SM, SM, SP, GP, GP- GM, GM	A-2-4, A- 3, A-1-b, A-2, A-3, A-2	40- 100	25- 100	15-90	0-35	<25	NP
Loamy Sand	SM, SC- SM, ML, CL-ML, SP- SM, SP	A-2, A-4, A-1-b, A- 1, A-2-4, A-3	85- 100	60- 100	30-90	3-55	<30	NP
Silty Loam	ML, CL, CL-ML, SC, SM, CH	A-4, A-6, A-7, A-2	95- 100	85- 100	60-100	30-95	<45	NP/P
Sandy Loam	SM, SC- SM, ML, CL-ML, SC, CL	A-2-4, A- 4, A-2, A- 1, A-1-b, A-6	70- 100	60- 100	35-90	15-75	<35	NP
Clay Loam	CL, CL- ML, SC, SC-SM	A-6, A-4, A-7, A-2	95- 100	75- 100	70-100	35-90	25-45	NP/P
Loam	CL, CL- ML, ML	A-4, A-6, A-7	90- 100	75- 100	70-100	50-90	15-45	NP/P
Mucky Sand	SM, SP, SP- SM	A-1-b, A- 2-4, A-3	95- 100	75- 100	30-70	0-15	0-14	NP
Clay	CH, CL	A-6, A-7-	90- 100	85- 100	65-95	45-95	30-65	P
Silty Clay	CL, SC, CL- ML	A-4, A-6, A-7	85- 100	60- 100	50-100	30-90	25-50	NP/P
NP = non	-plastic, plastic	limit<10						

P = plastic soil, plastic limit>10

determination of MR of roadbed soils is reviewed below, along with factors that affect the MR values.

2.4.1 Resilient Modulus Test Procedure

In general, laboratory test procedures for the determination of MR value are essentially based on the existing cyclic triaxial test methods used for the determination of

soil properties under repeated loads. A schematic of the test apparatus for conducting MR tests is shown in Figure 2.4. Figure 2.5 shows a typical hysteresis loop output (stress-strain of one load unload cycle) used in the calculation of MR (Hall et al. 2001).

Figure 2.5 also shows the recoverable (ϵ_R) and plastic (ϵ_P) portions of the axial strain of the sample and the equation for calculating the MR of the soil. Guidelines for conducting laboratory MR testing are given in the 2001 AASHTO T 307 standard test procedure. The procedure calls for placing a compacted soil sample in a triaxial test apparatus, applying confining pressure and a sustained load to the sample, and then applying a repeated axial load and measuring the resulting vertical deformations (AASHTO 2001).

The history of the development of the AASHTO T 307 standard test procedure traces back to the Strategic Highway Research Program (SHRP) protocol P 46-94 "Resilient Modulus of Unbound Base/Subbase Materials and Subgrade Soil." The protocol is based on determining MR in a repeatable, practical, and productive way. After eight years of implementation, the protocol was adopted in 1992 by AASHTO as test method T 294 replacing its predecessor T 274-82. The procedure has further evolved to incorporate additional technical requirements and currently is labeled AASHTO T 307 standard test procedure (Groeger et al. 2003). According to Maher et al, 2000, some of the most recognized changes from the AASHTO T 274-82 and T 294-92 procedures to the most recent AASHTO T 307 are:

Table 2.4 Typical resilient modulus values for unbound granular and subgrade materials (NCHRP 2004)

Classification	Material	pounds/square	e inch
System	Classification	MR Range	Typical MR
	A-1-a	38,500 - 42,000	40,000
	A-1-b	35,500 - 40,000	38,000
	A-2-4	28,000 - 37,500	32,000
	A-2-5	24,000 - 33,000	28,000
	A-2-6	21,500 - 31,000	26,000
AASHTO	A-2-7	21,500 - 28,000	24,000
AASHIO	A-3	24,500 - 35,500	29,000
	A-4	21,500 - 29,000	24,000
	A-5	17,000 - 25,500	20,000
	A-6	13,500 - 24,000	17,000
	A-7-5	8,000 - 17,500	12,000
	A-7-6	5,000 - 13,500	8,000
	СН	5,000 - 13,500	8,000
	MH	8,000 - 17,500	11,500
	CL	13,500 - 24,000	17,000
	ML	17,000 - 25,500	20,000
	SW	28,000 - 37,500	32,000
	SP	24,000 - 33,000	28,000
	SW - SC	21,500 - 31,000	25,500
	SW - SM	24,000 - 33,000	28,000
	SP - SC	21,500 - 31,000	25,500
USCS	SP - SM	24,000 - 33,000	28,000
USCS	SC	21,500 - 28,000	24,000
	SM	28,000 - 37,500	32,000
	GW	39,500 - 42,000	41,000
	GP	35,500 - 40,000	38,000
	GW - GC	28,000 - 40,000	34,500
	GW - GM	35,500 - 40,500	38,500
	GP - GC	28,000 - 39,000	34,000
	GP - GM	31,000 - 40,000	36,000
	GC	24,000 - 37,500	31,000
	GM	33,000 - 42,000	38,500

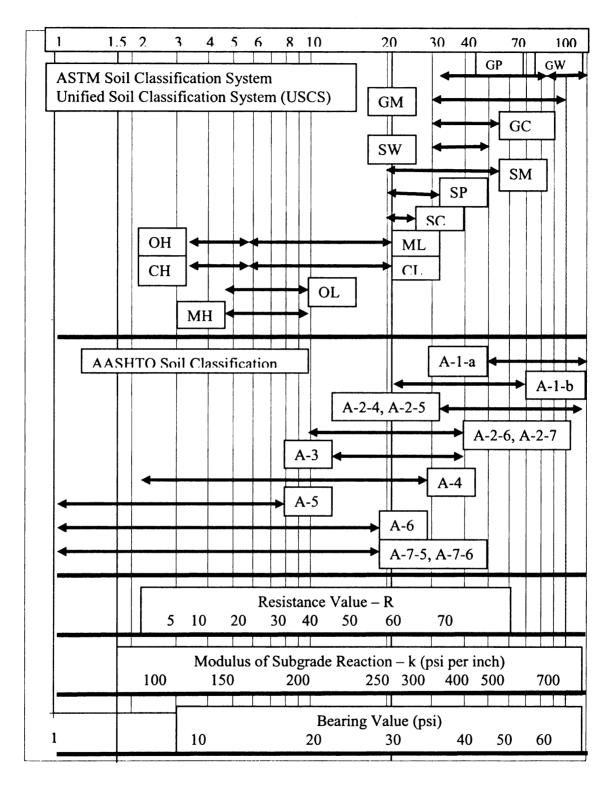


Figure 2.3 Soil classification related to strength parameters (NHI 1998)

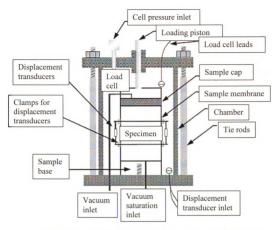


Figure 2.4 Resilient modulus testing apparatus for soils (NHI 1998)

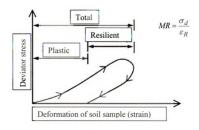


Figure 2.5 Resilient modulus concept (NHI 1998)

- The number of loading sequences has been decreased from 27 to 15 and the number
 of loading cycle per loading sequence has been decreased from 200 to 100 cycles.
 The decrease in testing sequences and load cycles led to a reduction in the sample
 deformation and testing time from approximately five hours to two.
- 2. The maximum axial stress range was changed from 1.0 to 20.0 pounds per square inch (psi) to 3.0 to 40.0 psi for base and subbase materials, and from 1.0 to 10.0 psi to 2.0 to 10.0 psi for subgrade materials.
- 3. There was a change of confining stress in the subbase testing sequence from 0 to 2.0 psi.
- 4. The implementation of a constant sustained stress of 10% of the applied deviatoric stress (the difference between the axial stress and the confining pressure) to ensure full contact between the loading piston and the sample.
- Granular soils (Type I) are tested using a sample size of 6.0 inches in diameter and,
 12.0 inches high. Cohesive soils (Type II) are tested using a sample size of 2.8 inches in diameter and 5.6 inches high.

2.4.2 Issues with Current Test Standards

The AASHTO requirement to apply and remove the deviator load in 0.1 seconds is difficult and costly. It requires high performance servo-valves and fast electronics. It is believed that dynamic effects may become significant for 12 inch high specimens with stiffness less than 20,000 psi and for 6 inch high specimens with stiffness less than 10,000 psi (Marr et al. 2003). While the rapid loading rate is used to model moving vehicles on a pavement system, it is not clear that this fast loading rate is necessary. The

test would be a lot simpler to run and the equipment less expensive if the loading period is increased to 0.5 seconds.

Accurate measurements of the axial deformations are essential in obtaining reliable MR results. The AASHTO requirements for such measurements have been changed from two linear variable differential transducers (LVDT) mounted internally at 180° along the specimen's axis, to two LVDTs clamped to the loading rod inside the triaxial chamber to one LVDTs externally mounted to the loading piston and resting on a rigid surface. These changes have made the test procedure manageable. It should be noted that using the average of two LVDTs mounted at 180° would decrease measurements error if the sample is subjected to a slight rocking motion.

2.5 Field Testing

Field testing for determining or estimating MR is divided into two categories; destructive and nondestructive.

2.5.1 Destructive Testing

The following five destructive tests are often used to estimate MR or k values.

2.5.1.1 California Bearing Ratio

The California Bearing Ratio (*CBR*) is the ratio between the soil's resistance to 0.1 inch penetration of a standard piston to the resistance of a well graded and crushed stone to the same penetration level. The test can be conducted in the field and the laboratory as described in the AASHTO T193 standard test procedure (AASHTO 2001).

The 1993 AASHTO Pavement Design Guide uses Equation 2.2 to estimate the MR from the CBR (AASHTO 1993). It should be noted that the 1500 constant in Equation 2.2 can vary from 750 to 3000 (NHI 1998).

$$MR = 1500CBR$$

Equation 2.2

Whereas the new M-E PDG recommends the use of Equation 2.3 for estimating the MR value (NCHRP 2004).

$$MR = 2555(CBR)^{0.64}$$
 Equation 2.3

2.5.1.2 Dynamic Cone Penetrometer

The Dynamic Cone Penetrometer (DCP) shown in Figure 2.6 is a graduated rod with a metal cone on one end and a mass which is repeatedly lifted and dropped to drive the cone into the soil. The DCP is an efficient and inexpensive way to estimate the inplace CBR. The cone's penetration rate (PR) is measured after every drop and is labeled the DCP index. The DCP index (DCP = mm/blow) correlates well to CBR for fine grained soils up to CBR value of about 15 percent. Equation 2.4 from the M-E PDG provides a correlation between the CBR and the DCP index (NCHRP 2004).

$$CBR = \frac{292}{DCP^{1.12}}$$
 Equation 2.4

Equations 2.3 and 2.4 are combined in Equation 2.5.

$$MR = 96658 \left(\frac{1}{DCP}\right)^{0.72}$$
 Equation 2.5

Equation 2.6 provides another correlation between the CBR and the penetration rate (PR) of a 60° cone (NHI, 1998).

$$CBR = \frac{405.3}{PR^{1.259}}$$
 Equation 2.6

Where, PR = penetration rate, mm/blow

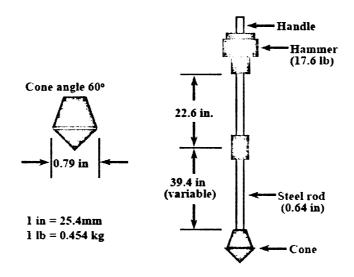


Figure 2.6 Schematic of a dynamic cone penetrometer (NHI 1998)

2.5.1.3 Plate Load Test

Plate load testing of subgrade soils is not commonly used because it is laborious and slow destructive test that requires the removal of segments from the pavement surface and base layers (Yoder 1959). It is, nonetheless, a direct method for determining the modulus of subgrade reaction which is a required input in the current AASHTO concrete pavement design procedure. Figure 2.7 depicts a photo of the plate load testing apparatus. Guidelines for repetitive static plate load testing are given in ASTM D1195 "Standard Test Method for Repetitive Static Plate Load Tests of Soils and Flexible Pavement Components" for use in evaluation and design of airport and highway pavements, and in AASHTO T 221 standard test procedure (AASHTO 2001). The static elastic k value is calculated as the ratio of the applied pressure to the elastic deformation, which is the recoverable portion of the total measured deformation (Yoder 1959).

Figure 2.7 Photo of plate load testing apparatus (NHI 1998)

2.5.1.4 Pocket Penetrometer

The pocket penetrometer is a small hand held device with a spring loaded probe at one end. The probe is pushed to penetrate the soil 0.25 inches; the spring measures the resistance of the soil to penetration. The pocket penetrometer is used to estimate the unconfined compressive strength of the soil. Since the MR is a nonlinear elastic soil property it is logical to assume that there is a relationship between soil strength and MR (Han et al. 2006). Thompson and Robnett (1979) proposed estimating the MR value from the unconfined compressive strength using Equation 2.7.

$$MR = 0.86 + .307q_u$$
 Equation 2.7

Where, MR = resilient modulus, ksi

 q_u = unconfined compressive strength, psi

2.5.1.5 Pocket Vane Shear Tester

The pocket shear tester is used to estimate the undrained shear strength of the

soil. The shear tester is inserted 0.25 inches into a flat soil surface and rotated until failure. The maximum pressure required to cause failure is the S_u value. Sukermaran et al (2002) suggested a relationship between the undrained shear strength and MR.

$$MR = 100 - 500s_u$$
 PI>30 Equation 2.8

$$MR = 500 - 1500s_u$$
 PI<30 Equation 2.9

Where, MR = resilient modulus, psi

 S_u = undrained shear strength, psi

PI = plasticity index

2.5.2 Nondestructive Testing

The nondestructive deflection test (NDT) is the most popular test in this category. In recent years, the use of NDT has become an integral part of the structural evaluation and rehabilitation of pavement structures. Various types of equipment are available including the Road Rater, Kuab, Dynaflect and the falling weight deflectometer (FWD). NDT devices are used by state highway agencies to apply patterns of loading and record deflection data along the pavement surface. The deflection data measured along the pavement surface at different distances from the center of the load are typically used to backcalculate the modulus values of the various pavement layers and the roadbed soil. Numerous backcalculation software packages are available either in the public domain or can be purchased. Most of these use more or less the common procedures presented in the next sections.

2.5.2.1 Backcalculation of Resilient Modulus from Deflection Data

The subgrade modulus can be determined by using the pavement surface deflection measured at distances of 48-inches or more from the center of the load.

Because of arching effects, at these distances, the pavement surface deflection is influenced mainly by the roadbed soils. Hence, the subgrade MR can be backcalculated from a single deflection measurement. The most widely used routine to backcalculate the subgrade MR from a single deflection measurement is the Boussinesq equation (George 2003).

$$d_r = \frac{CP(1-v^2)}{\pi r MR} \text{ or } MR = \frac{CP(1-v^2)}{\pi r d_r}$$
 Equation 2.10

Where, d_r = the surface deflection in inch at a distance r in inch from the load . P = applied load in pounds

C = correlation/adjustment factor accounts for the difference between the backcalculated and the laboratory obtained MR value.

MR = resilient modulus in psi

By assuming a Poisson's ratio of 0.5, equation 2.10 can be reduced to the following equation (AASHTO 1993).

$$MR = \frac{0.24CP}{d_r r}$$
 Equation 2.11

AASHTO recommends the use of C value not greater than 0.33 The minimum distance (r) in Equations 2.10 and 2.11 is given by the following relationship.

$$r = 0.7 \sqrt{a_2 + \left\{D\sqrt[3]{\frac{E_p}{M_R}}\right\}^2}$$
 Equation 2.12

Where, $a_2 = \text{radius of load plate}$

D = total thickness of payement layers above the subgrade

 E_p = effective modulus of all layers above the subgrade

 E_p in equation 2.12 can be calculated by using the following equation:

$$\frac{M_R d_o}{qa} = 1.5 \left\{ \frac{1}{\sqrt{1 + \left[\frac{D}{a}\sqrt[3]{\frac{E_p}{M_R}}\right]^2}} + \frac{1 - \frac{1}{\sqrt{1 + \left(\frac{D}{a}\right)^2}}}{\left(\frac{E_p}{M_R}\right)} \right\}$$
 Equation 2.13

Where, d_o = deflection measured at the center of the load plate after adjustment to a temperature of 68 $^{\circ}$ F

q = pressure on load plate

The Washington State Department of Transportation (WSDOT) developed, for asphalt pavements, Equations 2.14 through 2.16 and, for concrete pavements, Equation 2.17 to estimate the subgrade modulus from deflection sensors located at various distances from the center of the load (Pierce 1999).

$$M_R(psi) = 9000 \times \frac{0.2892}{24 \left(\frac{d_{24}}{1000}\right)}$$
 Equation 2.14

$$M_R(psi) = -466 + 9000 \times \frac{0.00762}{\left(\frac{d_{36}}{1000}\right)}$$
 Equation 2.15

$$M_R(psi) = -198 + 9000 \times \frac{0.00567}{\left(\frac{d_{48}}{1000}\right)}$$
 Equation 2.16

$$M_R = 9000 \frac{0.00577}{\left(\frac{d_{48}}{1000}\right)} - 111$$
 Equation 2.17

Where, d24, d36 and d48 are the pavement surface deflections in inches measured at 24, 36, and 48 inches from the center of the load.

2.5.2.2 Backcalculation of K Value Using Pavement Surface Deflections

Deflection testing at the center of a slab can be used to determine the value of the dynamic modulus of subgrade reaction (k) and the effective thickness of the concrete slab, based on an assumed modulus of elasticity of concrete of 5,000,000 psi (Hall and Crovetti 2000).

Two different analyses were presented with and without the use of the deflections recorded at the center of the loading plate. Initially, deflections are used to compute the deflection basin AREA using the following equations:

$$AREA4 = \frac{6}{d_0} (d_0 + 2d_{12} + 2d_{24} + d_{36})$$
 Equation 2.18

$$AREA5 = \frac{3}{d_{12}} \left(1 + 2d_{18} + 3d_{24} + 6d_{36} + 4d_{60} \right)$$
 Equation 2.19

Where, AREAi = deflection basin AREA, inches

di = surface deflection measured at i inches from the load center

The calculated AREA values are then used to backcalculate initial estimates of the radius of relative stiffness (dense-liquid foundation model), using the following equations (Hall and Crovetti 2000).

$$l_{k4-est} = \left\lceil \frac{\ln\left(\frac{36 - AREA4}{1812.279}\right)}{-2.559} \right\rceil^{4.387}$$
 Equation 2.20

$$l_{k5-est} = \left[\frac{\ln\left(\frac{48 - AREA5}{158.40}\right)}{-0.476} \right]^{2.22}$$
 Equation 2.21

Where, l_{ki-est} = estimated dense-liquid radius of relative stiffness, inches

Hall and Crovetti initially estimated the dynamic foundation k value, based on infinite slab size assumptions, are backcalculated using the following equations (2000).

$$k4_{est} = \frac{0.1245e^{\left[-0.14707e^{\left(-0.07565l_{k4-est}\right)}\right]}P}{d_0\left(l_{k4-est}\right)^2}$$
 Equation 2.22

$$k5_{est} = \frac{0.12188e^{\left[-0.79432e^{\left(-0.07074l_{k5-est}\right)}\right]}P}{d_{12}\left(l_{k5-est}\right)^{2}}$$
 Equation 2.23

Where, ki_{est} = estimated dynamic interior foundation k value, psi/in

P =applied load, lb

 d_i = utilized maximum deflection at i inches from the load, inches

 l_{ki-est} = estimated radius of relative stiffness, inches

Based on slab size, correction factors for the estimated radius of relative stiffness are computed using the following equations.

$$CF_{lk-est} = 1 - 0.89434 \exp\left[-0.61662 \left(\frac{L_{eff}}{l_{k-est}}\right)^{1.04831}\right]$$
 Equation 2.24

$$CF_{Di} = 1 - 1.15085 \exp \left[-0.71878 \left(\frac{L_{eff}}{l_{k-est}} \right)^{0.80151} \right]$$
 Equation 2.25

Where, $CF_{lk\text{-}est}$ = correction factor for $l_{k\text{-}est}$

 CF_{Di} = correction factor for utilized maximum interior deflection

 L_{eff} = effective slab length, inches

The effective slab length is computed based on the length and width of the test slab, using Equation 2.26 (Hall and Crovetti 2000).

$$L_{eff} = \sqrt{L_s \times L_w}$$
 Equation 2.26

Where,

 L_s = slab length, inches

 L_w = slab width, inches

After computation of slab size correction factors, the adjusted radius of relative stiffness and dynamic foundation k value are computed using the following equations.

$$l_{k-adj} = CF_{lk-est} \times l_{k-est}$$
 Equation 2.27

$$k_{adj} = \frac{K_{est}}{(CF_{lk-est})^2 \times CF_{Di}}$$
 Equation 2.28

Other backcalculation procedures exist for pavement surface deflections including one presented by Frabizzo (1998). From FWD data a backcalculation procedure can be used to calculate the deflection basin area (AREA), radius of relative stiffness (l), elastic modulus of the concrete (E_c), and the modulus of subgrade reaction for rigid pavements.

AREA is the cross-sectional area of the deflection basin between the center of the FWD load plate and the outer most deflection sensor. It is calculated using deflection data at various distances "r" from the center of the load plate. AREA calculation is normalized with respect to the sensor beneath the load; resulting in units of length (Frabizzio 1998).

$$AREA = \left[4 + 6 \left(\frac{\delta_8}{\delta_0} \right) + 5 \left(\frac{\delta_{12}}{\delta_0} \right) + 6 \left(\frac{\delta_{18}}{\delta_0} \right) + 9 \left(\frac{\delta_{24}}{\delta_0} \right) + 18 \left(\frac{\delta_{36}}{\delta_0} \right) + 12 \left(\frac{\delta_{60}}{\delta_0} \right) \right]$$

Equation 2.29

Where, AREA = deflection basin area, inches

$$\delta_r = \frac{1}{\text{deflection of the } \mathbf{r}^{\text{th}} \text{ sensor, inches}}$$

The radius of relative stiffness, which characterizes the stiffness of the slab-foundation system, can now be calculated. Equation 2.30 is used to calculate l if the load radius is 5.91 in (Frabizzio 1998).

$$l = \left[LN\left(\frac{60 - AREA}{289.708}\right) / (-0.698)\right]^{2.566}$$
Equation 2.30

Where, l = radius of relative stiffness, in

Now the elastic modulus of the concrete can be calculated at each sensor location.

$$E_c = \frac{12(1-v^2)Pl^2\delta_r^*}{\delta_r h^3}$$
 Equation 2.31

Where, $E_c = \frac{1}{\text{elastic modulus of the concrete, psi}}$

v = Poisson's ratio for concrete = .15

P = FWD load, pounds

l = radius of relative stiffness, inches

 $\boldsymbol{\delta}_r^* = _{\text{non-dimensional deflection coefficient at distance "r"}}$

h = concrete slab thickness, inches

 $\delta_r = \frac{1}{\text{deflection of the } \mathbf{r}^{\text{th}} \text{ sensor, inches}}$

$$\delta_r^* = ae^{\left[-be^{(-cl)}\right]}$$

Equation 2.32

Where,

a, b and c = regression coefficients (see Table 2.5)

l = radius of relative stiffness, inches

Table 2.5 Regression coefficients for δ_r^*

Radial Distance, r (inches)	a	b	С
0	0.12450	0.14707	0.07565
8	0.12323	0.46911	0.07209
12	0.12188	0.79432	0.07074
18	0.11933	1.38363	0.06909
24	0.11634	2.06115	0.06775
36	0.10960	3.62187	0.06568
60	0.09521	7.41241	0.06255

The seven elastic moduli of the concrete are averaged to obtain a representative E_c . Now, the modulus of subgrade reaction, which characterizes the stiffness of the foundation, can be calculated.

$$k = \frac{E_c h^3}{12(1 - v^2)l^4}$$
 Equation 2.33

Where,

k =modulus of subgrade reaction, pci

$$E_c = {}_{\rm concrete\ modulus\ of\ elasticity,\ psi}$$

h = concrete slab thickness, inches

l =radius of relative stiffness, inches

2.6 Correlations Between Backcalculated Modulus, Laboratory-Based Modulus, DCP, and Soil Physical Properties

Many correlations exist to convert laboratory modulus to backcalculated modulus.

There are also correlations between soil properties and their MR. An introduction to these correlations can be found below.

2.6.1 Correlations between Laboratory and Backcalculated Resilient Modulus

The primary purpose of establishing relationships between backcalculated FWD modulus and laboratory modulus is for the design of pavement overlays. The laboratory MR values are stress dependent. Therefore, in order to compare the different modulus values, the stress state in which the FWD test was performed must be known (George 2003).

Whether the laboratory modulus or field modulus of the subgrade soil is used in the pavement design and analysis depends on the input required for the model being used. For example, the original AASHO road test was calibrated to the laboratory MR of the soil. Therefore, when using the 1993 AASHTO pavement design or overlay procedures the appropriate input for the subgrade soil is the laboratory MR (AASHTO 1993).

MR values obtained from laboratory tests may be considerably lower than the backcalculated MR values due to differences in the magnitudes of the deviatoric stress, confining pressure, and loading rate (George 2003). Similarly, field MR values for fine grained soils, obtained by backcalculation from FWD deflections, have been reported in a number of studies to exceed the laboratory resilient modulus values by factors between 3 and 5 (AASHTO 1993).

Layer theory was employed for the analysis of the stress state under a 9000 pound FWD load. It was found that a reasonable correlation exists between FWD backcalculated moduli and the laboratory moduli based on the in-situ conditions with identical stress states (Ping et al. 2002).

$$MR_{FWD} = 1.6539 MR_{lab}$$
 Equation 2.34

From Equation 2.34 the FWD backcalculated moduli were about 1.65 times higher than the laboratory MR. The ratio is in agreement with the suggestion by the AASHTO design guide (AASHTO 1993) that the FWD backcalculated moduli are approximately two to three times higher than the laboratory determined moduli, considering that the AASHTO relationships were based primarily on clay soils. In addition, for this comparison the FWD tests were performed under in-situ soil conditions and the laboratory determined MR were obtained from the reconstituted soil samples; simulating the in-situ moisture and density conditions under identical states of stress. The possible causes for the difference between the lab *MR* and backcalculated values as reported in this study (Ping et al. 2002) were:

- The FWD backcalculation program is based on the linear elastic theory of multiple layer pavement structures while the pavement materials are not elastic.
- The FWD backcalculation method is not a unique solution method; therefore, different layer moduli could be obtained from the same FWD data.
- The lab specimens were tested almost immediately after they were compacted, and
 the confining pressure for the triaxial test was applied by air; the in-situ soil had been
 there for a long time, and the confining pressure was caused by vertical load and soil
 weight.

Von Quintus and Killingsworth believed the reasons for the differences in the laboratory and field moduli were related to the inability of the laboratory tests to simulate the actual in-situ confinement and effect of the surrounding materials in both the lateral and vertical direction (1998).

For rigid pavements the dynamic k value obtained from backcalculation is about two times greater than the static elastic k value that would be obtained from plate load testing of the same soil. This is due to the difference in the soil's response to dynamic and static loads. Correlations have been developed to estimate the k value as a function of CBR, density, and soil class. Additional correlations between soil properties (gradation, density, moisture content), soil classification, CBR, DCP penetration rate, and MR are available in the literature.

2.6.2 Relationship between Laboratory and Backcalculated Resilient Modulus and Physical Soil Properties

Many research studies (George 2003; George 2004; George et al. 2004; Janoo et al. 2003; Janoo et al. 1999; Maher et al. 2000; Rahim and George 2003; Yau and Von Quintus 2002) are available in the literature which investigated correlating the laboratory or backcalculated MR to soil index or physical properties.

Correlations have been developed to estimate soil k value as a function of CBR, density, and soil class. Several of these correlations are summarized in Table 2.6.

Additional correlations between soil properties such as gradation, density, moisture content, soil classification, CBR, DCP penetration rate, and MR are given in the Illinois Department of Transportation's Guidelines on Subgrade Inputs and Subgrade Stability Requirements for Local Road Pavement Design (Hall et al. 2001).

Table 2.6 Range of k value for soil type, density, and CBR (Hall et al. 2001)

AASHTO Class	Soil Description	USCS Classification	Dry Density (lb/ft³)	CBR (%)	Static k value (psi/inch)
	Coar	se grained soils			
A-1-a, well graded	Gravel	GW, GP	125 - 140	60 - 80	300 - 450
A-1-a, poorly graded	Glavei	Gw, Gr	120 - 130	35 - 60	300 - 400
A-1-b	Coarse sand	SW	110 - 130	20 - 40	200 - 400
A-3	Fine sand	SP	105 - 120	15 - 25	150 - 300
	A-2 soils (granul	ar materials with	high fines)		
A-2-4, gravelly	Silty gravel	GM	130 - 145	40 - 80	300 - 500
A-2-5, gravelly	Silty sandy gravel	GWI	130 - 143	40 - 80	300 - 300
A-2-4, sandy	Silty sand	SM	120 - 135	20 - 40	300 - 400
A-2-5, sandy	Silty gravelly sand	Sivi	120 - 133	20 - 40	300 - 400
A-2-6, gravelly	Clayey gravel	GC	120 - 140	20 - 40	200 - 450
A-2-7, gravelly	Clayey sandy gravel		120 - 140	20 - 40	200 - 430
A-2-6, sandy	Clayey sand	SC	105 - 130	10 - 20	150 - 350
A-2-7, sandy	Clayey gravelly sand	30	103 - 130	10 - 20	130 - 330
	Fin	e grained soils			
A-4	Silt	ML, OL	90 - 105	4 - 8	25 - 165
A-4	Silt/sand/gravel mix	WIL, OL	100 - 125	5 - 15	40 - 220
A-5	Poorly graded silt	MH	80 - 100	4 - 8	25 - 190
A-6	Plastic clay	CL	100 - 125	5 - 15	25 - 225
A-7-5	Moderately plastic elastic clay	CL, OL	90 - 125	4 - 15	25 - 215
A-7-6	Highly plastic elastic clay	СН, ОН	80 - 110	3 - 5	40 - 220

It should be noted that the k value of fine grained soil is highly dependent on the degree of saturation. Adjustments to the k value are required for embankments less than 10 feet thick over a softer subgrade, and/or for bedrock at a depth within 10 feet.

CHAPTER 3

FIELD AND LABORATORY INVESTIGATIONS

3.1 Introduction

At the outset, field and laboratory investigation plans were designed to accomplish the objectives of this study. The plan consisted of the following activities and tests:

- Soil delineation in the State of Michigan
- Soil sampling
- Field tests which consist of:
 - o Penetration resistance using pocket size penetrometer
 - o Shear strength using pocket vane shear tester
 - o Deflection using falling weight deflectometer (FWD)
- Laboratory tests which consist of:
 - o Moisture content
 - Sieve analysis
 - o Atterberg limits (liquid and plastic limits and plasticity index)
 - Hydrometer analysis
 - o Cyclic load triaxial test

3.2 Soil Delineation

As stated in Chapter 1, the State of Michigan is geographically located within the glaciated section of North America and most of its soil has developed from glacial deposits. The thickness and composition of the drift varies from clay to gravel depending on the location. Because of the complexity of the glacial drift, about one hundred and

sixty-five different soil types were formed and are being used for engineering purposes by MDOT. To characterize the resilient modulus of the glacial drifts in an economical and practical manner, the State of Michigan was divided into 15 clusters where the soil in each cluster has similar engineering and physical characteristics. The boundaries of the 15 clusters were established based on the 1982 Quaternary Geology map of Michigan (DEQ 1982), inputs from members of the research Technical Advisory Group (TAG) of MDOT, and inputs from the soil engineers in the various MDOT Regions. After establishing the cluster boundaries, each cluster was divided into areas based on the percentages of each soil type found in the Natural Resources Conservation Service (NRCS) Web Soil Survey (Web Soil Survey). Once again, the boundaries of each area were slightly modified based on inputs from the TAG members and from the soil engineers in the various MDOT Regions. The final state divisions consisted of 99 areas within the 15 clusters. Figures 3.1 through 3.4 depict the boundaries of the clusters shown by the dashed lines and the boundaries of the 99 areas (lightly shaded) shown by the green lines. Once again it should be noted that the division between the clusters was based on similar (not the same) soil types whereas the boundaries between the areas were based on narrowing the range of the soil parameters within each cluster.

3.3 Roadbed Soil Sampling

After dividing the State of Michigan into 15 clusters and 99 areas, the percent of each soil type (sand, clay, silt, etc) in each area was obtained from the Natural Resources Conservation Service (NRCS) Web Soil Survey (Web Soil Survey). Table 3.1 shows the percentages of each soil type in each of the 99 areas. Because of budget constraints and based on similar soil makeup, some areas within some clusters were grouped together

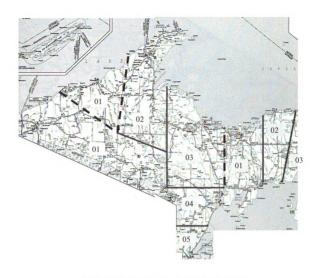


Figure 3.1 Western portion of the Upper Peninsula

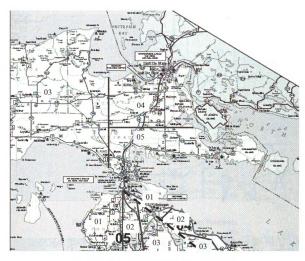


Figure 3.2 Eastern portion of the Upper Peninsula

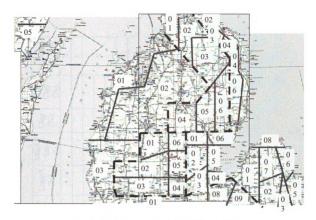


Figure 3.3 Northern portion of the Lower Peninsula

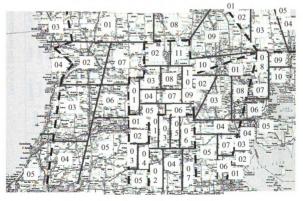


Figure 3.4 Southern portion of the Lower Peninsula

Table 3.1 Soil percentages for each area within the 15 clusters

Proposed Sampling	×	×		×		×	>	<	×	,	<	>	<	×	×	×	×
Silty Clay (%)																	
Clay (%)																	
Mucky Sand (%)												10					
Loam*																	14.5
Clayey Loam (%)	ATA		9.1	18.3	12.5	ATA	11.3	14.8									
Sandy Loam (%)	NO DATA	6	13.4	24.9	28.1	NO DATA	6.7	5.3			16	37.4			6.5	28.4	59.9
Silty Loam (%)		18.7	3	9.3	5.6		7.3	12.2	63	13	11.5		16.2		10		
Loamy Sand (%)		38	12	9.4	15.3		9.5	9.8	16	33.1	9.4	9.4	34.4	4.1	4.4		
Sand (%)		18.6	30.6	12	12.8		37	29.1	∞	37	29.6	13.2	15.2	33.3	35	50	
Muck (%)		12.8	24.3	24.2	25		21	20	9.2	14.8	29.2	20	25	58.4	37.4	16.1	24.8
Area	01	02	03	90	05	10	01	02	90	05	03	90	02	01	05	03	04
Cluster	01			02					03					2	†		

Note: empty cells indicate 0 percent of that soil type.

* Loam contains sand, silt and clay. The breakdown of the loam is unknown at this point.

Table 3.1 (cont'd)

Area	Muck (%)	Sand (%)	Loamy Sand (%)	Silty Loam (%)	Sandy Loam (%)	Clayey Loam (%)	Loam* (%)	Mucky Sand (%)	Clay (%)	Silty Clay (%)	Proposed Sampling
01	22	5	72.4								×
02	13.1	41.5	39.3								
03	14.3	74.7	7.8		2						×
04	26.3	51.4.	17.4								
05		6.76	1.7								×
90	4.4	14.4	25.2		13		39.2				×
01	3.3	53.5	30.4		9.3						×
02	8.1	71.8	7.5		8.2						×
03	8.1	75.6	5.9		4.7						X
90		25.7	39.5		∞		26				>
05		23.6	41.6		12.2		17.1				<
40		14.9	8.9		11.4		65.3				×
02		63.2	7					25.1			X
05	2	18.4	18.6		7.9		48				X
03	6.2	53.9	26.3		12.7						X
01	15.1	32.1	28.6		10		10.1				>
90	13	34.3	36.6		7.5		7.1				<

Note: empty cells indicate 0 percent of that soil type.

* Loam contains sand, silt and clay. The breakdown of the loam is unknown at this point.

Table 3.1 (cont'd)

Proposed Sampling	×	×	>	<	×	×	×	X	×	×	X	>	<		×	
Silty Clay (%)																
Clay (%)																
Mucky Sand (%)																
Loam*	72.1	8.98	58.8	49.7	21.1	8	33.4	7.3	62.8	83	21.4	12.4	9.6	52	32.9	41.9
Clayey Loam (%)							9.6					6.3				
Sandy Loam (%)		2.6	11.3	6.1		11	3.2	3.3	3.4	6.4	18.1	10.1	22.4	23.2	28.3	44.5
Silty Loam (%)							43.3									
Loamy Sand (%)	24.9	9.8	15.6	29.2	44.9	22.2	8.2	64.4	19.1		19.4	40.5	43.3	11.2	22.5	9.8
Sand (%)	2	2	12.4	15	29.8	39.4		6.7	12.1			22.8	14.8	3		
Muck (%)						19.2		16		6.8	33.4		4.3	4.8	12.2	2.2
Area	03	04	01	05	02	90	10	01	80	0.5	03	02	60	07	04	90
Cluster			00	0							00	60				

Note: empty cells indicate 0 percent of that soil type.

* Loam contains sand, silt and clay. The breakdown of the loam is unknown at this point.

Table 3.1 (cont'd)

	r -								,							
Proposed Sampling	>	<	×	>	<	×	×	×		×		×	×	X	>	<
Silty Clay (%)																
Clay (%)																
Mucky Sand (%)																
Loam (%)	94.8	75.8	73.8	6.09	55	11.1	48.5	38.1	57.5	46.1	48.4	15.6	25.3	10.3	30.5	18.5
Clayey Loam (%)			11.8													
Sandy Loam (%)	4.1	12.7	13.2	15.3	29.3	29.8	31.3	34.4	34.4	39.9	40.6	27.6	54.8	65.4	67.2	72.6
Silty Loam (%)																
Loamy Sand (%)		8.5		11.5	11.4	27.6		11.1	6.2	8		34.5	5.8	11.6		
Sand (%)																
Muck (%)				10.8	3.7	30.1	16.7	10.6		3.2	7.1	17	6.9	11.4		9
Area	80	10	11	90	05	60	40	03	01	<i>L</i> 0	02	01	02	05	03	40
Cluster						10								11		

Note: empty cells indicate 0 percent of that soil type.

* Loam contains sand, silt and clay. The breakdown of the loam is unknown at this point.

Table 3.1 (cont'd)

Proposed Sampling	>	<	×	X	×	>	<	×	>	<	×	×	×	×	×
Silty Clay (%)															
Clay (%)															
Mucky Sand (%)															
Loam (%)	24.7	9.4		37.6	84	17.7	19	14.8	5.8	4.4	55.5	09	34.3		4.8
Clayey Loam (%)			17.9	26.5				39.8	28.8	17.9	37.8	14.2		24.9	
Sandy Loam (%)	36.4	53.2	34.3	16.5	7	56.5	62.5	28.1	30.5	34.3	9.9		37.1	20	44
Silty Loam (%)		11.4										13.6		28.6	
Loamy Sand (%)	18.2	5.6		12			5.8	5.7	28.5	36.2		4	11.6	4.3	31.4
Sand (%)	3.9	9.2	17.4					4.4	5.1	7.2					
Muck (%)	9.2	7.9	22.7	5.4	6.2	18.5	9.2					6.2	12	13.1	12.4
Area	01	02	90	04	07	03	05	80	07	90	05	04	02	03	01
Cluster				12							2	CI			

Note: empty cells indicate 0 percent of that soil type.

* Loam contains sand, silt and clay. The breakdown of the loam is unknown at this point.

Table 3.1 (cont'd)

Proposed Sampling	×	×	×	×	×	>	<	×	×	×	×	×	×	>	<	×	^	<
Silty Clay (%)								12.5										
Clay (%)								7										
Mucky Sand (%)																		
Loam (%)	14.8		3.5	50	12.9	50.9	64.3				17.7	62.8	33.1	39.1	31	8.5	37	56
Clayey Loam (%)	18.7	35.5	53.2	13.2	13.5			57	ATA	VTA	33.7							
Sandy Loam (%)	20.3	21.4			28.9	36.7	16.2	6	NO DATA	NO DATA	4.9	7	15.3	16.2	23.5	23.9	37.5	38.6
Silty Loam (%)			25.5	28.4	12.3			4.6			22.5	3.8	14.9			60.3	10.4	
Loamy Sand (%)	59	28.4	11		7.2	6	3.5	5.8			6.1	13.8	5.5	36	28	4.8	7.8	4.4
Sand (%)		3			21.4		11.2				7.4	5.1	6.4		15			
Muck (%)	8.2	9.5	5.2										20.9					
Area	01	02	03	04	07	80	60	10	05	90	04	90	02	07	01	03	80	05
Cluster					-	‡								91	CI			

Note: empty cells indicate 0 percent of that soil type.

* Loam contains sand, silt and clay. The breakdown of the loam is unknown at this point.

which reduced the number of areas from 99 to 75. The combined areas are collectively marked by the letter "X" in Table 3.1. For each of the 75 areas, disturbed roadbed soil samples were obtained. Table 3.2 provides a list of the designation number and the location of each of the disturbed roadbed soil samples. The designation number consists of 9 characters A-BCD-E-(FG-HI) where A designates the road type (I=interstate, U=US road, M=Michigan road), BCD represents the route number, E shows the traveling direction (N=North, E=East, S=South, W=West), FG is the cluster number (01, 02, ...15), and HI is the area number (01, 02, ... 10). For example, the sample designation number M-059-W-(13-02) implies that the sample was obtained from Westbound M-59 in cluster 13 and area 02. Table 3.2 also shows the results, when available, of the pocket penetrometer and the pocket vane shear tester. It should be noted that empty cells indicate no tests were performed at those locations.

In addition, 10 undisturbed Shelby tube samples were collected at locations where the disturbed soil samples indicated the presence of clay subgrade soil. The locations of the Shelby tube samples can be found in Table 3.3. Both the disturbed and undisturbed soil samples were properly transported to the Geotechnical Laboratory at Michigan State University where each soil sample was subjected to various laboratory tests. These tests and the test results are presented in section 3.5 below.

Table 3.2 Locations of pocket penetrometer and vane shear tests

Sample number	Location	Vane shear test	Pocket penetrometer
M-045-S (01-01)	405 feet South of Ontonagon River	didn't fail	didn't penetrate
U-002-E (02-01)	385 feet East of M-45	2	2.3
M-028-W (02-02)	~1000 feet West of M-141	4	3.5
M-028-W (02-03)	~2000 feet East of M-35	0.25	1.4
U-002-E (02-04)	765 feet East of Spalding Rd	didn't fail	didn't penetrate
U-002-E (03-01)	400 feet East of Hwy 13	0.26	0.4
M-028-W (03-02)	1500 feet North of M-77	0.5	0.7
M-028-W (03-03)	500 feet West of Basnau Rd	0.25	3
U-002-E (03-03)	200 feet East of M-117	1	1.3
I-075-N (03-04)	mile marker 380	0.25	0.4
I-075-N (03-05)	mile marker 368	didn't fail	didn't penetrate
U-023-S (04-01)	320 feet North of F 05 Co Rd	0.5	6:0
M-068-W (04-02)	180 feet West of US-23	0.5	2
M-068-W (04-03)	150 feet West of Little Ocqueoc River	0.5	6.0
M-065-S (04-04)	160 feet South of Elm Hwy	didn't fail	didn't penetrate
M-032-W (04-05)	220 feet East of Herron Rd	3	5.1
U-131-N (05-01)	200 feet South of Michigan Fisheries Visitor Center	0.25	1
U-127-N (05-04)	120 feet North of Co Rd 300	0.25	0.4
M-033-S (05-05)	750 feet South of Peters Rd	didn't fail	didn't penetrate
M-072-W (05-06)	330 feet West of M-32	9	3.7
M-132-N (06-01)	1000 feet North of Addis Rd (paved rd)	0.75	1.4

Table 3.2 (cont'd)

Sample number	Location	Vane shear test	Pocket penetrometer
I-075-N (06-02)	160 feet North of Co Rd 662	0.25	1.8
U-031-N (06-03)	307 feet North of M-46		
I-196-N (06-05)	110 feet North of Schmuhl Rd	1	3.3
M-020-W (07-02)	~.5 mile East of 13 Mile Rd		
M-020-E (07-03)	~500 feet East of Cottonwood Ave		
U-127-N (07-04)	100 feet North of Jefferson Rd	didn't fail	didn't penetrate
U-127-N (07-05)	65 feet North of Vernon Rd	5	3.6
M-061-E (07-06)	420 feet East of left hand turn on M-61 (off US-127)		
M-061-E (08-02)	165 feet West of Hockaday	0.5	9.0
U-010-W (08-03)	65 feet West of bridge before Stark Rd	didn't fail	2.3
U-010-W (08-04)	145 feet West of Mackinaw Rd	didn't fail	didn't penetrate
I-075-S (08-05)	115 feet South of Prevo Rd	didn't fail	didn't penetrate
I-075-N (08-06)	80 feet North of bridge after exit 195	1.7	2.1
U-131-S (09-01)	160 feet South of Lake Montcalm Rd		
I-096-W (09-02)	141 feet West of Morse Lake Ave		
U-131-S (09-03)	105 feet South of 110th Ave	0.5	1.1
U-131-S (09-05)	60 feet South of 'Reduce Speed 55 MPH' sign right where it turns from interstate to freeway	0.5	1.1
M-044-E (09-07)	Station 137+10		
I-075-S (09-08)	650 feet South of Wadsworth Rd		
M-024-S (09-09)	20 feet North of Burley Rd	1.25	1.9

Table 3.2 (cont'd)

Sample number	Location	Vane shear test	Pocket penetrometer
I-069-E (09-10)	172 feet East of Grand River Rd	0.5	1
I-069-N (10-01)	75 feet North of Base Line Hwy	3	4
I-096-W (10-03)	210 feet West of bridge before exit 97	1	1.3
I-069-N (10-04)	150 feet North of Island Hwy	1.75	4
I-069-N (10-05)	100 feet North of Five Points Hwy	2.5	3.2
I-096-W (10-09)	140 feet West of Dietz Rd	2.7	3.1
I-069-E (10-10)	120 feet East of Britton Rd	didn't fail	didn't penetrate
M-021-E (10-11)	800 feet East of Shepards Rd	3	2.6
I-069-N (11-01)	160 feet North of mile marker 42		
I-094-W (11-02)	132 feet West of exit 110 on ramp	1.5	2.5
M-060-W (11-03)	135 feet West of Southbound I-69 overpass	3	5.5
I-069-S (11-05)	95 feet South of Bridge after exit 10		
I-094-W (12-01)	95 feet West of 29 Mile Rd	1	2.6
I-094-W (12-03)	36 feet West of bridge after exit 135	1	1.5
U-012-E (12-04)	100 feet East of Emarld Rd	didn't fail	9
I-094-W (12-06)	53 feet West of Mt Hope Rd	3	3.5
U-012-E (12-07)	120 feet West of Person Hwy	0.5	6.0
M-024-S (13-01)	250 feet North of Best Rd	3.5	5
M-059-W (13-02)	Station 131+29		
M-014-W (13-03)	255 feet West of Napler Rd	didn't fail	4.5

Table 3.2 (cont'd)

Sample number	Location	Vane shear test	Pocket penetrometer
I-094-W (13-04)	Station 75+02		
U-012-E (13-05)	Between Maple Rd and Industrial Ave	didn't fail	didn't penetrate
U-023-N (13-07)	60 feet North of Sherman	0.75	1.6
M-010-E (13-08)	Station 38+00	didn't fail	3.5
I-075-S (14-01)	60 feet South of Gaynier Rd	3	3.5
I-075-S (14-02)	40 feet South of Nadeau Rd	4.5	3.5
U-024-S (14-03)	~1000 feet South of Ready Rd	4.5	5
U-024-S (14-04)	150 feet North of Pardee	0.25	0.5
I-075-S (14-04)	Station 23+00		
I-094-W (14-05)	300 feet West of Monroe Blvd	3.5	4.3
M-153-E (14-06)	~800 feet East of Greenfield Rd	didn't fail	4.5
M-053-S (14-07)	1500 feet South of Canal Rd		
I-094-W (14-09)	350 feet West of Wadhams Rd	2.5	3
I-094-W (14-10)	227 feet West of Palms Rd	didn't fail	4
M-053-S (15-02)	300 feet South of M-46	2	2.3
M-090-E (15-03)	210 feet East of Murray Rd	0.5	0.7
M-090-E (15-04)	200 feet East of Bobcock St 37 feet East of Village Limit sign	didn't fail	didn't penetrate
M-025-S (15-05)	200 feet North of Day Rd	1.5	2.8
M-25-N (15-06)	170 feet North of North Huron Dr	1.3	2.2
M-019-S (15-07)	650 feet South of Thompson Rd 1 mile South of M-142	1.5	2.7

Table 3.3 Locations of Shelby tube samples

Region	Sample number	Control Section	Number of Shelby tubes
	M-153-E (14-06)	82081	1
Metro	M-010-E (13-08)	82111	1
	I-094-W (14-09)	77111	2
University	I-075-S (14-01)	58151	2
Bay	U-010-W (08-04)	9101	2
Бау	U-127-N (07-05)	37014	2

3.4 Field Testing

The field testing consists of measuring the soils penetration resistance using pocket penetrometer, the shear strength resistance using pocket size vane shear tester, and pavement surface deflection using FWD. The pocket penetrometer and pocket vane shear tests were conducted at the same time and at the same location where some of the disturbed roadbed soil samples were obtained. The FWD tests, on the other hand, were conducted during the fall and spring seasons to assess the impact of the two seasons on the measured deflection and consequently on the backcalculated roadbed soil modulus. The three tests are presented below.

3.4.1 Penetration Resistance Using Pocket Penetrometer

The pocket penetrometer is a small hand held device that consists of a spring loaded probe that slides into a cylinder. The maximum pressure required to push the probe 0.25 inches into the soil is recorded. Pocket penetrometer is typically used to estimate the bearing capacity of the soil surface (Liu and Evett 2008). However, for this project the penetration resistance will be recorded and correlations between MR and penetration resistance will be developed (if possible). A total of 67 pocket penetrometer

tests were conducted and the locations where pocket penetrometer tests were performed and the results can be found in Table 3.2.

3.4.2 Pocket Vane Shear Test

The field vane test is used to estimate the undrained shear strength of the soil. To perform the test the full depth of the vane is inserted into the soil. The vane is then rotated by applying torque at the top of the rod until the soil fails (Das 2004). The maximum torque required to fail the sample will be used in an attempt to develop correlations to the MR. The locations of the 67 tests are listed in Table 3.2 along with the results of the tests.

3.4.3 Falling Weight Deflectometer (FWD)

FWD tests were/are being performed as a supplement to the laboratory tests as a second technique to calculate the MR. MSU requested and received 502 FWD files from MDOT from FWD tests that were conducted prior to the start of this research project. After the locations of all FWD files were established, MSU obtained thickness data during the time of the test for every FWD file that could be found at MDOT. The total thickness data for 103 files were obtained. Therefore, only 103 of the existing FWD files were backcalculated for this project because the cross section data is required to accurately backcalculate the MR values. To supplement the existing FWD data, test locations were requested for this project. FWD tests were conducted at every Shelby tube location to provide laboratory and backcalculated values at the same location so the values can be compared. The Shelby tube locations were chosen based on the results of the disturbed soil sampling. Additional FWD tests were/are being performed along pavements in intervals of 528 feet (0.1 miles) in order to determine the variability in the

roadbed soil. Initially, 208 locations were requested for FWD testing. Of those, 124 were ranked as high priority for the fall season and 84 for the spring season. However, due to delays in starting the FWD testing the list had to be reduced to 86 high priority fall testing locations and 58 for the spring season. Then, due to difficulties in obtaining traffic control for the FWD tests the list was further reduced to contain locations only on interstates. This created 52 high priority spring and fall test locations. Due to FWD testing delays at MDOT, FWD data is not discussed here. Discussion on the FWD testing can be found in Tyler Dawson's thesis (Dawson 2008).

3.5 Laboratory Testing

Once the disturbed and undisturbed Shelby tube samples were received in the laboratory, they were subjected to a battery of tests that include: the natural moisture content, grain size test that included dry and wet sieving and hydrometer tests, Atterberg limits (liquid and plastic limits and plasticity index), and cyclic load triaxial tests. These tests and the test results are presented in the next subsections.

3.5.1 Moisture Content

All 81 soil samples collected underwent natural moisture content tests according to ASTM C 29 standard test procedure. The results of the moisture content tests can be found in Table 3.4. It should be noted that samples with an "X" under the Shelby tube column were taken from undisturbed Shelby tubes and those with nothing in the cell are from disturbed samples. A detailed review of the affect of moisture content on the MR values was conducted and it is included in Chapter 2. The effects of moisture content on the MR values in this study are discussed in Chapter 4.

3.5.2 Grain Size Distribution

The grain size distribution for soils with more than 10 percent passing sieve number 200 was determined using sieve and hydrometer analyses. For soils with less than 10 percent passing sieve number 200 the grain size distribution was determined by sieve analysis only.

3.5.2.1 Sieve Analysis

All bag samples were subjected to either wet (see Figure 3.5) or dry sieve (see Figure 3.6) analysis according to ASTM C 117 and ASTM C136 standard test procedures, respectively. First all soils were subjected to dry sieving. When the test results showed more than 10 percent passing sieve number 200, the soil was subjected to wet sieve and hydrometer analyses. The objective of the test is to determine the particle size distribution and the classification of the roadbed soil. In all analyses, the sieve sizes and the sieve arrangement were chosen based on the MDOT Uniform Field Soil Classification (see Appendix A). A total of 81 dry sieves and 56 wet sieve tests were run. Results of the dry and wet sieve analyses can be found in Table 3.4.

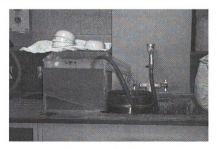


Figure 3.5 Wet sieve test

Figure 3.6 Dry sieve test

3.5.2.2 Hydrometer Analysis

Soil samples which have more than 10 percent passing sieve number 200 were subjected to hydrometer analysis according to the AASHTO T 88 standard test procedure. A total of 56 hydrometer analyses were conducted.

3.5.3 Atterberg Limits

Soil samples with more than eight percent passing the #200 sieve were subjected to Atterberg limit tests. The Atterberg limits consist of liquid limit, plastic limit, and plasticity index. The liquid limit is the water content at which soils change behavior from plastic to liquid. Whereas the plastic limit is the water content at which soils possess plastic behavior (Liu and Evett 2008). Both the liquid and the plastic limit tests were conducted according to the AASHTO T 89 standard test procedure. Figure 3.7 shows the

Table 3.4 Laboratory test results

		Natural	Sample			Percent	passing	sieve#			Atte	rberg l	imits				C _{II} =	$C_C =$	Classific	cation
Sample number	Shelby tube	water content (%)	weight (g)	3/8 inch 9,500	4 4.750	10	20	40	100 0.150	200	LL	PL	PI	D ₁₀	D ₃₀	D ₆₀	D ₆₀ / D ₁₀	$D_{30}^2/$ (D_{60}) (D_{10})	AASHTO	USCS
M-045-S (01-01)		11.5	298.8	99.5	99.3	98.9	96.8	96.7	77.2	66.7	26	16	10	0.0030	0.006	0.040	13.33	0.30	A-6	CL
U-002-E (02-01)		16.8	303.3	99.1	97.8	96.6	92.3	68.1	46.4	39.2	18	-	NP	0.008	0.040	0.300	37.50	0.67	A-4	SM
M-028-W (02-02)		21.0	200.0	100.0	99.4	98.0	93.4	83.2	64.5	56.1	23	-	NP	0.0080	0.024	0.110	13.75	0.65	A-4	ML
M-028-W (02-03)		6.6	535.8	100.0	99.3	97.2	92.1	81.8	23.4	6.1	16	-	NP	0.091	0.175	0.285	3.13	1.18	A-1-b	SP-SM
U-002-E (02-04)		10.8	200.0	100.0	99.4	98.0	93.4	83.2	64.5	54.1	19	-	NP	0.0100	0.050	0.110	11.00	2.27	A-4	ML
U-002-E (03-01)		5.0	525.3	100.0	99.8	99.6	98.5	92.6	15.8	6.5	13	-	NP	0.130	0.190	0.275	2.12	1.01	A-3	SP-SM
M-028-W (03-02)		3.1	519.1	99.9	99.6	99.3	97.9	89.7	14.0	3.0	NA	NA	NP	0.150	0.190	0.280	1.87	0.86	A-3	SP
U-002-E (03-03)		13.1	222.9	100.0	96.8	93.7	88.7	77.8	31.7	25.1	15	-	NP	0.002	0.120	0.300	150.00	24.00	A-2-4	SM
M-028-W (03-03)		4.8	520.2	94.1	87.5	82.6	71.2	45.5	11.1	6.4	21	-	NP	0.140	0.285	0.600	4.29	0.97	A-3	SP-SM
I-075-N (03-04)		9.4	549.2	99.9	99.8	99.5	98.4	91.3	10.0	1.5	NA	NA	NP	0.160	0.200	0.280	1.75	0.89	A-3	SP
I-075-N (03-05)		21.2	197.8	100.0	99.9	94.1	92.4	80.9	60.3	48.2	55	22	33	0.001	0.002	0.150	150.00	0.03	A-7-6	SC
U-023-S (04-01)		22.0	547.2	98.8	98.8	98.5	96.4	90.3	10.3	4.3	NA	NA	NP	0.170	0.200	0.280	1.65	0.84	A-3	SP
M-068-W (04-02)		4.0	205.0	99.9	98.6	91.0	51.3	25.2	16.0	14.1	18	12	6	0.040	0.500	1.000	25.00	6.25	A-2-4	SC-SN
M-068-W (04-03)		33.3	515.6	100.0	100.0	99.7	98.7	89.8	14.3	3.7	NA	NA	NP	0.160	0.190	0.280	1.75	0.81	A-3	SP
M-065-S (04-04)		8.1	201.5	99.3	95.4	91.3	87.5	72.7	30.4	21.5	30	-	NP	0.001	0.150	0.300	300.00	75.00	A-2-4	SM
M-032-W (04-05)		9.6	203.4	100.0	99.8	99.6	99.0	95.0	64.6	48.7	19	12	7.	0.001	0.006	0.130	130.00	0.28	A-4	SC-SN
U-131-N (05-01)		13.1	199.4	99.8	99.2	96.4	95.0	78.7	43.5	29.2	14	-	NP	0.016	0.140	0.280	17.50	4.38	A-2-4	SM
U-127-N (05-04)		8.9	527.6	91.8	84.4	79.1	73.3	53.6	6.4	3.7	NA	NA	NP	0.180	0.260	0.500	2.78	0.75	A-3	SP
M-033-S (05-05)		3.5	525.7	63.1	57.5	45.4	35.7	26.7	7.8	4.6	NA	NA	NP	0.185	0.510	6.000	32.43	0.23	A-1-a	SG
M-072-W (05-06)		14.3	201.0	100.0	99.6	98.8	97.3	91.4	56.1	39.9	22	11	11	0.0070	0.035	0.160	22.86	1.09	A-6	SC
M-132-N (06-01)		15.0	521.7	99.5	99.0	98.5	96.8	78.7	8.8	4.2	NA	NA	NP	0.160	0.220	0.320	2.00	0.95	A-3	SP
I-075-N (06-02)		3.4	518.0	95.1	93.7	92.8	90.4	63.4	5.8	4.1	NA	NA	NP	0.170	0.260	0.400	2.35	0.99	A-3	SP
U-031-N (06-03)		5.8	1060.3	99.5	99.1	98.4	97.4	87.2	7.9	0.5	NA	NA	NP	0.170	0.210	0.300	1.76	0.86	A-3	SP-SM
I-196-N (06-05)		10.5	1085.6	99.6	98.4	96.2	91.2	84.4	26.5	5.9	15	-	NP	0.089	0.160	0.275	3.09	1.05	A-2-4 A-3	SP-SM SP
M-020-W (07-02)		4.2	1003.7	99.6	99.3	98.7	97.9	88.0	2.1	0.8	NA	NA	NP	0.180	0.220	0.300	1.67	0.90	A-3 A-3	SP
M-020-E (07-03)		4.5	513.3	99.2	97.9	96.8	94.5	89.6	21.2	3.3	NA	NA	NP	0.110	0.190	0.280	2.55	1.17	A-3 A-2-6	SC
U-127-N (07-04)		10.9	200.8	100.0	98.8	96.6	95.4	90.3	38.3	26.9	22	12	10	0.001	0.100	0.230	230.00	-		SC
U-127-N (07-05)	X	11.2	203.9	100.0	98.3	92.6	87.3	79.9	53.7	40.5	23	14	9	0.0011	0.006	0.190	172.73	0.17	A-6 A-6	SC
U-127-N (07-05)		14.4	213.7	99.8	98.2	85.2	81.0	74.8	52.1	43.7	24	14	10	0.0010	0.008	0.210	210.00	0.30	A-0	SC

Table 3.4 (cont'd)

	CI II	Natural	Sample			Percent	passing	sieve #			Atte	rberg	limits				C _U =	C _C =	Classifi	cation
Sample number	Shelb y tube	water content (%)	weight (g)	3/8 inch 9.500	4.750	10 2.000	20	40 0.425	100 0.150	200	LL	PL	PI	D ₁₀	D ₃₀	D ₆₀	D ₆₀ / D ₁₀	$D_{30}^{2}/$ (D_{60}) (D_{10})	AASHTO	USCS
M-061-E (07-06)		22.1	198.5	100.0	98.8	93.3	84.7	59.3	23.7	17.9	19	-	NP	0.040	0.190	0.430	10.75	2.10	A-2-4	SM
M-061-E (08-02)		20.3	223.1	100.0	99.7	93.9	77.8	51.9	26.1	23.2	11	-	NP	0.050	1.000	0.520	10.40	38.46	A-2-4	SM
U-010-W (08-03)		21.4	200.2	100.0	100.0	99.8	99.7	97.6	61.0	55.2	32	14	18	0.001	0.002	0.140	140.00	0.02	A-6	CL
U-010-W (08-04)		8.2	200.1	99.9	99.9	98.8	96.6	84.5	48.8	36.7	29	13	16	0.001	0.011	0.200	200.00	0.61	A-6	SC
U-010-W (08-04)	X	15.0	205.1	98.0	98.9	96.5	95.8	80.3	42.5	33.3	27	13	14	0.0009	0.018	0.200	222.22	1.80	A-6	SC
I-075-S (08-05)		8.9	201.0	100.0	99.9	97.7	94.5	69.4	40.3	33.5	25	12	13	0.001	0.011	0.300	300.00	0.40	A-2-6	SC
I-075-N (08-06)		11.8	201.5	100.0	99.2	96.8	93.7	85.4	36.6	26.2	17	10	7	0.001	0.011	0.270	270.00	0.45	A-2-4	SC-SM
U-131-S (09-01)		4.6	1056.3	99.0	98.0	97.4	97.0	83.7	2.5	0.5	NA	NA	NP	0.180	0.220	0.300	1.67	0.90	A-3	SP
I-096-W (09-02)		9.9	206.2	100.0	99.0	97.3	93.8	82.7	40.9	30.5	17	13	4	0.001	0.075	0.240	240.00	23.44	A-2-4	SC-SM
U-131-S (09-03)		1.9	530.4	100.0	100.0	99.9	99.8	97.2	6.0	0.4	NA	NA	NP	0.180	0.200	0.290	1.61	0.77	A-3	SP
U-131-S (09-05)		3.6	1025.6	97.5	90.2	80.8	69.5	45.8	3.1	1.3	NA	NA	NP	0.185	0.295	0.605	3.27	0.78	A-3	SP
M-044-E (09-07)		8.7	206.5	100.0	99.5	97.7	94.1	85.5	37.7	26.7	14	-	NP	0.020	0.110	0.250	12.50	2.42	A-2-4	SM
I-075-S (09-08)		20.2	216.1	99.1	96.1	91.8	89.7	85.5	62.3	45.8	31	14	17	0.001	0.004	0.140	140.00	0.11	A-4	SC
M-024-S (09-09)		13.3	198.6	100.0	99.6	97.6	95.4	93.2	45.0	24.1	20	-	NP	0.012	0.090	0.200	16.67	3.38	A-2-4	SM
I-069-E (09-10)		7.1	527.8	98.3	93.4	83.0	66.3	36.8	5.2	3.1	NA	NA	NP	0.190	0.340	0.700	3.68	0.87	A-3	SP
I-069-N (10-01)		10.1	534.1	94.9	88.7	81.1	67.6	49.2	16.7	8.0	16	11	5	0.093	0.230	0.600	6.45	0.95	A-3	SP-SM
I-096-W (10-03)		14.7	199.7	100.0	98.4	93.9	90.1	82.0	29.5	17.5	29	14	15	0.0600	0.150	0.280	4.67	1.34	A-2-6	SC
I-069-N (10-04)		11.1	198.5	100.0	99.3	94.1	86.4	74.9	30.1	17.6	16	-	NP	0.010	0.150	0.200	20.00	11.25	A-2-4	SM
I-069-N (10-05)		24.0	204.0	100.0	100.0	97.8	87.6	54.9	43.2	37.3	19	-	NP	0.010	0.070	0.500	50.00	0.98	A-2-4	SM
I-096-W (10-09)		15.1	200.9	100.0	99.6	93.7	91.0	61.1	38.0	30.4	19	-	NP	0.006	0.075	0.410	68.33	2.29	A-2-4	SM
I-069-E (10-10)		12.8	204.9	98.0	96.1	92.4	90.5	84.7	57.2	37.7	26	15	11	0.001	0.009	0.170	170.00	0.48	A-6	SC
M-021-E (10-11)		15.0	230.2	99.4	92.1	85.9	79.5	72.2	46.3	33.8	23	14	9	0.001	0.030	0.270	270.00	3.33	A-2-4	SC
I-069-N (11-01)		9.1	1032.9	90.3	87.1	83.0	77.8	63.9	15.9	6.9	14	-	NP	0.120	0.210	0.390	3.25	0.94	A-3	SP-SM
I-094-W (11-02)		7.1	1022.7	95.0	91.7	87.1	77.5	51.2	6.2	2.7	NA	NA	NP	0.170	0.270	0.510	3.00	0.84	A-3	SP
M-060-W (11-03)		10.5	199.3	99.7	99.0	97.4	90.6	67.0	37.6	31.1	22	15	7	0.004	0.025	0.330	82.50	0.47	A-2-4	SC-SM
I-069-S (11-05)		6.6	201.1	100.0	99.1	93.9	86.9	77.3	49.3	38.6	15	11	4	0.002	0.034	0.210	105.00	2.75	A-4	SC-SM
I-094-W (12-01)		8.6	199.8	100.0	95.2	81.8	73.9	51.8	26.5	20.0	16	12	4	0.038	0.180	0.560	14.74	1.52	A-2-4	SC-SM
I-094-W (12-03)		13.2	527.4	97.4	95.4	91.6	83.0	68.3	18.7	7.4	16	-	NP	0.095	0.195	0.345	3.63	1.16	A-3	SP-SM
U-012-E (12-04)		4.9	200.4	99.9	98.9	94.2	89.4	73.7	36.6	23.0	16	-	NP	0.003	0.110	0.300	100.00	13.44	A-2-4	SM

Table 3.4 (cont'd)

		Natural	Sampl			Percent	passing	sieve#			A	tterbe					C _{II} =	$C_{\rm C} = D_{30}^2 /$	Classifie	cation
Sample number	Shelby tube	water content (%)	e weight (g)	3/8 inch	4	10	20	40	100	200	LL	PL	PI	D ₁₀	D ₃₀	D ₆₀	D ₆₀ / D ₁₀	(D ₆₀) (D ₁₀)	AASHTO	USCS
I-094-W (12-06)		12.1	213.7	9.500	4.750 99.8	2.000 92.2	0.850 90.5	0.425 86.0	0.150	0.075	15	_	NP	0.005	0.130	0.250	50.00	13.52	A-2-4	SM
				67.5	57.0	42.2	25.8	16.0	10.0	8.1	18	-	NP	0.003	1.000	6,000	37.50	1.04	A-1-a	SG
U-012-E (12-07)		7.0	513.8	100.2	98.4	93.4	90.2	85.2	59.4	45.1	18	15	3	0.100	0.013	0.150	150.00	1.13	A-1-a A-4	SM
M-024-S (13-01)		10.6	196.0		97.9	95.4	91.2	65.7	8.9	1.7	NA.	NA	NP	0.160	0.013	0.130	2.38	0.80	A-3	SP
M-059-W (13-02)		11.6	1033.3	99.4				85.7	62.7	49.2	22	-	9	0.160	0.220	0.380	130.00	0.80	A-3 A-4	SC
M-014-W (13-03)		9.3	198.1	100.0	99.1	94.0	90.0				-	13	-			-		0.28		SP
I-094-W (13-04)		8.0	1005.6	98.1	95.8	90.5	82.8	65.9	13.1	3.5	NA	NA	NP	0.140	0.210	0.390	2.79	-	A-3	
U-012-E (13-05)		14.9	205.0	100.0	99.9	99.0	97.8	95.5	65.6	56.7	33	17	16	0.001	0.002	0.100	111.11	0.04	A-6	CL
U-023-N (13-07)		9.8	529.5	94.1	83.4	66.2	53.5	43.3	12.0	5.7	13	-	NP	0.130	0.280	1.350	10.38	0.45	A-3	SP-SM
M-010-E (13-08)		14.0	201.0	100.0	99.7	98.1	95.0	90.8	74.3	59.9	24	14	10	0.0010	0.003	0.075	75.00	0.12	A-6	CL
M-010-E (13-08)	X	12.3	207.0	100.0	98.0	95.6	93.5	88.3	72.6	54.8	23	14	9	0.0009	0.015	0.090	100.00	2.78	A-6	CL
I-075-S (14-01)	X	18.4	204.5	100.0	99.9	89.4	87.9	67.6	54.2	48.2	42	21	21	0.0090	0.015	0.250	27.78	0.10	A-7-6	SC
I-075-S (14-01)		25.4	200.6	100.0	96.9	78.9	76.2	68.4	47.8	41.2	45	19	26	0.0007	0.003	0.270	385.71	0.05	A-7-6	SC
I-075-S (14-02)		18.7	201.0	100.0	98.3	97.6	92.6	85.5	64.1	46.1	41	19	22	0.001	0.003	0.190	211.11	0.06	A-7-6	SC
U-024-S (14-03)		19.2	202.3	100.0	99.4	98.8	91.8	79.7	55.3	41.4	40	13	27	0.001	0.003	0.190	271.43	0.07	A-6	SC
I-075-S (14-04)		15.8	200.8	100.0	99.9	99.8	99.7	96.4	59.4	46.9	34	17	17	0.001	0.003	0.260	288.89	0.04	A-6	SC
U-024-S (14-04)		22.2	543.7	100.0	100.0	99.8	99.6	96.3	23.3	2.5	NA	NA	NP	0.100	0.170	0.255	2.55	1.13	A-3	SP
I-094-W (14-05)		21.6	199.0	99.7	97.6	97.5	89.7	78.0	56.7	46.7	34	21	13	0.001	0.013	0.160	160.00	1.06	A-6	SC
M-153-E (14-06)	X	26.0	209.4	100.0	99.8	99.0	98.3	92.7	70.1	51.1	51	19	32	0.0090	0.018	0.100	11.11	0.36	A-7-6	SC
M-153-E (14-06)		21.6	202.9	100.0	100.0	98.4	98.1	94.1	64.4	49.9	52	20	32	0.0007	0.001	0.140	200.00	0.02	A-7-6	SC
M-053-S (14-07)		5.9	529.1	93.1	87.5	81.5	70.3	55.0	9.3	4.7	NA	NA	NP	0.170	0.240	0.500	2.94	0.68	A-3	SP
I-094-W (14-09)	X	26.3	205.1	100.0	100.0	98.5	97.9	85.2	59.8	55.8	42	23	19	0.0010	0.010	0.150	150.00	0.67	A-7-6	CL
I-094-W (14-09)		21.9	197.3	99.7	99.2	97.7	96.6	90.8	66.8	60.9	44	21	23	0.0010	0.002	0.075	75.00	0.05	A-7-6	CL
I-094-W (14-10)		21.5	198.9	100.0	99.5	93.3	91.6	80.3	65.2	56.3	42	19	23	0.001	0.002	0.100	166.67	0.07	A-7-6	CL
M-053-S (15-02)		17.2	200.4	100.0	99.5	96.8	94.4	87.5	42.8	26.2	14	-	NP	0.008	0.100	0.210	26.25	5.95	A-2-4	SM
M-090-E (15-03)		38.0	204.1	100.0	99.9	98.8	96.1	90.7	73.1	55.8	35	20	15	0.001	0.005	0.088	88.00	0.28	A-6	CL
M-090-E (15-04)		12.4	199.6	100.0	99.7	97.4	95.0	90.6	67.4	52.8	24	15	9	0.0010	0.006	0.100	100.00	0.36	A-4	CL
M-025-S (15-05)		4.4	532.8	99.3	98.7	98.2	97.3	84.4	1.9	1.1	NA	NA	NP	0.180	0.210	0.300	1.67	0.82	A-3	SP
M-25-N (15-06)		16.4	206.4	100.0	98.9	94.0	90.8	85.1	54.2	42.3	24	13	11	0.001	0.007	0.190	190.00	0.26	A-4	SC
M-019-S (15-07)		11.4	199.4	99.9	95.1	83.9	76.4	61.5	29.0	17.2	14	-	NP	0.065	0.160	0.400	6.15	0.98	A-2-4	SM

devices for both tests. After obtaining the liquid and plastic limits, the plasticity index was calculated as the difference between the two limits. A total of 60 Atterberg limit tests were performed. Results of the Atterberg limit tests are listed in Table 3.4.

3.5.4 Cyclic Load Triaxial Test

Cyclic load triaxial tests were conducted to determine the resilient modulus of laboratory compacted sand and clay samples and Shelby tube samples. The sample preparation procedures are presented below.

Preparation of Sand Samples - All sand samples were compacted in 2.125 inches diameter and 4.8 inches high split mold using a 10 pounds static load and a vibrating table. The split mold has two outlets connected on the outside of the mold by small diameter drainage tubes and protected on the inside by two small porous stones tightly fitted to the holes. First, the split mold was assembled and a rubber membrane was stretched along the interior walls of the mold. The membrane was then flipped over the edges of the split mold and a vacuum was applied between the rubber membrane and the interior walls of the mold. The vacuum forced the membrane to stick to the wall and hence eliminates wrinkling. The split mold and the rubber membrane were then placed around the bottom pedestal on the base of the triaxial cell and a paper filter was then placed on top of the pedestal. The entire assembly was then placed on the vibrating table. The total weight of the sand was then measured and recorded and the sand was then compacted in five lifts. Each lift was subjected to a 10 pound static load while being vibrated at the maximum amplitude for a period of three minutes. Figure 3.8 shows the vibrating table, static load, vacuum pump, split mold, and triaxial cell base. When the last sand lift was compacted, a paper filter and the top pedestal were respectively placed

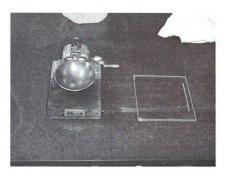


Figure 3.7 Liquid and plastic limit apparatus

in orderly fashion on top of the sand. The rubber membrane was then secured around the top and bottom pedestals using rubber bands. The vacuum lines were removed from the split mold and connected to the drainage lines at the bottom of the triaxial cell to apply vacuum to the sand. The split mold was then removed. After assembling the triaxial cell, a confining pressure of 7.5 psi was then applied while the vacuum was decreased to zero by disconnecting the vacuum line. The weight of the left over sand was measured and recorded. The difference between the initial and final weights represents the weight of the sand sample. After determining the water content in the sample, its dry unit weight was calculated.

Preparation of Clay Samples - Disturbed clay samples were compacted according to the AASHTO standard proctor test procedure T99. After compaction, the samples were then trimmed to the desired length of 4.5 inches and diameter of 2.25 inches. The samples were then placed in a rubber membrane (which was stretched tightly around the interior

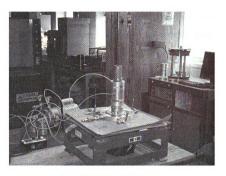


Figure 3.8 Vibrating table setup

of a split mold). The sample was then sealed from the atmosphere by securing the rubber membrane to the bottom and top pedestals. The entire mold assembly was then transferred to the triaxial cell where the cell was assembled and a confining pressure of 7.5 psi was applied to the sample.

Preparation of the Undisturbed Shelby Tube Samples – First, the Shelby tubes were cut to several segments 6 inches long. The clay soil was then extracted from the tube segment and was trimmed to a height of 5.6 inches. The diameter of the soil was kept the same as the interior diameter of the Shelby tube (2.8 inches). A rubber membrane was placed around the soil (see clay samples above) and the sample was placed in the triaxial cell and was subjected to 7.5 psi confining pressure.

After placing the sample in the triaxial cell and subjecting it to 7.5 psi confining pressure, the cyclic load test commenced. The detailed steps are presented below.

Cyclic Load Test Procedure – All cyclic load triaxial tests were mainly conducted according to the AASHTO T307 standard test procedure. Because of the type of tests and equipment available, the following three modifications to the AASHTO standard test procedure were made:

- The load cell of the available MTS system is located below the sample instead of above it as stated in the standard test procedure.
- The loading and unloading time of 0.1 seconds and the relaxation time of 0.9 second were changed to 0.5 and 0.9 seconds, respectively to more accurately simulate the load pulse experienced by a roadbed soil located about 30 inches below the pavement surface (see Figure 3.9). The figure shows the distances from the load that the stress is felt in the pavement based on the shown thicknesses.
- The sample was conditioned by applying 498 load cycles instead of the conditioning sequences outlines in the standard test procedure.

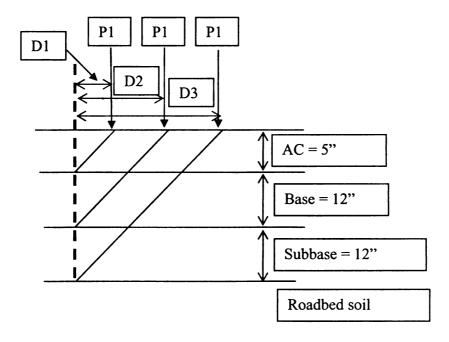


Figure 3.9 Stress influence with depth

Cyclic load triaxial tests are difficult to conduct and require extreme care and patience. The resulting MR values obtained from the test are typically affected by several test and sample variables including: confining pressure, deviatoric stress, loading frequency, soil type, moisture content, and specimen conditioning. In this study, all cyclic load triaxial tests were performed using:

- A sustained load of 10 pounds was applied to maintain contact between the MTS
 actuator and the piston of the triaxial cell.
- A confining pressure of 7.5 psi.
- A frequency of 0.71 hertz.
- Cyclic axial stress of 10 psi followed immediately by cyclic axial stress of 15 psi.
- For each axial stress level, the samples were conditioned to 498 load cycles.
- The axial sample deformations were measured using two linear variable differential transducers (LVDTs) located at 180 degrees from the longitudinal axis of the sample.
- The resilient moduli of the samples were calculated as the average resilient modulus obtained at cycles 499, 500, 501, 799, 800, 801, 999, 1000 and 1001. The resilient modulus at each cycle was calculated using the average deformation of the two LVDTs.

The test setup used for the cyclic load tests is shown in Figure 3.10. Figure 3.11 shows two Hysteresis loops from load cycles 800 and 1000. The figure shows that as the load increases the sample deformation increases and vise versa. The shift in the two loops represents the cumulative plastic deformation that took place in the sample between cycles 800 and 1000.

Results of the cyclic load tests for both the 10 and the 15 psi cyclic stresses are listed in Table 3.5. The highlighted rows in the table indicate tests which were run to verify the developed models. The verification is discussed in Chapter 4. The table also includes the moisture content and degree of saturation, the dry unit weight of the test sample, the USCS and the AASHTO soil classifications, and the sample type (disturbed or undisturbed). It should be noted that the data in the table are sorted based on the USCS. As can be seen from the table, 81 samples were subjected to cyclic load tests. These include 25 SP tests, 16 SM tests, 9 CL tests, 14 SC tests, 2 ML tests, 7 SC-SM tests, and 8 SP-SM tests.

Figure 3.10 Cyclic load test setup

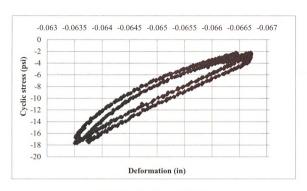


Figure 3.11 Typical cyclic load test results

Table 3.5 Laboratory MR test results

	Camp	Somple time	Classification	cation	, at the	Woter		MR at cyclic	cyclic
Sample number	Samp	ic type			weight	water	Saturation	stress (psi)	(psi)
	Shelby tube	Disturbed	AASHTO	NSCS	$(1b/ft^3)$	cyclic test		10.0	15.0
M-028-W (02-03)		×	A-1-b	SP-SM	113.4	8.5	47.3	19,195	17,845
U-002-E (03-01)		X	A-3	SP-SM	108.7	4.5	22.1	22,787	19,592
M-028-W (03-03)		X	A-3	WS-dS	105.5	2.0	0.6	16,895	15,941
I-196-N (06-05)		X	A-2-4	SP-SM	111.5	3.7	19.5	23,009	21,964
I-069-N (10-01)		X	A-3	MS-dS	116.1	6.6	59.2	15,858	15,682
I-069-N (11-01)		X	Y-3	WS-dS	118.0	7.0	44.2	30,701	28,120
I-094-W (12-03)		X	¥-3	MS-dS	121.6	11.4	8.62	18,122	15,961
U-023-N (13-07)		X	A-3	WS-dS	115.4	6.5	38.2	22,608	20,574
M-068-W (04-03)		X	Y-3	dS	100.9	20.0	9.08	696'6	10,004
M-020-W (07-02)		X	A-3	dS	110.5	11.5	59.2	29,418	28,566
M-059-W (13-02)		X	Y-3	dS	107.7	0.6	43.1	24,840	23,788
U-127-N (05-04)		X	A-3	SP	112.6	6.9	37.5	37,123	29,921
I-075-N (03-04)		X	A-3	dS	111.7	6.9	36.6	26,115	24,378
I-094-W (11-02)		X	A-3	dS	116.7	6.2	37.7	44,479	27,346
I-094-W (13-04)		X	A-3	SP	114.3	6.0	34.2	21,449	18,842
U-024-S (14-04)		X	A-3	SP	108.2	10.0	48.5	22,768	21,924
M-020-W (07-02)		X	A-3	SP	109.2	5.3	26.4	30,244	24,872
I-069-E (09-10)		X	A-3	SP	116.9	5.1	31.2	28,636	26,070
M-132-N (06-01)		×	A-3	SP	112.9	4.7	25.8	31,711	28,970
M-053-S (14-07)		X	A-3	SP	113.9	3.9	22.0	25,714	22,275

Table 3.5 (cont'd)

	Samo	Sample type	Classification	ation	Dry unit	Water		MR at cyclic	cyclic
Sample number	Janua	or type			weight	content for	Saturation	stress (psi)	(psi)
	Shelby tube	Disturbed	AASHTO	OSCS	$(1b/ft^3)$	cyclic test		10.0	15.0
U-023-S (04-01)		×	A-3	SP	117.8	3.3	20.7	23,039	21,715
U-031-N (06-03)		×	A-3	SP	111.5	3.3	17.4	31,870	29,609
M-020-E (07-03)		×	A-3	SP	113.0	3.2	17.6	32,666	28,156
M-025-S (15-05)		X	A-3	SP	110.3	3.0	15.4	40,115	35,447
U-131-S (09-01)		X	A-3	SP	110.6	2.7	13.9	28,766	27,706
I-075-N (06-02)		X	A-3	dS	110.2	2.0	10.2	32,457	31,187
U-131-S (09-05)		X	A-3	dS	117.3	1.0	23.3	38,423	35,319
M-028-W (03-02)		X	A-3	SP	104.0	1.3	5.7	22,959	22,494
U-131-S (09-03)		X	A-3	dS	108.6	0.5	2.4	30,340	27,995
M-020-W (07-02)		X	A-3	dS	109.1	0.2	1.0	31,460	28,705
M-020-W (07-02)		X	A-3	dS	104.1	0.2	6.0	19,692	20,267
M-020-W (07-02)		X	A-3	dS	107.6	0.2	1.0	24,319	24,552
U-002-E (02-01)		X	A-4	MS	109.3	9.5	47.4	15,352	13,818
U-002-E (03-03)		X	A-2-4	MS	111.5	7.7	40.7	15,969	15,818
M-065-S (04-04)		X	A-2-4	MS	94.6	9.7	26.3	11,932	11,898
U-131-N (05-01)		X	A-2-4	MS	112.9	5.4	29.6	24,627	23,092
M-061-E (07-06)		X	A-2-4	MS	0.96	17.0	8.09	11,480	12,958
M-061-E (08-02)		X	A-2-4	SM	118.6	5.5	35.3	32,200	31,733
M-044-E (09-07)		X	A-2-4	SM	128.8	7.6	9.99	18,416	19,636

Table 3.5 (cont'd)

	Samp	Sample type	Classification	cation	Dry mait	Water		MR at	MR at cyclic
Sample number	dumo	ad fa			weight	content for	Saturation	stress	stress (psi)
	Shelby tube	Disturbed	AASHTO	OSCS	(lb/ft³)	cyclic test	Saturanon	10.0	15.0
M-024-S (09-09)		X	A-2-4	SM	102.9	8.6	41.5	15,142	15,839
I-069-N (10-04)		X	A-2-4	SM	124.2	8.4	63.6	19,172	18,945
I-069-N (10-05)		×	A-2-4	SM	100.2	23.7	93.9	5,290	5,641
(60-01) M-960-I		X	A-2-4	SM	117.9	14.1	88.7	605'6	11,383
U-012-E (12-04)		X	A-2-4	SM	108.0	3.9	18.8	19,152	18,377
I-094-W (12-06)		X	A-2-4	SM	123.2	10.3	75.7	19,406	19,305
M-024-S (13-01)		X	A-4	SM	110.3	9.5	48.6	17,933	16,160
M-053-S (15-02)		X	A-2-4	SM	114.0	8.5	48.0	18,325	18,043
M-019-S (15-07)		×	A-2-4	SM	113.7	9.2	51.6	22,213	19,482
M-068-W (04-02)		X	A-2-4	SC-SM	117.5	2.2	13.7	30,928	24,740
M-032-W (04-05)		X	A-4	SC-SM	106.3	8.1	37.4	19,255	18,161
I-075-N (08-06)		X	A-2-4	SC-SM	131.3	9.2	87.7	15,783	16,562
I-096-W (09-02)		X	A-2-4	SC-SM	108.0	1.2	5.8	22,142	19,579
M-060-W (11-03)		X	A-2-4	SC-SM	107.0	8.4	39.5	19,812	16,639
I-069-S (11-05)		×	A-4	SC-SM	132.6	6.4	63.9	27,276	25,621
I-094-W (12-01)		X	A-2-4	SC-SM	128.8	8.5	74.5	27,610	23,849

Table 3.5 (cont'd)

	Sample ton	e tyme	Classification	ation	Dev unit	Water		MR at	MR at cyclic
Samule number	dumo	246.2			weight	content for	Saturation	stress (psi)	(psi)
	Shelby tube	Disturbed	AASHTO	OSCS	(lb/ft³)	cyclic test		10.0	15.0
M-045-S (01-01)		×	9-Y	CL	120.8	10.2	8.69	36,543	31,503
M-010-E (13-08)	X		9-Y	CL	118.8	15.0	8.96	9,714	8,235
M-010-E (13-08)		X	9-Y	$C\Gamma$	122.1	10.4	73.9	17,150	16,572
M-010-E (13-08)	X		9-Y	CL	128.5	2.3	5.64	44,634	41,942
M-010-E (13-08)	X		9-Y	$C\Gamma$	122.3	12.3	88.0	15,561	9,553
I-094-W (14-09)	X		9- <i>L</i> -V	CL	101.7	10.5	43.2	73,444	70,095
I-094-W (14-09)		X	9- <i>L</i> -V	CL	101.6	11.3	46.3	60,247	60,327
I-094-W (14-09)	X		9- <i>L</i> -V	$C\Gamma$	4.96	26.3	0.26	9,955	8,080
M-090-E (15-04)		X	A-4	CL	5.601	10.6	53.1	67,778	62,006
M-072-W (05-06)		X	9-Y	SC	116.2	10.7	64.2	26,492	27,193
U-127-N (07-05)	X		A-6	SC	120.5	11.2	75.9	7,323	6,925
U-127-N (07-05)	X		A-6	SC	117.5	14.2	88.4	4,713	5,338

Table 3.5 (cont'd)

	Comp	o timo	Classification	ation	1	Woter		MR at cyclic	cyclic
Sample number	Samp	Sample type			Weight	water	Saturation	stress (psi)	(psi)
	Shelby tube	Disturbed	AASHTO	NSCS	(lb/ft³)	cyclic test		10.0	15.0
U-127-N (07-05)	×		9-Y	SC	126.7	6.7	54.9	54,737	53,030
U-127-N (07-05)	X		A-6	SC	115.3	16.6	97.2	3,984	5,382
U-127-N (07-05)		×	A-6	SC	117.7	10.3	64.5	36,047	27,746
U-010-W (08-04)	X		A-6	SC	111.5	15.0	79.3	5,879	5,105
U-010-W (08-04)	×		A-6	SC	113.8	16.7	93.8	4,134	5,268
I-096-W (10-03)		×	A-2-6	SC	108.3	11.6	56.4	43,783	37,688
I-075-S (14-01)	X		A-7-6	SC	115.7	8.8	52.1	32,569	29,839
I-075-S (14-01)	X		A-7-6	SC	108.7	18.4	90.3	7,187	8,386
I-075-S (14-01)	X		9-7-Y	SC	106.2	20.9	96.2	690'9	4,007
I-075-S (14-01)		X	9-7-V	SC	8.66	18.8	73.8	18,147	17,831
M-153-E (14-06)	X		A-7-6	SC	9.96	26.0	99.1	3,731	3,015
M-153-E (14-06)	X		A-7-6	SC	92.5	30.4	6.66	4,430	3,921
M-153-E (14-06)		X	A-7-6	SC	101.8	10.7	44.1	40,864	44,442
M-028-W (02-02)		X	A-4	ML	106.2	11.0	9.09	53,824	41,516
U-002-E (02-04)		X	A-4	ML	113.0	10.7	58.8	37,012	33,191

CHAPTER 4

DATA ANALYSIS AND DISCUSSION

4.1 Introduction

Recall that (see Chapter 1) the objectives of this study are:

- Evaluate the existing processes used by all regions of MDOT for determining the MR
 value of the roadbed soil for flexible pavement design and the modulus of subgrade
 reaction (k) for rigid pavement design.
- Determine the needed modifications to make the process compatible with the M-E
 PDG.

To accomplish these objectives, a research plan was carefully designed and executed. The plan consists of the following approaches:

- 1. **Information Gathering** Various conversations were held with the Soil Engineers from each MDOT Region. During the conversation, the method used by the region to estimate the resilient modulus of the roadbed soil was documented. The results are listed in Table 2.1 of Chapter 2.
- Soil Delineation The State of Michigan was divided into 15 clusters and 99 areas
 where the roadbed soils are similar. The 99 areas were later reduced to 75 areas for
 soil sampling.
- 3. **Soil Sampling** From each of the 75 areas, disturbed bag roadbed soils samples were obtained. In addition, 10 Shelby tube samples were collected where the disturbed soil samples showed that there was a substantial amount of clay.
- 4. **Field Tests** The field tests consist of:
 - o Penetration resistance using pocket size penetrometer

- o Shear strength using pocket vane shear tester
- Deflection using falling weight deflectometer (FWD)

 The field test results are presented in Chapter 3.
- 5. **Laboratory Tests** The laboratory tests consist of:
 - Moisture content
 - O Dry and wet sieve, hydrometer, and Atterberg limits (liquid and plastic limits and plasticity index) to analyze the grain size distribution and to classify the soils according to the USCS and AASHTO soil classification systems
 - Cyclic load triaxial test
 The laboratory test results are presented in Chapter 3 and in Appendix B.
- 6. **Data Analysis** The data analysis and discussion are presented in this chapter in the following order:
 - a) Existing MDOT practices regarding the estimation of the resilient modulus of roadbed soils.
 - b) Field data analyses and discussion (including a sample backcalculated roadbed resilient modulus).
 - c) Laboratory data analyses to classify the soil according to USCS and AASHTO soil classification systems.
 - d) Laboratory data analyses and discussion regarding the effects of test and sample variables on the MR values.
 - e) The analyses used to develop correlation equations between the resilient modulus of the roadbed soils and simple test results that would satisfy the M-E PDG requirements for design levels 2 and 3.

f) The seasonal effects on the resilient modulus of the roadbed soils and the determination of the effective design resilient modulus using the damage model found in the 1993 AASHTO Design Guide.

It should be noted that the full analysis and discussion of the FWD deflection data and the correlations between the backcalculated and the laboratory obtained resilient modulus values are presented elsewhere (Dawson 2008).

4.2 MDOT Practice

Existing MDOT practices regarding the estimation of the design resilient modulus of roadbed soils were discussed during interviews, telephone conversations, and e-mail communications with Soil Engineers from the seven MDOT Regions. The findings are listed in Table 2.1, which is repeated herein for convenience.

Table 2.1 MDOT procedures for determining resilient modulus

Region	Procedure	Typical MR Values (psi)
Bay	Soil boring & visual identification	3600
Grand	FWD data (if available) or soil boring & visual identification	2700 - 8600
Metro	Soil boring & visual identification	3000 - 4500
North	FWD data (if available) or soil boring & visual identification	2500 - 6000
Southwest	California Bearing Ratio correlation	ons
Superior	Soil boring & visual identification	4500 - 7000
University	Soil boring & visual identification	3000 - 4000

Examination of the information provided in Table 2.1 indicates that the existing practice for estimating the resilient modulus of the roadbed soil is mainly based on soil boring, visual identification of the soil type and estimating the resilient modulus of the roadbed soils using Figure 2.2. One region uses correlations between the California Bearing Ratio (CBR) and the resilient modulus of the roadbed soils. On the other hand, two regions use the FWD deflection data, when available, to estimate the resilient modulus of the roadbed soils. However, the exact procedure used by either region to estimate the resilient modulus of the roadbed soils from the deflection data is not clear. The above scenario implies that, the practice in most regions may satisfy the requirement of design level 3 of the M-E PDG. The practice of the Southwest Region may satisfy level 2. Finally, the use of FWD data (when available) in Grand and North Regions may satisfy the payement rehabilitation requirements in design level 1 of M-E PDG.

4.3 Field Data Analyses and Discussion

Recall that the following field tests were performed during this study:

- Falling weight deflectometer (FWD)
- Pocket penetrometer
- Pocket vane shear tester

The data analyses and discussion for each one of these tests are presented below.

Falling Weight Deflectometer – Unfortunately, due to unforeseen constraints during this study, FWD testing was delayed by MDOT for a period of about one year. During the first year of the study, only 19 FWD tests were conducted. The deflection data from these tests was analyzed and the resilient moduli of the roadbed soils were backcalculated. Due to a limited number of tests, only a sample of the backcalculation is

presented in this section. Analyses and discussion of the entire FWD tests and the correlations between the backcalculated and the laboratory obtained resilient modulus values are included in (Dawson 2008).

In the backcalculation, the area method presented in Chapter 2 was used to backcalculate the modulus of subgrade reaction (k) of the roadbed soils under rigid pavements. Whereas the resilient moduli of the roadbed soils under flexible pavements were backcalculated using the MICHBACK computer program (Harichandran 1994). Nevertheless; sample results of the backcalculated k and MR values for one rigid and one flexible pavement sections are included in Table 4.1. As can be seen, both the k and the MR values presented in the table are reasonable. Unfortunately, no further analyses can be conducted at this time because of the delays in the FWD testing.

Table 4.1 Sample backcalculated k and MR values

Pavement	Load	D	eflection (mils) at dista	nces bel	nind the	load (in)	
type	(lbs)	0	8	12	18	24	36	60
Rigid	8957	9.06	7.7	6.63	6.07	5.01	3.71	1.93
Flexible	9729	12.38	9.66	7.70	5.49	4.07	2.48	1.30
	Cross	section d	lata (in)		Bac	kcalcul	ated Valu	es
	Surface	Base	Subbase	Stiff layer depth	k value	e (pci)	MR (j	osi)
Rigid	9	4	8	NA	24	6	NA	.
Flexible	3	8	18	700	N.	4	27,8	98

Pocket Penetrometer and Pocket Vane Shear Tester - The locations where pocket vane shear and pocket penetrometer tests were conducted are listed in Table 3.2 of Chapter 3. The pocket penetrometer and vane shear tester results were initially compared to each other. It was found that the pocket penetrometer and vane shear tester correlate with each other. Figure 4.1 shows the pocket penetrometer plotted against the vane shear resistances, the trendline, and the correlation equation relating the two sets of data. As

can be seen, the pocket penetrometer resistance (PPR) is related to the vane shear resistance (VSR) by Equation 4.1 with $R^2 = 0.59$.

$$PPR = 0.9888 \ln(VSR)^{0.4685}$$
 Equation 4.1

This correlation was expected because both tests measure indirectly (PPR) or directly (VSR) the shear strength of the soils at the same locations.

Although the results of the two tests correlate to each other, as it was expected, neither sets of data were found to correlate to the MR of the soils. This is because the MR values are obtained under low strains (primarily elastic). Whereas, the pocket penetrometer and vane shear tests were conducted at the critical state of stresses and strains (elastic, viscoelastic, and plastic).

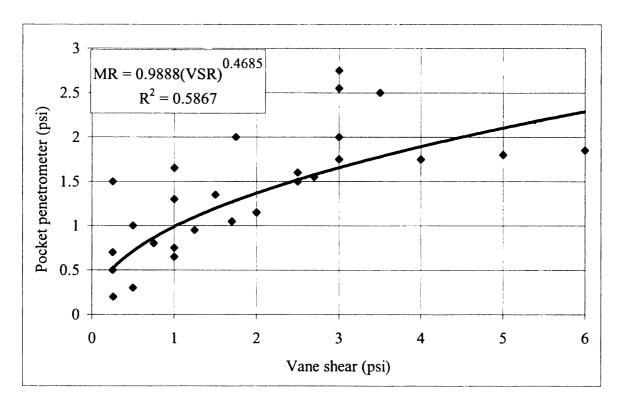


Figure 4.1 Pocket penetrometer versus vane shear tester

4.4 Soil Classification

For each disturbed soil sample the dry and wet sieve test data, the hydrometer test data, and the Atterberg Limits data were analyzed to determine:

- The grain size distribution curve and the coefficients of uniformity and curvature.
- The AASHTO and the USCS soil classifications.

The results of the analyses are listed in Table 3.4. Table 4.2, provides a list of the number of disturbed soil samples for each soil classification type according to the USCS and the AASHTO soil classification systems. As can be seen, the majority of the roadbed soils in the State of Michigan can be divided, in general, into 8 soil classification types for both the USCS and the AASHTO soil classification systems. It is very important to note that the soil in each classification has a wide range of grain size distribution parameters. To illustrate, consider the grain size distribution curves for SC, SM, ML, CL, and SP-SM soils shown in Figure 4.2. It can be seen that the six soils have different grain size distributions and different coefficients of curvature (C_c) and uniformity (C_u). The C_c values for the six soils ranged from 0.02 to 1.18 and the C_u values ranged from 1.67 to 200. Whereas the C_c range for all the collect soil samples is 0.02 to 75 and the C_{u} range is from 1.65 to 385.71. Similar ranges in soil gradation were found for each soil type. The vast ranges in the gradation within a given soil type is the direct result of the glaciations and the glacial deposits in the State of Michigan.

Finally, the details of the USCS, the AASHTO and the MDOT soil classification systems are included in Appendix A.

4.5 Cyclic Load Triaxial Test Results

Recall that, at most sample locations the soil was subjected to pocket vane shear tester and pocket penetrometer (see section 4.3). After the two tests, bag samples were collected and then transported to Michigan State University Geotechnical Laboratory. In the laboratory, most soil samples were tested to determine their natural moisture contents,

Table 4.2 Number of samples per soil type

USCS		AASHTO Classification		
Soil classification	Number of samples	Soil classification	Number of samples	
SP	20	A-1-a	samples 2	
	· · · · · · · · · · · · · · · · · · ·			
SM	16	A-1-b	2	
CL	8	A-2-4	21	
ML	2	A-2-6	3	
SC	18	A-3	25	
SC-SM	7	A-4	10	
SP-SM	8	A-6	12	
SG	2	A-7-6	6	

grain size distributions, Atterberg limits, and resilient modulus using cyclic load triaxial tests.

As stated in Chapter 3, all cyclic load tests were conducted using one confining pressure of 7.5 psi. In each test, after applying the confining pressure, the soil samples were subjected to a 10 psi cyclic axial stress and their deformations were recorded at 5 intervals (cycle number 100, 200, 500, 800, and 1000). Each interval consisted of three consecutive load cycles, for example, cycle number 100 consists of the sample deformations at cycles numbered 99, 100, and 101. For each load cycle within a given interval, the resilient modulus was calculated. Afterward, the average resilient modulus from the three consecutive cycles was determined. After terminating the 10 psi axial

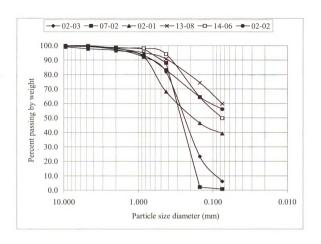
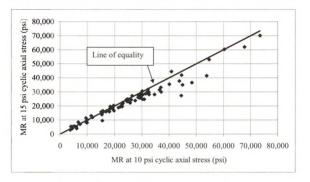



Figure 4.2 Typical particle size distribution curves

stress test at load cycle number 1001, the number of load cycle was reset and the test was started again at the new axial stress level of 15 psi. The new test, and the calculation of the resilient modulus, was conducted in the same manner as that of the 10 psi axial stress test. For each axial stress level, Table 3.5 provides a list of the sample designation number, the sample parameters (moisture content, saturation, and dry unit weight), and the average resilient modulus values, which were calculated as the average of the average resilient modulus values at the three intervals 500, 800, and 1000 load cycles.

Effects of Axial Stress Level on MR Values - Figure 4.3 depicts the resilient modulus values obtained at 10 and 15 psi cyclic axial stress levels. The line of equality between the two set of MR values is also shown in the figure. The data in the figure indicates that

the MR values, in general, decrease insignificantly with increasing cyclic axial stress levels, indicating slight non-linearity. This observation was expected because as the axial cyclic stress increases the strain in the sample also increases. This observation agrees with that reported by Young and Baladi (1977). It should be noted that the above observation does not necessarily disagree with bulk stress model stated in the M-E PDG

(see Equation 2.1 in Chapter 2). In this model, as the axial stress increases, the bulk stress (the sum of the axial stress and twice the confining pressure) and the octahedral shear stresses increase. The effect of the latter is typically greater than that of the former. Since k₃ in Equation 2.1 is negative, it implies increasing the octahedral stress causes decreases in the MR values.

Figure 4.3 Resilient moduli at 10 and 15 psi cyclic axial stresses

Effects of the Sample Variables on MR Values - Given the standard pavement crosssection used in the State of Michigan (the roadbed soil is located between 18 to 36 inches below the pavement surface), the roadbed soil is typically subjected to 4 to 7 psi vertical stresses due to an 18,000 pounds single axle load. Therefore, the effects of the sample variables on MR values are discussed for the axial stress level of 10 psi only. In addition, the effects of the sample variables on the subgrade MR values were studied in a two step procedure. In the first step, the soils were divided into six groups according to their USCS classification listed below.

- 1. Poorly graded sand (SP)
- 2. Silty sand (SM)
- 3. Clayey sand (SC), low plasticity clay (CL), and low plasticity silt (ML)
- 4. Poorly graded sand silty sand (SP-SM)
- 5. Clayey sand silty sand (SC-SM)
- 6. Gravelly sand (SG)

In the second step, univariate and multivariate analyses were conducted to determine the relationships (if any) between the resilient modulus values and the sample parameters. Results of these analyses for each of the six soil types are discussed below.

4.5.1 Poorly Graded Sand (SP)

Table 4.3 lists the locations, the USCS and the AASHTO soil classifications, and the sample designation number of twenty disturbed soil samples that were collected from various clusters and areas throughout the State of Michigan. Results of the soil classification conducted in step 1 of the analyses indicated that nineteen samples can be designated as A-3 and one sample as A-1-b according to the AASHTO soil classification system. On the other hand, all twenty samples were classified as SP according to the USCS. Please note that, in Table 4.3, twelve subgrade samples are labeled SP1 and eight samples are labeled SP2. The reason for that is stated in section 4.5.1.1; the effects of

grain size on the resilient modulus of SP soils. Nevertheless, in step 2 of the analyses, results of the cyclic load triaxial tests were used to calculate the resilient modulus of all SP samples. Univariate and multivariate analyses were then conducted to determine the relationships between the sample variables and the resilient modulus of the subgrade soils. Results of these analyses are presented in the next two subsections. Results of the cyclic load triaxial tests of three samples (the shaded samples in Table 4.3) were used to verify the statistical models and are presented in section 4.5.1.3.

4.5.1.1 Univariate Analyses

In the univariate analyses, the effects of each of several sample variables on the MR values of SP soils were studied. These sample variables include: the moisture contents of the samples, the dry unit weight after laboratory compaction, and the grain sizes. The discussion of the effects of each variable is presented below.

Effect of Sample Grain Size – To study the effects of sample gradation on the MR values of SP soils, sieve analyses were conducted and grain size distribution curves were plotted to determine the coefficients of curvatures and uniformity. Observation of the grain size distribution curves indicate that the twenty subgrade samples can be divided into two categories according to the slope of the gradation curve between the percent passing sieves number 40 and number 200 as shown in Figure 4.4. Soils having the steep curves are labeled SP1 whereas the others SP2 (see Table 4.3). In general, SP1 soils have lower coarse sand contents and higher fine sand contents than the SP2 soils.

The effects of the sample variables of both SP1 and SP2 soils on their MR values were studied by plotting the MR values versus each of the following grain size parameters:

- Percent passing sieves 200, 100, 40, 20, 10, 4, and 3/8 inch
- The Coefficients of curvature and uniformity
- The average particle size at ten, thirty, and sixty percent passing (D₁₀, D₃₀, and D₆₀, respectively)
- The coarse sand content (percent passing sieve number 4 percent passing sieve number 40) and the fine sand contents (percent passing sieve number 40 percent passing sieve number 200)

The data in most figures were scattered all over the board indicating insignificant or no relationship between the grain size data and the MR values. An example plot between the percent passing sieve number 10 and MR values is shown in Figure 4.5. The scenario however, was drastically different when the data were separated into two groups SP1 and SP2 as shown in Figure 4.6. The data showed moderate degree of correlation (R² for SP1 soils of 0.61 and for SP2 soils of 0.15). Given this observation, the particle size parameters will be included in the multivariate analyses for the SP1 and SP2 models. Similar, but stronger scenario was found when the MR values of the SP soils were plotted against the dry density of the samples. This correlation is presented next.

Effect of Sample Dry Unit Weight - The effect of the dry unit weight on the MR for SP soils was studied by testing one soil sample compacted at three dry unit weights and the same water content using different compaction effort (vibrating times of 1, 2, and 3 minutes). The three dry unit weights were 104.1, 106.6, and 109.8 pounds per cubic feet. After compaction, the three samples were subjected to cyclic load tests as stated in section 4.5. Results of the cyclic load tests were used to calculate the resilient modulus

Table 4.3 Location of SP subgrade soils

Sample designation number	Location	AASHTO	USCS
I-094-W (11-02)	132 feet West of exit 110 on ramp	A-3	SP1
U-031-N (06-03)	307 feet North of M-46	A-3	SP1
M-028-W (03-02)	1500 feet North of M-77	A-3	SP1
I-075-N (03-04)	mile marker 380	A-3	SP1
M-025-S (15-05)	200 feet North of Day Rd	A-3	SP1
M-132-N (06-01)	1000 feet North of Addis Rd (paved rd)	A-3	SP1
I-075-N (06-02)	160 feet North of Co Rd 662	A-3	SP1
M-020-W (07-02)	~.5 mile East of 13 Mile Rd	A-3	SP1
M-020-E (07-03)	~500 feet East of Cottonwood Ave	A-3	SP1
U-131-S (09-01)	160 feet South of Lake Montcalm Rd	A-3	SP1
U-131-S (09-03)	105 feet South of 110th Ave	A-3	SP1
U-131-S (09-05)	60 feet South of 'Reduce Speed 55 MPH' sign right where it turns from interstate to freeway	A-1-b	SP1
I-069-E (09-10)	172 feet East of Grand River Rd	A-3	SP2
U-023-S (04-01)	320 feet North of F 05 Co Rd	A-3	SP2
M-059-W (13-02)	Station 131+29	A-3	SP2
U-127-N (05-04)	120 feet North of Co Rd 300	A-3	SP2
I-094-W (13-04)	Station 75+02	A-3	SP2
U-024-S (14-04)	150 feet North of Pardee	A-3	SP2
M-053-S (14-07)	1500 feet South of Canal Rd	A-3	SP2
M-068-W (04-03)	150 feet West of Little Ocqueoc River	A-3	SP2

of the samples. Figure 4.7 shows the MR plotted as a function of the dry unit weight. As it can be seen from the figure, higher dry unit weights cause higher MR The observations were expected and have been reported by other researchers (Maher et al. 2000).

Effect of the Sample Moisture Contents – To study the effects of moisture contents on the MR values of SP soils, the soil sample with the lowest natural water content (0.2 percent) was selected for testing. This selection allowed the addition of water to increase the water content of the sample from 0.2 percent to 5.3 and to 11.5 percent. The three water contents were selected such that the highest degree of saturation of the samples will be less than eighty percent. The eighty percent saturation level may cause liquefaction and a total loss of shearing resistance (Richart et al 1970). The three selected water contents correspond to degrees of saturation of 1, 26.4, and 59.3 percent, respectively. For each of the three water contents a soil sample was compacted using the same static load and vibrating table described in section 3.5.4 of Chapter 3. It should be noted that all three samples were compacted using the same compaction effort.

After compaction, the sample was subjected to a cyclic load test as stated in section 4.5. Results of the cyclic load tests were used to calculate the resilient modulus of the sample. Figure 4.10 depicts the resilient modulus of the three soil samples plotted as a function of their water contents. The figure shows that for the given range of moisture contents, their effect on MR is insignificant. This was expected because, in general, the strength and stiffness of sand soils are only slightly affected by the water content of the soils. At low water contents, the capillary between the sand particles slightly increases the normal stress and hence, the friction between particles. As the moisture content increases, the lubrication between the sand particles increases, which

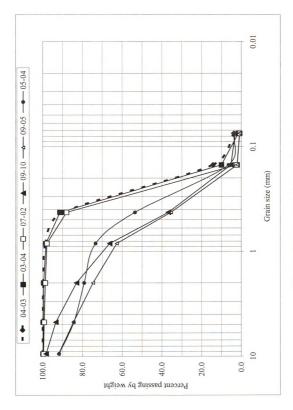


Figure 4.4 Grain size distribution curves for SP soils

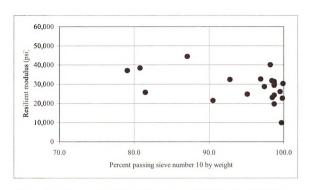


Figure 4.5 Resilient modulus versus the percent passing sieve number 10 for SP soils

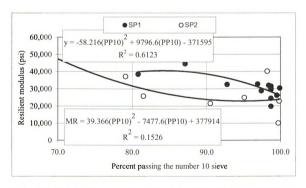


Figure 4.6 Resilient modulus versus the percent passing sieve number 10 for SP1 & SP2

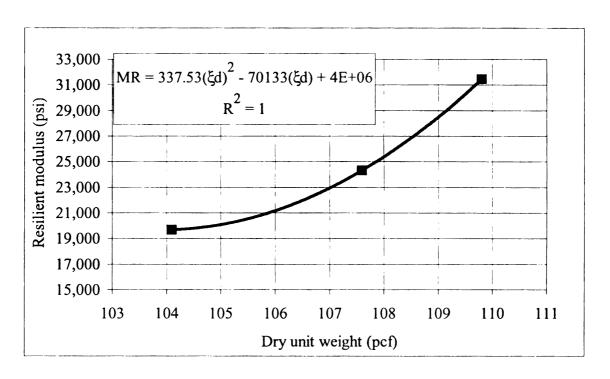


Figure 4.7 Resilient modulus versus the dry unit weights for one SP soil sample

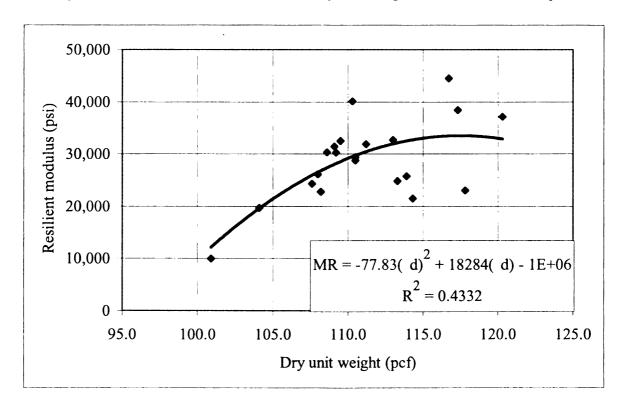


Figure 4.8 Resilient modulus versus the dry unit weight for 20 SP soil samples

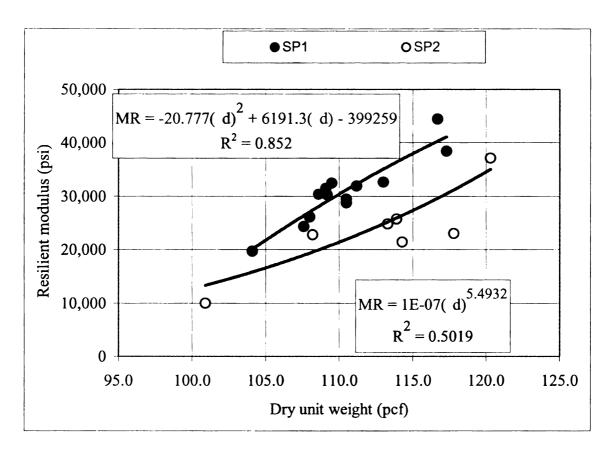


Figure 4.9 Resilient modulus versus the dry unit weight for SP1 and SP2 soil samples overcomes the capillary effect and the strength begins to decrease. When the sample is at 80 percent saturation level or higher, the pore water pressure increases during shearing and the effective stress decreases causing decreases in the angle of internal friction. At or near saturation, the strength drops to zero and the sand liquefies. Similar results were reported by (Young and Baladi 1977, Holtz and Kovacs 1981, and Richart et al 1970).

4.5.1.2 Multivariate Analyses

Multivariate analyses were conducted to study the combined effects of several independent sample variables of the SP (SVSP) soils on the dependent variable MR of those soils. The term SVSP was divided into two terms; SVSP1 and SVSP2 to express the two SP soil groups; SP1 and SP2. During the multivariate analyses:

 Various models were used in an attempt to maximize the value of the coefficient of determination (R²).

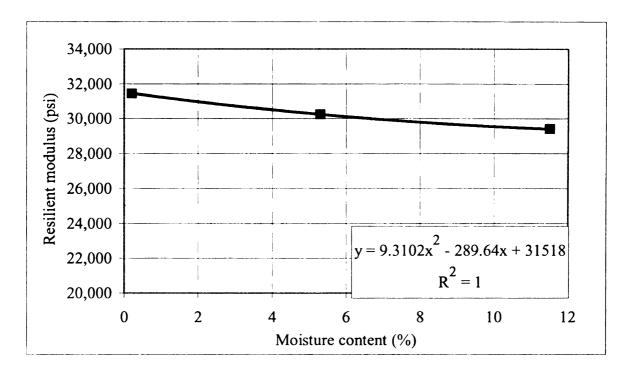


Figure 4.10 Resilient modulus versus the moisture content of one SP soil sample

- Special care was taken to:
 - Ensure that the resulting equation satisfies the known trends between each of the independent variable and the dependent variable MR.
 - o Avoid any significant co-linearity between the independent variables.
 - o Decrease the number of independent variables in the equation.

The multivariate analyses yielded Equations 4.2 and 4.3 for sets 1 and 2 SP soils, respectively.

MR = 89.825(SVSP1^{2.9437}),
$$R^2 \approx 0.78_{\text{Equation 4.2}}$$

MR = 0.8295(SVSP2^{3.6006}); $R^2 \approx 0.81_{\text{Equation 4.3}}$

Where,
$$SVSP1 = \frac{\gamma_d^{1.15}}{(P_4^{1.5} - P_{40}^{0.25})^{0.5}}$$

$$SVSP2 = \frac{\gamma_d^{1.35} * P_{200}^{-0.1}}{(P_4^{1.5} - P_{40}^{0.25})^{0.5}}$$

 γ_d = dry unit weight (pcf)

 P_4 , P_{40} , and P_{200} = percent passing sieves numbers 4, 40, and 200, respectively

Examination of Equations 4.2 and 4.3 indicates that the resilient modulus values of the SP1 and SP2 soil groups are a function of the dry unit weight of the soil and the parameter $(P_4^{\ \alpha}-P_{40}^{\ \beta})^{\omega}$, which represents the coarse sand content in the soil. Further, the resilient modulus values of SP2 soil group are also a function of the percent passing sieve number 200. Hence, the data and results of the multivariate analyses reflect the shape of the gradation curves of SP1 and SP2 soils shown in Figure 4.4. The shapes of the gradation curves imply that the mechanistic behavior of SP1 and SP2 soils are not the same. The SP1 soils are deficient in the coarse sand content; hence, coarse sand particles are floating in the fine sand matrix. For SP2 soils, the opposite is true. The SP2 soils contain relatively large amounts of coarse sands; hence, the coarse sand particles are likely in contact with each others while the fine sand particles are filling the voids between the coarse particles.

Figure 4.11 shows the MR values of SP1 and SP2 soils plotted against the sample variables; SVSP1 and SVSP2, respectively. The equations of the best fit lines and the

coefficients of determination are also shown in the figure. Examination of the figure indicates that for SP1 and SP2 soils, higher values of SVSP1 and SVSP2 produce higher MR values. This was expected because higher dry unit weights imply denser particle packing, higher relative density, higher friction, higher stiffness, and hence, higher MR values.

It should be noted that numerous trials were made to unify the two models.

Various univariate analyses that included a range of other sample variables were tried without any success. When the locations of SP1 and SP2 soils were studied, it was clear that all SP2 soils are located in the eastern half of the State of Michigan while SP1 soils in the western half. The possible differences between the two soils include:

- The two soils have different origin, the SP2 soils were deposited as the glacial lobe, which was advanced along Lake Huron, retreated. The SP1 soils, on the other hand, were deposited when the glacial lobe, which was advanced along Lake Michigan trough, was retreated.
- The SP1 soils were deposited by gently flowing melted water (it contains higher percent of fine sand) while the SP2 soils were deposited by relatively faster moving melted water.
- The differences in the soil origin and deposition may have created different angularity of the coarse materials. Unfortunately, the soil angularity was not measured due to lack of proper equipment nor was it a part of this study.
- The fine materials (passing sieve number 200) of the SP1 and SP2 soils are different.

 The fine materials of the SP1 soils is mainly silt while the fine materials of the SP2 soils are a mix of clay and silt.

Equations 4.2 and 4.3 apply to samples with dry unit weight values ranging from 100.9 to 120.3 pcf and percent passing sieve number 4 values between 84.5 and 100.0 percent while the percent passing sieve number 40 is between 36.8 and 97.2 percent. The range in percent passing sieve number 200 is 0.5 to 4.7 percent. This range is the entire allowable range of fine contents of SP soils. The use of the two equations outside the stated ranges may yield high and unrealistic MR values.

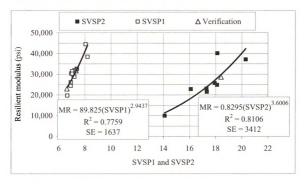


Figure 4.11 Resilient modulus versus SVSP1 and SVSP2

4.5.1.3 Validation

In order to check the validity of Equations 4.2 and 4.3, the two SP1 and the one SP2 samples highlighted in Table 4.3, which were not included in the development of the equations, were subjected to grain size analysis, and cyclic load triaxial tests. The test results were used to calculate the resilient modulus values of the three samples and the sample variables (SVSP1 and SVSP2). The data are shown in Figure 4.11 as open triangles. It can be seen that the data for the three samples are very close to the best fit

curve. Further, the two SVSP1 values for SP1 samples and the SVSP2 value for SP2 sample were used in Equations 4.2 and 4.3, respectively, and the resilient modulus of the three samples were predicted. Figure 4.12 shows the measured and the predicted MR

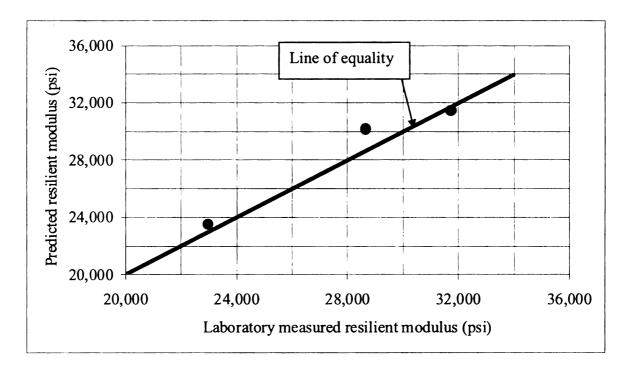


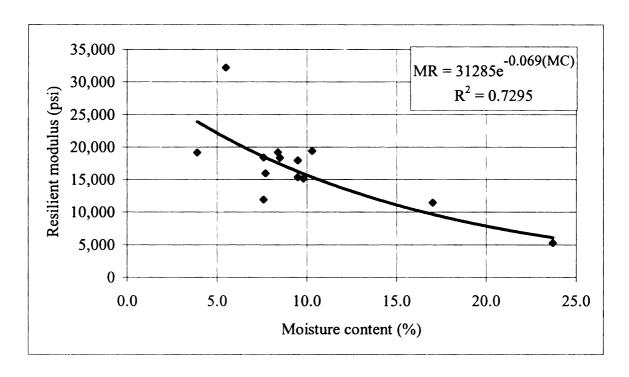
Figure 4.12 Predicted resilient modulus values for the validation points values of the three samples. The straight line in the figure is the line of equality between the predicted and the measured MR values. As can be seen from the figure, the predicted MR values are almost equal to the laboratory measured values. Hence, one can conclude that the developed models (Equations 4.2 and 4.3) are relatively accurate and can be used to estimate the resilient modulus of the soils based on knowledge of the dry unit weight of the soils and their grain size distribution.

4.5.2 Silty Sand (SM)

Table 4.4 lists the locations, the USCS and the AASHTO soil classifications, and the sample designation number of sixteen disturbed soil samples that were collected from various clusters and areas throughout the State of Michigan. The commonality between

the sixteen samples is that all of them were classified in step 1 of the analyses as silty sand (SM) soils according to the USCS. Recall that the USCS specifies that SM soils may contain anywhere between 12 and 49.9 percent passing sieve number 200 (Holtz and Kovacs 1981). Hence, the fine materials play a major role in the mechanistic behavior and the resilient modulus (MR) values of the soil. In step 2 of the analyses, univariate and multivariate analyses were conducted to develop correlations between the test sample variables and their resilient modulus values. The results are presented and discussed below. It should be noted that the three samples highlighted in Table 4.4 were not included in the development of the correlation equations between the sample variables and their resilient modulus values. They were tested and the test data were used to verify the developed models.

4.5.2.1 Univariate Analysis


In the univariate analyses, the effects of each of several sample variables on the MR values of SM soils were studied. These sample variables include: the moisture contents of the samples, the degrees of saturation, the liquid limits, the dry unit weight after compaction, and the grain sizes. The effects of each variable on the resilient modulus values are presented and discussion below.

Effect of the Sample Moisture Contents – For SM soils, it was hypothesized that because of the high range of fine contents, the water contents should play a major role in determining the elastic response of the soil to the applied loads. Figure 4.13 shows the MR values of thirteen SM soil samples (the three shaded samples in Table 4.4 are not included) plotted against the samples moisture contents. As it was expected, the figure shows increases in the sample moisture contents cause significant decreases in the MR

Table 4.4 Locations of SM subgrade soils

Sample number	Location	AASHTO	USCS
U-002-E (02-01)	385 feet East of M-45	A-4	SM
U-002-E (03-03)	200 feet East of M-117	A-2-4	SM
M-065-S (04-04)	160 feet South of Elm Hwy	A-2-4	SM
U-131-N (05-01)	200 feet South of Michigan Fisheries Visitor Center	A-2-4	SM
M-061-E (07-06)	420 feet East of left hand turn on M-61 (off US-127)	A-2-4	SM
M-061-E (08-02)	165 feet West of Hockaday	A-2-4	SM
M-044-E (09-07)	Station 137+10	A-2-4	SM
M-024-S (09-09)	20 feet North of Burley Rd	A-2-4	SM
I-069-N (10-04)	150 feet North of Island Hwy	A-2-4	SM
I-069-N (10-05)	100 feet North of Five Points Hwy	A-2-4	SM
I-096-W (10-09)	140 feet West of Dietz Rd	A-2-4	SM
U-012-E (12-04)	100 feet East of Emarld Rd	A-2-4	SM
I-094-W (12-06)	53 feet West of Mt Hope Rd	A-2-4	SM
M-024-S (13-01)	250 feet North of Best Rd	A-4	SM
M-053-S (15-02)	300 feet South of M-46	A-2-4	SM
M-019-S (15-07)	650 feet South of Thompson Rd 1 mile South of M-142	A-2-4	SM

values. This observation tends to validate the hypothesis stated above. Similar results were also reported by many researchers including (Maher et. al 2000, George 2000, and 2003). One observation is important to note herein is that the effect of moisture content on the resilient modulus values of SM soils is much higher than that for the SP soils reported in the previous section. This is mainly due to the much higher fine contents in the SM soils compared to the fine contents of the SP soils (less than 5 percent). Since the water content is strongly correlated to the MR values of SP soils, it will be included in the multivariate analyses.

Effect of Sample Dry Unit Weight - The effect of the test sample dry unit weight on the MR values of SM soils were studied by plotting the MR values as a function of the sample dry unit weight as shown in Figure 4.14. As it was expected, the figure shows a weak correlation between the dry unit weight and the MR values of the test samples. The main reason for the weak correlation is that the water contents of the test samples vary from about 3 to about 23 percent. Such variation in the water content, (when examined in perspective of the compaction curve) covers both the wet and the dry side of the curve. This implies that two soil samples having the same dry unit weight value may have two significantly different water contents. One is located on the wet side of the optimum moisture content and the other on the dry side. Test samples compacted on the dry side of optimum would have higher strength and stiffness and display a more brittle behavior than those compacted wet of optimum. The latter would have lower strength, higher plastic deformation and softer behavior under loads. The differences in the behavior are

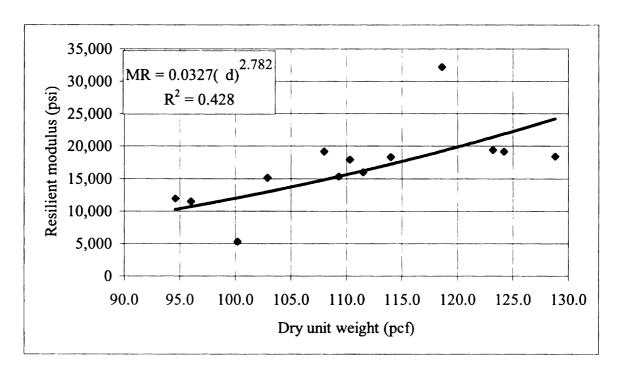


Figure 4.14 Resilient modulus versus dry unit weight of 13 SM soil samples directly related to differences in the degrees of lubrication caused by the water and the particle arrangement ion the soil. The soil particles of a soil sample compacted on the dry side of optimum, tend to stay in a flocculated arrangement whereas on the wet side of optimum, they are dispersed (they line up), (Holtz and Kovacs 1981).

The above discussion implies that the true effect of the dry unit weight on MR values cannot be separated from the effect of the water content unless the latter is held constant and the former is changed using different compaction effort. In the multivariate analyses presented in the next subsection, the effect of dry unit weight on the MR values were analyzed in conjunction with the effect of water content of the test samples.

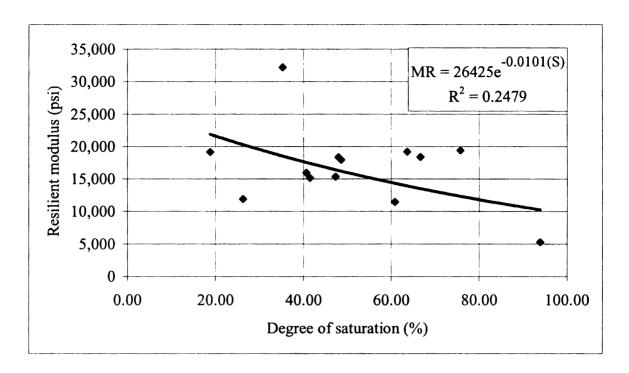
Effect of the Sample Degree of Saturation – For each test sample, after the conclusion of the cyclic load test, the sample moisture content and dry unit weights were determined and the degree of saturation (S) was calculated using Equation 4.4. Please note that for

all SM soil samples, a typical value of the specific gravity of the solid (G_s) of 2.7 was assumed and used in Equation 4.4.

$$S = \left[\frac{G_s * (MC/100) * \gamma_d}{G_s * \gamma_w - \gamma_d} \right] * 100$$
 Equation 4.4

Where,

S = degree of saturation (%)


MC = moisture content (%)

 G_s = specific gravity of the soil solid = 2.7

 γ_d = dry unit weight of the sample (pcf)

 $\gamma_{\rm w}$ = unit weight of water = 62.4 pcf

Figure 4.15 shows the MR values plotted against the degree of saturation of the test samples. As it was expected and reported by Maher et al. (2000), the MR values decrease significantly with increasing degrees of saturation. One may argue that the data in Figure 4.15 is repetitive and are the same as the data in Figure 4.13, hence, Figure 4.15 can be eliminated. In reality, the water content of a soil sample is an independent variable whereas the degree of saturation is a function of the dry unit weight and the water content of the soil. Hence, the data in Figure 4.15 show the combined effects of the dry unit weight and the water content of the test samples on their MR values. The degree of saturation will be included with other sample variables in the multivariate analyses to determine their combined effect on MR.

Effect of the Sample Liquid Limit - For each SM soil sample, the Atterberg limits for all materials passing sieve number 40 were determined in order to classify the type of fine materials (silt or clay). The plastic limit tests showed 15 soil samples can be classified as non-plastic (the plastic limit test failed repeatedly). The plastic limit test was successful for only one soil sample and the plastic limit of the soil was very low. Hence, the effects of the plastic limits and plasticity index on the MR values were not analyzed. However, the effects of the liquid on the MR values of the soils were analyzed. Figure 4.16 depicts the influence of the liquid limits on the MR values of SM soils. The data in the figure indicate that the MR values of SM soils having higher liquid limits are lower than those having lower liquid limits. Such observation was expected and has been reported by many researchers for various soil types including silty and clayey sands, silt, and clay (Gudishala 2004). Given the strong correlation between the liquid limit of the

material passing sieve number 40 and the soils MR values, the liquid limit data were included in the multivariate analyses presented in the next subsection.

Effect of Sample Grain Size – Because of high fine contents, all SM soils were subjected to wet sieving and hydrometer analyses to determine their grain size distribution. The effects of sample gradation on MR values were assessed through the following gradation parameters:

- Percent passing sieves 200, 100, 40, 20, 10, 4 and 3/8 inch
- The coefficients of curvature and uniformity
- Average particle size at ten, thirty and sixty percent passing (D₁₀, D₃₀, and D₆₀, respectively)

The effects of each gradation parameter on the MR values were analyzed by plotting the MR values of the soil samples as a function of that parameter. Only three gradation parameters, the average particle size at 10, 30, and 60 percent passing showed minor correlation to MR values, the others showed no correlation. Figure 4.17 shows the correlation between the average particle size at thirty percent passing and the MR values. Based on these observations, the average particle size at 10, 30, and 60 percent passing were included in the multivariate analyses, which are presented in the next subsection.

4.5.2.2 Multivariate Analysis

Multivariate analyses were conducted to study the combined effects of several sample variables on the dependent variable MR of SM soils. During the analyses:

 Various models were used in an attempt to maximize the value of the coefficient of determination (R²).

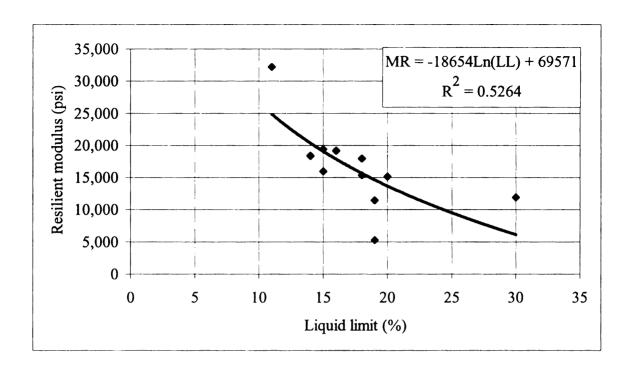


Figure 4.16 Resilient modulus versus the liquid limits of SM soils

- Special care was taken to:
 - o Ensure that the resulting equation satisfies the known trends between each of the independent variable and the dependent variable MR.
 - o Avoid any significant co-linearity between the independent variables.
 - o Minimize the number of independent variables in the equation.

Results of the analyses yielded two models having relatively high R² values. The first model is based on two sample variables of the SM (SVSM) soils (the dry unit weight and the degree of saturation) as stated in Equation 4.5.

$$MR = 0.0303(SVSM)^{4.1325}$$
 Equation 4.5

Where,
$$SVSM = \frac{\gamma_d^{0.8}}{S^{0.15}}$$

 γ_d = dry unit weight (pcf)

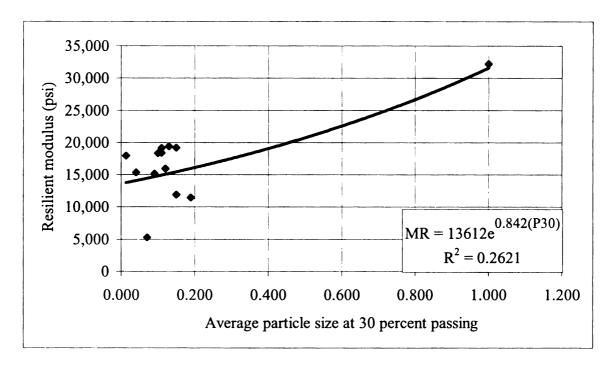


Figure 4.17 Resilient modulus versus the average particle size at thirty percent passing

Although the two variables are some how co-linear (both are a function of the water content of the soil), the interpretation of the model agrees with most literature. To illustrate, consider the data in Figure 4.18, in which the resilient modulus is graphed as a function of the SVSM It can be seen from the figure and from Equation 4.5 that increases in the dry unit weight cause increases in the SVSM values and hence, increases in the MR values. Further, increases in the degree of saturation causes decreases in the SVSM and the MR values. That is the MR value can be increased by either increasing the dry unit weight (i.e., higher compaction effort) or by decreasing the degree of saturation or by combination thereof. The reason is that as the dry unit weight of the sample increases, the relative density increases and the particle to particle contact in the sample increases causing higher internal friction and hence, higher stiffness (Perloff and Baron 1976). On the other hand, decreasing degree of saturation implies decreasing moisture contents and

decreasing the degree of lubrication between the soil particles. This causes increases in the soil internal friction, soil stiffness, and MR values. Similar results were also reported by Maher et al. (2000).

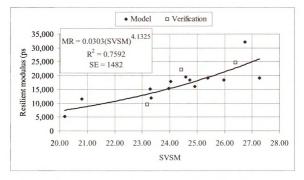


Figure 4.18 Resilient modulus versus the sample variable for SM (SVSM) subgrade

The two important points that should be noted herein are:

- The data for the three open symbols in Figure 4.18 are those of the three samples used to verify Equation 4.5. They are discussed in the next subsection.
- The test data used in support of Equation 4.5 have the following ranges: degrees of saturation from 18.8 percent to 93.9 percent and dry unit weight from 94.6 to 128.8 pounds per cubic foot. The use of the equation outside these two ranges is not recommended.

Nevertheless, the multivariate analyses of the SM soils yielded a second model based on two independent variables; the moisture contents (MC) of the test samples and the liquid limits (LL) of the soils passing sieve number 40. In this study, the two

independent variables were combined into one parameter, which was named the moisture index (MI) as stated in Equation 4.6.

$$MR = 45722 \exp(-0.0258*MI)$$
 Equation 4.6

Where,

$$MI = Moisture Index = LL^{1.1} + MC^{1.25}$$

Figure 4.19 depicts the resilient modulus values of the thirteen SM soils plotted against the moisture index. Inspection of the figure indicates that, in general, higher MI values produce lower MR values. That is, increasing either the moisture content or the liquid limit of the soils causes increases in the MI values and hence, decreases in the MR values of the soils. These observations were expected because higher MI values due to higher moisture contents cause softening of the SM soils and hence lower resilient modulus. Likewise, soils having higher liquid limits tend to be more plastic and higher softening potential due to changes in their water contents.

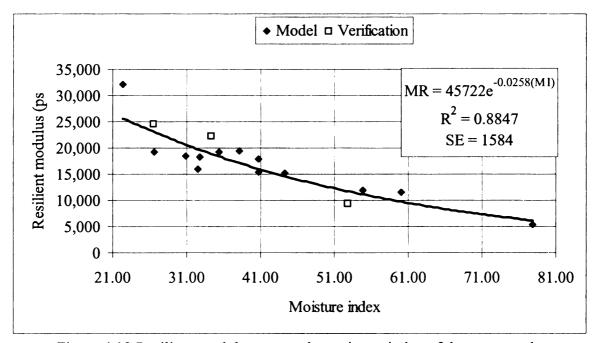


Figure 4.19 Resilient modulus versus the moisture index of the test sample

Equation 4.6 allows the user to estimate the MR values of SM subgrade soils using the results of two simple tests: the natural water content of the entire soil and the liquid limit of the particles passing sieve number 40. It should be noted that, in the field, the natural moisture content of a soil varies from one season to another whereas its liquid limit is constant. Hence, if the LL of a given subgrade soil is known, one needs only to determine the moisture content of the soil only before using Equation 4.6. It is important to note that the data used to generate Equation 4.6 include a range in moisture contents from 3.9 to 23.7 percent and a range in liquid limits from 11 to 30 percent. The use of Equation 4.6 outside the two ranges is not recommended.

4.5.2.3 Verification

The three shaded SM soil samples in Table 4.4 were not included in the development of the two SM soil models (Equations 4.5 and 4.6). The three samples were subjected to wet size analysis, Atterberg limit tests, and cyclic load triaxial tests to determine the physical parameters and the MR values of the three soils. After the laboratory tests were completed, the data for the three SM soils were plotted in Figures 4.18 and 4.19 as open symbols. It can be seen that the open symbols in both figures are located in the vicinity of the best fit curves.

Finally, Equations 4.5 and 4.6 were used to calculate the resilient modulus values of the three SM soils based on their parameters (dry unit weight and degree of saturation and moisture contents and the liquid limits of the soils). The calculated and the laboratory measured resilient modulus values are plotted in Figures 4.20 and 4.21. As can be seen from the figures, the data for both equations are located close to the line of equality. Based on this observation, one may conclude that the two models presented in

Equation 4.5 and 4.6 are accurate and can be used to estimate the resilient modulus values of SM soils based on the soil parameters. Such parameters can be obtained from simple tests such as water content, liquid limit and dry unit weight tests.

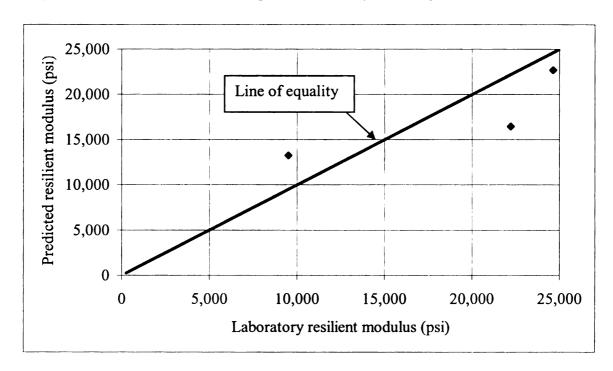


Figure 4.20 Measured and calculated resilient modulus values, Equation 4.5

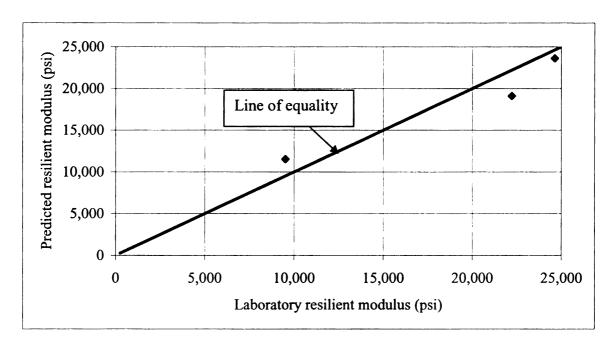


Figure 4.21 Measured and calculated resilient modulus values, Equation 4.6

4.5.3 Clayey Sand (SC), Low Plasticity Clay (CL), and Low Plasticity Silt (ML)

Table 4.5 lists the locations, the USCS and the AASHTO soil classifications,

Atterberg limits, and the sample designation number of twenty two disturbed and six

Shelby tube (marked with S in the table) soil samples that were collected from various
clusters and areas throughout the State of Michigan. According to the USCS, eighteen
samples consists of clayey sand (SC), eight clay (CL), and two low plasticity silt (ML)
samples. According to the USCS SC soils may contain anywhere between 12 and 49.9
percent by weight fine materials and the plasticity index and liquid limit of the material
passing sieve number 40 plot above the A-line on the plasticity chart. Clay (CL) soils
contain more than 50 percent by weight passing sieve number 200 and the plasticity
index and liquid limit of the soil plot above the A-line on the plasticity chart. Finally, the
ML soils contain more than 50 percent by weight passing sieve number 200 and the
plasticity index and liquid limit data plot below the A-line on the plasticity chart (Holtz
and Kovacs 1981). All soil samples listed in Table 4.5 were subjected to wet sieve and
hydrometer analyses, Atterberg limit tests, and cyclic load tests.

The reason that the three types of soils are housed in Table 4.5 is that, after the completion of the cyclic load tests, the resilient modulus values of the samples were plotted against the sample moisture contents. The three soil types showed the same relationship between the MR values and the sample moisture contents.

A total of 16 cyclic load tests were conducted on SC soils, 11 tests on undisturbed soil samples and 5 tests on disturbed soil samples. Nine cyclic load tests were conducted on CL soils, five tests on undisturbed soil samples and four on disturbed samples. Finally, both ML soil samples were subjected to cyclic load triaxial tests.

Table 4.5 Location of SC, CL, and ML subgrade soils

Shelby tube		Atterbe	Atterberg limits	OTILO	11000
samples	Location	Liquid	Plastic	AASHIO	0.50.5
	mile marker 368	55	22	A-2-7	SC
	330 feet West of M-32	22	11	9-V	SC
	100 feet North of Jefferson Rd	22	12	A-2-6	SC
S	65 feet North of Vernon Rd	24	14	9-V	SC
	145 feet West of Mackinaw Rd	29	13	9-V	SC
S	115 feet South of Prevo Rd	25	12	A-2-6	SC
	650 feet South of Wadsworth Rd	31	14	A-4	SC
	210 feet West of bridge before exit 97	29	14	A-2-6	SC
	120 feet East of Britton Rd	26	15	9-V	SC
	800 feet East of Shepards Rd	23	14	A-2-4	SC
	255 feet West of Napler Rd	22	13	A-4	SC
S	60 feet South of Gaynier Rd	45	19	A-7-6	SC
	40 feet South of Nadeau Rd	41	19	A-7-6	SC
	~1000 feet South of Ready Rd	40	13	9-V	SC
	Station 23+00	34	17	9-Y	SC
	300 feet West of Monroe Blvd	34	21	9-V	SC
S	~800 feet East of Greenfield Rd	52	20	A-7-6	SC
	170 feet North of North Huron Dr	24	13	A-4	SC

Table 4.5 Cont'd

Sample number	Shelby tube	Constinu	Atterberg limits	g limits	CTITO	0001
•	samples	Toping	Liquid	Plastic limit	AASHIO	0505
M-045-S (01-01)		405 feet South of Ontonagon River	26	16	A-6	CL
U-010-W (08-03)		65 feet West of bridge before Stark Rd	32	14	9-Y	CL
U-012-E (13-05)		Between Maple Rd and Industrial Ave	33	17	A-6	CL
M-010-E (13-08)	S	Station 38+00	24	14	A-6	CL
I-094-W (14-09)	S	350 feet West of Wadhams Rd	44	21	A-7-6	CL
I-094-W (14-10)		227 feet West of Palms Rd	42	19	A-7-6	CL
M-090-E (15-03)		210 feet East of Murray Rd	35	20	9-Y	CL
M-090-E (15-04)		200 feet East of Bobcock St 37 feet East of Village Limit sign	24	15	A-4	CT
	STATE OF THE SE				CHARLES OF THE PARTY OF THE PAR	
M-028-W (02-02)		1053 feet West of M-141	23	NA	A-4	ML
U-002-E (02-04)		765 feet East of Spalding Rd	19	NA	A-4	ML

In step 2 of the analyses, univariate and multivariate analyses were conducted simultaneously on the three soil types to study the effects of the sample variables on their MR values. Results of the analyses are presented and discussed below.

4.5.3.1 Univariate Analyses

In the univariate analyses, the effects of each of several sample variables on the MR values of SC, CL, and ML soils were studied. These sample variables include: the moisture contents of the samples, the degrees of saturation, the dry unit weight after compaction, and the grain sizes. Results of the analyses are presented and discussed below.

Effect of Sample Moisture Contents – As is the case for the SM soils, because of the high fine contents of SC, CL, and ML soils, it was hypothesized that the water contents of the samples would play a major role in determining the elastic response of the soil to the applied loads. Figure 4.22 shows the MR values plotted against the samples moisture contents. As it was hypothesized and expected, the figure shows increases in the sample moisture content cause significant decreases in the MR values. Similar results were also reported by many researchers including (Maher et. al 2000, George 2000, and 2003). Further, the data in Figure 4.22 also show that the three soil types have similar, if not the same, relationship between the sample moisture contents and the MR values. Hence, the moisture content or the degree of saturation will be considered in the multivariate analyses.

Effect of the Degree of Saturation – At the conclusion of the cyclic load test, the sample moisture content and dry unit weight were determined and the degree of

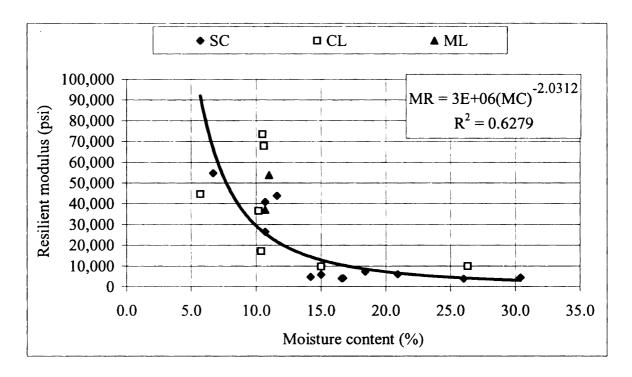


Figure 4.22 Resilient modulus versus the moisture contents of the samples saturation (S) was calculated using Equation 4.4. It should be noted that for all test samples, a typical value of the specific gravity of the solid (G_s) of 2.7 was assumed and used in Equation 4.4.

$$S = \left[\frac{G_s * (MC/100) * \gamma_d}{G_s * \gamma_w - \gamma_d} \right] * 100$$
 Equation 4.4

Where,

S = degree of saturation (%)

MC = moisture content (%)

 G_s = specific gravity of the soil solid

 γ_d = dry unit weight of the sample (pcf)

 γ_w = unit weight of water = 62.4 pcf

Figure 4.23 shows the MR values plotted against the degree of saturation of the test samples. As it was expected and reported by Maher et al. (2000), the MR values

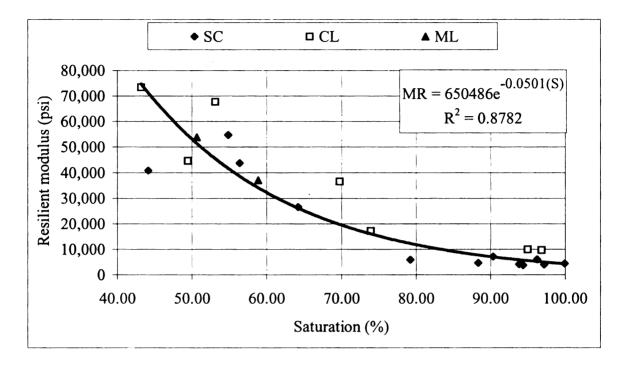


Figure 4.23 Resilient modulus versus degree of saturation for SC, CL, and ML soils decrease with increasing degree of saturation. The difference between this observation and the previous one regarding the sample water content is that the degree of saturation is a function of both the water content of the sample and its dry unit weight. Said functionality caused the coefficient of determination to increase from about 0.63 in Figure 4.22 to about 0.88 in Figure 4.23. Therefore, the degree of saturation will be included in the multivariate analyses.

Effect of Sample Dry Unit Weight - The effect of the test sample dry unit weight on the MR values of SC, CL, and ML soils was studied by plotting the MR values as a function of the sample dry unit weight as shown in Figure 4.24. As it was expected, the figure shows a very weak correlation between the dry unit weight and the MR values of the test sample. The main reason for the weak correlation is that the water contents of the test

samples vary from about 6.7 to 30.4 percent. Relative to the compaction curve, this variation causes some test samples to be on the wet side while others on the dry side of optimum. This implies that two compacted samples having the same dry unit weight may

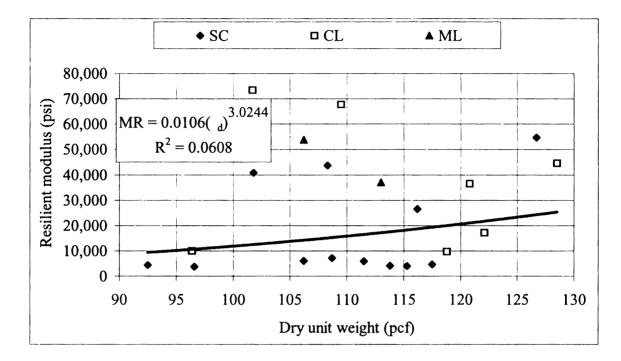


Figure 4.24 Resilient modulus versus dry unit weight for SC, CL, and ML soils or may not have the same water content. Soil samples compacted dry of optimum would have brittle behavior, higher strength, higher stiffness and higher MR values than samples compacted wet of optimum. The latter would have lower strength, higher plastic deformation and softer behavior under loads. In addition, when soil samples are compacted on the dry side of optimum, the soil particles tend to stay in a flocculated arrangement. Samples compacted wet of optimum; the particles tend to disperse (line up) due to the extra water lubrication (Holtz and Kovacs 1981). Nevertheless, the dry unit weight will be included in the multivariate analyses to determine if the dry unit weight interacts with other variables to significantly affect the MR values.

Effect of Sample Grain Size – Because of high fine contents, all SC, CL, and ML soils were subjected to wet sieving and hydrometer analyses to determine their grain size distributions. The effects of sample gradation on MR values were assessed through the following gradation parameters:

- Percent passing sieves 200, 100, 40, 20, 10, 4, and 3/8 inch
- The coefficients of curvature and uniformity
- Average particle size at ten, thirty, and sixty percent passing (D₁₀, D₃₀, and D₆₀, respectively)

The effects of each gradation parameter on the MR values were analyzed by plotting the MR values of the soil samples as a function of that parameter. However, as it was expected, none of the variables showed a good correlation to the MR values.

4.5.3.2 Multivariate Analysis

Multivariate analyses were conducted to study the combined effects of several independent sample variables on the dependent variable MR of SC, CL, and ML soils. During the analyses:

- Various models were used in an attempt to maximize the value of the coefficient of determination (R²).
- Special care was taken to:
 - o Ensure that the resulting equation satisfies the known trends between each of the independent variable and the dependent variable MR.
 - o Avoid any significant co-linearity between the independent variables.
 - o Minimize the number of independent variables in the equation.

Results of the analyses yielded models having relatively high R² values. However, none of the models produced a better correlation than the degree of saturation (S) alone. Therefore, it is recommended that the MR values of SC, CL, and ML soils be predicted using the degree of saturation (S) alone through Equation 4.7.

$$MR = 650486 \exp{-0.0501(S)}$$
 Equation 4.7

The data used to develop Equation 4.7 have saturation values ranging from 43.2 to 99.9 percent with a corresponding range of dry unit weight from 92.5 to 128.5 pcf and moisture content range from 5.7 to 30.4 percent. The use of Equation 4.7 outside those ranges of values is not recommended.

Figure 4.25 shows the MR values plotted against the degree of saturation. The figure consists of two sets of data. The first set (solid symbols) is the data that was used to develop the model (Equation 4.7) with R² value of about 0.88. The second set (open symbols) is the data that was used to validate the developed model. The latter data were obtained from testing three disturbed and three undisturbed soil samples. The sequential procedure used to test the samples is presented in the next subsection.

One important point should be noted herein is that the data used to generate Equation 4.7 were obtained from both disturbed and undisturbed samples. Hence, the equation applies equally to both types of samples. The implication of this is that, the elastic behavior of laboratory compacted samples is equivalent to that of undisturbed samples provided both samples have the same degree of saturation.

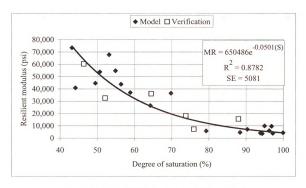


Figure 4.25 Resilient modulus versus degree of saturation

4.5.3.3 Validation

As stated above, six additional soil samples (three disturbed samples and three undisturbed soil samples) were tested to verify the model presented in Equation 4.7. The three disturbed soil samples were allowed to dry from their natural contents of 14.4, 25.4, and 21.9 percent to 10.3, 11.3 and 18.8 percent, respectively. After drying, the soils were compacted using standard proctor and standard compaction mold. The compacted soil was then extracted from the compaction mold, trimmed to the size of the test sample and then subjected to cyclic load triaxial tests. When the test was terminated, the water content and the dry unit weight of each sample were then measured and its degree of saturation was calculated.

The natural water contents of the three undisturbed Shelby tube samples that were tested for verification purposes were 12.3, 18.4 and 11.2 percent. One test sample was extracted from each of the three Shelby tubes. Two test samples were subjected to cyclic

load triaxial tests at their natural water contents of 12.3 and 11.2 percent. The third sample was dried at room temperature for two days then it was sealed in a plastic bag for one week to even up the moisture in the sample and then it was tested. After the cyclic load triaxial test was terminated the moisture content of each sample and its dry unit weight were determined.

For the six validation samples, results of the cyclic load triaxial test data were used to calculate the resilient modulus of the soil. The data are shown in Figure 4.25 by the open symbols. After measuring the test sample water content and dry unit weight, the data were used in Equation 4.7 to estimate the resilient modulus values of the soils. Figure 4.26 shows the laboratory measured resilient modulus values plotted against the MR values calculated using Equation 4.7 and the degree of saturation of the test samples. It can be seen from Figure 4.26 that all six data points are located near the line of equality. Hence, the six data points validate the accuracy of Equation 4.7.

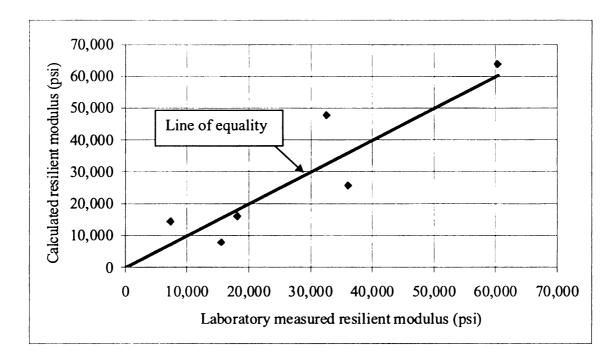


Figure 4.26 Laboratory measured and calculated MR values for SC, CL, and ML soils

4.5.4 Poorly graded sand – silty sand (SP-SM)

Table 4.6 lists the locations, the USCS and the AASHTO soil classifications, and the sample designation number of eight disturbed soil samples that were collected from various clusters and areas throughout the State of Michigan. The commonality between the eight samples is that all of them were classified in step 1 of the analyses as SP-SM according to the USCS. SP-SM soils may contain anywhere between 5 and 12 percent passing sieve number 200 materials and a plasticity index less than 4 (Holtz and Kovacs 1981). In step 2 of the analyses, univariate and multivariate analyses were conducted and are discussed below.

4.5.4.1 Univariate Analysis

In the univariate analyses, the effects of each of several sample variables on the MR values of SP-SM soils were studied. These sample variables include: the moisture contents of the samples, the dry unit weight after compaction, and the grain sizes.

Discussion of the effects of each variable is presented below.

Table 4.6 Locations of SP-SM subgrade soils

Sample number	Location	AASHTO	USCS
M-028-W (02-03)	~2000 feet East of M-35	A-3	SP-SM
U-002-E (03-01)	400 feet East of Hwy 13	A-3	SP-SM
M-028-W (03-03)	500 feet West of Basnau Rd	A-2-4	SP-SM
I-196-N (06-05)	110 feet North of Schmuhl Rd	A-3	SP-SM
I-069-N (10-01)	75 feet North of Base Line Hwy	A-1-b	SP-SM
I-069-N (11-01)	160 feet North of mile marker 42	A-3	SP-SM
I-094-W (12-03)	36 feet West of bridge after exit 135	A-3	SP-SM
U-023-N (13-07)	60 feet North of Sherman	A-3	SP-SM

Effect of the Sample Moisture Contents – Because of the narrow range in fine contents, it is expected that the water contents would have minimal effects on the elastic response

of the soil to the applied loads. Figure 4.27 shows the MR values of all SP-SM soil samples plotted against the samples moisture contents. The figure shows that the sample moisture content has no effect on the MR values. This result was not expected and it contradicts findings by many researchers including (Maher et. al 2000, George 2000, and 2003) who stated that the MR value decreases with increasing moisture contents. One possible explanation of the above result is that the effects of moisture contents on the MR values interact with other variables that are not included in the equation. This issue is addressed in the multivariate analyses subsection.

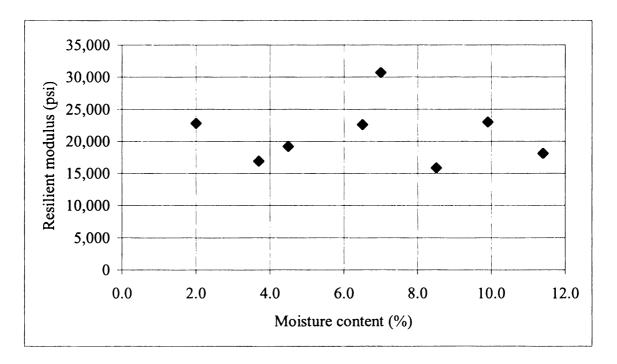


Figure 4.27 Resilient modulus versus moisture content for SP-SM soils

Effect of Sample Dry Unit Weight - The effect of the test sample dry unit weights on
the MR values of SP-SM soils was studied by plotting the MR values as a function of the
sample dry unit weights as shown in Figure 4.28. As it was expected, the figure shows a
weak correlation between the dry unit weights and the MR values of the test samples.

The main reason for the weak correlation is that it is possible for two test samples to have the same dry unit weight but significantly different elastic behavior under load. This scenario is certain if one sample was compacted dry of optimum and the second wet of optimum. A sample compacted dry of optimum has higher strength and stiffness and displays more brittle behavior than the one compacted wet of optimum. The latter would have lower strength, higher plastic deformation and softer behavior under loads (Holtz and Kovacs 1981). For the SP-SM soils, the water contents of the test samples varied from about 2 to about 11 percent. Such range in the water content extends from the dry side to the wet side of the optimum moisture content on the compaction curve. To overcome the problem, the dry unit weight was included in the multivariate analyses to determine whether or not it interacts with other variables to significantly affect the MR values.

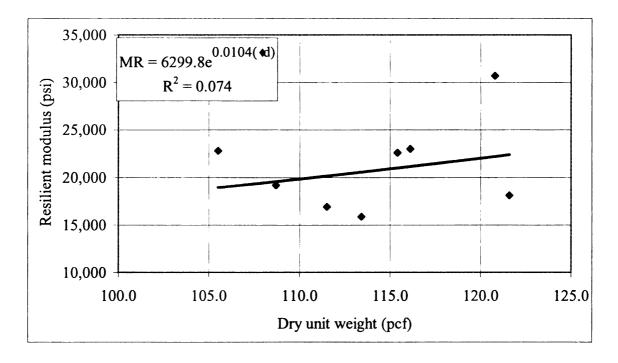


Figure 4.28 Resilient modulus versus the dry unit weight of the test samples

Effect of Sample Grain Size – Because of low fine contents of SP-SM soils, all soil samples were subjected to dry sieving to determine the grain size distribution shown in Figure 4.29. Examination of the figure indicates that the SP-SM subgrade soil samples contain variable amount of fine and coarse sands. Since the fine and coarse sand contents are co-linear or dependent, both variables should not be included in the analyses. Hence, the effect of either the fine or coarse sand contents on the MR values should be included in the analyses. The effects of sample gradation on MR values were also assessed through the following gradation parameters:

- Percent passing sieves 200, 100, 40, 20, 10, 4 and 3/8 inch
- · The coefficients of curvature and uniformity
- Average particle size at ten, thirty and sixty percent passing (D₁₀, D₃₀, and D₆₀, respectively)

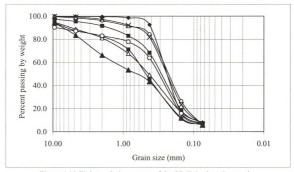


Figure 4.29 Eight gradation curves of the SP-SM subgrade samples

The effects of each gradation parameter on the MR values were analyzed by graphing the MR values of the soil samples as a function of that parameter. Few gradation parameters; the percent passing sieve number 200, the percent fine sand content, and the coefficients of uniformity and curvature showed minor correlation to MR values. For example, the effect of the percent passing sieve number 200 and the MR values is shown in Figure 4.30. Although the data in the figure shows that the percent passing sieve number 200 has insignificant effects on the MR values, it also show that increasing the percent fine materials (passing sieve number 200) causes decreases in the MR values.

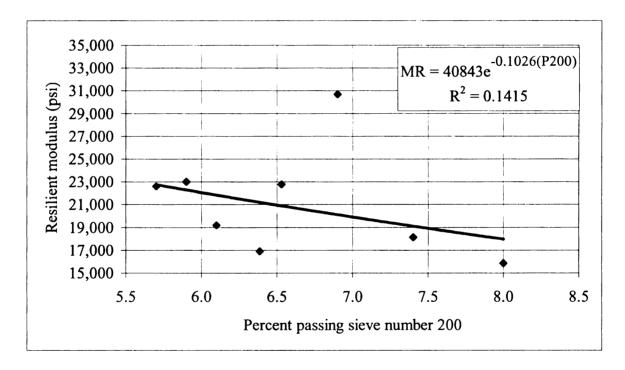


Figure 4.30 Resilient modulus versus percent passing sieve number 200 for SP-SM soils

4.5.4.2 Multivariate Analysis

Multivariate analyses were conducted to study the combined effects of several independent sample variables on the dependent variable MR of SP-SM soils. During the analyses:

- Various models were used in an attempt to maximize the value of the coefficient of determination (R²).
- Special care was taken to:
 - Ensure that the resulting equation satisfies the known trends between each of the independent variable and the dependent variable MR.
 - o Avoid any significant co-linearity between the independent variables.
 - o Minimize the number of independent variables in the equation.

Results of the analyses yielded several different models with coefficient of determination values from 0.62 to about 0.93. For example, the model shown in Figure 4.31 and Equation 4.8 has a coefficient of determination of slightly higher than 0.93.

$$MR = 1357.5(SVSP - SM)^2 - 6145.3(SVSP - SM) + 23613$$

Equation 4.8

Where,

$$SVSP - SM = \frac{\gamma^{3.95}}{10^7 \left(D_{30}^{2.66}\right) \left(D_{10}^{2.25}\right) \left(D_{60}^{0.41}\right) \left(S^{0.03}\right)}$$

SVSP-SM = Sample variable for the SP-SM soils

 γ_d = dry unit weight of the test sample (pcf)

 $D_{30},\ D_{10},\ D_{60}$ = the particle diameter at 30, 10 and 60 percent passing (mm)

S = degree of saturation

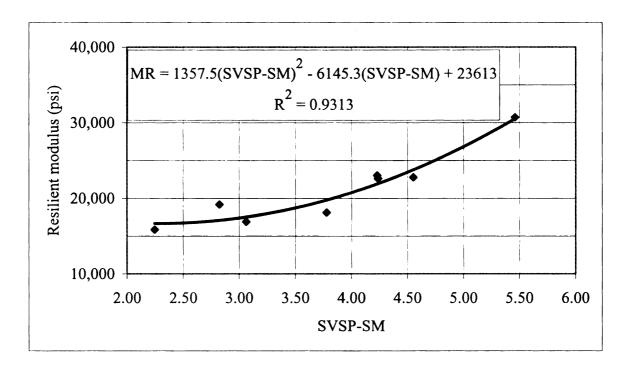


Figure 4.31 Resilient modulus versus the sample variable model, SP-SM soils

The model was not accepted although the value of the coefficient of determination is relatively high. Three reasons can be cited for rejection; first the model has too many variable for a sample size of 8, second, the model interpretation (higher particle size yield lower modulus) cannot be physically supported, and third, the three particle sizes in the denominator are not truly independent variable, which makes the model very sensitive to small changes in the values of the variables.

Several other models were also rejected for similar reasons. Finally the model presented in Figure 4.32 and expressed in Equation 4.9 was accepted although the value of the coefficient of determination is moderate (0.74).

$$MR = 1749.6 \exp 0.0054 (SVSP - SM)$$
 Equation 4.9

Where,

$$SVSP - SM = \frac{\gamma_d^{1.75}}{MC^{0.5} + LL^{0.6} + (P_{40} - P_{200})^{0.01}}$$

 γ_d = dry unit weight (pcf)

LL = liquid limit

MC = moisture content (%)

 P_{40} , P_{200} = percent passing sieves number 40 and 200, respectively

The term $(P_{40} - P_{200})$ expresses the percent fine sand content in the soils.

Examination of the data in Figure 4.32 and Equation 4.9 indicates that increases in the values of the dry unit weight cause increases in the MR values whereas increases in the values of either the moisture content, liquid limit, or the percent fine sand content cause decreases in the resilient modulus values.

It is important to note that the data used in support of Equation 4.9 includes soil samples having dry unit weights range from 105.5 to 121.6 pcf, percent passing sieve number 40 from 43.2 to 92.6, percent passing sieve number 200 from 5.7 to 8, liquid limit from 13 to 21 and moisture content from 2.0 to 11.4 percent.

4.5.5 Clayey sand – silty sand (SC-SM)

Table 4.7 lists the locations, the USCS and the AASHTO soil classifications, and the sample designation number of seven disturbed soil samples that were collected from various clusters and areas throughout the State of Michigan. The commonality between the seven samples is that all of them were classified in step 1 of the analyses as SC-SM

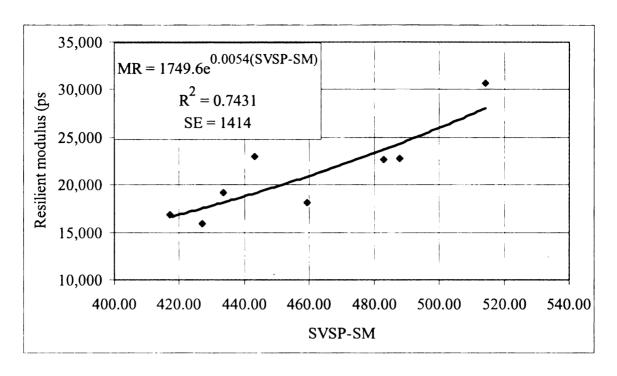


Figure 4.32 Resilient modulus versus SVSP-SM soils

according to the USCS. SC-SM soils may contain anywhere between 12 and 49.9 percent passing sieve number 200 and a plasticity index between 4 and 7 (Holtz and Kovacs 1981). Hence, the fine materials may play a major role in the mechanistic behavior of the soil. In step 2 of the analyses, univariate and multivariate analyses were conducted and are discussed below.

Table 4.7 Locations of SC-SM subgrade soils

Sample number	Location	AASHTO	USCS
M-068-W (04-02)	180 feet West of US-23	A-2-4	SC-SM
M-032-W (04-05)	220 feet East of Herron Rd	A-4	SC-SM
I-075-N (08-06)	80 feet North of bridge after exit 195	A-2-4	SC-SM
I-096-W (09-02)	141 feet West of Morse Lake Ave	A-2-4	SC-SM
M-060-W (11-03)	135 feet West of Southbound I-69 overpass	A-2-4	SC-SM
I-069-S (11-05)	95 feet South of Bridge after exit 10	A-4	SC-SM
I-094-W (12-01)	95 feet West of 29 Mile Rd	A-2-4	SC-SM

4.5.5.1 Univariate Analysis

In the univariate analyses, the effects of each of several sample variables on the MR values of SC-SM soils were studied. These sample variables include: the moisture contents of the samples, the degrees of saturation, the liquid limits, and the grain sizes. The effects of each variable are presented and discussed below.

Effect of the Sample Moisture Contents – Because of the high range in fine contents, water content may play a significant role in determining the elastic response of the soil to the applied loads. Figure 4.33 shows the MR values of all seven SC-SM soil samples plotted against the samples moisture contents. As it was expected, the figure shows increases in the sample moisture contents cause decreases in the MR values. Similar results were also reported by many researchers including (Maher et. al 2000, George 2000, and 2003). The low value of the coefficient of determination of about 0.25 implies that MR values cannot be explained accurately by the moisture content alone. Therefore, it will be included with other sample variables in the multivariate analyses to determine their combined effect.

Effect of the Degree of Saturation – At the conclusion of the cyclic load test, the sample moisture content and dry unit weight were determined and the degree of saturation (S) was calculated using Equation 4.4 assuming a specific gravity of the solids of 2.7.

$$S = \left[\frac{G_s * (MC/100) * \gamma_d}{G_s * \gamma_w - \gamma_d} \right] * 100$$
 Equation 4.4

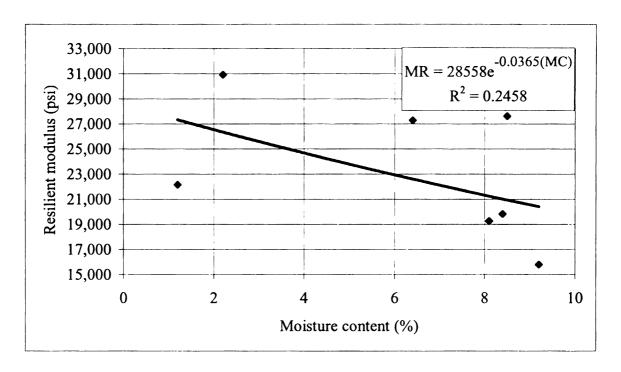


Figure 4.33 Resilient modulus versus moisture content for SC-SM soils Where,

S = degree of saturation (%)

MC = moisture content (%)

 G_s = specific gravity of the soil solid

 γ_d = dry unit weight of the sample (pcf)

 γ_w = unit weight of water = 62.4 pcf

Figure 4.34 shows the MR values plotted against the degree of saturation of the test samples. The data in the figure indicates an insignificant correlation between the MR values and the degree of saturation although increasing degree of saturation causes decreases in the MR values as it was reported by Maher et al. (2000). When the data and the values of the coefficients of determination of Figure 4.33 are compared to those in Figure 4.34, it becomes clear that the effects of moisture contents on the MR values can

be better expressed using the water content. The reason is that the water content is an independent variable whereas the degree of saturation is a function of both the water contents and the dry unit weights. Figure 4.35 depicts the MR values plotted against the dry unit weights of the test samples. It can be seen that correlation between them is insignificant although, as it was expected, increasing the values of the dry unit weight cause increases in the MR values. The reason for the insignificant correlation is that the dry unit weight of the test sample is a function of its water content. Further, it is possible for two test samples having the same dry unit weight to have drastically different mechanistic behavior. The scenario is possible provided that the two samples were compacted at two different water contents on the opposite sides of the optimum moisture content (Holtz and Kovacs 1981).

Effect of the Sample Liquid Limit - For each SC-SM soil sample, the Atterberg limits for all materials passing sieve number 40 were determined in order to classify the type of fine materials (silt or clay). The test results indicate that for all samples the liquid limit varied from 15 to 22, the plastic limit from 10 to 15 and the plasticity index from 4 to 7. The effects of the liquid limit on the MR values of the soils were analyzed. Figure 4.36 depicts the influence of the liquid limits on the MR values of SC-SM soils. The data in the figure indicate that the MR values of SC-SM soils decrease as the liquid limit of the material passing sieve number 40 increases. This observation was expected and has been reported by many researchers for various soil types including silty and clayey sands, silt, and clay (Gudishala 2004). Therefore, the liquid limit will be included in the multivariate analyses.

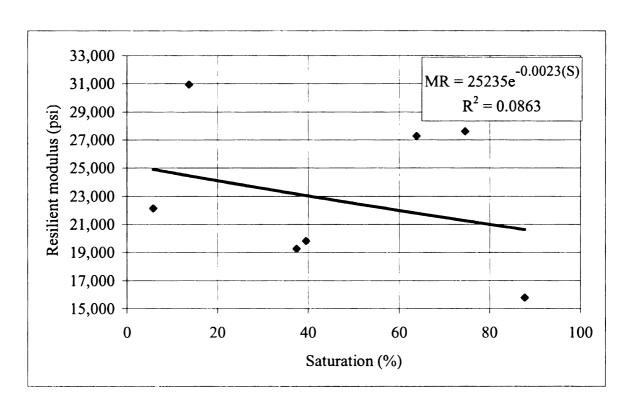


Figure 4.34 Resilient modulus versus saturation for SC-SM soils

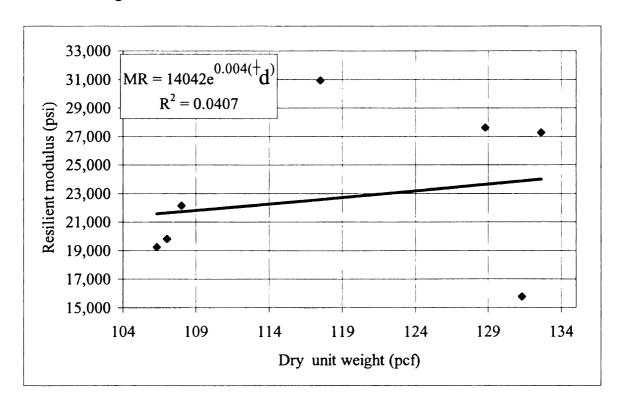


Figure 4.35 Resilient modulus versus the dry unit weight for SC-SM soils

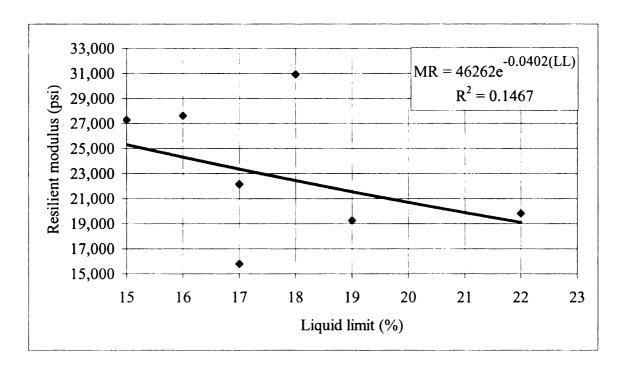


Figure 4.36 Resilient modulus versus liquid limit for SC-SM soils

Effect of Sample Grain Size – Because of the relatively high fine contents, all SC-SM soils were subjected to wet sieving and hydrometer analyses to determine their grain size distribution. The effects of sample gradation on the MR values were assessed through the following gradation parameters:

- Percent passing sieves 200, 100, 40, 20, 10, 4, and 3/8 inch
- The coefficients of curvature and uniformity
- The average particle size at ten, thirty, and sixty percent passing (D₁₀, D₃₀, and D₆₀, respectively)

The effects of each gradation parameter on the MR values were analyzed by plotting the MR values of the soil samples as a function of that parameter. All gradation parameters showed minor correlations to the MR values. Despite this, several attempts were made to include gradation variables in the multivariate analyses as presented in the next subsection.

4.5.5.2 Multivariate Analyses

Multivariate analyses were conducted to study the combined effects of several independent sample variables on the dependent variable MR of SC-SM soils. During the analyses:

- Various models were used in an attempt to maximize the value of the coefficient of determination (R²).
- Special care was taken to:
 - Ensure that the resulting equation satisfies the known trends between each of the independent variable and the dependent variable MR.
 - o Avoid any significant co-linearity between the independent variables.
 - o Minimize the number of independent variables in the equation.

Results of the analyses yielded a model having a relatively high R² value. The model is based on three sample variables of the SC-SM (SVSC-SM) soils (the water content, liquid limit, and the coefficient of uniformity) as stated in Equation 4.10. Figure 4.37 depicts the resilient modulus values plotted as a function of the SVSC-SM. It can be seen from the figure that higher SVSC-SM values yield lower MR values.

$$MR = 39638exp - 0.0037(SVSC - SM)$$
 Equation 4.10

Where,

$$SVSC - SM = C_u^{0.2} * (LL^{1.15} + MC^{1.3})$$

LL = liquid limit (%)

MC = degree of saturation (%)

 C_{ij} = coefficient of uniformity

The liquid limit and coefficient of uniformity are constant for a given soil.

Therefore, lower SVSC-SM can be obtained by decreasing the moisture content of the test sample. As the moisture content of the sample increases, the lubrication between the sand particles increases, thus reducing the MR values (Perloff and Baron 1976). The term (LL^{1.15} + MC^{1.3}) can be thought of as the moisture index of the SC-SM subgrade soils.

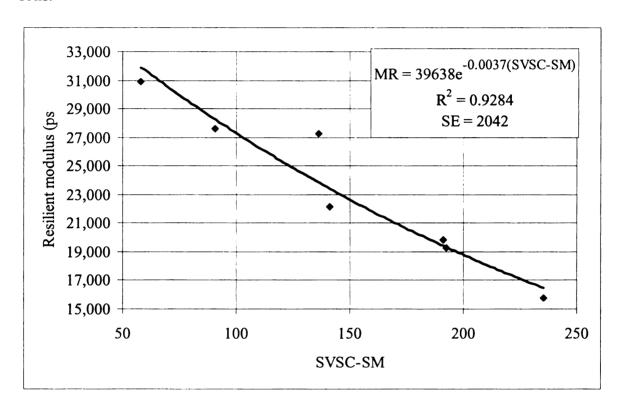


Figure 4.37 Resilient modulus versus SVSC-SM soils

It is important to note that the data used in support of Equation 4.10 includes soil samples having liquid limits values ranging from 15 to 22, coefficients of uniformity between 14.74 and 270, and moisture contents from 1.2 to 9.2 percent. The use of the equation outside these ranges is not recommended.

4.5.6 Gravely Sand (SG)

Table 4.8 lists the locations, the USCS and the AASHTO soil classifications, and the sample designation number of two disturbed soil samples that were collected from various clusters and areas throughout the State of Michigan. The two samples were classified in step 1 of the analyses as SG. However, due to the large gravel particles cyclic load tests could not be performed on these samples. The AASHTO standard test procedure that was used requires that the diameter of the sample be at least four times larger than the largest particle. For this to be satisfied the sample diameter would have to about 9 inches. Because of the limited number of samples and because this type of subgrade materials is very much limited to small areas in the State of Michigan, no further analyses were conducted on the two samples.

Table 4.8 Locations of SP-SM subgrade soils

Sample number	Location	AASHTO	USCS
M-033-S (05-05)	750 feet South of Peters Rd	A-1-a	SG
U-012-E (12-07)	120 feet West of Person Hwy	A-1-a	SG

4.6 Climatic Damage Models

The State of Michigan is located in the AASHTO wet-freeze region. The average annual rainfall and snowfall in the State varies from one location to another. In the Lansing area, the average annual rainfall is about 32-inch and the average annual snow fall is about 56-inch. Further, the frost depth varies from about 7-feet in the Upper Peninsula to about 3-feet in the Lower Peninsula. These climatic data affect the behavior of the paving materials and roadbed soils. Because of the variability of the climatic conditions, the resilient modulus of any given soil is dynamic in nature and it changes seasonally with changing water content and below and above freezing temperatures.

For most pavement structure, the subgrade material is the weakest part of the structure. The 1993 AASHTO Design Guide calls for protecting the subgrade soils under flexible pavements by providing adequate structural number. For rigid pavement, the modulus of subgrade reaction is typically integrated with that of the base layer to yield a composite modulus of subgrade reaction. In addition, the 1993 AASHTO Design Guide includes damage assessment scenario that must be used to obtain the design modulus of the roadbed soils. Finally, the Guide does not provide pavement layer thicknesses based on frost penetration. That is the guide does not provide any protection to the roadbed soils against freezing. The new M-EPDG also includes climatic model to reduce the given subgrade modulus and hence, account for the seasonal damage.

For any pavement structure, the amount of water in the subgrade materials is a function of many variables including:

- The duration and frequency of the rainfall
- The geometry of the pavement and the flow regime of the adjacent ground

- The conditions and permeability of the surface layers and the number of unsealed cracks.
- The permeability of the subgrade materials
- The type of drainage system installed in the pavement structure
- The initial crown of the subgrade soils created during rolling
- The elevation of the ground water table

Based on the above list, a given subgrade soil located in the State of Michigan could be saturated during spring thaw season, during extended periods of rainfall (more than few hours), or during frequent rainfall. Based on this scenario, one can conclude that the subgrade soil is highly likely saturated during spring thaw, and it could be occasionally saturated during the summer and fall seasons. The subgrade soil is likely frozen during the late winter season.

Given the variability of the degree of saturation of the subgrade soil during the pavement service life and the corresponding variation in its resilient modulus, the question become what subgrade resilient modulus should be used in the design of new pavement or the rehabilitation of existing pavements. The answer depends on the type of damage model used in the analysis.

In general, two types of damage models are available; empirical and mechanistic-empirical. An example of the former is the 1993 AASHTO Design Guide. Examples of the latter is the fatigue and rut models in the MICHPAVE computer program, in VESYS computer program, in the Asphalt Institute pavement design, and in almost every other mechanistic-empirical computer program and the 1993 AASHTO Design Guide damage model presented in Equation 4.10

Uf = $1.18 * 10^8 * MR^{-2.32}$ Equation 4.10

Where

Uf = damage factor

MR = resilient modulus of the subgrade soils

In this study, the reduction factor to reduce the resilient modulus value from its summer and fall season values was obtained using the following procedure:

- For each of the eight soil types except the SP, the proper correlation equation was used to calculate the resilient modulus at water content near the optimum water content of a standard proctor compaction. The correlation equation was also used to calculate the resilient modulus at a water content corresponding to near soil saturation (degree of saturation between 93 and 99 percent).
- For the SP soils, the reduction factor between the resilient modulus at the optimum water content and that near saturation was obtained from Holtz and Kovacs (1981).
- The damage factor of each of the eight soil types was calculated as the ratio of the two modulus values of the first two steps. The average damage factor of all eight soil types was then calculated as shown in Table 4.9.
- A standard pavement cross-section of 12 inch subbase, 6 inch base and 7 inch asphalt layer was used to calculate the service life of the pavement in terms of ESALs using the MICHPAVE computer program. The same pavement cross-section was analyzed twice, once for subgrade modulus value of 16,000 psi (an average modulus near the optimum water content) and once for an average modulus value near saturation (4000 psi). Results of the analysis yielded two expected pavement lives in term of ESALs.

The ratio of the expected ESAL at the high modulus was then divided by the ratio of ESAL at the low modulus. The results yielded a damage factor of about 8.

- Similar procedure was used in the 1993 AASHTO design guide, the damage factor was about 7.
- The average damage factors obtained from the 1993 AASHTO design procedure, the MICHPAVE computer program and the correlation equations was then calculated and is listed in Table 4.9.
- For each soil type, the average resilient modulus of all test samples was then calculated and listed in Table 4.10.
- The recommended subgrade design resilient modulus values for all eight soil types are then calculated by dividing the average resilient modulus per soil type by the average damage factor listed in Table 4.9. The values of the recommended design resilient modulus are listed in Table 4.10.

It should be noted that the recommended design resilient modulus values listed in Table 4.10 are to be used in the M-EPDG design level III. For design level II, the correlation equations should be used. And for design level I, FWD tests should be conducted and the design modulus value backcalculated and adjusted using the damage factor. The FWD procedure is not a part of this thesis. It is addressed in the final report to MDOT.

Table 4.9 Damage factor calculation

USCS	Wate	Water content (%)		Resilie corr	Resilient modulus (psi) corresponding to saturation range of	us (psi) g to		Damage factor	or	Average
classification	Near optimum	Moderate	High	45-75	75-85	85-100	Laboratory	AASHTO	High 45-75 75-85 85-100 Laboratory AASHTO MICHPAVE	factor
SC, CL, ML	15	22	30	36,543	5,879	4,430	8			
SC-SM	8.5	15	28	27,276	27,276 12,000	000,6	3			
SP-SM	8	15	20	23,009	23,009 11,000	7,000	3	*	\	V.
SM (MI)	12	20	23	18,416	18,416 11,480	5,290	3	Y.	ť.	Ç.
SP1	11	20	25	29,418	29,418 11,798	3,933	7			
SP2	10	20	25	22,768	22,768 9,969	4,000	9			
	A	Average damage factor	ige fact	or			5	L	8	7
Shaded cells represent moisture contents outside those of the sampled soil type	resent moist	ture contents	outsid	e those of	the sampl	led soil ty)e			

Table 4.10 Design resilient modulus values for M-E PDG design level 3

NSCS	Average modulus (psi)	Design MR value (psi)
SC, CL, ML	26,887	3,841
SC-SM	23,258	3,323
SP-SM	21,147	3,021
SM	17,257	2,465
SP1	30,328	4,333
SP2	25,961	3,709

CHAPTER 5

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

5.1 Summary

The resilient modulus of the roadbed soil plays a crucial role in the design of pavement systems. Currently, MDOT uses different procedures to determine the MR. Most of these procedures are applicable to M-E PDG level 3 design. Therefore, a consistent, uniform and implementable procedure that meet the requirements of M-E PDG design Levels 1, 2, and 3. To do this, the State of Michigan was divided into fifteen clusters where the physical and engineering characteristics of the soil are similar. The clusters were then divided into 99 areas to narrow down the ranges of the engineering and physical characteristics of the soils. Disturbed subgrade soil samples were collected from seventy five areas. At some locations where the disturbed samples were obtained, pocket penetrometer and vane shear tester were used to determine the penetration and shearing resistances of the soils, respectively.

The undisturbed soil samples were then tested to determine their moisture contents, grain size distributions, Atterberg limits (when applicable) and resilient modulus using cyclic load triaxial tests. Correlation equations (see Table 5.1) were then developed to estimate the MR values of the roadbed soil based on the results of the moisture content, Atterberg limits, dry unit weight, and grain size distribution data.

5.2 Conclusions

Based on the field and laboratory investigations and the data analyses, the following conclusions were drawn:

- Michigan Department of Transportation's (MDOT) current procedure for determining the MR values is not consistent between the regions.
- 2. Grain size distribution on soils with more than 10 percent passing sieve number 200 should be performed by wet sieving.
- The subgrade soils in Michigan were classified based on the USCS and the AASHTO soil classification systems.
- 4. In most cases, subgrade soils having similar elastic behavior under loads tend to fall within one classification (designation) of the USCS but within several AASHTO classification groups. Hence, based on the elastic behavior of the subgrade soils in Michigan, the USCS produces much better soil grouping than the AASHTO classification system.
- 5. Most of the subgrade soils in the State of Michigan can be divided into the following eight soil types:
 - Poorly graded sand (SP)
 - Silty sand (SM)
 - Clayey sand (SC)
 - Poorly graded sand silty sand (SP-SM)
 - Clayey sand silty sand (SC-SM)
 - Gravelly sand (SG)
 - Low plasticity clay (CL)
 - Low plasticity silt (ML).
- 6. For SC and CL subgrade soils the resilient modulus values obtained from testing undisturbed Shelby tube samples were compatible to those from disturbed samples.

- 7. Good correlation equations relating the resilient modulus to some of the physical characteristics of the soils were developed and are summarized in Table 5.1.
- 8. The correlation equations listed in Table 5.1 satisfy the M-E PDG requirements for level 2 design.
- 9. An average damage factor was calculated using the correlation equations, the MICHPAVE computer program and the 1993 AASHTO design procedure. The damage factor accounts for the seasonal effects on the resilient modulus values of the subgrade soils in the State of Michigan.
- 10. Average design resilient modulus values for the eight soil types were developed and are listed in Table 4.10 and presented in Figures 5.1 through 5.4.
- 11. The design resilient modulus values in Figures 5.1 through 5.4 satisfy the M-E PDG requirements for level III design.

5.3 Recommendations

Based on the results and conclusions of this study, it is strongly recommended that:

- The subgrade soils in the nineteen areas where neither disturbed nor undisturbed soil samples were obtained be subjected to the full testing schemes presented in Chapter 3 of this thesis.
- Nondestructive deflection tests be conducted at the network level as to fill the gaps in the existing FWD data. Ideally, the tests should be spaced at 500 feet interval.
- The deflection data collected at the network level be used to backcalculate the resilient modulus of the various pavement layers to meet the requirements of M-E PDG level 1 design.

- MDOT to implement the findings of this study by adopting the data presented in Figures 5.1 through 5.4 for M-E PDG level III design.
- MDOT uses the correlation models presented in Table 5.1 for M-E PDG level II design.
- The seasonal damage factors developed in this study be implemented by all regions when using the 1993 AASHTO design guide.

Table 5.1 Summary of predictive equations for each soil type

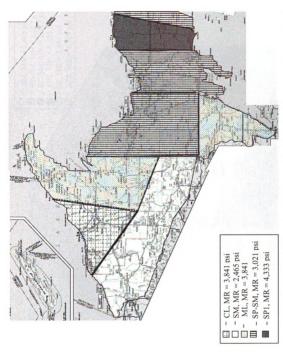


Figure 5.1 Recommended M-E PDG level 3 design modulus values for the western portion of the Upper Peninsula

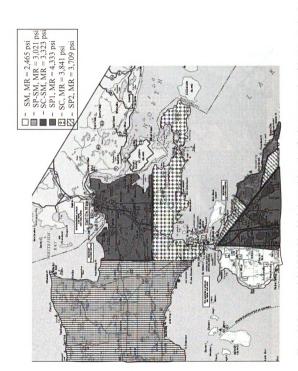


Figure 5.2 Recommended M-E PDG level 3 design modulus values for the eastern portion of the Upper Peninsula

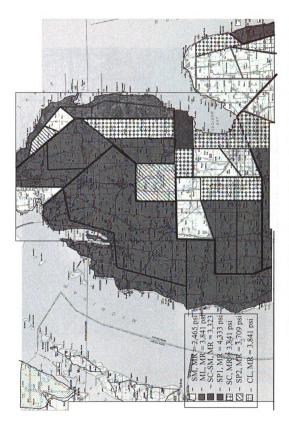


Figure 5.3 Recommended M-E PDG level 3 design modulus values for the northern portion of the Lower Peninsula

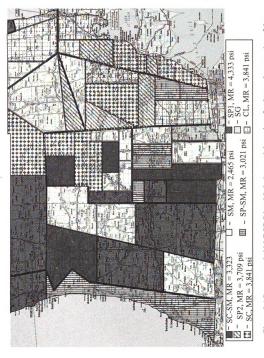


Figure 5.4 Recommended M-E PDG level 3 design modulus values for the southern portion of the Lower Peninsula

APPENDIX A

Soil Classification Systems

Table A.1 AASHTO soil classification system (Holtz and Kovacs 1981)

General classification	Gra	nular ma	terials (35% or	less passi	Granular materials (35% or less passing 0.075 mm)	mm)	Silt	-clay m 35% pas	Silt-clay materials (more than 35% passing 0.075 mm)	(more t	han)
	A	A-1			A	A-2					A	A-7
Group classification	A-1-a	A-1-a A-1-b	A-3	A-2-4		A-2-5 A-2-6	A-2-7	A-4	A-5	A-4 A-5 A-6	A-7- A-7- 5 6	A-7-
Sieve analysis, percent passing:												
2.00 mm (No. 10)	50 max	,		,			1	,		- 1		,
0.425 mm (No. 40)	30 max	50 max	51 min	,			,	,			,	
0.075 mm (No. 200)	15 max	25 max	10 max	35 max	35 max	35 max	35 max	36 min	36 min	36 min	36 min	36 min
Characteristics of fraction passing 0.425 mm (No. 40)												
Liquid limit	1	,	1	40 max	41 min	40 max	41 min	40 max	41 min	40 max	41 min	41 min
Plasticity index	6 max	6 max	NP	10 max	10 max	11 min	11 min	10 max	10 max	11 min	11 min	11 min
Usual types of significant constituent materials	Sta fragr grave sa	Stone fragments, gravel, and sand	Fine	Silty	or clayey	Silty or clayey gravel and sand	d sand	Silty	Silty soils	CI	Clayey soils	sli

PI = LL-30Figure A.1 AASHTO Atterberg limit ranges (Holtz and Kovacs 1981) A-7-5 A-2-7 A-7-6 A-5 A-2-5 A-4 A-2-4 A-6 A-2-6 Plasticity index

100 A-Line 80 Figure A.2 Casagrande's plasticity chart (Holtz and Kovacs 1981) OH or MH Liquid limit U-Line ML 20 CL-ML 50 40 30 20 10 09 Plasticitry index

162

If 1st letter is G, CU≥4 & 1≤ No If 1st letter is s CU≥6 & 1≤ CC < 3, the soil is GW-GM, CC < 3, the soil is SW-SM, Soil is fine-grained Sand, 1st letter is S otherwise it is GP-GM Is clay fraction > silt fraction Figure A.3 USCS coarse grained soil classification (Holtz and Kovacs 1981) Between 5% & 12% No No Yes If 1st letter is G, CU ≥ 4 & 1 ≤ If 1st letter is s CU≥6 & 1≤ CC < 3, the soil is GW-GC, CC < 3, the soil is SW-SC, otherwise it is GP-GC Is gravel fraction > sand fraction Are 50% of particles > 0.075 mm Is clay + silt fraction Soil is coarse-grained Yes < 5% Yes fines; 2nd letter M Non-plastic silty If 1^{st} letter is G, $CU \ge 4 & 1 \le CC < 3$, > 12% No Yes 2nd letter is W, otherwise it is P Yes Is clay fraction > silt fraction Gravel, 1st letter is G Plastic clayey fines, Yes 2nd letter C Yes

otherwise it is SP-SM

otherwise it is SP-SC

If 1^{st} letter is S, $CU \ge 6 & 1 \le CC < 3$,

2nd letter is W, otherwise it is P

Low plasticity, 2nd letter is L; Silt, 1st letter is M No Soil is coarse-grained Is clay fraction > silt No fraction Is LL >50% Figure A.4 USCS fine grained soil classification (Holtz and Kovacs 1981) Clay, 1st letter is C Yes High plasticity, 2nd letter is H; the soil No No Yes Are 50% of particles < 0.075 mm $LL_{(Oven-dried)} < 0.75\%$? Soil is fine-grained Organic soil, 1st letter is O Yes Yes

the soil is lean

is fat clay or elastic

silt

clay or silt

Table A.2 Possible AASHTO soil classifications per USCS group (Holtz and Kovacs 1981)

USCS	Possible AASHTO classification
group	Tossiole 71/101110 classification
SP	A-3, A-1-b, A-1-a, A-2-4, A-2-5, A-2-6, A-2-7
SG	A-3, A-1-b, A-1-a, A-2-4, A-2-5, A-2-6, A-2-8
SM	A-1-b, A-2-4, A-2-5, A-2-7, A-2-6, A-4, A-5, A-6, A-7-5, A-7-6
SC	A-2-6, A-2-7, A-2-4, A-2-6, A-4, A-7-6, A-7-5
CL	A-6, A-7-6, A-4
ML	A-4, A-5, A-6, A-7-5
SP-SM	A-3, A-1-a, A-1-b, A-2-4, A-2-4, A-2-6, A-2-7
SC-SM	A-4, A-5, A-2-4, A-2-5, A-1-a, A-1-b

Table A.3 Possible USCS classification per AASHTO group (Holtz and Kovacs 1981)

AASHTO group	Possible USCS classification
A-1-a	GW, GP, SW, SP, GM, SM
A-1-b	SW, SP, GM, SM, GP
A-3	SP, SW, GP
A-2-4	GM, SM, GC, SC, GW, GP, SW, SP
A-2-5	GM, SM, GW, GP, SW, SP
A-2-6	GC, SC, GM, SM, GW, GP, SW, SP
A-2-7	GM, GC, SM, SC, GW, GP, SW, SP
A-4	ML, OL, CL, SM, SC, GM, GC
A-5	OH, MH, ML, OL, SM, GM
A-6	CL, ML, OL, SC, GC, GM, SM
A-7-5	OH, MH, ML, OL, CH, GM, SM, GC, SC
A-7-6	CH, CL, ML, OL, SC, OH, MH, GC, GM, SM

APPENDIX B

Laboratory resilient modulus results

Table B.1 Laboratory resilient modulus results

							Cyclic stress (p	si)			
	Soil T	1770				10				15	
Sample number	AASHTO	USCS	Cycle number	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000	Average cyclic load (lbs)	Average deformati on (mils)	Average resilient modulus (psi)	Average M (psi) at load cycles 500 800 and 100
			100	31.6	2.304	35,043		49.0	3.740	31,266	
			200	32.1	2,202	36,823		50.3	3,774	31,862	
M-045-S (01-01)	A-6	CL	500	32.2	2.262	36,639	36,543	50.1	3.663	31,747	31,503
(0)			800	32.5	2.205	37,056		50.1	3.817	31,297	
			1000	32.8	2.227	35,934		50.4	3.872	31,465	
			100	32.5	3.729	13,894		50.3	5.850	12,872	
			200	32.9	3.592	14,285		50.1	5.727	13,150	
U-002-E (02-01)	A-4	SM	500	32.7	3.442	15,044	15,352	50.4	5.551	13,686	13,818
()			800	32.7	3.325	15,708		50.4	5.496	13,826	
			1000	33.3	3.415	15,305		49.9	5.364	13,942	
			100	32.0	1.741	48,422		50.7	2.777	45,310	
			200	32.5	1.650	50,092		51.0	2.801	44,090	
M-028-W (02-02)	A-4	ML	500	32.7	1.569	53,892	53,824	51.3	2.969	42,510	41,516
			800	32.7	1.600	53,350		51.3	3.047	41,331	
			1000	33.0	1.598	54,230		51.3	3.087	40,707	
			100	33.9	2.675	19,996		51.4	4.042	16,997	
			200	33.8	2.698	20,013		51.4	3.956	16,510	
M-028-W (02-03)	A-1-b	SP-	500	33.7	2.821	19,057	19,195	52.6	3.873	17,649	17,845
()		SM	800	33.8	2.796	19,502		51.7	3.733	17,942	
			1000	34.0	2.792	19,025		51.5	3.774	17,945	
			100	32.8	2.499	31,653		50.0	3.944	29,991	
			200	32.8	2.471	33,225		49.8	3.855	30,881	
U-002-E (02-04)	A-4	ML	500	33.7	2.322	36,319	37,012	50.0	3.724	31,614	33,191
,			800	33.1	2.219	36,874		50.1	3.560	33,569	
			1000	33.1	2.207	37,843		50.5	3.516	34,390	
			100	33.3	2.393	22,822		51.0	4.295	18,193	
			200	33.9	2.412	23,466		50.2	4.135	18,644	
U-002-E (03-01)	A-3	SP-	500	33.9	2.441	23,426	22,830	51.6	4.005	19,685	19,629
(00 01)		SM	800	34.1	2.522	22,465		52.0	4.114	19,323	
			1000	34.6	2.560	22,598		51.7	3.990	19,880	

Table B.1 (cont'd)

							Cyclic stre	ess (psi)			
	Soil T	ype				10				15	
Sample number	AASHTO	USCS	Cycle number	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000	Average cyclic load (lbs)	Average deforma tion (mils)	e Average a resilient modulus (psi) 20,301 21,157 2	Average MI (psi) at load cycles 500, 800 and 100
			100	33.1	2.429	22,556		50.3	3.861	20,301	
			200	33.3	2.428	22,706		50.9	3.783	21,157	
M-028-W (03-02)	A-3	SP	500	34.1	2.460	23,286	23,003	51.3	3.731	21,613	22,536
			800	33.9	2.374	23,167		51.3	3.644	22,811	
			1000	33.8	2.483	22,555		52.0	3.582	23,185	
			100	32.7	3.357	15,294		49.8	5.258	14,150	
			200	33.4	3.283	16,085		50.3	5.113	14,855	
M-028-W (03-03)	A-3	SP-	500	33.0	3.059	16,876	16,911	50.5	4.774	15,866	15,956
		SM	800	33.8	3.094	16,885		50.9	4.876	15,840	
			1000	33.9	3.175	16,971		50.9	4.722	16,162	
			100	31.7	3.230	15,364		50.3	5.163	14,590	
			200	32.2	3.208	15,857		50.5	5.056	15,302	
U-002-E (03-03)	A-2-4	SM	500	32.7	3.167	16,240	15,984	50.3	4.973	15,412	15,833
0 002 = ()			800	32.7	3.251	15,919		51.1	4.873	15,966	
			1000	32.6	3.286	15,793		51.0	4.793	16,120	
			100	33.8	2.198	25,827		51.4	3.419	24,035	
			200	33.8	2.255	25,821		51.9	3.423	24,209	
I-075-N (03-04)	A-3	SP	500	34.0	2.203	25,887	26,140	51.7	3.456		24,401
2 4/2 ()			800	34.3	2.156	26,592		52.3	3.402		
			1000	34.2	2.263	25,940		52.3	3.348		
			100	33.6	2.390	23,852		51.5	3.757		
			200	33.9	2.392	24,136		51.7	3.775		
U-023-S (04-01)	A-3	SP	500	33.7	2.472	23,456	23,060	51.5	3.807		21,735
0 020 0 (0 1 1 1)			800	33.8	2.440	22,395		51.7	3.700	21,852	
			1000	33.7	2.508	23,330		51.7	3.814	21,828	
			100	34.1	2.034	29,159		51.3	3.595	22,151	
			200	33.0	2.006	28,338		52.3	3.505	23,435	
M-068-W (04-02)	A-2-4	SC-	500	34.1	1.883	30,987	30,958	52.1	3.377	24,481	24,764
(0. (0. (0.)		SM	800	34.4	1.861	30,960		51.6	3.383	24,598	
			1000	34.6	1.980	30,927		51.9	3.299	25,212	

Table B.1 (cont'd)

							Cyclic	stress (psi)			
	Soil T	ype				10				15	
Sample number	AASHTO	USCS	Cycle number	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000
			100	29.4	5.139	8,572		46.6	8.078	8,440	
			200	30.7	4.944	9,491		47.1	7.723	8,966	
M-068-W (04-03)	A-3	SP	500	31.3	4.879	9,725	9,979	48.6	7.368	9,822	10,013
			800	31.7	4.685	10,215		48.8	7.052	10,308	
			1000	31.6	4.806	9,996		48.5	7.166	9,910	
			100	31.7	4.463	10,722		48.7	6.850	10,728	
			200	31.5	4.383	10,903		49.7	6.524	11,210	
M-065-S (04-04)	A-2-4	SM	500	32.1	4.101	11,945	11,943	50.0	6.427	11,637	11,909
111 000 0 (0.0.0)			800	32.3	4.157	11,833		50.3	6.268	11,995	
			1000	32.5	4.190	12,050		49.6	6.038	12,096	
			100	32.5	2.880	17,806		50.5	4.474	16,758	
			200	32.3	2.805	17,979		50.7	4.478	17,269	
M-032-W (04-05)	A-4	SC- SM	500	32.9	2.739	18,915		50.6	4.283	18,002	18,161
141-032 11 (01 05)		SM	800	33.2	2.725	19,303		50.9	4.267	18,269	
			1000	33.1	2.708	19,546	46	50.7	4.208	18,211	
			100	32.1	2.263	23,769		51.4	3.311	24,414	
			200	32.2	2.284	23,491		51.3	3.281	24,858	
U-131-N (05-01)	A-2-4	SM	500	33.3	2.257	24,948	24,651	51.4	3.239	26,201	25,604
0 151 11 (05 04)			800	33.6	2.314	24,548		50.9	3.247	25,241	
			1000	33.8	2.266	24,456		51.9	3.298	25,370	
			100	34.1	1.757	35,135		52.6	2.846	29,879	
			200	34.3	1.708	36,388		51.9	2.861	29,921	
U-127-N (05-04)	A-3	SP	500	34.5	1.687	37,843	37,158	52.9	2.866	30,325	29,949
0-12/11(02 01)			800	35.3	1.727	36,438		51.9	2.901	29,588	
			1000	35.2	1.766	37,194		52.6	2.850	29,935	
			100	30.6	3.211	22,916		48.9	4.652	24,395	
			200	31.3	3.095	24,442		49.0	4.593	25,076	
M-072-W (05-06)	A-6	SC	500	31.7	2.941	26,104	26,492	49.8	4.403	26,622	27,193
141-072-11 (05-00)			800	31.9	2.888	27,204		49.8	4.321	27,183	
			1000	31.2	2.958	26,168		50.2	4.252	27,774	

Table B.1 (cont'd)

							C	yelic stress (ps	si)		
	0.11.00					10				15	
Sample number	Soil T	USCS	Cycle number	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi at load cycles 500 800 and 1000
			100	33.8	2.004	27,798		52.1	3,079	26,746	
			200	33.9	2.055	29,008		52.7	3,027	27,574	
M-132-N (06-01)	A-3	SP	500	34.1	1.984	30,874	31.741	52.6	2.977	28,591	28,997
M-132-N (00-01)	A-3	31	800	34.4	1.960	31,899	51,7-11	53.2	2.989	29,341	
			1000	34.0	1.857	32,449		52.0	2.917	29,059	
			1000	33.4	1.616	26,603		51.6	2.882	26,762	
			200	33.3	1.535	28,072		51.9	2.855	28,300	
1.075 NI (06.02)	A-3	SP	500	33.8	1.461	32,068	32,450	52.3	2.552	31,485	31,187
I-075-N (06-02)	A-3	SF	800	34.5	1.499	32,023	32,430	52.1	2.508	31,026	
			1000	34.4	1.417	33,260		52.7	2.450	31,049	
		-	1000	34.1	1.933	30,572	-	52.5	2.814	29,633	
			200	33.8	1.884	31,084		52.1	2.832	29,692	
TI 021 NI (0(02)	A-3	SP	500	34.6	1.808	32,659	31,867	52.6	2.897	29,123	29,636
U-031-N (06-03)		J.C	800	35.0	1.908	31,347	31,007	52.9	2,861	30,084	
			1000	35.4	1.937	31,594		52.6	2.842	29,701	
		-	1000	33.5	2.456	22,276		51.9	3,650	21,630	
			200	33.7	2.428	23,097		51.7	3.641	21,694	
I-196-N (06-05)	A-2-4	SP-	500	34.2	2.386	23,190	23,030	51.5	3.618	22,017	21,985
1-190-1 (00-03)	A-2-4	SM	800	33.6	2.395	22,525	,	51.7	3.675	21,801	
			1000	33.9	2.371	23,375		52.1	3.637	22,136	
			100	33.6	2.112	26,636		51.2	3.135	25,897	
			200	33.8	2.001	29,046		51.6	3.012	27,403	
M-020-W (07-02)	A-3	SP	500	34.3	1.969	30,442	31,489	51.8	2.891	28,918	31,766
M-020-W (07-02)	A-3	51	800	34.0	1.902	31,795		52.5	2.649	33,296	
			1000	34.1	1.893	32,230		52.7	2.550	33,084	
			100	32.8	2.029	27,192		50.6	3.326	23,445	
			200	33.6	2.032	28,722		50.5	3.436	23,201	
M-020-W (07-02)	A-3	SP	500	33.8	1.969	30,147	30,272	51.7	3.361	25,035	24,896
IVI-UZU-VV (U7-UZ)	14-5	51	800	34.0	1.971	30,271		51.7	3.315	24,950	
			1000	33.9	1.965	30,399		51.6	3.408	24,702	

Table B.1 (cont'd)

							Cycli	ic stress (psi)			
	Soil T	vne				10				15	
Sample number	AASHTO	USCS	Cycle number	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MI (psi) at load cycles 500, 800 and 100
			100	33.7	2.016	28,992		51.2	3,080	25,785	
			200	33.9	2.064	28,380		51.3	3,000	27,443	-
M-020-W (07-02)	A-3	SP	500	33.9	1.961	29,237	29,446	51.4	2.948	28,001	28,593
1V1-020-VV (07-02)	A-3	- 51	800	34.0	2.042	29,357	29,440	51.6	2.893	28,741	20,393
			1000	34.3	1.984	29,743		51.7	2.938	29,037	
			100	33.2	1.883	19,618		51.0	3.025	16,754	
			200	33.1	1.884	19,462		51.0	2.949	18,301	
M-020-W (07-02)	A-3	SP	500	33.6	1,901	20,010	19,693	52.1	2.779	19,917	20,257
W-020-W (07-02)	11.5	Di	800	33.8	1.922	19,736	15,055	52.0	2.722	20,529	20,237
			1000	33.6	1.876	19,334		51.7	2.723		
			100	31.7	2.516	20,521		49.5	4.178	17,679	
			200	32.8	2.321	22,926		50.3	3,959	19,876	
M-020-W (07-02)	A-3	A-3 SP	500	33.1	2.329	24,360	24,320	51.4	3.364	23,953	24,552
111 020 11 (01 02)			800	33.3	2.344	24.091		51.3	3.310	24,799	- ''
			1000	33.8	2.284	24,508		51.4	3.307	24,904	
			100	33.9	1.963	29,497		52.6	3,106	27,496	
			200	34.0	1.935	30,737		52.2	2.999	27,797	
M-020-E (07-03)	A-3	SP	500	34.4	1.881	32,158	32,696	51.9	2.992	28,321	28,182
,			800	34.3	1.941	31,958		52.3	3.019	27,995	
			1000	34.2	1.810	33,972		51.9	3.081	28,230	
			100	42.5	11.329	3,466		72.2	15.047	4,432	
			200	43.7	10.944	3,698		73.5	7.386	4,716	
U-127-N (07-05)	A-6	SC	500	44.3	10.593	3,897	3,984	75.1	6.798	5,246	5,481
			800	44.4	10.260	4,015		75.4	6.602	5,455	
			1000	44.2	10.170	4,041		75.4	12.596	5,742	
			100	52.0	2.068	47,427		82.9	3.013	49,924	
			200	51.7	1.926	50,103		82.3	2.944	50,430	
U-127-N (07-05)	A-6	SC	500	52.8	1.878	53,735	54,737	81.6	2.806	51,951	53,030
			800	51.5	1.860	54,842		82.5	2.821	53,516	
			1000	52.3	1.860	55,634		82.0	2.761	53,623	

Table B.1 (cont'd)

							Cyclic stre	ess (psi)			
						10				15	
Sample number	Soil T	USCS	Cycle number	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000
			100	46.3	6.202	7,133		75.8	10.783	6,642	
			200	46.7	6.185	7,244		76.7	10.605	6,765	
U-127-N (07-05)	A-6	SC	500	46.7	6.248	7,223	7,323	77.2	10.557	6,875	6,925
0-12/ 11 (0/ 03)	11.0		800	47.2	6.196	7,353		77.5	10.534	6,936	
			1000	47.9	6.195	7,395		77.9	10.543	6,965	
			100	44.7	9.544	4,319		74.4	14.108	4,852	
			200	45.8	9.458	4,487		75.7	13.880	5,081	
U-127-N (07-05)	A-6	SC	500	46.2	9.290	4,651	4,713	75.8	13.294	5,339	5,358
0-127-14 (07 05)	11.0		800	46.5	9.278	4,718		75.7	13.131	5,338	
			1000	46.4	9.113	4,770		76.4	13.119	5,398	
			100	30.4	2.658	31,474		47.9	4.349	28,993	
			200	30.9	2.535	33,999		48.7	4.299	30,151	
U-127-N (07-05)	A-6	SC	500	31.5	2.333	36,628	36,054	49.1	4.290	27,523	27,729
0-127-14 (07 00)			800	31.6	2.285	36,290		49.0	4.221	27,851	
			1000	32.5	2.231	35,243		50.2	4.333	27,814	
			100	28.0	7.229	10,631		41.8	12.878	11,660	
			200	28.6	7.191	10,855		42.3	12.581	11,834	
M-061-E (07-06)	A-2-4	SM	500	29.3	6.855	11,362	11,483	43.2	12.189	13,155	12,907
M-001-E (07-00)	21 25 1	D1.1	800	29.6	6.630	11,709		44.2	11.636	12,831	
			1000	28.8	6.826	11,377		44.2	11.476	12,736	
			100	33.1	1.937	29,999		51.2	2.807	30,104	
			200	32.9	1.864	30,417		51.7	2.743	30,517	
M-061-E (08-02)	A-2-4	SM	500	33.8	1.897	32,344	32,231	52.1	2.713	31,551	31,763
WI-001=E (00-02)	11.2.		800	33.8	1.930	32,106		51.9	2.701	31,719	
			1000	34.0	1.875	32,242		52.3	2.728	32,020	
			100	41.4	10.662	3,592		70.9	14.499	4,516	
			200	42.3	10.310	3,829		71.7	13.972	4,771	
U-010-W (08-04)	A-6	SC	500	42.9	9.824	4,076	4,134	72.8	13.214	5,099	5,268
U-010-W (00-04)	71-0	50	800	43.2	9.691	4,164		73.7	12.850	5,323	
			1000	42.9	9,608	4,163		73.8	12.675	5,382	

Table B.1 (cont'd)

							Cyclic s	tress (psi)			
						10				15	
Sample number	Soil T	USCS	Cycle number	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MI (psi) at load cycles 500, 800 and 100
			100	43.2	7.759	5,212		71.7	13.897	4,831	
			200	44.4	7.585	5,439		72.2	13.671	4,937	
U-010-W (08-04)	A-6	SC	500	45,6	7.430	5,791	5,873	73.0	13.508	5,049	5,106
0-010-11 (00-04)	110	50	800	45.9	7.266	5,946		73.6	13.342	5,130	
			1000	46.1	7.252	5,884		73.4	13.283	5,138	
			100	32.4	3.493	14,265		51.1	4.992	15,346	
			200	32.9	3.499	14,932		50.9	4.807	15,758	
I-075-N (08-06)	A-2-4	SC-	500	33.3	3,406	15,448	15,798	51.4	4.785	16,290	16,577
1-073-14 (08-00)	1121	SM	800	33.3	3.297	15,986		51.2	4.676	16,606	
			1000	33.1	3.263	15,960		51.3	4.594	16,836	
			100	33.8	2.123	26,881		52.3	3.220	26,018	
			200	33.9	2.126	27,797		52.8	3.183	26,982	
U-131-S (09-01)	A-3	SP	500	34.5	2.127	29,155	28,793	52.8	3.200	27,204	27,732
0-151 5 (07 01)			800	34.3	2.052	29,674		52.6	3.078	27,868	
			1000	34.6	2.152	27,550		53.2	3.081	28,124	
			100	33.5	2.694	20,127		52.0	4.254	18,607	
			200	33,8	2.624	21,049		51.6	4.205	18,942	
I-096-W (09-02)	A-2-4	SC-	500	33.7	2.566	21,588	22,163	51.5	4.164	19,295	19,597
1-030-11 (03-02)	11.2	SM	800	34.0	2.530	22,509		52.0	4.085	19,756	
			1000	33.8	2.473	22,392		51.2	3.999	19,740	
			100	33.9	1.997	28,736		51.1	3.381	23,393	
			200	34.3	2.019	29,283		51.9	3.341	24,843	
II-131-S (09-03)	A-3	SP	500	34.9	1.990	30,848	30,368	52.1	3.006	27,525	28,022
U-131-S (09-03)			800	34.0	1.948	30,648		52.4	3.010	27,615	
			1000	34.4	1.983	29,608		52.6	2.953	28,925	
			100	34.0	2.036	36,835		52.5	2.817	33,838	
			200	33.9	2.070	37,497		52.0	2.833	34,449	
U-131-S (09-05)	A-1-b	SP	500	34.5	1.978	38,818	38,498	52.5	2.776	35,389	35,390
0-151 5 (07 05)			800	34.9	1.943	38,902		52.5	2.796	35,440	
			1000	34.8	2.007	37,773		52.5	2.856	35,340	

Table B.1 (cont'd)

							Cyclic	stress (psi))		
	C TT					10				15	
Sample number	Soil T	USCS	Cycle number	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (ps at load cycles 50 800 and 1000
			100	33.4	2.943	17,969		51.4	4.275	18,433	
			200	33.5	2.928	18,261		52.0	4.175	19,068	
M-044-E (09-07)	A-2-4	SM	500	33.9	2.948	18,534	18,434	51.6	4.086	19,511	19,654
011 2 (05 07)			800	33.7	2.841	18,744		51.6	4.043	19,663	
			1000	34.0	3.046	18,023		51.9	4.041	19,788	
			100	33.1	3.415	15,148		50.4	5.279	14,639	
			200	33.1	3.421	15,097		50.5	5.143	15,004	
M-024-S (09-09)	A-2-4	SM	500	33.6	3.458	15,204	15,156	50.6	4.889	15,786	15,854
02 1 5 (05 05)			800	32.9	3.427	14,945		50.8	4.853	15,880	
			1000	33.3	3.378	15,318		51.0	4.891	15,897	
			100	34.0	1.985	29,263		52.2	3.321	25,428	
			200	34.1	2.074	29,172		52.2	3.248	25,709	
I-069-E (09-10)	A-3	SP	500	34.4	2.071	28,746	232 012	52.3	3.163	26,255	26,095
1-005-12 (05 10)			800	34.3	2.079	29,232		51.9	3.231	25,802	
			1000	34.8	2.160	28,012		52.4	3.192	26,227	
			100	33.5	3.483	14,917		51.2	4.732	16,473	
			200	33.5	3.542	14,864		51.1	4.694	16,512	
I-069-N (10-01)	A-3	SP-	500	33.1	3.344	15,551	15,873	51.3	4.485	17,528	17,394
1-009-14 (10 01)		SM	800	33.8	3.457	15,312		50.8	4.533	17,144	
			1000	34.0	3.162	16,756		51.7	4.526	17,509	
			100	32.9	2.180	41,549		50.1	3.266	40,469	
			200	33.4	2.210	42,092		50.5	3.275	41,776	
I-096-W (10-03)	A-2-6	SC	500	33.8	2.175	43,219	43,824	51.5	3.167	42,767	37,712
1-090-W (10-03)	71-2-0	50	800	34.1	2.196	44,499		49.2	3.779	34,806	
			1000	34.1	2.203	43,754		48.7	2.686	35,563	
			100	33.4	2.846	18,890		51.4	4.400	18,049	
			200	33.5	2.771	19,221		51.8	4.330	18,293	
I-069-N (10-04)	A-2-4	SM	500	33.5	2.839	19,530	19,190	51.0	4.232	18,653	18,963
1-009-14 (10-04)	112		800	33.4	2.862	19,049		51.5	4.107	18,952	
			1000	33.9	2.802	18,990		51.6	4.076	19,284	

Table B.1 (cont'd)

							Cyclic s	tress (psi)			
						10				15	
Sample number	Soil T	USCS	Cycle number	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000	Average cyclic load (lbs)	Average deformation (mils)	15 Average resilient modulus (psi) 3,469 4,766 5,3712 5,850 9,168 9,504 10,908 11,495 11,778 29,788 30,484 28,203 25,752 26,314 27,442 26,857 27,817 17,216 17,262 16,817 16,601 16,498	Average MF (psi) at load cycles 500, 800 and 1000
			100	25.4	8.607	4,273		37.6	15.895	3,469	
			200	25.9	8.326	4,542		41.3	12.494	4,766	
I-069-N (10-05)	A-2-4	SM	500	27.0	7.715	5,123	5,295	43.1	11.611	5,377	5,646
1 000 11 (10 10)			800	27.2	7.630	5,241		43.7	11.104	5,712	
			1000	27.6	7.381	5,521		43.8	11.027	5,850	
			100	30.1	5.580	8,027		47.9	7.602	9,168	
			200	30.9	5.176	8,832		48.1	7.430	9,504	
I-096-W (10-09)	A-2-4	SM	500	31.2	5.002	9,361	9,518	49.5	6.721	10,908	11,394
1 030 11 (14 44)			800	31.0	4.917	9,419		49.5	6.363	11,495	
			1000	31.6	4.875	9,775		49.8	6.307	11,778	
			100	32.9	1.119	30,534		51.7	1.595	29,788	
			200	33.8	1.119	32,960		52.0	1.567	30,484	
I-069-N (11-01)	A-3	SP-	500	34.0	1.063	30,406	30,733	52.0	2.994	28,203	28,147
1000 ((11 01)		SM	800	34.0	1.119	30,967		52.2	2.974	28,154	
			1000	34.8	1.119	30,827		51.9	2.995	28,083	
			100	33.6	1.694	36,073		51.2	3.205	25,752	
			200	33.3	1.627	37,965		52.2	3.144	26,314	
I-094-W (11-02)	A-3	SP	500	34.1	1.487	45,141	44,521	52.8	3.102	27,442	27,372
1001 11 (11 0=)			800	32.6	1.432	42,908		51.9	3.136	26,857	
			1000	34.1	1.453	45,513		52.6	3.020	27,817	
			100	31.9	2.614	19,615		50.2	4.354	17,216	
			200	31.3	2.561	19,255		50.7	4.426	17,262	
M-060-W (11-03)	A-2-4	SC-	500	32.0	2.553	19,808	19,812	50.8	4.481	16,817	16,639
W 000 W (11 00)		SM	800	32.4	2.561	19,861		50.7	4.560	16,601	
			1000	32.2	2.563	19,768		50.9	4.669	16,498	
			100	33.7	2.252	23,451		52.3	3.358	24,923	
			200	33.8	2.220	24,393		52.6	3.317	25,291	
I-069-S (11-05)	A-4	SC-	500	34.0	2.095	25,903	27,303	52.5	3.274	25,489	25,645
1000 0 (11 00)		SM	800	34.2	2.014	26,908		51.6	3.267	25,632	
			1000	34.3	1.931	29,098		52.2	3.245	25,814	

Table B.1 (cont'd)

							Cyclic s	tress (psi)			
	C 11.00					10				15	
Sample number	Soil T	USCS	Cycle number	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000
			100	33.3	1.963	28,024		51.3	3.519	22,990	
			200	32.5	2.028	27,129		52.0	3.594	23,024	
I-094-W (12-01)	A-2-4	SC-	500	34.1	2.041	28,985	27,636	51.8	3.438	23,554	23,872
()		SM	800	33.6	2.129	26,615		52.0	3.414	24,001	
			1000	33.9	2.113	27,308		52.4	3.534	24,060	
			100	33.6	2.783	19,527		50.8	4.851	15,566	
			200	33.6	2.766	19,827		50.9	4.881	15,796	
I-094-W (12-03)	A-3	SP-	500	33.4	2.814	18,886	18,139	50.4	4.789	16,090	15,977
()		SM	800	33.9	3.021	17,820		50.8	4.831	15,893	
			1000	34.1	3.066	17,711		50.8	4.798	15,947	
			100	33.3	2.862	18,848		50.8	4.340	18,416	
			200	33.3	2.930	19,047		51.3	4.323		
U-012-E (12-04)	A-2-4	SP-	500	33.6	2.781	19,237	19,234	51.2	4.264	18,191	18,343
		SM	800	34.1	2.881	19,210		51.4	4.312	18,324	
			1000	34.1	2.766	19,255		51.3	4.266	18,515	
			100	33.9	2.675	19,996		51.4	4.042	19,797	
			200	33.8	2.698	20,013		51.4	3.956	20,110	
I-094-W (12-06)	A-2-4	SM	500	33.7	2.821	19,357	19,425	52.6	3.873	21,249	21,382
			800	33.8	2.796	19,802		51.7	3.733	21,552	
			1000	34.0	2.792	19,115		51.5	3.774	21,346	
			100	34.4	3.172	17,093		51.9	5.000	15,746	
			200	34.0	3.101	17,359		50.0	4.846	15,814	
M-024-S (13-01)	A-4	SM	500	34.8	3.149	17,853	17,950	51.5	4.878	16,213	16,175
			800	34.6	3.049	17,891		51.6	4.844	16,042	
			1000	35.1	3.052	18,106		51.8	4.844	16,271	
			100	33.6	2.042	28,216		51.7	3.362	23,959	
			200	33.5	2.112	27,648		51.9	3.351	24,234	
M-059-W (13-02)	A-3	SP	500	33.9	2.186	26,464	24,863	52.1	3.478	23,699	23,810
			800	33.9	2.368	24,623		51.7	3.453	23,882	
			1000	33.8	2.439	23,502		51.9	3.436	23,849	

Table B.1 (cont'd)

							Cyclic s	tress (psi)			
	0.17					10				15	
Sample number	Soil T	USCS	Cycle number	Average cyclic load	Average deformation (mils)	Average resilient modulus	Average MR (psi) at load cycles 500, 800 and 1000	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus	Average MR (psi) at load cycles 500, 800 and 1000
	AASIIIO	OBCB		(lbs)		(psi)	800 and 1000			(psi)	800 and 1000
			100	32.8	2.693	20,399		51.2	4.441	17,533	
			200	32.5	2.615	20,565		50.7	4.353	17,856	
I-094-W (13-04)	A-3	SP	500	33.2	2.592	21,384	21,470	50.8	4.245	18,355	18,859
			800	33.5	2.589	21,598		50.8	4.133	18,836	
			1000	33.4	2.648	21,427		51.2	4.040	19,387	
			100	34.0	2.515	22,197		51.6	3.907	20,649	
		SP-	200	33.8	2.443	23,009		51.4	3.846	20,641	
U-023-N (13-07)	A-3	SM-	500	34.0	2.573	22,214	22,629	51.2	3.961	20,201	20,593
		Divi	800	33.9	2.428	22,768		52.4	3.910		
			1000	34.7	2.477	22,904		52.2	3.952	20,678	
			100	29.7	4.124	16,710		45.5	6.531	16,006	
			200	30.1	4.182	16,898		46.1	6.637	15,991	
M-010-E (13-08)	A-6	CL	500	30.2	4.256	16,855	17,012	46.3	6.562	16,218	16,345
			800	30.7	4.226	16,995		46.5	6.433	16,417	
			1000	30.5	4.202	17,186		46.6	6.492	16,399	
			100	48.6	3.375	14,374		77.7	7.441	9,934	
			200	49.6	3.334	15,053		78.1	7.453	9,867	
M-010-E (13-08)	A-6	CL	500	49.6	3.271	15,423	15,561	78.2	7.743	9,627	9,553
			800	49.8	3.258	15,631		78.2	7.779	9,528	
			1000	49.8	3.257	15,629		78.3	7.849	9,504	
			100	51.5	1.331	31,968		83.3	1.796	36,929	
			200	51.8	1.291	36,534		82.8	1.731	38,488	
M-010-E (13-08)	A-6	CL	500	52.7	1.218	43,564	44,641	82.5	1.808	40,155	41,989
			800	52.3	1.211	45,089		82.2	1.629	42,399	
			1000	51.8	1.152	45,271		82.4	1.793	43,414	
			100	39.6	7.658	8,407		46.6	8.078	8,440	
			200	41.3	7.157	9,399		47.1	7.723	8,966	
M-010-E (13-08)	A-6	CL	500	42.2	6.971	9,004	9,713	48.6	7.368	8,822	8,280
0.0 2 (15 00)			800	43.5	6.473	9,818		48.8	7.052	8,108	
			1000	44.0	6.376	10,317		48.5	7.166	20,900 20,678 16,006 15,991 16,218 16,417 16,399 9,934 9,627 9,528 9,504 36,929 38,488 40,155 42,399 43,414 8,440 8,966 8,822	

Table B.1 (cont'd)

							Cycli	c stress (psi)			
	Soil T	T/DO				10			1	5	
Sample number	AASHTO		Cycle number	Average cyclic load	Average deformation (mils)	Average resilient modulus	Average MR (psi) at load cycles 500,	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus	Average MI (psi) at load cycles 500,
	AASHIO	USCS		(lbs)	(IIIII)	(psi)	800 and 1000	(100)	(IIIIo)	(psi)	800 and 100
			100	30.3	2.283	11,369		48.9	3.899	14,813	
			200	31.0	2.259	13,560		48.7	3.804	15,893	
I-075-S (14-01)	A-7-6	SC	500	31.3	2.074	17,389	18,221	48.9	3.721	16,938	17,842
			800	31.7	1.971	18,449		49.6	3.586	18,253	
			1000	32.0	2.067	18,825		49.6	3.573	18,336	
			100	51.3	2.172	32,901		82.3	2.390	32,808	
			200	51.2	1.994	36,098		82.8	2.299	31,287	
I-075-S (14-01)	A-7-6	SC	500	52.3	1.815	31,799	32,510	82.7	2.045	29,226	29,860
			800	52.3	1.481	32,377		82.4	1.858	30,295	
			1000	51.7	1.417	33,354		82.3	1.668	30,060	
			100	35.0	10.936	5,114		61.1	14.155	6,907	
		A-7-6 SC	200	35.9	9.896	5,982		61.6	13.624	7,285	
I-075-S (14-01)	A-7-6		500	36.6	9.349	7,441	7,187	62.5	12.617	7,928	8,386
			800	36.7	8.808	7,284		63.5	12.002	8,545	
			1000	37.3	8.616	6,835		64.1	11.896	8,685	
			100	32.7	2.313	21,994		51.7	3.526	19,968	
			200	33.0	2.337	22,227		52.0	3.540	20,296	
U-024-S (14-04)	A-3	SP	500	33.5	2.305	22,633	22,765	52.3	3.336	21,874	21,913
			800	33.6	2.300	22,813		52.1	3.396	21,707	
			1000	33.6	2.297	22,849		52.4	3.329	22,159	
			100	42.5	10.621	3,715		65.6	19.895	3,023	
			200	42.7	10.593	3,736		65.4	19.906	3,021	
M-153-E (14-06)	A-7-6	SC	500	42.8	10.681	3,717	3,732	66.4	20.023	3,036	3,015
			800	42.9	10.628	3,745		66.4	20.120	3,014	
			1000	43.1	10.729	3,733		66.0	20.123	2,995	
			100	29.2	13.397	3,483		65.6	19.995	4,023	
			200	30.3	12.818	3,798		65.4	19.996	3,821	
M-153-E (14-06)	A-7-6	SC	500	32.1	12.062	4,285	4,430	66.4	20.017	3,936	3,915
(* * * * * *)			800	32.8	11.875	4,471		66.4	21.120	3,814	
			1000	33.0	11.708	4,535		66.0	21.123	3,995	

Table B.1 (cont'd)

Sample number	Soil Type AASHTO USCS		Cycle number	Cyclic stress (psi)								
						10		15				
				Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus	Average MI (psi) at load cycles 500, 800 and 100	
		0000		` ′		4 /	800 and 1000			(psi)	800 and 1000	
M-153-E (14-06)	A-7-6	SC	100	33.8	2.378	38,348	40,902	51.2	3.050	42,427	44,483	
			200	34.4	2.254	39,970		51.5	2.964	42,728		
			500	34.5	2.223	40,365		51.4	3.004	43,684		
			800	34.0	2.119	41,453		51.5	2.965	44,394		
			1000	33.7	2.120	40,889		52.2	2.876	45,372		
M-053-S (14-07)	A-3	SP	100	33.6	2.237	25,772	25,738	51.5	3.727	21,646	22,296	
			200	33.6	2.150	25,870		51.7	3.731	21,643		
			500	33.9	2.249	26,465		51.9	3.688	22,217		
			800	34.0	2.258	25,493		52.0	3.646	22,403		
			1000	33.7	2.315	25,255		51.8	3.622	22,268		
I-094-W (14-09)	A-7-6	CL	100	49.1	5.308	8,870	9,955	77.2	9.347	7,782	8,080	
			200	49.1	5.217	9,211		77.2	9.253	7,846		
			500	49.2	4.966	9,690		77.1	9.107	7,995		
			800	48.8	4.777	9,943		77.8	9.010	8,089		
			1000	49.2	4.675	10,234		77.8	8.918	8,156		
I-094-W (14-09)	A-7-6	CL	100	51.2	2.114	45,953	73,344	81.9	2.609	57,985	70,094	
			200	51.1	1.853	52,917		82.8	2.466	61,580		
			500	52.2	1.602	67,009		82.5	2.327	67,663		
			800	52.7	1.426	75,719		82.2	2.190	70,504		
			1000	51.2	1.383	77,304		81.8	2.205	72,116		
I-094-W (14-09)	A-7-6	CL	100	33.0	1.604	53,229	60,217	50.7	2.211	57,722	60,303	
			200	32.7	1.585	55,517		51.7	2.228	59,950		
			500	33.8	1.530	60,326		51.7	2.152	60,448		
			800	34.1	1.462	60,280		51.8	2.104	60,142		
			1000	34.2	1.459	60,046		52.3	2.044	60,318		
M-053-S (15-02)	A-2-4	SM	100	33.3	2.923	18,400	18,342	51.1	4.424	18,022	18,060	
			200	33.2	2.914	18,486		51.0	4.470	18,018		
			500	33.4	2.921	18,171		51.4	4.471	17,918		
			800	33.4	2.963	18,372		51.3	4.416	18,113		
			1000	33.4	2.894	18,483		51.0	4.372	18,149		

Table B.1 (cont'd)

Sample number	Soil Type		Cycle number	Cyclic stress (psi)								
				10				15				
				Average cyclic load	Average deformation	Average resilient modulus	Average MR (psi) at load cycles 500,	Average cyclic load	Average deformation	Average resilient modulus	Average MR (psi) at load cycles 500,	
	AASHTO	USCS		(lbs)	(mils)	(psi)	800 and 1000	(lbs)	(mils)	(psi)	800 and 1000	
M-090-E (15-04)	A-4	CL	100	34.6	1.494	65,657	67,841	51.5	2.170	60,204	62,065	
			200	34.2	1.492	65,191		51.9	2.192	61,455		
			500	34.6	1.487	67,087		51.7	2.159	61,666		
			800	34.6	1.510	68,335		51.7	2.128	62,105		
			1000	34.5	1.398	68,102		52.0	2.212	62,423		
M-025-S (15-05)	A-3	SP	100	34.0	1.585	37,971	40,152	52.6	2.503	35,506	35,481	
			200	34.0	1.601	38,716		52.2	2.445	35,369		
			500	34.1	1.588	39,705		51.7	2.500	35,195		
			800	34.9	1.643	40,506		52.3	2.468	35,680		
			1000	35.0	1.595	40,246		52.0	2.437	35,567		
M-019-S (15-07)	A-2-4	SM	100	34.3	2.740	19,702	22,233	51.3	4.328	18,630	19,500	
			200	35.7	2.770	20,960		51.9	4.203	18,904		
			500	35.0	2.584	21,859		51.7	4.118	19,310		
			800	35.2	2.539	22,379		51.4	4.096	19,441		
			1000	34.6	2.572	22,462		53.2	4.183	19,750		

References

- 1982 Quaternary Geology Map of Michigan. "Department of Natural Resources" (1982) [Online] available http://www.deq.state.mi.us/documents/deq-ogs-gimdl-GGQGM.pdf, January 5, 2007.
- AASHTO. (1993). "American Association of State Highway and Transportation Officials, Guide for Design of Pavement Structures." Washington, D. C.
- Baladi, G.Y. and Boker, T.D. (1978). "Resilient Characteristics of Michigan Cohesionless Roadbed Soils in Correlation to the Soil Support Values." Final Report of Research Conducted under Research Grant 75-1679, Michigan State University, East Lansing, Michigan.
- Boateng-Poku, Y., and Drumm, E. C. (1989). "Hyperbolic Model for the Resilient Modulus Response of Fine-Grained Subgrade Soil." *Resilient Moduli of Soils ASCE Geotechnical Special Publication No. 24*, 1-14.
- Coree, B., Ceylan, H. and Harrington, D., Implementing the mechanistic empirical pavement design guide. Technical Report, IHRB Project TR-509, 2005 (Center for Transportation Research and Education, Iowa State University).
- Das, Braja. M. (2004). *Principles of Foundation Engineering*, Thompson Brooks/Cole, Pacific Grove, CA 93950.
- Dawson, Tyler A. (2008). "Backcalculated Subgrade Resilient Modulus Design Values for the State of Michigan," MS. Thesis, Michigan State University, East Lansing, draft.
- Dehlen, G. L. (1969). "The Effect of Non-Linear Material in the Behavior of Pavements Subjected to Traffic Loads," Ph.D. Thesis, University of California, Berkley.
- Finn, F. N., Nair, K., and Monismith, C. L. "Application of Theory in the Design of Asphalt Pavements." 3 rd Proceedings International Conference on the Structural Design of Asphalt Pavements, University of Michigan, Ann Arbor, Michigan, 392-409.
- George, K. P. (2003). "Falling Weight Deflectometer for Estimating Subgrade Resilient Moduli." *FHWA/MS-DOT-RD-03-153*, The Mississippi Department of Transportation.
- George, K. P. (2004). "Prediction of Resilient Modulus from Soil Index Properties." FHWA/MS-DOT-RD-04-172, The Mississippi Department Of Transportation.
- George, K. P., Bajracharya, M., and Stubstad, R. (2004). "Subgrade characterization employing the falling weight deflectometer." *Transportation Research Record* (1869), 73.

- Goitom, T. (1981). "Characteristics of Michigan Cohesive Subgrade Soils under Cyclic Loading," Ph.D. Thesis, Michigan State University, East Lansing.
- Groeger, J. L., Rada, G. R., and Lopez, A. "AASHTO T307-Background and Discussion," *Resilient Modulus Testing for Pavement Components, ASTM STP* 1437, 2003.
- Gudishala, Ravindra. (2004). "Development of Resilient Modulus Prediction Models for Base and Subgrade Pavement Layers From In Situ Devices Test Results," MS Thesis, Louisiana State University, Baton Rouge.
- Han, Yuh-Puu, Petry, T. M., and Richardson, D. N. (2006). "Resilient Modulus Estimation System for Fine-Grained Soils." *Transportation Research Record*(1967), 69-77.
- Hardcastle, J. H. (1992). "Subgrade Resilient Modulus for Idaho Pavements." *FHWA Report No. RP110-d*, Idaho Transportation Department.
- Harichandran, R. S., Ramon, C. M., and Baladi, G. Y. (1994). "MICHBACK user's manual." Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan.
- Holtz, Robert D., Kovacs, William D. (1981). An Introduction to Geotechnical Engineering, Prentice Hall, Upper Saddle River, NJ 07458.
- Huang, Y. H. (2004). *Pavement Analysis and Design*, Pearson Prentice Hall, Upper Saddle River, NJ 07458.
- Janoo, V., Irwin, L., and Haehnel, R. (2003). "Pavement Subgrade Performance Study." *ERDC/CRREL TR-03-5*, US Army Corps of Engineers.
- Janoo, V. C., Jr., J. J. B., Durell, G. D., and Jr., C. E. S. (1999). "Resilient Modulus for New Hampshire Subgrade Soils for Use in Mechanistic AASHTO Design." Special Report 99-14, US Army Corps of Engineers.
- Kathleen, T. H., Carlos, E. C., Samuel, H. C., and Robert, P. E. (2001). "Rehabilitation Strategies for Highway Pavements." *NCHRP Web Document 35 (Project C1-38): Contractor's Final Report*, NCHRP.
- Kathleen, T. H., and Crovetti, J. A. (2000). "LTPP Data Analysis:Relative Performance of Jointed Plain Concrete Pavement with Sealed and Unsealed Joints." NCHRP Web Document 32 (Project SP20-50[2]): Contractor's Final Report, NCHRP.
- Lentz, R. W. (1979). "Permanent Deformation of Cohesionless Subgrade Material under Cyclic Loading," Ph.D. Thesis, Michigan State University, East Lansing.
- Li, John Chien-Chung. (1979). "Dynamic Properties of Frozen Granular Soils," Ph.D. Thesis, Michigan State University, East Lansing.

- Lie, Cheng., and Evett, J. B. (2008). Soils and Foundation 7th ed. Pearson Prentice Hall, Upper Saddle River, NJ 07458.
- Maher, A., Bennert, T., Gucunski, N., and Walter J. Papp, J. (2000). "Resilient Modulus Properties of New Jersey Subgrade Soils." *FHWA NJ 2000-01*, FHWA.
- Maher, M. H., J., P. J. W., and Gucunski, N. (1996). "Measurement of Soil Resilient Properties Using Non-contacting Proximity Sensors." *Transportation Research Record* (1548), 16-23.
- Marr W.A., Hankour R., Werden S.K. (2003). "A Fully Automated Computer Controlled Resilient Modulus Testing System." *ASTM STP 1437*, 141-151.
- Nazarian, S., and Feliberti, M. (1993). "Methodology for Resilient Modulus Testing of Cohesionless Subgrades." *Transportation Research Record* (1406), 108-115.
- NCHRP (2004). Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures. Final Report. National Cooperative Highway Research Program (NCHRP) Project 1-37A, Washington, D.C.
- NHI Course No 131008, "Techniques for Pavement Rehabilation", Reference manual, US Department of Transportation, Federal Highway Administration, National Highway Institute (NHI), publication number FHWA NHI-98-033, revised August 1998.
- Pezo, R.F., G. Claros, and W.R. Hudson. "An Effective Resilient Modulus Test for Subgrades and Nongranular Subbase Material," Presented at 71st Annual Meeting of the Transportation Research Board, Washington, D.C., 1992.
- Pezo, R., and Hudson, W. R. (1994). "Prediction Models of Resilient Modulus for Nongranular Materials." *Geotechnical Testing Journal*, 17(3), 349-355.
- Pezo, R. F., Kim, D. S., Stokoe II, K. H., and Hudson, W. R. (1991). "A Reliable Resilient Modulus Testing System." *Transportation Research Record* (1307), 90-98.
- Pierce, L. M. (1999). "Development of a Computer Program for the Determination of the AREA Value and Subgrade Modulus using Dynatest FWD." Washington State Department of Transportation.
- Ping, W. V., Yang, Z., and Gao, Z. (2002). "Field and Laboratory Determination of Granular Subgrade Moduli." *Journal of Performance of Constructed Facilities*, Vol. 16(No. 4), 149-159.
- Prozzi J.A and F. Hong (2006). "Seasonal Time Series Models to Support Traffic Input Data for Mechanistic-Empirical Design Guide." *Transportation Research Record* (1947), 175 184.

- Quintus, H. V., and Killingsworth, B. (1998). "Analyses Relating to Pavement Material Characteriztions and Their Effects on Pavement Performance." FHWA-RD-97-085, FHWA.
- Rada, G., and Witczak, M. W. (1981). "Comprehensive Evaluation of Laboratory Resilient Moduli Results for Granular Material." *Transportation Research Record*(810), 23-33.
- Rahim, A., and George, K. P. (2003). "Falling weight deflectometer for estimating subgrade elastic moduli." *Journal of Transportation Engineering*, 129(1), 100.
- Richart, F. E. Jr., Hall. J. R. Jr., and Woods, R.D. (1970). Vibrations of Soils and Foundations, Prentice-Hall International Series, Englewood Cliffs, NJ.
- Seed, H. B., Chan, C. K., and Lee, C. E. "Resilient Characteristics of Subgrade Soils and Their Relation to Fatigue Failures in Asphalt Pavements." *Proceedings International Conference on the Structural Design of Asphalt Pavements*, University of Michigan, Ann Arbor, Michigan, 611-636.
- Standard Specifications for Transportation Materials and Methods of Sampling and Testing, AASHTO. Washington, D. C., 2001.
- Stubstad, R. N., Lukanen, E. O., Tayabji, S. D., and Clevenson, M. L. (2002). "LTPP Data Analysis: Feasibility of Using FWD Deflection Data to Characterize Pavement Construction Quality." *NCHRP's Project 20-50(9)*, Final Report, NCHRP, NCHRP's Project 20-50(9), Final Report.
- Sukumaran, B., Kyatham, V., Shah, A., Sheth, D. (2002). "Suitability of Using California Bearing Ratio Test to Predict Resilient Modulus." *Presented for the Federal Aviation Administration Airport Transfer Conference*.
- Svasdisant, Tunwin (2003). "Analyses of Top-Down Cracking in Rubblized and Flexible Pavements," Ph.D. Thesis, Michigan State University, East Lansing.
- Thompson, M. R., and Robnett, Q. L. (1976), "Final Report, Resilient Properties of Subgrade Soils." Illinois Cooperative Highway and Transportation Serial No. 160, University of Illinois, Urbana-Champaign, Illinois
- Thompson, M. R., and Robnett, Q. L. (1979). "Resilient Properties of Subgrade Soils." Transportation Engineering Journal of ASCE, 105(TE1), 71-89.
- United States Department of Agriculture. (1992). "Soil Survey of Ingham County, Michigan. National Cooperative Soil Survey.
- Web Soil Survey. "Natural Resources Conservation Services" [Online] available http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx, January 23, 2007.

- Yau, A., and Quintus, H. V. (2002), "Study of LTPP Laboratory Resilient Modulus Test Data and Response Characteristics" *FHWA-RD-02-051*, FHWA
- Yoder, E.J. (1959). *Principles of Pavement Design*, John Wiley & Sons, Inc., New York, NY.
- Young, M. A., and Baladi, G. Y. (1977), "Repeated Load Triaxial Testing State of the Art" Final Report of Research Conducted under Research Grant 75-1679, Michigan State University, East Lansing, Michigan.

