2008 on con-0 to ~z~ Egg Eng 9%‘6 4.523 2 This is to certify that the thesis entitled ANALYSIS OF THE OCCURRENCE OF MICROCONCHIDS ON MIDDLE DEVONIAN BRACHIOPODS FROM THE MICHIGAN BASIN: IMPLICATIONS FOR MICROCONCHID AND BRACHIOPOD AUTECOLOGY presented by Joshua E. Barringer has been accepted towards fulfillment of the requirements for the MS. degree in Geological Sciences Major Vifiessor’s Signature fiflfly 7% 2006/ Date MSU is an afiinnative-action, equal-opportunity employer PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. DAIEDUE DATEDUE DAIEDUE 6/07 p:/CIRCIDateDue.indd-p.1 ANALYSIS OF THE OCCURRENCE OF MICROCONCHIDS ON MIDDLE DEVONIAN BRACHIOPODS FROM THE MICHIGAN BASIN: IMPLICATIONS FOR MICROCONCHID AND BRACHIOPOD AUTECOLOGY By Joshua E. Barringer A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Geological Sciences 2008 ABSTRACT ANALYSIS OF THE OCCURRENCE OF MICROCONCHIDS ON MIDDLE DEVONIAN BRACHIOPODS FROM THE MICHIGAN BASIN: IMPLICATIONS FOR MICROCONCHID AND BRACHIOPOD AUTECOLOGY By Joshua E. Barringer Microconchids were a group of small encrusting organisms that secreted a spirorbiform shell, almost identical to that of the modern annelid Spirorbis. This study documents the occurrences of Microconchus on 226 specimes of Mucrospirifer sp. and 200 specimens of Strophodonta demissa, both of which are Middle Devonian brachiopods from the Michigan Basin The occurrences are described in terms of microconchid shell diameter, on which brachiopod valve the microconchid occurs, the location on the valve where the microconchid occurs, where the microconchid lies in relation to brachiopod shell ornamentation or microtopography, and the direction in which the microconchid shell aperture Opens. This study concludes that 1) in the samples studies, strophodontids are encrusted by Microconchus more often than spiriferids, 2) the average Microconchus size was similar between S. demissa and Mucrospirifer sp., 3) strophodontids occurring in the Potter Farm Member have more microconchids than other literature reports, 4) a greater number of microconchids settled on either side of the center of the brachiopod valve than settled on the center of the valve or along the commissure, 5) microtopographically, microconchids prefer the grooves of the costae over all other regions, 6) the gathered data support the previously published life position of Mucrospirifer sp. (resting on the hinge) and Lescinsky’s (1995) published life position of S. demissa (convex valve up). To my beautiful wife, who has filled my life with endless happiness iii ACKNOWLEDGEMENTS I would like to thank Dr. Robert Anstey for his guidance on the statistical aspects of this thesis, and Dr. Catherine Yansa for her insight as someone who doesn’t “live” with the brachiopods. I would also like to thank my advisor Dr. Danita Brandt for helping me shape my thoughts during this entire process, and for her infinite patience with me (especially in the past few months). Joe Hannibal and Doug Dunn at the Cleveland Museum of Natural History and Dan Miller at the University of Michigan Museum of Paleontology were all extremely helpful in granting me access to specimens. Dan also agreed to access my Strophodonta demissa specimens to the UMMP collection. Much thanks is also in order for my undergraduate professors in the Department of Geology (now the Depaitment of Physical Sciences) at Olivet Nazarene University — Dr. Max Reams, Priscilla Skalac, and Dr. Charles Carrigan. Their enthusiasm and support are what started me down the geologic path, and their encouragement is what led me to continue my education here at MSU. This research was funded in part by the Aureal T. Cross Endownment from the Michigan State University Department of Geology and the PROM/SE Project at Michigan State University. iv TABLE OF CONTENTS LIST OF TABLES .................................................................................... vii LIST OF FIGURES ................................................................................... ix INTRODUCTION .................................................................................... 1 TAXONOMIC POSITION OF MICROCONCHUS ............................................... 3 MATERIALS AND METHODS ................................................................... 8 Materials ........................................................................................ 8 Field Locality ................................................................................. 8 Statistical Analysis ........................................................................... 9 Microconchid Location Analysis ................................................ 10 Nearest Neighbor Analysis ...................................................... 10 Water Flow Pattern Analysis .................................................... 1 1 RESULTS ............................................................................................ 12 Microconchid Location Analysis ......................................................... 13 Nearest Neighbor Analysis ............................................................... 18 Water Flow Pattern Analysis .............................................................. 21 DISCUSSION ........................................................................................ 27 Microconchid Abundance ................................................................. 27 Comparisons ................................................................................. 28 Microconchids and Microtopography of Brachiopod Shells ......................... 3O Nearest Neighbor Analysis ............................................................... 30 Water Flow Pattern Analysis ............................................................. 32 Microconchus and Spiriferid Autecology ............................................... 33 Microconchus and Strophodontid Autecology ......................................... 33 Limitations .................................................................................. 35 Further Work ................................................................................ 36 CONCLUSIONS .................................................................................... 37 APPENDICES ....................................................................................... 39 Appendix A: Additional Description of Field Locality ............................... 39 Appendix B: Specimens Used in Nearest Neighbor and Water Flow Analyses. . .42 Appendix C: Coordinates Used in Nearest Neighbor and Water Flow Analyses..43 Appendix D: Aperture Orientation Angles ............................................. 50 Appendix E: Brachiopod Specimen Data ............................................... 52 Appendix F: Microconchid Specimen Data ............................................. 65 Appendix G: Rose Diagrams Generated From Water Flow Vector Analysis. ...1 11 REFERENCES .................................................................................... 1 15 Vi LIST OF TABLES Table 1 — Summary of raw specimen data, including specimen dimensions and microconchid abundance .................................................................. 12 Table 2 — Occurrences of microconchids on the Strophodonta specimens .................. 13 Table 3 — Occurrences of microconchids on the Mucrospirifer sp. specimens ............. 14 Table 4 — Results of chi square analyses for shell region data ................................. 15 Table 5 - Occurrence of microconchids by microtopographic category ..................... 16 Table 6 — Occurrence of microconchids by microtopographic category (excluding the unknown and interior categories) ......................................................... 16 Table 7 — Occurrence of microconchids by microtopographic category (excluding the unknown and interior categories) ......................................................... 17 Table 8 — Results of chi square analyses for shell microtopographic data ................... 18 Table 9 - Results of the nearest neighbor analysis for the center coordinates of the pedicle specimens ........................................................................... 19 Table 10 — Results of the nearest neighbor analysis for the center coordinates of the brachial interior surface specimens ...................................................... 19 Table 11 — Results of the nearest neighbor analysis for the aperture coordinates of the pedicle specimens .......................................................................... 20 Table 12 — Results of the nearest neighbor analysis for the aperture coordinates of the brachial interior surface specimens ....................................................... 21 Table 13 —- Mean angle, Rayleigh’s spread value, chi square value, Rao’s spacing value, and associated p values for the nine external pedicle valve surfaces. Results are without the orientations option enabled ................................................. 22 Table 14 — Mean angle, Rayleigh’s spread value, chi square value, Rao’s spacing value, and associated p values for the three internal brachial valve surfaces. Results are without the orientations option enabled ................................................. 23 Table 15 — Mean angle, Rayleigh’s spread value, chi square value, Rao’s spacing value, and associated p values for the nine external pedicle valve surfaces. Results are with the orientations option enabled ..................................................... 24 vii Table 16 - Mean angle, Rayleigh’s spread value, chi square value, Rao’s spacing value, and associated p values for the three internal brachial valve surfaces. Results are with the orientations option enabled ..................................................... 24 Table 17 — Rose diagrams for selected specimen surfaces .................................... 25 Table 18 - Specimen numbers, valve used, and number of microconchids present on the valve for Specimens used in nearest neighbor and water flow analyses ............ 42 Table 19 - Microconchid center and aperture center coordinates used in nearest neighbor and water flow vector analyses ........................................................... 43 Table 20 — Aperture orientation angles used in water flow vector analysis ................. 50 Table 21 -— Mucrospirifer sp. specimen data ..................................................... 52 Table 22 — Strophodonta demissa specimen data ................................................. 59 Table 23 — Microconchid data for specimens occurring on Mucrospirifer sp. . . . .....65 Table 24 — Microconchid data for specimens occurring on Strophodonta demissa ........ 73 Table 25 — Additional rose diagrams generated from water flow vector analysis... ......1 1 1 viii LIST OF FIGURES Figure 1 — Aperture view of a Microconchus on a S. demissa .................................. 2 Figure 2 —- The two brachiopod genera used in this study ....................................... 2 Figure 3 — Brachiopod region map used in this study .......................................... 10 Figure 4 — Illustration showing the microtopographic locations used in this study ........ 10 Figure 5 — Rose diagram based on the compiled data of all nine external pedicle valve surfaces ...................................................................................... 26 Figure 6 — Rose diagram of aperture orientation vectors based on twelve microconchids located along the commissure of the nine external pedicle valve surfaces... .......26 Figure 7 — Comparison of the percent of total microconchid occurrence in each valve region for both genera ..................................................................... 29 Figure 8 — Images showing clustering of microconchids on a S. demissa ................... 32 Figure 9 - Locality maps ........................................................................... 39 Figure 10 — Image of field locality, looking west ............................................... 40 Figure 11 — Stratigraphic column showing the position of the Potter Farm Member... . ..41 ix INTRODUCTION Small organisms that secrete a coiled tube (“spirorbiform”) on any hard substrate are documented from the Ordovician to Recent (Weedon, 1990; Weedon, 1991; Taylor and Vinn, 2006; Vinn, 2006; Vinn and Taylor, 2007). It was long thought that all occurrences of these organisms represented a single group with a remarkable longevity. Both Microconchus and Spirorbis secrete similarly coiled shells, are very small, and occupy an apparently similar ecological niche (encrusting on hard substrates); thus both were placed in the genus Spirorbis. However, recent studies (Taylor and Vinn, 2006) of the shell microstructure of Cenozoic and Paleozoic spirorbiform encrusters revealed differences significant enough for the researchers to conclude that these two genera are not the same. These researchers removed Paleozoic microconchids from the Phylum Annelida and placed it with the Microconchida, an order of an extinct phylum possibly related to lophophorates (brachiopods, bryozoans, and phoronids, with the phoronids being the closest relative). The researchers determined that all Paleozoic spirorbiform encrusters were microconchids, and placed all Paleozoic species previously in the genus Spirorbis into the genus Microconchus. The most recent known spirorbiform microconchid occurs in the mid-Jurassic. As it was long thought that spirorbiform microconchids and Spirorbis were the same organism, very little research was done regarding the specifics of the spirorbiform microconchid living style. It was much easier to make direct observations from specimens of living Spirorbis (DeSilva, 1962; Saunders and Connell, 2001). Thus, knowledge of microconchid ecology consists largely of generalized assumptions based on their encrusting lifestyle. This study will document occurrences of Microconchus (Figure 1) in a collection of Mucrospirifer sp. and Strophodonta demissa (Conrad) from Middle Devonian strata of the Michigan Basin to address questions of the autecology of the microconchids and their brachiopod hosts. These two brachiopod genera were chosen for the study due to their accessibility and abundance. They also represent two different morphotypes (biconvex and concave-convex; Figure 2). Hypotheses to be tested include whether the microconchids showed preferred patterns in settling site and whether microconchid settling patterns reflect autecology of the brachiopod host. Figure 2 — The two brachiopod genera used in this study: A. Mucrospinfer sp., brachial valve View; B. S. demissa, pedicle valve view; C. Mucrospirz'fer sp., lateral View; D. S. demissa, lateral View. TAXONOMIC POSITION OF MICROCONCH US At the time of the publication of Volume W of the Treatise on Invertebrate Paleontology “Miscellanea ” (Fisher, 1962), microconchids had been identified as or had been placed into various Species of the polychaete genera Spirorbis and Serpula. In the Treatise, they were described as having small, flatly coiled shells, and attached to the substratum. Their habitats ranged from marine to fieshwater. Taxonomically, they were listed in the Class Cricoconarida Fisher 1962 (=superorder Tentaculitoidea [Ljashenko 195 8]). Burchette and Riding (1977) published a study of the skeletal characteristics of spirorbiform organisms in a Carboniferous peritidal carbonate environment from Britain. They found that, even though these organisms resembled modern tubeworms (such as Spirorbis) in external morphology, they differed from polychaetes in important skeletal characteristics, including wall structure, internal septa, and protoconch. Additionally, the observed organisms maintained a helical growth pattern, even when growing erect (i.e. no longer lying flat on the substrate); polychaete tubeworms tended to not maintain a helical growth pattern in those situations. Burchette and Riding (1977) noted that these characteristics were more similar to mollusks than polychaetes, and proposed that the spirorbiform organisms they observed might represent a previously unidentified group of substrate-attached “vermiform gastropods.” Subsequent studies contributed to the description of the “vermiform gastropods” (Weedon, 1990). Their habitats included peritidal, shallow lagoonal, shallow marine, and non-marine environments. Total shell diameter (i.e. whorl diameter) was usually less than 1.5 mm. The early stages of growth were “planorbiform” or “spirorbiform”, while later stages may have become erect and uncoiled, seemingly as a response to an obstruction of the normal grth path. Similar to Burchette and Riding’s (1977) report, Weedon’s (1990) study noted that the shell microstructure, irnperforate septa, and protoconch structure of the “vermiform gastropods” were markedly different than that of polychaete annelids. Weedon (1990) then compared the “vermiform gastropods” with the tentaculitoids, and found that they shared several similar features, including a protoconch with a calcitic micro-lamellar layer and other teleoconch microstructures. However, the “vermiform gastropods” possessed a helical shape and a more complex three layered protoconch, both of which the tentaculitoids did not possess. As it had been previously noted that the “vermiform gastropods” shared characteristics with mollusks (Burchette and Riding, 1977), Weedon (1990) postulated that tentaculitoids might also have molluskan affinities. However, after further study of the “vermiform gastropod” shell rnicrostructure, Weedon (1991) determined that there was a closer affinity between the “vermiform gastropods” and the tentaculitoids, than there was between either group and the mollusks. Class Tentaculita Boucek 1964 was then emended to include the new Order Microconchida, into which the “vermiform gastropods” would be placed, as they did not fit into any of the existing tentaculitoid orders. Weedon (1991) suggested the use of the genus Microconchus Murchison 1839 to describe the “vermiform gastropods”. In a subsequent study, Weeden (1994) compared the crystalline microstructure of spirorbiform microconchids with that of modern Spirorbis. Spirorbiform microconchids have lamellar, punctated crystallites, whereas modern Spirorbis have crystallites with a chevron-shaped mode of growth (Weedon, 1994). The spirorbiform microconchid crystallite structure was identical to those found in thick-walled tentaculitids, brachiopods, and bryozoans. Other comparisons between spirorbiform microconchids and modern Spirorbis revealed further differences. Spirorbis is stenohaline, but spirorbiform microconchid fossils have been found in freshwater, brackish, and hypersaline depositional enviroments (Dreesen and Jux, 1995; Taylor and Vinn, 2006). Spirorbiform microconchids possess a tube origin (the first skeletal structure produced by the larva) with a bulb—like enclosure; post-Jurassic Spirorbis has an open tube origin (Taylor and Vinn, 2006; Vinn and Taylor, 2007). Observations on living Spirorbis reveal that the organism is not attached to its shell by an organic layer, and creates its shell by secreting a “paste” containing calcite or aragonite. Observations of corresponding characteristics of spirorbiform microconchid fossils (primarily the lamellar shell layers) indicate (when compared to living brachiopods, bryozoans, and mollusks) that the organism would have been attached to the shell by an organic layer that was responsible for secretion of the shell (Taylor and Vinn, 2006). All of these observations led Taylor and Vinn (2006) to declare all pne- Cretaceous spirorbiforms to be microconchids, and to remove all such organisms fi'om the genus Spirorbis and place them in the genus Microconchus until each taxon could be studied further. Due to the remarkable convergence in external shell morphology between the Microconchida and Spirorbis, attempts at determining the taxonomic affinities of microconchids focus on the microstructure of the shell. As noted earlier, the tube origin of a microconchid features a bulb-like structure, which differs from the open-ended tube origin of Spirorbis, but is similar to the protoecium of stenolaemate bryozoans (Nielsen, 1970). The lamellar skeletal microstructures are also similar to bryozoans and articulate brachiopods (Taylor and Vinn, 2006). Microconchids also possess a pseudopunctate or punctate shell structure, a characteristic that distinguishes them from mollusks but groups them with the lophophorates (V inn, 2006). Another characteristic that separates them from mollusks lies in the cementing of the initial skeletal chamber to the substrate: mollusks are not cemented, microconchids are. Each of these microstructural characters is also shared with the comulitids and certain tentaculitids, strengthening Weedon’s (1991) case for placing the microconchids in the Class Tentaculita. Microconchids are, however, distinguished from comulitids and tentaculitids by the direction of the deflection of the lamellae where pseudopunctae or punctae occur (Vinn, 2006). In microconchids, this deflection is towards the shell exterior, while deflection in comulitids and tentaculitids is towards the shell interior. Microconchids range from the Ordovician to the Late Bathonian of the Middle Jurassic (W eedon, 1990; Weedon, 1991; Taylor and Vinn, 2006; Vinn, 2006; Vinn and Taylor, 2007). The total tube diameter ranges from <1 mm to >3 mm (Taylor and Vinn, 2006). Microconchid shells can spiral in both a clockwise and a counter—clockwise direction, but the direction of spiral is constant within a species (Taylor and Vinn, 2006; Vinn, 2006; Vinn and Taylor, 2007). Whorls start out tightly coiled; in some genera, the whorls uncoil as the organism grows or encounters obstacles (Taylor and Vinn, 2006; Vinn, 2006). Thus far, no clear correlation between geologic age and morphological variation has been noted. In addition to rocks or hardground (Dreesen and J ux, 1995), microconchids used brachiopods, bivalves, trilobites, and marine and terrestrial plants (Kesling and Chilman, 1978; Pitrat and Rogers, 1978; Sparks et al., 1980; Alvarez and Taylor, 1987; Bordeaux and Brett, 1990; Taylor and Vinn, 2006) as a hard substrate. Microconchids were also noted to have inhabited the (presumably) sheltered undersides of stromatoporoids, tabulate coral colonies, and ledges, possibly as a response to turbulent environments (Taylor, 1979; Palmer and Fursich, 1981; Dreesen and Jux, 1995; Taylor and Vinn, 2006; Vinn, 2006), sometimes as dense clusters containing both juvenile and adult organisms (N ield, 1986; Dreesen and Jux, 1995; Taylor and Vinn, 2006). Because microconchids grew attached to a substrate, they were vulnerable to overgrowth by other encrusting organisms. To combat this overgrowth, certain species of microconchids assumed an erect mode of growth when encountering obstacles (Taylor and Vinn, 2006). It is unknown why the microconchids went extinct in the Middle Jurassic only to have their niche and general morphology filled by Spirorbis and other tubeworms in the Cretaceous (Taylor and Vinn, 2006; Vinn and Taylor, 2007). As there is no overlap in the ranges of these two groups, it is possible that the extinction of the microconchids opened ecospace that Spirorbis then filled. MATERIALS AND METHODS Materials The brachiopods used in this study consist of 200 specimens of Strophodonta. demissa Hall 1857 (other authors have mistakenly called this genus “Strapheodonta” Hall, 1852 [nomen vanum]; Muir-Wood and Williams [1965]) collected fi'om the Potter Farm Member (Traverse Group) at a field locality near Alpena, Michigan, and 226 specimens of Mucrospirifer sp. from the Widder Formation (Hamilton Group) of Arkona, Ontario, Canada. The S. demissa specimens have been reposited in the University of Michigan Museum of Paleontology (UMMP); the Mucrospirifer sp. specimens are part of the Michigan State University (MSU) invertebrate paleontology collection. The field collected specimens were prepared by washing with water, using a soft brush to remove any loose sediment. Specimens requiring additional preparation were immersed in a water and detergent solution and subjected to treatment in an ultrasonic cleaner. After treatment, a dental pick was used to remove additional sediment and debris. Specimen measurements were made using a pair of digital calipers with a resolution of 0.01 mm. Microconchids were examined with a Nikon binocular microscope under magnifications of 8x to 50x. Photographs were taken using a Nikon Coolpix 4300 digital camera with a resolution of 4.0 megapixels. Field Locality The field locality is an exposure of the Middle Devonian (Givetian) Potter Farm Member located approximately 1.5 miles west of the center of Alpena, MI. The Potter Farm Member is described as consisting “mostly of argillaceous and calcareous limestone, with some thin beds of gray shale” (Imbrie, 1959) and “blue to gray shale alternating with crinoidal sublithographic or argillaceous limestones of small lateral extent” (Warthin and Cooper, 1935). The exposure at this locality consisted of gray shale, weathering to light brown, with lenses of calcareous limestone present. Additional information on the field locality is given in Appendix A. Statistical Analysis I specifically noted microconchid maximum shell coil diameter, microconchid shell aperture opening direction (relative to the brachiopod), the brachiopod valve on which the microconchid occurs, the location of the microconchid occurrence on the brachiopod valve (using a brachiopod area map [Figure 3] modeled after Sparks, 1980), and position of microconchids relative to shell ornamentation (microtopography) (Figure 4). Microtopographic categories on the brachiopod shell include: ridge of costae, groove of costae, side of costae (not definitely lying on either the ridge or groove), hinge, unknown (indeterminate due to weathering of the brachiopod valve), and “interior” (microconchids occurring on the interior surface of the valve). For Mucrospirifer sp., additional categories were added for the fold, sulcus, growth lines (referring to the area of growth lines near the beak), a combination of fold and growth lines, and a combination of sulcus and grth lines. Length, width, and height of each brachiopod specimen (both those with and those without Microconchus) were also recorded. 8 9 Figure 3 ~ Brachiopod region map used in this study. R G Figure 4 — Illustration showing the microtopographic locations used in this study. R = “ridge”; G = “groove”. A “side” location would lie anywhere in between R and G. Microconchid Location Analysis In order to determine whether microconchid occurrence on the brachiopod shell is random or non-random (normal), a chi-square analysis was performed on microconchid occurrences in nine regions of the brachiopod shell on both the spiriferids and the strophodontids. A second chi-square analysis was performed on microconchid occurrences on the shell microtopography of both the spiriferids and the strophodontids. PAST (PAleontological STatistics software package for education and data analysis; Hammer et al, 2001) was used to perform the chi-square analysis. Nearest Neighbor Analysis The twelve S. demissa specimens that had the highest concentrations of microconchids on a single valve were selected for nearest neighbor analysis (Sinclair, 1985; Davis, 1986). These specimens are listed in Appendix B. Each valve surface to be 10 analyzed was digitally photographed. The photographs were then loaded into tpsDig (a digitizing software; Rohlf, 2005). Two sets of coordinates for each surface (for a total of 24 sets) were generated by placing landmarks on the image. The first set of landmarks was placed on the approximate center of each microconchid shell. Using the assumption that the center of the shell represented the organism’s original larval settling position, a nearest neighbor analysis would determine if larval settling patterns were influenced by the presence of other microconchids. The second set of landmarks was placed in the center of the aperture of each Shell; this was compared with the previous nearest neighbor data to determine if there was a preferential aperture opening distance between microconchids, or if aperture opening distance was largely determined by original larval settling position. The coordinates generated are listed in Appendix C. Each set of coordinates was then loaded into PAST, and subjected to the “nearest neighbour (2D points)” function. Water F low Pattern Analysis The same twelve S. demissa specimens (Appendix B) were also analyzed in order to investigate the possibility that water flow patterns affected microconchid settling patterns. Each digital image was opened in Adobe Photoshop 7.0 (Adobe Systems Incorporated, 2002). The “measure tool” was used to determine the angle of the aperture opening of each microconchid shell. Due to a difference in coordinate system between tpsDig and Photoshop, the measured angles were adjusted so that the hingeline of the brachiopod was 0°. The resulting list of angles for each specimen (found in Appendix D) was then opened in PAST and subjected to the “directions” analysis. 11 RESULTS A complete table of all brachiopod specimen measurements can be found in Appendix E. A complete table of all microconchid occurrence data, including diameter, valve region, microtopographic data, and orientation can be found in Appendix F. Table 1 gives a summary of specimen dimensions and microconchid abundance. Table 1 — Summary of raw specimen data, including specimen dimensions and microconchid abundance. sp. Number of specimens 226 200 Number of specimens with microconchids 41 189 Percentage of specimens with microconchids 18.14% 94.50% Number of microconchids 261 1361 Average microconchids per specimen (total) 1.154 6.805 Average microconchids per specimen (only 6 36 7 20 specimens with microconchids) ' ' Average specimen length (mm) 31.2320 18.1 155 Average specimen width (mm) 17.3358 13.9656 Average specimen depth (m) 11.7331 4.1560 Average microconchid diameter (mm) 1.255 1.275 Maximum microconchid diameter (mm) 2.54 3.33 Minimum microconchid diameter (mm) 0.27 0.3 A greater percentage of S. demissa specimens possessed at least one microconchid; however, when considering only those specimens of both species that possessed microconchids, the average number of microconchids per specimen was similar. F- and T—test analysis of these occurrence values was performed in PAST. The F-test for same variance yielded a p (same variance) of0.023161, which does not reject the null hypothesis of unequal variances at p > 0.5. However, it does reject the null hypothesis at p > 0.1. PAST performs two types of T-test for same mean: standard T-test and unequal variance T-test. The T-tests yield p of 0.41473 and 0.49185, respectively. Thus, both results do not reject the null hypothesis of same means at p > 0.1. 12 Additionally, the average diameter of the microconchids was nearly identical between the two genera. Microconchid Location Analysis A summary of the microconchid regional count totals is given in Tables 2 and 3. On the S. demissa specimens, the highest number of microconchids occurs in regions 3, 4, 5 and 6 for the overall tally, the external brachial valve surface, the external pedicle valve surface, and the interior brachial valve surface. The interior pedicle valve surface only had 14 total microconchid occurrences; thus it is difficult to see any patterns in occurrences. On the Mucrospirifer sp. specimens, the greatest number of occm'rences is in regions 2, 3, and 6, which correspondito the broad regions on either side of the fold or sulcus. Table 2 -— Occurrences of microconchids on the Strophodonta specimens. Counts broken down by valve region. Valve All surfaces Brachial - Exterior Pedicle - Exterior Region Count % Count % Count % 1 21 1.54 3 1.00 18 1.89 2 90 6.61 37 12.37 45 4.74 3 394 28.95 83 27.76 286 30.1 1 4 172 12.64 22 7.36 133 14.00 5 180 13.23 23 7.69 135 14.21 6 357 26.23 87 29.10 244 25.68 7 87 6.39 28 9.36 ' 50 5.26 8 22 1.62 4 1.34 17 1.79 9 38 2.79 12 4.01 22 2.32 Total 1361 100.00 299 100.00 950 100.00 13 Table 2 (cont’d) Valve Brachial — Interior Pedicle — Interior Region Count % Count % 1 0 0.00 0 0.00 2 4 4.08 4 28.57 3 24 24.49 1 7.14 4 17 17.35 0 0.00 5 20 20.41 2 14.29 6 24 24.49 2 14.29 7 4 4.08 5 35.71 8 1 1.02 0 0.00 9 4 4.08 0 0.00 Total 98 100.00 14 100.00 Table 3 — Occurrences of microconchids on the Mucrospirifer sp. specimens. Counts broken down by valve region. Valve All Surfaces Brachial - Exterior Pedicle - Exterior Region Count % Count % Count % 1 5 1.92 l 0.76 4 3.10 2 34 13.03 18 13.64 16 12.40 3 65 24.90 32 24.24 33 25.58 4 18 6.90 9 6.82 9 6.98 5 18 6.90 6 4.55 12 9.30 6 84 32.18 44 33.33 40 31.01 7 12 4.60 8 6.06 4 3.10 8 11 4.21 7 5.30 4 3.10 9 14 5.36 7 5.30 7 5.43 Total 261 100.00 132 100.00 129 100.00 The results of the chi square analysis of regional distribution are given in Table 4. The following pairs of datasets were compared: S. demissa total occurrences and Mucrospirifer sp. total occurrences; Mucrospirifer sp. pedicle occurrences and Mucrospirifer sp. brachial occurrences. In addition comparisons were made between each S. demissa valve surface and every other S. demissa valve surface. Due to the disparity of raw count numbers between the various valves, relative percent values were used in this analysis. 14 Table 4 — Results of chi square analyses for shell region data. S. demissa vs Mucrospirifer sp.: Mucrospirifer Pedicle vs Brachial sp. Chi Square 8.9851 4.7775 p (same) 0.34355 0.78107 S. demissa Pedicle vs. Pedicle Interior vs. Pedicle vs. Brachial Brachial Interior Brachial Interior Chi Square 9.6726 79.239 4.8854 p (same) 0.28876 0.000 0.76975 S. demissa Brachial vs. Pedicle vs. Brachial vs. Pedicle Interior Pedicle Interior Brachial Interior Chi Square 54.741 77.12 17.701 p (same) 0.000 0.000 0.023584 The null hypothesis used in each analysis was that the distributions of microconchids on the brachiopod valves are the same. The chi square analysis shows a high probability of similar area distributions between the S. demissa and Mucrospirifer sp. specimens when considering all surfaces. When comparing occurrences between pedicle and brachial valve outer surfaces, both the S. demissa and the Mucrospirifer sp. specimens yielded p (same) > 0.1, so the null hypothesis is not rejected. Among the S. demissa valve surfaces, each comparison involving the interior surface of the pedicle valve gave p (same) < 0.01, allowing me to reject the null hypothesis. The comparison between the brachial outer surface and the brachial valve inner surface gave p (same) > 0.01, thus rejecting the null hypothesis. The results of the microconchid microtopographic location analysis are given in Tables 5, 6, 7, and 8. For both the S. demissa specimens and the Mucrospirifer sp. specimens, chi square analyses gave a p (normal) = 0, indicating a non-equal distribution 15 across microtopographic categories. Both comparisons between pedicle and brachial valve outer surfaces for each set of specimens gave a p (same) > 0.1. Table 5 -— Occurrence of microconchids by microtopographic category Micro topographic Mucrospirifer S. demissa category sp. specrmens specrmens Count % Count % Groove 130 49.81 706 51.78 Ridge 26 9.96 153 1 1.26 Side 18 6.90 156 11.56 Hinge 5 1.92 19 1.41 Fold 22 8.43 n/a n/a Sulcus 30 1 1.49 n/a n/a Growth Lines 8 3.07 n/a n/a Sulcus and growth lines 4 1.53 n/a n/a Fold and growth lines 1 0.38 n/a n/a Unknown 17 6.51 125 9.26 Interior 0 0.00 202 14.74 Total 261 100.00 1361 100.00 Table 6 — Occurrence of microconchids by microtopographic category (excluding the unknown and interior categories). Micro topographic Mucrospirifer S. demissa category sp. specimens specimens Count % Count % Groove 130 53.28 706 68.28 Ridge 26 10.66 153 14.80 Side 18 7.38 156 15.09 Hinge 5 2.05 19 1.84 Fold 22 9.02 n/a n/a Sulcus 30 12.30 n/a n/a Growth Lines 8 3.28 n/a n/a Sulcus and growth lines 4 1.64 n/a n/a Fold and growth lines 1 0.41 n/a n/a Total 244 100.00 1034 100.00 l6 Table 7 — Occurrence of microconchids by microtopographic category (excluding the unknown and interior categories). Counts broken down by valve surface. Mucrospirifer sp. Mucrospirifer sp. Microtopographic specimens — specimens — category pedicle valve brachial valve Count % Count % Groove 64 54.24 66 52.38 Ridge 15 12.71 11 8.73 Side 11 9.32 7 5.56 Hinge 1 0.85 4 3.17 Fold 24 20.34 0 0.00 Sulcus 0 0.00 28 22.22 Growth lines 2 1.69 6 4.76 Sulcus and growth lines 0 0.00 4 3.17 F?“ and gmwm 1 0.85 0 0.00 lines Total 1 18 100.00 126 100.00 S. demissa S. demissa Microtopographic specimens — specimens — category pedicle valve brachial valve Count % Count % Groove 551 69.05 155 65.68 Ridge 106 13.28 47 19.92 Side 123 15.41 33 13.98 Hinge 18 2.26 1 0.42 Fold n/a n/a n/a n/a Sulcus n/a n/a n/a n/a Growth lines n/a n/a n/a n/a Sulcus and growth lines n/a n/a n/a n/a Fold and growth n/a n/a n/a n/a Ines Total 798 100.00 236 100.00 l7 Table 8 — Results of chi square analyses for shell microtopographic data. These comparisons do not include the unknown or interior categories Mucrospirifer S. demissa S. demissa — *Mucrospirifer sp. specimens specimens Pedicle vs sp. — Pedicle vs Brachial Brachial Chi Square 471.205 1080.282 2.7524 5.9639 5 (same) I 0 0 0.4314 0.42725 *Due to the morphological variances between valves, fold and sulcus were considered the same category; thus, there were seven options for microtopographic location for the Mucrospirifer sp. brachiopods for this test. Nearest Neighbor Analysis The nearest neighbor function in PAST computes the area of the smallest convex hull (i.e. closed shape) that would encompass all of the points, the mean density of the points, the mean distance between points, the expected distance between points, the probability that the distribution is random, and R — the nearest neighbor statistic. R is computed by dividing mean distance by expected distance. An R value of 1.0 represents a completely random distribution of points, R values less than 1.0 represent clustering (with 0.0 indicating that all points coincide), and R values greater than 1.0 represent overdispersal (with 2.15 [the maximum possible value] indicating a regular hexagonal pattern; Davis, 1986). The Donnelly edge correction was applied, as it is the edge correction best suited for this analysis (Sinclair, 1985). As the coordinates of the points representing the microconchids were gathered digitally, all distances are measured in pixels, and areas measured in pixelsz. The results of the nearest neighbor analysis of the microconchid center points are given in Table 9 and 10, and the results of the nearest neighbor analysis of the aperture center points are given in Table 11 and 12. Table 9 — Results of the nearest neighbor analysis for the center coordinates of the pedicle specimens. Distances and areas are measured in pixels. Specimen Number UMMP UMMP UMMP UMMP UMMP 74000 73904 73928 73884 73913 # points 28 26 24 20 17 Area of Convex Hull 539,000 949,000 851,000 862,000 511,000 Mean Densit 0.0000520 0.0000274 0.0000282 0.0000232 0.0000333 earest Neighbors: Mean Distance 99.817 142.98 148.45 146.29 144.27 Eggected Distance 76.207 106.05 106.03 1 16.24 100.18 p (random) 0.004575 0.002269 0.000832 0.047375 0.00217 R value 1.3098 1.3483 1.4 1.2585 1.4401 pecimen Number of Convex Hull ean Densi earest Nei ean Distance Distance random value 7386 135.2 95.2 0.00644 1.41 389 0.00003 1 214.1 149.6 0.004 73 86 1 43 0.0000153 0.000034 0.000014 142.93 97.45 0.0021 1.4 1. 7391 l 73 1 954 240. 150.5 0.0001 1.5 Table 10 — Results of the nearest neighbor analysis for the center coordinates of the brachial interior surface specimens. Distances and areas are measured in pixels. pecimen Number ean Densi earest Nei Hull bors: Distance Distance random value 7391 1 515 0.0000291 146.6 106 0.01224 1.3 19 73 1 774 0.00001 191.0 131. 0.0033 1. 0.00001 202.3 131.3 0.00098 1.541 Using the shell center coordinates, each valve surface analyzed had an R value of greater than 1.0, indicating some degree of overdispersion. With the exception of the external pedicle valve surface of UMP 73 884 and the internal brachial valve surface of UMMP 73916, each had a p (random) < 0.01. The two excepted surfaces had p (random) < 0.05. Table 11 — Results of the nearest neighbor analysis for the aperture coordinates of the pedicle specimens. Distances and areas are measured in pixels. Specimen Number UMMP UMMP UMMP UMMP UMMP 74000 73904 73 928 73884 73913 # points 28 26 24 20 17 Area of Convex Hull 500,000 872,000 845,000 833,000 537,000 Mean Densi 0.0000560 0.0000298 0.0000284 0.0000240 . Nearest Neighbors: Mean Distance 96.957 108.23 159.71 144.21 133.68 xpected Distance 73.359 101.59 105.44 114.85 102.69 (random) 0.003604 0.56659 1.67 0.050555 0.035561 R value 1.3184 1.0654 1.5147 1.2557 1.3017 pecimen Number 7386 7386 7391 73 1 1 1 1 903 459 955 0.00001 0.000032 0.000014 366, of Convex ° 0.000041 can Nei Distance Distance 92. random 0.046941 value 1 121. 207. 143 0.00351 1 .447 20 Table 12 - Results of the nearest neighbor analysis for the aperture coordinates of the brachial interior surface specimens. Distances and areas are measured in pixels. Specimen Number UMMP UMMP UMMP 73916 73864 74011 # points 15 15 13 Area/Convex Hull 591,000 807,000 652,000 Mean Densit 000002.54 000001.86 000001.99 Nearest Neighbors: Mean Distance 152.0 197.1 211.5 Expected Distance 113.13 135.29 131.48 (random) 0.023007 0.002844I 0.000214J R value 1.3442 1.457 1.609 When analyzed using the aperture center coordinates, each valve surface had an R value greater than 1.0. This indicates some degree of overdispersion, similar to the results of the analysis using the shell center coordinates. However, the external pedicle valve surface of UMMP 73904 had an R value of 1.0654, which is very close to a completely random distribution. Its p (random) was 0.56659, indicating a high probability of randomness. This is in contrast to the other valve surfaces analyzed, as the pedicle valve surface of UMMP 73 884 and UMMP 73913 and the internal brachial valve surface of UMP 73 865 had p (random) < 0.1, and the remaining valve surfaces had p (random) < 0.01. Water Flow Pattern Analysis The PAST “directions” analysis yields four statistical values: a rose diagram, a Rayleigh’s spread value (R), a chi square value, and a Rao’s spacing value (U). Additionally, PAST features an option (“orientations”) that analyzes linear orientations on a 0-180° scale. Values were generated both with and without the orientations option enabled. Both sets of rose diagrams were generated with ten directional bins. The 21 diagrams are displayed in Appendix F. The other three values generated, along with mean angle, are given in Tables 13, 14, 15, and 16. Rayleigh’s spread value is an indicator of a single preferred direction (Davis, 1986; Hammer and Harper, 2006); however, Rayleigh’s test is not appropriate for multimodal data. In such cases, Rao’s test is a better suited test (Levitin and Russell, 1997). The chi square value simply indicates a non-uniform distribution of directions; it does not distinguish between unimodal and multimodal (Hammer and Harper, 2006). Table 13 - Mean angle, Rayleigh’s spread value, chi square value, Rao’s spacing value, and associated p values for the nine external pedicle valve surfaces. Results are without the orientations option enabled. Specimen UNflVIP UMMP UMMP UMMP UMMP Number 74000 73904 73928 73884 73913 Mean 253.78 230.44 267.31 236.26 292.02 R 0.1523 0.1964 0.371 0.2617 0.1291 p (rand) 0.52651 0.37044 0.035063 0.25694 0.75872 Chi"2 4.857 4.462 5 4.4 1.1 18 p (rand) 0.1826 0.2157 0.1718 0.2214 0.7728 Rao's U 182.8 143.5 152 136 117.8 p (rand) 0.00144 0.2123 0.1088 0.355 0.685 Specimen UMMP UMMP UMMP UMMP Number 73865 73867 73910 73827 Mean 347.44 302.97 229.69 287.21 R 0.2208 0.1579 0.2889 0.391 p (rand) 0.48895 0.69509 0.29067 0.1 1701 Chi"2 2.867 0.7333 3.933 7.143 p (rand) 0.4126 0.8653 0.2688 0.06748 Rao's U 122.2 137.4 100.7 174.7 p (rand) 0.5897 0.3301 0.8881 0.02476 22 Table 14 — Mean angle, Rayleigh’s spread value, chi square value, Rao’s spacing value, and associated p values for the three internal brachial valve surfaces. Results are without the orientations option enabled. Specimen UMMP UMMP UMMP Number 73916 73 864 7401 1 Mean 159.71 295.74 287.25 R 0.3033 0.1155 0.3165 p (rand) 0.25538 0.82362 0.277 Chi"2 2.333 2.333 3.923 p (rand) 0.5062 0.5062 0.2699 Rao's U 107 139 137.4 p (rand) 0.8212 0.3048 0.3283 Of the p (rand) generated from the Rayleigh’s spread values, only the external pedicle valve surface of UMP 73928 had a p (rand) < 0.1. Upon observing the rose diagram generated for this specimen (Table 17 or App. P), it is clear that the diagram is multimodal; thus Rayleigh’s test should be discarded in favor of Rao’s test (which yields a p (rand) > 0.1). The directional analysis of the external pedicle valve surface of UMMP 74000 yields a rose diagram that strongly displays birnodality (Table 17 or App. F). This observation is confirmed by the Rao’s U of that specimen, which produces a p (rand) < 0.01. The rose diagram generated for the external pedicle valve surface of UMP 73 827 (Table 17 or App. F) shows strong multimodality, which is reflected in the p (rand) < 0.05 based on Rao’s U. All of the other specimens have p (rand) > 0.1 for each of the three tests. 23 Table 15 — Mean angle, Rayleigh’s spread value, chi square value, Rao’s spacing value, and associated p values for the nine external pedicle valve surfaces. Results are with the orientations option enabled. Specimen UMMP UMMP UMMP UMMP UMMP Number 74000 73904 73928 73884 73913 Mean 47.009 138.26 145.17 131.2 71.741 R 0.3803 0.2894 0.1639 0.2456 0.2389 p(rand) 0.0161 0.11282 0.52959 0.30307 0.38478 Chi"2 5.429 1.692 1 1.6 2.059 p(rand) 0.143 0.6386 0.8013 0.6594 0.5603 Rao'sU 196.4 135.6 125.8 131.2 119.4 p(rand) 0 0.3631 0.5722 0.4482 0.6574 Specimen UMMP UMMP UMMP UMMP Number 73865 73867 73910 73827 Mean 20.439 1 14.32 25.809 50.26 R 0.2689 0.1453 0.2688 0.3284 p(rand) 0.34375 0.73494 0.34407 0.22406 Chi"2 3.4 0.2 2.867 4.857 p (rand) 0.334 0.9776 0.4126 0.1826 Rao's U 122.4 155 126.2 177.5 p(rand) 0.5862 0.116 0.5199 0.01958 Table 16 — Mean angle, Rayleigh’s spread value, chi square value, Rao’s spacing value, and associated p values for the three internal brachial valve surfaces. Results are with the orientations option enabled. Specimen UMMP UMMP UMMP Number 73916 73864 74011 Mean 47.864 1 1 1.72 89.262 R 0.02176 0.4545 0.1053 p(rand) 0.99316 0.042414 0.87015 Chi"2 1.8 7.667 2.692 p (rand) 0.6149 0.5343 0.4415 Rao's U 118.8 159.4 137.9 p (rand) 0.6477 0.08432 0.3211 The direction analysis with the orientations option enabled produced values that were mostly similar to the values produced by the non-orientation enabled analysis. The orientation enabled analysis of the internal brachial valve surface of UMMP 73864 produced a rose diagram with an apparent bimodal distribution (Table 17 or App. P), which is supported by a Rao’s p (rand) < 0.1. This is in contradiction to the non- orientation enabled analysis, which produced a Rao’s p (rand) > 0.3. 24 Table 17 — Rose diagrams for selected specimen surfaces. A complete table of all rose diagrams generated is given in Appendix F. Specimen Valve Rose diagram without Rose diagram with surface orientation adjustment orientation adjustment UMMP Pedicle 74000 external UMMP Pedicle 73928 external UMMP Pedicle 73827 external 25 Table 17 con’t — Rose diagrams for selected specimen surfaces. A complete table of all rose diagrams generated is given in Appendix F. UMMP Brachial 73 864 internal A rose diagram was produced based on the compiled data of all nine external pedicle valve surfaces (Figure 5). This diagram shows strong modality towards the lower left, with other “spikes” towards the upper left and upper right (with the hinge of the brachiopod running from upper left to upper right). Figure 5 — Rose diagram based on the compiled data of all nine external pedicle valve surfaces. Another rose diagram (Figure 6) was generated based on the aperture orientation of twelve microconchid specimens located along the commissure of the nine external pedicle valve surfaces. It shows a strong unimodality towards the lower left. Figure 6 — Rose diagram of aperture orientation vectors based on twelve microconchids located along the commissure of the nine external pedicle valve surfaces. 26 DISCUSSION Microconchid Abundance Based on the summary of microconchid occurrences (Table 1), it is apparent that there is a higher percentage of S. demissa individuals encrusted with microconchids, even though the average Mucrospirifer sp. surface area is larger than the average of S. demissa. However, when considering only those specimens that had microconchids, the average number of microconchids was similar (6.36 per Mucrospirifer sp. and 7.20 per S. demissa). Sparks et a1. (1980) performed an analysis of all epizoans occurring on 582 specimens of the brachiopod Paraspirifier bownockeri collected from the Middle Devonian Silica Formation of Ohio. They noted only three total occurrences of microconchids on these specimens, and observed that microconchids occurred on bryozoans, corals, other brachiopods, trilobites, and bivalves collected from the same area. Hoare and Steller (1967), in a study of3105 specimens of Paraspirifer, Strophodonta, Megastrophia, Protoleptostrophia, Spinocyrtia, and Brachyspirifer, all also from the Middle Devonian Silica Formation of Ohio, made no mention of observing even a single specimen of a microconchid. In contrast; Kesling and Chilman (1978) noted that microconchids were quite common in certain units of the Silica Formation, and that large numbers were found attached to specimens of Paraspirifer, other spiriferids, and strophodontids. In a study of the Spiriferid brachiopods of the Traverse Group of Michigan (of which the Potter Farm Member is a part), Pitrat and Rogers (1978) examined 280 Spinocyrtia brachiopod collected fi'om the Norway Point Formation in Alpena County. 27 They noted a total of 77 microconchids occurring on 59 of the 280 specimens. This is an average of 1.3 microconchids per shell — less than what was observed on either group I analyzed. Pitrat and Rogers did not note a biological reason for microconchids occurrence. As they observed no “clustering” or preferred orientation among the microconchids, they postulated that the brachiopods may have simply provided a hard substrate for the microconchids. In a study of Middle Devonian brachiopods of the Hamilton Group of New York, Bordeaux and Brett (1990) noted occurrences of microconchids on 150 brachiopods out of a group of 2,500 specimens spread across 17 brachiopod species. While they did not give detailed occurrence data, they did note that the microconchids preferred hosts with shallow costae as opposed to those with more angular and deeper costae. General shell morphology did not appear to play a major role in microconchids occurrence. Their findings are in agreement with similar observations made by Hurst (1974). None of these studies report microconchid concentrations as high as those I observed in the S. demissa specimens collected fiom the Potter Farm Member. Aside from the S. demissa, I also observed microconchids occurring on bryozoans, gastropods, corals, and crinoids. The difference in concentrations may be due to environmental factors, such as water depth (Smrecak and Brett, 2008), turbidity, or current distribution. Comparisons When observing the distribution of microconchid occurrences on the brachiopod valves, there are a few differences between the two genera (Figure 7). A higher percentage of microconchids occurs in regions 4 and 5 of S. demissa than in the same regions of Mucrospirifer sp. In Mucrospirifiar sp., these two regions compose the fold or 28 sulcus; in S. demissa these regions are not topographically differentiated from regions 3 and 6. However, for both genera, the peak occurrences of microconchids are in the regions that are adjacent to the central portion of the valve (regions 3 and 6). The chi square comparisons between the total occurrences on the two genera did not reveal any significant differences. Most brachiopods have lateral inhalant currents and a medial exhalant current (Rudwick, 1970; LaBarbera, 1977). If microconchids relied on these currents to bring them nutrition, I would expect to find a higher distribution of microconchids on the lateral edges of the brachiopods. My data, however, do not reflect this. Instead, they seems to more closely fit Hurst’s (1974) conclusions that microconchids are not reliant on the brachiopod’s inhalant or exhalant currents. Microconchid Occurrences w m j‘. I l N N (a) O 01 O I Ell/lucrOSpirifer I !,.S!r°Ph9d°nta; .a 0 Percent of Microconchids or a O 1 2 3 4 5 6 7 8 9 Valve Region Figure 7 — Comparison of the percent of total microconchid occurrence in each valve region for both genera 29 Microconchids and Microtopography of Brachiopod Shells ' The microtopographic data, on the other hand, show a high degree of preference for grooves over all other possible locations. This preference is most pronounced in the strophodontids. This distinct preference for grooves may explain the difference between the two species in microconchid occurrences in valve regions 4 and 5, as the spiriferids have the fold and sulcus in this region, while strophodontids have a more uniform surface. The preference for grooves extends across both the external pedicle valve surface and the external brachial valve surface of both genera. This marked preference could indicate that microconchid larva would attempt to settle in a more “sheltered” area. This type of larval settling behavior on a larger scale (i.e. under rock ledges, coral, or bryozoan colonies) has been noted in other occurrences of microconchids (Bordeaux and Brett, 1990; Dreesen and Jux, 1995; Taylor and Vinn, 2006), and has also been observed in the behavior of living Spirorbis (Saunders and Council, 2001). However, simply being “sheltered” does not automatically mean that an area would be preferred by microconchids, as evidenced by Bordeaux and Brett (1990) finding that microconchids did not settle in “deeper” costae of specific brachiopod morphologies. Nearest Neighbor Analysis Because it appears that the larval microconchids may have had at least some control over their final settling location, it follows that they would have some control over where they settled with respect to other pro-existing microconchids. Both nearest neighbor analyses indicated that there was some degree of overdispersion in the locations of microconchids on the individual valves. However, there were many observed instances where two (or more) microconchid shells were adjacent to each other. 30 The results of the nearest neighbor analysis are in contrast to other observations (Figure 8). Clustering of microconchids has been noted in other studies (N ield, 1986; Dreesen and Jux, 1995; Taylor and Vinn, 2006). If the microconchid larva preferred sheltered areas, it is possible that being adjacent to a large pre-existing microconchid shell could provide a similar sheltering effect as the brachiopod shell costae. Alternatively, Nield (1986) postulated that microconchid larva could have used the presence or absence of mature microconchids as a guide to settling environment. It is possible that my results differ because of my methodology. Due to the limitations of the software, the nearest neighbor analysis was based on single pixels representing the entirety of a microconchid. In reality of course, microconchids are much larger than a single pixel. A better analysis could be performed if some way were found to treat the entire microconchid shell as a single point with a diameter and a circumference. At present, I do not know of a way to accomplish this. 31 Figure 8 - Images showing clustering of microconchids on a S. demissa. Top image is unaltered digital photograph; bottom image has microconchids circled to illustrate clustering. Water Flow Pattern Analysis The water flow pattern analysis based on microconchid aperture orientation produced a wide range of results. Some valves showed a bimodal distribution, others a multimodal distribution. Because there is such variation from brachiopod to brachiopod, it is possible that the distribution is dictated by outside currents. The brachiopods were not collected in situ, so there is no way to know whether they were all oriented in certain directions or not. As microconchids grow in a helical pattern, the aperture orientation of each individual changes throughout its life. It is also impossible to determine whether the microconchids present on the brachiopod shell were living or dead at the time of preservation; thus, the apparent orientations may not represent life orientations. The 32 small sample size (twelve valve surfaces) also may not be a complete representation of the population. Microconchus and Spiriferid Autecology In addition to microconchid autecology, this study can provide some insight into the life positions of the two genera of brachiopods. Sparks et a1. (1980) and Alexander (1986) used epizoan occurrence patterns to postulate possible life positions for several brachiopod genera. Similarly, Hurst (1974) and Bordeaux and Brett (1990) used epibiont abundance data to determine degree of valve exposure. For example, a 1:1 ratio of epibiont occurrence between pedicle and brachial valves would indicate an equal exposure of the valves to currents. In a brachiopod genus with a biconvex shell morphology (like Mucrospirifer sp.), an equal exposure of the valves would mean that the brachiopod rested on its hinge in life position. The specimens of Mucrospirifer sp. 1 Observed had a 1:107 ratio between pedicle and brachial valves, with similar ratios between the corresponding regions of each valve. Following Hurst and Bordeaux and Brett, it would appear that Mucrospirifer sp. rested on its hinge while it was alive. This life position echoes findings by Richards (1972), Alexander (1984), and Spjeldnaes (1984), all of whom proposed equally or near-equally biconvex brachiopods as living with the commissure vertical or nearly vertical to the substrate. Microconchus and Strophodontid Autecology The strophodontids have a concavo-convex morphology, and a 1:3.18 ratio of microconchid occurrence between the brachial and pedicle valves. In concavo-convex morphologies, Bordeaux and Brett (1990) found a greater frequency of encrustation on 33 the convex valve, and that most epibiont occurrences on the brachial (concave) valve were along the commissure. In S. demissa, the convex valve is the pedicle valve, which has a higher frequency of microconchid occurrence in my study, agreeing with Bordeaux and Brett (1990). However, the microconchid occurrences along the commissure of the brachial (concave) valve of S. demissa in my study compose only 27% of the total microconchid occurrences on the brachial valve. This is in contrast to Bordeaux and Brett. Based on the brachialzpedicle ratio, it would appear that the pedicle valve of S. demissa was more exposed while the brachiopod was alive. It is possible that the quantity of microconchids I observed on the brachial valve Of S. demissa are microconchids that grew after the S. demissa had died. This would explain the apparent disparity between my findings and those of Bordeaux and Brett. Alexander (1984) performed current stability tests on concavo-convex brachiopod shells and found that shells with this morphology are potentially stable in nearly all orientations, with the only inherently unstable position being the shell oriented perpendicularly to the substrate and parallel to the prevailing currents. Howevever, Richards (1972) had previously assigned concavo-convex brachiopods to a life position convex valve down, with some genera living somewhat infaunally (only the commissure would protrude above the sediment). Lescinsky (1995), however, refuted Richards (1972), concluding that concave-convex brachiopods lived with the convex valve up since this was a “more stable orientation” than convex valve down. Since my strophodontids were more heavily encrusted on the pedicle (convex) valve and typically the level of encrustation indicates level of exposure (Hurst, 1974; Bordeaux and Brett, 34 1990), my findings would indicate a strophodontid life position of convex valve up, which is in agreement with Lescinsky (1995). Limitations For the Mucrospirifer sp.s, I am limited to the 235 specimens that are present in the MSU collection. These specimens were not self-collected, and I do not have access to any field notes, not am I aware of the specimens’ preparation history. Certain specimens seem to show a “smoothing” of both fine features of Microconchus and of the brachiopod shells, leading me to believe that either these shells were exposed to erosion, or were abraded during the cleaning process (more likely). For the S. demissa specimens, I am limited to those which were preserved in the sediments, and of those, the one I was able to collect (i.e., the normal fossil record bias). Thus I am unable to get a complete picture of the community and environment of which they were originally a part. The specimens collected from the Alpena field locality were collected primarily from the surface. They therefore had been exposed to the elements for some period of time. Theoretically, they would have also been exposed to currents and bioturbation after the death of the brachiopod but before the initial burial of the shell. It is possible that additional Microconchus may have been on the shell, but were removed during these processes. A thin spiral trace with the same size and pattern as Microconchus was noted on certain shells. Additionally, the brachiopod shells collected were not always completely intact, thus slightly skewing the shell dimension data. I used a pair of digital calipers, capable of measuring to the hundredths of mm, to record my measurements. The Microconchus shell diameters fell within a range of 0.27 to 3.30 mm, with an error range on these measurements of +/- 0.01 mm. Due to their 35 small size, it is possible that a more precise measurement of coil diameter could have been obtained using a measuring device capable of finer measurements on a smaller scale (perhaps to thousandths of mm). Further Work It would be beneficial to visit other exposures of the Potter Farm Member (see Appendix A) in order to collect specimens from these localities. The specimens could be analyzed similarly to this study, and then compared to the results of this study. If the two sets of results coincide, then it could indicate a widespread abundance of microconchids. If the results do not coincide, then it could mean that the specimens I collected are a random anomaly in the overall microconchid distribution. Additionally, more specimens could be collected from the Alpena exposure of the Potter Farm Member, to add to the bank of data I have collected herein. Another interesting direction of study would involve gathering paleoenvironmental data on the area during the Middle Devonian. If it were possible to map out the ancient shoreline and/or epiric sea depth, and correlate that data with microconchid occurrence and abundance data, it may be possible to isolate a specific type of environment that was conducive to microconchid multiplication. It may also help explain why I observed a high abundance of microconchids, when other researchers observed a much lower abundance. 36 CONCLUSIONS In conclusion: . In the samples studies, strophodontids are encrusted by Microconchus more often than spiriferids. . When considering only those specimens that had microconchids, the average number of microconchids per specimen was similar between the strophodontids and the spiriferids. . The largest single Microconchus occurred on a S. demissa, but the average Microconchus size was similar between S. demissa and Mucrospirifer sp. . Strophodontids occurring in the Potter Farm Member have more microconchids than other literature reports. . A greater number Of microconchids settled on either side of the center of the brachiopod valve than settled on the center of the valve or along the commissure. . Microtopographically, microconchids prefer the grooves of the costae over all other regions. . Nearest neighbor analysis shows a tendency away from clustering, but the presence of clusters belies this, as clustering may have provided a slight degree of shelter to larvae or may have served as an indicator of a favorable environment. . There is no preferred orientation of microconchid apertures when considering a population of brachiopod specimens; however, preferred orientations may be displayed on single specimens. 37 9. My data support the previously published life position of Mucrospirifer sp. (resting on the hinge) and Lescinsky’s published life position of S. demissa (convex valve up). 38 APPENDICES Appendix A Additional Description of Field Locality The exposure is in a drainage ditch on the northwest corner of the intersection of North Bagley Street and Burkholder Drive, south of the North Bagley Street bridge over the Thunder Bay River. The vertical height of the ditch is three feet, and the slant height is seven feet. The ditch is 130 feet long, and trends roughly east-west (100°-270°). The exposure is located in the NE V4, SE 1/4, Sec. 20, T31N, R8E. Coordinates recorded with a Magellan Meridian Gold GPSr while receiving strong signals from eight GPS satellites and two WAAS satellites were N45°04’00.60”, W83°28’20.34” (W G884). The elevation (determined from a topographic map) of the site is approximately 610 feet above mean sea level. Figure 9 —- Locality maps; stars indicate field area. Left: United States map; Right: topographic map of Alpena field area. 39 Figure 10 — Image of field locality, looking west. Field pack at right for scale. Irnbrie (1959) describes two other exposures of the Potter Farm Member in close proximity to my field locality: one in the “fields along section line fence,” SE ‘/4, Sec. 20, T31N, R8E (approximately 0.5 mi west of my locality); and the other as a “pit in northwest comer of Alpena Cemetery” (now named Evergreen Cemetery), NW V4, SW 1/4, Sec 21, T31N, R8E (approximately 0.2 mi east of my locality). This latter exposure is also mentioned by Dorr and Eschman (1970). I was unable to locate the Alpena/Evergreen Cemetery exposure during this study. 40 DOMINANT LITHOLOGY OUTCROP NOMENCLATURE GROUP FORMATION MEMBER Point Mbr Thunder Bay Ls Potter Farm Mbr Norway Point Mbr Four Mile Dam Mbr Alpena Ls Newton Creek Mbr Traverse Gr Killians Mbr Long Lake Ls Genshaw Mbr Ferron Point Fm Rockport Quarry Bell Sh Figure 11 - Stratigraphic column showing the position of the Potter Farm Member in the Middle Devonian (Brian). Column taken fi‘om Catacasinos, et a1 (2000). 41 Appendix B Specimens Used in Nearest Neighbor and Water F low Analyses Table 18 - Specimen numbers, valve used, and number of microconchids present on the valve for specimens used in nearest neighbor and water flow analyses Specimen Number of Number Valve Microconchids UMMP 74000 Pedicle - External Surface 28 UMMP 73904 Pedicle — External Surface 26 UMMP 73928 Pedicle — External Surface 24 UMMP 73 884 Pedicle — External Surface 20 UMMP 73913 Pedicle — External Surface 17 UMMP 73 827 Pedicle — External Surface 16 UMMP 73 865 Pedicle — External Surface 15 UMMP 73867 Pedicle — External Surface 15 UMMP 73910 Pedicle — External Surface 15 UMMP 73916 Brachial — Internal Surface 15 UMMP 73 864 Brachial — Internal Surface 15 UMMP 7401 l Brachial — Internal Surface 13 42 Appendix C Coordinates Used in Nearest Neighbor and Water Flow Analyses Table 19 — Microconchid center and aperture center coordinates used in nearest neighbor and water flow vector analyses. External Valve Microconchid Specimen Center Aperture Center Number Coordinates Coordinates X Y X Y UMMP 74000 720 1300 742 1296 902 1281 877 1281 598 1088 572 1070 1 153 681 1 114 843 1 179 875 1 192 878 1 152 916 1 137 958 1 133 948 1 145 927 1099 918 1 1 10 1039 742 1032 664 988 664 873 655 891 979 8 932 876 875 860 669 909 748 1236 1225 1273 1 197 1 110 1178 1082 1125 1036 1 100 1 135 1081 1335 1 1 10 887 1 184 861 961 1263 936 968 1395 1013 1214 1 1 1 189 1459 1 142 1250 1562 1291 1001 1513 978 819 1592 791 688 1513 UMIVIP 73904 1280 659 1361 696 1425 982 1460 1099 43 Table 19 (cont’d). Pedicle Specimen Center Aperture Center Number Coordinates Coordinates ‘X Y' XI Y UMMP 73904 996 1486 979 1458 922 1221 864 1229 922 1006 865 1070 902 619 888 569 699 351 726 361 1064 495 1030 505 1279 1245 1285 1202 1233 993 1250 1007 1259 905 1294 903 1286 769 1353 794 1 1343 639 1191 531 1248 559 1383 524 1369 522 1360 1020 1326 1568 1213 1578 1189 1725 1226 1715 11 1666 1132 1700 1152 1497 875 1450 869 1566 639 1537 662 1648 813 1674 787 1701 717 1 758 1793 839 1758 853 Uhdhfl373928 581 981 19 961 844 472 791 933 1044 1103 1065 968 1171 1 1095 1255 1048 1239 1388 1292 1265 1281 1408 1191 1 1347 1529 1235 1502 1062 1316 993 141 872 Specimen Number UMMP 73928 UMMP 73 884 UMMP 73913 Table 19 (cont’d). Center Coordinates X 45 Y 803 662 458 367 162 270 640 731 859 732 1386 1172 1133 912 563 734 536 592 417 1 1047 485 373 91 1 981 Valve Aperture Center Coordinates X 1165 1072 1191 1141 Y Table 19 (cont’d). Vdve Specimen Center Aperture Center Number Coordinates Coordinates ‘X Y' XL Y UhthP 13 984 1219 934 1002 1353 1045 811 1218 840 709 1298 71 531 1223 505 1309 463 366 1200 347 240 1082 222 590 1466 632 911 1595 931 772 1572 823 626 1560 615 Uhflyfi’73865 522 698 475 560 864 573 1169 874 938 902 971 1052 975 1264 1049 1243 1256 1281 924 1197 1016 1194 11 1535 1135 1626 1184 1312 1574 1064 1548 1030 IJhdth'73867 358 1144 932 46 Table 19(cont’d). External Pedicle Valve Specimen Center Aperture Center Number Coordinates Coordinates X Y X Y UMMP 73867 1101 1412 1074 1386 1248 1220 1248 1220 1364 1113 1389 1131 1758 989 1718 961 l 180 487 1 158 541 1296 175 1301 229 1531 255 1508 17 736 1204 695 1216 913 1215 958 1208 818 1061 831 1085 950 1002 973 992 923 913 942 895 738 762 744 750 837 603 844 591 1058 889 1257 1233 1256 1222 1217 1047 1091 1106 724 1214 1214 711 1261 1243 1 47 Table I9 (cont’d). Internal Brachial Valve Specimen Center Aperture Center Number Coordinates Coordinates Y X UMMP 73916 1286 687 1 197 1031 1328 976 UMMP 73 864 UMMP 7401 1 48 Table 19 (cont’d). Brachial Specimen Center Aperture Center Number Coordinates Coordinates ‘Y IX 'Y UMMP 74011 384 1172 372 1193 1 11 859 1 898 679 690 856 845 605 899 49 Appendix D Aperture Orientation Angles Table 20 — Aperture orientation angles used in water flow vector analysis External Pedicle Valve Surfaces Specimen UMMP UMMP UMMP UMMP UMMP UMIVIP Number 74000 73904 73928 73884 73913 73867 214.6 137.2 176 218.7 209.9 239 294.6 310.5 328.7 327.6 343.3 33.9 304.6 120.2 138.2 138.2 321.7 140.2 235.4 246.4 149 154.2 46.6 230 50.9 265.4 297.9 328.6 226.5 296.2 221.5 345.8 338.1 137.4 245.1 116.3 122 6.9 243.1 194.5 104.5 316.9 352.4 250.9 218.1 94.3 76.4 326.3 199 4 133.7 312 13.5 25.4 314.4 225.5 322.6 225.5 309.2 271 214 175.6 239.2 220 139.1 268.3 130.3 306.6 174.3 213.5 108.4 310.5 335 214.4 143.4 0 297.9 253.9 35.5 Apem‘re 125.4 114.2 260.9 287 23-7 79-4 Angles 65.1 182.7 128.3 267.6 124.5 252.3 301.4 139 342.4 319.8 112.1 218.7 308.8 333.6 264.6 211.6 33.7 254.1 302.2 204.1 46.8 232.4 269.1 235 293.3 294.1 135.3 213.4 233.5 155.9 314.6 57.7 311.5 25 47.8 8.1 236.7 211.2 200.6 262.3 45 113.3 254.5 352.5 216.1 50 Table 20 (cont’d). External Pedicle Valve Internal Brachial Valve - Surfaces Surfaces Specimen UMMP UMMP UMMP UMMP UMMP UMMP Number 73865 73910 73827 73916 73864 74011 255.7 357.6 317 221.5 262 56.7 14.2 150 261.5 162.1 300.1 307.2 203.9 129.2 44 53.3 329 197 338.6 174.4 317.4 179.3 207.8 182.5 320.8 214.2 184.1 311.6 92.2 39.4 264.5 228 310.9 214.6 123.9 235.8 193.6 210.2 40.1 69.1 134.1 306.9 me 352 332 250.1 257.6 85.6 305.2 34.9 35.6 232.5 338.4 119.5 257.9 130.1 265.4 240.1 226.6 291.1 111.3 214.2 227.3 45.4 79.3 302.7 358.7 49.2 253.2 2.8 140.5 52.1 248.8 341.6 317.5 216.6 100.7 327.5 304.7 34 53.9 253 168.4 297.1 89.1 202* 129.7 226.5 - 51 I r" APPENDD( E Brachiopod Specimen Data Table 21 — Mucrospirifer sp. specimen data Specimen Length Width Height Total Number of Number (mm) (mm) (mm) Microconchids 1 28.97 18.41 16.63 0 2 31.26 19.69 13.47 0 3 31.49 22.37 11.76 0 4 27.34 18.10 11.93 0 5 36.63 21.07 13.70 0 6 30.17 19.22 15.79 0 7 31.01 19.27 13.19 0 8 30.31 19.72 12.92 0 9 27.37 14.84 8.74 0 10 31.01 17.94 11.80 0 11 32.71 17.66 12.65 0 12 30.07 16.06 9.43 0 13 31.08 18.79 12.17 0 14 30.98 16.89 13.45 0 15 28.72 19.35 13.98 0 16 31.31 18.38 13.29 0 17 30.07 20.18 14.60 0 18 32.95 19.25 13.31 0 19 31.59 20.68 13.69 0 20 31.80 20.56 16.37 0 21 29.56 19.08 14.67 0 22 35.34 21.00 15.10 0 23 33.00 20.94 16.29 0 24 28.43 15.08 5.85 0 25 26.50 13.82 5.45 0 26 29.63 14.49 4.78 0 27 24.29 13.04 7.00 0 28 24.52 14.94 8.49 0 29 31.81 14.95 9.65 0 30 35.47 16.50 10.87 0 31 35.99 15.70 9.90 0 32 30.82 15.46 8.11 0 52 Table 21 (cont’d). Specimen Length Width Height Total Number of Number (mm) (mm) (mm) Microconchids 33 34.00 15.38 8.93 0 34 35.01 17.42 10.09 0 35 27.49 11.64 8.45 0 36 36.13 18.10 10.18 0 37 35.43 16.32 7.09 0 38 35.24 12.88 5.36 0 39 29.50 13.52 9.69 0 40 32.31 15.67 7.14 0 41 36.32 12.83 8.56 0 42 37.91 18.30 10.03 0 43 33.74 17.45 6.39 3 44 35.86 17.04 7.66 0 45 34.72 18.39 8.27 0 46 40.14 20.02 17.51 0 47 25.14 17.53 11.40 0 48 32.29 13.47 6.75 0 49 32.89 16.15 10.93 0 50 32.13 16.44 13.31 4 51 37.98 19.25 13.45 9 52 32.13 20.05 13.23 3 54 30.54 17.65 14.50 10 55 35.47 21.25 16.55 9 56 29.15 17.42 12.72 34 57 34.54 18.26 13.10 15 58 32.14 15.72 12.86 11 59 31.70 19.40 14.53 24 60 24.24 16.94 12.24 9 61 26.24 13.55 9.02 1 62 26.82 18.51 12.99 4 63 33.28 20.67 12.52 2 64 32.16 22.32 13.09 0 65 29.26 16.56 1 1.87 4 66 33.21 22.51 16.27 1 67 29.87 16.38 13.14 15 68 34.42 19.20 12.96 0 53 Table 21 (cont’d). Specimen Length Width Height Total Number of Number (mm) (mm) (mm) Microconchids 69 22.59 12.85 8.58 3 70 25.75 16.43 14.60 11 71 35.29 18.77 12.54 2 72 30.59 17.99 12.93 2 73 15.35 7.90 5.22 0 74 25.24 13.84 8.18 0 75 20.06 12.73 6.65 0 76 29.95 13.72 7.60 0 77 32.37 16.09 7.56 0 78 30.48 12.93 5.66 0 79 31.68 15.44 9.30 0 80 25.18 10.74 7.55 0 81 34.65 15.06 9.00 0 82 29.00 12.96 7.21 0 83 34.06 16.15 11.51 0 84 33.66 15.79 9.71 0 85 31.16 12.70 8.08 0 86 31.29 18.96 12.01 0 87 26.25 17.82 7.10 0 88 33.44 17.46 10.15 0 89 30.60 15.70 8.04 0 90 32.95 14.89 9.39 0 91 28.76 15.60 9.97 0 92 28.23 13.01 8.52 0 93 35.48 14.38 8.35 0 94 24.59 11.22 11.13 0 95 23.80 11.99 5.33 0 96 30.61 16.60 9.98 0 97 34.1 1 17.10 9.98 0 98 38.36 19.75 14.77 0 99 31.87 16.72 12.42 0 100 34.89 19.33 9.21 0 101 39.62 18.08 13.93 0 102 39.24 14.31 10.14 0 103 41.91 15.57 10.36 0 54 Table 21 (cont’d). Specimen Length Width Height Total Number of Number (mm) (mm) (mm) Microconchids 104 36.36 18.02 12.39 0 105 34.45 12.66 9.93 0 106 30.60 19.12 12.87 0 107 32.00 17.99 13.83 0 108 35.33 19.11 12.75 0 109 28.50 13.22 8.74 0 110 27.48 15.66 9.96 0 111 27.33 19.09 11.72 0 112 31.24 17.53 12.10 0 113 31.90 19.34 12.91 0 114 37.80 19.34 13.70 0 115 28.89 18.23 14.30 0 116 31.40 18.02 13.57 0 117 27.51 17.41 15.31 1 118 34.85 20.38 13.81 0 119 30.04 18.89 12.92 0 120 30.53 21.66 15.28 0 130 29.18 18.48 14.65 0 131 31.79 19.33 14.03 0 132 31.02 18.43 10.88 0 133 29.18 19.80 13.41 0 134 29.10 18.32 14.48 0 136 29.23 19.09 12.09 0 137 28.24 16.54 11.87 0 138 39.03 18.65 13.39 0 139 32.98 18.92 13.67 0 140 29.26 18.47 15.33 5 141 32.43 19.09 11.39 0 142 34.85 20.16 13.92 0 143 27.71 19.08 13.09 0 144 35.47 20.91 15.43 1 145 31.18 18.30 13.50 0 146 36.44 22.17 16.15 0 147 27.11 17.28 12.84 0 148 31.25 19.16 14.71 0 55 Table 21 (cont’d). Specimen Length Width Height Total Nmnber of Number (mm) (mm) (mm) Microconchids 149 29.14 18.93 11.30 0 150 31.94 22.62 16.70 0 151 34.59 18.81 10.91 0 152 29.15 14.67 10.25 0 153 38.45 20.07 14.85 0 154 35.29 19.94 14.40 0 155 39.50 18.89 12.66 0 156 27.18 18.38 14.93 0 157 29.16 16.95 10.92 0 158 29.74 19.52 12.62 0 159 29.90 19.44 13.31 0 160 30.52 18.85 11.74 0 161 28.63 17.70 8.55 0 162 23.71 22.04 15.24 0 163 38.10 18.39 13.54 0 164 30.09 17.46 12.09 0 165 33.07 17.46 12.34 0 166 29.14 16.12 11.35 0 167 27.36 12.68 7.63 0 168 32.72 14.47 8.10 0 169 25.78 16.18 14.75 2 170 29.17 19.73 14.97 0 171 33.29 20.85 14.47 0 171 33.29 20.85 14.47 1 172 28.37 15.23 11.38 0 172 28.37 15.23 11.38 4 173 24.46 19.61 14.92 0 173 24.46 19.61 14.92 2 174 26.55 15.90 9.08 1 175 33.40 20.50 1 1.97 0 176 26.90 19.78 14.84 0 177 29.56 21.52 13.96 0 178 29.40 19.22 13.75 0 179 27.69 18.54 13.18 0 180 26.24 17.94 13.48 0 56 Table 21 (cont’d). Specimen Length Width Height Total Number of Number (mm) (mm) (mm) Microconchids 181 31.83 17.97 13.89 0 182 32.89 20.48 14.39 0 183 32.94 20.90 14.68 0 183 32.94 20.90 14.68 3 184 34.32 20.50 15.57 0 185 32.12 17.19 10.24 0 186 30.35 18.93 13.37 0 187 26.82 12.60 7.78 0 188 27.49 20.00 12.63 0 189 33.27 17.46 12.53 0 190 33.99 18.10 12.76 0 191 27.68 14.64 11.90 0 192 27.69 16.34 12.24 0 193 30.72 15.96 1 1.25 0 194 29.58 15.25 11.46 0 195 33.70 15.16 9.42 0 196 25.29 13.18 9.00 0 197 25.73 13.02 8.55 0 198 24.88 14.81 10.34 0 199 27.55 15.15 7.98 0 200 28.13 16.48 11.84 0 201 30.14 18.73 13.88 0 202 25.08 13.81 10.49 0 203 25.77 16.43 11.20 0 204 24.50 13.52 10.23 0 205 32.35 18.22 12.31 0 206 24.94 13.85 10.60 0 207 28.18 15.26 11.01 0 208 28.80 14.76 10.62 0 209 30.19 14.95 11.83 0 210 30.11 16.65 11.17 0 21 1 29.69 17.20 10.18 0 211 29.69 17.20 10.18 1 212 32.12 21.40 15.34 0 212 32.12 21.40 15.34 3 57 Table 21 (cont’d). Specimen Length Width Height Total Number of Number (mm) (mm) (mm) Microconchids 213 28.54 17.08 11.01 0 213 28.54 17.08 11.01 5 214 28.26 17.89 13.65 0 214 28.26 17.89 13.65 10 215 28.47 18.73 15.66 0 215 28.47 18.73 15.66 3 216 37.04 19.15 15.52 0 216 37.04 19.15 15.52 2 217 31.67 17.36 13.43 0 217 31.67 17.36 13.43 23 218 28.16 17.97 13.29 0 219 32.88 20.41 11.67 0 220 34.49 19.00 1 1.49 0 221 35.65 21.28 14.83 0 222 27.54 16.61 11.07 0 223 29.37 15.82 11.76 0 224 30.80 18.89 13.36 0 225 33.75 19.26 13.71 0 226 31.74 15.11 10.15 0 227 28.71 18.80 13.86 0 228 51.00 16.17 12.81 0 229 55.54 17.77 12.22 0 230 38.68 15.18 9.64 0 231 43.70 19.14 10.16 0 232 47.40 17.86 8.26 0 233 36.12 13.79 9.66 0 250 32.55 15.84 12.23 13 251 23.45 16.02 13.09 1 252 27.06 20.39 13.90 1 253 32.51 19.03 15.00 3 58 Table 22 - Strophodonta demissa specimen data Specimen Length Width Height Total Number of Number (mm) (mm) (mm) Microconchids UMMP 73826 23.22 17.11 4.81 1 UMMP 73827 20.49 17.09 6.54 23 UMMP 73828 19.98 16.77 5.05 14 UMMP 73829 15.81 11.11 2.77 5 UMMP 73830 19.84 16.02 5.90 8 UMMP 73831 21.79 15.94 5.23 9 UMMP 73832 19.28 15.99 2.83 1 UMMP 73833 20.48 17.81 6.98 2 UMMP 73834 13.40 9.94 2.87 1 UMMP 73835 18.56 13.74 2.64 l UMMP 73836 16.47 14.06 4.63 2 UMMP 73837 13.91 11.04 2.96 6 UMMP 73838 15.38 11.56 2.02 2 UMMP 73839 20.09 14.24 4.20 5 UMMP 73840 19.48 14.41 4.29 8 UMMP 73841 18.29 12.76 3.46 7 UMMP 73842 21.90 17.76 5.53 4 UMMP 73843 16.65 13.24 4.95 11 UMMP 73844 21.26 18.89 7.09 9 UMMP 73845 15.84 11.19 2.64 1 UMMP 73846 19.53 18.59 7.75 1 UMMP 73847 12.98 9.95 2.80 0 UMMP 73848 18.68 16.04 5.64 4 UMMP 73849 19.33 15.27 3.17 11 UMMP 73850 16.68 13.12 3.99 1 UMMP 73851 20.51 15.70 5.26 9 UMMP 73852 23.91 17.71 5.80 11 UMMP 73853 20.03 15.95 5.77 3 UMMP 73854 16.75 11.91 3.57 3 UMMP 73855 22.18 14.64’ 5.71 2 UMMP 73856 16.74 13.89 3.90 10 UMMP 73857 17.52 15.22 5.19 5 UMMP 73858 14.78 11.10 2.84 8 59 Table 22 (cont’d). Specimen Length Width Height Total Number of Number (mm) (mm) (mm) Microconchids UMMP 73859 15.82 11.21 1.56 14 UMMP 73860 18.54 16.11 5.37 9 UMMP 73861 16.24 12.29 2.27 3 UMMP 73862 16.48 11.87 3.17 10 UMMP 73863 13.15 9.03 2.59 4 UMMP 73864 17.28 14.42 2.52 16 UMMP 73865 16.71 12.87 3.04 15 UMMP 73866 19.48 16.03 6.54 6 UMMP 73867 20.13 16.79 5.65 19 UMMP 73868 21.15 18.32 6.57 4 UMMP 73869 16.68 10.66 3.31 8 UMMP 73870 16.92 13.56 3.58 3 UMMP 73871 14.72 11.12 2.61 3 UMMP 73872 18.25 13.09 3.02 2 UMMP 73873 21.15 15.88 5.22 4 UMMP 73874 20.29 15.19 4.86 7 UMMP 73875 14.20 10.98 2.89 12 UMMP 73876 20.72 15.39 4.01 3 UMMP 73877 16.23 11.57 3.19 4 UMMP 73878 17.83 13.46 3.67 10 UMMP 73879 14.08 11.77 3.99 5 UMMP 73880 18.15 17.08 5.19 0 UMMP 73881 15.94 12.25 3.97 12 UMMP 73882 13.28 11.14 3.49 11 UMMP 73883 22.90 14.11 4.14 3 UMMP 73884 19.75 15.88 4.32 21 UMMP 73885 20.12 14.82 4.07 10 UMMP 73886 22.63 15.45 2.92 4 UMMP 73887 20.47 16.68 5.12 7 UMMP 73888 19.54 16.21 4.75 4 UMMP 73889 21.27 12.67 5.05 1 UMMP 73890 22.13 17.30 5.08 11 UMMP 73891 16.31 12.95 5.24 6 UMMP 73892 20.46 15.15 4.68 1 UMMP 73893 19.73 17.27 5.15 2 60 Table 22 (cont’d). Specimen Length Width Height Total Number of Number (mm) (mm) (mm) Microconchids UMMP 73894 16.04 13.79 4.57 3 UMMP 73895 22.17 16.70 5.71 7 UMMP 73896 8.14 6.58 1.71 2 UMMP 73897 16.97 13.71 3.85 13 UMMP 73898 19.91 12.75 3.51 0 UMMP 73899 10.64 8.18 2.25 0 UMMP 73900 19.39 14.64 2.81 3 UMMP 73901 16.65 14.07 3.70 5 UMMP 73902 8.78 7.29 1.05 3 UMMP 73903 22.22 17.16 5.82 4 UMMP 73904 23.36 15.26 4.83 26 UMMP 73905 21.79 17.98 6.20 6 UMMP 73906 20.55 16.88 5.41 13 UMMP 73907 17.34 14.60 4.78 3 UMMP 73908 20.48 19.06 8.09 11 UMMP 73909 20.69 16.56 5.68 7 UMMP 73910 14.87 10.89 2.99 18 UMMP 73911 20.04 15.55 6.12 10 UMMP 73912 18.89 14.89 4.13 4 UMMP 73913 18.27 14.21 4.13 17 UMMP 73914 14.66 10.89 3.13 4 UMMP 73915 17.57 13.82 4.29 3 UMMP 73916 17.91 13.67 2.91 15 UMMP 73917 12.78 10.19 2.97 8 UMMP 73918 18.21 12.32 4.02 4 UMMP 73919 17.77 12.96 1.95 4 UMMP 73920 19.71 15.04 3.26 2 UMMP 73921 23.30 18.73 6.28 1 UMMP 73922 20.02 16.77 6.04 25 UMMP 73923 20.24 16.46 3.95 3 UMMP 73924 21.43 12.06 6.17 13 UMMP 73925 22.30 16.28 4.32 14 UMMP 73926 21.78 18.47 6.70 8 UMMP 73927 18.62 13.34 4.19 2 UMMP 73928 18.58 15.37 4.96 34 61 Table 22 (cont’d). Specimen Length Width Height Total Number of Number (mm) (mm) (mm) Microconchids UMMP 73929 17.97 14.37 3.99 13 UMMP 73930 23.17 14.95 5.25 13 UMMP 73931 19.63 14.42 4.68 8 UMMP 73932 19.02 14.91 4.62 7 UMMP 73933 15.35 11.17 2.71 1 UMMP 73934 25.14 17.27 5.91 13 UMMP 73935 15.89 13.02 4.88 9 UMMP 73936 11.25 8.47 2.12 5 UMMP 73937 22.16 16.22 3.07 9 UMMP 73938 17.91 15.01 4.18 1 UMMP 73939 13.31 10.98 2.87 3 UMMP 73940 21.36 16.12 3.77 3 UMMP 73941 15.24 11.31 3.90 4 UMMP 73942 12.86 10.65 2.97 12 UMMP 73943 20.08 13.50 4.23 1 UMMP 73944 19.22 13.00 2.03 9 UMMP 73945 18.13 13.35 4.45 15 UMMP 73946 15.35 11.56 2.65 0 UMMP 73947 19.18 16.26 5.01 6 UMMP 73948 20.65 18.50 6.03 8 UMMP 73949 20.86 13.54 3.45 1 UMMP 73950 23.03 16.67 5.33 4 UMMP 73951 21.15 18.03 6.31 4 UMMP 73952 17.11 12.26 3.62 0 UMMP 73953 25.16 18.27 5.60 3 UMMP 73954 17.54 13.97 3.96 12 UMMP 73955 18.21 16.01 5.67 7 UMMP 73956 17.57 13.79 4.35 0 UMMP 73957 20.14 14.23 4.67 8 UMMP 73958 18.41 13.65 3.42 2 UMMP 73959 18.35 14.00 4.49 13 UMMP 73960 14.91 13.56 4.41 6 UMMP 73961 20.24 15.85 4.60 2 UMMP 73962 18.34 14.47 4.07 5 UMMP 73963 21.09 16.76 6.11 9 62 Table 22 (cont’d). Specimen Length Width Height Total Number of Number (mm) (mm) (mm) Microconchids UMMP 73964 21.63 17.85 3.37 12 UMMP 73965 22.94 14.97 4.43 15 UMMP 73966 15.03 10.27 2.65 11 UMMP 73967 17.89 13.28 2.69 1 UMMP 73968 21.43 19.69 6.86 11 UMMP 73969 11.42 9.03 2.40 7 UMMP 73970 23.09 16.13 5.20 8 UMMP 73971 18.32 13.46 3.91 3 UMMP 73972 19.13 13.07 3.94 2 UMMP 73973 15.76 12.75 3.60 13 UMMP 73974 17.13 12.33 3.47 13 UMMP 73975 16.38 13.24 4.19 10 UMMP 73976 15.01 10.71 3.03 8 UMMP 73977 17.09 13.93 3.70 6 UMMP 73978 15.52 11.02 3.47 8 UMMP 73979 20.76 13.53 3.89 0 UMMP 73980 17.04 11.22 3.04 8 UMMP 73981 15.07 12.67 3.28 8 UMMP 73982 18.51 15.51 2.76 3 UMMP 73983 17.46 12.84 3.42 3 UMMP 73984 15.38 11.84 3.49 2 UMMP 73985 22.92 17.89 5.49 5 UMMP 73986 16.36 11.69 3.50 12 UMMP 73987 19.06 15.57 3.61 5 UMMP 73988 19.65 15.00 4.70 3 UMMP 73989 19.24 15.23 5.25 12 UMMP 73990 20.88 16.15 6.47 9 UMMP 73991 22.01 16.23 4.95 9 UMMP 73992 18.05 14.84 3.90 7 UMMP 73993 21.39 17.75 6.16 9 UMMP 73994 16.74 12.77 3.70 5 UMMP 73995 16.27 11.62 3.28 6 UMMP 73996 10.80 7.63 2.33 3 UMMP 73997 18.09 14.59 5.00 11 UMMP 73998 18.05 13.33 3.53 5 63 Table 22 (cont’d). Specimen Length Width Height Total Number of Number (mm) (mm) (mm) Microconchids UMMP 73999 11.22 9.25 2.79 0 UMMP 74000 22.17 17.18 5.92 33 UMMP 74001 16.81 14.70 5.41 9 UMMP 74002 10.15 6.61 1.64 2 UMMP 74003 19.00 13.59 4.15 11 UMMP 74004 17.21 11.88 3.08 3 UMMP 74005 10.20 8.10 2.23 0 UMMP 74006 10.89 8.71 2.09 3 UMMP 74007 19.13 17.59 6.56 3 UMMP 74008 19.90 17.47 4.88 7 UMMP 74009 13.24 10.71 3.12 3 UMMP 74010 21.12 16.80 3.60 3 UMMP 74011 19.81 15.31 3.31 15 UMMP 74012 18.72 14.27 3.02 0 UMMP 74013 10.95 7.81 2.67 6 UMMP 74014 18.05 13.28 3.96 1 UMMP 74015 20.38 16.53 2.77 10 UMMP 74016 11.35 8.89 2.43 4 UMMP 74017 13.59 10.58 2.62 10 UMMP 74018 19.28 14.11 3.76 3 UMMP 74019 16.56 12.20 3.63 1 UMMP 74020 18.95 15.94 6.02 8 UMMP 74021 17.38 12.82 4.20 3 UMMP 74022 18.43 12.25 3.17 2 UMMP 74023 20.49 17.72 5.55 2 UMMP 74024 18.50 13.12 4.13 8 UMMP 74025 10.59 8.53 2.40 5 64 APPENDIX F Microconchid Specimen Data Table 23 - Microconchid data for specimens occurring on Mucrospirifer sp. P = pedicle valve; B = brachial valve; P-I = interior surface of pedicle valve; B—I = interior surface of brachial valve; G = groove of costae; R = ridge of costae; Side = side of costae; ? = unable to determine Brachiopod Diameter Pedicle or Valve Microtopographic Spec1men No. Brachral Region location 43 2.32 P 3 ? 43 1.83 P 6 G 43 1.68 P 6 G 50 2.09 B 3 G 50 2.02 B 3 R 50 0.74 B 6 G 50 1.45 B 6 G 51 2.18 B 2 G 51 0.94 B 3 G 51 2.08 B 8 Fold 51 2.05 B 9 Fold 51 0.70 B 6 R 51 0.59 B 6 G 51 1.90 B 7 G 51 1.42 B 6 G 51 0.68 B 6 G 52 2.29 P 3 R 52 2.02 P 6 Growth lines 52 1.87 B 3 Side 54 0.95 P 3 G 54 2.43 B 3 G 54 2.22 B 2 G 54 1.78 B 3 G 54 1.29 B 6 Side 54 1.22 B 6 G 54 1.68 B 6 G 54 1.56 B 7 G 54 1.66 B 7 G 54 0.97 B 6 G 55 0.63 P 2 ? 55 0.93 P 3 G Table 23 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specunen No. Brachral Regron locatron 55 0.74 P 3 G 55 0.35 P 3 G 55 1.48 P 4 Sulcus Sulcus and 55 0.64 P 9 growth lines 55 1.91 P 6 G 55 1.89 P 6 G 55 1.74 B 4 Fold 56 0.56 P 3 R 56 1.60 P 3 G 56 1.53 P 3 G 56 1.49 P 3 G 56 0.87 P 3 G 56 0.66 P 3 R 56 0.81 P 3 G 56 0.41 P 3 G 56 1.64 P 3 G 56 1.02 P 3 G 56 0.34 P 2 G 56 0.72 P 2 G 56 0.49 P 2 R 56 0.57 P 2 G 56 0.27 P 2 G 56 1.19 P 2 R 56 1.41 P 5 Sulcus 56 0.55 P 5 Sulcus 56 1.14 P 5 Sulcus 56 0.57 P 4 Sulcus 56 1.09 P 4 Sulcus 56 1.04 P 9 Sulcus 56 0.57 P 6 G 56 1.77 P 6 Side 56 0.81 P 6 G 56 1.71 P 6 Side 56 1.93 P 7 Side 56 1.90 P 7 Growth lines Ox 0\ Table 23 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specimen No. Brachral Regron locatron 56 1.67 P 6 G 56 0.34 P 6 G 56 0.62 P 6 G 56 1.77 P 6 G 56 1.00 P 6 G 56 0.78 P 6 R 57 0.56 P 2 ? 57 1.96 P 3 G 57 1.94 P 3 Side 57 1.87 P 3 G 57 0.70 P 2 R Sulcus and 57 1.59 P 8 growth lines Sulcus and 57 1.18 P 9 growth lines 57 1.86 P 6 G 57 0.98 P 6 G 57 2.14 B 3 ? 57 0.90 B 8 F0“ at“ gmw‘h lmes 57 1.25 B 6 ? 57 1.41 B 6 ? 57 0.87 B 7 ? 57 0.92 B 7 ? 58 1.36 B 3 G 58 0.79 P 1 Hinge 58 1.22 P 1 Hinge 58 0.51 P 3 G 58 1.82 P 2 R 58 1.63 P 2 G 58 0.40 P 4 Sulcus 58 0.80 P 9 Sulcus 58 0.41 P 5 Sulcus 58 1.62 P 6 G 58 0.60 P 6 G 59 0.84 P 3 G ON \I Table 23 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specimen No. Brachral Regron locatron 59 0.51 P 3 G 59 0.94 P 3 G 59 0.78 P 3 G 59 1 .29 P 5 Sulcus 59 0.42 P 5 Sulcus 59 0.82 P 5 Sulcus 59 1 .08 P 6 G 59 0.90 P 6 G 59 0.95 P 7 Growth lines 59 0.74 P 1 Hinge 59 0.76 P 1 Hinge 59 0.75 B 3 G 59 1.78 B 2 R 59 1 .09 B 2 G 59 0.95 B 3 G 59 1.82 B 3 G 59 1.67 B 4 Fold 59 1 .16 B 4 Fold 59 1 .05 B 9 G 59 1.96 B 9 G 59 1.55 B 6 G 59 0.43 B 9 G 59 0.87 B 6 G 60 1.88 P 6 G 60 1 .85 P 6 G 60 2.16 B 2 ? 60 2.22 B 3 G 60 1 .66 B 2 G 60 1.40 B 6 R 60 1 .64 B 6 G 60 1.74 B 6 ? 60 2.31 B 7 Growth lines 61 1 .58 P 5 Sulcus 62 2.13 B 6 Fold 62 1.43 B 6 G 62 l .81 B 6 R O\ 00 Table 23 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Reglon locatron 62 0.93 B 6 G 63 1.25 P 3 R 63 1.93 P 6 G 65 2.42 B 3 ? 65 1.30 B 4 Fold 65 1.21 B 6 G 65 0.52 B 6 G 66 2.02 B 5 Fold 67 0.86 B 2 G 67 1.97 B 2 G 67 1.35 B 2 Side 67 0.79 B 3 R 67 1.64 B 3 G 67 1.99 B 3 R 67 1.98 B 3 Side 67 0.83 B 2 G 67 2.13 B 2 Growth lines 67 1.00 B 8 Sulcus 67 1.60 B 9 Sulcus 67 1.39 B 6 R 67 1.14 B 6 ? 67 1.19 B 7 ? 67 0.80 B 1 Hinge 69 2.28 P 2 Side 69 1.82 P 6 G 69 1.50 B 6 ? 70 1.63 P 2 G 70 0.66 P 3 G 70 0.80 P 3 G 70 0.68 P 3 G 70 1.63 P 4 Sulcus 70 1.00 P 5 Sulcus 70 0.46 P 5 Sulcus 70 0.93 P 6 G 70 1.70 P 6 G 70 0.96 P 6 Side O\ \O Table 23 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Regron locatron 70 1 .64 P 6 G 71 2.12 P 6 Sulcus 71 2.24 B 6 R 72 1 .12 B 8 Fold 72 1 .63 B 5 Fold 1 17 2.01 B 5 Fold 140 1 .08 P 9 Sulcus 140 1 .54 B 9 Fold 140 1.18 B 5 Fold 140 0.64 B 6 G 140 0.85 B 6 G 144 0.86 P 4 Sulcus 169 1 .27 P 6 G 169 2.19 B 3 R 171 1.53 P 3 G 172 0.79 B 3 G 172 0.95 B 3 G 172 0.76 B 4 G 172 0.65 B 5 Fold 173 1.75 P 6 G 173 1.17 B 6 G 174 1.46 B 3 G 183 0.48 P 4 Sulcus 183 1 .01 P 9 Sulcus 183 1.65 P 9 Growth lines 21 1 2.08 B 3 ? 212 1.87 P 3 R 212 1 .63 B 6 R 212 0.97 B 4 Fold 213 1 .08 B 6 G 213 1 .87 B 6 Side 213 0.94 B 6 G 213 1 .10 B 7 Side 213 0.55 B 6 Side Sulcus and 214 2.53 P 8 growth lines Table 23 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Regron locat10n 214 1.18 P 2 G 214 2.01 B 2 G 214 1.24 B 2 G 214 1.80 B 3 R 214 2.39 B 8 Fold 214 1.35 B 4 G 214 1.66 B 6 ? 214 0.42 B 2 G 214 0.92 B 8 Fold 215 1.40 P 6 R 215 2.01 B 6 G 215 1.71 B 6 Side 216 0.94 B 2 Side 216 2.44 B 8 Fold 217 1.08 P 3 G 217 1.64 P 4 Sulcus 217 0.41 P 6 G 217 0.55 P 6 G 217 0.62 B 3 Side 217 0.50 B 3 G 217 0.54 B 2 R 217 1.40 B 3 G 217 0.94 B 3 G 217 0.85 B 3 G 217 0.47 B 3 G 217 0.69 B 3 G 217 0.55 B 2 G 217 0.82 B 2 R 217 0.62 B 3 G 217 0.75 B 4 Fold 217 0.84 B 5 Fold 217 2.03 B 4 Fold 217 0.96 B 9 Fold 217 0.59 B 6 Side 217 0.42 B 6 G 217 0.84 B 6 G \l r—a Table 23 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Regron locatron 217 0.54 B 6 G 250 0.55 P 3 Side 250 0.57 P 3 G 250 1.32 P 2 G 250 2.54 P 5 Sulcus 250 1.21 P 4 Sulcus 250 1.27 P 8 Sulcus 250 0.80 P 8 Sulcus 250 0.67 P 6 G 250 0.78 P 6 G 250 1.16 P 6 G 250 0.49 P 6 G 250 0.71 P 6 G 250 0.91 P 7 Growth lines 251 0.88 P 4 Sulcus 252 1.26 B 3 Side 253 1.58 B 6 R 253 1.91 B 6 G 253 1.49 P 2 Growth lines 72 Table 24 - Microconchid data for specimens occurring on Strophodonta demissa. P = pedicle valve; B = brachial valve; P-I = interior surface of pedicle valve; B-I = interior surface of brachial valve; G = groove of costae; R = ridge of costae; Side = side of costae; ? = unable to determine Brachiopod Diameter Pedicle or Valve Microtopographic Specunen No. Brachral Regron location UMMP 73826 0.71 B 2 G UMMP 73827 0.38 B 2 ? UMMP 73827 0.39 P 1 Hinge UMMP 73827 0.73 P 3 G UMMP 73827 0.76 P 6 G UMMP 73827 0.78 B 2 ? UMMP 73827 0.85 P 3 G UMMP 73827 0.86 P 8 G UMMP 73827 0.87 P 2 G UMMP 73827 1.08 B 9 ? UMMP 73827 1.12 P 3 G UMMP 73827 1.22 P 4 ? UMMP 73827 1.23 P 8 G UMMP 73827 1.32 P 1 Hinge UMMP 73827 1.45 P 4 G UMMP 73827 1.47 P 3 G UMMP 73827 1.52 P 7 ? UMMP 73827 1.64 P 6 G UMMP 73827 1.67 B 2 ? UMMP 73827 1.75 P 6 ? UMMP 73827 1.87 B 2 ? UMMP 73827 2.00 B 2 ? UMMP 73827 2.11 P 6 ? UMMP 73827 2.25 B 2 G UMMP 73828 0.64 P-I 7 Interior UMMP 73828 1.07 P 1 Hinge UMMP 73828 1.14 P-I 2 Interior UMMP 73828 1.14 P-I 6 Interior UMMP 73828 1.16 P 1 Hinge UMMP 73828 1.36 P-I 7 Interior UMMP 73828 1.42 P 7 ? UMMP 73828 1.47 P—I 7 Interior UMMP 73828 1.48 P-I 7 Interior UMMP 73828 1.64 P 6 Side UMMP 73828 1.94 P 2 ? 73 Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Regron locatron UMMP 73828 2.02 P 3 R UMMP 73828 2.03 P 3 Side UMMP 73828 2.18 P-I 2 Interior UMMP 73829 0.39 P 5 Side UMMP 73829 0.70 P 5 G UMMP 73829 0.80 B 4 Side UMMP 73829 1.26 P 5 G UMMP 73829 2.88 P 5 ? UMMP 73830 0.66 B 4 ? UMMP 73830 0.83 B 9 Side UMMP 73830 1.01 B 6 G UMMP 73830 1.07 P 5 G UMMP 73830 1.51 B 4 Side UMMP 73830 1.53 P 4 G UMMP 73830 1.60 B 3 G UMMP 73830 1.81 B 3 Side UMMP 73831 0.51 P 3 ? UMMP 73831 0.71 B 5 G UMMP 73831 0.79 B 6 G UMMP 73831 0.86 B 6 G UMMP 73831 0.88 P 7 R UMMP 73831 1.60 P 5 G UMMP 73831 1.91 P 6 G UMMP 73831 2.03 P 6 G UMMP 73831 2.85 P 3 Side UMMP 73832 1.55 B 7 ? UMMP 73833 0.44 B 9 Side UMMP 73833 0.58 P 2 G UMMP 73834 1.14 P 8 Side UMMP 73835 1.96 P 6 ? UMMP 73836 0.55 B 3 G UMMP 73836 0.78 B 5 Side UMMP 73837 0.49 P 3 G UMMP 73837 1.03 B 3 ? UMMP 73837 1.12 P 6 ? UMMP 73837 1.31 P 6 R UMMP 73837 1.67 P 7 G \l .h Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Regron locatron UMMP 73837 1.94 P 4 R UMMP 73838 1.17 B 3 ? UMMP 73838 1.95 B 6 ? UMMP 73839 0.73 P 2 G UMMP 73839 0.74 P 3 G UMMP 73839 1.53 B 3 ? UMMP 73839 1.68 P 3 Side UMMP 73839 2.28 B 6 Side UMMP 73840 0.77 P 6 ‘7 UMMP 73840 0.96 P 6 ? UMMP 73840 1.04 P 5 ? UMMP 73840 1.31 B 7 ? UMMP 73840 1.46 B 2 ? UMMP 73840 1.68 P 4 7 UMMP 73840 1.71 P 6 ? UMMP 73840 2.46 P 3 ? UMMP 73841 0.64 P 3 ? UMMP 73841 0.78 P 2 Side UMMP 73841 1.13 B 2 G UMMP 73841 1.23 P 3 G UMMP 73841 1.71 P 3 ‘? UMMP 73841 1.92 P 2 Side UMMP 73841 3.02 P 3 G UMMP 73842 0.75 P 3 Side UMMP 73842 0.95 P 4 G UMMP 73842 1.03 P 3 G UMMP 73842 1.38 P 6 Side UMMP 73843 0.56 P 6 ? UMMP 73843 0.97 P 3 ? UMMP 73843 0.98 P 3 ? UMMP 73843 1.00 B 5 R UMMP 73843 1.33 P 6 R UMMP 73843 1.42 P 6 ? UMMP 73343 1.43 P 6 Side UMMP 73843 1.46 P 6 ? UMMP 73843 1.63 B 6 ? 75 Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Regron locatron UMMP 73843 1.77 B 6 G UMMP 73843 1.95 P 6 ? UMMP 73844 0.78 P 1 hinge UMMP 73844 1.36 P 3 G UMMP 73844 1.36 B 5 G UMMP 73844 1.43 P 4 G UMMP 73844 1.43 B 3 Side UMMP 73844 1.69 B 7 G UMMP 73844 2.06 B 6 G UMMP 73844 2.07 B 3 Side UMMP 73844 2.25 B 3 G UMMP 73845 0.79 P 4 G UMMP 73846 0.82 P 2 “.7 UMMP 73848 0.80 P 9 G UMMP 73848 0.86 P 3 ? UMMP 73848 1.06 B 2 ? UMMP 73848 1.21 P 7 G UMMP 73849 0.72 B-1 3 Interior UMMP 73849 1.13 B-1 3 Interior UMMP 73849 1.18 B-1 2 Interior UMMP 7 3849 1.24 B-1 3 Interior UMMP 73 849 1.27 B-1 2 Interior UMMP 73849 1.30 B-1 6 Interior UMMP 73849 1.62 B 7 G UMMP 73849 1.73 B-1 6 Interior UMMP 73849 2.29 B 6 G UMMP 73849 2.68 B-1 5 Interior UMMP 73849 2.97 B-1 6 Interior UMMP 73850 0.91 P 4 ? UMMP 73851 0.60 P 3 G UMMP 73851 0.79 P 4 G UMMP 73851 0.89 B 6 G UMMP 73851 1.03 P 6 ? UMMP 73851 1.25 P 5 G UMMP 73851 1.43 P 5 G UMMP 73851 1.60 P 6 ? 76 Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Regron location UMMP 73851 1.64 P 3 G UMMP 73851 1.70 P 3 R UMMP 73852 0.58 P 6 G UMMP 73852 0.91 P 2 Interior UMMP 73852 0.91 P 7 Interior UMMP 73852 0.96 P 6 G UMMP 73852 1.03 P 4 G UMMP 73852 1.03 B 3 Interior UMMP 73852 1.27 P 3 G UWP 73852 2.44 P 2 G UMMP 73852 2.57 P 9 G UMMP 73852 2.77 P 5 G UMMP 73852 2.91 P 6 G UMMP 73853 1.14 P 3 G UMMP 73853 1.23 P 3 G UMMP 73853 1.40 P 3 G UMMP 73854 1.03 B 9 G UMMP 73854 1.36 P 4 Side UMMP 73854 1.76 P 5 G UMMP 73855 0.74 P 3 G UMMP 73855 1.14 P 3 G UMMP 73856 0.72 P 2 ? UMMP 73856 0.87 P 4 ? UMMP 73856 0.96 P 4 ? UMMP 73856 0.97 P 6 ? UMMP 73856 1.15 P 6 ? UMMP 73856 1.40 P 9 ? UMMP 73856 1.42 P 5 ? UMMP 73856 1.85 P 4 ? UMMP 73856 2.66 P-I 3 Interior UMMP 73856 2.98 P 3 ? UMMP 73857 0.66 B 7 Side UMMP 73857 0.69 B 6 G UMMP 73857 1.14 P 5 G UMMP 73857 1.40 B 2 G UMMP 73857 1.50 B 2 ? 77 Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Regron locatron UMMP 73858 0.72 P 7 Side UMMP 73858 0.90 P 3 ? UMMP 73858 1.52 P 4 G UMMP 73858 1.57 P 6 G UMMP 73858 1.57 P 3 Side UMMP 73858 1.67 P 4 G UMMP 73858 2.00 P 2 G UMMP 73858 2.93 P 3 G UMMP 73859 0.58 B-1 6 Interior UMMP 73859 0.61 B-1 6 Interior UMMP 73859 0.82 B 6 G UMMP 73859 0.96 B-I 2 Interior UMMP 73859 1.22 B-1 4 Interior UMMP 73859 1.24 B-1 4 Interior UMMP 73859 1.30 B-1 4 Interior UMMP 73859 1.44 B-I 5 Interior UMMP 73859 1.46 B 5 ? UMMP 73859 1.48 B-1 3 Interior UMMP 73859 1.50 B-1 4 Interior UMMP 73859 1.54 B-1 2 Interior UMMP 73859 1.57 B 7 G UMMP 73859 1.72 B-1 3 Interior UMMP 73860 0.79 P 3 G UMMP 73860 1.00 P 6 Side UMMP 73860 1.05 P 3 Interior UMMP 73860 1.21 P 5 Side UMMP 73860 1.28 P 5 G UMMP 73860 1.59 P 3 Interior UMMP 73860 1.63 P 3 Interior UMMP 73860 1.77 P 5 Side UMMP 73860 3.13 P 6 Side UMMP 73861 1.57 P 6 Side UMMP 73861 1.66 P 3 Side UMMP 73861 2.06 P 3 G UMMP 73862 0.89 P 2 G UMMP 73862 0.95 P 2 G 78 Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Regron locatron UMMP 73862 1.00 P 7 G UMMP 73862 1.12 P 5 G UMMP 73862 1.17 P 6 G UMMP 73862 1.22 P 6 R UMMP 73862 1.54 P 5 G UMMP 73862 1.55 B 6 ? UMMP 73862 1.98 P 3 G UMMP 73862 2.54 P 6 Side UMMP 73863 0.48 P 5 G UMMP 73863 1.23 P 6 G UMMP 73863 1.26 P 3 Side UMMP 73863 1.27 P 3 R UMMP 73864 0.31 B-1 5 Interior UMMP 73864 0.51 B-1 4 Interior UMMP 73864 0.79 B-1 6 Interior UMMP 73864 0.97 B-1 5 Interior UMMP 73864 1.09 B-1 4 Interior UMMP 73864 1.16 B-1 9 Interior UMMP 73864 1.42 B-1 5 Interior UMMP 73864 1.46 B-1 3 Interior UMMP 73864 1.46 B-1 6 Interior UMMP 73864 1.46 B-1 6 Interior UMMP 73864 1.55 B 6 G UMMP 73864 1.58 B-1 3 Interior UMMP 73864 1.65 B-1 4 Interior UMMP 73864 1.68 B-1 7 Interior UMMP 73864 1.90 B-1 5 Interior UMMP 73864 2.06 B-1 5 Interior UMMP 73865 0.65 P 7 ? UMMP 73865 0.96 P 4 Side UMMP 73865 0.97 P 6 G UMMP 73865 1.10 P 6 G UMMP 73865 1.15 P 3 G UMMP 73865 1.29 P 4 Side UMMP 73865 1.37 P 4 G UMMP 73865 1.43 P 6 ? 79 Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Regron locatron UMMP 73865 1.44 P 6 R UMMP 73865 1.47 P 4 R UMMP 73865 1.65 P 2 R UMMP 73865 1.74 P 4 ? UMMP 73865 1.96 P 4 G UMMP 73865 2.59 P 5 ? UMMP 73865 2.64 P 6 ? UMMP 73866 0.99 P 3 G UMMP 73866 1.35 P 6 G UMMP 73866 1.42 B 6 Interior UMMP 73866 1.93 B 6 Interior UMMP 73866 2.58 P 6 G UMMP 73866 2.61 P 6 G UMMP 73867 0.66 P 3 R UMMP 73867 0.74 B 3 G UMMP 73867 0.80 P 3 G UMMP 73867 0.85 P 3 ? UMMP 73867 0.89 B 3 G UMMP 73867 1.04 P 6 R UMMP 73867 1.07 P 4 G UMMP 73867 1.11 P 7 G UMMP 73867 1.14 P 3 R UMMP 73867 1.15 P 7 G UMMP 73867 1.22 B 6 Side UMMP 73867 1.25 P 5 G UMMP 73867 1.34 B 1 Interior UMMP 73867 1.42 P 3 G UMMP 73867 1.46 P 6 G UMMP 73867 1.50 P 6 Side UMMP 73867 1.57 P 5 G UMMP 73867 1.88 P 3 R UMMP 73867 2.01 P 4 G UMMP 73868 0.53 B 2 G UMMP 73868 0.89 B 2 R UMMP 73868 1.42 B 6 Side UMMP 73868 1.85 B 2 R Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Regron locat1on UMMP 73869 0.82 P 6 G UMMP 73869 1.17 B 5 G UMMP 73869 1.44 P 5 G UMMP 73869 1.51 P 5 G UMMP 73869 1.56 P 3 Side UMMP 73869 1.68 P 4 G UMMP 73869 1.70 P 3 G UMMP 73869 2.25 P 3 Side UMMP 73870 0.93 B 7 G UMMP 73870 1.30 B 7 ? UMMP 73870 1.31 B 3 G UMMP 73871 1.46 P 5 G UMMP 73871 1.94 P 3 G UMMP 73871 1.98 P 3 G UMMP 73872 0.83 B 7 ? UMMP 73872 0.97 B 3 ? UMMP 73873 0.65 B 5 ? UMMP 73873 0.85 B 4 ? UMMP 73873 1.52 P 6 G UMMP 73873 2.12 P 2 R UMMP 73874 0.68 P 6 G UMMP 73874 1.05 P 3 Side UMMP 73874 1.17 P 6 G UMMP 73874 1.25 P 3 G UMMP 73874 1.42 P 6 G UMMP 73874 1.59 P 5 G UMMP 73 874 1.61 B 1 Interior UMMP 73875 0.40 P 3 G UMMP 73875 0.47 P 3 G UMMP 73875 0.47 P 3 G UMMP 73875 0.56 P 3 G UMMP 73875 0.70 P 3 G UMMP 73875 0.72 P 4 G UMMP 73875 1.16 P 5 R UMMP 73875 1.17 P 3 G UMMP 73875 1.24 P 5 G 81 Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Regron location UMMP 73875 1.57 P 7 Side UMMP 73875 1.64 P 5 Side UMMP 73875 2.25 P 9 G UMMP 73876 0.98 P 5 G UMMP 73876 2.53 P 6 Side UMMP 73876 2.72 P 4 G UMMP 73877 0.98 B 9 Side UMMP 73877 1.32 B 5 G UMMP 73877 1.44 B 6 G UMMP 73877 1.52 P 6 G UMMP 73878 0.84 B 4 G UMMP 73878 0.85 P 2 ? UMMP 73878 1.09 P 3 ? UNflVIP 73878 1.12 P 5 Side UMMP 73878 1.14 P 3 ? UMMP 73878 1.50 P 4 G UMMP 73878 1.68 P 6 G UMMP 73878 1.87 P 4 R UMMP 73878 2.22 P 4 G UMMP 73878 2.71 B 4 G UMMP 73879 0.90 P 7 ? UMMP 73879 1.22 P 3 ? UMMP 73879 1.25 P 5 G UMMP 73879 1.39 P 6 ? UMMP 73879 1.86 P 3 ? UMMP 73881 0.65 B 3 G UMMP 73881 0.71 B 3 G UMMP 73881 0.83 P 2 ? UMMP 73881 0.95 P 3 Side UMMP 73881 1.42 B 6 ? UMMP 73881 1.47 P 3 G UMMP 73881 1.86 P 5 G UMMP 73881 2.03 P 3 G UMMP 73881 2.04 P 5 G UMMP 73881 2.37 P 7 ? UMMP 73881 2.65 P 5 G 82 Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Regron locatron UMMP 73881 3.19 P 3 G UMMP 73882 0.46 P 5 R UMMP 73882 0.47 P 3 Side UMMP 73882 0.70 P 5 G UMMP 73882 0.89 P 6 G UMMP 73882 0.90 B 6 G UMMP 73882 0.94 P 6 G UMMP 73882 1.11 P 3 R UMMP 73882 1.35 P 3 G UMMP 73882 1.36 P 6 G UMMP 73882 1.61 B 3 G UMMP 73882 1.84 P 3 G UMMP 73 883 0.65 P 6 G UMMP 73883 0.88 P 6 Side UMMP 73883 1.32 B 3 Side UMMP 73884 0.49 P 5 G UMMP 73884 0.54 P 6 R UMMP 73884 0.74 P 5 G UMMP 73884 0.86 P 6 G UMMP 73884 0.96 P 4 G UMMP 73884 1.07 P 4 G UMMP 73 884 1.19 P-I 5 Interior UMMP 73884 1.25 P 3 G UMMP 73884 1.28 P 8 G UMMP 73884 1.30 P 3 G UMMP 73884 1.46 P 6 Side UMMP 73884 1.66 P 5 G UMMP 73884 1.74 P 4 G UMMP 73884 1.84 P 6 R UMMP 73884 1.98 P 4 G UMMP 73884 2.13 P 9 G UMMP 73884 2.19 P 3 G UMMP 73884 2.24 P 2 G UMMP 73884 2.34 P 6 G UMMP 73884 2.75 P 6 G UMMP 73884 3.29 P 3 Side 83 Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Regron location UMMP 73885 0.80 P 5 G UMMP 73885 0.88 P 6 G UMMP 73885 0.93 P 2 Side UMMP 73885 1.21 P 3 ? UMMP 73885 1.27 P 6 G UMMP 73885 1.29 P 3 G UMMP 73885 1.43 P 3 Side UMMP 73885 1.56 P 9 Side UMMP 73885 2.17 P 6 G UMMP 73885 2.98 P 2 G UMMP 73886 0.58 B 9 Side UMMP 73886 1.03 B 6 G UMMP 73886 1.44 B 6 Side UMMP 73886 1.93 B 6 G UMMP 73887 0.67 B 3 R UMMP 73887 0.77 P 6 G UMIVIP 73887 1.20 Interior 1 Hinge UMMP 73887 1.36 B 4 R UMMP 73887 1.38 B 3 R UMMP 73887 1.55 B 6 ? UMMP 73887 1.76 B 6 R UMMP 73888 1.01 P 2 G UMMP 73888 1.02 P-I 7 Interior UMMP 73888 1.53 P 3 Side UMMP 73888 1.80 P 4 G UMMP 73889 0.58 B 8 R UMMP 73890 0.74 P 2 G UMMP 73890 0.74 B 2 Side UMMP 73890 0.78 P 6 Side UMMP 73890 1.15 P 6 G UMMP 73890 1.29 P 3 G UMMP 73890 1.34 P 7 ? UMMP 73890 1.40 B 6 G UMMP 73890 1.45 B 6 ? UMMP 73890 2.18 B 3 G UMMP 73890 2.30 P 3 G 84 Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Regron locatron UMMP 73890 2.31 P 3 G UMMP 73891 0.97 P 5 G UMMP 73891 1.05 P 5 G UMMP 73891 1.28 P 6 Side UMMP 73891 1.50 P 3 G UMMP 73891 1.60 P 3 G UMMP 73891 1.91 P 8 Side UMMP 73892 2.32 P 2 G UMMP 73893 1.13 P 3 ? UMMP 73893 1.45 P 6 G UMMP 73894 0.78 P 3 G UMMP 73894 1.11 P 4 R UMMP 73894 1.66 P 3 R UMMP 73895 0.75 B 6 G UMMP 73895 0.81 P 7 G UMMP 73895 0.84 P 3 Interior UMMP 73895 1.29 P 4 G UMMP 73895 1.34 P 8 G UMMP 73895 1.43 B 3 G UMMP 73895 1.60 P 6 G UMMP 73896 0.34 P 4 G UMMP 73896 1.32 P 3 Side UMMP 73897 0.39 P 3 G UMMP 73897 0.40 P 6 G UMMP 73897 0.44 P 3 G UMMP 73897 0.48 P 3 G UMMP 73897 0.51 P 6 G UMMP 73897 0.63 P 6 G UMMP 73897 0.75 P 3 G UMMP 73897 0.87 P 3 G UMMP 73897 0.87 P 4 Side UMMP 73897 0.92 P 3 G UMMP 73897 1.84 P 4 G UMMP 73897 1.87 B 9 R UMMP 73897 3.03 P 4 Side UMMP 73900 1.26 B 4 Side Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Regron locatron UMMP 73900 1.67 B-1 5 Interior UMMP 73900 1.89 B 4 R UMMP 73901 0.97 P 4 G UMMP 73901 1.15 P 6 G UMMP 73901 1.26 B 6 R UMMP 73901 1.37 P 2 G UMMP 73901 1.49 P 5 G UMMP 73902 1.52 P 6 R UMMP 73902 1.58 P 6 Side UMMP 73902 1.70 P 7 Side UMMP 73903 0.93 B 2 R UMMP 73903 0.97 B 7 R UMMP 73903 1.27 P 4 R UMMP 73903 2.14 B 2 G UMMP 73904 0.38 P 5 G UMMP 73904 0.58 P 5 G UMMP 73904 0.68 P 6 Side UMMP 73904 0.80 P 5 G UMMP 73904 0.84 P 6 G UMMP 73904 0.89 P 4 Side UMMP 73904 1.02 P 3 G UMMP 73904 1.11 P 5 ? UMMP 73904 1.13 P 3 ? UMMP 73904 1.19 P 6 R UMMP 73904 1.34 P 6 Side UMMP 73904 1.37 P 5 G UMMP 73904 1.39 P 6 G UMMP 73904 1.39 P 6 G UMMP 73904 1.42 P 4 ? UMMP 73904 1.44 P 3 ? UMMP 73904 1.49 P 6 G UMMP 73904 1.51 P 3 G UMMP 73904 1.53 P 3 ? UMMP 73904 1.55 P 3 G UMMP 73904 1.58 P 6 G UMMP 73904 1.63 P 3 ? 86 Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Regron locatron UMMP 73904 1.70 P 5 G UMMP 73904 1.74 P 3 Side UMMP 73904 1.88 P 6 G UMMP 73904 1.92 P 5 Side UMMP 73905 0.43 B 6 G UMMP 73905 0.95 P 4 R UMMP 73905 1.15 P 1 Hinge UMMP 73905 1.54 P 3 ? UMMP 73905 1.73 P 6 R UMMP 73905 2.19 P 6 G UMMP 73906 0.51 P 5 G UMMP 73906 0.64 P 3 Side UMMP 73906 0.74 P 4 Side UMMP 73906 0.97 P 4 ? UMMP 73906 1.04 P 7 R UMMP 73906 1.10 P 2 R UMMP 73906 1.17 P-I 2 Interior UMMP 73906 1.20 P 3 G UMMP 73906 1.37 P 6 G UMMP 73906 1.56 P 6 R UMMP 73906 1.60 P 7 Side UMMP 73906 1.67 P 3 G UMMP 73906 2.59 P 4 G UMMP 73907 0.55 B 5 G UMMP 73907 1.53 B 4 Side UMMP 73907 2.64 P 4 G UMMP 73908 0.70 P 2 G UMMP 73908 1.37 P 4 G UMMP 73908 1.40 P 4 ? UMMP 73908 1.51 P 4 R UMMP 73908 1.61 P 5 R UMMP 73908 1.79 P 5 Side UMMP 73908 1.88 P 3 R UMMP 73908 2.14 P 6 ? UNflVIP 73908 2.27 P 2 ? UMMP 73908 2.28 P 3 G 87 Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Regron locatron UMMP 73908 2.56 P 3 G UMMP 73909 0.40 P 3 ? UMMP 73909 0.74 P 3 Side UMMP 73909 1.07 P 2 Side UMMP 73909 1.14 P 6 R UMMP 73909 1.72 P 5 G UMMP 73909 1.78 P 5 G UMMP 73909 2.18 P 6 G UMMP 73910 0.37 P 3 G UMMP 73910 0.42 P 5 G UMMP 73910 0.46 P 3 G UMMP 73910 0.57 P 5 G UMMP 73910 0.57 B 3 Side UMMP 73910 0.60 P 3 G UMMP 73910 0.60 P 5 R UMMP 73910 0.63 P 3 G UMMP 73910 0.69 B 2 G UMMP 73910 0.73 P 7 G UMMP 73910 0.82 P 3 G UMMP 73910 1.03 B 2 G . UMMP 73910 1.08 P 6 R UMMP 73910 1.19 P 3 G UMMP 73910 1.50 P 6 G UMMP 73910 1.51 P 3 Side UMMP 73910 1.79 P 5 Side UMMP 73910 2.79 P 4 G UMMP 73911 0.91 P 7 R UMMP 73911 1.08 P 3 ? UMMP 73911 1.11 P 3 G UMMP 73911 1.26 P 3 G UMMP 73911 1.32 P 7 G UMMP 73911 1.35 B 6 R UMMP 73911 1.42 P 3 R UMMP 73911 1.67 P 3 ? UMMP 73911 1.68 P 6 R UMMP 73911 2.25 P 9 Side 88 Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Regron locatron UMMP 73912 0.54 B 6 G UMMP 73912 1.31 B 6 G UMMP 73912 1.40 B 6 G UMMP 73912 2.92 P 6 ? UMMP 73913 0.38 P 4 Side UMMP 73913 0.38 P 6 G UMMP 73913 0.45 P 6 Side UMMP 73913 0.58 P 9 G UMMP 73913 0.65 P 5 R UMMP 73913 0.78 P 5 G UMMP 73913 0.79 P 3 Side UMMP 73913 0.99 P 5 G UMMP 73913 1.01 P 5 G UMMP 73913 1.31 P 5 G UMMP 73913 1.40 P 6 R UMMP 73913 1.44 P 6 R UMMP 73913 1.45 P 6 G UMMP 73913 1.51 P 5 R UMMP 73913 1.60 P 4 G UMMP 73913 1.74 P 6 G UMMP 73913 2.38 P 6 G UMMP 73914 0.31 B 2 G UMMP 73914 0.32 B 2 G UMMP 73914 0.83 P 4 G UMMP 73914 1.64 B 2 G UMMP 73915 0.75 P 1 Hinge UMMP 73915 0.76 P 2 ? UMMP 73915 1.55 P 3 G UMMP 73916 0.41 B-1 3 Interior UMMP 73916 0.54 B-1 6 Interior UMMP 73916 0.73 B-1 3 Interior UMMP 73916 0.77 B-1 7 Interior UMMP 73916 0.78 B-1 3 Interior UMMP 73916 0.97 DJ 3 Interior UMMP 73916 1.18 B-1 3 Interior UMMP 73916 1.27 B-1 6 Interior 89 Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Regron location UMMP 73916 1.28 B-1 6 Interior UMMP 73916 1.31 B-1 3 Interior UMMP 73916 1.47 B-1 6 Interior UMMP 73916 1.64 B-I 6 Interior UMMP 73916 2.04 B-1 7 Interior UMMP 73916 2.22 B-1 6 Interior UMMP 73916 2.50 B-1 3 Interior UMMP 73917 0.89 P 7 ‘7 UMMP 73917 0.98 P 6 ? UMMP 73917 1.10 P 4 ? UMMP 73917 1.43 P 5 ? UMMP 73917 1.45 P 4 ? UMMP 73917 1.70 P 4 ? UMMP 73917 1.72 P 5 ? UMMP 73917 1.92 P 8 ? UMMP 73918 0.55 B 3 G UMMP 73918 0.86 P 6 G UMMP 73918 1.70 P 4 G UMMP 73918 3.02 P 3 G UMMP 73919 0.57 B 3 G UMMP 73919 0.98 P 7 ? UMMP 73919 1.22 B 7 Interior UMMP 73919 1.41 P 7 ? UMMP 73920 0.91 B 3 G UMMP 73920 2.16 B 3 G UMMP 73921 1.38 P 6 G UMMP 73922 0.38 P 1 Hinge UMMP 73922 0.47 B 7 G UMMP 73922 0.47 B 7 Side UMMP 73922 0.49 B 7 Side UMMP 73922 0.54 P 3 G UMMP 73922 0.54 B 7 G UMMP 73922 0.56 B 6 ? UMMP 73922 0.59 B 3 G UMMP 73922 0.79 P 4 G UMMP 73922 0.81 P 9 R 90 Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Regron locatron UMMP 73922 0.83 B 3 Side UMMP 73922 0.88 P 4 G UMMP 73922 0.88 B 2 Side UMMP 73922 0.89 B 3 ? UMMP 73922 1.02 P 6 G UMMP 73922 1.04 P 6 G UMMP 73922 1.06 P 3 G UMMP 73922 1.09 B 6 G UMMP 73922 1.21 P 3 R UMMP 73922 1.33 P 6 Side UMMP 73922 1.37 B 9 G UMMP 73922 1.41 P 2 ? UMMP 73922 1.52 P 4 G UMMP 73922 1.57 P 5 Side UMMP 73922 1.62 B 3 ? UMMP 73923 1.03 P 3 G UMMP 73923 1.26 B 3 G UMMP 73923 2.05 P 3 ? UMMP 73924 0.37 B 3 G UMMP 73924 0.42 B 4 G UMMP 73924 0.45 P 3 G UMMP 73924 0.45 P 5 G UMMP 73924 0.47 P 6 G UMMP 73924 0.69 P 4 G UMMP 73924 1.12 B 3 ? UMMP 73924 1.15 P 4 Side UMMP 73924 1.44 P 4 Side UMMP 73924 1.47 P 4 G UMMP 73924 1.68 P 3 G UMMP 73924 2.37 P 5 G UMMP 73924 2.82 P 5 G UMMP 73925 0.55 P 5 G UMMP 73925 0.58 P 4 Side UMMP 73925 1.01 P 3 G UMMP 73925 1.05 P 5 G UMMP 73925 1.24 P 3 Side 91 Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Regron locatron UMMP 73925 1.26 P 3 G UMMP 73925 1.47 P 3 G UMMP 73925 1.59 P 4 R UMMP 73925 1.88 P 4 G UMMP 73925 1.98 P 4 G UMMP 73925 2.14 P 9 G UMMP 73925 2.28 P 3 Side UMMP 73925 2.65 P 6 G UMMP 73925 2.68 P 9 Side UMMP 73926 0.59 P 6 G UMMP 73926 0.93 P 5 G UMMP 73926 1.27 P 6 G UMMP 73926 1.32 B 2 ? UMMP 73926 1.70 B 2 ? UMMP 73926 1.83 P 3 G UMMP 73926 1.97 P 8 R UMMP 73926 2.28 P 3 G UMMP 73927 1.45 P 8 Side UMMP 73927 2.38 B 6 G UMMP 73928 0.36 P 3 G UMMP 73928 0.37 B 3 G UMMP 73928 0.38 P 3 G UMMP 73928 0.47 P 4 G UMMP 73928 0.47 B 2 G UMMP 73928 0.54 P 4 G UMMP 73928 0.64 B 6 ? UMMP 73928 0.66 P 6 G UMMP 73928 0.76 P 9 G UMMP 73928 0.81 P 6 G UMMP 73928 0.94 B 3 G UMMP 73928 1.00 P 3 G UMMP 73928 1.01 P 6 G UMMP 73928 1.12 P 6 G UMMP 73928 1.21 P 5 G UMMP 73928 1.23 P 5 Side UMMP 73928 1.25 B 3 ? Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Regron location UMMP 73928 1.27 P 5 Side UMMP 73928 1.28 B 4 ? UMMP 73928 1.35 B 3 ? UMMP 73928 1.39 P 8 G UMMP 73928 1.41 P 6 G UMMP 73928 1.43 P 4 Side UMMP 73928 1.51 P 3 R UMMP 73928 1.51 P 5 G UMMP 73928 1.58 P 4 G UMMP 73928 1.64 B 6 G UMMP 73928 1.71 P 4 G UMMP 73928 1.73 P 4 G UMMP 73928 1.75 P 5 R UMMP 73928 1.78 B 6 Side UMMP 73928 1.83 B 7 R UMMP 73928 2.00 P 5 ? UMMP 73928 2.06 P 5 G UMMP 73929 0.64 P 4 G UMMP 73929 0.78 B 6 G UMMP 73929 0.93 P 5 G UMMP 73929 1.13 P 4 G UMMP 73929 1.24 P 5 G UMMP 73929 1.40 B 5 G UMMP 73929 1.52 P 5 G UMMP 73929 1.71 P 6 ? UMMP 73929 1.73 P 5 G UMMP 73929 1.80 P 3 G UMMP 73929 1.91 P 6 G UMMP 73929 2.17 P 3 R UMMP 73929 2.32 P 6 G UMMP 73930 0.30 P 3 G UMMP 73930 0.51 P 3 G UMMP 73930 0.65 P 3 G UMMP 73930 0.67 P 2 G UMMP 73930 0.71 B 3 G UMMP 73930 1.04 P 3 R 93 Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Regron location UMMP 73930 1.20 P 7 G UMMP 73930 1.31 B 6 G UMMP 73930 1.39 P 6 G UMMP 73930 1.59 B 3 G UMMP 73930 1.80 P 6 G UMMP 73930 2.16 P 6 G UMMP 73930 2.17 P 3 Side UMMP 73931 0.64 B 4 R UMMP 73931 0.87 P 6 G UMMP 73931 0.95 P 5 G UMMP 73931 1.23 P 3 G UMMP 73931 1.45 P 5 G UMMP 73931 1.78 B 3 ? UMMP 73931 1.90 P 6 G UMMP 73931 2.42 P 6 G UMMP 73932 0.64 P 6 Side UMMP 73932 0.72 P 5 ? UMMP 73932 1.09 P 3 G UMMP 73932 1.11 P 6 G UMMP 73932 1.43 P 2 G UMMP 73932 1.49 P 6 R UMMP 73932 1.70 P 3 G UMMP 73933 1.61 P 6 G UMMP 73934 0.41 P 1 Hinge UMMP 73934 0.51 P 1 Hinge UMMP 73934 0.66 P 6 G UMMP 73934 0.78 P 3 G UMMP 73934 0.81 P 8 Side UMMP 73934 0.86 P 6 G UMMP 73934 0.91 B 3 G UMMP 73934 0.96 P 6 G UMMP 73934 1.01 P 4 G UMMP 73934 1.09 P 8 G UMMP 73934 1.25 P 5 R UMMP 73934 1.30 P 4 G UMMP 73934 2.15 P 6 R 94 Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Regron location UMMP 73935 0.32 B 3 G UMMP 73935 0.48 B 6 G UMMP 73935 0.64 B 6 R UMMP 73935 0.73 B 6 G UMMP 73935 0.78 B 6 G UMMP 73935 0.89 B 3 Side UMMP 73935 1.10 B 3 ? UMMP 73935 1.86 P 5 G UMMP 73935 1.93 B 7 ? UMMP 73936 0.54 P 4 G UNflI/IP 73936 0.70 P 3 R UMMP 73936 0.86 P 5 G UMMP 73936 1.30 P 3 G UMMP 73936 1.31 P 6 G UMMP 73937 0.60 B-1 5 Interior UMMP 73937 0.80 B-1 4 Interior UMMP 73937 1.11 B-1 3 Interior UMMP 73937 1.18 B-1 6 Interior UMMP 73937 1.20 B-1 6 Interior UMMP 73937 1.34 B-1 3 Interior UMMP 73937 1.43 B 5 G UMMP 73937 1.57 B-1 3 Interior UMMP 73937 1.74 B-1 6 Interior UMMP 73938 1.95 P 7 Side UMMP 73939 0.96 P 4 G UMMP 73939 0.98 P 4 G UMMP 73939 1.11 P 5 Side UMMP 73940 1.03 B-1 6 Interior UMMP 73940 1.31 B-1 5 Interior UMMP 73940 1.88 B-1 9 Interior UMMP 73941 0.31 B 3 R UMMP 73941 0.43 B 3 G UMMP 73941 0.85 B 5 ? UMMP 73941 1.00 B 6 R UMMP 73942 0.52 P 3 ? UMMP 73942 0.53 P 3 ? 95 Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen NO. Brachral Regron locatron UMMP 73942 0.56 P 3 ? UMMP 73942 0.88 B 6 ? UMMP 73942 0.96 B 4 R UMMP 73942 1.07 P 3 ? UMMP 73942 1.07 P 4 ? UMMP 73942 1.19 P 3 ? UMMP 73942 1.82 P 3 ? UMMP 73942 1.86 P 4 ? UMMP 73942 2.22 P 6 ? UMMP 73942 2.59 P 3 ? UMMP 73943 1.34 P 6 G UMMP 73944 0.94 B-1 3 Interior UMMP 73944 0.95 B-1 9 Interior UMMP 73944 1.01 B-1 9 Interior UMMP 73944 1.12 B-1 5 Interior UMMP 73944 1.32 B-1 8 Interior UMMP 73944 1.49 B-1 5 Interior UMMP 73944 1.66 B-1 5 Interior UMMP 73944 1.71 B-1 6 Interior UMMP 73944 2.55 B-1 6 Interior UMMP 73945 0.45 P 5 G UMMP 73945 0.63 B 6 G UMMP 73945 0.84 B 6 ? UMMP 73945 0.85 P 6 G UMMP 73945 0.87 P 4 G UMMP 73945 1.16 B 6 G UMMP 73945 1.24 P 5 ? UMMP 73945 1.29 B 5 G UMMP 73945 1.32 P 3 G UMMP 73945 1.37 P 3 G UMMP 73945 1.47 P 4 G UMMP 73945 1.57 B 3 G UMMP 73945 1.61 P 3 G UMMP 73945 1.73 P 5 G UMMP 73945 1.93 P 6 R UMMP 73947 0.81 P 6 G 96 Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Region location UMMP 73947 1.02 P 3 G UMMP 73947 1.08 P 6 G UMMP 73947 1.25 B 6 R UMMP 73947 1.33 P 3 ? UMMP 73947 1.59 P 7 Side UMMP 73948 0.44 P 3 G UMMP 73948 0.44 B 7 G UMMP 73948 0.82 B 6 G UMMP 73948 0.98 B 6 G UMMP 73948 0.99 B 6 G UMMP 73948 1.08 B 3 G UMMP 73948 1.25 B 8 G UMMP 73948 1.38 B 6 G UMMP 73949 1.10 P 9 G UMMP 73950 0.35 B 5 G UMMP 73950 0.68 P 6 ? UMMP 73950 1.23 P 5 G UMMP 73950 2.35 P 7 ? UMMP 73951 0.42 P 6 G UMMP 73951 0.96 P 3 G UMMP 73951 1.01 P 3 R UMMP 73951 1.55 P 6 Side UMMP 73953 0.94 P 7 G UMMP 73953 1.29 P 6 G UMMP 73953 1.54 P 7 ? . UMMP 73954 0.42 P 4 ? UMMP 73954 0.55 B 3 G UMMP 73954 0.66 B 5 G UMMP 73954 0.70 P 9 ? UMMP 73954 0.79 P 4 G UMMP 73954 0.93 P 4 G UMMP 73954 1.13 P 6 ? UMMP 73954 1.23 B 6 G UMMP 73954 1.46 B 6 G UMMP 73954 1.66 P 3 G UMMP 73954 1.88 P 6 Side 97 Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Reglon location UMMP 73954 2.08 P 3 G UMMP 73955 0.94 B 2 ? UMMP 73955 1.30 P 3 R UMMP 73955 1.43 B 2 ? UMMP 73955 1.45 P 5 G UMMP 73955 1.53 P 5 G UMMP 73955 1.55 P 7 G UMMP 73955 1.71 P 3 G UMMP 73957 0.43 P 3 G UMMP 73957 0.47 B 5 G UMMP 73957 0.55 B 6 G UMMP 73957 0.74 B 2 G UMMP 73957 0.82 B 6 G UMMP 73957 0.99 P 3 Side UMMP 73957 1.09 P 2 R UMMP 73957 1.64 P 6 G UMMP 73958 0.74 P 7 Side UMMP 73958 1.19 P-I 2 Interior UMMP 73959 0.41 P 6 G UMMP 73959 0.60 P-I 5 Interior UMMP 73959 0.72 P 7 G UMMP 73959 0.86 P 3 R UMMP 73959 0.97 P 6 G UMMP 73959 1.02 P 7 ‘7 UMMP 73959 1.05 P 5 G UMMP 73959 1.07 P 7 G UMMP 73959 1.09 P 3 G UMMP 73959 1.42 P-I 6 Interior UMMP 73959 1.43 P 2 ? UMMP 73959 1.84 P 3 ? UMMP 73959 2.00 P 6 Side UMMP 73960 0.53 P 3 Interior UMMP 73960 0.59 P 4 G UMMP 73960 0.82 P 3 G UMMP 73960 0.91 B 7 R UMMP 73960 1.15 P 8 G 98 Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Reg10n locatron UMMP 73960 2.73 P 3 G UMMP 73961 1.52 B 7 ? UMMP 73961 2.28 P 7 ? UMMP 73962 0.77 P 6 ? UMMP 73962 0.83 P 3 ? UMMP 73962 0.85 P 5 ? UMMP 73962 1.02 P 6 ? UMMP 73962 2.72 P 4 ? UMMP 73963 0.54 P 5 G UMMP 73963 0.79 P 1 Hinge UMMP 73963 0.98 B 7 R UMMP 73963 1.03 P 3 G UMMP 73963 1.21 P 5 R UMMP 73963 1.23 P 3 G UMMP 73963 1.49 P 4 G UMMP 73963 1.73 B 2 Side UMMP 73963 2.15 P 4 Side UMMP 73964 0.53 B 3 G UMMP 73964 0.65 B 3 R UMMP 73964 0.80 B 4 ? UMMP 73964 0.88 B-1 4 Interior UMMP 73964 0.94 B 4 ? UMMP 73964 1.05 B-1 4 Interior UMMP 73964 1.12 B 6 ? UMMP 73 964 1.27 B-1 4 Interior UMMP 73964 1.62 B-1 7 Interior UMMP 73964 1.86 B 3 G UMMP 73964 2.12 B-I 4 Interior UMMP 73964 2.50 B-1 4 Interior UMMP 73965 0.47 P 6 R UMMP 73965 0.60 P 1 Hinge UMMP 73965 0.65 B 7 G UMMP 73965 0.69 P 3 G UMMP 73965 0.84 B 2 G UMMP 73965 1.01 P 5 G UMMP 73965 1.04 P 6 G 99 Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Regron locatron UMMP 73965 1.13 P 7 Side UMMP 73965 1.13 B 7 G UMMP 73965 1.17 B 3 G UMMP 73965 1.81 P 3 G UMMP 73965 1.81 P 4 R UMMP 73965 1.97 P 3 R UMMP 73965 1.99 P 6 G UMMP 73965 2.38 P 4 G UMMP 73966 0.56 B 6 R UMMP 73966 0.60 B 3 G UMMP 73966 0.78 P 3 G UMMP 73966 0.83 P 3 R UMMP 73966 0.85 P 9 Side UMMP 73966 1.17 P 3 R UMMP 73966 1.21 P 3 G UMMP 73966 1.25 P 5 G UMMP 73966 1.31 P 3 G UMMP 73966 1.45 P 6 G UMMP 73966 1.58 P 6 G UMMP 73967 0.80 B 5 G UMMP 73968 0.53 P 1 Hinge UMMP 73968 0.56 B 3 G UMMP 73968 0.72 P 3 G UMMP 73968 1.01 P 3 R UMMP 73968 1.07 B 6 G UMMP 73968 1.15 P 6 ? UMMP 73968 1.38 B 3 R UMMP 73968 1.57 B 6 R UMMP 73968 1.77 B 5 R UMMP 73968 1.93 B 3 G UMMP 73968 2.02 B 4 Side UMMP 73969 0.41 B 5 G UMMP 73969 0.85 P 3 G UMMP 73969 1.25 P 5 Side UMMP 73969 1.36 P 5 G UMMP 73969 1.56 P 4 G 100 Table 24 (cont’d). Brachiopod Diameter _ Pedicle or Valve Microtopographic Specrmen No. Brachral Regron locatron UMMP 73969 1.97 P 3 ? UMMP 73969 2.33 P 3 G UMMP 73970 0.48 P 2 Side UMMP 73970 0.56 P 6 G UMMP 73970 0.95 P 5 G UMMP 73970 1.18 B 4 R UMMP 73970 1.58 B 3 R UMMP 73970 1.60 P 4 G UMMP 73970 1.65 P 6 G UMMP 73970 2.66 P 3 G UMMP 73971 0.85 B 6 R UMMP 73971 0.89 B 6 G UMMP 73971 1.34 P 3 G UMMP 73972 0.59 B 3 G UMMP 73972 0.79 P 3 G UMMP 73973 0.49 B 6 ? UMMP 73973 0.67 P 7 G UMMP 73973 0.70 B 6 ? UMMP 73973 0.92 P 3 R UMMP 73973 1.17 B 4 ? UMMP 73973 1.21 B 7 ? UMMP 73973 1.22 P 3 Side UMMP 73973 1.23 P 3 ? UMMP 73973 1.31 P 6 ? UMMP 73973 1.33 P 6 G UMMP 73973 1.79 P 7 Side UMMP 73973 1.94 B 5 ? UMMP 73973 2.53 P 6 Side UMMP 73974 0.52 P 6 G UMMP 73974 0.57 B 6 G UMMP 73974 0.68 P 5 G UMMP 73974 0.72 P 6 Side UMMP 73974 0.87 P 2 Side UMMP 73974 0.93 P 9 G UMMP 73974 1.01 P 3 Side UMMP 73974 1.08 P 4 G 101 Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Regron location UMMP 73974 1.08 P 3 G UMMP 73974 1.15 P 6 G UMMP 73974 1.61 P 4 R UMMP 73974 1.70 P 3 R UMMP 73974 2.36 P 4 G UMMP 73975 0.44 B 3 G UMMP 73975 0.55 P 5 G UMMP 73975 0.59 B 3 G UMMP 73975 0.66 P 5 G UMMP 73975 0.75 P 3 G UMMP 73975 0.75 B 3 G UMMP 73975 1.06 P 4 R UMMP 73975 1.28 P 6 G UMMP 73975 1.42 P 8 G UMMP 73975 1.84 B 3 G UMMP 73976 0.77 B 2 G UMMP 73976 0.86 B 3 ? UMMP 73976 0.87 P 6 R UMMP 73976 0.90 P 6 R UMMP 73976 0.97 P 6 G UMMP 73976 1.05 P 3 Side UMMP 73976 1.12 P 4 G UMMP 73976 1.34 P 6 G UMMP 73977 0.58 B 6 R UMMP 73977 1.14 P 7 G UMMP 73977 1.21 P 6 G UMMP 73977 1.59 P 5 G UMMP 73977 1.61 P 4 R UMMP 73977 1.80 P 2 G UMMP 73978 0.48 P 6 G UMMP 73978 0.60 B 6 G UMMP 73978 0.88 B 3 G UMMP 73978 0.88 B 6 G UMMP 73978 0.97 B 3 G UMMP 73978 0.99 B 6 R UMMP 73978 1.39 B 4 G 102 Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Regron locatron UMMP 73978 1.49 B 1 Hinge UMMP 73980 0.39 P 3 ? UMMP 73980 0.63 P 4 R UMMP 73980 1.10 P 8 Side UMMP 73980 1.39 P 6 ? UMMP 73980 1.47 P 2 ? UMMP 73980 1.58 P 3 G UMMP 73980 1.74 P 6 ? UMMP 73980 2.07 P 3 ? UMMP 73981 0.45 P 3 G UMMP 73981 0.52 P 7 G UMMP 73981 0.62 P 3 G UMMP 73981 0.79 P 6 G UMMP 73981 1.01 P 2 R UMMP 73981 1.49 P 3 G UMMP 73981 1.51 P 6 G UMMP 73981 2.38 P 6 Side UMMP 73982 0.56 B 5 G UMMP 73982 0.70 B 3 R UMMP 73982 1.31 B-1 4 Interior UMMP 73983 0.73 P 5 G UMMP 73983 1.14 P 3 G UMMP 73983 1.67 P 3 G UMMP 73984 0.93 B 3 G UMMP 73984 1.08 B 6 Side UMMP 73985 0.74 P 8 G UMMP 73985 1.18 P 5 G UMMP 73985 1.25 P 4 Side UMMP 73985 1.40 P 2 R UMMP 73985 1.47 P 7 G UMMP 73986 0.53 P 3 G UMMP 73986 0.64 P 3 G UMMP 73986 0.79 P 6 R UMMP 73986 0.87 P 6 Side UMMP 73986 0.91 P 6 G UMMP 73986 1.17 P 3 ? 103 Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Regron locatron UMMP 73986 1.26 P 4 Side UMMP 73986 1.28 P 3 G UMMP 73986 1.46 P 6 G UMMP 73986 1.74 P 3 ? UMMP 73986 2.25 P 4 Side UMMP 73986 2.85 P 3 ? UMMP 73987 0.87 P 9 G UMMP 73987 1.04 P 3 G UMMP 73987 1.24 P 6 G UMMP 73987 1.50 P 7 G UMMP 73987 1.79 P 7 R UMMP 73988 1.25 B 3 G UMMP 73988 1.27 P 3 G UMMP 73988 1.45 P 4 G UMMP 73989 0.58 P 6 G UMMP 73989 0.58 P 6 G UMMP 73989 0.76 P 3 G UMMP 73989 0.82 P 5 Side UMMP 73989 0.93 B 9 Side UMMP 73989 1.07 B 6 R UMMP 73989 1.40 P 5 G UMMP 73989 1.47 P 7 Side UMMP 73989 1.94 P 4 G UMMP 73989 2.23 B 6 R UMMP 73989 2.53 B 3 G UMMP 73989 3.24 P 3 Side UMMP 73990 0.30 P 7 ? UMMP 73990 0.60 P 3 G UMMP 73990 0.94 P 5 G UMMP 73990 1.01 P 6 Side UMMP 73990 1.39 P 3 G UMMP 73990 1.60 P 3 G UMMP 73990 1.66 P 4 G UMMP 73990 2.02 P 6 Side UMMP 73990 2.71 P 3 R UMMP 73991 0.57 B 4 G 104 Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen NO. Brachral Regron locatron UMMP 73991 0.61 P 6 G UMMP 73991 0.64 P 1 Hinge UMMP 73991 0.85 P 4 G UMMP 73991 0.91 P 6 Side UMMP 73991 0.94 P 3 Side UMMP 73991 0.98 P 1 Hinge UMMP 73991 2.34 P 6 G UMMP 73991 2.52 P 3 G UMMP 73992 0.81 P 5 G UMMP 73992 1.15 P 3 ? UMMP 73992 1.18 P 3 G UMMP 73992 1.47 P 6 G UMMP 73992 1.51 P 4 G UMMP 73992 1.67 P 3 ? UMMP 73992 2.21 P 3 ? UMMP 73993 0.44 B 6 G UMMP 73993 0.49 B 6 G UMMP 73993 0.71 B 2 R UMMP 73993 1.14 B 5 R UMMP 73993 1.34 B 3 ? UMMP 73993 1.38 P 5 ? UMMP 73993 1.63 P 5 ? UMMP 73993 1.67 P 6 ? UMMP 73993 1.82 P 5 ? UMMP 73994 0.87 P 3 R UMMP 73994 1.08 P 6 G UMMP 73994 1.23 P 6 G UMMP 73994 1.92 P 6 G UMMP 73994 2.05 P 3 R UMMP 73995 0.51 P 6 G UMMP 73995 0.88 P 1 Hinge UMMP 73995 0.92 P 6 Side UMMP 73995 0.96 P 4 G UMMP 73995 1.12 P 4 G UMMP 73995 1.13 P 6 G UMMP 73996 0.48 P 6 G 105 Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Regron location UMMP 73996 0.58 P 5 R UMMP 73996 1.92 P 4 R UMMP 73997 0.49 P 4 G UMMP 73997 0.78 B 3 G UMMP 73997 1.23 B 3 G UMMP 73997 1.31 P 9 G UMMP 73997 1.38 B 2 G UMMP 73997 1.42 B 6 G UMMP 73997 1.47 P 6 G UMMP 73997 1.53 B 3 Side UMMP 73997 1.87 P 6 Side UMMP 73997 1.98 P 6 G UMMP 73997 2.03 P 6 G UMMP 73998 0.52 P 6 G UMMP 73998 0.67 B 3 G UMMP 73998 0.73 P 5 G UMMP 73998 0.84 P 6 G UMMP 73998 1.04 P 9 G UMMP 74000 0.48 P 3 G UMMP 74000 0.63 P 3 G UMMP 74000 0.75 P 3 G UMMP 74000 0.78 B 9 G UMMP 74000 0.80 B 6 Side UMMP 74000 0.87 P 5 G UMMP 74000 1.10 P 3 G UMMP 74000 1.12 B 2 G UMMP 74000 1.13 P 6 G UMMP 74000 1.18 B 7 G UMMP 74000 1.21 P 5 Side UMMP 74000 1.27 P 3 G UMMP 74000 1.33 P 3 G UMMP 74000 1.38 P 3 G UMMP 74000 1.40 P 4 G UMMP 74000 1.41 P 5 G UMMP 74000 1.45 P 6 R UMMP 74000 1.50 P 4 G 106 Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen NO. Brachral Regron location UMMP 74000 1.51 P 2 Side UMMP 74000 1.54 P 3 R UMMP 74000 1.54 P 3 G UMMP 74000 1.59 B 6 R UMMP 74000 1.63 P 5 R UMMP 74000 1.70 P 3 G UMMP 74000 1.71 P 5 Side UMMP 74000 1.80 P 5 G UMMP 74000 1.83 P 3 G UMMP 74000 1.93 P 6 G UMMP 74000 2.02 P 6 ? UMMP 74000 2.06 P 3 G UMMP 74000 2.50 P 5 G UMMP 74000 2.70 P 6 G UMMP 74000 3.33 P 3 G UMMP 74001 0.78 P 3 ? UMMP 74001 0.88 B 3 G UMMP 74001 1.23 P 6 G UMMP 74001 1.76 P 9 ? UMMP 74001 1.78 P 6 G UMMP 74001 1.85 P 4 R UMMP 74001 2.03 P 6 G UMMP 74001 2.24 P 4 ? UMMP 74001 2.42 P 2 ? UMMP 74002 0.63 P 3 G UMMP 74002 1.23 P 6 R UMMP 74003 0.65 P 3 G UMMP 74003 0.84 P 4 G UMMP 74003 1.16 P 6 G UMMP 74003 1.20 B 3 G UMMP 74003 1.23 B 6 G UMMP 74003 1.49 P 4 G UMMP 74003 1.55 P 3 G UMMP 74003 1.59 P 6 R UMMP 74003 1.64 P 3 R UMMP 74003 1.94 P 4 R 107 Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Regron location UMMP 74003 2.52 P 3 ? UMMP 74004 0.75 P 6 G UMMP 74004 0.95 P 3 G UMMP 74004 0.98 B 6 G UMMP 74006 0.77 P 5 G UMMP 74006 0.98 P 3 R UMMP 74006 2.64 P 3 G UMMP 74007 1.47 P 6 Side UMMP 74007 1.65 P 6 G UMMP 74007 1.87 P 3 G UMMP 74008 0.64 P 8 G UMMP 74008 0.91 P 6 R UMMP 74008 0.95 P 4 G UMMP 74008 0.96 P 6 Side UMMP 74008 0.99 P 4 G UMMP 74008 2.78 P 3 G UMMP 74008 2.85 P 6 G UMMP 74009 0.36 B 4 Side UMMP 74009 0.93 B 5 R UMMP 74009 1.14 B 6 G UMMP 74010 0.53 B 3 G UMMP 74010 0.97 B 2 R UMMP 74010 1.70 B 8 G UMMP 74011 0.66 B-1 5 Interior UMMP 74011 0.74 B-1 3 Interior UMMP 74011 0.98 B-1 3 Interior UMMP 74011 1.01 B-1 4 Interior UMMP 74011 1.05 B 3 G UMMP 74011 1.1 1 B-1 3 Interior UMMP 74011 1.23 B-1 6 Interior UMMP 74011 1.33 B—1 5 Interior UMMP 74011 1.37 B 3 R UMMP 74011 1.40 B-1 6 Interior UMMP 74011 1.43 B-1 6 Interior UMMP 74011 1.45 B-1 5 Interior UMMP 74011 1.50 B-1 3 Interior 108 Table 24 (cont’d). Brachiopod Diameter Pedicle or Valve Microtopographic Specrmen No. Brachral Regron locatron UMMP 74011 1.50 B-1 4 Interior UMMP 74011 2.21 B-1 5 Interior UMMP 74013 0.58 P 2 ? UMMP 74013 0.61 P 5 R UMMP 74013 1.19 P 2 R UMMP 74013 1.30 B 9 G UMMP 74013 1.52 P 6 R UMMP 74013 1.92 P 9 G UMMP 74014 1.53 P 3 R UMMP 74015 0.81 B-1 4 Interior UMMP 74015 0.91 B-1 5 Interior UMMP 74015 1.01 B 7 ? UMMP 74015 1.03 B-1 5 Interior UMMP 74015 1.22 B-1 6 Interior Ulvflle 74015 1.31 B 8 G UMMP 74015 1.33 B-1 3 Interior UMMP 74015 1.45 B 9 R UMMP 74015 1.47 B-1 3 Interior UMMP 74015 2.01 B-1 5 Interior UMMP 74016 0.54 P 3 G UMMP 74016 0.76 P 6 G UMMP 74016 0.86 P 3 G UMMP 74016 1.38 P 6 G UMMP 74017 0.83 P 6 R UMMP 74017 1.05 P 3 R UMMP 74017 1.11 P 6 G UMMP 74017 1.37 P 6 G UMMP 74017 1.42 P 4 R UMMP 74017 1.59 P 3 G UMMP 74017 1.60 P 6 G UMMP 74017 1.97 P 9 G UMMP 74017 2.34 P 3 G UMMP 74017 2.85 P 5 G UMMP 74018 0.50 B 3 G UMMP 74018 0.86 B 3 R UMMP 74018 1.70 B 6 G 109 Table 24 (cont’d). Braehiopod Diameter Pedicle or Vaive Microtopegraphic SpeCImen No. Brachial Region locatlon UMMP 74019 0.87 B 7 R UMMP 74020 0.43 P 6 G UMMP 74020 0.49 P 5 G UMMP 74020 0.53 P 6 ? UMMP 74020 0.81 P 3 G UMMP 74020 1.02 P 3 G UMMP 74020 1.15 P l Hinge UMMP 74020 1.41 P 6 Side UMMP 74020 1.44 P 7 G UMMP 74021 1.13 P 4 G UMMP 74021 1.49 P 4 G UMMP 74021 2.45 P 6 ? UMMP 74022 0.60 P 3 G UMMP 74022 1.43 P 3 G UMMP 74023 2.70 B 7 R UMMP 74023 2.82 P 2 R UMMP 74024 0.41 P 3 G UMMP 74024 0.46 P 3 G UMMP 74024 0.75 P 6 G UMMP 74024 0.94 P 3 G UMMP 74024 0.96 P 5 G UMMP 74024 1.30 P 6 ? UMMP 74024 1.34 P 3 G UMMP 74024 1.75 P 6 R UMMP 74025 0.55 B 6 R UMMP 74025 0.68 P 7 G UMMP 74025 0.82 P 7 G UMMP 74025 1.49 P 6 Side UMMP 74025 1.53 P 4 R 110 Appendix G Rose Diagrams Generated From Water Flow Vector Analysis Table 25 — Additional rose diagrams generated from water flow vector analysis S cimen Valve Rose diagram without Rose diagram with pe surface orientation adjustment orientation adjustment UMMP Pedicle 74000 external UMMP Pedicle 73904 external UMMP Pedicle 73928 external 111 Table 25 (cont’d). S imen Valve Rose diagram without Rose diagram with pec surface orientation adjustment orientation adjustment UMMP Pedicle 73884 external UMMP Pedicle 73913 external UMMP Pedicle 73865 external 112 Table 25 (cont’d). S imen Valve Rose diagram without Rose diagram with pec surface orientation adjustment orientation adjustment UMMP Pedicle 73867 external UMlVfP Pedicle 73910 external UMMP Pedicle 73827 external 113 Table 25 (cont’d). S imen Valve Rose diagram without Rose diagram with pee surface orientation adjustment orientation adjustment UMMP Brachial 73916 internal UMMP Brachial 73864 internal UMMP Brachial 74011 internal 114 REFERENCES ADOBE SYSTEMS INCORPORATED, 2002, Adobe Photoshop 7.0: San Jose, California, USA. ALEXANDER, RR, 1984, Comparative hydrodynamic stability of brachiopod shells on current-scoured arenaceous substrates: Lethaia, v. 17, p. 17-32. ALEXANDER, RR, 1986, Life orientation and post-mortem reorientation of chesten'an brachiopod shells by paleocurrents: PALAIOS, v. 1, p. 303-311. ALVAREZ, F ., and TAYLOR, RD, 1987, Epizoan ecology and interactions in the Devonian of Spain: Palaeogeography, Palaeoclirnatology, Palaeoecology, v. 61, p. 17-31. BORDEAUX, Y.L., and BRETT, C.E., 1990, Substrate specific associations of epibionts on Middle Devonian brachiopods: implications for paleoecology: Historical Biology, v. 4, p. 221-224. BOUCEK, B., 1964, The T entaculites of Bohemia: Czech. Acad. Sci., Prague, 125 p. BURCHE'ITE, T.P., and RIDING, R., 1977, Attached vermiform gastropods in Carboniferous marginal marine stromatolites and biostromes: Lethaia, v. 10, p. 17-28. CATACASINOS, P.A., HARRISON, W.B., III, REYNOLDS, R.F., WESTJOHN, DB, and WOLLENSAK, MS, 2000. Stratigraphic Nomenclature for Michigan. Michigan Department of Environmental Quality, Geological Survey Division, Bulletin 8; www.deq.state.mi.us/documents/deq-ogs—gimdl-BUOSC.PDF CONRAD, T.A., 1842, Observations on the Silurian and Devonian systems of the United States with descriptions of new organic remains: Journal of the Academy of Natural Sciences of Philadelphia, v. 8, p. 228-280. DAVIS, J .C., 1986, Statistics and data analysis in geology: John Wiley & Sons, New York. DESILVA, P., 1962, Experiments on choice of substrate by Spirorbis larvae (Serpulidae): Journal of Experimental Biology, v. 39, p. 483-490. DORR, J .A., JR, and ESCHMAN, DR, 1970, Geology of Michigan: The University of Michigan Press, Ann Arbor. 115 DREESEN, R., and JUX, U., 1995, Microconchid buildups from Late F amennian peritidal lagoonal settings (Evieux Formation, Ourthe Valley, Belgium): Neues Jahrbuch Fur Geologic Und Palaontologie, Abhandlungen, v. 198, p. 107-121. FISHER, D.W., 1962, Small conoidal Shells of uncertain affinities, in Moore, R.C., ed., Treatise on Invertebrate Paleontology: The University of Kansas Press, Lawrence, KS, p. 98-143. HALL, J ., 1852, Containing descriptions of the organic remains of the lower middle division of the New York System (equivalent in part to the Middle Silurian rocks Of Europe): NY. State Geol. Survey, Palaeont. N.Y., 353 p. HAMMER, 0., and HARPER, D.A.T., 2006, Paleontological data analysis: Blackwell Publishing, Malden, MA. HAMMER, 0., HARPER, D.A.T., AND P. D. RYAN, 2001, PAST: Paleontological Statistics Software Package for Education and Data Analysis: Palaeontologia Electronica, v. 4, p. 9. HOARE, RD, and STELLER, D.L., 1967, A Devonian brachiopod with epifauna: The Ohio Journal of Science, v. 67, p. 291-297. HURST, J .M., 1974, Selective epizoan encrustation of some Silurian brachiopods from Gotland: Palaeontology, v. 17, p. 423-429. IMBRIE, J ., 1959, Brachiopods of the Traverse group (Devonian) of Michigan. Part 1, Dalmanellacea, Pentameracea, Strophomenacea, Orthotetacea, Chonetacea, and Productacea.: Bulletin of the American Museum Of Natural History, v. 116, p. 349-409. KESLING, R.V., and CHILMAN, RB, 1978, Ostracods of the Middle Devonian Silica Formation: Museum of Paleontology, The University of Michigan, Ann Arbor, MI. LABARBERA, M., 1977, Brachiopod orientation to water movement. 1. theory, laboratory behavior, and field orientations: Paleobiology, v. 3, p. 270-287. LESCINSKY, H.L., 1995, The life orientation Of concavo-convex brachiopods; overturning the paradigm: Paleobiology, v. 21, p. 520-551. LEVITIN, DJ, and RUSSELL, GS, 1997, Rao's spacing test, in Kotz, S., and Read, C.B., eds., Encyclopedia of Statistical Sciences: John Wiley & Sons, New York. LJASHENKO, GP, 1958, Silurian tentaculitids from Podolia and the Baltic: All-Union Scientific Research Geological Petroleum Prospecting Institute, v. 9, p. 19-26. 116 MUIR-WOOD, H., and WILLIAMS, A., 1965, Strophomenida, in Moore, R.C., ed., Treatise on Invertebrate Paleontology: The University Of Kansas Press, Lawrence, KS, p. 395. MURCHISON, R.I., 1839, The Silurian System: Murray, London, 768 p. NIELD, E.W., 1986, Non-cryptic encrustation and pre-burial fracturing in stromatoporoids from the Upper Visby Beds Of Gotland, Sweden: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 55, p. 35-44. NIELSEN, C., 1970, On metamorphosis and ancestrula formation in cyclostomatous bryozoans: Ophelia, v. 7, p. 217-256. PALMER, T.J., and FURSICH, F.T., 1981, Ecology of sponge reefs from the Middle Jurassic of Normandy: Palaeontology, v. 24, p. 1-23. PITRAT, C.W., and ROGERS, PS, 1978, Spinocyrtia and its epibionts in the Traverse Group (Devonian) of Michigan: Journal of Paleontology, v. 52. RICHARDS, RP, 1972, Autecology of Richmondian brachiopods (Late Ordovician of Indiana and Ohio): Journal of Paleontology, v. 46, p. 386-405. ROHLF, F.J., 2005, tpsDig, digitize landmarks and outlines, version 2.05. RUDWICK, M.J.S., 1970, Living and fossil brachiopods: Hutchinson & CO., London, 199 p. SAUNDERS, R.I., and CONNELL, SD, 2001, Interactive effects Of shade and surface orientation on the recruitment of Spirorbid polychaetes: Austral Ecology, v. 26, p. 1 09-1 1 5. SINCLAIR, DR, 1985, On tests of Spatial randomness using mean nearest neighbor distance: Ecology, v. 66, p. 1084-1085. SMRECAK, T.A., and BRETT, C.E., 2008, Discerning paterns in epibiont distribution across a Late Ordovician (Cincinnatian) depth gradient: Abstracts with Programs - Geological Society of America, v. 40, p. 18. SPARKS, D.K., HOARE, RD, and KESLING, R.V., 1980, Epizoans on the brachiopod Paraspirifer bownockeri (Stewart) from the Middle Devonian Of Ohio: Museum Of Paleontology, The University of Michigan, Ann Arbor, MI, 1-105 p. SPJELDNAES, N., 1984, Epifauna as a tool in autecological analysis of Silurian brachiopods: Special Papers in Palaeontology, v. 32, p. 223-235. 117 IIllljlljljjjlIIII