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ABSTRACT

A HIERARCHICAL BAYESIAN APPROACH
TO MODEL SPATIALLY CORRELATED
BINARY DATA WITH APPLICATIONS TO
DENTAL RESEARCH

By

Yanwei Zhang

Statistical analysis of multivariate binary data measured repeatedly in time or
cross-sectionally clustered in space, besides the difficulties of non-continuous nature
of data, raises a number of challenges. For instance, dental data from oral health
rescarch community are always discrete, clustered spatially and repeated in time.
The researchers are interested in the risk factors and spatial svmmetry property of
caries prevalence incidence. Tt is well believed, for example, that the caries outcomes
adjacent to each other are highly likely to be correlated, which necessitates the use
of methodologies for correlated discrete data. Generalized estimating equation(GEE)
based approach might help answer marginal mean and pairwise association types of
research questions about correlated units of interest. When association among units is
of primary research concern, GEE suffers seriously from less efficiency. Methodologies
for analyzing multivariate categorical data clustered in space, with both marginal
mean and association being of research interest, need to continue. In this thesis, we
will introduce complete likelihood based approaches for analyzing spatially correlated
binary data. Specifically, we are going to discuss a class of methods that attempt to
explicitly take some very unique spatial structure features into consideration for valid
and cfficient inferences at tooth level. Furthermore. we proposed different models by

using latent variables with hierarchical levels to account for the spatial dependence



of the data features from different points of view. The hierarchical structure of the
model and local identifiability of latent variable models make the statistical inference
appropriate within Bavesian framework through the MCMC based posterior sampling
algorithm. Comparison among the performances of different models was made under
Bayesian model selection criterion (DIC) for missing data problem. Finally, we gave
Bavesian hypothesis testing for the spatial symmetries of caries incidence by providing
semitendinous credible regions for the differences of quantities that were used to
measure spatial association strength. The methodology is illustrated by using dental

data from Signal Tandmobiel (STM) project.
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CHAPTER 1

Introduction

1.1 Background and objectives

In biomedical studies. it is common in practice for a binary disease outcome to be
measured either repeatedly across time or cross-sectionally across spatial spots. The
motivating example for this rescarch comes from dental research. The caries status
of teeth are evaluated as binary outcomes with 1 indicating the presence of caries
and 0 otherwise. The caries prevalence incidences are suspected to have a certain
spatial symmetry property in terms of the quadrants configuration within the mouth,
which is well believed by dentists in practice. It is well known, for example, that the
dental caries outcomes adjacent to one another are likely to be correlated. Specifically,
there are four quadrants within the mouth and all the quadrants are believed to be
correlated to one another. Within each quadrant, the adjacent teeth are also likely
to be correlated and the correlation might be affected by the quadrant. Hence, it
necessitates the use of methodologies for correlated data to analyze dental data
When a patient first visits a dentist, either for a check-up or a more serious dental
issue, the dentist will normally conduct a full examination to gain an understand-

ing of the patient’'s overall dental health as well as the patient’s particular dental



problem(s), if any. Because of the complexity and diversity of dental issues: and the
numerous teeth involved, it is difficult for the dental health researchers to analyze
the dental data, except in a most general and superficial way with respect to quad-
rant,tooth position, age. sex, geographical region, ete. In dental practice, it is of
interest to find out some patterns in terms of caries of the teeth, which will help the
dentist efliciently examine oral health of the patients and provide people informa-
tive guidance for intervention of caries. Researchers have been working on different
methodologies to analyze the dental data to address caries incidence pattern related
questions. The traditional method for analyzing dental data is based on the num-
ber of Decayed/Missing/Filled Surfaces (DMFS) or Decayed/Missing/Filled Teeth
(DMFET). introduced by Klein ef al. (1938). DMET and DMES can roughly express
the caries prevalence numerically and are obtained by calculating the number of De-
cayed (D), Missing (M) and Filled (F) teeth (T) or surfaces (S) within the mouth.
The DMFT evaluation method is a well-known technique and has been used for many
years to analyze the effects of variables, such as fluoride, on the dental health of given
populations. This approach operates the analysis at the mouth level, which is not
informative, in terms of caries pattern. to dentists and patients for oral health exam-
ination and caries interventions. Dentists and patients are really interested in spatial
symmetry patterns of caries. For example, if one caries was found on one specific
tooth within a specific quadrant, which tooth will be the next that is highly likely to
have caries. If the dentists has some information about the spatial symmetry of the
caries. they may efficiently locate or predict which is the next tooth with high risk of
developing caries. If so, dentists and patients may be able to pay more attentions to
the teeth with high risk. Due to the spatial configuration of the quadrants and teeth
within cach quadrant. the nature of the data requires the methodology for correlated
binary data.

Lesaffre et al. (2006) proposed a several methods to analyze the dental data from



the Signal Tandmobicel (STM) project. Their approach was based on the General-
ized Estimating Equation (GEE)(Zeger and Liang, 1986) to deal with correlated data.
Lesaffre's approach used logistic regression model framework to model marginal caries
incidence using exchangeable working correlation matrix to account the dependence
of the data. Their GEE based approach is not able to capture the special correlation
structure among quadrants and among teeth within the same quadrant. Roy (2006)
proposed a model-based approach for imputing these missing values. His method ex-
ploited the spatial correlation among teeth without considering the different strength
of spatial dependence among quadrants. Vanobbergen et al.(2007) proposed ALR(
Alternating Logistic regression)(Carey et al. (1993)) approach to investigate spa-
tial correlation respect to caries patterns in primary dentition in 7-year-old children.
At the population level, symmetry in the prevalence of caries experience across the
midline was tested at the tooth and tooth surface levels under ALR model. ALR
simultaneously modeled marginal expectation of each binary variable as well as the
association between paries of outcomes using GEE. Liang et al. (1992) showed that
GEE estimates only can reasonably efficient when covariance structure of the response
variables is correctly specified. Meanwhile, ALR models have issues of convergence
when the cluster size is large.

GEE based logistic regression models and ALR models are both marginal model,
which means they did not take care of the heterogeneity and dependence among quad-
rants and teeth nested within corresponding quadrants. The estimate of parameters
of interest for fixed effect is consistent. but it might be inefficient and seriously biased.
The GEE based approach. as a distribution free methodology. does not lend itself to
classical tools for model checking. GEE is based on the first order moment and ALR
is trying to model the higher order moment of the data while still only focusing on
pairwise association without trying to model the joint relationship among the ob-

servations. More importantly, it is infeasible to address to the spatial symmetry of



association strength among quadrants and the teeth within corresponding quadrants
since all these higher order moments characteristics are unobserved. Hence, searching
for alternative solutions continues.

The valid and efficient joint model for the spatially correlated binary dental data is
to incorporate latent variables to induce the dependence structure among quadrants
and the nested dependence structure among teeth within corresponding quadrants.
Meanwhile the latent variables also can generate a flexible multivariate distributions
for the binary dental data. Without obvious multivariate distributions for the mul-
tivariate spatially correlated binary data, the joint model for accounting the nature
of the data is not straightforward. Another way to model the dental data is us-
ing mixture models. Specifically. we can view the distribution of the caries status
of the tooth of interest as being a mixture of bernoulli distributions with different
probabilities of success. The probability of the incidence of caries is modeled by a
logistic regression model that takes the design structure, quadrant and tooth position
within the corresponding quadrant, into account. Generalized latent variables and
mixture models allow factorization of the joint distributions of the multivariate cor-
related binary data into the product of a conditional distributions, given the latent
variables and allocation random variables that induce the unobserved heterogeneities
and dependence structures among the observations. The objective of this thesis is
to develop a new methodology for complex and likelihood based analvsis of multi-
variate spatiallv correlated binary caries experience from the dental data, which can
help us examine spatial symmetry of the quadrants, association strength among teeth
within each specific quadrants. In this thesis, we proposed Bayesian generalized latent
variable model (BGLVM) and Bayesian mixture of generalized latent variable model
(BMGLVM) to give flexible multivariate distributions of the spatially correlated bi-
nary dental data with dependence structure induced by the latent variables. BGLVM

and BMGLVM are specified from Frequentist’s point of view but implemented under



Bayesian framework. The BGLVM uses logistics regression model giving a flexible
multivariate distribution for the dental data with two level of latent variables induc-
ing dependence structure for corresponding level of spatial configuration. For the
BGLVM, the dependence structures among quadrants and teeth nested within quad-
rants are induced by the latent variable models whose covariance structure, modeled
by undirected graphical Gaussian model or conditional autoregressive model. For
the BMGLVM, the dependence among quadrants is induced by the weights of the
mixture components of the mixture model and the dependence among teeth within
the same quadrant is induced by generalized latent variable ﬁlodel in the same way

as in BGLVM.

1.2 Principles for the analysis

The principle of our approach for modeling the multivariate spatially correlated dental
data is based on the concept of latent variables that are incorporated into the like-
lihood based model for generating flexible multivariate distributions for the observa-
tions and inducing multilevel dependence structures due to unobserved heterogeneity
from the complex structure of the multivariate correlated binary data. Specifically,
two level of random vectors are introduced into to the model via latent variables, which
are used to induce spatial dependence structures among subunits at their correspond-
ing level and generate flexible distributions for the subunits. The joint distribution for
each of the two levels of latent variables is given by Undirected Graphical Gaussian
Model (UGGM)(Dempster,1972, Giudici and Green 1999) with respect to different
spatial configurations of the subunits at corresponding level. Each level of latent vari-
ables is used to induce spatial dependence among subunits at the corresponding level.
The first level of spatial dependence structure is the spatial association among four

quadrants. The four quadrants are adjacent in spatial frame and also coexist in the



same oral biological environment, which make them correlated in some unobserved
structure. the second level of spatial dependence structure is the spatial association
among the teeth within the same quadrant. It is rcasonable to believe that teeth
adjacent to one another are likely to be correlated. Meanwhile, we know the oral
biological environment is very complicate in the way that the associations exist not
ouly between teeth adjacent to cach other, but also with other teeth in the same
quadrant. The UGGMs for the latent variables will be based on different precision
matrixes: one is unstructured type and the other is Markovian type based on CAR
model (Cressie (1991)).

In this thesis. we are trving to combine the merits of frequetist’s and Bavesian's
in model formulations and implement. Specifically, the design structure based mod-
els are formulated within the framework of frequentist for considering the marginal
identifiability of the model. The latent variables are incorporated hierarchically in
the graphical structure of Bayesian model and models are implemented in Baeysian
principle. Since our models are based on latent variable approach, local identifia-
bility and model complexity will raise lots of technical problems within frequentist’s
framework. For example, computational feasibility in optimization. singularity of the
information matrix and accuracy and computational feasibility of high dimensional
integration approximation by using either adaptive Gaussain quadrature or MCMC
based approaches. Bayesian provides a way to avoid all the above technical concerns
by using Gibbs sampling to obtain the posterior distributions of the quantities of
interest. We use noninformative priors for the parameters of interest, since posterior
inference will not rely on the subjective prior information and it will also give the
comparable result with frequentist’s as sample size increase. Meanwhile, we use in-
dependent proper conjugate priors to the parameters of interest, which will ensure
the validity of the posterior samples obtained by Gibbs sampling and improve the

convergence of the MCMC based posterior sampling algorithm. More importantly,



Bayesian approach can be helpful in complex modeling situations where a frequentist
analysis is difficult or does not exist. Lee and Song demonstrated better performance
of a Baysian approach in small samples compared with ML estimation. Frequentist’s
results rely on the asymptotic arguments, but Bayesian inference is feasible as long
as the posterior sampling algorithm converge which can be increased easily in large
number of MCMC iterations. All the inferences will be based on credible intervals
within Bayesian framework and implemented in WinBUGS. The appropriate model
will be chosen by a formal Bayesian model selection criteria based on the DIC for

missing data problems (Celeux et al. 2006).

1.3 Outline of the thesis

In chapter 2, we will systematically describe the principles of generalized latent vari-
able approaches for joint modeling correlated discrete data. We will also describe
the generalized latent variable model context within the Bayesian framework for an-
alyzing the dental from STM. We use multivariate spatial latent variables at both
quadrant level and tooth nested within quadrant level to model a very flexible multi-
variate distribution for the binary vectors and induce spatial dependence among tooth
through the dependence structure of the spatial latent vectors in the generalized lin-
ear model settings. The joint relationship among spatial latent will be modeled under
the context of undirected graphical model and conditional autoregressive model cor-
respondingly. Model fitting and statistical inferences about the parameters of interest
are going to be under Bayesian framework.

In chapter 3, we will describe the finite mixture model within the Bayesian frame-
work for analvzing the dental from STM. We use Dirichlet process to model the
mixing proportions and multivariate spatial latent variables to model a very flexible

multivariate distribution for the mixture component and induce spatial dependence



among teeth through the dependence structure of the spatial latent vectors in the
latent variable model settings. The joint relationship among spatial latent will be
modeled under the context of undirected graphical model and conditional autore-
gressive model correspondingly. Model fitting and statistical inferences about the
parameters of interest are going to be under Bayesian framework.

In Chapter 4, we will summarize our work and give some routes for the future

work.



CHAPTER 2

Bayesian Generalized Latent

Variable Models

2.1 Introduction

Dental caries is a common oral discase that results in demineralization of the tooth.
In oral health rescarch, the number of Decayved/Nissing/Filled Surfaces (DMFS) or
Decaved/Missing/Filled Teeth (DNMFET), introduced by Klein et al. (1938), are often
analyzed. The two scores are the suins of binary indicators of caries on the teeth and
tooth surfaces for the primary dentition. This approach operates the analysis at the
mouth level. Leroux et al. (2006) mentioned dental data presents an unique set of
challenges for statistical analysis, including large cluster sizes, multilevel data struc-
tures (e.g.. teeth within patients, sites or surfaces within teeth). complex correlation
structures. Lesalfre et al. (2006) proposed several methods to analvze the dental data
from the Signal Tandmobiel (STM) project. They used GEE based logistic model and
log-linear model to model marginal mean with exchangeable working correlation ma-
trix to account for the dependence of the data. Vanobbergen et al.(2007) proposed

ALR( Alternating Logistic regression ) approach to investigate spatial correlation



with respect to caries activities patterns in primary dentition in 7-year-old children.
ALR simultaneously models marginal expectation of each binary variable as well as
the association between paries of outcomes. Zhu et al. (2005) proposed a generalized
latent variable model framework to analyze multivariate spatially correlated data,
which gave an appropriate approach to complex spatially correlated data with large
cluster sizes and multilevel data structures. Their approach is sensitive to Euclidian
space, and can not take care of multi-level dependence structure of the dental data
More importantly, their method is EM based and implemented via MCMC, which
is computationally intensive for high dimensional correlated latent variables poste-
rior sampling and without fisher information matrix as byproduct. The purpose of
this article is to introduce a Bayesian Generalized Latent Variable Model (BGLVM)
framework for general spatial topology structures to explain multi-level correlations
introduced by "between-cluster” and "within-cluster” random effects. Specifically,
the "between-cluster” random effects are used to induce dependence among quad-
rants and " within-cluster” random effects are used to induce dependence among teeth
within the same quadrant. The BGLVM, implemented using Gibbs sampling with
non-informative priors, allows us to model the " between-cluster” and ” within-cluster”
correlation structures explicitly. It is possible for us to examine the spatial symmetry
of quadrants in terms of caries incidence, and capture the special spatial association
structure between quadrants for the same subject of interest and among teeth within
quadrants, which can help us efficiently characterize the caries incidence at tooth

level.
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2.2 The Spatial Dependence Structures

2.2.1 Notation

To model the observations. let y, . denote the kth response variable within jth cluster
of ith subject of interest, where k = 1.....K.j = 1....J.i = 1,..,n. Let y;; =
(Yig1s oo Yugkos s yij[\')' denote the response vector within jth cluster of ith subject.
Let y; = (y)1. - Yij- -y, )" denote the collection of response variables of ith subject.
let y = (4}, ¥}s - y5)" denote the collection of response variables of all subjects in
this study.

For modeling the latent variables, we use undirected graphical Gaussian model.

o [o] ‘

let Q; = (Qi1.--, Q. ....Q, 1) denote the latent variables at cluster level for i sub-
ject, where 7= 1,..on. Let Ty = (T 1. Tijpen oo T,j;\-)' denote the intermediate
level latent variables that are nested within the jth cluster associated with the ith
subject. Let T; = (le'l, e Ty, Tll.l), denote the collection of all latent variables at
intermediate level associated with the ith subject in the study. Let L; = ( Z,Tz')’

denote the collection of latent variables at both levels associated with the ith subject.

2.2.2 Principles of our modeling approach

The dental data shows a two-level spatial association structures, i.e., the first level
spatial association structures are among quadrant(V)-(VIII). For the convenience of
indexing the data, we will use quadrant(I) instead of quadrant (V) and corresponding
index for the other quadrant. The second level spatial association structure is, nested
within corresponding quadrant, the spatial correlation among teeth.

In general, the valid approaches for analvzing correlated data without explicit
multivariate distribution consist are based on either GEE or random effect models.
The former is suitable for marginal mean or pairwise associations between response

outcomes orientated statistical problems and the latter is for subject specific statis-

11



tical issues. The dental data is spatially correlated and has information about teeth
spatial configurations that need to be incarnated in the model to provide explicit
structure for inducing dependence among quadrants and teeth at their corresponding
levels. The main contribution of this paper is to develop a methodology to model this
unique spatial dependence of the deciduous dentition. There is no explicit multivari-
ate distribution available for the spatially correlated binary dental caries experience
outcomes. Generalized latent variable models (Skrondal & Rabe-Hesketh(2004)) are
commonly used to generate flexible multivariate distributions and induce unobserved
heterogeneity for correlated data with implicit multivariate distribution.

To take the unique spatial structure of dental data into account, we use two levels
of latent variables to take care of the spatial dependence of the teeth within the mouth
for each subject. For the ith subject, at the higher level, we introduce the quadrant
level latent vector Q; that is used to tight the four quadrants by inducing dependence
structure among quadrants. The latent vector at higher level is also used to generate
flexible multivariate distributions for the quadrant specific response vectors. The joint
distribution of this spatial latent vector is given by Undirected graphical Gaussian
model with spatial configurations of the quadrants taken into account. The quadrant-
wise observation vectors {y;; : j = 1..... J} will be conditionally independent given Q;
for i = 1,....,n. At the intermediate level level, quadrant-specific spatial latent vector
T;j is introduced, which is used to tight the five teeth within the same quadrant by
inducing dependence structure among teeth within the same quadrant. Similarly,
the intermediate level spatial latent vector is also used to generate flexible univariate
distributions for the tooth specific response outcomes. The joint distribution of this
spatial latent vector is given by Undirected graphical Gaussian model with spatial
configurations of the teeth and the quadrant taken into account. The observations
{yij = k = 1..., K} will be conditionally independent given T, for j = 1.....J

and i = 1,...,n. Mecanwhile, the intermediate level spatial latent vectors {Tj; 1 j =



1,...,J} are conditional independent given the higher level spatial latent vector Q;
for i = 1,...,n. In order to assess the spatial symmetry of the caries experience of
deciduous dentition, we will examine the association among latent variables at higher
level. Due to the complexity of oral biological system, we will give flexible covariance
structure for the undirected graphical Gaussian models and formal model selection

procedure will be used to choose appropriate one for the data.

2.3 Models

2.3.1 Generalized Latent variable model

Sammel(1997) proposed an joint model for different outcomes in Generalized linear
model framework with normal latent variables introduced to different models. Mous-
taki(2000) extended this framework to a class of generalized latent trait models. Both
of the approaches are based on EM algorithm for model fitting and the computational
hurdles arise seriously as the number of latent variables increases. One of the primary
difficulties is in integrating out the latent variables, although standard approximation
can be used, the accuracy will decrease with the dimension of the latent variables.
Dunson(2000) proposed a model allows observed and latent variables to have distribu-
tion in exponential family. Wang's (2003) multivariate spatial latent variable model
was extended by Zhu et al. (2005) into generalized linear latent variable models for
repeated measurements of spatially correlated multivariate data. A MCEMG(Monte
Carlo EM Gradient) algorithm was used for model implement, which was based on
numerical approximations to marginalize the score functions and Hessian matrix over
latent variables. It is well known that MCEMG is seriously computationally intensive
and less accurate as the dimension of latent variables increases.

In this paper, we propose a Bayesian generalized linear latent variable models
with two levels of spatial latent vectors. The joint distributions of the latent vec-

tors are given by Undirected Graphical Gaussian model(UGGM) (Dempster,1972,
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Giudici and Green 1999). In order to test the spatial symmetry property of tooth
caries experience within the subject, we proposed statistical hypothesis testing for
all possible situations under Bayesian framework. Under the latent variable models,
it is assumed that, given the two levels of the spatial latent vectors, the teeth are
mutually conditionally independent then we can specify the complete likelihood. We
will use MCMC approach to perform posterior inference for the quantities of interest
using non-informative priors, which will give the data more flexibility to decide what

is going on and also can give comparable inference results to Frequentist's.

Response Models

We model the kth response variable within the jth quadrant of the ith subject, y, 4.
which is a binary indicator of caries experience of tooth;. ;). Conditional on the
corresponding two levels of latent variables for the Ath tooth position within the jth
quadrant of the ith subject, the response model is given by an exponential family

distribution with the probability density function in a general form

MijkYijk — bi(Mijk)

ai(v)

P(YijklLiy o, v, B, ) = p(yijilnije. ©) = exp{ + iy @)} (2.1)

where 7,55 = a + 05 + () + Qij + Ti(j) (McCullagh and Nelder et al. 1989).
We assume that the link function g(-) is a canonical link that relates the mean of

Yijk to a linear predictor as follows
9(ETyjklnk]) = migk = o+ 35 + ) + Qij + Tirg)s

where o, 3 = (71, ...,Jj. s JJ)’.'y = (171): - YK (1) M1(2) ~~"7K(J))/ are the regres-
sion coefficients for the fixed effects with constraints 3°; 3; = Oand 324 ;) = 0;) =
1,....J for identifiability of the marginal mean. Q;; and T} ;) are the random effects
that are used to generate flexible multivariate distributions and induce dependence

unobserved heterogencity of the spatially correlated binary dental caries outcomes. It

14



is assumed that the quadrant level spatial latent vector {Q,} are identically indepen-
dent Gaussian with zero mean and covariance matrix X¢. Furthermore, we assume
that, given the quadrant level spatial latent vectors {Q; : i = 1,...,n}, the tooth level
spatial latent vectors {Tij :j=1,...J,1=1,...,n} are mutually independently mul-
tivariate Gaussian with mean zeros, covariance matrix {Z?F :j =1,...,J} correspond-
ingly. The generalized linear model relates the response variables to quadrant-specific
and tooth-specific covariates and the latent variables.

Under the latent variable model approach. we can assume that the response vari-
ables are conditionally mutually independent, given the vectors of latent variables
L={L;= (Qf.Tl'l.....T’-. ....T'J)’ ;7 = 1,...,n}. The joint probability density of y

)] 1

conditional on the set of latent variables L and {a, 3'.4'. 2} is as follows

R ['
plylL.a, 3.~ ) = Ty TTer TIRZ ) pCvijilijee2) 22)
J K MikYijk—bink) :
= GXD[ZLl Zj:l k=1 . l]al,(»,)l L+ Ci(.‘/ijkv“?)}]

Structure Models for Latent Variables

In the response model. given the two levels of spatial latent variables, the conditional
independence assumption allows the specification of complete likelihood for the re-
sponse model. In our modeling approach, the two levels of spatial latent vectors are
used to induce the dependence structure of the teeth of interest. In order to incorpo-
rate appropriate spatial latent vectors into the model. we need to choose the ones that
can really represent the design structure and characterize the random mechanism of
data generating process. The objective of these latent processes is to generate flexible
distributions for observations and induce the dependency among observations. UG-
GAMIs need to work on specific nodes spatial configurations and we list the possible
graphs for both quadrant and tooth nested within quadrant levels as below.

As shown above graphs, the four quadrants can be viewed as four nodes in a graph.

If two nodes are not directly connected, they are said to be conditionally indepen-



Quadrant V Quadrant VI

Yi1 Yi2
Quadrant VIII Quadrant VII
Y Yi3

UGGM|Qi = (Qu, Qiz, Qiz, Qi)'

O3
C=C

Figure 2.1. The response vectors y;p. yio, yis and y;y are tighten by spatial latent
vector Q; = (Q;1.Qi2. Q;3.Qi1) whose joint distribution is given by UGGM with
unstructured precision matrix.
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Figure 2.2, The response variables y, 1. yij2. yij3- yij1 and y; ;5 are tighten by spatial

latent vector T;;
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/ Yijs
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UGGM|T;; =
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= (Toajy-Tiag)- Tosgy-Tiagy: Tise
given by UGGNM with unstructured precision matrix.

1

-

(Ti.l(j)a Ti.'Z(j)v 7’i.3(_j)a Ti,4(j), ’Ti,S(j))’

J

))" whose joint distribution is



Incisor in(‘isor \'cﬁﬁﬂ Tlolar NMolar
Yogr || Y2 |7 L.UIJB T Yyt |7 Yy

UGGM| T,; = (T.1iy T2y Tiag) Tiagys Tisiy)

’ I3

' \ o
-G-0-0-C

Figure 2.3. Note: The response variables y; 1.y 2. vij3. yij4 and y; 5 are tighten by
spatial latent vector T, = (T 1(jy. Ti0(5)- T} 3¢5) Ti.a()- T,'._r,(j))/ whose joint distribu-
tion is given by UGGM with precision matrix under CAR model assumption.
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dent given the other nodes in the graph. The graphical model, for the ith subject,
is used to describe the spatial configuration of the nodes and characterize the associ-
ation strength between nodes of interest by partial correlation of the corresponding
between random variables Q; = (Q;1. Q2. Q;3.Q,1)" that are assigned to the nodes.
As matter of fact, in statistics, partial correlation measures the degree of association
between two random variables, with the effect of a set of controlling random vari-
ables removed. We can assign an multivariate Gaussian distributed random vector
to Q;. i..e., Q; ~ N(0.Ep). which will lead to undirected graphical Gaussian model.
After introducing latent variable vector @@, modeled by UGGM, the quadrants, i.e.,
the quadrant-wise response vectors {y;; : j = 1,....J}, are conditionally mutually
independent. Considering the nested spatial structure between quadrants and teeth
within quadrants, it is necessary to notice that the nested dependence structure is
essential to make the model valid for the problem of interest. The second level of spa-
tial latent vectors, nested within the corresponding quadrant, need to be incorporated
into the model. Similarly. within one specific quadrant, say the jth quadrant, a quad-
rant specific UGGM with random nodes T;; = (Til(j)~ T,-Q(j). TzB(j)‘ Ti.l(j)~Ti5(j))/ are
introduced. The spatial associations among teeth within jth quadrant are induced by
T,;. which is mutually independent conditional on @Q;. Furthermore, we assume the
j ~ N(O0. fo):j = l....,J. After introducing latent variable vector T;;, modeled by
UGGM, the teeth within jth quadrant are conditionally mutually independent.

We know Gaussian random variables are determined by the first two moments.
For the identifiability, we already assume the mean structures of the two levels of
spatial latent variables are vectors of zeros, then the problem will become issues about
the covariance structures. The general covariance matrix will be unstructured with
svmimetric and positive definite constraints. The unstructured covariance matrix can
be simplified if we assume Markovian properties for the nodes, somehow as shown in

the third graph. The Markovian type covariance matrix can be incorporated within
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spatial statistics by CAR model (Cressie (1991)). The choice of the two types of
covariance structure for the spatial latent vectors at tooth nested within quadrant level
is made through model selection in Bavesian framework via Deviance Information
Criterion(DIC) for missing data problem proposed by Celeux et al.(2001), which is
an extension of the DIC introduced in Spiegelhalter et al.(2002) for Bayesian model

selections.

Undirected Graphical Gaussian Model

In this section, we review the graphical Gaussian model (Dempster,1972) required
for this paper. Let G = (V.E) be an undirected graph with vertex set V =
{I....k... K} and edge set E = {e;;r = k # k' = 1,..,K}, where e;;s = 1
or 0 according to whether vertices k and &', 1 < k # k' < K are directly con-
nected in G or not. In the undirected graphical Gaussian model, the edges set
describes the associate structures of the vertex set.  Random vector is assigned
to edges set to represent the association strength between corresponding vertexes.
The undirected graphical Gaussian model consists of all & dimensional normal dis-
tribution, say X = {X|.... X4 .., Ap ) with X ~ N(0,%) and precision matrix
Q=x"1= {wpp 1k # K =1,.... '}, where £ is unknown but satisfies the following
restrictions in terms of the pairwise conditional independencies determined by the

Markov properties (Drton and Perlman (2004)):

(’A_k/ = O i=4 JYk 1 1Yk/

< . . J_ -
‘\"\{Ak/} L4 ’DI\‘A’ = 0. VA # A = l,...,[\‘

where {p; s} is the so called the partial correlation between the kth and A'th vertex
in the graph, defined as pr = —wpr/\/“rk * s This partial correlation is a
measurement of association between two quadrants of interest with the effect of the
rest quadrant being removed. We will use partial correlation to examine the spatial

svinmetry property of caries prevalence.
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Conditional Autoregressive Models

For the vector of univariate variables v = (vq.v9.....vx), the zero-centered
CAR specification, where s is the number of spatial nodes of interest, following
Cressie(1991), scts
Wklv_j o) ~N(p D bgvhop)i k=1,.K, (2.3)
VIIEV_
where v_j. = v\ {y}. Following Brook’s (1961) lemma the resulting joint density for
v takes the form

f(v]o?) x exp{—%uTD;gl(I — pB)v} (2.4)

where B is K x K matrix with B = (b;;/) and by = 0 and D _3 us an K x K diagonal
matrix with non-zero entries {oz :k=1,...,K}. The precision matrix D;QI(I — pB)

need to be symmetric, which yiclds the conditions

b 0o = by VhK =1, K. (2.5)

If the precision matrix is positive definite, then (4) is a proper distribution. Un-

der above parameterizations, the precision matrix D'21(I — pB) is nonsingular if
ag

-1
min’

peE (A ML) where Apyin, Amaz are the smallest and largest eigenvalues of B re-
spectively. It usually assumes that the D 5 = o2M, where M is diagonal matrix with
diagonal elements M} proportional to the conditional variance of O'Z. Meanwhile, o2
controls the overall variability and p represent the overall spatial association. Weights
matrix B with B,/ need to reflect the spatial association between nodes k and K.
GoeBUGS(2004) sets By = by = 1/ny, for k # k' and My = 1/ny where ny,
is the number of nodes which is adjacent to node k. Under the above settings, the

spatial latent vector v will follow a proper distribution, i.e.
v~ N(0,0%(I — pB)~' M) (2.6)
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2.4 Bayesian Estimations and Statistical Inference

2.4.1 Identifiability of the models

Frequently. models with latent variables are not globally identifiable. One can inte-
grate out the latent spatial variable vectors to obtain a marginal likelihood to assess
whether parameters are redundant. The likelihood of the latent variable model is
parameterized by ¥¢) and {E"T : J = 1,...,J}. The identifiability problem become
to examine if the parameters involved in the covariance are redundant, which might
be problematic within frequentist’s framework. Dawid (1979) and Gelfand & Sahu
(1999) discussed model identifiability issues within Bayesian framework. In partic-
ular, Suppose that the Bavesian model is denoted by the likelihood L(6:y) and the

prior f(#) and we partition the parameters of interest as 6 = (A.6»). If

J(02101.y) = [(62]61) (2.7)

then we say that 6, is not identifiable, where f(62]61.y) x L(61.62:y)f(62]61)f(687).
That is, if observing data y does not increase our prior knowledge about 69 given 6y,
then 65 is not identifiable by the data. Dawid’s formal definition of Bayesian model
nonidentifiability states that 69 is not identifiable if and only if L(8y,6s:y) is free of
6>. In order to make our model identifiable, we need to not only take care of marginal
identifiability of the model through integrating out the latent variables, but also put
some constraints to the covariance matrix of the Gaussian spatial latent vectors at

both levels.

2.4.2 Prior distributions

In this section, prior distributions are chosen for the regression parameters ¢ and
association parameters €. Gibbs sampling algorithm is applied to simulate the samples
from the posterior distributions of the quantities of interest. Zhao et al.(2006). Zeger

et al.(1991) and Dunson et al.(2000) all suggested noninformative conjugate prior
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distributions for the parameters of interest, which can wash out the effect of priors
as sample size increases. Bedrick et al.(1996) noted that normal prior distributions

were suggested for the logistic regression coefficient 6.
6~ N(uF), (2.8)

where p is the a vector of location parameters and F is the covariance matrix. It
is common to take p as vector of zeros and F as diagonal matrix with very larger
entries.

We are interested in the joint posterior distribution of (6, €|y). Under mild con-
dition in (Geman and Geman et al.(1981)), Gibbs sampler can obtain the joint pos-
terior distribution by sampling from the conditional posterior distributions (6|y, €)
and (€]y, 8) correspondingly. To simplify the sampling from the conditional posterior
distributions, we choose hierarchical independent priors for 8 and € in this hierarchi-
cal Bayesian model, i.e. (£|y,0) = (€|y), which is true as long as the priors satisfy
p(6,&) = p(@)p(€). We proposed two covariance structures for the Guassian spatial
latent variable models. In the generalized linear model setting with Gaussian random
effects, the proper noninformative conjugate priors will be Inverse Gamma(IG) for
signal variance component and Inverse Wishart distribution for a variance-covariance
matrix.

Let Qg = Eél and {QTJ- = 5_377]_1 :j = 1,...,J} denote the precision matrixes of
the two levels of spatial latent vectors correspondingly. At higher level, the precision
matrix for the spatial latent vector {Q; : 7 = 1....n} is unstructured. Wishart
priors (Dunson et al.(2000), O'Malley and Alan M. Zaslavsky et al.(2006)) is applied
as conjugate non-informative priors for the precision matrix Q¢ under unstructured
situation.

Qg ~ Wishart(vg, Ag), (2.9)

with the degrees of vg and the precision matrix Ag. In practice, the common
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noninformative Wishart prior is chosen by specifying Ag = ["Qx”Q and vg =
rank(X¢)+1. It will vield a prior under which the marginal distribution of each corre-
lation parameter is U(1. 1)(O"Malley et al.(2006)). At intermediate level, we have two
precision matrix structure for the spatial latent vectors {T;5 : j = 1,....J.i = 1,....n}
and we will give noninformative priors correspondingly.

(1) Unstructured precision matrix in the UGGM: Conditional on the higher level
spatial latent vector @;, the intermediate level spatial latent vectors {Tij )=
1,...,J} are conditionally independent. So, we give independent priors to the pre-
cision matrix {QT]. : j = 1,..,J}. Similarly, independent Wishart processes are

assigned as priors for these precision matrixes.
QTJ. ~ H'/'sh(u'f(l'rj.‘\TJ): J=1lo..J (2.10)

with the degrees of T, = l'(”ll\'(z‘[:j) + 1 and the precision matrix ATJ- = Iij X

(2) CAR model based precision matrix in the UGGM: Conditional on the higher
level spatial latent vector @;, the intermediate level spatial latent vectors {T;; : j =
1,...,J} are conditionally independent. So. we give independent priors precision ma-
trix {QTJ.,ZJ = 1.....J} that are parameterized by {ajz,pj :j = 1,...,J}. Similarly,
independent Inverse Gamma (Dunson et al.(2000)) distributions. proper conjugate
priors, are assigned as priors to the overall variation parameters {ch?. )y =1...J}
and independent uniform distribution with supports constraints in section 3.1.4
to the overall spatial association parameters {pj : j = 1,..,J}, improper priors

GeoBUGS(2001) for the over quadrant specific spatial association parameters, re-

spectively.
a‘jw(:(s.s); J=10 (2.11)
and
pj~ UL Aphs)t G =1l (2.12)
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-1

min® AL, are as defined in section 3.1.4.

where ¢ is very small positive number and A

2.4.3 Posterior computations

MCMC techniques are used for the posterior computations in the models proposed
in section 3. The posterior distributions of parameters of interest can be obtained in
standard way (Dunson et al.(2000), Zeger et al.(1991)).

Given the precision matrixes {2 and {QTi : ¢ = 1,..,1}, the joint posterior
distribution for the regression parameters and latent variables at both higher and
intermediate level is

p(0.Q.Tly) x p(ylt. Q. T)w(6.Q.T)

Wikt —b k) _
OCE‘XP{ZLJ'.L-{ = U,ll(y.)' Ut ey k) - 30’710 (2.13)

xexp { =} 1Ly Q100Q: - § Ty ) THOn Ty ),

where Zi,j,k denote Y 1", zle Z,{.":I, 7(-) denote the joint prior density, @ =
Q1 Qo @) with Qi = (Qi1, -, Q45 - Quy) . T = (T7],..., T}, ..., Tp,)' with
T, = (T}, T} T))" and Tyy = (T () Tin(jys - Tri(j))’- Furthermore,
0 = (.37, 9) and nji = o+ 3+ w0y + Qi + Tongy)

If the MCMC algorithm is a Gibbs sampler, the full conditional distribution of
each of the unknowns in (13) needs to be specified, which can be obtained in a
standard way Dunson et al.(2000), Zegeret al.(1991)). For the fixed effect 8, the full
conditional distribution is

MkYijk — 0(nijk)
pOIQ.T.y) xexpd > {~ 'Jn'( A)' s
A%

1,
+ Yk w)} - 59’1-“ 198, (2.14)
i,j.k

The full conditional distribution for the Gaussian spatial latent vector @ is

MijkYijk = bi(mjk)
PQUT. y:0) oxexp § D (= ——=
ijk L\

+ci(yijkv)} — %ZQ?QQQz} .
i=1
(2.15)

The full conditional distribution for the Gaussian spatial latent vectors Tj; is



, n J
PTIQ.u0) xxp § S (PR IENE ) -3 LY ThonTy
o S (2.16)
The full conditional distributions of precision matrix ) is
n
p(QIQ.T.y:0) = Wishart(vg + N.Ag + Y QiQ)). (2.17)
i=1
The posterior distributions for {QTJ.,j = 1.....J} can be obtained in terms of
different precision matrix structures correspondingly.
(1) Unstructured precision matrix:
N
p(Q7;1Q. T.y:6) = Wishart(vg, + N Ax, + > T,T). (2.18)
n=1

(2) CAR model based precision matrix:

(2.1) Overall precision parameters:

i — b (i
P(rj1Q.T;0) oc 75 Vexp { 3 Tk 0uk (i)

. +c¢i(y; ik9)} — i€ p - (2.19)
= ai(»'?) AC TN NS } J

(2.2) Overall spatial parameters:

MijkYijk = bi(ni k)
p(pj|Q.T.y:6) cexp{ Y {——L—— SR ik ) [-1 \-1
a;(¥) A i Amar

1,5.k

(pj)-
(2.20)
All the posterior distributions. except for {p; : j = 1,,...., J}, are proper based on
their proper conjugate priors. The uniform priors for the overall spatial parameters
are not conjugate, which might lead to improper posterior distributions. The simplest
technique for verifying if the posterior distributions of the parameters is proper is to
verify if the posterior distribution is proper for reduced data by discarding all but a
single outcome per subject leading to a reduced data set consisting of independent

outcomes, are proper (O'Brien and Dunson, 2004). Since the covariance structures
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do not appear in the reduced data likelihood and also the support for the spatial
association parameters is finite, i.c., {p; € (/\;,%n,/\,"”}u.) :j =1,...,J}, so the
posterior distributions of the spatial association parameters {p; : j = 1,...,J} are

proper. The algorithin for the posterior computation is through sampling 6. Q. T,

and € respectively from the above conditional distributions.

2.4.4 Missing data issuec

In medical research, missing data is a very common problem. Little and Rubin et
al.(2002) gave a comprehensive framework for dealing with missing data. We will
follow their framework to incorporate missing data into our model. Let Y denote the
data that would occur in the absence of missing values. we write Y = (Y 6, Ymis)s
where Y, denotes the observed values and Y),;s denotes the missing values. Let
fY ) = f(Yops, Ymis|e) denote the probability or density of the joint distribution
of Y, and Y;,;s. From frequentist’s point of view, the inference is based on the
marginal probability density of Y, is obtained by integrating out the missing data

szs:

f()’()bsh') = / f(),’()bs‘-UIIII.\‘]L')([.(/III[S'

More generally. we define a missing-data indicator as follows:

1, Yijk missing.
M = (2.21)
0. y;ji observed.

The full model treats M as random variables and specifies the joint distribution

of M and Y. That is,

FOY, Mw, o) = [(Y[M: ) f(M]Y. o). (v.0) € Q. pe

where (1, , is the parametric space of (v, 0).

o
=1



The actual observed data is (Y. M). The distribution of the observed data is
obtained by integrating Yj,;, out of the joint density of Y = (Y, Ynis) and M.

That is,

S obs Mlv. o) = /f(yob.v Ymis| M- ‘v')f(‘\llyobs‘ Ymis> O)AYmis- (2.22)

The full likelihood of (. ) is proportional to the above, i.e.

Lpun(e.oYobs M) o [ (Yops, Mle. ). (2.23)

If the the distribution of missing-data mechanism does not depend on the missing

values Y}, then

f(Yobs» "’1'[['@"'7 0) = f(‘”lyobse 0) f f(Yobs» ymisl“‘fi Uf’)dymis (2.24)
= [(M|Yops, 0) ] (Yobs|M: ).

Under MAR (missing at random) assumption and v and p are distinet, the
likelihood-based inferences for ¢ will be the same as likelihood-based inferences for v
from [(Yop,le).

From Bayesian point of view, missing data is treated as random as well as the
parameters of interest. One of the advantages of the Bayesian hierarchical approach
implemented in WinBUGS is that missing data from the response variables can be
routinely handled. In most statistical packages, incomplete cases (in either the re-
sponse or the covariates) are removed from any analysis. WinBUGS generates a
sample to replace missing responses from the posterior distribution of the response

variable under MAR assumption.

2.4.5 Bayesian Model Selection

The formal procedure for choosing an appropriate Bayesian hierarchical model for

the observed data necessities methods to compare alternative models within Bayesian
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framework. The DIC (deviance information criterion, Spiegelhalter et al. (2002)) is
a hierarchical modeling selection criterion that can be viewed as a generalization of
the AIC (Akaike information criterion, Akaike, 1973) and BIC (Bavesian information
criterion, Kass and Raftery. 1995). It is particularly useful in Bayesian model selec-
tion problems where the posterior distributions of parameters have been obtained by
Markov chain Monte Carlo (MCMC) simulation. The DIC-statistic is a measure of

model complexity and goodness of fit with the definition as

DIC = D(y) + pD,

where D(v') is the posterior mean of the deviance D(v) = —2log(f(y|y)), which is
a measurement of goodness of fit of the proposed model for the observed data. Let
D(1") be the deviance evaluated at the posterior mean of ¢». Let pD = _D(_q) - D(v)
denote the effective number of parameters in the model, which is a penalty for the
complexity of the model. The quantities D(v) and D(¢') can be obtained routinely
from an MCMC simulation chain. Our hierarchial models contains two levels of latent
variables. which necessitates the model selections to be based on the DIC for missing
data problems (Celeux et al.,20006). In terms of our problem, we have to deal with
both missing data and latent variables to get a complete DICs. In order to deal with
missing data, we consider the complete likelihood (21) and the deviance function has
the form

D(o) = =2log {f(Y, s M]|v.0)}
= —2log {j S Yobs  Ymis| M w) fF(M|Yohs. Ymis- Q)dymis} )

where o = (¢, 0')’. Pettitt et al. (2006) gave an approximation for (21) in the formn

(2.25)

D(o) = =2log {f(.l/ubs‘ y:;s“[ L')f(-\”.[/ubs* !/:;s-- Q)} . (22())
where i, 1s the posterior predictor for the missing data Y),,;,.
In order to deal with the latent vectors, we need to compute the complete DICs

in Celeux et al. (20006). Let £,.[f]y. q.t] denote the posterior mean of v, based on the
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complete data (y',¢’.t’), where (¢’,t') is the realization of the spatial latent vectors

(Q'.T"Y. The DIC for the complete data model is

DIC(y.q.t) = ~1E_ [log(f(y.q. t|))ly.q.t] + 2log(f(y.q-t|EL[ely.q.t])).  (2.27)

As in the EM algorithm, we can then integrate @ and T out from (26) to get

= —4Ey . rllog(f(y. Q. Tlw))ly] + 2Eq rllog(f (v, Q. TIEy[vly. Q. T])lyl.
(2.28)

All the integrations can be obtained trivially through Monte Carlo integration
approximation using the MCMC posterior samples in the coda file of WinBUGS.
Combining (2.25)-(2.28), we have the DIC for Bayesian generalized latent variable

models with missing data in the form.

DIC = EQ 1|DIC(Yobs: Ymiss M, @, T)yobs, M]
= ‘4E1,/;,Q,Q.T[log(f(yobs~ y?n?sv QLTW" M, 0) f(M|Yobs: Umis: ©))|Yobs 1”]

+2EQ,T“0g(f(yobx~ y/n‘;s“ Q~ Tll*\ @f(“llyobw .1//m75'v @)lyobw "\[]7
(2.29)

~

where (€) = E[t]yopse M. Q. T] and 3 = Eylolyopy. M).

2.4.6 Spatial symmetry hypothesis testing

The spatial symmetry property in our problem means the joint caries experience pre-
sentations for response variables at quadrant level are highly associated with one an-
other. Dentists do believe that spatial symmetry exist in mouth. Lesaflre et al.(2006)
showed empirically that the caries experience for left and right quadrants are more
strongly associated than the other cases. Unfortunately, few literatures have discussed
this issue comprehensively. In our UGGM at quadrant level, we know the partial cor-
relation parameters {pjj/ : 7 # j' = 1,..,J} measures the strength of the spatial
association among two different nodes(quadrants). One of the major concerns of the

spatial symmetry in mouth can be formulated as the following hypothesis situation:
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Hypothesis testing for pairwise comparisons among spatial association

strength parameters

In order to assess the spatial svinmetry of the four quadrants. we need to introduce
different " Neighborhoods™ relationships that can explain the relative spatial struc-
tures of the quadrants of interest. Spatial symmetry is assessed at the quadrant level,
instead of tooth level. At quadrant level, We define the vector of teeth to be ”Hori-
zontal Neighbors™ to each other, if the two quadrants are both in either " Upper Jaw”
or "Lower Jaw”, and to be "Vertical Neighbors™ to one another, if the two quad-
rants are both in either "Left Jaw” or "Right Jaw” and to be "Across Neighbors”
to one another, if the two quadrants are either in "Left Jaw” or "Right Jaw”. The
assessment of quadrant spatial symmetry in terms of cries prevalence will be based
on "Left-right”, i.e., 7 Horizontal Neighbors™, "Up-down”, i.e.,” Vertical Neighbors”
and "Across”, i.e., "Across Neighbors™.

There are two wavs to assess the spatial symmetry among quadrants in terms
of caries prevalence incidence through statistical hvpothesis statement. The first
one is based on the so called "overall” spatial symmetry assessments via a weighted
statistic and the second is the so called “specific” spatial symimetry assessment that
is the direct comparisons of the spatial symmetry measurements.

First of all, the weighted statistics for assessing the overall spatial associations in

terms of "Left-right™, "Up-down™ and "Across” can be formulated as below:
1
pLR = 5 (P56 + p78):
1
puD = 5(pe7 + psg);
1

pPA = 5(pes + p37)-
2
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The statistical hypothesis testing about the overall spatial association in terms
of "Left-right” V.S. "Up-down”, "Left-right” V.S. "Across” and " Across™ V.S. "Up-
down” can be formulated as follows:

(1) Left-right Versus Up-doun

Hy:prg=prcp V.S Hy:pLr # rup: (2.30)

(2) Left-right Versus Across

Hy:prr=pa V.S.  Ha:pLr #pa; (2.31)

(3) Across Versus Up-down

Ho:pa=pup V.S. Ha:pg#pup (2.32)

Secondly, if the assessment is based on the direct comparisons of spatial symmetry
measurement, there are twelve possible hypothesis testing situations for the spatial
svinmetries in terms of partial correlation between quadrants.

(1.1) Left-right Versus Up-down The association between quadrant 5 and quad-
rant 6 V.S. the association between quadrant 6 and quadrant 7, with quadrant 6 as

reference.

Hy:pse =psr V.S, Ha:pse # pers (2.33)

(1.2) Left-right Versus Up-down The association between quadrant 5 and quad-
rant 6 V.S. the association between quadrant 5 and quadrant 8, with quadrant 5 as

reference.

Hy:pse =pss V.S, Ha:pse # pss: (2.31)
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(1.8) Left-right Versus Up-down The association between quadrant 7 and quad-
rant 8 V.S. the association between quadrant 6 and quadrant 7, with quadrant 7 as

reference.

Hy:pws=psr V.S, Ha:ps # pens (2.35)

(1.4) Left-right Versus Up-down The association between quadrant 7 and quad-
rant 8 V.S. the association between quadrant 5 and quadrant 8, with quadrant 8 as

reference.

Hy:pg=pss V.S Ha:prs # pss: (2.36)

(2.1) Left-right Versus Across The association between quadrant 5 and quadrant 6

V.S. the association between quadrant 6 and quadrant 8, with quadrant 6 as reference.

Hy :pse = pes V.S Hq @ pse # pos: (2.37)

(2.2) Left-right Versus Across The association between quadrant 5 and quadrant 6

V.S. the association between quadrant 5 and quadrant 7, with quadrant 5 as reference.

Hy:psg =ps7 V.S Ha:pse # pors (2.38)

(2.3) Left-right Versus Across The association between quadrant 7 and quadrant 8

V.S. the association between quadrant 6 and quadrant 8, with quadrant 8 as reference.

Hyo:pgs=pgs V.S.  Ha:prg # pes; (2.39)

(2.4) Left-right Versus Across The association between quadrant 7 and quadrant 8

V.S. the association between quadrant 5 and quadrant 7, with quadrant 7 as reference.

Hy:prs = py7 1.S. H,:prs # pore (2.10)
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(3.1) Across Versus Up-down The association between quadrant 5 and quadrant 7

V.S. the association between quadrant 5 and quadrant 8, with quadrant 5 as reference.

Hy:psr=pss  V.S. Ha:ps7 # pas: (2.11)

(3.2) Across Versus Up-down The association between quadrant 5 and quadrant 7

V.S. the association between quadrant 6 and quadrant 7, with quadrant 7 as reference.

Hy:psr=psr  V.S.  Hq:pst # per (2.42)

(3.3) Across Versus Up-down The association between quadrant 6 and quadrant 8

V.S. the association between quadrant 5 and quadrant 8, with quadrant 8 as reference.

Hy:poy = p V.S Hy : pes # pos: (2.43)

3.4) Across Versus Up-down The association between quadrant 6 and quadrant 8
/ |

V.S. the association between quadrant 6 and quadrant 7, with quadrant 6 as reference.

Ho:pes =psr V.S Ha:pgs # por- (2.49)

Simultancous credible intervals

Pairwise spatial symmetry hypothesis testing is based on credible intervals for the dif-
ferences between two partial correlations corresponding to two different nodes (quad-
rants) in the UGGNM. In Bayvesian statistics, a credible interval is a posterior proba-
bility interval, used for purposes similar to those of confidence intervals in frequentist
statistics. Suppose that parameter ¢ is of interest, a (1 — a)100% credible interval for
the parameter ¢ of interest is any set € such that Pn(qy)(\ € C) =1 o, where n(ly)
is the posterior distribution ol parameter ¢ given the observed data y. There are two

wavs to assess the spatial svmmetry among quadrants in terms of caries prevalence
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incidence through statistical hypothesis statement. The first one is based on the so
called "overall” spatial symmetry assessments via a weighted statistic and the second
is the so called "specific” spatial symmetry assessment that is the direct comparisons
of the spatial symmetry measurements.

Since we are performing a multiple spatial symmetry comparisons among quad-
rants in terms of all possible hypothesis testing situations, it is necessary to give
a simultaneous credible regions (Besag et al. (1995)) to control type S error rate
(Gelman et al.), i.e., the similar concept as type I error rate in frequentist’s frame-
work. The 100R/M% simultaneous credible regions for overall spatial associations

differences are based on order statistics (Besag et al. (1995))

{[(/)1 - /)”)[‘”H_'*l. (p1 — p“)[’*]] (I, 11) e ;‘\"(;ighb()'rhood}.
where
(" = min{t : # {(/)1 — oM < = o) < (o = o) ]} > K},

and {(p; — p”)(’) cto= 1.....M.(I,Il) € Neighborhood} are the posterior
samples of {(p; — py;) + (I.II) € Neighborhood}. Here, Neighborhood =
{(CLR,"UD").("LR","A"). ("A”,"UD")}.

Similarly, the 100K /M % simultancous credible regions for specific spatial associ-

ations difference are given by

A _t* +* . g g Y
oy = o)M=y )N i g # G # G )i = 1 ),
where

. (M +1-1%] * -
t* = min{t : # {(/)i,i' - /)J-J/)[ F1=17) < (/)”, — [)J_J_I)(f) < (p,r — /)U_/)[/ J} > R},

and {(p, — /)jj/)(') =1 M A G A G ) # ()i =1....,J} are the

posterior samples of {p; — p, 111 # A G A G =1, )



2.4.7 Example

Now we show how the above methodology works for dental data and need to spec-
ify all the functions and general notations. In our study, all of the responses
are binary, so we have the following: «a;,(p) = 1, bi(n;x) = log(l + exp(n;jx)),
ci(yijkv) = 0, Elyijilnije] = 1:—'2,"{,{1% g(e) = log(1Iz), for k = 1,..,5.j =
1,...,4,1 = 1,...,n. Hence, the parameters of interest in the observational model
is 0 = (a,3,7) and € = E_I(ZQ.Z%,...,Z%,....E%)', then log p(y;jklnijr) =

logp(yijk.|Qi,Ti_,‘.(j).()) = NijkYijk — log(l + exp(n;;r)). The canonical parameter

=

{’hjk ch=1,.,5.j=1,...4i=1....n} is defined as follows:
Nijk = &+ dj + k() + Q,] + Ti,k(j)' (2.45)

Priors for parameters of interest are given by noninformative proper conjugate
priors, which will give comparable results as frequentist’s as the sample size increases.

More specifically, the priors are given as follows:

a ~ N(0,1000); (2.46)
3j ~ N(0,1000); Vj=1,...J -1, (2.47)
o) ~ N(0.1000): VA =1 K — 1) =1, J; (2.48)

with constraints Zj 3= 0and 3y Ty = 0o J = L...J for identifiability of the
observation model. For the priors of precision matrix, O'Malley and Zaslavsky (2000)

proposed scaled Wishart distribution as conjugate proper priors
Qo ~ Wishart(1+ 1,1), (2.149)

where I is 1 x 4 identity matrix.
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For the priors of the precision matrix {QT]. : 7 =1,...,J}, there are two different
models for the the structures of the precision matrix.

(1) Unstructured precision matrix:

Qr; ~ Wishart(5+1,11), Vj=1,...4 (2.50)
where /] is 5 x 5 identity matrix.
(2) CAR model based precision matrix:
7; ~ Gamma(0.001,0.001); Vj =1....,4, (2.51)
pj ~ UM Anhe). Yi=1,..4, (2.52)

where {or]._2 = 7; 1 j = 1,...4} are the quadrant specific parameters for overall
variability and {p; : j = 1,...,4} are the quadrant specific parameters for overall
spatial effects. A,,;, and Apqr are as defined in CAR models in section 3.1.4.

To construct 95% simultaneous credible regions, we use 11,000 MCMC iterations
with 1000 burn in, i.e., M = 10,000 and K = 9, 500. The 95% simultaneous credible
regions are more convertive simultaneous confidence regions than frenquentist’s for
the multiple hypothesis statements since they have a type S error rate between 0%

and 2.5% (Gelman et al.).

2.5 The Signal Tandmobiel Project Example

In the Signal-Tandmobiel project, there are 4,468 7-year-old schoolchildren (born in
1989) from 179 schools in Flanders (Belgium) who were selected by a stratified clus-
tered random sample. The mean age of the children on the day of examination was
7.1 years (SD = 0.4). The 15 strata were obtained by combining the 3 types of edu-

cational system (public, municipal and private schools) with geographical areas (the

37



Table 2.1. Prevalence of caries experience(% affected) in the deciduous dentition of
7-vear-old children n=1,351.

tooth 5 54 53 52 51 || 61 62 63 64 65

Prevalence 892 520 074 372 781 | 706 223 186 520 8.55

tooth 85 84 83 82 81 || 71 72 73 74 75

Prevalence 10.78 13.75 1.12 0.74 037 | 037 037 037 11.15 9.67

5 Flemish provinces). The schools represented the clusters. This sample represents
about 7% of the corresponding Flemish population. The sampling procedure aimed
at selecting each child in Flanders with equal probability. A more detailed descrip-
tion of the design of the Signal-Tandmobiel project is reported in Vanobbergen et al.

(2000).

2.5.1 Primary results

The frequency table for the prevalence of caries experience in the deciduous dentition
is shown in table 1, for the 7-vear-old children. The descriptive statistics suggested a
spatial symmetrical pattern in terms of caries experience.

In Vanobbergen et al. (2007). pairwise associations were assessed in terms of odds
ratio of caries experience via ALR model. The results are shown in table 2.

The above result shows that it is left-right spatial symmetry is the most notable.
Decaved teeth of discordant contralateral pairs tend to aggregate on the right or the
left side of the subject’s mouth than would be expected by chance alone (Vanobbergen

et al (2007)).
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Table 2.2. Odds ratios and 95% confidence intervals for the 2x2 association models
for caries on deciduous molars on tooth in 7-year-old children.

First Molar (ALR model)

5 o1 71 8T
51 16.48(13.75-19.74)  8.17(6.91-9.64) 7.23(6.13-8.53)
64 7.61(6.47-8.97) 7.18(6.10-8.44)
74 22.82(19.28-27.00)

Second Molar (ALR model)

55 65 75 85
55 15.17(13.09-18.28)  8.78(7.52-10.27) _ 9.23(7.90-10.79)
65 8.08(6.92-9.42)  8.86(7.58-10.35)
75 20.37(17.20-24.11)

2.5.2 The results from our approach

Our gencralized latent variable models are implemented in WinBUGS., using nonin-
formative priors for the parameters of interest. After 1,000 burn-in, the posterior
distributions of the quantities are based on 10,000 MCMC iterations. There are two
possible models indexed by the precision matrix structure for spatial latent vector at
intermediate level. The choice for appropriate model is based on the DIC for missing
data problem (Celexu et al.(2006)). In this part, we will give the results for both over-
all and specific spatial symmetries assessment through simultaneous credible regions
for the differences of interest. The results start from the overall spatial symmetry
assessment under different model assumptions. in table 3-4, based on 95% simulta-
neous credible regions of the differences that are corresponding to their hypothesis
testing situations. It was then followed by the results for specific spatial symmetry
assessments in table 5-6.

Based on the results from two different models, the posterior inferences about the

spatial syminetries are similar. which tells us both models work fairly well. Bavesian
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Table 2.3. Credible intervals of overall spatial association strength comparisons Based
on UGGM with unstructured covariance structure

Simultaneous Spatial Effects o
Credible intervals

left /righ .v.s. across

(0.807, 1.238)

PLR — PA
left /righ .v.s. upper/down

across .v.s. upper/down

PA— PUD (-0.775, 0.491)
DIC 593.300
N.burnin 1000
N.interation 11000

Table 2.4. Credible intervals of overall spatial association strength comparisons Based
on UGGM with CAR model based covariance structure

Simultaneous Spatial Effects
P Credible intervals

left /righ .v.s. across

(0.807, 1.236)

PLR — PA
left /righ .v.s. upper/down

PLR — PUD (0.310, 1.427)
across .v.s. upper/down

PA— PUD (-0.779, 0.410)
DIC 780.500
N.burnin 1000
N.interation 11000
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Table 2.5. Credible intervals of specific spatial association strength comparisons Based
on UGGM with unstructured covariance structure

Simultancous Spatial Effects
: Credible intervals

left /righ .v.s. across

P56 — P68 (0.134, 1.581)
P56 = P57 (0.394. 1.711)
P78~ 168 (0.237, 1.589)
P78~ P57 (0.133. 1.728)
left /righ .v.s. upper/down
P56 — P6T (0.235, 1.551)
P56 — P58 (0.117, 1.485)
P18 — P67 (0.230, 1.601)
P78 — P58 (0.215, 1.504)
across .v.s. upper/down
P68 — P67 (-1.303, 1.313)
P68 — P58 (-1.327, 1.204)
P57 — P67 (-1.442, 1.109)
P51 — P58 (-1.488, 1.042)
DIC 593.300
N.burnin 1000
N.interation 11000
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Table 2.6. Credible intervals of spccific spatial association strength comparisons Based
on UGGM with CAR model based covariance structure

Spatial Effects L
Credible intervals

left /righ v.s. across

P56 — P63 (0.068, 1.40.1;
P36 — P57 (0.445, 1.601
P78 ~ P68 (0.236, 1.416)
P78 — P57 (0477, 1.662)
Teft/righ .v.s. upper/down
P56 — P67 (0.297, 1.458)
P56 — P58 (0.067, 1.455)
P78 — P67 50.291, 1.524
78 — P58 0.262, 1.450
across .v.s. upper/down
P68 — P67 (-1.020, 1.209)
P68 — P58 (-1.078, 1.146)
P57 — P6T (-1.258, 0.970)
P57 — P58 (-1.381, 0.950)
DIC 780.500
N.burnin 1000
N.interation 11000




model selection is based on DICs, the smaller the DIC. the better the model. Tt is
common in practice that if the difference between the DICs of two different models
are more than 10 then the model with smaller DIC is the better one. Hence, from
the results from table 3 to table 6, conditional on the data, the model with unstruc-
tured precision matrix is the better one. Specifically, the appropriate hierarchical
generalized latent variable model consist of two levels of latent vectors. The first
level of Gaussian spatial latent vector has unstructured precision matrix. The sec-
ond level of Gaussian spatial latent vectors also have unstructured precision matrix.
Furthermore, the choice for the unstructured covariance structure can be explained
by the following two facts. (1) The oral biological environment is so complected
that the higher level Gaussian spatial latent vector might not be able to account
for the heterogencity from four quadrant-wise response vectors sufficiently and leave
some residuals to the intermediate level spatial latent vectors. (2) At intermediate
level, Gaussian spatial latent vector with CAR model based precision matrix are not
sophisticated to account for both the residual heterogeneity and the one from the
teeth within corresponding quadrants. Hence, the second level of Gaussian spatial
latent vectors need more complicated precision matrix than Markovian type (CAR
model based covariance matrix). Based on the chosen model, the conclusion of the
hypothesis testing about both overall and specific spatial symmetry among quadrants
are as follows: (1) Left-right spatial association is the strongest, which is shown in
terms of 95% simultaneous credible intervals of the differences between left-right and
across and the differences between left-right and up-down with lower bounds are all
positive. (2) The difference of spatial associations between across and up-down is not
significant at type S error rate between 0% and 2.5% (Gelman (2006)), since 95%
simultaneous credible intervals of the difference between across spatial association

and up-down spatial association includes zero.
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2.6 Discussion

In this chapter, we propose a flexible class of Bayesian Generalized latent variable
models for multivariate spatially correlated binary data with multi-level dependence
structure. Our approach is to model the response variables by distributions in the ex-
ponential family and impose a multivariate spatial correlation structure on the latent
variables, which accounts for the multi-level spatial dependence structures. Statisti-
cal inference is based on posterior sampling from the posterior distributions of the
parameters of interest. We have used undirected graphical Gaussian model(UGGM)
for constructing the precision matrix structures of multivariate spatial latent vectors
at both higher and intermediate levels. One consideration is the parameterizations of
both the observational and latent variable models, for the identifiability of the model,
we constrain sum to zero for the fixed effects and the spatial process has mean zeros.
Noninformative conjugate priors are applied for the parameters of interest, which will
give a comparable inference results to the frequentist’s as the sample size increases.
We proposed two possible models to account for the dependence structure in the den-
tal data. Bavesian model selection is based on DIC for missing data problem. Spatial
symmetry hypothesis is assessed by simultaneous credible intervals for multiple com-
parisons of pairwise spatial association strength. The results from both models show
the generalized latent variables model work well and consistent to one another and
also comparable to the results in existing literatures.' It concluded that the left-right
spatial association is the strongest and the spatial associations for across and up-down
are not different significantly at tvpe S error rate between 0% and 2.5%. For the data
example, we have assumed that the Gaussian spatial latent process {Q; : i = 1.....n}
at higher level and {T,; - j = 1.....J.7 = 1.....n} at intermediate level are sufficient
to induce the unobserved heterogeneities from the data at corresponding levels. It
would be interesting to introduce non-Gaussian latent process to model the underly-

ing spatial dependence among quadrants and teeth nested within the corresponding
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quadrant, which can lead to a richer class of the latent processes {Q; : ¢ = 1,...,n}
and {T;j : j = L.....J,i = 1,...,n}. Finally, our model selection is based on DIC and
it will be optimal when the model selection is simultaneous through Reversible Jump
Monte Carlo Markov Chain(RJMCMC) (Green (1995)) or Birth and Death Monte
Carlo Markov Chain(BDMCMC)(Stephens (2000)) . It will be more interesting to
consider the symmetry pattern of quadrants for a longitudinal study, which will lead

to the spatial-temporal analysis.
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CHAPTER 3

Bayesian Finite Mixture of

Generalized Latent Variable

Models

3.1 Introduction

As we have noticed in the above chapter that the dental showed a unique nested
dependence structure among the caries experience response variables for the teeth
of interest, which lead to a wide heterogeneity of distribution for the multivariate
spatially correlated binary response variables. Finite mixture of distributions have
provided a mathematical-based approach to model various random phenomena with
the flexible distribution. It is obvious that mixture distributions are extremely useful
in the modeling of heterogeneity in a cluster analysis context. It is of great interest
that we can view the quadrant-wise multivariate binary response vectors as from a
certain number of underlying subpopulation or clusters. Each of the underlying clus-
ter is characterized by the corresponding underlying cluster-specific parameters and

some common parameter to describe the marginal distribution of the binary response
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variable with respect to the spatial configurations for each quadrant-wise response
vector. The spatial symmetry among quadrants, in terms of the caries prevalence,
can be measured by the probabilities that two different quadrant-wise response vec-
tors will fall into the same underlying cluster that is indexed by a corresponding
cluster-specific multivariate distribution.

Zhang et al. (2007) proposed a Bayesian Generalized Latent Variable Model
(BGLVM) to analyze the dental data from the STM project. Their approach used a
hierarchical generalized latent variable model to take care of the multiple level nested
dependence structure of the dental data. The multiple level spatial latent variables
are used to generate a flexible multivariate distribution for the multivariate binary
outcomes and induce the unique nested dependence structure. The joint behavior of
the multiple level spatial latent variables are described by Gaussian undirected graph-
ical model with different ways to account for the covariance matrix structures. Spatial
symmetry checking was based on the partial correlation parameters of the graphical
models. Model implement and hypothesis testing are within Bayesian framework.
Since we know mixture model is very flexible method of modeling. it is interesting
to view the same problem from the mixture model point of view in stead of general-
ized latent variable model. It is also very helpful to give a general framework to use
mixture model for analvzing spatially correlated multivariate binary data.

Ferndndez and Green et al. (2002) proposed a Bayesian mixture model to analyze
spatial correlated data, which gives an appropriate approach in the case of finite,
typically irregular. patterns of points or regions with prescribed spatial relationships.
The spatial association strength was assessed through parameters that are used to
adjust the variability of mixing weights in the mixture from one location to another.
Their approach is sensitive to Euclidian space, and can not take care of multi-level
correlations induced by both "between-cluster™ and “within-cluster™ spatial configu-

ration of the data. Fernandez and Green focused specifically on Poisson distributed
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data with applications in disease mapping, which are quite different from the situ-
ation what the dental data are facing. For the estimation of the true risk pattern.
their approach is based on a continuously distributed Markov random fields to model
the mixture weight for the corresponding component via logit-normal model. They
did not consider other mixture components that can yield flexible distributions for
the outcomes and induce complex heterogeneity structure. However, their approach
introduced spatial mixture models as an interesting new tool for those modeling het-
erogeneity in spatial data. Zhou and Wakefield et al. (2006) proposed a Bayesian
mixture model for partitioning gene expression data. which is essentially an approach
of clustering the observed data by a mixture model with unknown number of cluster
inferred by the data. The aim of their research in which time ordered gene expression
data are collected is to determine genes that co-express, that is, have similar patterns
of expression, which provided a probabilistic framework for partitioning or clustering,
which naturally provides a measure of similarity among genes in terms of expression.
Under their approach. partitioning and estimation are conducted simultancously, and
the number of partitions can be treated as a random parameter, which will give the
method a certain flexibility in applications. It is noticeable that as always for para-
mietric hierarchial modeling, the measures of uncertainty are only as reliable as the
model, so extensive model checking should be carried out in applications. It is nec-
essary to give flexibility to the mixture components rather than as what they did
via modeling a marginal parametric mean structure. Extension needs to incorporate
covariates at various stages and other external information need to be taken into
account. It is also meaningful to give the framework for analyzing non-normal data
under mixture models for clustering.

The purpose of this article is to introduce a Bayesian Mixture of Generalized
Latent variable Model (BMGLVNI) framework for general spatial topology structures

to explain multi-level correlations. The BMGLVNM, implemented via Gibbs sampling
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with non-informative priors, allows us to model the "between-cluster™ and "within-
cluster” correlation structure explicitly. It is possible for us to examine the spatial
symmetry of quadrants in terms of caries incidence, and capture the special spatial
association structure among quadrants for the same subject of interest and among
teeth within quadrants, which can help us efficiently characterize the pattern of caries

incidence at tooth level.

3.2 The Spatial Dependence Structures

3.2.1 Notation

To model the observations, let y; ;i denote the kth response variable within jth cluster

of ith subject of interest. where & = 1. K. j = 1...Jii = 1l....n. Let y;; =
(Yug1e Yo jhs s y,ﬂ\»)' denote the response vector within jth cluster of ith subject.
Let y; = (y:l. Y -‘/:.l)l denote the collection of response variables of ith subject.
let y = (Y} ...yl .. y),) denote the collection of response variables of all subjects in

this study.

A multinomial model is applied for the allocation process associated with mix-
ture models. let Q; = (Q:l. e Qs ...,QgJ)' denote the mixture component alloca-
tion random variables for the ith subject, where Qi = (Q,jl....,Ql-j,,,,...,Q,-jM)'
and M is the number of mixture components in the mixture model, for i = 1,...,n
and j = 1,...J. It is assumed that @Q;;’s are identically independently multino-
mial distributed. TFor modeling the latent variables, we use conditional autoregres-
sive model. Let Ty = (T} 1) ---~T1,k(m)'-‘-sz.K(m))l denote the latent variables
associated with the mth mixture components for the ith subject of interest. Let
T, = (11,1 ']‘l/,,'. '1'1"”)' denote the collection of latent variables at intermediate

level for the ith subject in the study. Let L = {Q. T : ¢ = 1....n} denote the

collection of all allocation random variables and latent variables for all subjects.
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3.2.2 Principles of our modeling approach

The dental data shows a two-level spatial association structures, i.e., the first level
spatial association structures are among quadrant(V)-(VIII). For the convenience of
indexing the data, we will use quadrant(I) instead of quadrant (V) and corresponding
index for the others. The second level spatial association structure is, nested within
corresponding quadrant, the spatial correlation among teeth.

In general, the valid approaches for analyzing correlated data without explicit
multivariate distribution consist are based on either GEE and random effect models.
The former is suitable for marginal mean or pairwise associations between response
outcomes orientated statistical problems and the latter is for subject specific statis-
tical issues. The dental data is spatially correlated and has information about teeth
spatial configurations that need to be incarnated in the model to provide explicit
structure for inducing dependence among quadrants and teeth at their corresponding
levels. The main contribution of this paper is to develop a methodology to model this
unique spatial dependence of the deciduous dentition. There is no explicit multivari-
ate distribution available for the spatially correlated binary dental caries experience
outcomes. Mixture models(McLachlan and Peel (2000)) are commonly used to are
generate flexible multivariate distributions and induce unobserved heterogeneity for
correlated data with implicit multivariate distribution.

To take the unique spatial structure of dental data into account, we use two lev-
els of latent variables to take care of the spatial dependence of the teeth within the
mouth for each subject. At higher level, the mixture component allocation random
vectors {Q;; : j = 1,..., J} for the ith subject are used to allocate the quadrant-wise
response vector y;; to its corresponding subgroup that is characterized by the mix-
ture components of the mixture model. The mixture component allocation process
has the function to mix the multiple mixture components into a flexible multivari-

ate distributions and induce the dependence among quadrants. Given the mixture



component allocation process, the quadrant-wise response vectors {y;; : j =1, ..., J}
are conditionally mutually independent. At intermediate level, conditional on the
allocation status of the mixture component process. we introduce spatial latent vec-
tors, {7y, : m = 1,...M.i = 1l...n}, that are used to tight the generate the
mth mixture component flexibly and induce dependence structure among teeth. The
joint distribution of this spatial latent vector is given by Undirected graphical Gaus-
sian model with spatial configurations of the teeth taken into account. The obser-
vations {y;;x : k = 1,...K,j = 1,...J} will be conditionally independent given
Q, and T; for i = 1....,n. Meanwhile, the intermediate level spatial latent vectors
{T;, - m = 1....M} are conditional independent given the higher level spatial la-
tent vector Q; for i = 1.....n. In order to assess the spatial symmetry of the caries
experience of deciduous dentition, we will examine the pairwise comparisons for the
similarity scores that will be defined later on. Due to the complexity of oral biological
system, we will give flexible covariance structure for the undirected graphical Gaus-
sian models and leave the number of mixture components to be unknown. A formal
model selection procedure will be used to choose appropriate mixture model for the

data.

3.3 Models

3.3.1 Bayesian Mixture Models

Finite mixture models with regression structure have a long and extensive literature
and have been commonly used. McLachlan and Peel et al. (2000) gave a very general
framework for mixture model with non-normal components to deal with overdispersed
data. Mixture models are used to facilitate the modeling of the heterogeneity from the
overdispersed and correlated data by generating flexible distributions of the responses
variable of interest and inducing dependence structures among response variables.

Conditional on mixture component allocation process @, ;. for mixture model with



A components. y; = (y/,.....yij- -y, ;)" has contribution to the likelihood as

J M
p(y:1Q::0) = H 71'_]mpm yz_]le_]m =16 }Qijm , (3.1)
where {7rj,,, cm o= 1,..,M,j = ..J} are the mixture proportions and

Pm(Yij|Qijm = 1:0) is the mth components of the mixture model.

[t is known that the estimation for mixture models is straightforward using EM
algorithm but with difficulties and challenges. Bayesian estimation for mixture models
is feasible and well defined as long as the posterior simulation algorithim converges.
Key initial papers on the Bavesian analysis of mixture models using MCMC methods
include Diebolt and Robert (1991) and Escobar and West (1995). Provided that
suitable (proper conjugate) priors are used, the posterior density will be proper.
WinBUGS can be used to provide valid posterior samples of the quantities of interest.
However, there are some difficulties that have to be addressed with the Bayesian
approach in the context of mixture models. First of all, improper priors might yield
improper posterior distributions. Secondly, when the number of components M is
unknown, the parameter space is ill-defined, which prevents the use of classical testing
procedures and priors. Finally, label switching occurs when some of the labels of the
mixture components permute. The effect of label switching is important when the
solution is calculated iteratively because there is the possibility that the labels of the
components may be switched on different iterations. In this paper. we will discuss

the methods that have been proposed for overcoming the problems mentioned above.

3.3.2 Response Models

We model the kth response variable within the jth quadrant of the ith subject, Yijk
which is a binary indicator of caries experience of footh; j.(;y. The response model is
specified hicrarchically. At higher level, the mixture model (3.1) will give a flexible

multivariate distributions for the quadrant-wise binary data {-l/ij :j=1....J} and



induce the dependence structure among the four quadrants. Simultaneously, there

b . . . ol ; . . ) o !/ /! / /
exists mixture component allocation random indicator Q; = (Q};. .-, ijee i)
where Q;; = (Qyj1, -+ Qijm» ...,QUM)’ is a random binary vector with only element
being 1, for j = 1,...,J.1 = 1....,n. At intermediate level, condition on the Q;, for
instance, Q,j,, = 1, i.c., y;; follows the mth mixture component in the mixture model.
Meanwhile, there exists a spatial latent vector Ty = (T, 1y~ - Ty k() - T,».K(m))'
that is used to tight the J binary response variables (.l/ijl»-myijl\ ..... ’«'/iﬂ\')l . The
joint distribution of T;,, is given by undirected graphical Gaussian model(UGGM)
with spatial configurations of the A teeth taking into account. Essentially, Tj,, is
used to generate flexible multivariate distribution for the binary response vector and
induce the dependence for y;jp. Conditional on Q; and (T3, : m = 1...., M}, the
binary response variable y, ;1. can be modeled by an exponential family distribution

with the probability density function as the general form

NMimk¥Yijk — bi (nimk)
a;(0)

+ ¢i(yijr. 9) ),
(3.2)

Pm(!/z'jk[Qijm = 1~Ti,k(m);a~7m3w o) = exl){

where 1), = con + Jp + T () (McCullagh and Nelder et al. 1989).
We assume that the link function ¢g(-) is a canonical link that relates the mean of

Yi,k to alincar predictor as follows

.(/(Ei.‘/ijleijm =1 ’]im.k]) = Nink = Cm + I + Ti.k(m)'

where o = (ap,....an.....,ay) overall component mean with increasing order
constraints and 3 = (J]..... 3. ..., Jy)" are the regression coefficients of general-
ized latent variable models with constraints )", 3 = 0. Furthermore, T},

(T Tigmye s Ti.l\'(m)), are the Gaussian with mean zero and covariance ma-

trix {XF :m o= 1.....M}. We assume that {Q; : i = 1,...n} and {T};,, : m =

1....,M,i = 1,...,n} are mutually independent, which relate the response variables
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to quadrant-specific and tooth-specific covariates and the latent variables.

Under the mixture model and latent variable model approach, we can assume
that the response variables are conditionally mutually independent.given the vectors
of latent variables L = {L; = (Q\.T!,... T/ ...T)y;) : i = 1....n}. The joint
probability density of y conditional on the set of latent variables L and {7’,a’. 3. p},

/

where m = (7.-'1, e T ...,7r'J)’ with m; = (7)1, ... . ....7rjM)', is as follows

N K Qijm
plylL;7' o 3 0) = Hi.j.m {ﬂjm [Te=1 P Wikl Qijm = I*Ti.k(m)‘q))} ’
, K imkYijk = M)
= exp {Zi._j,m {Qijm {]og(ﬁjm) + Zk:l[ tm U”Z,(O)l k! ('i(yijkv C.))] ’
(3.3)
Mhere , N n J Mo n J M .
where 1,5, and 32, j ,, denote [T TT5=1 [l and 3200, 3251 3251 corre-

spondingly.

3.3.3 The Structure Model for Latent Variables

In the response model, given the two levels of latent variables, the conditional inde-
pendence assumption allows the specification of complete likelihood for the response
model. In our modeling approach. the two levels of spatial latent vectors are used
to induce the dependence structure of the teeth of interest. In order to incorporate
appropriate spatial latent vectors into the model. we need to choose the ones that
can really represent the design structure and characterize the randoin mechanism of
data generating process. The objective of these latent processes is to generate flexible
distributions for observations and induce the dependency among observations.

At higher level, it is assumed there exist independent mixture component alloca-

tion processes, say, Q;l e ij. Q:J, with

Qij = (Qéjlw-'injm‘ ---injI\I)l ~ ]\[ll“/u(l,ﬂj), j=1..,J,i=1.,n (3.4)

At intermediate level, we will follow the approach in Zhang et al. (2007) by incor-

porating appropriate spatial latent vectors to formulate flexible mixture components.



Figure 3.1 The response variables yj1, vij2, Yij3. ¥ij4 and y;j5 are al-
located to the mth cluster and tighten by spatial latent vector Ty, =
(Ti 1 (m)s Ti2gmy T 3(mys Tia(m)r T 3[,,,))’ whose joint distribution is given by UGGM
with unstructured precision matrix.
Undirected Graphical Gaussian Models (UGGMs)t are used to give the joint distri-
bution for the spatial latent vectors. The UGGMs will take the spatial configurations
of the teeth within quadrants into account. The spatial configurations of the teeth
within quadrants are as below.

As shown above graphs, the five teeth within each quadrant can be viewed as
five nodes in a graph. If two nodes are not directly connected, they are said to be
conditionally independent given the other nodes in the graph. For the mth mix-

ture component, a UGGM is used to describe the spatial configuration of the nodes

o
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Figure 3.2. Note: The response variables y;j1, yij2. ¥ij3. ¥iju and y, 5 are
are allocated to the mth cluster and tighten by spatial latent vector Tj,, =
(T 1(m)> Ti2(m): Ti.3(m) Tia(m) Tis(m))” Whose joint distribution is given by UGGM
with precision matrix under CAR model assumption.



and manifest the associations among nodes of interest by assigning random variables
. ! L ) var
T}Hl = (Ti.l(m)' Ti.?.(l‘n)' T[“3(",). Tli,“"l)‘ Ti,5(fll)) to the n()deb 1mn the gl'dph. I\'Ibdll-

while, {T},, : m = 1...., M} are mutually independent conditional on Q;. A UGGM

assumes that

Tipy = (Ti,l(n‘l)’Ti,Q(m)* Ti,B(m)’ Ti.»i(m)‘ Ti.S(m))/ ~ N(0, Z?)’ m=1,..M, (3‘5)

where a’f is a symmetrical and positive definite matrix for m = 1,..., M.

We know Gaussian random variables are determined by the first two moments. For
the identifiability, we already assumne the mean structures of the two levels of spatial
latent variables are vectors of zeros, then the problem will become issues about the
covariance structures {¥70 : m = 1...M}. A general covariance matrix will be
unstructured with symmetric and positive definite constraints. The unstructured
covariance matrix can be simplified if we assume Markovian properties for the nodes,
somehow as shown in the second graph. The Markovian type covariance matrix can
be incorporated within spatial statistics by CAR model (Cressie (1991)). The choice
of the two types of covariance structure for the spatial latent vectors at tooth nested
within quadrant level is made through model selection in Bayesian framework via
Deviance Information Criterion(DIC) for missing data problem proposed by Celeux
et al.(2004), which is an extension of the DIC introduced in Spiegelhalter et al.(2002)

for Bayesian model selections.

Undirected Graphical Gaussian Model

In this section. we review the graphical Gaussian model (Dempster,1972) required
for this paper. Let ¢ = (V.E) be an undirected graph with vertex set V. =
{L..oh o K} and edge set E = {e0 o b # kK = 1. K}, where ¢, = 1
or 0 according to whether vertices k and &', 1 < k # k' < K are directly con-
nected in G or not. In the undirected graphical Gaussian model, the edges set

describes the associate structures of the vertex set. Random vector is assigned

=
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to edges set to represent the association strength between corresponding vertexes.
The undirected graphical Gaussian model consists of all k£ dimensional normal dis-
tribution, say X = {Xy,..., X}...., Xk}, with X ~ N(0,X) and precision matrix
Q=x1= {wir kb # K =1,...,K}, where ¥ is unknown but satisfies the follow-
ing restrictions in terms of the pairwise conditional independences determined by the

Markov properties (Drton and Perlman (2004)):

PI\A/ = 0 (=1 Yk 1 X,\ll/Yv\{AAI Vk # l\l [\’.

Conditional Autoregressive Models

For the vector of univariate variables v = (v],vo.....vk)', the zero-centered
CAR specification, where K is the number of spatial nodes of interest, following
Cressic(1991), sets

Wilv_g.of) ~ N(p D bvieop): k=1, K, (3.6)
I/I‘/EU k

where v_g = v\ {1 }. Following Brook's (1961) lemma the resulting joint density for
v takes the form

f(v|o?) el-p{—%uTD;;(I — pB)v}. (3.7)

where B is K x K matrix with B = {b,s : k # k' = 1,... K} and by = 0,Vk =
1.....,K and DU'Z us an K x K diagonal matrix with non-zero entries {nf ko=
. K'}. The precision matrix D (1 pB) need to be symmetric, which yvields the

conditions

b}\/\’(f}?/ = b};’l\”%' Vl\. k/ = ]., ceey ]\’. (38)

If the precision matrix is positive definite, then (3.7) is a proper distribution. Un-
der above parameterizations, the precision matrix D"QI(I — pB) is nonsingular if
g

p C (/\,_,gn‘/\;,fl‘l.) where Apin. Amar are the smallest and largest eigenvalues of B



respectively. It usually assumes that the D o= 020, where M is diagonal matrix

2 con-

with diagonal elements M. proportional to the conditional variance of o,%. o
trols the overall variability and p represent the overall spatial association. Weights
matrix B with B,/ need to reflect the spatial association between nodes k and K.
GoeBUGS(2004) sets By, = by = 1/ny, for k # k" and My = 1/ny where ny

is the number of nodes which is adjacent to node A. Under the above settings, the

spatial latent vector v will follow a proper distribution, i.e.,

v~ N(0.02(1 — pB)~'Al). (3.9)

3.4 Bayesian Estimations and Statistical Inference

3.4.1 Identifiability of the models

Based on the framework of the mixture of generalized latent variable models, we
have to deal with the model identifiability issues at both mixture model level and
generalized latent variable level. At mixture model level, we need to deal with label
switching issue. The interchanging of component labels is generally handled by a

constraints on the mixing proportions of the form

Tl Sﬂj'zS"'<7rJ.\l- J=1 .

or on the component means of the form
ap<ag<---<ayy.

Frequently, models with latent variables are not globally identifiable. One can inte-
grate out the latent spatial variable vectors to obtain a marginal likelihood to assess
whether parameters are redundant. The contribution to the likelihood from the latent
variable model is parameterized by {E7' :m = 1,.... M }. The identifiability problem

become to examine if the parameters involved in the covariance are redundant, which
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might be problematic within frequentist’s framework. Dawid (1979) and Gelfand &
Sahu (1999) discussed model identifiability issues within Bayesian framework. In par-
ticular, Suppose that the Bayesian model is denoted by the likelihood L(6: y) and the

prior f(#) and we partition the parameters of interest as § = (61,6s). If

J(02101.y) = J(62161). (3.10)

then we say that 6 is not identifiable, where f(62]6,.,y) o L(61,62:y)f(62|01)f(61).
That is, if observing data y does not increase our prior knowledge about 65 given 61,
then 0 is not identifiable by the data. Dawid’s formal definition of Bayesian model
nonidentifiability states that 8y is not identifiable if and only if L(6y,62:y) is free of
02. In order to make our model identifiable, we need to not only take care of marginal
identifiability of the model through integrating out the latent variables, but also put
some constraints to the covariance matrix of the Gaussian spatial latent vectors at

both levels.

3.4.2 Prior distributions

In this section, prior distributions are chosen for the parameters 6 = (7’,a’,.3") and
and association parameters £. The priors are assigned hierarchically to the corre-
sponding parameters of interest. Gibbs sampling algorithm is applied to simulate the
samples from the posterior distributions of the quantities of interest. At higher level,
McLachlan and Peel (2000) used a non-informative conjugate proper prior to mixture

proportions in the form:
m= (ﬂjl,...,wjm,...,nj;u)’ ~ Dirichlet((£1, ..., o)), G =1,...,J, (3.11)

where (o1, ..., @pr) is the weights vector for the mixture proportions. At intermediate
level, Zhao et al.(2006), Zeger et al.(1991) and Dunson et al.(2000) all suggested

noninformative conjugate prior distributions for the parameters of interest, which
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can wash out the effect of priors as sample size increases. Bedrick et al.(1996) noted

that normal prior distributions were suggested for the logistic regression coefficient 6.
(@' 3" ~ N(u. F). (3.12)

where g is the a vector of location parameters m and F is the covariance matrix. It
is common to take p as vector of zeros and F as diagonal matrix with very larger
entries. We are interested in the joint posterior distribution of (6, €|y). Under mild
condition in (Geman and Geman et al.(1984)), Gibbs sampler can obtain the joint
posterior distribution by sampling from the conditional posterior distributions (8]y, §)
and (£|y. @) correspondingly. To simplify the sampling from the conditional posterior
distributions, we choose hierarchical independent priors for 8 and € in this hierarchical
Bayesian model, i.e. (€|y,0) = (€ly), which is true as long as the priors satisfy
p(6.&) = p(0)p(€). We proposed two covariance structures for the Guassian spatial
latent variable models. In the generalized linear model setting with Gaussian random
effects, the proper noninformative conjugate priors will be Inverse Gamma(IG) for
signal variance component and Inverse Wishart distribution for a variance-covariance
matrix.

Based on the relative relationship among nodes in the graph of the UGGMI, we
give noninformative priors to precision matrix parameter correspondingly.

(1) Unstructured precision matrix in the UGGM:

For the ith subject. conditional on the higher level spatial latent vector Q;, the in-
termediate level spatial latent vectors {1, : m = 1,..., M} are conditionally indepen-
dent. So, we give independent priors to the precision matrix {Qr,, :m =1,...M}.
Similarly, independent Wishart processes are assigned as priors for these precision
matrixes.

Qr,, ~ Wishart(vr,, ,Ar,): m=1,.., M, (3.13)
with the degrees of v, = rank(Xr, ) + 1 and the precision matrix A, =

[(y» XU .
rm 7"l
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(2) CAR model based precision matrix in the UGGM:

For the ith subject, conditional on the higher level spatial latent vector Q;, the
intermediate level spatial latent vectors {T;,, : m = 1,.... M} are conditionally in-
dependent. So, we give independent priors precision matrix {Qr, :m =1,.., M}
that are parameterized by {62,.pm : m = 1,...,M}. Similarly, independent Inverse
Gamma (Dunson et al.(2000)) distributions, proper conjugate priors, are assigned
as priors to the overall variation parameters {o?,l :m = 1,..., M} and independent
uniform distribution with supports constraints in section 3.3.2 to the overall spatial
association parameters {pm, : m = 1,..., M}, improper priors GeoBUGS(2004) for the

over quadrant specific spatial association parameters, respectively.

02 ~IG(€); m=1,.. M, (3.14)

and

P~ U()\;Jn, )\,“,,}u.); m=1,.., M, (3.15)

where ¢ is very small positive number and A7} A~1

. aQ NS H cprda 4
mins Amar are as defined in section 3.3.2.

3.4.3 Posterior computations

Let (n',d/,3',Q',T', 1)’ denote the current state of the Markov chain. We will
follow the steps (1)-(3) to obtain the posterior samples of quantities of interest from
their posterior distributions. McLachlan & Peel (2000) and Ferndandez & Green (2002)
gave a general posterior sampling algorithm for the mixture model.

Step 1: Posterior sampling for mizxture proportions;

/ <o 12 . . 12
= (ﬂ'jl, e T ....TI'J""\[) ~ Dirichlet((e1 + ‘\'jl* v Pm + x’\j,,,, ey .\J"\/) )

(3.16)
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where Nj,, = Y1 Qim for j = 1,..Jom = 1. M and ¢ = (p1.....037) is &
known weight vector.

Step 2: Posterior sampling for mizture component allocation random variables;

Qij = (Qij1 - Quiar) ~ Multiyg(1,(7j1, - mjag))s J = Lo Jii=1..n,

pm(y; j1Q;im=1.T;p,:0) .
where Tim = JIII y'ym un: _, with

ZA 1 "jkPk sz|Q'ijk:1*Tik;0)

Pm(.szleijm =1,Tin:0) = H pm(yijk|Qijm =1T, k(m)> 0),
k=1

and pr (Y 11 Qijm = 1. Ti.k(m):()) is defined in (3) with

logit{ (!/UAIQI_)HI = 1T k(m): )} =am + 3 + T K(m)-

Step 3: Posterior sampling for generalized latent variable models.

Conditional on the mixture component allocation process at higher level, the pos-
terior distributions of paramecters and latent variables in the generalized latent vari-
able model can be obtained in standard way (Dunson et al.(2000), Zegeret al.(1991)).
Given the precision matrix {2, : m = 1,.... M}, the joint posterior distribution for
the regression parameters and latent variables at intermediate level is

p0,T|Q.y:m) x p(y|Q, T, y:0)f(6.7)

X exp {Zz Jam Qijm {log( Tim) + ok Qum{mml\uut( b)(mml‘) + ¢ (Yijk- 9:)}}}

X exp { 0’F g — 2 Zz—-l m~l T; QTmTi"l}

tn
(3.18)
where Ez.j.m denotes z;’_lZ'Jl;]Z;‘”l__.]. f(-) denote the joint prior den-
sitv, Q= (Q']Q:Qi,)/ with @, = (Q:l..‘..Q:j.....Q:J)’ and Q,; =
(Q,J'l..‘..Q,J,,,.....Q,J-M)’. T = (T{.....T/.....T,’,)’ with 7; = (T’l Tz’,m""'Ti/.‘\l),

and Tin, = (Tiqomys - Tik(mys - Dok (my)'- Furthermore, 8 = (a’.4.p)" and

Nimk = @m + 3 + T jpy). In practice, we set p to be vector of zeros and F to
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be diagonal matrix with large diagonal elements. If the NICMC algorithm is a Gibbs
sampler, the full conditional distribution of cach of the unknowns in (19) needs to
be specified, which can be obtained in a standard way Dunson et al.(2000), Zeger et

al.(1991)). For the fixed effect 6, the full conditional distribution is
p(01Q. T, y; )
Wim kY k=0 (i 1)
X exp {Zi,j.m Qijm {log(ﬂjm) + Zk Qijrn,{ imh I{IIZ(Q; imek + Ci(yijk* ‘f")}}}
X exp {—%G’F_IG}.

(3.19)

The full conditional distribution for the Gaussian spatial latent vectors Ty, is

(T |Q. y:m.0)
ik ¥i ik =0 Olimi)
X exp {Zi.j,"? QTJ"” {I()g(‘ﬁ]n') —+ Zk Qijrn{ tnk) 1 + Cl(yljk, 5O)}

a;(¥)
1 sn M of .
xexp { =4 Tt 1 T 0 Tom -

(3.20)
The full conditional distributions of precision matrix {Q7,, : m = 1,..., M} can be
obtained in terms of different precision matrix structures correspondingly.
(1) Unstructured precision matrix:
n
p(Qr,,1Q. T, y;m,0) = Wishart(vr,, + Nm, A, + Z TimT]), (3.21)
1=1
where N, = Z]J‘zl Nim =211 Z_}'Izl Qijm-
(2) CAR model based precision matrix:
(2.1) Overall precision parameters:
prn Q. Ty 7. 0)
X eXp {Zi,]‘,m Qum {](’g(ﬂj/u) + Zk Qijm { LI k) + pi(.Uijl;* “r?)}}}

a;(y)

X T,S,,’l exp{-7mec}.

(3.22)
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(2.2) Overall spatial parameters:

plom|Q.T,y:7.0)
Mok k=t i)
X exp {Zi,j.m Qij'm {10g(7rjm) + 2k Qijnz{ - l'ili(y,,)l T+ Ci(yi_jkv%o)}}}

XI(/\—‘I ‘/\—1 )(pnl)

min-mar

(3.23)

All the posterior distributions, except for {pm : m = 1,,..., M}, are proper based

on their proper conjugate priors. The uniform priors for the overall spatial parameters
are not conjugate, which might lead to improper posterior distributions. The simplest
technique for verifying if the posterior distributions of the parameters is proper is to
verify if the posterior distribution is proper for reduced data by discarding all but a
single outcome per subject leading to a reduced data set consisting of independent
outcomes, are proper (O'Brien and Dunson, 2004). Since the covariance structures
do not appear in the reduced data likelihood and also the support for the spatial

mecoeiat . e finite i e -1 41
association parameters is finite, i.c., {pm € (A Amar)

:m = 1,..,M} , so the
posterior distributions of the spatial association parameters {pm : m = 1,..., M} are
proper. The algorithm for the posterior computation is through sampling 7, @, 8, T,

and € respectively from the above conditional distributions.

3.4.4 Bayesian Model Selection

The formal procedure for choosing an appropriate Bayesian hierarchical model for
the observed data necessities methods to compare alternative models within Bayesian
framework. The DIC (deviance information criterion, Spiegelhalter et al. (2002)) is
a hierarchical modeling selection criterion that can be viewed as a generalization of
the AIC (Akaike information criterion,Akaike, 1973) and BIC (Bayesian information
criterion, Kass and Raftery, 1995). It is particularly useful in Bayesian model selec-
tion problems where the posterior distributions of parameters have been obtained by

Markov chain Monte Carlo (MCMC) simulation. The DIC-statistic is a measure of
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model complexity and goodness of fit with the definition as

DIC = D(0) + pD.

where D(9) is the deviance given the model parameters ¥ = (n/,6’,€’)’, defined as

D(v) = —2log(p(y|v)) + 2log(h(y)).

where h(y) is some fully specified standardizing term which is function of the data

alone. D(V) is the posterior mean of the deviance, a measurement of goodness of fit
of the proposed model for the observed data. D(d) is the deviance evaluated at the
posterior mean of ¥ and pD = D(J) — D(V) is the effective number of parameters
in the model, a penalty for the complexity of the model. The quantities D(9) and
D(9) can be trivially computed from an MCMC simulation chain. Rather than the
conventional DIC introduced in Spiegelhalter et al. (2002), our hierarchial models
containing two levels of latent variables, which necessitates the model selections to be
based on the DIC for missing data problems (Celeux et al.,2006). MCMC methods,
such as the Gibbs sampler, can be employed conveniently to produce posteriors for
parameters that are marginalized over latent spatial vectors. We computed the com-
plete DICs (Celeux et al..2006) by using the MCMC simulation results to get both
the measurement of goodness of fit and the number of effective parameters associated
with each models and used these statistics to select the most appropriate model. In
terms of our problem, we have to deal with latent variables to get a complete DICs.

In order to compute the complete DICs, Celeux et al. (2006) gave a definition
of complete data DIC, by defining the complete data estimator Ey(d|y.q,t|, which
does not suffer from identifiability problems since the components are identified by

(q’,t"), the realization of the spatial latent vectors (Q',T’)’, and then obtain DIC for

the complete model as

DIC(y,q,t) = —4Ey[log(p(y. q,t19))|y, q.t] + 2log(p(y.q. t|Ey[?]y.q.t])).  (3.24)
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As in the EM algorithm, we can then integrate this quantity to define

DIC = EQT[DICT/QTIJ]

= —1Ey g rllog(p(y. Q. TIV))ly| + 2Eq 7log(p(y. Q, T|Ey[I]y. Q. T)))y].
(3.25)

More specifically, notice that
Eyo.rllog(ply. Q. TIW))ly] = Ey { EQ(ET[log(p(y. Q. T|0))]y. Q: 0]ly. )|y}

= Ey {Er(EQlog(p(y. Q. T19))|y. T: 9|y, 9)|y}
(3.26)

also

log(p(y. Q. T|V)) = Zi,j.m {Qljm l()g(ﬂjmp(TmelI'! )}

3.27
+ 2 mk {Qlj"t 10g(pm (yijk|Qujm = 1. T; g (m): 9))} (3.21)

where pr (yixlQijm = 1T, Kk(m): @) is given in (3) and p(T};,|E7) is given in (6).
Interchanging the order of @ and T in the integrations by Fubini's theorem , we can

have

Ey . rllog(f(y. Q. T|0))y]
= Ey {Ep(Egllog(f(y. Q. T|0)|y.T: 0]y v)ly}
=Ey {ET(Zi.jmz {EQ(Qijmllﬁ T:v) log(ﬂjrlzl)(ﬂrrzlzyj“”))} ly. V)ly
+Ey {ET(Z,_JJ,,_[‘- {EQ(QIJINI.[/'T: J) log(l’m(.‘/i]lei]’m = I-Tz/n:e))} Iy,ﬂ)ly}
(3.28)

where E(Q;jnly. T 0) is given as below:

ﬂjl!l[)/”(ylleljnl = 1.T;,,::0)

E(}(Qljml.‘ﬁ Tv) =PQijm = Ny T:0) = .
SR kP g Qi = 1. T )

with

<~

Pm ‘/LJlez H yz]k'Qljm =1 T k(m): :0),

and



Eq.rllog(p(y. Q. TIEy W]y, Q. T)ly]
— Er{Eqllog(p(y- Q- TIEYWly. Q. )W}
= Br { s { EQQujm . T:9) log (Fmp (T Z) } Iy}

SEL{,t { FQ( @iyl T2 0) 08 (9151 Qujm = 1. Tir:00) 1y |
(3.29)

where 0, {Tim:J=1..Jm=1.. M}, {f? :m =1, ..., M}, 6 are posterior means
of V. {mjp, 1y =1, Jom=1. M} {EF :m=1,.. M}, 6 correspondingly.
All the integration can be obtained routinely by Monte Carlo integration approx-

imation using the MCMC posterior samples in the coda file of WinBUGS.

Spatial symmetry hypothetical testing

The spatial symmetry property in our problem means the joint caries experience pre-
sentations for response variables at quadrant level are highly associated with one an-
other. Dentists do believe that spatial symmetry exist in mouth. Lesaffre et al.(2006)
showed empirically that the caries experience for left and right quadrants are more
strongly associated than the other cases. Unfortunately. few literatures have discussed
this issue comprehensively. The mixture of generalized latent variable models pro-
vides a way to examine the spatial symmetry of the four quadrants in terms of joint
caries experiences. Under the mixture model, if there are two quadrant-wise binary
response vectors y;; = (,1/,'11....,;/,-1-;‘.,....‘.l/;‘J'l\’)’ and Yl = (yij’l'”"yij’k""’yij’K)’
who have the exact joint probabilistic behaviors, then the mixture component
allocation processes will always assign the two binary response vectors to the
same mixture component. Specifically, the mixture component allocation processes

Qij = (Qi_jlw--'ﬁQijmv"'inj:'\[)/ and Qij’ = (Qij'l’"“Qij’nl""’Qij/"\l)l will satisfy
M

m=

1 P(Qijm = Qz‘j’m = 1ly) = 1. Hence, the strength of the similarity of two

quadrant-wise responses vectors that is defined by S,

)l sy the jth quadrant and
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the jth quadrant, can be measured by the below quantity

n M

Sit = 1 DD PQijm = Qi = 1) (3.30)

" t=1m=1

Hypothetical testing for pairwise comparisons among spatial association strength
parameters.

In order to assess the spatial svinmetry of the four quadrants, we need to in-
troduce different “Neighborhoods™ relationships that can explain the relative spatial
structures of the quadrants of interest. Spatial syminetry is assessed at the quadrant
level, instead of tooth level. At quadrant level. We define the vector of teeth to be
"Horizontal Neighbors™ to each other, if the two quadrants are both in either "Up-
per Jaw” or "Lower Jaw”, and to be " Vertical Neighbors™ to one another, if the two
quadrants are both in either " Left Jaw™ or "Right Jaw” and to be " Across Neighbors”
to one another, if the two quadrants are either in "Left Jaw” or "Right Jaw”. The
assessment of quadrant spatial symmetry in terms of cries prevalence will be based
on "Left-right”, i.e., 7 Horizontal Neighbors™, "Up-down”, i.e.,” Vertical Neighbors”
and "Across”, i.e., "Across Neighbors”.

There are two ways to assess the spatial symmetry among quadrants in terms
of caries prevalence incidence through statistical hypothesis statement. The first
one is based on the so called "overall” spatial symmetry assessments via a weighted
statistic and the second is the so called "specific” spatial symmetry assessment that
is the direct comparisons of the spatial svinmetry measurements.

First of all, the weighted statistics for assessing the overall spatial associations in
terms of "Left-right™, "Up-down™ and " Across™ can be formulated as below:

Srr = 5(S56 + Sts):

N —

1
Sup = '2‘(867 + Ss8):
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1
Sa= 5(568 + Ss7)-

The statistical hypothesis testing about the overall spatial association in terms
of ”Left-right” V.S. "Up-down”, " Left-right” V.S. "Across™ and "Across” V.S. "Up-
down” can be formulated as follows:

(1) Left-right Versus Up-down

Ho:SL,p=Sup V.S. He:Sip # Sup: (3.31)

(2) Left-right Versus Across

Hy:Srp=3S4 V.S. Ho:Spp# Sa; (3.32)

(8) Across Versus Up-doun

Hy: 5,4 = SUD V.S. Hg: SA # SUD~ (3.33)

Secondly, if the assessment is based on the direct comparisons of spatial symmetry
measurement, there are twelve possible hypothesis testing situations for the spatial
symmetries in terms of partial correlation between quadrants.

(1.1) Left-right Versus Up-down The association between quadrant 5 and quad-
rant 6 V.S. the association between quadrant 6 and quadrant 7, with quadrant 6 as

reference.

Hg : S56 = Se7 V.S. Hg, : S5 # Sg7; (3.34)

(1.2) Left-right Versus Up-down The association between quadrant 5 and quad-
rant 6 V.S. the association between quadrant 5 and quadrant 8, with quadrant 5 as

reference.
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Hp : S56 = Ssg V.S. H, : Spe # Sss; (3.35)

(1.3) Left-right Versus Up-down The association between quadrant 7 and quad-
rant 8 V.S. the association between quadrant 6 and quadrant 7, with quadrant 7 as

reference.

Hy : S78 = Sg7 V.S. H, : S78 # Ser; (3.36)

(1.4) Left-right Versus Up-down The association between quadrant 7 and quad-
rant 8 V.S. the association between quadrant 5 and quadrant 8, with quadrant 8 as

reference.

Hy : S78 = S3g V.S. H, : S78 # Sss; (3.37)

(2.1) Left-right Versus Across The association between quadrant 5 and quadrant 6

V.S. the association between quadrant 6 and quadrant 8, with quadrant 6 as reference.

Hy : S56 = Sgs V.S. Hg : Spe # Sgs: (3.38)

(2.2) Left-right Versus Across The association between quadrant 5 and quadrant 6

V.S. the association between quadrant 5 and quadrant 7, with quadrant 5 as reference.

Hy : Ss56 = Sy7 V.S. Hg, : S56 # Ss7; (3.39)

(2.3) Left-right Versus Across The association between quadrant 7 and quadrant 8

V.S. the association between quadrant 6 and quadrant 8, with quadrant 8 as reference.

Hp : S78 = Sgs V.S. Hg : S7g # Sgs: (3.40)

(2.4) Left-right Versus Across The association between quadrant 7 and quadrant 8

V.S. the association between quadrant 5 and quadrant 7, with quadrant 7 as reference.
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Hy: S78 = Ss7 V.S. Hy : S7x # S57: (3.41)

(3.1) Across Versus Up-douwn The association between quadrant 5 and quadrant 7

V.S. the association between quadrant 5 and quadrant 8, with quadrant 5 as reference.

Hy : S57 = Ssg V.S. Hg @ S57 # Sss; (3.42)

(3.2) Across Versus Up-down The association between quadrant 5 and quadrant 7

V.S. the association between quadrant 6 and quadrant 7, with quadrant 7 as reference.

Hg : S37 = Sg7 V.S. Hgq : Sy7 # Se1; (3.43)

(3.8) Across Versus Up-down The association between quadrant 6 and quadrant 8

V.S. the association between quadrant 5 and quadrant 8, with quadrant 8 as reference.

H() : S(,‘g = 558 V.S. Hu : 568 7‘ 5551 (3.44)

(3.4) Across Versus Up-down The association between quadrant 6 and quadrant 8

V.S. the association between quadrant 6 and quadrant 7, with quadrant 6 as reference.

Hy : Sgs = Sg7 V.S. H, : Sgs # Se7. (3.45)

Simultaneous credible intervals

Pairwise spatial symmetry hypothesis testing is based on credible intervals for the dif-
ferences between two partial correlations corresponding to two different nodes (quad-
rants) in the UGGM. In Bavesian statistics, a credible interval is a posterior proba-
bility interval, used for purposes similar to those of confidence intervals in frequentist

statistics. Suppose that parameter ¢ is of interest, a (1 — «)100% credible interval



for the parameter ¢ of interest is any set C' such that P, (¢ e C)=1-a, where

(<ly)
m(¢]y) is the posterior distribution of parameter ¢ given the observed data y.

Since we are performing a multiple spatial symmetry comparisons among quad-
rants in terms of all possible hypothesis testing situations, it is necessary to give a
simultaneous credible regions (Besag et al. (1995)) to control type S error rate (Gel-
man et al.), i.e. the similar concept as type I error rate in frequentist’s framework.

The 100K /M Y% simultaneous credible regions is based on order statistics (Besag et

al. (1995))

{[(s, — s MH=C] g s ) 1y € Nez'ghborhood} ,

where
" = min{t : # {(S[ - S/l)['\l+l_t*] < (5] - S”)(’) < (57— S”)[[*]} > K},

and {(S; — S”)(” cto= 1,.M.(I,1I) € Neighborhood} are the posterior
samples of {(S; — Syy) : (I.11) € Neighborhood}. Here, Neighborhood =
{CLR","UD"),("LR*,"A"),("A","UD")}.

Similarly, the 10047 /M % simultaneous credible regions for specific spatial associ-

ations difference are given by

(S =SSy = Syl i 2 g # 5 G # (G305 = 1),
where

t* = min{t : # {(S“., _ SJ,J_I)[A\IWLI»-r*} < (S ngj/)(r) < (S, - SJJ/){,*]} > KV,

and {(S,;s - SJ.].,)(’) =1 Mi#" A£G )i j=1,..,J} are the

posterior samples of {(S,; — Sjj’) Al AT A G =1 T}



Table 3.1. Prevalence of caries experience(% affected) in the deciduous dentition of
6,7.8-yvear-old children n=1.351.

tooth 55 54 53 52 51 || 61 62 63 64 65
Prevalence 892 520 074 372 781 | 706 223 18 520 8.55

tooth 85 81 8 8 81 | 71 T2 13 1 715

Prevalence  10.78 13.75 1.12 074 037 | 037 037 037 11.15 9.67

3.5 The Signal Tandmobiel Project Example

In the Signal-Tandmobiel project, there are 1.468 schoolchildren who were among
6.7.8-vear-old, (born in 19%9) from 179 schools in Flanders (Belgium) and were se-
lected by a stratified clustered random sample. The mean age of the children on the
day of examination was 7.1 years (SD = 0.4). The 15 strata were obtained by com-
bining the 3 tvpes of educational system (public, municipal and private schools) with
geographical arcas (the 5 Flemish provinces). The schools represented the clusters.
This sample represents about 7% of the corresponding Flemish population. The sam-
pling procedure aimed at selecting each child in Flanders with equal probability. A
more detailed description of the design of the Signal-Tandmobiel project is reported

in Vanobbergen et al. (2000).

3.5.1 Primary results

The population prevalence data of caries experience in the deciduous dentition at the
tooth is shown in table 1 for the 6.7.8-vear-old children. The descriptive observations
suggested a synunetrical distribution of caries experience at the population level.

In Vanobbergen ¢t al. , the Null hypothesis of population svimmetry at tooth level
was tested for all deciduous molars. The results are shown in table 2.

The above result shows that it is left-right spatial symmetry is the most notable.
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Table 3.2. Odds ratios and 95% confidence intervals for the 2x2 association models
for caries on deciduous molars on tooth in 7-year-old children.

First Molar (ALR model)

54 64 [£! 84
54 16.48(13.75-19.74)  8.17 6.91—964% 7.23(6.13—8.53;
64 7.61(6.47-8.97 7.18(6.10-8.44

74 22.82(19.28-27.00)

Scecond Molar (ALR model)

bY%) 65 To 85
99 15.47(13.09-18.28) 8.78(7.52-10.27) 9.23(7.90-10.79)
65 8.08(6.92-9.42) 8.86(7.58-10.35)
75 20.37(17.20-24.11)

Decayed teeth of discordant contralateral pairs tend to aggregate on the right or the
left side of the subject’s mouth than would be expected by chance alone (Vanobbergen
et al.(2006)).

Zhang et al.(2007) proposed a Bayesian generalized latent variable mod-
els(BGLVMs) that is a complete likelihood approach for analyzing the dental data
and gave a 95% simultaneous credible intervals, in table 3, for the differences of the
partial correlations, which are used to measure the association strength among differ-
ent nodes (quadrants). The simultaneous credible intervals for the spatial symimetry
testing situations are given as follow.

The above result also shows that the spatial symmetry, in terms of the caries
prevalence. between left and right quadrant is stronger than the ones cither between

upper quadrant and down quadrant or across quadrants.

3.5.2 The results from our approach

Now we show how the above methodology works for dental data and need to spec-

ify all the functions and general notations. In our study, all of the responses
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Table 3.3. Credible intervals of spatial association strength comparisons based on
BGLVNMs and UGGM with unstructured covariance structure

Simult Spatial Effect
imuaneous spatia ects Credible intervals

left /righ .v.s. across

P56 — P68 50.134, 1.581)
P56 — P57 0.394, 1.711)
P78 — P68 (0.237, 1.589)
P78 — P57 (0.433, 1.728)
left /righ .v.s. upper/down
P56 — P67 (0.235, 1.551;
P56 — P58 (0.117, 1.485
P78 — P67 %0 .230, 1.6013
P78 — P58 0.215, 1.504
across .v.s. upper/down
268 — P67 (-1.303, 1.313)
P68 — P58 (-1.327, 1.204)
P57 — P67 §-1.442, 1.109)
P57 — P58 -1.488, 1.042)
DIC 593.300
N.burnin 1000
N.interation 11000
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are binary, so we have the following: a;(v) = 1, bj(n;mi) = log(l + exp(imi),
. o) = D) = Jog (L .  _ 1 _ o explg)

Q(yl.jlw*r/) =0, , g(r) = 10?,(1?;)- -E[yzjk|Q1]m = L] = mx_l#ik_) for
k=1,..5m=1,.Mj =1,..4.1 = 1,....,n. Hence, the parameters of interest
in the observational model is § = (7', 3') and € = £‘1((E}~,..., ZI’J,...,E‘Y‘!)’),
then P(!/ijleijm = Lnimk.¢) = pm(?Jijk'Qijm = 1,7imk), and log[)(yijkIQijm =
L Nigk) = logp(yijk]Qijm =1Tip.0) = ThmkYijk — log(1 + exp(n;mk)). The canoni-

cal parameter {n;,,:k=1,..., K,m=1,..,M.i=1,...n} is defined as follows:
Nimk = m + 3 + T,‘k(,,,)- (3.16)

Priors for parameters of interest are given by noninformative proper conjugate pri-
ors. which will give comparable results as frequentist s when sample size large enough,
in which case the sample can provide enough information for parameter estimates and
prior information will be washed away, also conjugate priors will make the posterior
proper if the prior is proper, in which case the Gibbs sampler can efficiently pro-
vide the appropriate posterior samples from the target posterior distributions. More

specifically, the priors are given as [ollows:

T = (T 1 Tjms ...,ﬂj.‘”)' ~ Dirichlet(p); j=1,...,J, (3.47)

where o is a M-dimensional vector of ones with Al being prespecified, and
Qo ™~ ‘-’\‘Y(O, 1000). m = 1, e ."“[, (318)

and

3~ N(0.1000); k=1,.....L. (3.49)

We assume the order restriction to the mixture component effect a, i.e., o) < ag <
s oo L vy for the label switching problems with the mixture model. For identifiability
of the generalized latent variable model, we assume Z}r\’.:l 3. = 0. For the priors of
precision matrix, O Malley and Zaslavsky (2006) proposed scaled Wishart distribution

as conjugate proper priors

=l

=~I



. S _ y-1 . _ o ar

For the priors of the precision matrix {Qr,, = ZT,,, :m = 1,..., M}, there are
two different models for the the structures of the precision matrix. (1) Unstructured
precision matrix, the common noninformative conjugate proper prior is Wishart dis-

tribution, i.e.

7‘,,}, = Qpp ~ Wishart(5+ 1).1): m=1..... M, (3.50)
where [ is 5 x 5 identity matrix, which will give a noninformative conjugate proper
priors for the precision matrie Qp,, = 27_—,}'. m=1,.. A

(2) Covariance matrix with structure under CAR model:

0,'{72 =1 ~ Ganma(0.001,0.001); m=1,...,M, (3.51)
and
pm~ UL A m= 1,0 M, (3.52)

where {(7,2,, :m = 1,..., M} are the quadrant specific parameters for overall variability
and {pm : m = 1,..,M} are the quadrant specific parameters for overall spatial
effects. A,,;, and Ay, are as defined in CAR models in section 3.3.2.

Our mixture of generalized latent variable models are implemented in WinBUGS,
using noninformative priors for the parameters of interest. After 1000 burn in, the
posterior inference is based on 11000 iterations. The model selection in terms of
number of mixture components at higher level and covariance matrix structure for
spatial latent vectors at intermediate level is based on DIC for missing data problem
(Celeux et al. (2006)).

Based on the above results from table (1)-(7) for four different models, the poste-
rior inferences about the spatial similarity in terms of caries prevalence are roughly
similar, which is because all the models work fairly well. Bavesian model selection
is based on DICs of both of the models, the smaller the DIC. the better the model.

It is commnon that if the difference between two different models are more than 10
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Table 3.1, Credible intervals of spatial similarity comparisons based on mixture model
with 2 components and UGGM with unstructured covariance structure

Spatial Crediblle
Effects ”(lSt)?)r:’/(cl)s
left /righ .v.s. across
S56 = S68 (-0.021, 0.194)
556 — 957 (0.014, 0.229)
S78 — Sg3 (-0.014, 0.208;
S78 = S37 (0.028, 0.236
left /righ .v.s. upper/down
Ss6 — Se7 (0.000, 0.222)
S56 — 558 (-0.007, 0.208)
S78 — Sp7 (0.014, 0.229)
S78 — Ss8 (0.000, 0.215)

across .v.s. upper/down
Se8 — St (-0.111, 0.097)
S — Sos (-0.111, 0.097)
S57 = S¢7 (-0.IT1. 0.097)
> ) (-0.111.0.097)

S57 = oy

DIC 635.1100
N.burnin 1000
N.interation 11000
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Table 3.5. Credible intervals of spatial similarity comparisons based on based on
mixture model with 2 components and UGGM with CAR model based covariance
structure

Spatial _Crediblle
5 . intervals
Effects (95 %)
left /righ .v.s. across
S56 — Se8 (0.007, 0.208)
556 = 557 (0.042, 0.243)
S78 — Se8 (0.021, 0.222)
S78 — S57 (0.056, 0.257)
left /righ .v.s. upper/down
S56 — Se7 (0.035, 0.236)
556 — o8 (0.021, 0.222)
S78 — S67 (0.019. 0.213)
578 — S5y (0.035. 0.229)

across .v.s. upper/down
Sgs ~ Sg7 (-0.104, 0.083)
S68 = 58 (-0.101, 0.083)
Ss7 — Sg7 (-0.101, 0.083)
S57 — 558 (-0.104, 0.083)

DIC 452.200
N.burnin 1000
N.interation 11000
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Table 3.6. Credible intervals of spatial similarity comparisons based on mixture model
with 3 components and UGGM with unstructured covariance structure

Spatial Crediblle
- . intervals
Effects (95 %)

left /righ .v.s. across

S56 — 968 (0.007, 0.188
Ss6 = Ss7 (0.035, 0.215
S78 — Se8 (0.007, 0.188)
S8 = So7 (0.035. 0.215)
left /righ .v.s. upper/down
Sn6 — Ser (0.028, 0.208)
S56 ~ 558 (0.014, 0.195)
St~ Sg7 (0.028. 0.201)
S78 — S8 (0.014, 0.195)
across .v.s. upper/down
Se8 — Se7 (-0.090, 0.076)
Se8 — S5 (-0.090, 0.076)
S57 — Se7 (-0.090, 0.076)
S57 = Ss8 (-0.090, 0.076)
DIC 537.500
N.burnin 1000
N.interation 11000
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Table 3.7. Credible intervals of spatial similarity comparisons based on based on
mixture model with 3 components and UGGM with CAR model based covariance
structure

Spatial Crediblle
& intervals
Effects (95 %)
Teft/righ .v.s across
Ss56 — Ses (0.014, 0.215)
Ss6 — S57 (0.042, 0.243
578 — Se8 (0.035, 0.229
78 — Ss7 (0.056. 0.250)
left /righ .v.s. upper/down
Ss6 — Se7 0.042, 0.243
S56 — Ss58. 0.021, 0.215
578 — S67 (0.056, 0.
S78 — Ss8 (0.035, 0.229
across .v.s. upper/down
68 — S67 (-0.090, 0.097)
Sgs — Ss8 (-0.090, 0.097)
S57 — S67 -0.090, 040973
S57 — Ss8 -0.090, 0.097
DIC 348.600
N.burnin 1000
N.interation 11000
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then the model with smaller DIC is the better one. Hence the model (shown in table
7) with 3 components and CAR model based covariance matrix for the correspond-
ing spatial latent vectors is more appropriate than the other models for the observed
data. Specifically, at higher level, the quadrant-wise response vectors follow a mixture
model with 3 components, and were assigned mixture label for each response vectors
by its mixture component allocation process. Conditional on the mixture label, at
the intermediate level, the Gaussian spatial latent vectors, modeled by UGGM with
CAR model based covariance matrix, were introduced to specify the corresponding
mixture component. It's noticeable that our model tried to account for the hetero-
geneity from the dental data hierarchically in two parts. The first part is through
the mixture of flexible multivariate distributions, which gives much more flexibility
for the distributions of the quadrant-wise response vectors than what was done in
BGLVNM (Zhang et al. (2007)) at the quadrant level. The second part is through
the generalized latent variable models that is similar to what was done in Zhang's
et al.(2007) at intermediate level. The choice of the model is reasonable, since the
mixture model can take more than enough heterogeneity from the quadrant-wise re-
sponse vectors, which makes the intermediate level Gaussian spatial latent vectors
with CAR model based precision matrix structure sophisticated enough to explain
the left heterogeneity of the dental data. Based on the chosen model, the conclusion
of the hypothesis testing about spatial symmetry among quadrants is as follows: (1)
Left-right spatial association relationship is the strongest, which is shown in terms
of 95% credible intervals of the differences between left-right and across and the dif-
ferences bhetween left-right and up-down with lower bounds are all positive. (2) The
difference of spatial association between across and up-down is not significant at type
S error rate between 0% and 2.5% (Gelman (2000)), since the 95% credible interval

of the difference between across and up-down includes zero.
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3.6 Discussion

In this paper, we propose a flexible class of Bayesian mixture of generalized latent vari-
able models for multivariate spatially correlated binary data with multi-level nested
covariance structure. Our approach is to model the response variables in a hierar-
chical structure. At higher level, we model the quadrant-wise response vectors by
a mixture of generalized latent variable models. At intermediate level, the response
variables within quadrants are assumed to be from the canonical exponential family
with the canonical parameters modeled by the generalized latent variable models.
Meceanwhile we imposed a multivariate spatial correlation structure on the latent vari-
ables, which induces the spatial correlation structures among the teeth within the
same quadrant. Statistical inference is based on the posterior distributions of the
parameters of interest. The spatial syinmetry among quadrants is assessed by the
similarity score defined in (31). There are two considerations in the model specifica-
tions. The first one is that we used the order constraints for the component marginal
means to deal with the label switching issues for the Bayesian mixture model. The
second consideration is the parameterizations for generalized latent variable models.
For the identifiability of the model, we use sum to zero constraint fixed effects for
the tooth position and assume spatial process has mean zero. Noninformative conju-
gate priors are applied for the parameters of interest, which will give a comparable
inference results to the frequentist’s as the sample size increases. We proposed four
models to account for both number of mixture component at higher level and the
covariance structure of Gaussian spatial latent vectors at intermediate level. The
choices of the number of mixture component and covariance structure are based on
DIC for missing data problem. Spatial hypothesis about the spatial symmetry of
quadrants is based on simultancous credible intervals for the differences of pairwise
similarity scores of interest. The results from our model show the mixture of gener-

alized latent variables models work fairly well and also comparable to the results in
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existing literatures. It concluded that the left-right spatial association is the strongest
and the spatial associations for across and up-down are not different significantly at
type S error rate between 0% and 2.5% (Gelman (2006)). For the data example, we
have assumed that the mixture component allocation process {Q; : i = 1,...,n} at
higher level and {Tj,, : m = 1,.... M.i = 1,....n} at intermediate level are sufficient
to generate flexible multivariate distribution and induce dependence among teeth to
account for the wide heterogeneities in the dental data. It would be interesting to
introduce different probability models to latent variables at both higher and inter-
mediate level. For instance, non-Gaussian latent process to model the underlying
spatial dependence among teeth, which can lead to a richer class of the latent pro-
cesses {T;, : m = 1,...,M,i = 1,..,n}. Finally, Other approaches for dealing with
label switching problems associated with Bayesian mixture model may be interesting.
It will be optimal when the model selection is simultaneous through either Reversible
Jump Monte Carlo Markov Chain (MJMCMC)(Green et al. (1995)) or Birth and
Death Monte Carlo Markov Chain (BDMCMC) (Stephens (2002)). It will be more
interesting to consider the symmetry pattern of quadrants for a longitudinal study,

which will lead to the spatial-temporal analysis.
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CHAPTER 4

Discussion and Future Research

4.1 Bayesian generalized latent variable models

We have described generalized latent variable models for analyzing multilevel spatially
correlated binary outcomes, i.e., the multivariate binary caries experience outcomes
from STM project, which is similar to the mixed model with random effects be-
ing two levels of Gaussian spatial latent vectors at both a quadrant level and tooth
nested within quadrant level. It is noticeable that our model is formulated in a hi-
erarchically dynamic structure which is not only feasible but also relatively easier
within Bavesian framework, when compared to Frequentist's approach where multi-
level dynamic model is either very difficult or infeasible to formulate. The hierarchial
structure of our model's specification makes our approach valid for the dental data
with multilevel dependence among the subunits of interest, because it approximates
the way in which the multilevel correlated binary outcomes were generated. Our ap-
proach can be viewed as a graph with three levels of tree structure. At the higher
level, there exists a quadrant level Gaussian spatial latent vector that tights the four
quadrant-wise binary response vectors together to induce the dependence among the

quadrants and generate flexible multivariate distributions for each response vector.
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At this level, our model provides both fixed effects corresponding to quadrant location
and random effects presented by the higher level Gaussian spatial latent vector. Con-
ditional on the Gaussian spatial latent vector at quadrant level. the quadrant-wise
response vectors are mutually independent. The joint probabilistic behavior of the
quadrant level Gaussian spatial latent vector is given by the UGGMs with mean vec-
tor of zeros and unstructured covariance matrix. At the intermediate level, there exist
four Gaussian spatial latent vectors that are nested within corresponding quadrants in
which the toot is located. In other words, the four intermediate level Gaussian spatial
latent vectors are characterized by quadrant index. Each of the four latent vectors
is used to tight the corresponding five binary caries response variables together to
induce the dependence among the teeth within the same quadrant and generate flex-
ible distributions for each response variable. At this level, our model provides both
fixed effects for tooth location and random effects, i.e., the intermediate level Gaus-
sian spatial latent vector nested within the corresponding quadrant. that generates
flexible distributions for binary caries experience outcomes and induce the depen-
dence among the teeth within the same quadrant. For the model identifiability, it is
assumed that the Gaussian spatial latent vectors at intermediate level are mutually
independent given the Gaussian spatial latent vector at quadrant level. Conditional
on the Gaussian spatial latent vectors at both higher and intermediate level, all the
binary response of caries experience in the mouth are mutually independent. This
hierarchical model specification makes complete likelihood approach feasible, which
will improve the efficiency of the estimation of the model parameters. At the lower
level, a liner mixed model is specified to describe the log odds of the caries experience
for each tooth of interest. An important feature of our model is that it allows irreg-
ularly spaced multilevel measurements under diflerent spatial configurations, where
the measurements are characterized by a hierarchical spatial dependence structure.

The common way to implement the generalized latent variable models is through EN



algorithmn in frequentist’s framework, where the marginal likelihood is approximated
by using an adaptive Gauss-Hermite quadrature approach to numerically integrate
out the low dimensional latent variables in the model. For a high dimensional latent
variable models, a Monte Carlo EN approach is applied instead. It is known that
latent variable models are only locally identifiable and hierarchical models have com-
plex structures, which lead to some consequences. i.e., local optimizer and singular
information matrix. In order to obtain valid inference, we implemented our model
within Bayesian framework via WinBUGS, since Bayesian inference is always feasible
as long as the MCMC algorithm converges. Meanwhile, Bayesian makes it much eas-
ier to specify the hierarchial model than under frequentist’s framework. It is also easy
to incorporate missing data in WinBUGS through replacing yp,;ssing by the posterior
sample from p(ypissinglYobserved: @) The implement of the model is within Bayesian
framework via WinBUGS with noninformative conjugate proper priors.

Without an obvious multivariate distribution for the hierarchically spatially cor-
related binary response variables, multilevel correlated latent variables can be used to
model the wide heterogeneity of the outcomes. Specifically, the dependence structure
among the Gaussian spatial latent variables, at the higher level, that are used to
induce dependence among four quadrants, is given by UGGMs with zero mean vec-
tor and unstructured covariance matrix. Similarly, the dependence structure for the
Gaussian spatial latent vectors, at the intermediate level, i.e., the four spatial latent
vectors accounting for the heterogeneity of teeth within the same quadrant, is given
by UGGMs with zero mean vectors and covariance matrix that is either unstructured
or structured under CAR model assumption, i.e., a Markovian type of covariance
structure with taking spatial configuration into account. For the identifiability of the
model, the two levels of spatial latent vectors are mutually independent with one
another. The model is specified as below:

At the higher level, for the i/h in the study, there exists a spatial latent vector Q; =
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Qi1 --s Qs ....,@;y) that is used to induce the dependence structure among quad-
rants and generate flexible multivariate distributions, f;(-),j = 1, ..., J, for quadrant-
wise response vectors y; = (y;I,....yfj,...,ng)’ with ¥ = (Yij1s - Yijko - YijK)-
The conditional joint multivariate distribution for the response vectors is specified as
J
F:1Qi:6.20) = [ f;(i51Qi5: 6, Tq).
j=1
where the associations among the elements of @); are used to induce the associations
among the four quadrants..

At the intermediate level, for each quadrant i, there exists a spatial latent vector
T;; = (Ti.l(j)’--'vTi.k(j)v--~-71i.K(j)), that is used to induce the dependence struc-
ture among teeth nested within the jth quadrant and generate flexible distributions,
{fk(j)(') : k = 1,..., K},for binary response variable y;;1. The conditional joint dis-
tribution for the binary response variables is specified as

[i(wij1Qus. Tig: 0.5%) = T sy wiskl Qi Tiksy: 6 Z5).
k=1

At the lower level, conditional on the higher level spatial latent vector {Q; : i =
1,..,n} and intermediate level spatial latent vectors {T;; : j = 1,...,J,i = 1,...,n}.
The binary response variable y; ;) is mutually independent and from Bernoulli family

with probability of success m;;r = P(Y;;;, = 1). That is,

(¥ijk|Qi5> Tiji: , B,7v) ~ Bernoulli(m;ji) E [0y ik Qiz- Ti k()1 0),
where
Logit(mj|Qujs Ti(jyr - 3:7) = a4 35+ ) + Qij + Tk
and 0 = (a,.3.4") with constraints ZJJ.__I Jj = 0 and ZI{‘:I () =0for j =1, J.
Let Q ={Q;:i=1,.,n}with@Q, ={Q;;:j=1,..,J}and T ={T; : i =
1,..,n} withT; = {T};: j =1,...J} and Tj; = {T} x(j) : k = 1,..., K}. If the model

formulation is viewed as missing data problem where we treat Q and T as missing
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covariates that are used to explain the wide heterogeneity of dental caries experience

outcomes,then the complete likelihood is,

[(4.Q.TI8. 5. {Z4)) = FWIQ. T:0)p(QIZQ)P(TI{EL})
= [T { F(411Qu. T 0p(Qil Q) T (T2 |
= [l H'j]=1 fj(yz'lei,Tij;9)P(7}j|EJT)}P(Qi|EQ)}

= Ty { T {TTES { k) 015k1Q0 Tik i 00 } 2(T5 1500 } (QiIEQ) }
(4.1)

The distributions for Q; and T;; are given by UGGMS correspondingly as below:

Qil¥Q ~ Ny(0,2qg): 7=1....n

and

Ty|%h ~ Ng(0,8h). j=1,..Ji=1,...n,

where ¥ is unstructured and Z]% can be either unstructured or CAR model based.

Other consideration for parameterizations of the fixed effects # and the probabilis-
tic descriptions about the spatial latent vectors {Tij :j=1,...,J,i=1,...,n} may be
chosen differently. However, as it can be expected, the results of the inference would
not be affected substantially(Agresti(1997)). The model selection is based on DIC for
missing data problems(Celeux, et al.(2006)). The optimal model selection needs to
be based on RIMCMC(Green et al.(1995)) or BDMCMC (Stephens (2000)), which
is essential a simultaneous model selection at each iteration of the MCMC posterior

sampling algorithin.

4.2 Bayesian mixture of generalized latent variable
models

Besides the generalized latent variable models, a finite mixture of distributions is
another way to model response variables with wide heterogeneity. Finite mixtures

of distributions are mathematical-based approaches to the statistical modeling of a
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wide variety of random phenomena. They have been known as an extremely flexible
method of modeling. The usefulness of finite mixture distributions in the modeling
of heterogeneity in cluster analvsis context is obvious. Mixture model provides a con-
venient semiparametric framework in which to model unknown distributional shapes,
whatever the objective, whether it is density estimation or the flexible construction
of Bayesian priors. Mixture model is also able to model quite complex distributions
through an appropriate choices of its components and number of mixture components
to represent accurately the local areas of support of the true distribution. It can han-
dle situations where a single parametric family is unable to provide a satisfactory
model for local variations in the observed data. In our approach, we assumed that
each of the four quadrant-wise response vectors was from one of a certain number,
say. 1 < M < 4. of multivariate distributions with corresponding probability. The
M multivariate distributions are characterized by M different situations which can
accurately represent the corresponding local heterogeneity of observed binary vector.
A convenient semiparainetric way to incorporate the variability among these four ob-
served quadrant-wise response vectors is to formulate their distributions uniformly
in the form of a mixture of these M multivariate distributions. Specifically, the M
multivariate distributions correspond to M underlving subgroups or subpopulations
that where the four quadrant-wise response vectors are supposed to be able to iden-
tify if the subgroups actually exist: and each of the M multivariate distribution is
corresponding to one component in the mixture model.

Mixture model can be viewed as missing data problem where the mixture compo-
nent allocation process is latent. The latent process allocates each of the quadrant-
wise response vector. y;; Lo one of the mixture components. say, the mth component,
which means y;; can be characterized by the local situation. i.c., in terms of hetero-
geneity of the observed vector, associated with the mth underlying cluster. Hierarchi-

callv. at higher level, for the ith subject, there exists a mixture component allocation
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latent process, Q; = (Q'y, ..., Ej,...,Q;J)’ with

Qij = (Q,JI "'*Qijms "'*Qijl\[)/ ~ .r‘\[u.[['l".u(l,(ﬂjl,...,ﬁj‘\])/), j=1..,Ji=1...,n,

which means
(Yi1Qijm = 1) ~ fin(y;10).

The complete distribution can be given as below:

J A
FilQim 0) = TT{ TT {mjmdm (i1 Qijm = 1:6)}%5m 5 . (4.2)
j=1 L m=1

At the intermediate level, for the mth component that is a multivariate distribution,
there exists a Gaussian spatial latent vector Ty = (T 1) s TL,\.(m), Ti.]\’(m)), ~
Ny (0.27), which is used to generate flexible distribution for the A” binary response
variables that is from the exponential family (McCullagh and Nelder et al.) and
induce the dependence among the J variables. At lower level, conditional on the

allocation process and Gaussian spatial latent vectors, the conditional distribution

for the binary caries experience outcome y; i is given by

yz_;Ale_)m = 1T, k() 16) ~ B"""’l([()g'ﬂ (Mimi)) E fl. (m) Uz]AIQum =1,T; 4 k(m): 1),

where 0 = o + 3+ T, k() and # = (a’..3). with constraints o] < ag <, -+, -, <
ayy and Zi\:l I =0.
Let Q = (Q'l, ey 2, @) and T = (T7, Tl’ ... T)), then the complete likeli-
hood is specified as
Tlr. 6. {nm n J N ] v T 10 m Ql'jm
f(y. Q. T|m, e{ } i=1 szl m=1 {ijfm(!/z]s im| ’{ T})}
M K Qijm
l—[z*] H_} 1 { m=1 {ﬂjm {Hk-_—l fk(rn)(.‘/ijk‘Ti.k(m)W)} mllvm } }
(4.3)
The model structure has two uncertainties from both mixture model at the higher

level and generalized latent variable models at intermediate level. At the higher

level, the number of mixture components is left unknown. At intermediate level, the
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covariance matrix, {25’1 :m = 1,..., M} for the generalized latent variable models
can be either unstructured or CAR model based. The appropriate model needs to be
determined by formal model selection criterion based DIC for missing data problem
(Celeux, et al.(2006)). The implement of the model is within Bayesian framework via
WinBUGS with noninformative conjugate proper priors.

Other consideration for parameterizations of the fixed effects § and the prob-
abilistic descriptions about the spatial latent vectors {Q; : ¢ = 1,...n} and
{T;;:j=1,....J.i = 1....n} may be chosen differently. However, as it can be ex-
pected, the results of the inference would not be affected substantially(Agresti(1997)).
The optimal model selection needs to be based on RIMCMC(Green et al.(1995)) or
BDMCMC (Stephens (2000)), which is essential a simultaneous model selection at

each iteration of the MCMC posterior sampling algorithm.

4.3 Missing data

In biomedical research, missing data problem is common and there are lots of liter-
atures with different approaches discussed in this area but still the methods are not
mature enough vet to handle general situations. Our model were built from the fea-
tures of the dental data at hand, they have general applications to situations where
multilevel discrete data recorded were spatially. The models were implemented via
WinBUGS that allows missing values in the data set. What WinBUGS does to miss-
ing values is to replace the missing data by the random sample from its posterior
distribution p(ynissinglYobserved: #), which is essentially assumed that the missing is
at random, i.e., the missing mechanism is noninformative. However, the missing data
is very likely informative, since the teeth within the mouth share the same biological
environment. In the presence of the informative missing data, our models need to be

extended accordingly. In the future’s work, we need to extend the model by incorpo-
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rating the informative missing mechanism in a dropout process that is a parametric
model for making inference about the missing values in the data set. The process for
modeling the dropout pattern is problematic because the parameter that relates the
measurement and the dropout process, say, A, is always unidentifiable from the data
at hand. Non-identifiability of the model always yields difficulties in the numerical
optimization because of either flat or multimodal likelihood and singular informa-
tion matrix, which makes the statistical inference infeasible in the frequentist’s frame
work. Under the Bayesian frame work, the statistical inference is always available as
long as the MCMC algorithm converges that are used to sample the posterior samples
of the the quantities from their proper posterior distributions that are related to the
data at hand.

Bayesian approach for dealing with the informative missing data is known as the
selection model (Arminger et al., 1995), which requires the terms representing the
non-response mechanism be included explicitly in the likelihood. Best et al.(1996)
discussed the selection model for informative non-responses in a study of dementia
and cognitive decline in the elders. They viewed the full model as two submodels;
one representing the substantive relationship of interest and one reflecting the missing
data process, with the possibly unobserved response variable representing the com-
mon link between the two submodels. Such a model may be readily expressed as
a directed conditional independence graph, thus leading itself to Bayesian inference
using MCMC approach. However, there is considerable current interest in the topic of
informative drop-out(Diggle and Kenward (1994)) in which some argue that any at-
tempt to learn about the selection mechanism will be heavily dependent on modeling
assumptions, and that it is preferable to conduct sensitivity analysis to alternative
plausible mechanisms. Meanwhile, the MCMC approach can easily provide predictive
distributions for any variable of interest and. unlike approaches based on maximum

likelihood or empirical Bayes. the NICMC predictions fully account for uncertainty in
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both the model and the parameter estimations. Since the data often can not provide
much information for estimating the parameters of the models for non-response mech-
anism, informative prior distributions for the parameters of interest in the selection
models are used to facilitate the posterior sampling algorithin based on MCNIC. So
sensitivity analysis for the priors in the selection model is essential for the validity
of the Bayvesian analysis for model the non-response mechanism that is incorporated
explicitly in the likelihood.

The future work will intend to develop a more general statistical procedure for
assessing the sensitivity for both the non-response mechanism learning process and the
informative priors used in the selection models. The procedure may be based on either
different model selection criteria, for instance, DIC for missing data problem and
posterior predictive checking. or dynamic algorithms based on RJMCM (Green(1995))
and BDMCMC (Stephens (2000)) for simultaneous model selection and parameter

estimations.

4.4 Comparison between frequentist and Bayesian

[t is well known that many standard statistical methods can be justified by both
Bayesian and {requentist arguments. However, even when there is only one un-
known parameter, there is a wide class of problems for which no Bayesian method
can be found which satisfies the basic frequentist criterion (Bartholomew (1965)).
Bartholomew raised two important questions in the comparisons between Bayesian
and frequentist. when discrepancy arose. The first one is the practical question of
whether the discrepancy between the two approaches is ever such as to lead to widely
differing conclusions. The second is concerned with the reason for the two approaches
to inference giving different results in some cases but not in the other. The two ques-

tions is also of great interest to be addressed in our future work. The starting point



for this work will be considering the differences in the statistical thinking of the two
statistical schools. For instance, suppose the observations y = (y1,....¥;.....yn) on a
continuous random variable with density function f(y|f) and consider the Bayesian
and frequentist solution to the problem about making an inference about 6.

The Bayesian first specifies a prior for § then combining this with the likelihood to
obtain a posterior distribution which enable people to make a probability statement
about 6 of the form

P8 < 04(y)ly) = o (4.4)

where «, denotes a degree of belief. The major problem for Bayesian is to select a
prior density m(6) to express his ignorance about 6. Kass et al.(1995) reviewed several
methods for determining a suitable prior distributions for the parameters of interest.
For instance, based on Jerreys's rule, if we are ignorant about 6 then we are ignorant
of about any function of 8. This leads to him to formulate the invariant principle,
i.e., m(f) x \/I(6) where I(6) is the Fisher's information function.

The frequentist who wishes to make a statement of the form (6.10) is precluded
from treating 6 as a random variable as it was treated by Bayesian. He must try to
find a statistics 6(y) such that

P(9 < 0a(®)l0) = af (1.5)
where af indicates the probability is to be interpreted in a frequency sense. The
frequentist’s ignorance about 8 is expressed by the fact that ay is independent of 6.
The statement 6 < 6,(y) is thus true in the long run with probability ay for any
sequence of 8's. In general, there are many functions 6(y) satisfying (6.11) and the

frequentist’s problem is to choose one of them. It may be possible to choose 6(y) such

0(y)
/ p(60]y)d6 = a
-0

Where p(f|y) is the posterior density of 6 for some prior m(6). If the statistics 0(y) is

that
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chosen in the way (6.11) is true, we say the Bayesian inference in (6.10) has frequency
or confidence property. Under these circumstances, the Bayesian and frequentist
approaches are said to agree. Welch et al. (1963) gave the following necessary and
sufficient conditions for agreement.

(1) It must be possible to write f(y|f) in the form f(s — 7) where s and 7 are
monotonic functions of y respectively and with —oc < 7,5 < o0,

(2) The prior density of 7 must be uniform over the real line.

In large sample size, it is known that the influence of the prior 7(6) for parameter
6 on the forin of the posterior density p(f|y) diminishes as n — oo. This means
that, under very general conditions, Bayesian statement of (6.10) has the confidence
property in the limit as n — o0 and the approach to agreement is more rapid with
n if 7(6) x \/7(—()) Gelman et al. (20041) discussed the asymptotic normality and
consistency of the posterior mean and median. Under some regularity conditions,
L.e., the likelihood is a continuous function of 6 and that 6y, the true value of the
parameter, is not on the boundary of the parameter space, as n — 0o, the posterior
distribution of  approaches normality with mean 6y and variance (nf(6g)) "1, where
I(fp) is the Fisher information evaluated at 6. In the limit of large n, the posterior
mode. 6, approaches 6. and the curvature (observed information) approaches nl(6g).
When the truth is included in the family of models being fitted, the posterior mode,
the posterior mean and median. are consistent, asymptotically unbiased and eflicient
under mild regular conditions (Gelman et al.(200-1)).

When sample sizes are small, the prior distribution is a critical part of the model
specification. It can only be a serious discrepancy between Bayesian and frequentist
methods if the density f(y|0) does not satisfy Welch's condition (1), if the sample
size is small, or possible. if it is determined sequentially.  Bartholomew raised two
objectives for the comparison between the two approaches. The first object is about

the extent to which Bayvesian and frequentist statement of the formm (6.10) and (6.11)
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may differ in small samples. The second object is the reason for the differences which
occur and how they may be avoided. Lee and Song (2006) did a simulation study,
which showed Bayesian inference for hierarchial models with small to moderate sample
size has a better performance than frequentist’s.

Bartholomew (1965) pointed three conclusions in terms of the agreement between
Bayesian and frequentist. (a) For shape parameter in gamma distribution, Bayesian
interval estimates gave good agreement cven if sample size is one; for restricted lo-
cation parameter and exponential mean the agreement was not so good, but can be
improved by an appropriate chosen confidence interval, i.e, either "shortest interval”
or "equal tails”. (b) Coverage probability of a two-tailed Bayesian interval estimate
depends on not only prior but also the way that the interval is chosen. (¢) Agreement
may be achieved by using a sequential rather than a fixed sample size experiment
design. The numerical magnitude of differences between frequentist and Bayesian
methods of inference can be practically related to (a) and (b). The reason for the dis-
crepancy is given by (c¢). He also conjectured that agreement can be always obtained
if a correspondence is established between the Bayesian’s appropriate choice of prior

distributions and the frequentist’s choice of sampling rules.
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APPENDIX A

The First Appendix

A.1 WinBUGS code one for BGLVM

(with unstructured covariance matrix at intermediate level) for overall spatial sym-

metry assessment.

model{
### Gaussian Graphical Models at Quadrant level ###
InvSigamaQ(1:I,1:I] ~ dwish(IQ[,], (I+1))

muQ[1]<- 0
muQ[2]<- 0
muQ[3]<- 0
muQ[4]<- 0

### Gaussian Graphical Models at Tooth level ###
InvSigamaT[1:J,1:J] ~ dwish(IT[,], (J+1))
muT[1]<- O
muT[2]<- O
muT [3]<- O

muT [4]<- 0
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muT [5]<- 0
### Generalized Latent Variable Models ###
for(k in 1:N){
Q(k,1:I] ~ dmnorm(muQ[1:I],InvSigamaQ[1:I,1:1])
for( i in 1:1){
T(k,i,1:J] ~ dmnorm(muT[1:J],InvSigamaT([1:J,1:J])
}
for( i in 1:D){
for( j in 1:J){
Lat[j,i,k]<-alpha+(beta[i]-mean(beta[]))+

(gammal[j,i)-mean(gammal[,i]))+Q[k,1]+T(k,1,j]

}
for( i in 1:I){
for( j in 1:1){
logit(pl[j,i,k])<-Lat[j,1i,k]
y [(k-1)*20+(i-1)*5+j] ~ dbin(p[j,i,k],1)
}

}

### Priors ###
alpha ~ dnorm(0,0.001)
for(i in 1:I){
beta[i] ~ dnorm(0,0.001)

}
for( i in 1:I){

for( j in 1:J3){
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gamma[j,i] ~ dnorm(0,0.01)
}
}
### Spatial association assessment ###

## Spatial association assessment between Left and Right ##
Tlam12 <- -InvSigamaQ[1,2]/sqrt(InvSigamaQ[1,1]*InvSigamaQ[2,2])
Tlam34<- -InvSigamaQ[3,4]/sqrt(InvSigamaQ(3,3]*InvSigamaQ[(4,4])

## Spatial association assessment between Upper and Down ##
Tlam23<- -InvSigamaQ[2,3]/sqrt(InvSigamaQ[(2,2]*InvSigamaQ[3,3])
Tlam14<- -InvSigamaQ[1,4]/sqrt(InvSigamaQ(1,1]*InvSigamaQ[4,4])

## Spatial association assessment between Across quadrants ##
Tlam13<- -InvSigamaQ[1,3]/sqrt(InvSigamaQ(3,3]*InvSigamaQ[1,1])
Tlam24<- -InvSigamaQ[2,4]/sqrt(InvSigamaQ(2,2]*InvSigamaQ[4,4])

### Hypothesis Testing Overall Spatial Symmetry ###
LRvsUD<-1/2%(Tlam12+T1lam34)-1/2*(Tl1am23+Tlam4)
LRvsA<-1/2*(Tlam12+T1am34)-1/2*(Tlam13+T1lam24)

AvsUD<-1/2*(Tlam13+T1lam24)-1/2*(T1lam23+Tlam14)

A.2 WinBUGS code two for BGLVM

(with CAR model based covariance matrix at intermediate level) for overall spatial

symmetry assessment.,

modelq{
### Gaussian Graphical Models at Quadrant level ###
InvSigamaQ[1:I,1:1] ~ dwish(IQ(,], (I+1))

muQ[1]<- 0
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muQ[2]<- 0

muQ[3]<- 0

muQ[4]<- 0

### Gaussian Graphical Models at Tooth level ###
### with CAR assumption for precision matrix ###

num[1]<- 1

num[2]<- 2

num[3]<- 2

num[4]<- 2

num[5]<- 1

m[1}<- 1

m[2]<- 1/2

m(3]<- 1/2

m[4])<- 1/2

m[5]<- 1

cumsum[1]<- 0

for( i in 2:6){
cumsum[i}<-sum(num[1: (i-1)])
}
for(k in 1:8){

for(i in 1:5){

7

pick[k,i]<- step(k-cumsum[i]-esp)*step(cumsum[i+1]-k)

}
Clkl<- 1/inprod(num([],pick[k,])
}
esp<- 0.0001
adj1)<- 2
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adj[21<- 1

adj [3]<-

w

adj[4])<-

N

adj [5]<-

D

adj[6]<-

w

adj[7]<-

(6]

-

adj[8]<-
muT[1]<- O
muT [2]<- 0
muT[3]<- 0
muT[4]<- 0
muT [5]<- 0
### Generalized Latent Variable Models ###
for(k in 1:N){
Q(k,1:4] ~ dmnorm(muQ[1:4],InvSigamaQ(1:4,1:4])
T[k,1,1:5] ~ car.proper(muT([],C[],adj[],num[],m[],prec,spatl)
T[k,2,1:5] ~ car.proper(muT(],C[],adj[],num[],m[],prec,spat2)
T(k,3,1:5] ~ car.proper(muT(],C(],adj[],num(],m(],prec,spat3)
T(k,4,1:5] ~ car.proper(muT(],C[],adj[],num[],m(],prec,spatd)
for( i in 1:1){

for( j in 1:J){

Lat[j,i,k]<-alpha+(betal[i]-mean(beta[]))+

(gamma[j,i]-mean(gamma(,i]))+Q[k,i]+T[k,1,j]

}

for( i in 1:I1){

for( j in 1:J3){
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logit(plj,i,k])<-Lat([j,i,k]
y[(k-1)*20+(i-1)*5+j] ~ dbin(p[j,i,k],1)
}

}
### Priors ###
alpha ~ dnorm(0,0.01)
for(i in 1:1){
betal[i] ~ dnorm(0,0.01)
}
for( i in 1:1){
for( j in 1:J){
gamma[j,i] ~ dnorm(0,0.01)
}
}
prec ~ dgamma(0.005,0.001)
spatmax<- 0.35
spatmin<- -0.95

spatl ~ dunif(spatmin,spatmax)

spat2 ~ dunif(spatmin,spatmax)
spat3 ~ dunif(spatmin,spatmax)
spat4 ~ dunif(spatmin,spatmax)
### Spatial association assessment ###
## Spatial association assessment between Left and Right ##
Tlam12 <- -InvSigamaQ[1,2]/sqrt(InvSigamaQ[1,1]*InvSigamaQ[2,2])
Tlam34<- -InvSigamaQ[3,4]/sqrt(InvSigamaQ[(3,3]*InvSigamaQ[4,4])

## Spatial association assessment between Upper and Down ##
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Tlam23<- -InvSigamaQ(2,3]/sqrt(InvSigamaQ[2,2]*InvSigamaQ[3,3])
Tlam14<- -InvSigamaQ[1,4]/sqrt(InvSigamaQ(1,1]*InvSigamaQ[(4,4])
## Spatial association assessment between Across quadrants ##
Tlam13<- -InvSigamaQ[1,3]/sqrt(InvSigamaQ[3,3]*InvSigamaQ[1,1])
Tlam24<- -InvSigamaQ[2,4]/sqrt(InvSigamaQ[2,2]*InvSigamaQ[4,4])
### Hypothesis Testing Overall Spatial Symmetry ###
LRvsUD<-1/2%(Tlam12+T1am34)-1/2*(T1am23+Tlam4)
LRvsA<-1/2%(Tlam12+T1lam34)-1/2*(T1lam13+T1am24)

AvsUD<-1/2*(Tlam13+Tlam24)-1/2%(Tlam23+T1lam14)
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APPENDIX B

The Second Appendix

B.1 WinBUGS code one for BMGLVM

(with 3 components and unstructured covariance matrix at intermediate level) for

overall spatial symmetry assessment.

modelq{
for( n in 1:N){
### Mixture models (for "mth" mixture( with M components)) ###
### at Quadrant level ###
for( i in 1:I){
### Mixture models (for "kth" mixture( with K components)) ###
### at Tooth level ###
for( j in 1:1){
y[((n-1)*20+(i-1)*5+3)] ~ dbern(p(n,AQ[n,i],j])
}# End of positions index #
APQ[n,i,1:M] ~ ddirch(alphaQ[])
AQ[n,i] ~ dcat(APQ[n,i,] )

}# End of quadrants index #
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Q12[n)<- equals(AQ([n,1],AQ[n,2])
Q13[nl<- equals(AQ([n,1],AQ[n,3])
Q14([n)<- equals(AQ[n,1],AQ[n,4])
Q23 [n]<- equals(AQ[n,2],AQ([n,3])
Q24 [n]<- equals(AQ([n,2],AQ([n,4])
Q34 [n)<- equals(AQ([n,3],AQ[n,4])
}# End of Subjects index #
### Mixture Components Specification via ###
### GLVMs with Unstructured Covariance ###
theta[1:J] ~ dmnorm(mul(],invR[,])
alphal ~ dnorm(0,tau)
local ™ dnorm(0,tau)I(0,)
loca2 ~ dnorm(0,tau)I(,0)
alpha[1]<- alphal
alpha[2]<- alphal+local
alpha[3]<- alphal+loca2
for( n in 1:N){
for( m in 1:M){
T(n,m,1:5] ~ dmnorm(muT[1:5],InvSigamaT[1:5,1:5])
for(j in 1:J){
logit(p[n,m,jl)<-alpha[m]+theta[j]-mean(theta(])+T[n,m, j]
}

### Priors ###
InvSigamaT[1:5,1:5] ~ dwish(IT[,],6)

tau ~ dgamma(0.01,0.01)

108



muT[1]<- 0
muT[2]<- 0
muT[3]<- 0
muT[4]<- O
muT[5]<- O
### Similarity Assessment ###
MQ12<- mean(Q12[])
MQ13<- mean(Q13(])
MQ14<- mean(Q14[])
MQ23<- mean(Q23[])
MQ24<- mean(Q24(])
MQ34<- mean(Q34[])

### Hypothesis Testing Overall Spatial Symmetry ###
LRvsUD<- 1/2*(MQ12+MQ34)-1/2*(MQ23+MQ14)
LRvsA<- 1/2x(MQ12+MQ34)-1/2*(MQ13+MQ24)
AvsUD<- 1/2%(MQ13+MQ24)-1/2*(MQ23+MQ14)
}

B.2 WimnBUGS code two for BMGLVM

(with 3 components and CAR model based covariance matrix at intermediate level)

for overall spatial symmetry assessment.

model{
for( n in 1:N){
### Mixture models (for "mth" mixture( with M components)) ###
### at Quadrant level ###

for( i in 1:I){
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### Mixture models (for "kth" mixture( with K components)) ###
### at Tooth level ###
for( j in 1:3){
y[((n-1)*20+(i-1)*5+j)] ~ dbern(p[n,AQ[n,i],j])
}# End of positions index #
APQ([n,i,1:M] ~ ddirch(alphaQ[])
AQ[n,i] ~ dcat(APQ[n,i,] )
}# End of quadrants index #
Q12[n]l<- equals(AQ[n,1],AQ[n,2])
Q13[n)<- equals(AQ[n,1],AQ[n,3])
Q14[n]<- equals(AQ[n,1],AQ(n,4])
Q23[n]<- equals(AQ[n,2],AQ[n,3])
Q24 [n]<- equals(AQ[n,2],AQ[n,4])
Q34[n]<- equals(AQ[n,3],AQ([n,4])
}# End of Subjects index #
### Mixture Components Specification via GLVMs under CAR Model #i#
theta(1:J] ~ dmnorm(mu(],invR[,])
alphal ~ dnorm(0,tau)
local ~ dnorm(0,tau)I(0,)
loca2 ~ dnorm(0,tau)I(,0)
alpha[1]<- alphal
alpha[2]<- alphal+local
alpha[3]<- alphal+loca2
for( n in 1:N){
for( m in 1:M){
T(n,m,1:5] ~ car.proper(muT([],C[],adj[],num(],invm(],prec,spat[m])

for(j in 1:J){
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logit(p[n,m,jl)<- alpha[m]+theta[j]-mean(theta[])+T[n,m,j]
}
}
}
### CAR models specification ###
num[1]<- 1
num[2]<- 2
num[3]<- 2
num[4]<- 2
num[5]<- 1
invm([1]<- 1
invm([2]<- 1/2
invm[3])<- 1/2
invm[4]<- 1/2
invm[5])<- 1
cumsum([1]<- 0
for( i in 2:6){
cumsum[i]<- sum(num[1:(i-1)])
}
for(k in 1:8){
for(i in 1:5){

pick[k,i]<- step(k-cumsum[i]-esp)*step(cumsum[i+1]-k)

}
Clk])<- 1/inprod(num(],pick(k,])
}
esp<-0.0001
adj[1]<- 2
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adj[2]<- 1
adj[3]<- 3
adj(4)<- 2
adj[51<- 4
adj[61<- 3
adj[71<- 5
adj[8]<- 4

muT[1]<- 0

(@]

muT [2]<-

muT[3]<- O

(@]

muT [4]<-

muT [5]<-

o

### Priors ###
prec ~ dgamma(0.005,0.001)
spatmax<- 0.35
spatmin<- -0.95
spatl ~ dunif (spatmin,spatmax)
spat2 ~ dunif(spatmin,spatmax)
spat3 ~ dunif (spatmin,spatmax)
spat[1]<- spatl
spat [2]<- spat2
spat [3]<- spat3
tau ~ dgamma(0.001,0.001)

### Similarity Assessment ###
MQ12<- mean(Q12[])
MQ13<- mean(Q13[])

MQ14<- mean(Q14(])
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MQ23<- mean(Q23[])
MQ24<- mean(Q24[])
MQ34<- mean(Q34[])
### Hypothesis Testing Overall Spatial Symmetry ###
LRvsUD<- 1/2x(MQ12+MQ34)-1/2*(MQ23+MQ14)
LRvsA<- 1/2*(MQ12+MQ34)-1/2*(MQ13+MQ24)
AvsUD<- 1/2*(MQ13+MQ24)-1/2*(MQ23+MQ14)
}

i
1
2
1
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