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ABSTRACT

A HIERARCHICAL BAYESIAN APPROACH

TO MODEL SPATIALLY CORRELATED

BINARY DATA WITH APPLICATIONS TO

DENTAL RESEARCH

Bv
U

YanweiZhang

Statistical analysis of multivariate binary data measured repeatedly in time or

cross—sectionally clustered in space, besides the difficulties of non-continuous nature

of data, raises a number of challenges. For instance, dental data from oral health

research community are always discrete, clustered spatially and repeated in time.

The researchers are interested in the risk factors and spatial symmetry property of

caries prevalence incidence. It is well believed. for example. that the caries outcomes

adjacent. to each other are highly likely to he cm'related. which necessitates the use

of methodologies for correlated discrete data. Generalized estimating equation(GEE)

based approach might help answer marginal mean and pairwise association types of

research questions about. correlated units of interest. When association among units is

of primary research concern. GEE suffers seriously from less efficiency. Methodologies

for analyzing n'niltive-u'iate categorical data clustered in space, with both marginal

mean and association being of research interest. need to contimie. In this thesis, we

will introduce complete likelihood based approaches for analyzing spatially correlated

binary data. Specifically, we are going to discuss a class of methods that attempt to

explicitly take some very unique spatial structure features into consideration for valid

and efficient inferences at tooth level. Furthermore. we proposed different models by

using latent Variables with hierarchical levels to account for the spatial dependence



of the data features from different points of view. The hierarchical structure of the

model and local identifiability of latent variable models make the statistical inference

aptn‘opriate within Bayesian framework through the MCMC based posterior sampling

algorithm. Comparison among the performances of different models was made under

Bayesian model selection criterion (DIC) for missing data problem. Finally, we gave

Bayesian hypothesis testing for the spatial symmetries of caries incidence by providing

semitendinous credible regions for the differmxces of quantities that were used to

measure spatial association strength. The methodology is illustrated by using dental

data from Signal Tandn’iobiel (STM) project.
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CHAPTER 1

Introduction

1.1 Background and objectives

In biomedical studies. it is conrnron in practice for a binary disease outcome to be

measured either repeatedly across time or cross—sectionally across spatial spots. The

motivating example for this research comes from dental research. The caries status

of teeth are evaluated as binary outcomes with 1 indicating the presence of caries

and 0 otherwise. The caries prevalence incidences are suspected to have a certain

spatial symmetry property in terms of the quadrants configuration within the mouth,

which is well believed by dentists in practice. It is well known. for example, that the

dental caries outcomes adjacent to one another are likely to be correlated. Specifically,

there are four quadrants within the rrrouth and all the quadrants are believed to be

correlated to one another. Within each quadrant, the adjacent teeth are also likely

to be correlated and the correlation might be affected by the quadrant. Hence, it

necessitates the use of methodologies for correlated data to analyze dental data

VVl‘ren a patient first visits a. dentist. either for a check-up or a. nrore serious dental

issue, the. dentist will normally conduct a full examination to gain an understand—

ing of the patients overall dental health as well as the patients particular dental



problem(s). if any. Because of the complexity and diversity of dental issues: and the

numerous teeth involved, it is difficult for the dental health researchers to analyze

the dental data. except in a most general and superficial way with respect to quad-

rant,tooth position. age, sex, geographical region, etc. In dental practice. it is of

interest. to find out some patterns in terms of caries of the teeth, which will help the

dentist efficiently examine oral health of the patients and provide people informa-

tive guidance for intervention of caries. Researchers have been working on different

methodologies to analyze the dental data to address caries incidence pattern related

questions. The traditional method for analyzing dental data is based on the num-

ber of Decayed/ Missing/Filled Surfaces (DMFS) or Decayed/Missing/ Filled Teeth

(DMFT). introduced by lx'lein cl (1!. (1938). DMI’T and DRIFS can roughly express

the caries prevalence numerically and are obtained by calculating the number of De-

cayed (D) Missing (M) and Filled (F) teeth (T) or surfaces (S) within the mouth.

The DMFT evaluation method is a well-known technique and has been used for many

years to analyze the effects of variables, such as fluoride, on the dental health of given

populations. This approach operates the analysis at the mouth level, which is not

informative. in terms of caries pattern. to dentists and patients for oral health exam—

ination and caries interventiorrs. Dentists and patients are. really interested in spatial

symmetry patterns of caries. For example, if one caries was found on one specific

tooth within a specific quadrant. which tooth will be the next that is highly likely to

have caries. If the dentists has some information about the spatial symmetry of the

caries. they may efficiently locate or predict which is the next tooth with high risk of

developing caries. If so. dentists and patients may be able to pay more attentions to

the teeth with high risk. Due to the spatial configuration of the quadrants and teeth

within each quadrant. the nature of the data requires the methodology for correlated

binary data.

Lesaffre ct (if. (2006) proposed a. several methods to analyze the dental data from



the Signal Tandmobiel (STM) project. Their approach was based on the General-

ized Estimating Equation (GEE)(Zeger and Liang, 1986) to deal with correlated data.

Lesaffre‘s approach used logistic regression model framework to model marginal caries

incidence using exchangeable working correlation matrix to account the dependence

of the data. Their GEE based approach is not able to capture the special correlation

structure among quadrants and among teeth within the same quadrant. Roy (2006)

proposed a model-based approach for imputing these missing values. His method ex-

ploited the spatial correlation among teeth without considering the different strength

of spatial dependence among quadrants. Vanobbergen et al.(2007) proposed ALR(

Alternating Logistic regression)(Carey cl, (1!. (1993)) approach to investigate spa-

tial correlation respect to caries patterns in primary dentition in 7-year-old children.

At the population level, symmetry in the prevalence of caries experience across the

midlirre was tested at the tooth and tooth surface levels under ALR model. ALR.

simultaneously modeled marginal expectation of each binary variable as well as the

association between paries of outcomes using GEE. Liang et al. (1992) showed that

GEE estimates only can reasonably efficient when covariance structure of the response

variables is correctly specified. IV'Ieanwhile, ALR models have issues of convergence

when the cluster size is large.

GEE based logistic regression models and ALR models are both marginal model,

which means they did not take care of the heterogeneity and dependence among quad-

rants and teeth nested within corresponding quadrants. Tire estimate of parameters

of interest for fixed effect is consistent, but it might. be inefficient and seriously biased.

The GEE based approach. as a distribution free methodology. does not lend itself to

classical tools for model checking. GEE is based on the first. order moment and ALR

is trying to model the higher order moment of the data while still only focusng on

pairwise association without trying to model the joint relationship among the ob-

servations. More importantly. it is infeasible to address to the spatial syn'rmetry of



association strength among quadrants and the teeth within corresponding quadrants

since all these higher order moments characteristics are unobserved. Hence, searching

for alternative solutions continues.

The valid and efficient joint model for the spatially correlated binary dental data is

to incorporate latent variables to induce the dependence structure among quadrants

and the nested dependence structure among teeth within corresponding quadrants.

Meanwhile the latent variables also can generate a flexible multivariate distributions

for the binary dental data. Without obvious multivariate distributions for the mul-

tivariate spatially correlated binary data, the joint. model for accounting the nature

of the data is not straightforward. Another way to model the dental data is us-

ing mixture models. Specifically, we can view the distribution of the caries status

of the tooth of interest as being a mixture of bernoulli distributions with different

probabilities of success. The probability of the incidence of caries is modeled by a

logistic regression model that takes the design structure, quadrant and tooth position

within the corresponding quadrant, into account. Generalized latent variables and

mixture models allow factorization of the joint distributions of the multivariate cor-

related binary data into the product of a conditional distributions, given the latent

variables and allocation random variables that induce the unobserved heterogeneities

and dependence structures among the observations. The objective of this thesis is

to develop a new methodology for complex and likelihood based analysis of multi-

variate spatially correlated binary caries experience from the dental data, which can

help us examine spatial symmetry of the quadrants, association strength among teeth

within each specific quadrants. In this thesis, we proposed Bayesian generalized latent.

variable model (BGLVM) and Bayesian mixture of generalized latent. variable model

(B.\:’IGLVM) to give flexible multivariate distributions of the spatially correlated bi—

nary dental data with dependence structure induced by the latent variables. BGLVM

and BMGLVM are specified from Frequentist’s point of view but implemented under



Bayesian framework. The BGLVM uses logistics regression model giving a flexible

multivariate distribution for the dental data with two level of latent variables induc-

ing dependence structure for corresponding level of spatial configuration. For the

BGLVM, the dependence structures among quadrants and teeth nested within quad—

rants are induced by the latent variable models whose covariance structure, modeled

by undirected graphical Gaussian model or conditional autoregressive model. For

the BMGLVM, the dependence among quadrants is induced by the weights of the

mixture components of the mixture model and the dependence among teeth within

the same quadrant is induced by generalized latent variable model in the same way

as in BGLVM.

1.2 Principles for the analysis

The principle of our approach for modeling the multivariate spatially correlated dental

data is based on the concept of latent variables that are incorporated into the like-

lihood based model for generating flexible multivariate distributions for the observa-

tions and inducing multilevel dependence structures due to unobserved heterogeneity

from the complex structure of the multivariate correlated binary data. Specifically,

two level of random vectors are introduced into to the model via latent variables, which

are used to induce spatial dependence structures among subunits at their correspond?

ing level and generate flexible distributions for the subunits. The joint distribution for

each of the two levels of latent variables is given by Undirected Graphical Gaussian

Model (UGGM)(Dempster,1972, Giudici and Green 1999) with respect to different

spatial configurations of the subunits at corresponding level. Each level of latent vari-

ables is used to induce spatial dependence among subunits at the corresponding level.

The first level of spatial dependence structure is the spatial association among four

quadrants. The four quadrants are adjacent in spatial frame and also coexist in the

C
3
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same oral biological environment, which make them correlated in some unobserved

structure. the second level of spatial dependence structure is the spatial association

among the teeth within the same quadrant. It is reasonable to believe that teeth

adjacent to one another are likely to be correlated. Meanwhile, we know the oral

biological environment is very complicate in the way that the associations exist not

only between teeth adjacent to each other, but also with other teeth in the same

quadrant. The UGGMs for the latent variables will be based on different precision

matrixes: one is unstructured type and the other is Markovian type based on CAR.

model (Cressie (1,991)).

In this thesis, we are trying to combine the merits of frequetist’s and Bayesian's

in model formulations and implement. Specifically, the design structure based mod-

els are formulated within the framework of frequentist for considering the marginal

identifiability of the model. The latent. variables are incorporated hierarchically in

the graphical structure of Bayesian model and models are implemented in Baeysian

principle. Since our models are based on latent variable approach, local identifia-

bility and model complexity will raise lots of technical problems within frequentist’s

fran‘iework. For example. computational feasibility in optimization. singularity of the

information matrix and accuracy and computatiorial feasibility of high dimensional

integration approximation by using either adaptive Gaussain quadrature or MCMC

based approaches. Bayesian provides a way to avoid all the above technical concerns

by using Gibbs sampling to obtain the posterior distributions of the quantities of

interest. we use noninformative priors for the parameters of interest, since posterior

inference will not rely on the subjective prior information and it will also give the

comparable result with frequentist’s as sample size increase. Meanwhile, we use in-

dependent proper conjugate priors to the parameters of interest, which will ensure

the validity of the posterior samples obtained by Gibbs sampling and improve the

convergence, of the MCth based posterior sampling algorithm. More importantly,



Bayesian approach can be helpful in complex modeling situations where a frequentist

analysis is difficult or does not exist. Lee and Song demonstrated better performance

of a Baysian approach in small samples compared with ML estimation. Frequentist’s

results rely on the asymptotic arguments, but Bayesian inference is feasible as long

as the posterior sampling algorithm converge which can be increased easily in large

number of MCMC iterations. All the inferences will be based on credible intervals

within Bayesian framework and implemented in WinBUGS. The appropriate model

will be chosen by a formal Bayesian model selection criteria based on the BIG for

missing data problems (Geleux et. at. 2006).

1.3 Outline of the thesis

In chapter ‘2, we will systematically describe the principles of generalized latent vari—

able approaches for joint modeling correlated discrete data. We will also describe

the generalized latent. variable model context within the Bayesian framework for an-

alyzing the. dental from STM. We. use rmiltivariate spatial latent variables at both

quadrant level and tooth nested within quadrant level to model a very flexible multi—

variate distribution for the binary vectors and induce spatial dependence among tooth

through the dependence structure of the spatial latent vectors in the generalized lin—

ear model settings. The joint relationship among spatial latent will be modeled under

the context of undirected graphical model and conditional autoregressive model cor-

respondingly. Model fitting and statistical inferences about the parameters of interest

are going to be under Bayesian framework.

In chapter 3, we will describe the finite mixture model within the Bayesian frame-

work for analyzing the dental from STM. We use Dirichlet process to model the

mixing proportions and multivariate spatial latent Variables to model a very flexible

multivariate distribution for the mixture component and induce. spatial depem‘lcnce



among teeth through the dependence structure of the spatial latent vectors in the

latent variable model settings. The joint relationship among spatial latent will be

modeled under the context of undirected graphical model and conditional autore-

gressive model correspondingly. l\=lodel fitting and statistical inferences about the

parameters of interest are going to be under Bayesian framework.

In Chapter 4. we will summarize our work and give some routes for the future

work.



CHAPTER 2

Bayesian Generalized Latent

Variable Models

2. 1 Introduction

Dental caries is a common oral disease that results in dcn'iineralization of the tooth.

In oral health research, the number of Dccayed/Missing/Filled Surfaces (DMFS) or

Dec-ayed/Missing/Filled Teeth (DMFT), introduced by Klein et al. (1938), are often

analyzed. The two scores are the sums of binary indicators of caries on the teeth and

tooth surfaces for the primary dentition. This approach operates the analysis at the

mouth level. Leroux et at. (200(5) mentioned dental data presents an unique set of

challenges for statistical analysis, including large cluster sizes, multilevel data struc-

tures (e.g.. teeth within patients, sites or surfaces within teeth). complex correlation

structures. Lesaffre et (if. (2006) proposed several methods to analyze the dental data

from the Signal Tandmobiel (STM) project. They used GEE based logistic model and

log-linear model to model marginal mean with exchangeable working correlation ma-

trix to account for the dependence of the data. Vanobbergen et al.(2007) proposed

ALR( Alternating Logistic regression ) approach to investigate spatial correlation



with respect to caries activities patterns in primary dentition in 7-year-old children.

ALR simultaneously models marginal expectation of each binary variable as well as

the association between paries of outcomes. Zhu et a1. (2005) proposed a generalized

latent variable model framework to analyze multivariate spatially correlated data,

which gave an appropriate approach to complex spatially correlated data with large

cluster sizes and multilevel data structures. Their approach is sensitive to Euclidian

space, and can not take care of multi-level dependence structure of the dental data.

More importantly, their method is EM based and implemented via MCMC, which

is computationally intensive for high dimensional correlated latent variables poste—

rior sampling and without fisher information matrix as byproduct. The purpose of

this article is to introduce a Bayesian Generalized Latent Variable Model (BGLVM)

framework for general spatial topology structures to explain multi-level correlations

introduced by ”between-cluster” and ”within—cluster” random effects. Specifically,

the ”between—cluster” random effects are used to induce dependence among quad—

rants and ”within-cluster” random effects are used to induce dependence among teeth

within the same quadrant. The BGLVM, implemented using Gibbs sampling with

non-informative priors, allows us to model the "between-cluster” and ”within-cluster”

correlation structures explicitly. It is possible for us to examine the spatial symmetry

of quadrants in terms of caries incidence, and capture the special spatial association

structure between quadrants for the same subject of interest and among teeth within

quadrants, which can help us efficiently characterize the caries incidence at tooth

level.

10

 



2.2 The Spatial Dependence Structures

2.2.1 Notation

To model the observations. let y”). denote the let/1. response variable within jth cluster

of ith subject of interest, where k : l,...,l\'.j == l....,J.i = 1,...,n. Let yij :

(gm-1, ..., ylflw“ yU-K)’ denote the response vector within jth cluster of Hit subject.

Let y, : («Uflv 31,-], yffl' denote the collection of response variables of it}; subject.

let y = (y’1,...,y;,...,y;,)' denote the collection of response variables of all subjects in

this study.

For modeling the latent variables, we. use undirected graphical Gaussian model.

let Q, = (Q11, ...,QU, ...,Q,J)’ denote the latent variables at cluster level for i sub-

ject, where i : l, ...,‘I'L Let TU : (Tijl‘ ""T’iflf‘ ---vT2’jl\')l denote the intermediate

level latent variables that are nested within the jth cluster associated with the ith.

subject. Let T, : (T51, TIT Til), denote the collection of all latent variables at

intermediate level associated with the ith. subject in the study. Let L, = ( :,Tz’)’

denote the collection of latent variables at both levels associated with the ith subject.

2.2.2 Principles of our modeling approach

The dental data shows a two—level spatial association structures, i.e., the first level

spatial association structures are among quadrant(V)-(VIII). For the convenience of

indexing the data, we will use quadrant(I) instead of quadrant (V) and corresponding

index for the other quadrant. The second level spatial association structure is, nested

within corresponding quadrant. the spatial correlation among teeth.

In general. the valid approaches for analyzing correlated data without explicit

multivariate distribution consist are based on either GEE or random effect models.

The former is suitable for n’iarginal mean or pairwise associations between response

outcomes orientated statistical problems and the latter is for subject. specific statis—

ll



tical issues. The dental data is spatially correlated and has information about teeth

spatial configurations that need to be incarnated in the model to provide explicit

structure for inducing dependence among quadrants and teeth at their corresponding

levels. The main contribution of this paper is to develop a methodology to model this

unique spatial dependence of the deciduous dentition. There is no explicit multivari-

ate distribution available for the spatially correlated binary dental caries experience

outcomes. Generalized latent vz-u‘iable models (Skrondal 84 Rabe-Hesketh(2004)) are

commonly used to generate flexible multivariate distributions and induce unobserved

heterogeneity for correlated data with implicit multivariate distribution.

To take the unique spatial structure of dental data into account, we use two levels

of latent variables to take care. of the spatial dependence of the teeth within the mouth

for each subject. For the it}: subject, at the higher level, we introduce the quadrant

level latent vector Q,- that is used to tight the four quadrants by inducing dependence

structure among quadrants. The latent vector at higher level is also used to generate

flexible multivariate distributions for the. quadrant specific response vectors. The joint

distribution of this spatial latent vector is given by Undirected graphical Gaussian

model with spatial configurations of the quadrants taken into account. The quadrant-

wise observation vectors {f/ij : j = 1, J} will be conditionally independent given Q,

for i = 1, It. At the internmliate level level, quadrant—specific spatial latent vector

Ti]- is introduced, which is used to tight the five teeth within the same quadrant by

inducing dependence structure among teeth within the same quadrant. Similarly,

the intermediate level spatial latent vector is also used to generate flexible univariate

distributions for the tooth specific response ('mtcomes. The joint distribution of this

spatial latent vector is given by Undirected graphical Gaussian model with spatial

configurations of the teeth and the quadrant taken into account. The observatimis

{yijk : k, : 1. It} will be conditionally independent given TU for j = 1. J

and i : l, ..., n. l\leaim-'hile, the intermediate level spatial latent vectors {Tl-j : j =



1, ..., J} are conditional independent given the higher level spatial latent vector Q,-

for 2' = 1, ...,.n In order to assess the spatial symmetry of the caries experience of

deciduous dentition, we will examine the association among latent variables at higher

level. Due to the complexity of oral biological system, we will give flexible covariance

structure for the undirected graphical Gaussian models and formal model selection

procedure will be used to choose appropriate one for the data.

2.3 Models

2.3.1 Generalized Latent variable model

Sammel(1997) proposed an joint model for different outcomes in Generalized linear

model framework with normal latent variables introduced to different models. Mous-

taki(2000) extended this framework to a class of generalized latent trait models. Both

of the approaches are based on EM algorithm for model fitting and the computational

hurdles arise seriously as the number of latent variables increases. One of the primary

difficulties is in integrating out the latent variables, although standard approximation

can be used, the accuracy will decrease with the dimension of the latent variables.

Dunson(2000) proposed a model allows observed and latent variables to have distribu-

tion in exponential family. Wang’s (2003) multivariate spatial latent variable model

was extended by Zhu et al. (2005) into generalized linear latent variable models for

repeated measurements of spatially correlated multivariate data. A MCEIV’IGUVIonte

Carlo EM Gradient) algorithm was used for model implement, which was based on

numerical approximations to marginalize the score functions and Hessian matrix over

latent variables. It is well known that MCEMG is seriously computationally intensive

and less accurate as the dimension of latent variables increases.

In this paper, we propose a Bayesian generalized linear latent variable models

with two levels of spatial latent vectors. The joint distributions of the latent vec-

tors are given by Undirected Graphical Gaussian model(UGGM) (Dempster,1972,

13



Giudici and Green 1999). In order to test the spatial symmetry property of tooth

caries experience within the subject, we proposed statistical hypothesis testing for

all possible situations under Bayesian framework. Under the latent variable models,

it is assumed that, given the two levels of the spatial latent vectors, the teeth are

mutually conditionally independent then we can specify the complete likelihood. We

will use MCMC approach to perform posterior inference for the quantities of interest

using non—informative priors, which will give the data more flexibility to decide what

is going on and also can give comparable inference results to Frequentist’s.

Response Models

we model the let/L response variable within the jth quadrant of the ith subject, llzjke

which is a binary indicator of caries experience of toothjkm. Conditional on the

corresponding two levels of latent variables for the kth. tooth position within the j th

quadrant of the ith subject, the response model is given by an exponential family

distribution with the probability density function in a general form

mjwz‘jk — bifmjk)

all?)

 
pty-rjle-i. a, 7. .6. so) = Pf'l/ijkl’lijk» so) = exp{ + Cifyz'jka 99)}, (2.1)

where U-ijk = a + 1% + 7W) + Qij + Tik(j) (McCullagh and Nelder (at al. 1989).

We assume that the link function g() is a canonical link that relates the mean of

yijk to a linear predictor as follows

9(Elllz'jkl'rhjkl) = ”at = a + 31' + MU) + Qt] + Jim)»

where (1,13 = (131, ...,,31', ..., t'iJ)',*y = (71(1):---’71s'(1)v7’1(2)~.--°27K(J))’ are the regres-

sion coefficients for the fixed effects with constraints Zj i3} = 0 and Zk 7M1) = 0;j =

1, J for identifiability of the marginal mean. Qij and TMj) are the random effects

that are used to generate flexible multivariate distributions and induce dependence

unobserved heterogeneity of the spatially correlated binary dental caries outcomes. It
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is assumed that the quadrant level spatial latent vector {Q,} are identically indepen-

dent Gaussian with zero mean and covariance matrix 2Q. Furthermore, we assume

that, given the quadrant level spatial latent vectors {(2, : i = 1, n}, the tooth level

spatial latent vectors {Tij :j = I, J,i = 1, ..., n} are mutually independently mul-

tivariate Gaussian with mean zeros. covariance matrix {ZJT : j = 1, J} correspond-

ingly. The generalized linear model relates the response variables to quadraiit-specific

and tooth-sj‘wcific covariates and the latent. \l'ariables.

Under the latent variable model approach. we can assume that. the response vari-

ables are conditionally mutually independent. given the vectors of latent variables

L : {Ll- = (Q;. 771. ....T’ Tl‘l)’ : 2' = 1, ...,n}. The joint probability density of y1.)..." I

conditional on the set of latent variables L and {(1, 3’, “y". p} is as follows

. - J 1' _
ell/lbw J'U‘r’v) = Hfzi fljzi flit-‘21!)(yijkl’lijkw?) . .

jk“bi(’lgkl (2-3).1 K 7r: kg"
: CXPlZf:12j:th-:1i I] 1010?) + szlli'jk» ‘Plll
 

Structure .t'l/[odcls for Latent. l”'(r7"iables

In the response model. given the two levels of spatial latent variables, the conditional

independence assumption allows the specification of complete likelihood for the re-

sponse model. In our modeling approach, the two levels of spatial latent. vectors are

used to induce the dependence structure of the teeth of interest. In order to incorpo-

rate appropriate spatial latent vectors into the model. we need to choose the ones that

can really represent the design structure and characterize the random mechanism of

data generating process. The objective of these latent processes is to generate flexible

distributions for observations and induce the dependency among observations. UG-

G;\ls need to work on specific nodes spatial configurations and we list the possible

graphs for both quadrant. and tooth nested within quadrant levels as below.

As shown above graphs, the four quadrants can be viewed as four nodes in a graph.

If two nodes are not directly connected, they are said to be conditionally indepen-
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Figure 2.1. The response vectors y”. 11,2, 11,3 and y” are tighten by spatial latent.

vector Q, 2 (Q11.Qi2,Q;3.QM)’ whose joint distribution is given by UGGM with

unstructured precision matrix.
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Figure 2.2. The response variables #01 'l/I'jg. yj'j3. 11,-1.1 and yl-J-rj are. tighten by spatial

1

given by UGGM with unstructured precision matrix.

latent vector Ti} : (T-‘1(J-_).T,.2(J-).Y‘L3(J-),T,_4U),T,‘5(J))’ whose joint. distribution is
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dent given the other nodes in the graph. The graphical model, for the ith subject,

is used to describe the spatial configuration of the nodes and characterize the associ-

ation strength between nodes of interest by partial correlation of the corresponding

between random variables Q, = (Qi1,Q,-2.Q,3.Q,¢l)' that are assigned to the nodes.

As matter of fact. in statistics. partial correlation measures the degree of association

between two random variables, with the effect of a set of controlling random vari-

ables removed. \\'e can assign an multivariate Gaussian distributed random vector

to Q}. i.,e., Q,- ~ ."\'(0, 2Q), which will lead to undirected graphical Gaussian model.

After introducing latent variable vector Q, modeled by UGGM, the quadrants, i.e.,

the quadrant-wise response vectors {It/,3- : j = 1, J}, are conditionally mutually

independent. Considering the nested spatial structure between quadrants and teeth

within quadrants, it is necessary to notice that the nested dependence structure is

essential to make the model valid for the problem of interest. The second level of spa-

tial latent vectors, nested within the corresponding quadrant, need to be incorporated

into the model. Similarly, within one specific que’uh‘ant. say the jth quadrant, a quad-

Trant specific UGGM with random nodes Ti] : (Tilt (~20), 71,30). T,,.1(J-),Ti5(j))' are
.J)‘

introduced. The spatial associations among teeth within jlh quadrant are induced by

TU" which is mutually independent conditional on Qt; Furthermme. we assume the

,‘j ~ N(0. 2%):j : l. J. After introducing latent. variable vector TU, modeled by

UGGM, the teeth within jth quadrant are conditionally mutually independent.

“'0 know Gaussian random variables are determined by the first. two moments.

For the identifiability. we already assume the mean structures of the two levels of

spatial latent variables are vectors of zeros. then the problem will become issues about

the covariance structures. The general covariance matrix will be unstructured with

symmetric and positive definite constraints. The unstructured covariance matrix can

be simplified if we assume Markovian properties for the nodes, somehow as shown in

the third graph. The l\‘larkovian type covariance matrix can be incorporated within
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spatial statistics by CAR model (Cressie (1991)). The choice of the two types of

covariance structure for the spatial latent vectors at tooth nested within quadrant level

is made through model selection in Bayesian framework via Deviance Information

Criterion(DIC) for missing data problem proposed by Ccleux et al.(2001), which is

an extension of the DIC introduced in Spiegelhalter et al.(2002) for Bayesian model

selections.

Uml'l'rected Graphical Gaussian. Model

In this secticm, we review the graphical Gaussian model (Dempster,1972) required

for this paper. Let C = (V. E) be an undirected graph with vertex set V =

{l,...,k,...,l\'} and edge set E = {ekk’ : k 74 A" = 1,...,K}, where ekk’ = 1

or 0 according to whether vertices k and k’, 1 S k. 75 k’ S K are directly con-

nected in G or not. In the undirected graphical Gaussian model, the edges set

describes the associate structures of the vertex set. Random vector is assigned

to edges set to represent the a-issociation strength between corresponding vertexes.

The undirected graphical Gaussian model consists of all k dimensional normal dis-

tribution, say X : {X1....,XA..... ,XK}. with X ~ .'\'(O,Z) and precision matrix

Q : 23—1 : {wk/{CI : k yé k’ : 1, If}, where Z is unknown but satisfies the following

restrictions in terms of the pairwise conditional independencies determined by the

Markov properties (Drton and Perlman (2004)):

 

7 . . .’ _ '
«\‘r\{kkl} 4:) pkk/ : 0 VA :/£ 11 »—1,....I\s

where {pkk’} is the so called the partial correlation between the kth and HM vertex

in the graph, defined as p“, = —toH,//,/u2kk *Ldklkl. This partial correlation is a

measurement of association between two quadrants of interest with the effect of the

rest. quadrant being removed. We will use partial correlation to examine the spatial

symmetry property of caries prevalence.
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Conditional A utoregressive Models

For the vector of univariate variables u = (1/1,z/2,....z/K)’, the zero-centered

CAR Specification, where s is the number of spatial nodes of interest, following

Cressie( 1991), sets

(Weill—Avail?) ~ 1V“) 2 bkk/l/LJIE); k = l,..., K, (2.3)

Vk’EV—k

where u_k = I/\ {Vk}. Following Brooks (1961) lemma the resulting joint density for

u takes the form

f(1/|02) o< exp{—%VTD;21(I — pB)1/} (2.4)

where B is K x K matrix with B = (bkk’) and bkk = 0 and D02 us an K x K diagonal

matrix with non-zero entries {0,3 : k = 1, ..., K}. The precision matrix D—21(I — pB)
' (7

need to be symmetric, which. yields the conditions

rim/oi, = alkafi; Vk, k’ = 1,19 (2.5)

If the precision matrix is positive definite, then (4) is a proper distribution. Un-

der above parameterizations, the precision matrix D‘21(I — pB) is nonsingular if
(7

p 6 (ATI Ag”) where Amina Am” are the smallest and largest eigenvalues of B re-
min’

spectively. It usually assumes that the D02 = 02M, where M is diagonal matrix with

diagonal elements Mick proportional to the conditional variance of 0%. Meanwhile, 02

controls the overall variability and p represent the overall spatial association. Weights

matrix B with Bkk’ need to reflect the spatial association between nodes k and k’.

GoeBUGS(2004) sets Bkk’ = bkk’ = 1/nk, for k yé k’ and Mkk = 1/nk where nk

is the number of nodes which is adjacent to node k. Under the above settings, the

spatial latent vector 11 will follow a proper distribution, i.e.

u ~ N(0,02(1 — pB)'1M) (2.6)
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2.4 Bayesian Estimations and Statistical Inference

2.4.1 Identifiability of the models

Frequently. models with latent variables are not globally identifiable. One can inte-

grate out the latent. spatial variable vectors to obtain a marginal likelihood to assess

whether parameters are redundant. The likelihood of the latent variable model is

parameterized by SQ and {EJT : j = 1, ..., J}. The identifiability problem become

to examine if the parameters involved in the covariance are redundant, which might

be problematic within frequentists framework. Dawid (1979) and Gelfand & Sahu

(1999) discussed model identifiability issues within Bayesian framework. In partic-

ular, Suppose that the Bayesian model is denoted by the likelihood L(6’; y) and the

prior [(0) and we partition the parameters of interest as f) = ((91.63). If

ft92l91‘y) = f(92|91) (2-7)

then we say that ()2 is not identifiable, where f(92|()1,y) oc L(61.92:y)f(62|91)f(91).

That is, if observing data y does not increase our prior knowledge about 92 given 91,

then 62 is not identifiable by the data. Dawid's formal definition of Bayesian model

nonidentifiability states that ()2 is not identifiable if and only if “61,92; y) is free of

62. In order to make our model identifiable, we need to not. only take care of marginal

identifiability of the model through integrating out. the latent variables, but also put

some constraints to the covariance matrix of the Gaussian spatial latent vectors at

both levels.

2.4.2 Prior distributions

In this section, prior distributions are chosen for the regression parameters 0 and

association parameters 6. Gibbs sampling algorithm is applied to simulate the samples

from the posterior distributions of the quantities of interest. Zhao cl ol.(2000), Zeger

et al.(1991) and Dunson et al.(2000) all suggested noninformative conjugate prior
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distributions for the parameters of interest, which can wash out the effect of priors

as sample size increases. Bedrick et al.(1996) noted that normal prior distributions

were suggested for the logistic regression coefficient 6.

9 N lV(/l, F), (2.8)

where n is the a vector of location parameters and F is the covariance matrix. It

is common to take it as vector of zeros and F as diagonal matrix with very larger

entries.

we are interested in the joint posterior distribution of (6, fily). Under mild con-

dition in (Geman and Geman cl. al.(198tl)), Gibbs sampler can obtain the joint pos-

terior distribution by sampling from the conditional posterior distributions (QR/,5)

and (fly, 0) correspondingly. To simplify the sampling from the conditional posterior

distributions, we choose hierarchical independent priors for 9 and 5 in this hierarchi-

cal Bayesian model, i.e. (Eh/,6) = (fily), which is true as long as the priors satisfy

p(9,€) = p(6)'p(§). We proposed two covariance structures for the Guassian spatial

latent. variable models. In the generalized linear model setting with Gaussian random

effects, the proper noninformative conjugate priors will be Inverse Gamma(IG) for

signal variance component and Inverse Wishart distribution for a variance-covariance

matrix.

Let QQ = EEC—21 and {QT}. = )3}; : j = 1, ..., J} denote the precision matrixes of

the two levels of spatial latent vectors correspondingly. At higher level, the precision

matrix for the spatial latent vector {(2, : 7' :2 1.....n} is unstructured. W'ishart

priors (Dunson et al.(2000), O'Malley and Alan M. Zaslavsky et. al.(2006)) is applied

as conjugate non-informative priors for the precision matrix 9Q under unstructured

situation.

QQ ~ W’ishart(i)Q, AQ), (2.9)

with the degrees of UQ and the precision matrix AQ. In practice, the common
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noninformative \V'ishart prior is chosen by specifying AQ = IvapQ and IQ =

rank(ZQ)+ 1. It will yield a prior under which the marginal distribution of each corre-

lation parameter is U(1, 1)(O‘.\lalley cf. ol.(2000)). At intermediate level, we have two

precision matrix structure for the spatial latent vectors {Tij : j = 1, J,i = 1, n}

and we will give noninformative priors correspondingly.

(1) Unstructured precision n‘iatrix in the UGGM: Conditional on the higher level

spatial latent vector (2,, the intermediate level spatial latent vectors {Tl-J- : j =

1, ..., J} are conditionally independent. So, we give independent priors to the pre—

cision matrix {QT}. : j = 1,...,J}. Similarly, independent Wishart processes are

assigned as priors for these precision matrixes.

97‘}. ~ ll'lsll(ll‘l(l’Tj..\7:}.)2 j: l,....] (2.10)

with the degrees of (‘T : run/{($12) + l and the precision matrix AT- = 11.7. “T .

J J J j j

(2) CAR. model based precision matrix in the UGGM: Conditional on the higher

level spatial latent vector (2,, the intermediate level spatial latent vectors {Tij : j =

1, J} are conditionally indej‘)endent.. So, we give independent priors precision ma-

.- ..-__ ...,... .--, 2 _.'_
trix {SIT}, j — 1.....J} that arc parameteiizcd by {of/2] .j — l,...,J}. Similarly,

independent Inverse Gamma (Dunson el. (1.1.(2()00)) distributions. proper conjugate

)riors. are assi net as rior.‘ o «1% A! re varia ion )' vn ;e o. : '=, f‘lt. st ll((€1ll t araietrs 12 1 J

and independent uniform distribution with supports constraints in section 3.1.4

to the overall spatial association parameters {pj : j = 1,...,J}, improper priors

CeoBUGS(2001) for the over quadrant specific spatial association parameters, re-

spectively.

of ~ l(I(5.5): j: 1....../. (2.11)

and

r —1 —1 . ,
p} N L" (Ann-mAn'zrhrli J : 1~ J- (212)
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where 5 is very small positive number and Ami/1’ A;,},_,. are as defined in section 3.1.4.

2.4.3 Posterior computations

MCMC techniques are used for the posterior computations in the models proposed

in section 3. The posterior distributions of parameters of interest can be obtained in

standard way (Dunson et al.(2000), Zeger et al.(1991)).

Given the precision matrixes 9Q and {QTi : i = 1,...,1 }, the joint posterior

distribution for the regression parameters and latent variables at both higher and

intermediate level is

Pt9~Q~TlU) 0< [IO/WOT)”(9 Q T)

HUM/U1b,7(I,J'1l

o< exp {El-.11“ “zf) + ('ziftlljks K19)} - %9’F—16 (2.13)

X exp {’72 Zi;1Q;QQQi ’ $23121 231:1 leQTjTiJ' 1

 

where Zijk denote 21-12];121— 1, 7r( )denote the joint prior density, 62——

( ’1,...,Q:-,...,Qn)’ with Q,- = (Q.,-1,...,Q,-j,.. quJ)’, T—— (Tl',..., Ti’,...,T,’,)’ with

T; = (Tl-’1...,T-'J-,..,TZJ)' and ”Tl-j : (Ti.l(j)~"'sz'Jctj)""1T2'.K(j))l' Furthermore,

9=(0 3’7 ¢)dIIdI7U1—a+flj+n +sz+ T413)-

If the MCMC algorithm is a Gibbs sampler, the full conditional distribution of

each of the unknowns in (13) needs to be specified, which can be obtained in a

standard way Dunson et al.(2000), Zegeret al.(1991)). For the fixed effect 6, the full

conditional distribution is

71111-1. — b,(n. '1)

PfngsT.y)O(
exp Z{ ’J ’3 (.) U

1,3,1 0" Y

 
1 _

+cr,(1/,J-k.1,9)}—;)-6'F 16 . (2.14)

The full conditional distribution for the Gaussian spatial latent vector 62,, is

 
m 1U1 ”(7231.)

th.ITy9)o<exp Z{ J ’J ”
arts?)

1 TI

+ Cifl/ijk: #9)} — 5 Z QiQQQi

22:1i,j,k

A

5
°

p
-
a

The full conditional distribution for the Gaussian spatial latent vectors Tij is



 
U1U1—bhrm

PTfile U:0)CXGXP El 2] U I J] +Cifyijkv‘p) “éZZTijQTiT’iJ'

(2.16)

The full conditional distributions of precision matrix QQ is

n

p(QQ|Q. T. y: 6) : ll'is/uu't(cQ + N, AQ + Z Q,Q:). (2.17)

1:1

The posterior distributions for {SZTJJ = 1, ...,J} can be obtained in terms of

different precision matrix structures correspondingly.

(1) Unstructured precision matrix:

7V

p(oT IQ T y' 6)—— it1.1-1mm, + v AT + Zr,TU)’ (2.18)

7121

(2) CAR model based precision matrix:

(2.1) Overall precision parameters:

 
01U1—UKU1)

ptrle.T,y; Wong-"1 exp 2] ’J ”am ’3 +c,(y,,,,..,o)}—T,s .(2.19)

at ‘

(2.2) Overall spatial parameters:

U1U1 b071)

19,-..(pIQT3/0)0<exp Z{ 'J 'J “()1 JJ +<'.(U.:)1~so)} 1W1 1.7.3.1121)-
m i n.‘

isk

 

(2.20)

All the posterior distributions, except for {p}- : j = 1, , J}, are proper based on

their proper conjugate priors. The uniform priors for the overall Spatial parameters

are not conjugate, which might lead to improper posterior distributions. The simplest

technique for verifying if the posterior distributions of the parameters is proper is to

verify if the posterior distribution is proper for reduced data by discarding all but a

single outcome per subject leading to a reduced data set consisting of independent

outcomes, are proper (O’Brien and Dunson, 2004). Since the covariance structures
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do not appear in the reduced data likelihood and also the support for the spatial

association parameters is finite, i.e., {pj E (AT—”injxfniu.) : j = 1,...,J} , so the

posterior distributions of the spatial association parameters {pj : j = 1,...,J} are

proper. The algorithm for the posterior computation is through sampling (9. Q T,

and { respectiver from the above conditional distributions.

2.4.4 Missing data issue

In medical research. missing data is a very common problem. Little and Rubin et.

al.(2002) gave a comprehensive framework for dealing with missing data. We will

follow their framework to incm‘porate missing data into our model. Let Y denote the

data that. would occur in the absence of missing -'alues. we write Y = (1‘;))S,Y,n,;s),

where You, denotes the observed values and Ymis- denotes the missing values. Let

f (Hip) E f(Yam, 1’},,,,js|z;:) denote the probability or density of the joint distribution

of Yobs and Yum. From frequentist’s point of view, the inference is based on the

marginal probability density of Yobs is obtained by integrating out the missing data

Ymi s 1

f(l”’0[mllfl) :/fuel)»Unn.~'1l‘+')(l.‘/rnis-

More ‘enerallv. we define a 1111551111«mm Tn.dz'c(zf()7' as follows:
. .1

1, Eli)!" missing.

.11”). 2: (2.21)

0. ‘Jz‘jk observed.

The full model treats .11 as random Variables and specifies the joint distribution

of :11 and Y. That is.

m: 11111559) : f0'lM: 111(er a (1.1.9) 6 9......

where Q'u’ug is the parametric space of (111.9).

N
D

‘
1



The actual observed data is (1305.111) The distribution of the observed data is

obtained by integrating Y,,,.,-,. out of the joint density of Y 2 (12111511111119) and .M.

That is.

ff Jobs" All?“ 9) : fffybb.s- ymisi‘lfi "¥">f(jllyobsa ymis: Qldymis- (222)

The full likelihood of (Luv, 9) is proportional to the above, i.e.

14,1110"- elYom M) OC “You“ MIL”), 01 (223)

If the the distribution of missing-data mechanism does not depend on the missing

values Ym is» then

ffYobsv Allie/'3 Q) : ffiwlyobse 9) f [(Yobsa y'misiMi Wyldyniis
1 (2.24)

: [(A‘Iiyobs» Qlfiyobslfui 749)-

Under MAR (missing at random) assumption and Lu and Q are distinct, the

like]il‘iood-based inferences for L will be the same as likelihood-based inferences for til!

from f(l;.))mlt").

From Bayesian point of view, missing data is treated as random as well as the

parameters of interest. One of the advantages of the Bayesian hierarchical approach

implemented in WinBUGS is that missing data from the response variables can be

routinely handled. In most. statistical packages, incomplete cases (in either the re-

sponse or the covariates) are removed from any analysis. WinBUGS generates a

sample to replace missing responses from the posterior distribution of the response

variable under MAR assumption.

2.4.5 Bayesian Model Selection

The formal procedure for choosing an approrn'iate Bayesian l‘iierarchical model for

the observed data necessities methods to compare alternative models within Bayesian
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framework. The DIC (deviance information criterion, Spiegelhalter ct (Ll. (2002)) is

a hierarchical modeling selection criterion that can be viewed as a generalization of

the AIC (Akaike information criterion,Akaike, 1973) and BIC (Bayesian information

criterion, Kass and Raftery. 1005). It is particuhirly useful in Bayesian model selec-

tion problems where the posterior distributions of parameters have been obtained by

Markov chain Monte Carlo (MCMC) simulation. The DIC—statistic is a measure of

model complexity and goodness of fit with the definition as

DIC = D(e¥1)+ [20,

where D('L/,r) is the posterior mean of the deviance D(u’i) = —2log(f(y|z/Lv)), which is

a measurement of goodness of fit of the proposed model for the observed data. Let

D(L_) be the deviance evaluated at the posterior mean of L9. Let ])D =m —— 0(5)

denote the effective number of pz-u‘ameters in the model. which is a penalty for the.

complexity of the model. The quantities 2371—) and D(?) can be obtained routinely

from an MCMC simulation chain. Our hierarchial models contains two levels of latent

variables. which necessitates the model selections to be based on the DIC for missing

data problems (Celeux et al..200(i). In terms of our problem, we have to deal with

both missing data and latent variables to get a complete DICs. In order to deal with

n’iissing data, we consider the complete likelihood (21) and the deviance function has

the form

0(0) 2 -2 log {f(YO,M. .’lI|'L.'. 9)}

= ’210g{j f(Y0f)8‘ ymislfi‘li 'wlff‘wlyobw UNI-2's: Qld'ymés} ~

where 0 = (1111’, g')’. Pettitt et a1. (2006) gave an approxin'iation for (21) in the form

(2.25)

0(0) = ~210s {fu/obwy/ITITSIAI; t‘-')f(rlll.l/a1,~y7:9)} ~ (226)

where im, is the posterior predictor for the missing data. I'm”.

In order to deal with the latent vectors. we need to compute the complete DICs

in C'eleux el, (1.]. (2000'). Let. E,,.[()|y. (1. t] denote the posterior mean of Liv, based on the

29



complete data (if, q’, t'), where (q’, t’)’ is the realization of the spatial latent vectors

(Q’, T’)’. The DIC for the complete data model is

D1C(y~q~t)= --~-1E1110s(f(y.q.tlc'))|y.qil+210g(f(y~(1.tlEuld'lyet0). (52-27)

As in the EM algorithm, we can then integrate Q and T out from (26) to get

DIC = EQ,T[DIC(y,Q, T)lyl

= —4E.I,,Q,Tilog<1<y. Q. may] + 25Q,T[10s(f(y,QyTlEu.1l'¢'ly, enmy].

(2.28)

All the integrations can be obtained trivially through Monte Carlo integration

approximation using the MCMC posterior samples in the coda file. of WinBUGS.

Combining (2.25)-(2.28), we have the DIC for Bayesian generalized latent variable

models with missing data in the form.

DIC : EQ,TlD1C(yobsv 97727.5“ fl’f, Q1 TIlyobm All

= ‘4Ew,g,Q.Tl10g(f(yobs~ymTSvQLTiUI)» (W: Q)f(/l[lyob.9~ 351.731 Qlllyobsv Ml

+2EQ,Ti10gff(f/obs~ (ET-:3- Q~ TIL @ffjl/iyobw fmsw Elli/ohm 4‘1],

(2.29)

where (1:) = E,‘.lt"|;i/(,bs. .11, Q, T] and E = Eglglyubs. M].

2.4.6 Spatial symmetry hypothesis testing

The spatial symmetry property in our problem means the joint caries experience pre-

sentations for response variables at quadrant level are highly associated with one an-

other. Dentists do believe that spatial symmetry exist in mouth. Lesaffre et al.(2006)

showed empirically that the caries experience for left and right quadrants are more

strongly associated than the other cases. Unfortunately, few literatures have discussed

this issue comprehensively. In our UGGM at quadrant level, we know the partial cor-

relation parameters {pjj/ : j # j’ = 1,...,J} measures the strength of the spatial

association among two different nodes(quadrants). One of the major concerns of the

spatial symmetry in mouth can be formulated as the following hypothesis situation:
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Hypothesis testing for pairwise comparisons among spatial association

strength parameters

In order to assess the. spatial symmetry of the four quadrants. we need to introduce

different ”Neighborhoods” relationships that can explain the relative spatial struc-

tures of the quadrants of interest. Spatial symmetry is assessed at the quadrant level,

instead of tooth level. At quadrant level. We define the vector of teeth to be ”Hori-

zontal Neighbors” to each other, if the two quadrants are both in either ”Upper Jaw”

or ”Lower Jaw”, and to be Vertical Neighbors” to one another. if the two quad-

rants are both in either ”Left Jaw” or ”Right Jaw” and to be ”Across Neighbors”

to one another, if the two quadrants are either in ”Left Jaw” or ”Right Jaw”. The

assessment of quadrant. spatial symmetry in terms of cries prevalence will be based

on ”Left-right”, i.e., ” Horizontal Neighbors”, ”Up-down”, i.e.,” Vertical Neighbors”

and ” Across”, i.e., ”Across Neighbors”.

There are two ways to assess the spatial symmetry among quadrants in terms

of caries prevalence incidence through statistical hypothesis statement. The first

one is based on the so called ”overall” spatial symmetry assessments via a weighted

statistic and the second is the so called ”specific” spatial symmetry assessment that

is the direct. comparisons of the spatial symmetry measurements.

First. of all. the weighted statistics for assessing the overall spatial associations in

terms of ”Left-right”, ”Up-down” and ”Across” can be formulated as below:

1

PLR = "2-(p56 + 1978):

1

PUD = 50%;? +1058)?

1 ,

PA : 5011s + {1.371
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The statistical hypothesis testing about the overall spatial association in terms

of ”Left-right” V.S. ”Up-down”, ”Left-right” V.S. ”Across” and ”Across” V.S. ”Up-

down” can be formulated as follows:

(1 ) Left—right. l"er.~1us Up-down

110 : flue : PUD V-S- H 1, : {1112 # pm): (2.30)H

(2) Left-Tight Versus Across

Ho : p112 = m V-S- Ha ; fiLR 7f PA; (231)

(3) Across l"'€7'b"lt5 Ll’p—down

H0 : PA = PUD V-S- Ha : PA 7'4 PUD- (2-32)

Secondly, if the assessment. is based on the direct comparisons of spatial symmetry

measurement, there are twelve possible hypothesis testing situations for the spatial

symmetries in terms of partial correlation between quadrants.

(1.1) Left—right Versus Up-doimi. The association between quadrant 5 and quad-

rant. 6 VS. the association between quadrant 6 and quadrant 7, with quadrant 6 as

reference.

Ho : {1.56 = .067 V-S- Ha : 056 56 1067: (2.33)

(1.2) Left-right Ver.~1us ("p-(loam The association between quadrant 5 and quad-

rant. 6 VS. the association between quadrant 5 and quadrant 8. with quadrant 5 as

reference.

H0 : [’56 = P58 V-S- Ha : {)56 7t #582 (234)
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(1.3) Left-right Versus Up-dow'n. The association between quadrant 7 and quad-

rant 8 V.S. the association between quadrant 6 and quadrant 7, with quadrant 7 as

reference.

H0 : P78 = P67 V-S- Hu : P78 #1417: (2.35)

(1.4) Left—right Versus Up—(lown The association between quadrant 7 and quad-

rant 8 VS the association between quadrant 5 and quadrant 8, with quadrant 8 as

reference.

H0 1 P78 = P58 V15- Ha 1 P78 7A P.58: (236)

(2.1) Left-right Versus A cross The association between quadrant 5 and quadrant 6

V .S. the association between quadrant 6 and quadrant 8, with quadrant 6 as reference.

H0 1 P511 = P118 V-S- Ha : P56 74 P1181 ('2-37)

(2 2) Left-right l/ersus Across The association between quadrant 5 and quadrant 6

VS. the association between quadrant 5 and quadrant 7, with quadrant 5 as reference.

H0 1 P56 = P57 V-S- Ha I P56 7é P57: (238)

(2.3) Left-r1071! Versus A cross The association between quadrant 7 and quadrant. 8

V .S. the association between quadrant. 6 and quadrant. 8, with quadrant 8 as reference.

H0 : P78 = P68 V-S- Ha. 1 P78 # P68; (239)

(2.4) Left-right Versus Across The association between quadrant 7 and quadrant 8

VS. the association between quadrant. 5 and quadrant 7, with quadrant 7 as reference.

”0 1 P78 : P57 1'’75- Ha : P78 7f P371 (210)
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(3.1) Across Versus Up-dourn The association between quadrant 5 and quadrant 7

VS. the association between quadrant 5 and quadrant 8, with quadrant 5 as reference.

H0 : p.37 2 [25,, VS. Ha : [257 # P581 (2.111)

(3.2) x'lcross l’iv'rsus L'p-(hHiIfl The association between quadrant 5 and quadrant 7

VS. the association between C uadrant 6 and ( uadrant 7, with (. uadrant 7 as reference.
I l 1

H0 : P57 = P07 V-S- Ha : P57 7A P67; (1)-42)

(3.3) Across Versus Up—down The association between quadrant 6 and quadrant 8

VS. the association between quadrant 5 and quadrant. 8, with quadrant 8 as reference.

Ho 1 P118 : P38 I15 Ho 1 P68 # P581 (243)

(3.4) Across l-"crs-us lip-down. The association between quadrant 6 and quadrant 8

VS. the association between quadrant 6 and quadrant 7. with quadrant 6 as reference.

H0 1 [’68 2 p07 VS. Ha I 1068 # {’67- (2.44)

Simultaneous credible intervals

Pairwise spatial symmetry hypothesis testing is based on credible intervals for the dif-

ferences between two partial correlations corresponding to two different. nodes (quad—

rants) in the UGGM. In Bayesian statistics, a credible interval is a posterior proba-

bility interval, used for purposes similar to those of confidence intervals in frequentist

statistics. Suppose that parameter c is of interest, a (1 — (0100012 credible interval for

the parameter c ofinterest is any set C such that Pauly)“ E C) : l— (.l‘, where 77(g'ly)

is the posterior distribution of parameter c given the observed data y. There are two

ways to assess the spatial syuunetry among quadrants in terms of caries prevalence
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incidence through statistical hypothesis statement. The first one is based on the so

called ”overall" spatial symmetry assessments via a weighted statistic and the second

is the so called ”specific” spatial synunetry assessn'ient that is the direct comparisons

of the spatial symmetry measurements.

Since we are performing a multiple spatial symn‘ietry comparisons among quad-

rants in terms of all possible hypothesis testing situations, it is necessary to give

a simultaneous credible regions (Besag ct (1.1. (1995)) to control type S error rate

(Gelman et (11.), i.e., the similar concept as type I error rate in frequentist’s frame-

work. The 10()Ix’/M% simultaneous credible regions for overall spatial associations

differences are based on order statistics (Besag et a1. (1995))

{[(p, — [)[,)l‘w+1_’*l. (p1 — p11)[”*]] : (1,11) 6 Neighborhood},

where

1* =I'Di“{1=#{(P1 — P11)"M+1_" ] S (PI _ P11)(()S(P1-P11)[t ]}2 Kl»

and {(p] — 1111)“) : t = 1......)1. (1,11) 6 Neighborhood} are the posterior

samples of {(pl — p”) : (1.11) E Neighborhood}. Here, Neighborhood 2

{("LR",”UD").("LR“Q’A").("A","LI’D")}.

Similarly, the 100K/ill-1 ‘70 sin'uiltaneous credible regions for specific spatial associ-

ations difference are given by

M] 4* 1* . . . . . . . . . .

{ku“%/1_H ldflfl'flflfllhv#fls%Jhu/W%UJUMJ=1V J}

where

. ,' . _ * '* ..

1* =mm{1: #{(pm-/ ~/)jj/)i.\lr1 I if (pii’ _ ”11”“) S (1)21" _ pjj’)“ i} Z A }

am pu—pJWLl:lwwMi#Kj%fflJU#Ug)Lj=L J “mm;
n J]

posterior samples of {find — pjj’ : i 75 i',j 75 j’. (i,i’) # (j,j’),i,j = 1,...,.]}.



2.4.7 Example

Now we show how the above methodology works for dental data and need to spec-

ify all the functions and general notations. In our study, all of the responses

are binary, so we have the following: ai(co) = 1, bif’lz‘jkl = log(1 + exp('r]z-jk_)),

expf‘fl' A) , -z _ . .r . . _ . _
—_J——1+9XP(')gjk)' g(..c) — log(I—_I), for h —— l,...,5,} —Gilt/yes?) = 0» Elyrjkl'flz‘jkl =

1,...,4,’i = 1,...,n. Hence, the parameters of interest in the observational model

is 6 = (a,,3’,*y’)’ and .5 : §_1(EQ,ZI,...,Z]f,...,2%)’, then logp(y,-J-k|nl-jk)

logp(gij;‘.lQl~,Tl-'k(j).6) : Uljkyijk — log(1 + exp(n,-J-k)). The canonical parameter

{’hijk : k = 1, ..,5,j : 1, ....4,i = l, ...,n} is defined as follows:

Priors for parameters of interest are given by rioninformative proper conjugate

priors. which will give comparable results as frequentist's as the sample size increases.

More specifically, the priors are given as follows:

0 ~ N(O, 1600); (2.46)

a ~ N(0,1000); Vj = 1, J — 1, (2.47)

with constraints 2:] .3]- : 0 and Z}; MU) = 0. (j : 1. J for identifiability of the.

observation model. For the priors of precision matrix, O’Malley and Zaslavsky (2006)

proposed scaled \Vishart distrilmtion as conjugate proper priors

QQ ~ l’l”1811-(IFI‘1(-l + 1,1), (2.49)

where 1 is r1 x 4 identity matrix.
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For the priors of the precision matrix {QT}. : j = 1, ..., J}, there are two different

models for the the structures of the precision matrix.

(1) Unstructured precision matrix:

QTJ- ~ lV'ishart(5 + 1,11), Vj = 1, ....4 (2.50)

where 11 is 5 x 5 identity matrix.

(2) CAR model based precision matrix:

TJ‘ ~ G'a'm.'m.o,(0.001,0.001); V] = 1, ...,4, (2.51)

pj ~ U(A;,}n,A;,},,,). Vj=1,...,4, (2.52)

where {OJ—2 = r]- : j = 1,...,4} are the quadrant specific parameters for overall

variability and {pl- : j = 1,...1} are the quadrant specific parameters for overall

spatial effects. Ami." and Am” are as defined in CAR models in section 3.1.4.

To construct 95% simultaneous credible regions, we use 11,000 MCMC iterations

with 1000 burn in, i.e., M = 10,000 and K = 9, 500. The 95% simultaneous credible

regions are more convertive simultaneous confidence regions than frenquentist’s for

the multiple hypothesis statements since they have a type S error rate between 0%

and 2.5% (Gelman et (21.).

2.5 The Signal Tandmobiel Project Example

In the Signal-Tandmobiel project, there are 4,468 7-year-old schoolchildren (born in

1989) from 179 schools in Flanders (Belgium) who were selected by a stratified clus-

tered random sample. The mean age of the children on the day of examination was

7.1 years (SD = 0.4). The 15 strata were obtained by combining the 3 types of edu-

cational system (public, municipal and private schools) with geographical areas (the
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Table. 2.1. Prevalence of caries expm'ienceWt affected) in the ('leciduous dentition of

7-_v(‘*ar—old children 112-1851.

 

 

tooth 55 54 53 52 51 u 61 62 63 64 65
 

Prevalence 8.92 5.20 0.74 3.72 7.81 H 7.06 2.23 1.86 5.20 8.55
 

 

 

 

tooth 85 84 33 82 31 u, 71 72 73 74 75
 

Prevalence 10.78 13.75 1.12 0.74 0.37 I} 0.37 0.37 0.37 11.15 9.67
 

 

5 Flemish provinces). The schools represented the. clusters. This sample represents

about 7% of the corresponding Flemish population. The sampling procedure aimed

at selecting each child in Flanders with equal probability. A more detailed descrip—

tion of the design of the Signal-Tandrnobiel project is reported in Vanobbergen et al.

(2000).

2.5.1 Primary results

The frecuiency table for the prevalence of caries experience in the deciduous dentition

is shown in table 1, for the 7—year—old children. The descriptive statistics suggested a

spatial symmetrical pattern in terms of caries experience.

In Vanobbergen et (11. (2007). pairwise associations were assessed in terms of odds

ratio of caries experience via ALR. model. The results are shown in table 2.

The above result shows that it. is left-right spatial symmetry is the most notable.

Decayed teeth of discordant contralateral pairs tend to aggregate on the right or the

left side of the subjects mouth than would be expected by chance alone (Vanobbergen

et. al.(2007) ).
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Table 2.2. Odds ratios and 95% crmfidence intervals for the 2x2 association models

for caries on deciduous molars on tooth in 7-year-old children.

 

 

First Molar (ALR model)
 

 

54 04 74 54

54 1648(1375—1974) 8.17(6.91—9.64) 723(613—853)

64 7.61(6.47-8.97) 7.18(6.10-8.44)

74 22.82(19.28-27.00)
 

 

 

 

Second Molar (ALR model)
 

 

55 55 75 35

55 1547(1300—1323) 878(752—1027) 923(790—1079)

65 308(592-942) 8.86(7.58-10.35)

75 20.37(17.20-24.11)
 

 

2.5.2 The results from our approach

Our generalized latent variable models are. implemented in ll’inBL/CS, using nonin-

formative priors for the parameters of interest. After 1,000 burn-in, the posterior

distributions of the quantities are. based on 10.000 MCMC iterations. There are two

possible models indexed by the precision matrix structure for spatial latent vector at

intermediate level. The choice for appropriate model is based on the DIC for missing

data problem (Celexu et al.(2006)). In this part, we will give the results for both over-

all and specific spatial symmetries assessment through simultaneous credible regions

for the differences of interest. The. results start from the overall spatial symmetry

essessment under different model assumptions. in table 3—4, based on 95% simulta-

neous credible regions of the differences that are corresponding to their hypothesis

testing situations. It was then followed by the results for specific spatial symmetry

assessments in table 5—6.

Based on the results from two different models, the posterior inferences about. the

spatial symmetries are similar. which tells us both models work fairly well. Bayesian
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Table 2.3. Credible intervals of overall spatial association strength comparisons Based

on UGGM with unstructured covariance structure

 

 

Simultaneous Spatial Effects Credible intervals

left/righ .v.s. across

pLR —- pA (0.807, 1.238)

Ieft/righ .v.s. upper/down

 

 

 

 

 

across .v.s. upper/down

pA —— PHD (-0.775, 0.491)

DIC 593.300

N.burnin 1000

N.interation 11000
 

 

Table 2.4. Credible intervals of overall spatial association strength comparisons Based

on UGGM with CAR model based covariance structure

 

 

Simultaneous Spatial Effects , .

Credible intervals

lefWrigh .v.s. across

 

 

 

 

 

 

PLR -— pA (0.807, 1.236)

feft/righ .v.s. upper/down

PL11 3110 (03101 1-427)
across .v.s. upper/down

[)A _[)UD (-0.779, 0.410)

DIC 780.500

N.burnin 1000

N .interat ion 11000
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Table 2.5. Credible intervals of specific spatial association strength comparisons Based

on UGGM with unstructured covariance structure

 
 

Simultaneous Spatial Effects

Credible intervals
 

left/righ .v.s. across

 

 

 

 

 

 
 

 
 

p55 — {168 (0.134, 1.581)

1’56 -—' {257 (0.394. 1.719

{)7}; — (’68 (0.237, 1.589)

[’78 11):)? (0133,1728)

left/righ .v.s. upper7down

[256 ~ p67 (0.235, 1.551)

p56 —- {)58 (0.117, 1.48@

p78 — p67 (0.230, 1.601)

p78 — p58 (0.215, 1.504)

across .v.s. upper/down

p68 — p67 (-1.303, 1.313)

P68 — p58 (-1.327, 1.204L

p57 -— p67 (-1.442, 1.109)

p57 - 1958 (—1.488, 1.042)

DIC 593.300

N.burnin 1000

N .interation 11000
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Table 2.6. Credible intervals of specific spatial association strength comparisons Based

on UGGM with CAR model based covariance structure

 

 

Spatial Effects _ ,

Credible intervals
 

left/righ .v.s. across

 

 

 

 

 

 

 

 

 

p56 M pgg (0.068, 1.404

p50- —- p57 (0.5115, 1.0013

p73 — [)68 (0.236, 1.416)

p78 — p51- (0.477, 1.662L

left frigh .v.s. upper/down

p56 ~— p67 (0.297, 1.458)

[J56 — p58 (0.067, 1.455)

mg — [157 (0.291, 1.524)

p78 — p58 0.262, 1.450

across .v.s. upper/down

1068 — p67 (-1.020, 1.209)

[)68 —— 1058 (—1.078, 1.146)

p57 — p57 (—1.258, 0.970)

p57 — p58 (—1.381, 0.950)

DIC 780.500

N . burnin 1000

Ninteration 1 1000
 

 



model selection is based on DICs, the sn‘ialler the DIC. the better the model. It is

common in practice that if the difference between the DICs of two different models

are more than 10 then the model with smaller DIC is the better one. Hence, from

the results from table 3 to table 6, conditional on the data, the model with unstruc-

tured precision matrix is the better one. Specifically, the appropriate hierarchical

generalized latent variable model consist of two levels of latent vectors. The first

level of Gaussian spatial latent vector has unstructured precision matrix. The sec—

ond level of Gaussian spatial latent vectors also have unstructtn‘ed precision matrix.

Furthermore. the choice for the unstructured covariance structure can be explained

by the following two facts. (1) The oral biological environment. is so complected

that the higher level Gaussian spatial latent vector might not be able to account

for the heterogeneity from four quadrant—wise response vectors sufficiently and leave

some residuals to the intermediate level spatial latent vectors. (2) At intermediate

level, Gaussian spatial latent vector with CAR model based precision matrix are not

sophisticated to account for both the residual heterogeneity and the one from the

teeth within corresponding quadrants. Hence, the second level of Gaussian spatial

latent vectors need more complicated precision matrix than Markovian type (CAR

model based covariance matrix). Based on the chosen model, the conclusion of the

hypothesis testing about both overall and specific spatial symmetry among quadrants

are as follows: (1) Left-right. spatial association is the strongest, which is shown in

terms of 95% sinmltaneous credible intervals of the (‘lifferences between left—right and

across and the differences between left-right and up—down with lower bounds are all

positive. (2) The difference of spatial associations between across and up-down is not

significant at type S error rate between 0‘7» and 2.5% (Gelrnan (2006)), Since 95%

sin’niltaneous credible intervals of the difference between across spatial association

and up—down spatial association includes zero.
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2.6 Discussion

In this chapter, we propose a flexible class of Bayesian Generalized latent variable

models for multivariate spatially correlated binary data with multi-level dependence

structure. Our approach is to model the response variables by distributions in the ex-

ponential family and impose a n’iultivariate spatial correlation structure on the latent

variables, which accounts for the multi—level spatial dependence structures. Statisti-

cal inference is based on posterior sampling from the posterior distributions of the

parameters of interest. We have used undirected graphical Gaussian model(UGGM)

for constructing the precision matrix structures of multivariate spatial latent vectors

at both higher and intermediate levels. One consideration is the parameterizations of

both the observatimral and latent variable models, for the identifiability of the. model,

we constrain sum to zero for the fixed effects and the. spatial process has mean zeros.

Noninformative conjugate priors are applied for the parameters of interest, which will

give a comparable inference results to the frequentist’s as the sample size increases.

We proposed two possible models to account for the dependence structure in the den-

tal data. Bayesian model selection is based on DIC for missing data problem. Spatial

symmetry hypothesis is assessed by simultaneous credible intervals for multiple com-

parisons of pairwise spatial association strength. The results from both models Show

the. generalized latent variables model work well and consistent to one another and

also comparable to the results in existing literatures: It concluded that the left-right

spatial association is the strongest and the spatial associations for across and up—down

are not different significantly at type S error rate between 0% and 2.5%. For the data

example, we have assumed that the Gaussian spatial latent process {(2,- : i = 1.71}

at higher level and {TI} : j r 1. ./,i : 1.11} at intermediate level are. sufficient.

to induce the. unobserved heterogeneities from the. data at. corresprmding levels. It;

would be interesting to introduce non—Gaussian latent process to model the underly-

ing spatial dependence among quadrants and teeth nested within the corresponding
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quadrant, which can lead to a richer class of the latent processes {62,- : i = 1, n}

and {Tij : j = 1, J,i = 1, 71}. Finally, our model selection is based on DIC and

it will be optimal when the model selection is simultaneous through Reversible Jump

Monte Carlo Markov Chain(RJMCMC) (Green (1995)) or Birth and Death Monte

Carlo Markov Chain(BDMCMC)(Stephens (2000)) . It will be more interesting to

consider the symmetry pattern of quadrants for a longitudinal study, which will lead

to the spatial-temporal analysis.
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CHAPTER 3

Bayesian Finite Mixture of

Generalized Latent Variable

Models

3. 1 Introduction

As we have noticed in the above chapter that the dental showed a unique nested

dependence structure among the caries experience response variables for the teeth

of interest, which lead to a wide heterogeneity of distribution for the multivariate

spatially correlated binary response variables. Finite mixture of distributions have

provided a matl‘iematical-based approach to model various random phenomena with

the flexible distribution. It is obvious that mixture distributions are extremely useful

in the modeling of heterogeneity in a cluster analysis context. It is of great interest

that. we can view the quadrant—wise n'rultivariate binary response vectors as from a

certain number of underlying subpopulation or clusters. Each of the underlying clus-

ter is cl'iaracterized by the corresponding underlying cluster-specific parameters and

some common parameter to describe. the marginal distribution of the binary response
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variable with respect to the spatial configurations for each quadrant-wise response

vector. The spatial syn'nnetry among quadrants, in terms of the caries prevalence,

can be measured by the probabilities that two different quadrant-wise response vec-

tors will fall into the same underlying cluster that is indexed by a corresponding

cluster-specific multivariate distribution.

Zhang (at (if. (2007) proposed a Bayesian Generalized Latent. Variable Model

(BGLVM) to analyze the dental data from the STM project. Their approach used a

hierarchical generalized latent. variable model to take care of the multiple level nested

dependence structure of the dental data. The multiple level spatial latent variables

are used to generate a flexible multivariate distribution for the multivariate binary

outcomes and induce the unique nested dependence structure. The joint behavior of

the multiple level spatial latent variables are described by Gaussian undirected graph-

ical model with different ways to account for the covariance matrix structures. Spatial

symmetry checking was based on the partial correlation parameters of the graphical

models. Model implement and hypothesis testing are within Bayesian framework.

Since we know mixture model is very flexible method of modeling. it is interesting

to view the same problem from the mixture model point. of view in stead of general-

ized latent variable model. It. is also very helpful to give a general framework to use

mixture model for analyzing spatially correlated multivariate binary data.

Fernandez and Green et al. (2002) proposed a Bayesian mixture model to analyze

spatial correlated data, which gives an appropriate approach in the case of finite,

typically irregular. patterns of points or regions with prescribed spatial relationships.

The spatial association strength was assessed through parameters that are used to

adjust the variability of mixing weights in the mixture from one location to another.

Their approach is sensitive to Euclidian space, and can not take care of multi-level

correlations induced by both ”between-cluster" and "within-cluster” spatial configu-

ration of the data. Fernandez and Green focused specifically on Poisson distributed



data with applications in disease mapping, which are quite different from the situ-

ation what the dental data are facing. For the estimation of the true risk pattern.

their approach is based on a continuously distributed Markov random fields to model

the mixture weight for the correspoiiding component via legit-normal model. They

did not consider other mixture components that can yield flexible distributions for

the outcomes and induce complex heterogeneity structure. However, their approach

introduced spatial mixture models as an interesting new tool for those modeling het-

erogeneity in spatial data. Zhou and Wakefield et al. (2006) proposed a Bayesian

mixture model for partititming gene expression data. which is essentially an approach

of clustering the observed data by a mixture model with unknown number of cluster

inferred by the data. The aim of their research in which time ordered gene expression

data are collected is to determine genes that co—express, that is, have similar patterns

of expression, which provided a probabilistic framework for partitioning or clustering,

which naturally provides a measure of similarity among genes in terms of expression.

Under their approach. partitioning and estimation are conducted simultaneously, and

the number of partitions can be treated as a random parameter, which will give the

method a certain flexibility in applications. It is noti(.reable that as always for para-

metric l‘iierarchial modeling, the measures of uncertainty are only as reliable as the

model, so extensive model checking should be carried out in applications. It is nec-

essary to give flexibility to the mixture components rather than as what they did

via modeling a marginal parametric mean structure. Extension needs to incorporate

covariates at various stages and other external information need to be taken into

account. It is also meaningful to give the framework for analyzing non-normal data

under mixture models for clustering.

The purpose of this article is to introduce a Bayesian Mixture of Generalized

Latent variable Model (BMGLVM) framework for general spatial topology structures

to explain nmlti-level correlatirms. The BMGLVM. implemented via Gibbs sampling



with non—informal.ive priors. allows us to model the ”between—cluster“ and ”within-

cluster” correlation structure explicitly. It is possible for us to examine the spatial

symmetry of quadrants in terms of caries incidence, and capture the special spatial

association structure among (madrants for the same subject of interest and among

teeth within quadrants, which can help us efficiently characterize the pattern of caries

incidence at. tooth level.

3.2 The Spatial Dependence Structures

3.2. 1 Notation

To model the observations, let yijk denote the kill response variable within jth cluster

of ith subject of interest. where k = 1.....K.j = 1,...,J.’i = 1,...,n. Let yu-

(,i/,J1,...y,J-A., ----L‘/zjl\')’ denote the response vector within jlh cluster of i”). subject.

Let y,- : (yjl. ”U" flip/l, denote the collection of response variables of ill). subject.

let y : (y'l, (11;. 311,), denote the collection of response variables of all subjects in

this study.

A nmltinomial model is applied for the allocation process associated with mix-

ture models. let Qi 2: (Q21, ....ij, “"Qi'J), denote the mixture component alloca-

tion random variables for the ith subject, where Q?) : (Qij1~---~.QijIns-~»Qijfll),

and M is the number of mixture components in the mixture model, for i = 1, n

and j : 1,...,J. It is assumed that Qij‘s are identically independently multino—

mial distributed. For modeling the latent variables, we use. conditional autoregrcs-

sive model. Let Tm, : (Ti 1(. m.)

I . - x 7 l . ‘

.....Ti’Mm), ""Ti~1\"(r7'1)) dtnote the lattnt variables

associated with the mth. mixture components for the ith subject. of interest. Let

T,- : (Tl-'1, Tim. Till), denote the collection of latent variables at intermediate

level for the it}? subject in the study. Let L r {(2:.Tl’ : i = 1.....72} denote the

collection of all allocation random variables and latent variables for all subjects.
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3.2.2 Principles of our modeling approach

The dental data shows a two-level spatial association structures, i.e., the first level

spatial association structures are among quadrant(V)-(VIII). For the convenience of

indexing the data, we will use quadrant(l) instead of quadrant (V) and corresponding

index for the others. The second level spatial association structure is, nested within

corresponding quadrant, the spatial correlation among teeth.

In general, the valid approaches for analyzing correlated data without explicit

multivariate distribution consist are based on either GEE and random effect models.

The former is suitable for marginal mean or pairwise associations between response

outcomes orientated statistical problems and the latter is for subject specific statis-

tical issues. The dental data is spatially correlated and has information about teeth

spatial configurations that need to be incarnated in the model to provide explicit

structure for inducing dependcrnre among quadrants and teeth at their corresponding

levels. The main contribution of this paper is to develop a methodology to model this

unique spatial dependence of the deciduous dentition. There is no explicit multivari—

ate distribution available for the spatially correlated binary dental caries experience

outcomes. Mixture models(McLachlan and Peel (2000)) are commonly used to are

generate flexible n'iultivariate distributions and induce unobserved heterogeneity for

correlated data with implicit multivariate distribution.

To take the unique spatial structure of dental data into account, we use two lev-

els of latent variables to take care of the spatial dependence of the teeth within the

mouth for each subject. At higher level, the mixture component allocation random

vectors {Qij : j = 1, ..., J} for the ith subject are used to allocate the quadrant-wise

response vector yjj to its corresponding subgroup that is characterized by the mix-

ture coirip(;)nent..s of the mixture rrnxlel. The mixture component allocation process

has the function to mix the multiple mixture components into a flexible multivari-

ate distributions and induce the dependence among quadrants. Given the mixture



component allocation process, the quadrant-wise response vectors {yij : j = 1, ..., J}

are conditionally nrutually independent. At intermediate level, conditional on the

allocation status of the mixture component process. we introduce spatial latent vec-

tors, {Tim : m : 1,.....rlf.i : 1,...,71}, that are used to tight the generate the

mth mixture component flexibly and induce dependence structure among teeth. The

joint distribution of this spatial latent vector is given by Undirected graphical Gaus-

sian model with spatial configurations of the teeth taken into account. The obser-

vations {llijk : k = 1,...,K,j = 1,...,J} will be conditionally independent given

Q,- and T,- for 2'. = 1. ...,n. Meanwhile, the intermediate level spatial latent vectors

{Tim : m = 1, .11} are conditional independent given the higher level spatial la-

tent vector Q, for i = 1.72.. In order to assess the spatial symmetry of the caries

experience of deciduous dentition, we will examine the pairwise comparisons for the

similarity scores that will be defined later on. Due to the complexity of oral biological

system, we will give flexible covariance structure for the undirected graphical Gaus-

sian models and leave the number of mixture components to be unknown. A formal

model selection procedure will be used to choose appropriate mixture model for the

data.

3 . 3 Models

3.3.1 Bayesian Mixture Models

Finite mixture models with regression structure have a. long and extensive literature

and have been connnonly used. .\rcha(.-hlan and Peel et (1.1. (2000) gave a. very general

framework for mixture model with non-normal c'or'i'ij)()ri(mt.s to deal with overdispersed

data. Mixture models are used to facilitate the modeling of the heterogeneity from the

overdispersed and correlated data by generating flexible distributions of the responses

variable of interest and inducing dependence structures among response variables.

Conditional on mixture component allocation process Q”. for mixture model with



M components. 1], : (y:1.m.1/,j.. “1:;1') has contribution to the likelihood as

1 AI

pfyilQiig) 21—11 H1{7ijpm(yilezjm=1:6)}Qtjms (3'1)

]:1 711:]

where {7ij : m : 1,...,M,j = 1,...,J} are the mixture proportions and

pm(y,-J-|Q,-j,,, = 1; 6) is the mth components of the mixture. model.

It is known that the estimation for mixture models is straightforward using EM

algorithm but with difficulties and challenges. Bayesian estimation for mixture models

is feasible and well defined as long as the posterior simulation algorithm converges.

Key initial papers on the Bayesian analysis of mixture models using MCMC methods

include Diebolt and Robert (1991) and Escobar and West (1995). Provided that

suitable (proper conjugate) priors are used, the posterior density will be proper.

l'll'z'nBUGS can be used to provide valid posterior samples of the quantities of interest.

However, there are some difficulties that have to be addressed with the Bayesian

approach in the context of 111ixture models. First. of all, improper priors might yield

111'1proper posterior distributions. Secondly, when the number of components M is

unknown, the parameter space is ill-defined, which prevents the use of classical testing

procedures and priors. Finally, label switching occurs when some of the labels of the

11‘1ixture components permute. The effect of label switching is important when the

solution is calculated iteratively because there is the possibility that the labels of the

components may be switched on different iterations. In this paper. we will discuss

the methods that have been proposed for overcoming the problems 111c11tio11ed above.

3.3.2 Response IVIodels

We model the Aft/1. response variable within the jth quadrant. of the ith subject, yijks

which is a binary indicator of caries experience of (001,111)“). The response model is

specified hierarchically. At higher level, the mixture model (3.1) will give a flexible

multivariate distributions for the (uadrant—wise binary data "1 ~ : ' = 1..] andl . . 1}
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induce the dependence structure among the four quadrants. Simultaneously, there

exists mixture component allocation random indicator Q,- = ( 21. ..., ij‘ ""QiJlir

where Qij = (Q01, ...,Qijm, "'1Qij1l/l, is a random binary vector with only element

being 1, for j = 1. J. 1‘ = 1. n. At intermediate level, condition on the Q2, for

instance, szm : 1, i.e., yij follows the mth mixture component in the mixture model.

Meanwhile, there exists a spatial latent vector Tm, = (T1.1(m)- TLHW)‘ Tith‘mlll

that is used to tight the .1 binary response variables (ij-l,....1/,J~k., ...,yle)’ . The

joint distribution of Tm, is given by undirected graphical Gaussian model(UGCM)

with spatial configurations of the If teeth taking into account. Essentially, Tim is

used to gent—>rate flexible multivariate distribution for the binary response vector and

induce the dependence for yU-k. Conditional on Q, and {Tl-m : m = 1.111}. the

binary response variable 911’“ can be modeled by an exponential family distribution

with the probability density function as the general form

"finkyijk — bi (771711.12)

01W)

 

+ Cify-z'jk» (9)},

(3.2)

meyzjleijm : 1~ T1.k(171)ia~'7113199) : €Xp{

where "hm/c : (1m 1+ .31. + T1.k(m) (McCullagh and Nelder ct. (11. 1989).

\\'e assume that the link function It/(-) is a canonical link that relates the mean of

yUk to a. linear prmlictor as follows

giEif/IjkiQijm : 1; flint/vi) : Think : “m + L3k + Ti.k(m)*

I . , ' - - ,

where a = (01»-~-~0'm~---~“Ml overall component mean w1th 11'1creas1ng order

constraints and d = (131....,;3,‘..... ,JK)’ are the regression coefficients of general-

ized latent variable models with constraints 2k 13k = 0. Furthermore, Tim =

(T1.l(m')‘ THU"), T11.K(m)l are the Gauss1an with mean 4110 and L0\a1‘1d11(.( ma

trix {2’1" : m : 1.....1’11}. we assume that {Qi : i = 1,...,71} and {Tim : m :-

1,311,2'. = 1, ...,71} are mutually independent. which relate. the response variables
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to quadrant—specific and tooth—specific covariates and the latent variables.

Under the mixture model and latent variable model approach, we can assume

that. the response variables are. conditionally mutually independent,given the vectors

of latent variables L : {[4 : (Q:.'I';l....,T:"l.....TlfMy : 1' = 1.....71}. The joint

probability density of g conditional on the set of latent variables L and {7r’, (1’. 3’. 1,9},

I

where 71' = (a1, 7r], ...,7r’J) with 7rj = (7Tj1,....7ij....,7rj1\[),, is as follows

.~ ,. K , Qijm

PfylLi 7f], (It'd/’0) : 1'11;ij{Fj'ml—Ikzlpmfytjkinjm : 1" TkaTll)’ 99)}

_ K "I‘ A:y--='k—b'.(71<- 1,) .

=<‘XI){Z,-.j,m{01171.{10gt7rml+£17.11 1m limo; u" +C'1(y,tj;.-,e)] .

(3.3)

, x , . X n J M f n J A! ,
where n'ijm and 21‘er denote “1:1 Hj21I—In1.:1 and Zi=12j=12m=1 corre-

spondingly.

 

3.3.3 The Structure Model for Latent Variables

In the response model, given the two levels of latent variables, the conditional inde-

pendence assumption allows the specification of complete likelihood for the response

model. In our modeling approach. the two levels of spatial latent vectors are used

to induce the dependence structure of the teeth of interest. In order to incorporate

appropriate spatial latent vectors into the model. we need to choose the ones that

can really represent the design structure and characterize the random mechanism of

data generating process. The objective of these latent processes is to generate flexible

distributions for observatimis and induce the dependency among observations.

At higher level, it is assumed there exist independent mixture component alloca-

W/ 'I I .
tion plocesses, say. Q111m‘szj‘szJv w1th

Q11 = (Qijlv-naQijms ---:sz.\1)' ~ Mullarflnrj), j: 1,...,J,i : 1, ..,.n (3.4)

At intermediate level, we will follow the approach in Zhang et at. (2007) by incor-

porating appropriate spatial. latent vectors to formulate flexible mixture components.



 

 

    

 

Incisor

H112

UGGM Tim : (711.1011): Ti.2(m)a 71,3071)» 7391011): 7116071)),

 

Figure 3.1. The response variables yifl. ij'Q. yiJ-g. yij4 and yijg, are al-

located to the mth cluster and tighten by spatial latent vector Tim =

(T‘.1(m)1T'.‘2(m)~71,3011)»71.-1(7n)~7i.5(m))l whose joint distribution is given by UGGM

with unstrluctured precision matrix.

Undirected Graphical Gaussian Models (UGGMs)t are used to give the joint distri-

bution for the spatial latent vectors. The UGGMs will take the spatial configurations

of the teeth within quadrants into account. The spatial configurations of the teeth

within quadrants are as below.

As shown above graphs, the five teeth within each quadrant can be viewed as

five nodes in a graph. If two nodes are not directly connected, they are said to be

conditionally independent given the other nodes in the graph. For the mth mix-

ture component, a UGGM is used to describe the spatial configuration of the nodes
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UGGM 71111 : (Ti,I(m)7R,2(n1.)17i7,3(m)1n.4(771.)171,5(7n))’
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Figure 3.2. Note: The response variables yijla yU-Q, yij3. yl-Jq and yl-J-5 are

are allocated to the mth cluster and tighten by spatial latent vector Tim =

(Ti11(m),Tz-,2(m), T,‘3(m),T,-‘4(m), T,,5(.m))' whose joint distribution is given by UGGM

with precision matrix under CAR, model assumption.



and manifest the associations among nodes of interest by assigning random variables

‘ . ... . . _ .,. I ' 3‘ ' - .' ' '_

Tim -— (TI'JW).T,-‘2(,»,,).T,-‘3(,,,).T,‘.-1(,,,).Thom”) to the nodes in the graph. Mean

while, {Tlm : m = 1.111} are mutually independent conditional on Qi. A UGGM

assumes that

Tim I (T‘,1(7‘1‘1)’T',2(m)’ T”,3(m)’ T'Afm)’ Ti.5(m))l N N(0’ 2573'), m = 1’ ‘M’ (3'5)L I. l l

where 9’3 is a symmetrical and positive definite matrix for m. = l, ..., M.

We know Gaussian random variables are determined by the first two moments. For

the identifiability, we already assume the mean structures of the two levels of spatial

latent variables are vectors of zeros. then the problem will become issues about the

covariance structures {2’77 : m z 1. H.111}. A general covariance matrix will be

unstructured with symmetric and positive definite constraints. The unstructured

covariance matrix can be simplified if we assume Markovian properties for the nodes,

somehow as shown in the second graph. The Markovian type covariance matrix can

be incorporated within spatial statistics by CAR model (Cressie (1991)). The choice

of the two types of covariance structure for the spatial latent vectors at tooth nested

within quadrant level is made through model selection in Bayesian framework via

Deviance Information Criterion(DIC) for missing data problem proposed by Celeux

et al.(2004), which is an extension of the DIC introduced in Spiegelhalter et al.(2002)

for Bayesian model selections.

Undirected Graphical Gaussian Model

In this section. we review the graphical Gaussian model (Dempster.197‘2) required

for this paper. Let C : (LE) be an undirected graph with vertex set. V =

{l.....k.....[\'} and edge set E : {0M1 : k 7é k' : 1.....Ix'}, where EN" = l

or 0 according to whether vertices k, and k', 1 S k # k’ s K are directly con-

nected in G or not. In the undirected graphical Gaussian model, the edges set

describes the associate structures of the vertex set. Random vector is assigned

‘
1

C
f
!



to edges set to represent the association strength between corresponding vertexes.

The undirected graphical Gaussian model consists of all k dimensional normal dis-

tribution, say X = {X1,...,Xk,...,XK}, with X N N(0,Z) and precision matrix

Q = 2‘1 = {wkk’ : k 7é k’ = 1, ..., K} where Z is unknown but. satisfies the follow-

ing restrictions in terms of the pairwise conditional independences determined by the

Markov properties (Drton and Perlman (2004)):

(DA/L, 20¢ Xk _.l._ ‘XAIl’va A'k’}: Vk- #A.,—_— ...,A,.

Conditional Autoregressive Models

For the vector of univariate \i'ariz-tbles 1/ = (1/1.V2.....1/K)’. the zero—centered

CAR specification. where K is the number of spatial nodes of interest, following

Cressie( 1991 ) . sets

(HIV—#01:) ~ ‘\7(/)Z blc'k’I/kialclik211""K1 (3.6)

)Vk’EV—k

where V—k z 1/\ {wk}. Following Brooks (1964) lemma the resulting joint density for

1/ takes the form

f2(1/|a)oce.r—p{ éI/TD:2(I— pB)1/.} (3.7)

where B is K x I\" matrix with B : {bkk’ : k 71$ k' = 1,...,K} and bkk = O.Vk =

1.....K and D02 11s an K x K diagonal matrix with non-zero entries {02 : A: =

1.. ..IX }. The precision matrix D;21—(1 pB) need to be sy minetiic. which yields the

conditions

bkkmi, : bk/kaz: v1.1.1: 1.11”. (3.8)

If the precision matrix is positive definite. then (3.7) is a proper distribution. Un-

(lei above paIameteivations the precision matiix D;21(1 — [18) is nonsingular if

GOV—11in" Ail”) where /\1111‘11~/\111a.1r are the smallest. and largest. eigenvalues of B



respectively. It usually assumes that the D02 2 0211!, where M is diagonal matrix

with diagonal elements 111“; proportional to the conditional variance of 0%. 02 con-

trols the overall variability and p represent the overall spatial association. Weights

matrix B with Bkkl need to reflect the spatial association between nodes k and k’.

GoeBUGS(‘2004) sets BA-k’ = I)“; = 1/11k, for k # k’ and M“. = l/nk where nk

is the number of nodes which is adjacent to node k. Under the above settings. the

spatial latent vector 1/ will follow a proper distril’mtion, i.e.,

1/ ~ .\v’(0.02(I — pB)*11‘lI). (3.9)

3.4 Bayesian Estimations and Statistical Inference

3.4.1 Identifiability of the models

Based on the framework of the mixture of generalized latent variable models, we

have to deal with the model identifiability issues at both mixture model level and

generalized latent variable level. At mixture model level, we need to deal with label

51111113111119 issue. The interchanging of component labels is generally handled by a

constraints on the mixing prt‘iportions of the form

W‘j]S7I-j2£m<7rjll‘ j:1,...,.],

or on the component means of the form

0'13 0‘2 S - ' 1 S 0.11-

Frequently, models with latent variables are not globally identifiable. One can inte-

grate out the latent. spatial variable vectors to obtain a marginal likelihood to assess

whether parameters are redundant. The contriliiution to the likelihood from the latent.

variable model is parameterized by {25’} : 1'11 : 1,111}. The identifiability problem

become to examine if the parameters involved in the covariance are redundant, which
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might be problematic within frequentist’s framework. Dawid (1979) and Gelfand &

Sahu (1999) discussed model identifiability issues within Bayesian framework. In par—

ticular, Suppose that the Bayesian model is denoted by the likelihood L(6; y) and the

prior f (0) and we partition the parameters of interest as 19 = (91.02). If

#921914!) = “92191), (3.10)

then we say that 9-2 is not identifiable, where f(62|61,y) (x L(61,92: y)f(92|01)f(91).

That is, if observing data y does not increase our prior knowledge about 6-2 given 61,

then 62 is not identifiable by the data. Dawid’s formal definition of Bayesian model

nonidentifiability states that 192 is not identifiable if and only if L(01, 92; y) is free of

62. In order to make our model identifiable, we need to not only take care of marginal

identifiability of the model through integrating out the latent variables, but also put

some constraints to the covariance matrix of the Gaussian spatial latent vectors at

both levels.

3.4.2 Prior distributions

In this section. prior distributions are chosen for the parameters 6 : (7r’, (1’. J')’ and

and association parameters 6. The priors are. assigned hierarchically to the corre-

sponding parameters of interest. Gibbs sampling algorithm is applied to simulate the

samples from the posterior distributions of the quantities of interest. At higher level,

McLachlan and Peel (2000) used a non-informative conjugate proper prior to mixture

proportions in the form:

7Tj = (levmifljmvmiflji'll), ~ DITiChI€I((t,91,”WHO/(1),), ] = 1,...,J. (3.11)

where (1,91, ...,1pM) is the weights vector for the mixture proportions. At intermediate

level, Zhao et al.(2006), Zeger et al.(1991) and Dunson et al.(2000) all suggested

noninformative conjugate prior distributions for the parameters of interest, which
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can wash out the effect of priors as sample size increases. Bedrick et al.(1990) noted

that normal prior distril‘nuions were suggested for the logistic regression coefficient 9.

((1,. 3’), ~ N01. F). (3.12)

where 1.1 is the a vector of location paran‘ieters 71' and F is the covariance matrix. It

is common to take 11. as vector of zeros and F as diagonal matrix with very larger

entries. We are interested in the joint posterior distribution of (9.511;). Under mild

condition in (Geman and Geman et (1!.(1984)). Gibbs sampler can obtain the joint

posterior distribution by sampling from the conditional posterior distributions (Oly, f)

and (fly. 6) correspondingly. To simplify the sampling from the conditional posterior

distributions, we choose hierarchical independent priors for 6 and g in this hierarchical

Bayesian model, i.e. (€|y,6) = (fly), which is true as long as the priors satisfy

p(6. 5) = p(6)p(€). We proposed two covariance structures for the Guassian spatial

latent variable models. In the generalized linear model setting with Gaussian random

effects. the proper noninformative conjugate priors will be Inverse Gamma(IG) for

signal variance ("011111011th and Inverse Vi'ishart distribution for a variarice-covariance

matrix.

Based on the relative relationship among nodes in the graph of the UGGM, we

give noninforn'iative priors to precision matrix parameter correspondingly.

(1) Unstructured precision matrix in the UGGiV‘I:

For the 'ith. subject, conditional on the higher level spatial latent vector Q,, the in-

termediate level spatial latent vectors {Tm : m. = 1, M} are conditionally indepen-

dent. So, we give independent priors to the precision matrix {SZTm : m = 1, .M}

Similarly, independent \Vishart processes are assigned as priors for these precision

matrixes.

”Tm ~ ll’isliarthm,ATm): m = 1,111, (3.13)

with the degrees of “Tm = ranHETm) + 1 and the precision matrix ATm =

I=1, , ., . .

(F771 KLTI'II
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(2) CAR model based precision matrix in the UGGM:

For the ith subject. conditional on the higher level spatial latent vector Q,. the

intermediate level spatial latent vectors {T1111 : m = 1,111} are conditionally in-

dependent. So, we give independent priors precision matrix {QTm : 111 = 1,111}

that are parameterized by {03,.p,-,, : 'm = 1, ”.,./11}. Sin'iilarly, independent Inverse

Gamma (Dunson et al.(2000)) distributions, proper conjugate priors, are assigned

as priors to the overall variation parameters {(13, : 111 = 1.1111} and independent

uniform distribution with supports constraints in section 3.3.2 to the overall spatial

association parameters {pm : m = 1, 1M}, improper priors GeoBUGS(2004) for the

over quadrant specific spatial association parameters, respectively.

0,2,, ~ IC(5,€); m = 1, g’lI, (3.14)

and

p,,.~U(1—1 ,A;,},,.); 111.: 1......11. (3.15)
111111

where e is very small positive number and A7711", )1;ng are as defined in section 3.3.2.

3.4.3 Posterior computations

Let (71',a’,1'3’,Q’,T’, ET)’ denote the current state of the Markov chain. We will

follow the steps (1)-(3) to obtain the posterior samples of quantities of interest from

their posterior distributions. McLachlan & Peel (2000) and Fernandez & Green (2002)

gave a general posterior sampling algorithm for the mixture model.

Step 1: Posterior sampling for mixture proportions;

I . .,V f v I

7rj = (7Tj1, ...,7rjm, ”Haj-M) ~ D11‘1clzlet((t,91+1\'J~1....,p,~,,+ Ajmv ”Mp.” + .N'jM) )

(3.16)
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where NJ-m = ZL—lQijm for j—— 1.. J. m = 1,...,11/ and 1,19 = (1,191....,1,9M)’ is a

known weight vector.

Step 2: Posterior 8111111111119 for 111131111113 component allocation random variables;

Qij = (Q1)1~---~sz..11)’~31111“qu(Gnu-.510) j: 111‘=1,....n,

”jmpmfyileiJm:lT11116)
M , with

21:1 ”jkpA-(yileijk: 1~1T.k 0)

 where rJ-m :-

K

Pmlyileijm I 117317116) : H meyijleij-m = 11T1,k(m)16)1

k=1

and p,,,(y,J-le,-j,,, : 1,’T,‘A.(,,,):(l) is defined in (3) with

[091%(y1jle1jl'71—_ 1 TLk(III)'6)} : (1nd +113k + Tl.k(nl)'

Step .J. Posterior s1'1r1’1'1pling for generalized latent '11ar1'able models.

Conditional on the mixture component allocation process at higher level. the pos-

terior distributions of parameters and latent variables in the generalized latent vari-

able model can be obtained in standard way (Dunson et al.(2000), Zegeret al.(1991)).

Given the precision matrix {Sle : 111. : 1,111}, the joint posterior distribution for

the regression parameters and latent variables at intermediate level is

11(91TIQ111: 71) 1x 11(le.T. y; 9)f(9. T)

0< eXI) {21.33111 Qijm lllogfwjm) + 21.- Qijml Tl’in1k3/ijkrfbifll'1n1k) + C-1fyijka¢)}}}
(lily?)

(U

x exp {é—Q’F 16 — 21:13—21 2111—1731/111197‘1117317’1}

 

(3.18)

where Zzaflm denotes 11231:] 3,,_1. /() denote the joint prior den-

sity. Q r (Q3.....Q3.....Q3,)' with Q, : (Q31.....Q’......Q3J)’ and Q'J :

(Qijbw-Qijnr~~~Qij.'11l’~ T : (T3....,T;.....T,3)l with T1: : (Ti/1’""T1"111"""T1".’11),

and sz = (T1.1(111.)1”"Tz'.k(m)1"'1Tz.1x’(m)),- 111 6 = (..,/M1”, and

0,2,”). = (1m. + 131. + 73“,"). In practice, we set 11 to be vector of zeros and F to
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be diagonal matrix with large diagonal elements. If the MCMC algoritl'im is a Gibbs

sampler, the full conditional distribution of each of the unknowns in (19) needs to

be specified. which can be obtained in a standard way Dunson et al.(2000), Zeger et

al.(1991)). For the fixed ellect 6, the full conditional distribution is

PWIQ. T» y; 71)

71v kyrk—HTIN 1,.)

0( exp {2:1,}inle {lOg(7ij) + 2k. Q'ijm{ 1111 Oat-($9; 1111 + Ci(yijk~ 99)} }}

>< exp {—%6'F_16}.

 

(3.19)

The full conditional distribution for the Gaussian spatial latent vectors Tim is

P(T17111lQ y; 71'. 6)

1]. Ami/3' ‘A‘bet’l? k)

0< 9X1) {21.3,}.Q1J-m. (102(1)...) + :1- szm{ ”n U I n" + Cityz‘jk»¢‘)}}}
(Hts?)

X eXI){12:111—111119731271171}

 

(3.20)

The. full conditional distributions of precision matrix {QTm : 111, 2 1,111} can be

obtained in terms of different precision matrix structures correspondingly.

(1) Unstructured precision matrix:

memoTy, 71 a)-— lt’isl101t(uTm + Nm,ATm + Zr T,’,,,) (3.21)

1.21

. T J 1 ' J

Whele 17V") : Zj21er11 I 2?:121'216213'111-

(2) CAR model based precision matrix:

(2.1) Overall precision 1')a.i.‘an'ieters:

p(r,,,|QT.-,1/:71.())

_ ”1111A -‘/1 kbIll/11111;)

O< OX1) {21.1111 QIJIN {l()g(T1TJ,,I)+ 2k szmi 1113(9) + (71(y1jl." ‘19)}

x 1,1,,“1 exp {-TmE}.

 

(3.22)
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(2.2) Overall Spatial parameters:

p(p,,,|Q.T,y:7r,9)

71' 'ky”k’b'(7l‘ k)

0< exp{21,j,1nQij'n1{1()g(7fj111)+ :1 Qz'jmf m U l H" +Cz(’ytjk~s9)}}}
aim
 

X[(/\—1 A—l )(pml-

mt'n.’ mar

(3.23)

All the posterior distributionS, except for {Pm : m 2 1, , ..., M}, are proper based

on their proper conjugate priors. The uniform priors for the overall spatial parameters

are not conjugate, which might lead to improper posterior distributions. The simplest

technique for verifying if the posterior distributions of the parameters is proper is to

verify if the posterior distribution is proper for reduced data by discarding all but a

single outcome per subject leading to a reduced data set. consisting of independent

outcomes, are proper (O’Brien and Dunson, 2004). Since the covariance structures

do not appear in the reduced data likelihood and also the support for the spatial

association parameters is finite, i.e.» {pm 6 (A537,‘,AT‘,’,}M) : m 2 1,...,M} , so the

posterior distributions of the spatial association parameters {pm : m 2 1, ..., M} are

proper. The algorithm for the posterior computation is through sampling 71, Q, 6, T,

and 5 respectively from the above conditional distributions.

3.4.4 Bayesian Model Selection

The formal procedure for choosing an appropriate Bayesian hierarchical model for

the observed data necessities methods to compare alternative models within Bayesian

framework. The DIC (deviance information criterion, Spiegelhalter et at. (2002)) is

a hierarchical modeling selection criterion that can be viewed as a generalization of

the AIC (Akaike information criterion,Akaike, 1973) and BIG (Bayesian information

criterion, Kass and Raftery. 1995). It is particularly useful in Bayesian model selec-

tion problems where the posterior distributions of parameters have been obtained by

Markov chain Monte Carlo (MCMC) simulation. The DIC-statistic is a measure of
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model complexity and goodness of fit with the definition as

DIC 2 D(19)+ pD,

where D(19) is the deviance given the model parameters 19 2 (71’, 6',§’)’, defined as

0(0) = -210s(p(y|1))) + 210g(h(y))~

where 11(1)) is some fully specified standardizing term which is function of the data

alone. —(_19) is the posterior mean of the deviance, a measurement of goodness of fit

of the proposed model for the observed data. D65) is the deviance evaluated at the

posterior mean of '19 and [JD 2 W - 13(5) is the effective number of parameters

in the model, a penalty for the complexity of the model. The quantities 5(5) and

D(—'19_) can be trivially computed from an MCMC simulation chain. Rather than the

conventional DIG introduced in Spiegelhalter et al. (2002), our hierarchial models

containing two levels of latent variables, which necessitates the model selections to be

based on the DIC for missing data problems (Celeux et al.,2006). MCMC methods,

such as the Gibbs sampler, can be employed conveniently to produce posteriors for

parameters that are marginalized over latent spatial vectors. We computed the com-

plete DICS (Celeux et al..2000) by using the MCMC simulation results to get both

the measurement of goodness of fit and the number of effective parameters associated

with each models and used these statistics to select the most appropriate model. In

terms of our problem, we have to deal with latent variables to get a complete DICs.

In order to compute the complete DICs, Celeux et al. (2006) gave a definition

of complete data DIC, by defining the complete data estimator Ei)[19|y.q,t]. which

does not suffer from identifiability problems since the components are identified by

(q’, t’)’, the realization of the spatial latent vectors (Q’, T')’, and then obtain DIC for

the complete model as

DlCtyat) = -4Eol10s(p(y,q, t|0))ly,q.tl + 210g(r(y.q.t|E0l19|ytqa tl))- (324)
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As in the EM algorithm, we can then integrate this quantity to define

DIC EQTlDIClll/«QlelUl

= —4Eu.Q.Tl10g(P(U Q, T|0))|;Ul + 2EQ.Tl10g(P(U Q, TlEi-JWIU Q. Tl)l|Ul-

(3.25)
II

More. specifically, notice that

aQTl10s(P(U Q Tltllll‘Ul: Eu {EQ(ETlP(10s().~U Q TM) |U QWIU 19 )IU }

—E.) {ET(EQl10s(I(.U Q Til”) |;U T I9HU l9)|)IU}

(3.26)

also

l()g(p(y. Q Til”) I Zijm{Ql'jm10g(fljmp(Tl'NlIZWN}

(3.27

+ Zi,j,n1.k{(1')le7110g(p"1(yz_j/\|Qljnl_'— 1 Ti}.k(m)-6>)}a )

where pm(yljjk|QZ-Jm 2 lvTi.k(m)19) is given in (3) and p(T,-.,,,|ZTY’3) is given in (6).

Interchanging the order of Q and T in the integrations by Fubini‘s theorem , we can

have

Er).Q.Tl10g(/(3J~Qa T|0))|Ul

= E.) {ErtEQllosUtUQ.TlU))l.U- T: Ulllth’HU}

: Er) {ET(Zi.j.m {EQ(QiJmi!/~Tiu)103(7rjmplTimlsznD} ll/fllly

+E1) {ETizthmk {EQ(QIJIIIIy‘ T: (9) logllhnlyzjleijm : 1- Tim: 9”} lye 0)ly}

(3.28)

where Eq(Q,;J-,,,|g. T: U) is given as below:

fljllll)lll(ytin(jlll : 1~Ti17236)

.U , ‘

Zkzl let'IJA‘iylleijrlz : leikiB)

 
EQinJrnl!/~T3 U) : PlQifln : ll.‘/~T3 0) :

with

k
.

I)II1(!/iJlTinz36 =HW<llzjleijr712 1 Ti},,k(m)v6),

and



EQ,:rllOg(p(U Q~TIEUWIU Qle111t/l

: ET {EQ[log(p(y, Q, TlEfijfijlev T111191} A

2 ET {Eu/2m {EQiQiJmiwaifi)10g(7'F/]7"-p(T1m|ZIYQ))}
Ill}

+ET{Zi.].rn.k{EQiQiJnilU-T:1;)1093(1)?”(.Uz'jleiJm= 1» Tim's 6”} ly}

(3.29)

where 0, {7717, : J 2 1, J. m. 2 1.111}, if? : m 2 1,...,111},éa1'e posterior means

of 0, {71an :J2 1, J,m 2 1,...,M}, {$3173 : m. 2 1, ...,M},0 correspondingly.

All the integration can be obtained routinely by Monte Carlo integration approx-

imation using the MClVIC posterior samples in the coda file of W-inBUGS.

Spatial symmetry hypothetical testing

The spatial symmetry property in our problem means the. joint caries experience pre-

sentations for response variables at quadrant level are highly associated with one an-

other. Dentists do believe that spatial symmetry exist. in mouth. Lesaflre et al.(2006)

showed empirically that the caries experience for left and right quadrants are more

strongly associated than the other cases. Unfortunately, few literatures have discussed

this issue comprehensively. The mixture of generalized latent variable models pro—

vides a way to examine the spatial symmetry of the four quadrants in terms of joint

caries experiences. Under the mixture model, if there are two quadrant-wise binary

response vectors yU 2 (,zjifl,...,gJ,-jk,....y,fl,r)’ and yU-I 2 (yiJ’1"“‘yij’k’”"yij’K),

who have the exact joint probal;)ilistic behaviors, then the mixture component

allocation processes will always assign the two binary response vectors to the

same mixture component. Specifically, the mixture component allocation processes

211:1 P(Q1Jm = Qij’m 2 lly) 2 1. Hence, the strength of the sin'iilarity of two

quadrant—wise responses vectors that. is defined by SJ-J" say. the J'HI quadrant and
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the fill quadrant, can be measured by the below quantity

nM

51]., Z 1 Z Z P(Qijm E Qty/m. = lly) (3-30)

TL 121 772.21

Hypothetical testing for pairwise comparisons among spatial association strength

parameters.

In order to assess the spatial syn'imetry of the four quadrants, we need to in-

troduce (.lill'erent ”Neighborhoods” relationships that can explain the relative spatial

structures of the quadrants of interest. Spatial syn'nnetry is assessed at the quadrant

level, instead of tooth level. At quadrant level. We define the vector of teeth to be

”Horizontal Neighlmrs” to each other, if the two quadrants are both in either ”Up-

per Jaw” or ”Lower Jaw”, and to be ” Vertical Neighbors” to one another, if the two

quadrants are both in either ”Left Jaw” or ”Right Jaw” and to be ”Across Neighbors”

to one another, if the two quadrants are either in ”Left Jaw” or ”Right Jaw”. The

assessment of quadrant spatial symmetry in terms of cries prevalence will be based

on ”Left—right”, i.e., Horizontal Neighbors”, ”Up-down”, i.e.,” Vertical Neighbors”

and ”Across”, i.e.. ”Across Neighbors”.

There are two ways to assess the spatial symmetry among quadrants in terms

of caries prevalence incidence through statistical hypothesis statement. The first

one is based on the so called ”overall” spatial symmetry assessments via a weighted

statistic and the second is the so called ”specific” spatial symmetry assessment that

is the direct comparisons of the spatial symmetry measurements.

First of all. the weighted statistics for assessing the overall spatial associations in

terms of ”Left—right”. ”Up—down” and ”Across” can be formulat ed as below:

1

SLR = 5(356 + 578);

l

SUD = 72’(867 + 3.58):

69



1

SA = §(568 + 557)-

The statistical hypothesis testing about the overall spatial association in terms

of ”Left-right” V.S. ”Up—down”, ”Left-right” V.S. ”Across” and ”Across” V.S. ”Up-

down” can be formulated as follows:

(I) Left—right l-"ersus L’p—doum

H0151]; = SUD VS. Ha I SLR # SUD; (3.31)

(2) Left-right Versus Across

HOZSLR=SA v.3. IJaZSLR?é SA; (3.32)

(3) Across Versus Up-down

H0 2 SA = SUD V.S Ha. 3 SA 35 SUD' (3.33)

Secondly, if the assessment is based on the direct comparisons of spatial syn‘imetry

measurement, there are twelve possible hypothesis testing situations for the spatial

symmetries in terms of partial correlation between quadrants.

(1.1) Left-right Versus Up-down The association between quadrant 5 and quad-

rant 6 V.S. the association between quadrant 6 and quadrant 7, with quadrant 6 as

reference.

H0 : S56 = 867 v.3. Ha : S56 7é S67; (3.34)

(1.2) Left-right Versus Up-down The association between quadrant 5 and quad—

rant 6 VS the association between quadrant 5 and quadrant 8, with quadrant 5 as

reference.
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H0 2 S56 = 558 VS. Ha : S56 75 S58; (3.35)

(1.3) Left-right Versus Up—down The association between quadrant 7 and quad-

rant 8 V.S. the association between quadrant 6 and quadrant 7, with quadrant 7 as

reference.

H0 : S78 = 867 VS. Ha : S78 # 867; (3.36)

(1.4) Left-right Versus Up—down The association between quadrant 7 and quad-

rant 8 VS the association between quadrant 5 and quadrant 8, with quadrant 8 as

reference.

H0 2 S78 = S58 v.5. Ha : S78 75 558; (3.37)

(2.1) Left—right Versus Across The association between quadrant 5 and quadrant 6

VS. the association between quadrant 6 and quadrant 8, with quadrant 6 as reference.

H0 3 556 = 868 VS. Ha 2 S56 72 868; (3.38)

{2. 2) Left—right Versus Across The association between quadrant 5 and quadrant 6

VS. the association between quadrant 5 and quadrant 7, with quadrant 5 as reference.

H0 : S56 = S57 v.3. Ha 1555 75 S57; (3.39)

(2. 3) Left-right Versus Across The association between quadrant 7 and quadrant 8

VS. the association between quadrant 6 and quadrant 8, with quadrant 8 as reference.

H0 : s78 : 568 vs. H, 1578 s 568; (3.40)

(2.4) Left-right Versus Across The association between quadrant 7 and quadrant 8

VS. the association between quadrant 5 and quadrant 7, with quadrant 7 as reference.
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H() I S78 = S57 VS. Ha I S78 74 57: (3.41)

(3.1) Across li’txrsus t'p—douru The association between quadrant 5 and quadrant 7

VS. the association between quadrant 5 and quadrant 8, with quadrant 5 as reference.

H0 2 S57 = S58 VS. Ha 2 S57 7é 858; (3.42)

(3.2) Across Versus Up-down The association between quadrant 5 and quadrant 7

V .S. the association between quadrant 6 and quadrant 7, with quadrant 7 as reference.

HO : S57 = S57 V.S. Ha 2 S57 75 867; (3.43)

(3.3) Across Versus Up—do'wu The association between quadrant 6 and quadrant 8

VS. the association between quadrant 5 and quadrant 8, with quadrant 8 as reference.

HO 2 Sm; = $58 VHS Ha I 868 f 558: (3.14)

{3.4) Across l""ersu.s Up-(z’ourn. The association between quadrant 6 and quadrant 8

VS. the association between quadrant 6 and quadrant 7, with quadrant 6 as reference.

HO : 568 2 S67 VS. Ha I 568 79 S67. (3.45)

Simultaneous credible intervals

Pairwise spatial synnnetry hypothesis testing is based on credible intervals for the dif-

ferences between two partial correlations corresponding to two different nodes (quad—

rants) in the UGGM. In Bayesian statistics. a. credible interval is a posterior proba-

bility interval. used for purposes similar to those of confidence intervals in frequentist

statistics. Suppose that paran'ieter q is of interest, a (1 — (1)10070 credible interval
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for the parameter c of interest. is any set C such that RINK/1k E C) 2 l -— (i, where

7r(c|y) is the posterior distribution of parameter g given the observed data y.

Since we are performing a multiple spatial symmetry comparisons among quad-

rants in terms of all possible hypothesis testing situations, it is necessary to give a

simultaneous credible regions (Besag et al. (1995)) to control type S error rate (Gel—

man 61 al.), i.e. the similar concept as type I error rate in frequentist’s framework.

The 100K/M”/0 simultaneous credible regions is based on order statistics (Besag et

a1. (1995))

{[(s, — 5,1)W“—’*l, (s, — s,,)li*l] : (1,11) 6 Neighborhood},

where

1* :111i11{1;#{(51_SH)l-'V+1—’*l g (s,~s,,)(’) g (s, — s,,)l’*l} 2 K}.

and {(S, — 311)“) : t 2 1.....;l-1.(I,11) E Neighborhood} are the posterior

samples of {(51 ~511) : (1,11) E .N’eighborhood}. Here, Neighborhood 2

{(”LR”,”UD”),(”LR”,”A”),(”A”,”UD”)}.

Similarly, the IGOR/111% simultaneous credible regions for specific spatial associ-

ations difference are given by

{l(S11/ — Sj]’)[”\[+1_t 1‘ (811’ — 8.1.1,)“ 1] il7é1’,j#j’,(1,lt,)#(j.]l),l,j:1,...,J},

where

1* : 11)i11{1‘, ; # {(51.11 _ Sjj,)(411+l——f*} S (Sn-I _ Sjj’)f_1) 3(511’“ Sin/VFW} 2 IV},

Ellltl {(511, — Sjj’)(’) :1 : l....,1)1,’17é1/j#jl(l1/)7é (1],)1‘1: 1,...,J} arethe

posterior samples of {(SU-I -- SN") : 2' 75 i’.j 75 J’. (1'. 1") 2 (J,J'),i,j 2 1, J}.



Table 3.1. Prevalence of caries experience(% affected) in the deciduous dentition of

6,7.8-year—old children 1121.351.

 

 

 

 

 

 

 

tooth 55 54 53 52 51 (j 61 62 63 64 65

Prevalence 8.92 5.20 0.74 3.72 7.31 (1 7.06 2.23 1.86 5.20 8.55

tooth s5 s4 83 82 81 [j 71 72 73 74 75
 

Prevalence 10.78 13.75 1.12 0.74 0.37 H 0.37 0.37 0.37 11.15 9.67
 

 

3.5 The Signal Tandmobiel Project Example

In the Signal-Tandmobiel project, there are 4.468 schoolchildren who were among

6.7.8-year—old, (born in 1989) from 179 schools in Flamglers (Belgium) and were se-

lected by a stratified clustered random sample. The mean age of the children on the

day of exaniim‘ttimi was 7.1 years (SD 2 0.4). The 15 strata were obtained by corn-

bining the 3 types of educational system (public, municipal and private schools) with

geographical areas (the 5 Flemish provinces). The schools represented the clusters.

This sample represents about. 7% of the corresponding Flemish population. The sam-

pling procedure aimed at selecting each child in Flanders with equal probability. A

more detailed description of the design of the Signal-Tandmobiel project is reported

in Vanobbergen el, (11. (2000).

3.5. 1 Primary results

The [mpulation prevalence data of caries experience in the deciduous dentition at the

tooth is shown in table 1 for the 6.7.8-year-old children. The (‘lescriptive observations

suggested a symmetrical distribution of caries experience at the population level.

In Vanobbergen cf (11. , the Null hypothesis of population symmetry at tooth level

was tested for all deciduous molars. The results are shown in table 2.

The above result shows that it. is left-right spatial symmetry is the most notable.
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Table 3.2. Odds ratios and 95% confidence intervals for the 2x2 association models

for caries on deciduous molars on tooth in 7-year-old children.

 

 

First Molar (ALR model)
 

 

 

 

 

 

 

 

54 64 74 34

54 16.48(13.75-19.74) 817(691-964) 723(613-853)

64 7.61 647-8 97 7.18 6.10-8.44

74 22.82(19.28-27.00)

Second Molar (ALR. model)

55 65 75 85

55 1547(1309—1828) 8.78(7.52-10.27) 9.23(7.90-10.79)

65 8.08(6.92-9.42) 8.86(7.58-10.35

75 20.37(17.20-24.11)
 

 

Decayed teeth of discordant contralateral pairs tend to aggregate on the right or the

left side of the subject’s mouth than would be expected by chance alone (Vanobbergen

et al.(2006)).

Zhang cl al.(2007) proposed a Bayesian generalized latent variable mod-

els(BGLVMs) that is a complete likelihood approach for analyzing the dental data

and gave a 95% simultaneous credible intervals, in table 3, for the differences of the

partial correlations, which are used to measure the association strength among differ-

ent nodes (quadrants). The simultaneous credible intervals for the spatial symmetry

testing situations are given as follow.

The above result also shows that the spatial symmetry. in terms of the caries

prevalence. between left and right quadrant“. is stronger than the ones either between

ripper quadrant and down quadrant or across quadrants.

3.5.2 The results from our approach

Now we show how the above methodology works for dental data and need to spec-

ify all the functions and general notations. In our study, all of the responses
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Table 3.3. Credible intervals of spatial association strength comparisons based on

BGLVMs and UGGM with unstructured covariance structure

 
 

Simultaneous Spatial Effects , _

Credible intervals
 

left/righ .v.s. across

 

 

 

 

 

 
 

 
 

p56 — p68 (0.134, 1.581)

p56 - p57 0.394, 1.711)

p78 — p68 (0.237, 1.589)

p78 - p57 (0.433, 1.728)

left/righ .v.s. upper/down

p56 — p57 0.235, 1.551)

p56 — P58 (0.117, 1.485

p78 - p67 0.230, 1.601

P78 — p58 (0.215, 1.504

across .v.s. upper/down

p68 — p67 (-1.303, 1.313)

P68 — p58 (4.327, 1.204)

p57 - p67 -1.442, 1.109)

p57 ‘1’58 -I.488, 1.042)

DIC 593.300

N.burnin 1000

N.interation l 1000
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are binary, so we have the following: (1.1(30) 2 1, b,(q,,.,,k) 2 log(1 + exp(77,-mk)),

. a _. . _ .- .r .. _ . , __ exp(r)j '1 ,

Ci<91jk~v1 _ 2 a 9(1') __ l0g(1-:7). *Elyijlesz __ lvrlzmkl ‘—W for

k. 2 1,...,5,m 2 1,...111,j 2 1,...,4.2'. 2 1,...,71. Hence, the parameters of interest

in the observational model is 6 2 (77’ o’ 3'), and 5 2 E-l((V1 7" TINY)' -’ ( ./ . 3 ,' HTlH" T,..., T ,

then 1)(yijleij172 Z 11’1z'rnkw99) Z prri(yijleijm Z 1,717ka and logpfyijleijm Z

1: 7177711.?) Z log P(yijleijrri. Z 1» Tim: 6) Z murkyijk _ 10g(1 + efonimkn- The canoni'

cal parameter {mm/C : k 2 1, .., K, m 2 1, 11.1.7 2 1, n} is defined as follows:

’117711.‘ Z an). + 3k T Ti.k(m)- (3'46)

Priors for parameters of interest are given by noninformative proper conjugate pri-

ors. which will give comparable results as frequentist 's when sample size large enough,

in which case the sample can provide enough information for parameter estimates and

prior information will be washed away, also conjugate priors will make the posterior

proper if the prior is proper, in which case the Gibbs sampler can efficiently pro-

vide the appropriate posterior samples from the target posterior distributions. More

specifically. the priors are given as follows:

Trj : (Tl-J31‘ "" 7111.772.) "'3 ”13111)IN DerCtht(”19)' j = 1’ H" J, (347)

where (,9 is a M-dimensional vector of ones with M being prespecificd, and

(in) N 1\f(0,1000), 171’ I 1, ...,1‘[, (3.48)

and

3,. ~ .v(0.1000); 1:: 1. ....1. (3.49)

We assume the order restriction to the mixture component effect a, i.e.. ()1 S 02 S

, g ”M for the label switching problems with the mixture model. For identifiability

of the. generalized latent variable model, we assume 22:1 1‘31. 2 0. For the priors of

precision matrix, O‘Malley and Zaslavsky (2006) proposed scaled \Nishart distribution

as conjugate proper priors

*
1

\
1



,..-.- _ -1.. _ , ...
Fol the pi iois of thc precision matrix {fle — 2T,” . m — 1,...,.l[}, there are

two different models for the the structures of the precision matrix. (1) Unstructured

precision matrix, the. common noninformative conjugate proper prior is Wishart dis-

tribution, i.e.

if] z of,” ~ Wislm'rt((5 + 1). I): m = 1. M, (3.50)

where I is 5 X 5 identity matrix. which will give a noninformative conjugate proper

priors for the precision matric “Tm 2 2%1 ,m 2 1. A].
”I

(‘2) Covariance matrix with structure under CAR. model:

0,7,2 2 Tm ~ chnxrria(0.001,0.001); m 2 l, Al, (3.51)

and

pm ~ U(A;2%n,/\;llu). m 2 1, ...,.M, (3.52)

where {(73, : m 2 1, M } are the quadrant specific parameters for overall variability

and {pm : m 2 1, ...,M} are the quadrant specific parameters for overall spatial

effects. Arum. and AW”. are as defined in CAR models in section 33.2.

Our mixture of generalized latent variable models are implemented in WinBUGS,

using noninformative priors for the parameters of interest. After 1000 burn in, the

posterior inference is based on 11000 iterations. The model selection in terms of

number of mixture components at higher level and covariance matrix structure for

spatial latent vectors at intermediate level is based on DIC for missing data problem

(Celeux et al. (2006)).

Based on the above results from table (1)(7) for four different models, the poste-

rior ii‘iferences about the spatial similarity in terms of caries prevalence are roughly

similar, which is because all the models work fairly well. Bayesian model selection

is based on Dle of both of the models, the smaller the DIC, the better the model.

It is common that if the difference between two different models are more than 10
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Table 3.1. Credible intervals of spatial similarity comparisons based on mixture model

with 2 components and UGGM with unstructured covariance structure

 

 

Credible

intervals

(95 %)

 

(-0021, 0.194

(0.014, 0.229
 

@028, 0.236
 

)

(0014, 0.208%

)(0.000, 0.222

(0.007. 0.208)
 

Spatial

Effects

left/righ .v.s. across

5:50 — 5:68

5:36 — 5p?

578 2 508

373 — 557

left/righ .v.s. upper/down

556 — 307

3.56 - 5.58

S78 - 307

578 2 5:38

(0.014, 0.229)

(0.000, 0.215)
 

across .v.s. 111.)1.)er/(_lown

 

 

 

 

 

508 — Sb”? (—0.111, 0.097)

853 — 838 (-0.111, 0.0970)

S57 2 Sb"; (41.111. 0.097)

857 — 85,», (_-0.111. 0.097)

DIC 035.4100

N.burnin 1000

N.interat ion 11000
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Table 3.5. Credible intervals of spatial similarity comparisons based on based on

mixture model with ‘2 components and UGGM with CAR model based covariance

structure

 

 

 

 

 

 

Spatial Credible

Effects intervals

(95 0/0)

left /righ .v.s. across

S56 — 568 (0.007, 0.208)

56 - 857 (0.042, 0.243)

578 —— 368 (0.021, 0.222)

S78 — S57 (0.050, 0.257)

left/righ .v.s. upper/down

S55 — SGT (0.035, 0.236)

8.30 — 355 (0.021, 0.222)

878 — 807 (0.019. 0.213)

V

578 - 558 hi035. (i220)
 

across .v.s. upper/down

 

 

 

 

 

808 -- 567 (41.101, 0.083)

Sag - Sgg (-0.10¥1, 0.081i

357 — 807 (0.104, 0.083)

857 — S58 (~0.10~"1. 0.083)

DIC 452.200

N.burnin 1000

N.interation 11000
 

 



Table 3.6. Credible intervals of spatial similarity comparisons based on mixture model

with 3 components and UGGM with unstructured covariance structure

 

 

 

 

 

 

 

 

 

 

 

 

Spatial ,Ciediblle

s in erva s
Effects (95 (70)

left/righ .v.s. across

356 — 568 0.007, 0.188

856 — 357 0.035, 0.215;

378 - 368 (0.007, 0.188)

378 - S57 (0.035. 0.215)

left/righ .v.s. upper/down

856 — 867 (0.028, 0.208)

8:30 — 5:38 (0.014. 0.195)

S78 SOT (0.028, 0.201)

578 — 358 (0.014. 0.195)

across .v.s. upper/down

568 — 567 (-0.090, 0.076)

808 — Sag (-0.090, 0.076)

557 — 367 (—0.090, 0.0763

357 - SS8 (-0.090, 0.076

DIC 537.500

N.burnin 1000

N .interat ion 1 1000
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Table 3.7. Credible intervals of spatial similarity comparisons based on based on

mixture model with 3 components and UGGM with CAR model based covariance

structure

 

Spatial

Effects

Credible

intervals

(95 ‘70)

 

left/righ .v.s. across

(0.014, 0.215)

(0.042, 0.243 

J

left/righ .v.s.

556 2 368

556 2 557

378 2 568

2 3.57
‘ upper/down

@1035. 0.229

(0.056, 0.250)

    

S56 — 867 0.042, 0.243

556 —— 55.8 0.021, 0.215

578 - 867 0 056, 0 257

378 2 85.8 0 035, 0 229

  

 

across .v.s. upper/down

568 2 367

S — S

(-0090, 0.097)

 

 

(—0.090, 0.097

57 - 67 {-0090, 0.097;

S57 — 558 —0.090, 0.097

DIC 348.600

N.burnin 1000

N.interation 11000
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then the model with smaller DIC is the better one. Hence the model (shown in table

7) with 3 components and CAR model based covariance matrix for the correspond-

ing spatial latent vectors is more appropriate than the other models for the observed

data. Specifically. at higher level. the quadrant-wise response vectors follow a mixture

model with 3 components, and were assigned mixture label for each response vectors

by its mixture component allocation process. Conditional on the mixture label, at

the intermediate level, the Gaussian spatial latent vectors, modeled by UGGM with

CAR model based covariance matrix, were introduced to specify the corresponding

mixture con'iponent. It's noticeable that our model tried to account for the hetero-

geneity from the dental data hierarchically in two parts. The first part is through

the. mixture of flexible I‘nultivariate distrilmthms. which gives much more. flexibility

for the distributions of the quadrant-wise response vectors than what was done in

BGLVM (Zhang et al. (2007)) at the quadrant level. The second part is through

the generalized latent variable models that, is similar to what was done in Zhang’s

et al.(2007) at intermediate level. The choice of the model is reasonable, since the

mixture model can take more than enough heterogeneity from the quadrant-wise re-

sponse vectors. which makes the intermediate level Gaussian spatial latent vectors

with CAR model based precision matrix structure sophisticated enough to explain

the left heterogeneity of the dental data. Based on the chosen model, the conclusion

of the hypothesis testing about spatial symmetry among quadrants is as follows: (1)

Left-right spatial association relationship is the strongest, which is shown in terms

of 95%. credible intervals of the differences between left-right. and across and the dif-

ferences between left-right and tip—down with lower bounds are all positive. (2) The

difference of spatial association between across and tip-down is not significant at type

S error rate between 0% and 2.5% (Gehnan (2000)), since the 95% credible interval

of the difference between across and up—down includes zero.
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3.6 Discussion

In this paper, we propose a flexible class of Bayesian mixture of generalized latent vari—

able models for multivariate spatially correlated binary data with multi-level nested

covariance structure. Our approach is to model the response variables in a hierar-

chical structure. At higher level, we model the quadrant-wise response vectors by

a mixture of generalized latent. varial_)le models. At intermediate level, the response

variables within quadrants are assumed to be from the canonical exponential family

with the canonical parameters modeled by the generalized latent variable models.

Meanwhile we imposed a multivz-u‘iate spatial correlation structure on the latent vari-

ables. which induces the spatial correlation structures among the teeth within the

same quadrant. Statistical inference is based on the posterior distributions of the

parameters of interest. The spatial symmetry among quadrants is assessed by the

similarity score defined in (31‘). There are two considerations in the model specifica-

tions. The first one is that we used the order constraints for the component marginal

means to deal with the label switching issues for the Bayesian mixture model. The

second consideration is the parameterizations for generalized latent variable models.

For the identifiability of the model, we use sum to zero constraint fixed effects for

the tooth position and assume spatial process has mean zero. Noninformative conju-

gate priors are applied for the parameters of interest. which will give a. comparable

inference results to the frequentists as the sample size increases. “7e proposed four

models to account for both number of mixture component at higher level and the

covariance structure of Gaussian spatial latent vectors at. intermediate level. The

choices of the number of mixture component and covariance structure are based on

DIC for missing data problem. Spatial hypothesis about the spatial symmetry of

quadrants is based on simultaneous credible intervals for the differences of pairwise

similarity scores of interest. The results from our model show the mixture of gener-

alized latent variables models work fairly well and also comparable to the results in

(
X
)

.
.
;
_
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existing literatures. It concluded that the left-right spatial association is the strongest

and the spatial associations for across and up-down are not different significantly at

type S error rate between 0% and 2.5% (Gelman (2006)). For the data example, we

have assumed that the mixture component allocation process {Qi : z' 2 1, ...,n} at

higher level and {Tim : m 2 1,111,2‘ 2 1, n} at intermediate level are sufficient

to generate flexible multivariate distribution and induce dependence among teeth to

account for the wide heterogeneities in the dental data. It would be interesting to

introduce different probability models to latent variables at both higher and inter-

mediate level. For instance, non-Gaussian latent process to model the underlying

spatial dependence among teeth, which can lead to a richer class of the latent pro-

cesses {Tim : m 2 1, ..., M,i 2 1, ...,n}. Finally, Other approaches for dealing with

label switching problems associated with Bayesian mixture model may be interesting.

It will be optimal when the model selection is simultaneous through either Reversible

Jump Monte Carlo Markov Chain (MJMCMC)(Green et al. (1995)) or Birth and

Death Monte Carlo Markov Chain (BDMCMC) (Stephens (2002)). It will be more

interesting to consider the symmetry pattern of quadrants for a longitudinal study,

which will lead to the spatial-temporal analysis.
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CHAPTER 4

Discussion and Future Research

4.1 Bayesian generalized latent variable models

We have described generalized latent variable models for analyzing multilevel spatially

correlated binary outcomes, i.e., the multivariate binary caries experience outcomes

from STM project, which is similar to the mixed model with random effects be—

ing two levels of Gaussian spatial latent vectors at both a quadrant level and tooth

nested within quadrant level. It is noticeable that our model is formulated in a hi-

erarchiciitlly dynamic structure which is not only feasible but also relatively easier

within Bayesian framework, when compared to Frequentist's approach where multi-

level dynamic model is either very difficult or infeasil.)le to formulate. The hierarchial

structure of our models specification makes our approach valid for the dental data

with n'iultilevel dependence among the subunits of interest. because it approximates

the way in which the multilevel correlated binary outcomes were generated. Our ap-

proach can be viewed as a graph with three. levels of tree structure. At the higher

level, there exists a quadrant. level Gaussian spatial latent vector that tights the four

quadrant—wise binary response vectors together to induce the dependence among the

(niadre‘mts and generate flexible multivariate distributicms for each response vector.



At this level, our model provides both fixed effects corresponding to quadrant location

and random effects presented by the higher level Gaussian spatial latent vector. Con-

ditional on the Gaussian spatial latent vector at quadrant. level. the quadrant—wise

response vectors are mutually independent. The joint probabilistic behavior of the

quadrant level Gaussian spatial latent vector is given by the UGGMS with mean vec—

tor of zeros and unstructured covariance matrix. At the intermediate level. there exist

four Gaussian spatial latent vectors that are nested within corresponding quadrants in

which the toot is located. In other words, the four intermediate level Gaussian spatial

latent vectors are characterized by quadrant index. Each of the four latent vectors

is used to tight the corresponding five binary caries response variables together to

induce the dependence among the teeth within the same quadrant and generate flex-

ible distributions for each response variable. At this level, our model provides both

fixed effects for tooth location and random effects. i.e., the intermediate level Gaus-

sian spatial latent vector nested within the. corresponding quadrant. that generates

flexible distributions for binary caries experience outcomes and induce the depen-

dence among the teeth within the same quadrant. For the model identifiability, it is

assumed that the Gaussian spatial latent vectors at. intermediate level are mutually

independent given the Gaussian spatial latent vector at quadrant level. Conditional

on the Gaussian spatial latent vectors at both higher and intermediate level, all the

binary response of caries experience in the. month are mutually independent. This

hierarchical model specification makes complete likelihood approach feasible. which

will improve the efficiency of the estimation of the model parameters. At the lower

level. a liner mixed model is specified to describe the log odds of the caries experience

for each tooth of interest. An important feature of our model is that it allows irreg-

ularly spaced multilevel measurements under different spatial configurations, where

the measurements are characterized by a hierarchical spatial dependence structure.

The common way to implement the generalized latent variable models is through EM



algorithm in frequentist’s framework. where the marginal likelihood is approximated

by using an adaptive Gauss—Hermite quadrature approach to numerically integrate

out the low dimensional latent variables in the model. For a high dimensional latent

variable models, a Monte Carlo EM approach is applied instead. It is known that

latent variable models are only locally identifiable and hierarchical models have corn-

plex structures, which lead to some consequences. i.e., local Optimizer and singular

information matrix. In order to obtain valid inference, we implemented our model

within Bayesian framework via WinB UGS, since Bayesian inference is always feasible

as long as the MClV’IC algorithm converges. Meanwhile, Bayesian makes it much eas-

ier to specify the hierarcl‘iial model than under frequentist’s framework. It is also easy

to incorporate missing data in WinBUGS through replacing ymissing by the posterior

sample from 1)(y,,,,,,,.,-,,glyobwrpedz 6). The in’iplement of the model is within Bayesian

framework via l‘lr’inBUGS with noninformative conjugate proper priors.

V'Vithout an obvious multivariate distribution for the hierarchically spatially cor-

related binary response variables. multilevel correlated latent variables can be used to

model the wide heterogeneity of the outcomes. Specifically, the dependence structure

among the Gaussian spatial latent variables, at the higher level, that are used to

induce dependence among four quadrants, is given by UGGMS with zero mean vec-

tor and unstructured covariance matrix. Similarly, the dependence structure for the

Gaussian spatial latent vectors. at the intermediate level, i.e., the four spatial latent

vectors accounting for the heterogeneity of teeth within the same quadrant, is given

by UGGMS with zero mean vectors and covariance matrix that is either unstructured

or structured under CAR model assumption, i.e., a Markovian type of covariance

structure with taking spatial configuration into account. For the identifiability of the

model. the two levels of spatial latent vectors are mutually in(‘lepende1‘1t with one

another. The model is specified as below:

At. the higher level, for the [Hi in the study. there exists a spatial latent. vector Q,- =
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(Q11, Qij, QU)’ that is used to induce the dependence structure among quad—

rants and generate flexible multivariate distributions, fj(-), j = 1, ..., J, for quadrant-

wise response vectors yi = (y;1,....y;j,...,y;J)' with yij = (yijl,...,yijk,...,y,jK)'.

The conditional joint multivariate distribution for the response vectors is specified as

J

ffyleiflEQ) = H fj(yilezfj;9, 2Q),

1:1

where the associations among the elements of Q,- are used to induce the associations

among the four quadrants.

At the intermediate level, for each quadrant 2', there exists a spatial latent vector

I - . - .
T,- = (Ti,1(j)v---~Ti.k(j)~.-~-Tz'..K(j)) that 18 used to induce the dependence struc-

ture among teeth nested within the jth quadrant and generate flexible distributions,

{fk(j)(') : k = 1, K},for binary response variable yijk- The conditional joint dis-

tribution for the binary response variables is specified as

. K .

fifyilez'sztjfl, $le = H fk(j)(yijleijaTi,k(j)i 9» >337)-

k=1

At the lower level, conditional on the higher level spatial latent vector {62,- : 2'. =

1, ...,n} and intermediate level spatial latent vectors {Tl-J- : j = 1,...,J,2' = 1, ...,n}.

The binary response variable yijk is mutually independent and from Bernoulli family

with probability of success Wijk = Pug-fl, = 1). That is,

(yijlez'jaYljk? 0,37) N Berno’uuiffiijk) l= fj(i)(yijle-ijvTi,k(j)i 9),

where

lo,qit(7r,jk|Q,1j,Ti‘kmz a, ,3, '7) = (Y + flj + MU) + Q1] + Tinj)‘

and 6 = (o, .3'. y')’ with constraints 2)];1 flj : 0 and 2:le 7km = 0 forj = l, ..., J.

Let Q = {C2, : '1? = 1,...,n} with Q, = {QU :j= 1,...,J} and T 2 {Ti : z' :

1,...,n} with T,- = {Tl-J- :j = 1,...,J} and Tij = {TI-£0) : k =1,...,K}. If the model

formulation is viewed as missing data problem where we treat Q and T as missing
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covariates that are used to explain the wide heterogeneity of dental caries experience

outeomes,then the complete likelihood is,

my,em 2a {2%) = f(le,T;6)p(leq)p(Tl{Z§~}) _

= 2:1 f(yilQi:Tii9)p(QilZQ)Hj=1p(Tijl2%‘)}

412;] 11321 easiest-j;apes-12%)}pea-12(2)}

= $21 H3121 Phil{fk(j)(yijlei’Tivk(j);6)}pmJIET)}p(Qf|EQ)}'

(4.1)

The distributions for Q, and Ti]- are given by UGGMS correspondingly as below:

Qt E3Q N NJ(0.EQ); i: 1,...,1‘1.

and

713,123; ~ Manx?) j = 1,...J,z' = 1,...,n,

where 2Q is unstructured and 2.31; can be either unstructured or CAR model based.

Other consideration for parameterizations of the fixed effects 6’ and the probabilis-

tic descriptions about the spatial latent vectors {Tz-j : j = 1, ..., J,i = 1, ..., n} may be

chosen differently. However, as it can be expected, the results of the inference would

not be affected substantially(Agresti(1997)). The model selection is based on DIC for

missing data problems(Celeux, et al.(2006)). The optimal model selection needs to

be based on RJMCMC(Green et al.(1995)) or BDMCMC (Stephens (2000)), which

is essential a simultaneous model selection at each iteration of the MCMC posterior

sampling algorithm.

4.2 Bayesian mixture of generalized latent variable

models

Besides the generalized latent variable models, a finite mixture of distributions is

another way to model response variables with wide heterogeneity. Finite mixtures

of distributions are mathematical-based approaches to the statistical modeling of a
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wide variety of random phenomena. They have been known as an extremely flexible

method of modeling. The usefulness of finite mixture distributions in the modeling

of heterogeneity in cluster analysis context is obvious. iVIixture model provides a con-

venient semiparametric framework in which to model unknown distributional shapes,

whatever the objective, whether it is density estimation or the flexible construction

of Bayesian priors. Mixture, model is also able to model quite complex distributions

through an appropriate choices of its con'iponents and number of mixture components

to represent accurately the local areas of support. of the true distribution. It can han-

dle situations where a single [')arametric family is unable to provide a satisfactory

model for local variations in the observed data. In our approach, we assumed that

each of the four quadrant-wise response vectors was from one of a certain number.

say. I 3 :1! S 4. of multivariate distributions with corresponding probability. The

.11 multivariate. distributions are characterized by M different situations which can

accurately represent the corresptmding local heterogeneity of observed binary vector.

A convenient semiparametric way to incorporate the variability among these four ob-

served quadrant-wise response vectors is to formulate their distributions uniformly

in the form of a mixture of these M multivariate distributions. Specifically, the M

multivariate distributions corres1')ond to .le underlying subgroups 0r subpopulations

that where the four quadrant-wise response vectors are supposed to be able to iden—

tify if the subgroups actually exist: and each of the .1! multivz-iriate distribution is

corresponding to one component in the mixture model.

Mixture model can be viewed as missing data problem where the mixture compo-

nent allocation process is latent. The latent process allocates each of the quadrant-

wise res1‘)onse vector. yij to one of the. mixture components. say, the 'mth. component,

which means yU- can be characterized by the local situation. i.e., in terms of hetero-

geneity of the observed vector. associated with the III/h underlying cluster. Hierarchi-

cally. at higher level. for the ill) subject, there exists a mixture component allocz-ition
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latent process, Q1: (1 :1, ...,ng,... ,QAJ)’ with

- ., . » I . .

sz = (Q1111 ~-~Q1‘jm1 ""Qij.’\[) N Malta-”(1. (W111.--17TJ‘M) ), J 21,...,J,2 =1,...,n,

which means

(Uilez’jn-i = 1) ~ fluff/Ufa)-

The complete distribution can be given as below:

J M

ffyilQi 7T 9) = H H {ijfmf'yzleijm =119llejm - (4-2)

jl: m=1

At the intermediate level, for the mih component that is a multivariate distribution,

there exists a Gaussian spatial latent vector Tim = (T1,1(rn.)i TiMm)? TA,K(m))I N

.\’1\'(0, Z’T” ), which is used to generate flexible distribution for the K binary response

variables that is from the exponential fan’iily (McCullagh and Nelder et al.) and

induce the dependence among the J variables. At lower level, conditional on the

allocation process and Gaussian spatial latent vectors, the conditional distribution

for the binary caries experience outcome 9sz is given by

(yijAlejm— 1. TMHA,”:6) ~ BernUogitl (17,",A)) A: fAHm f.Uszlej/71_— 73111177010)”

where IAA,,,A.-—— (1m +— 3A + TMMW) and 6 = ((.i'. .3')’. with constraints (i1 S 02 S, -, -, -, <

0‘!” and 2,9:1 Jk : 0.

Let Q I ((23. Q’A, Q;,)’ and T = (T’, T-’, T,’,)', then the complete likeli-
2

hood is specified as

f(y1Q.'T|7r191{E”’}) = H111 {1121—1 {mfmtya T111119» {Z$}>}Q"j”"l

=l—l1:1ll'f:1{ 23:1 {fljmf{HA-z 1fA((.)m)(yzjk TLA (m)MW}Timlzm)}Qijm}

(4.3)

The model structure has two uncertainties from both mixture model at the higher

level and generalized latent variable models at intermediate level. At the higher

level, the number of mixture components is left. unknown. At intermediate level, the
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covariance matrix, {2’11” : m = 1,1'1/1},for the generalized latent variable models

can be either unstructured or CAR model based. The appropriate model needs to be

determined by formal model selection criterion based DIC for missing data problem

(Celeux, et al.(2006)). The implement of" the model is within Bayesian framework via

WinBUCS with noninformative conjugate proper priors.

Other consideration for parameterizations of the fixed effects 0 and the prob-

abilistic descriptions about the spatial latent vectors {Qi : 2'. = 1, ..., n} and

{TA-J : j = 1, .],2'. : 1, ...,72} may be chosen differently. However, as it can be ex-

pected, the results of the inference would not be affected substantially(Agresti(1997)).

The optimal model selection needs to be based on RJMCMC(Green et al.(1995)) or

BDMCMC (Stephens (2000)), which is essential a simultaneous model selection at

each iteration of the MCMC posterior sampling algorithm.

4.3 Missing data

In biomedical research. missing data problem is common and there are lots of liter-

atures with different approaches discussed in this area. but still the methods are not

mature enough yet. to handle general situations. Our model were built from the fea-

tures of the dental data at hand, they have general applications to situations where

multilevel discrete data recorded were spatially. The models were implemented via

l’l’riTlB UGS that allows missing values in the data set. What WinBUGS does to miss-

ing values is to replace the missing data by the random sample from its posterior

distribution p(y,,,A-55A,,glyobsermd; 6), which is essentially assumed that the missing is

at random, i.e., the missing mechanism is noninformative. However, the missing data

is very likely informative, since the teeth within the mouth share the same biological

environment. In the presence of the informative missing data, our models need to be

extended accordingly. In the futures work, we need to extend the model by incorpo-
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rating the informative missing mechanism in a dropout process that is a parametric

model for making inference about the missing values in the data set. The process for

modeling the dropout pattern is problematic because the parameter that relates the

measurement and the drOpout process, say, A, is always unidentifiable from the data

at hand. Non-identifiability of the model always yields difficulties in the numerical

optimization because of either flat. or multimodal likelihood and singular informa-

tion matrix, which makes the statistical inference infeasible in the frequentist’s frame

work. Under the Bayesian frame work, the statistical inference is always available as

long as the MCMC algorithm converges that are used to sample the posterior samples

of the the quantities from their proper posterior distributions that are related to the

data at hand.

Bayesian approach for dealing with the informative missing data is known as the

selection model (Arminger et al., 1995), which requires the terms representing the

non-response mechanism be included explicitly in the likelihood. Best et al.(l996)

discussed the selection model for informative non—responses in a study of dementia

and cognitive decline in the elders. They viewed the full model as two submodels;

one representing the substantive relationship of interest and one reflecting the missing

data process, with the possibly unobserved response variable representing the com-

mon link between the two submodels. Such a model may be readily expressed as

a directed conditional independence graph, thus leading itself to Bayesian inference

using MCMC approach. However, there is considerable current interest in the topic of

informative drop-out(Diggle and Kenward (1994)) in which some argue that any at-

tempt to learn about the selection mechanism will be heavily dependent on modeling

assumptions, and that it is preferable to conduct sensitivity analysis to alternative

plausible mechanisms. Meanwhile, the MCMC approach can easily provide predictive

distributions for any variable of interest and. unlike approaches based on maximum

likelihood or empirical Bayes. the MCMC predictions fully account for uncertainty in
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both the model and the parameter estimations. Since the data often can not provide

much informatiim for estimating the parameters of the models for non—response mech-

anism, informative prior distributions for the parameters of interest in the selection

models are used to facilitate the posterior sampling algorithm based on MCMC. So

sensitivity analysis for the priors in the selection model is essential for the validity

of the Bayesian analysis for model the non-response. mechanism that is incorporated

explicitly in the likelihood.

The future work will intend to develop a more general statistical procedure for

assessing the sensitivity for both the non-response mechanism learning process and the

informative priors used in the selection models. The procedure may be based on either

different model selection criteria, for instance. DIC for missing data problem and

posterior predictive checking. or dynamic algorithms based on RJMCM (Grecn(l995))

and BDMCMC (Stephens (2000)) for simultaneous model selection and parameter

estimations.

4.4 Comparison between frequentist and Bayesian

It is well known that many standard statistical methods can be justified by both

Bayesian and frequentist arguments. However, even when there is only one un-

known parameter, there is a wide class of problems for which no Bayesian method

can be found which satisfies the basic frequentist criterion (Bartholomew (1965)).

Bartholomew raised two important. questions in the comparisons between Bayesian

and frequentist when discrej‘mncy arose. The first one is the practical question of

whether the discrepancy between the two approaches is ever such as to lead to widely

differing conclusions. The second is concerned with the reason for the two approaches

to inference giving different results in some cases but not. in the other. The two ques-

tions is also of great interest to be addressed in our future work. The starting point



for this work will be considering the differences in the statistical thinking of the two

statistical schools. For instance, suppose the observations y = (y1, yi, yn)’ on a

continuous random variable with density function f (ylfl) and consider the Bayesian

and frequentist solution to the problem about making an inference about 0.

The Bayesian first specifies a prior for 6 then combining this with the likelihood to

obtain a posterior distribution which enable people to make a probability statement

about 6 of the form

Pfé S gaff/Hy) = 0b (4-4)

where ob denotes a degree of belief. The major problem for Bayesian is to select a

prior density 7r(0) to express his ignorance about 9. Kass et al.(1995) reviewed several

methods for determining a suitable prior distributions for the parameters of interest.

For instance, based on Jerreys's rule, if we are ignorant about 0 then we are ignorant

of about any function of 9. This leads to him to formulate the invariant principle,

i.e., 7r(t9) cc [(6) where [(6) is the Fisher’s information function.

The frequentist who wishes to make a statement of the form (6.10) is precluded

from treating 9 as a random variable as it was treated by Bayesian. He must try to

find a statistics 6(y) such that

P09 g @IO) = Q] (4.5)

where of indicates the probability is to be interpreted in a frequency sense. The

frequentists ignorance about 6 is expressed by the fact. that of is independent of 9.

The statement 9 S 6A,(y) is thus true in the long run with probability (if for any

sequence of 6's. In general, there are many functions 6(3)) satisfying (6.11) and the

frequentist‘s problem is to choose one of them. It may be possible to choose 6( y) such

0(y)

/ pt9ly)d9 = a
-30

that

W'here p(9|y) is the posterior density of 6 for some prior 7r((-}). If the statistics 6(y) is
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chosen in the way (6.11) is true, we say the Bayesian inference in (6.10) has frequency

or confidence property. Under these circumstances, the Bayesian and frequentist

approaches are said to agree. Welch et al. (1963) gave the following necessary and

sufficient conditions for agreement.

(1) It must be possible to write f(y|6) in the form f(s —— 7') where s and 7' are

monotonic functions of y respectively and with —oo < 7', s < oo.

(‘2) The prior density of 7' must be uniform over the real line.

In large sample size, it is known that the influence of the prior 7r(6) for parameter

6 on the form of the posterior density [)(6ly) diminishes as 'n, —> 00. This means

that, under very general conditions. Bayesian statement of (6.10) has the confidence

property in the limit as 'n. —> 00 and the approach to agreement is more rapid with

n if 7r(6) oc «1(6). Gelman et. al. (2004) discussed the asymptotic normality and

consistency of the posterior mean and median. Under some regularity conditions,

i.e., the likelihood is a continuous function of 6 and that 60, the true value of the

parameter, is not on the boundary of the parameter space, as n —+ 00, the posterior

distribution of 6 approaches normality with mean 60 and variance (n1(60))_1, where

[(60) is the Fisher inforn‘iation evaluated at 60. In the limit of large n, the posterior

mode. 6, approaches 60. and the curvature (observed information) approaches n1(60).

\‘Vllt‘ll the truth is included in the family of models being fitted, the posterior mode,

the posterior mean and median. are consistent. asyinptotically unbiased and efficient

under mild regular conditions (Gelman ct. ul.(2001)).

\Vhen sample sizes are small. the prior distribution is a critical part. of the model

sp<—>cification. It can only be a serious discrepancy between Bayesian and frequentist

methods if the density f(y|6) does not satisfy Welch’s condition (1), if the sample

size is small, or possible. if it is determined sequentially. Bartholomew raised two

objectives for the comparison between the two approaches. The first object is about

the. extent to which Bayesian and frequentist statement of the form (6.10) and (6.11)
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may differ in small samples. The second object is the reason for the differences which

occur and how they may be avoided. Lee and Song (2006) did a simulation study,

which showed Bayesian inference for hierarchial models with small to moderate sample

size has a better performance than frequentist’s.

Bartholomew (1965) pointed three conclusions in terms of the agreement between

Bayesian and frequentist. (a) For shape parameter in gamma distribution, Bayesian

interval estimates gave good agreement even if sample size is one; for restricted lo-

cation parameter and exponential mean the agreement was not so good, but can be

in'iproved by an appropriate chosen confidence interval. i.e, either ”shortest interval"

or ”equal tails”. (b) Coverage probability of a two-tailed Bayesian interval estimate

depends on not only prior but. also the way that. the interval is chosen. (c) Agreement

may be achieved by using a sequential rather than a fixed sample size experiment

design. The numerical magnitude of differences between frequentist and Bayesian

methods of inference can be practically related to (a) and (b). The reason for the dis-

crepancy is given by (c). He also conjectured that agreement can be always obtained

if a correspondence is established between the Bayesian’s apprOpriate choice of prior

distributions and the frequentist‘s choice of sampling rules.
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APPENDIX A

The First Appendix

A.1 WinBUGS code one for BGLVM

(with unstructured covariance matrix at intermediate level) for overall spatial sym-

metry assessment.

model{

### Gaussian Graphical Models at Quadrant level ###

InvSigaman1:I,1:I] " dwish(IQ[,].(I+1))

muQ[1]<- O

muQ[2]<- O

mqu3]<- O

muQ[4]<- O

### Gaussian Graphical Models at Tooth level ###

InvSigamaT[1:J,1:J] " dwish(IT[,],(J+1))

muT[1]<- O

muT[2]<- O

muT[3]<- 0

muT[4]<- 0
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muT[5]<- O

### Generalized Latent Variable Models ###

for(k in 1:N){

ka 1:I] " dmnorm(muQ[1:I],InvSigamaQ[1:I,1:I])

for( i in 1:I){

T[k,i,1:J] " dmnorm(muT[1:J],InvSigamaT[1:J,1:J])

}

for( i in 1:I){

for( j in 1:J){

Lat[j,i,k]<-a1pha+(beta[i]-mean(beta[]))+

(gammafj,il-mean(gamma[,i]))+ka,il+T[k,i,j]

}

for( i in 1:I){

for( j in 1:J){

logit(p[j,i,k])<-Lat[j,i,k]

y[(k-1)*20+(i—1)*5+j] “ dbin(p[j,i,k],1)

}

}

### Priors ###

alpha ” dnorm(0,0.001)

for(i in 1:I){

beta[i] " dnorm(0,0.001)

}

for( i in 1:I){

for( j in 1:J){
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gamma[j,i] " dnorm(0,0.01)

}

}

### Spatial association assessment ###

## Spatial association assessment between Left and Right ##

Tlam12 <- -InvSigamaQ[1,2]/sqrt(InvSigamaQ[1,1]*InvSigamaQ[2,2])

T1am34<~ -InvSigamaQ[3,4]/sqrt(InvSigamaQ[3,3]*InvSigamaQ[4,4])

## Spatial association assessment between Upper and Down ##

Tlam23<- -InvSigamaQ[2,3]/sqrt(InvSigamaQ[2,2]*InvSigamaQ[3,3])

Tlam14<- -InvSigamaQ[1,4]/sqrt(InvSigamaQ[1,1]*InvSigamaQ[4,4])

## Spatial association assessment between Across quadrants ##

T1am13<- -InvSigamaQ[1,3]/sqrt(InvSigamaQ[3,3]*InvSigamaQ[1,1])

Tlam24<- -InvSigamaQ[2,4]/sqrt(InvSigamaQ[2,2]*InvSigamaQ[4,4])

### Hypothesis Testing Overall Spatial Symmetry ###

LRvsUD<-1/2*(Tlam12+T1am34)-1/2*(Tlam23+Tlam4)

LRvsA<-1/2*(T1am12+T1am34)-1/2*(T1am13+Tlam24)

AvsUD<-1/2*(Tlam13+T1am24)-1/2*(T1am23+Tlam14)

A.2 WinBUGS code two for BGLVM

(with CAR model based covariance matrix at intermediate level) for overall spatial

syurniuatrv assessintait.

model{

### Gaussian Graphical Models at Quadrant level ###

InvSigamaQ[1:I,1:I] " dwish(IQ[,],(I+1))

muQ[1]<- O

102



muQ[2]<- O

muQ[3]<- O

muQ[4]<- O

### Gaussian Graphical Models at Tooth level ###

### with CAR assumption for precision matrix ###

num[1]<- 1

num[2]<— 2

num[3]<- 2

num[4]<— 2

num[5]<- 1

m[1]<- 1

m[2]<- 1/2

m[3]<- 1/2

m[4]<- 1/2

m[5]<- 1

cumsum[1]<- O

for( i in 2:6){

cumsum[i]<-sum(num[1:(i-1)])

}

for(k in 1:8){

for(i in 1:5){

I

pick[k,i]<- step(k-cumsum[i]-esp)*step(cumsum[i+1]-k)

}

C[k]<— 1/inprod(num[],pick[k,])

}

esp<- 0.0001

adj[1]<- 2

1(l3



.
.
.
;

adj[2]<-

(
J
O

adj[3]<'

Madj[4]<-

.
b

adj[5]<-

(
J
O

adj[6]<-

adj[7]<- 0
'
1

4
:
.

adj[8]<-

muT[1]<— O

muT[2]<- O

muT[3]<- O

muT[4]<- O

muT[5]<- O

### Generalized Latent Variable Models ###

for(k in 1:N){

Q[k,1:4] " dmnorm(muQ[1:4],InvSigamaQ[1:4,1:4])

T[k,1,1:5] ” car.proper(muT[],C[],adj[],num[],m[],prec,spat1)

T[k,2,1:5] ” car.proper(muT[],C[],adj[],num[],m[],prec,spat2)

T[k,3,1:5] " car proper(muT[],C[],adj[],num[],m[],prec,spat3)

T[k,4,1:5] " car.proper(muT[],C[],adj[],num[],m[],prec,spat4)

for( i in 1:1){

for( j in 1:J){

Lat[j,i,k]<-alpha+(beta[i]-mean(beta[]))+

(gamma[j,il-mean(gamma[,i]))+Q[k.i]+T[k,i.j]

}

for( i in 1:I){

for( j in 1:J){

104

 



logit(p[j,i,k])<—Lat[j,i,k]

y[(k—1)*20+(i—1)*5+j] “ dbin(p[j,i,k],1)

}

}

### Priors ###

alpha ” dnorm(0,0.01)

for(i in 1:1){

beta[i] ” dnorm(0,0 01)

}

for( i in 1:I){

for( j in 1:J){

gamma[j,i] " dnorm(0,0 01)

}

}

prec " dgamma(0.005,0.001)

spatmax<- 0.35

spatmin<- -O.95

~

spatl dunif(spatmin,spatmax)

spat2 dunif(spatmin,spatmax)

spat3 ” dunif(spatmin,spatmax)

spat4 ” dunif(spatmin,spatmax)

### Spatial association assessment ###

## Spatial association assessment between Left and Right ##

Tlam12 <- -InvSigamaQ[1,2]/sqrt(InvSigamaQ[1,1]*InvSigamaQ[2,2])

Tlam34<- -InvSigamaQ[3,4]/sqrt(InvSigamaQ[3,3]*InvSigamaQ[4,4])

## Spatial association assessment between Upper and Down ##
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Tlam23<- -InvSigamaQ[2,3]/sqrt(InvSigamaQ[2,2]*InvSigamaQ[3,3])

T1am14<- -InvSigamaQ[1,4]/sqrt(InvSigamaQ[1,1]*InvSigamaQ[4,4])

## Spatial association assessment between Across quadrants ##

T1am13<- -InvSigamaQ[1,3]/sqrt(InvSigamaQ[3,3]*InvSigamaQ[1,1])

T1am24<- -InvSigamaQ[2,4]/sqrt(InvSigamaQ[2,2]*InvSigamaQ[4,4])

### Hypothesis Testing Overall Spatial Symmetry ###

LRVSUD<—1/2*(Tlam12+Tlam34)-1/2*(Tlam23+Tlam4)

LRVSA<-1/2*(Tlam12+Tlam34)-1/2*(Tlam13+Tlam24)

AvsUD<-1/2*(Tlam13+Tlam24)-1/2*(T1am23+Tlam14)
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APPENDIX B

The Second Appendix

B.1 WinBUGS code one for BMGLVM

(with 3 components and unstructured covariance matrix at intermediate level) for

overall spatial symmetry 2158(‘581110111.

model{

for( n in 1:N){

### Mixture models (for "mth" mixture( with M components)) ###

### at Quadrant level ###

for( i in 1:I){

### Mixture models (for "kth" mixture( with K components)) ###

### at Tooth level ###

for( j in 1:J){

y[((n-1)*20+(i-1)*5+j)] " dbern(p[n,AQ[n,i],j])

}# End of positions index #

APQ[n,i,1:M] “ ddirch(a1phaQ[])

AQ[n,i] " dcat(APQ[n,i,] )

}# End of quadrants index #
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012[n]<- equals(AQ[n,1],AQ[n,2])

013[n]<- equals(AQ[n,1],AQ[n,3])

Ql4[n]<- equals(AQ[n,1],AQ[n,4])

023[n]<- equals(AQ[n,2],AQ[n,3])

Q24[n]<- equals(AQ[n,2],AQ[n,4])

QS4[n]<- equals(AQ[n,3],AQ[n,4])

}# End of Subjects index #

### Mixture Components Specification via ###

### GLVMs with Unstructured Covariance ###

theta[1:J] ' dmnorm(mu[],ian[,])

alphal " dnorm(0,tau)

local " dnorm(0,tau)I(O,)

10ca2 " dnorm(0,tau)I(,O)

alpha[1]<- alphal

alpha[2]<- alpha1+loca1

alpha[3]<- alpha1+loca2

for( n in 12N){

for( m in 11M){

T[n,m,1 5] " dmnorm(muT[1:5],InvSigamaT[1:5,1:5])

for(j in 1:J){

logit(p[n,m,j])<-alpha[m]+theta[j]-mean(theta[])+T[n,m,j]

}

 

### Priors ###

InvSigamaT[1:5,1 5] ~ dwish(IT[,],6)

tau ” dgamma(0.01,0.01)
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muT[1]<— O

muT[2]<- 0

muT[3]<- O

muT[4]<— 0

muT[5]<— O

### Similarity Assessment ###

MQ12<- mean(Q12[])

MQ13<- mean(013[])

M014<— mean(014[])

MQ23<- mean(Q23[])

MQ24<- mean(Q24[])

M034<— mean(034[])

### Hypothesis Testing Overall Spatial Symmetry ###

LRvsUD<- 1/2*(MQ12+M034)-1/2*(M023+MQI4)

LRvsA<— 1/2*(M012+MQ34)-1/2*(MQ13+MQ24)

AvsUD<- 1/2*(MQ13+MQ24)-1/2*(M023+MQI4)

}

B.2 WinBUGS code two for BMGLVM

(with 3 components and CAR model based covariance matrix at intermediate level)

for overall spatial symmetry assessment.

model{

for( n in 1:N){

### Mixture models (for "mth" mixture( with M components)) ###

### at Quadrant level ###

for( i in 1:I){
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### Mixture models (for "kth" mixture( with K components)) ###

### at Tooth level ###

for( j in 1:J){

y[((n-1)*20+(i-1)*5+j)] " dbern(p[n,AQ[n,i],j])

}# End of positions index #

APQ[n,i,1:M] " ddirch(alphaQ[])

AQ[n,i] ” dcat(APQ[n,i,] )

}# End of quadrants index #

Q12[n]<- equals(AQ[n,1],AQ[n,2])

Q13[n]<- equals(AQ[n,1],AQ[n,3])

Ql4[n]<- equals(AQ[n,1],AQ[n,4])

Q23[n]<- equals(AQ[n,2],AQ[n,3])

Q24[n]<- equa1s(AQ[n,2],AQ[n,4])

Q34[n]<- equals(AQ[n,3],AQ[n,4])

}# End of Subjects index #

### Mixture Components Specification via GLVMs under CAR Model ###

theta[1:J] ” dmnorm(mu[],ian[,])

alphal " dnorm(0,tau)

local “ dnorm(0,tau)I(O,)

loca2 " dnorm(0,tau)I(,O)

alpha[1]<- alphal

alpha[2]<- alpha1+loca1

alpha[3]<- alpha1+loca2

for( n in 1 N){

for( m in 1:M){

T[n,m,1:5] " car.proper(muT[],C[],adj[],num[],invm[],prec,spat[m])

for(j in 1:J){
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logit(p[n,m,j])<- alpha[m]+theta[j]-mean(theta[])+T[n,m,j]

}

}

}

### CAR models specification ###

num[1]<- 1

num[2]<— 2

num[3]<- 2

num[4]<- 2

num[5]<— 1

invm[1]<- 1

invm[2]<- 1/2

invm[3]<- 1/2

invm[4]<- 1/2

invm[5]<- 1

cumsum [1] <— O

for( i in 2:6){

cumsum[i]<- sum(num[1:(i-1)])

}

for(k in 1 8>{

for(i in 1 5){

pick[k,i]<- step(k-cumsum[i]-esp)*step(cumsum[i+1]-k)

}

C[k]<- 1/inprod(num[],pick[k,])

}

esp<-0.0001

adj[1]<— 2
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adj[2]<- 1

adj[3]<- 3

adj[4]<- 2

adj[5]<— 4

adj[6]<- 3

adj[7]<- 5

adj[8]<— 4

muT[1]<- 0

muT[2]<- O

muT[3]<- O

muT[4]<- 0

muT[5]<- O

### Priors ###

prec " dgamma(0.005,0.001)

spatmax<- 0.35

spatmin<- -O.95

spatl " dunif(spatmin,spatmax)

spat2 “ dunif(spatmin,spatmax)

spat3 " dunif(spatmin,spatmax)

spat[1]<- spatl

spat[2]<- spat2

spat[3]<- spat3

tau “ dgamma(0.001,0.001)

### Similarity Assessment ###

MQ12<- mean(012[]>

MQ13<- mean(Q13[])

MQI4<— mean(Q14[])
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MQ23<- mean(Q23[])

MQ24<- mean(Q24[])

MQ34<- mean(Q34[])

### Hypothesis Testing Overall Spatial Symmetry ###

LRvsUD<- 1/2*(MQ12+MQ34)-1/2*(MQ23+MQ14)

LRvsA<— 1/2*(M012+M034)—1/2*(M013+MQQ4)

AvsUD<- 1/2*(M013+MQ24)-1/2*(MQ23+MQ14)

}
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