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ABSTRACT

EFFECTS OF LINKING METHODS ON PROFICIENCY CLASSIFICATION:

UIRT VERSUS MIRT LINKING

By

Young Yee Kim

The major purpose of this study was to show educational policy implications of

psychometric decisions on educational measurement by exploring the effects of selecting

different linking approaches — UIRT vs. MIRT linking — on proficiency rate changes. The

result shows that different linking approaches and different choices of proficiency

classification models produce different conclusions on the educational progress inferred

from increased or decreased proficiency rates across years.

In this study, a fixed common item parameter (FCIP) linking method was selected

to link two years’ test data in both the UIRT and MIRT linking approaches. Five random

sample data (RSD) sets of 10,000 samples were selected for two years and each RSD set

of one year (2005) was linked to its matched RSD set of 2006. For an UIRT approach,

the PARSCALE program was employed. The two years’ test data were calibrated

separately by running PARSCALE and 2005 results were recalibrated by fixing the

common items with the item parameters calibrated in 2006 data. For a MIRT approach,

each RSD set was calibrated by running the BMIRT Program. For FCIP MIRT linking,

the BMIRTanchor program was employed.

This study found that different linking approaches and different decision

approaches to proficiency classification produced different results. Overall, the UIRT

approach was favorable to the 2006 students. While there was little change in proficiency

rate between 2005 and 2006 using the UIRT approach for both of the classification



criteria, the MIRT compensatory and conjunctive approaches resulted in a

decreased proficiency rate in 2006 compared to 2005 for the 20th percentile

classification criterion and no statistically significant difference for the 50‘h percentile

classification criterion. This result strongly suggests the importance of selecting a linking

method and a proficiency classification approach when evaluating educational progress

by the change of proficiency rate.
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CHAPTER 1

INTRODUCTION

1.1 Background

Improving students’ academic achievement is one of the major goals of the

current educational policy across the world. Large-scale assessments have been used as

“levers” to implement standards-based educational reform to improve students’

academic achievement in the United States. Teaching and thus learning is expected to

be aligned with rigorous, high quality academic standards. Test scores are believed to

indicate the amount of students’ learning when the tests are aligned with the standards.

Test scores are used as a tool to hold schools and educational system accountable for

educational outcomes (Darling-Hammond, 2002; Linn, 2003). Accountability policy

based on assessment culminated in the adequate yearly progress (AYP) requirement of

No Child Left Behind (NCLB) Act (2001) in the case of the United States.

The professed goal of NCLB is to make all students achieve at or above

“proficiency” performance levels for reading and mathematics set by each state by the

2013-2014 school year. This goal of 100 percent proficiency by 2014 has been criticized

as being “unrealistic” though “commendable” (Linn, 2005). While there are many

components to NCLB, such as the regulation of teacher quality and professional

development for capacity building, the integral part is accountability and assessment

policy. That is, educational systems and schools are required to be accountable for

educational achievement (i.e., the goal of NCLB) and thus the change (i.e., increase of

proficiency rate) has become one important measure of accountability.



Educational policy centered on accountability and assessment to improve

educational achievement is not unique to the United States. For example, the Council of

Ministries of Education, Canada (CMEC), which was founded in 1967 by ministers of

education in provinces and territories in Canada, administered a program of pan-

Canadian assessments of student achievement in mathematics, reading and writing, and

science — the School Achievement Indicators Program (SAIP) — between 1993 and 2004.

CMEC recently replaced the program with the Pan—Canadian Assessment Program

(PCAP), which continues to assess performance in the same three core subjects as SAIP'.

Also, province-wide achievement testing of elementary and high school students has been

the norm throughout Canada (Volante, 2004). In Canada, however, educational policy

and setting educational goals are the responsibility of each province and territory.

Educational goals, therefore, vary across provinces. Some provinces have more

“realistic” educational goals than those specified in the NCLB compared to the United

States. For example, Ontario province has set its educational goal as 75% above the

proficiency criterion.

In response to educational policy efforts to improving educational achievement

through the lever of large-scale assessment tests, some concerns about, and criticisms of,

using test scores from large-scale assessment as a measure of the performance of an

educational system have been raised. Concerns about the role of large-scale assessment in

improving students’ achievement can be classified as three categories.

First, there is a question of whether large scale assessments can really measure

students’ learning in areas or dimensions which subject-specific educators consider

important. The question of whether such assessment policy really contributes to

 

' Source: http://www.cmec.ca/index.en.html



improving “genuine or authentic” learning has been raised by some members of the

education community (e. g., Stake, 1995; Volante, 2006). Some scholars are doubtful that

educational policy centering on assessment will bring increased genuine learning. One of

the major concerns is that the focus of instruction would be given to “teaching to the test”

(Volante, 2004). The second concern is whether large-scale assessments provide

diagnostic information to educators and teachers that they can utilize to improve students’

learning. Third, there is a question of whether test scores are meaningfully comparable

across years. This question is directly related to linking methods or procedures which are

designed to place test scores from different test forms on a common (i.e., comparable)

scale.

1.2 Concerns Regarding Large-Scale Mathematics Assessments

In the case of the mathematics education community, their concerns in relation to

the assessment policy can be summarized in two categories.

First, some mathematics educators say that large-scale standardized achievement

tests do not measure important mathematical knowledge and skills such as conceptual

understanding or mathematical reasoning. They are particularly critical of tests that

consist mainly of multiple-choice (MC) questions. In response, some states are

introducing mixed format tests, i.e., tests consisting of both dichotomous items (multiple-

choice items) and polytomous items (open-response or constructed-response questions).

A recent survey reports that 63% of the state assessments use both multiple-choice items

and constructed-response items2 (Lane, 2005).

 

2 Depending on the testing program, items which require students to write answers are called “open-

response” items, (i.e., the testing program in Ontario Province, Canada) or constructed-response items (i.e.,

3



It is believed that constructed-response items measure different knowledge and

skills than those measured by multiple-choice items (Traub, 1993). Also some research

suggests that constructed-response items provide more information than other type of

items (Donoghue, 1993). Common sense suggests that open-response items in

mathematics tests provide more specific measurement of students’ mathematical

knowledge and skills, but whether mixed format tests consisting of both dichotomous

items3 and polytomous items4 can provide better information about student learning

needs more empirical research. If empirical research can show the relative advantage of

different format items in terms of measuring mathematical knowledge and skills more

accurately, arguments for including constructed-response items would be more

convincing.

A second criticism of large-scale assessment tests from mathematics educators is

that such tests do not provide diagnostic information useful for instructional improvement

and thus students’ learning. For example, when students do not achieve the proficiency

level, what do test scores say about instructional strategies to help them with their

weakness? In relation to “diagnostic” information, NCLB requires states to report

diagnostic scores for each content sub-domain or strand (Horton & Hanes, 2005). In the

case of mathematics, many states usually report either mean scale scores or percent

correct scores by content strand such as algebra, geometry, measurement, etc. This

approach has been criticized because of the potential low reliability of subscale scores

 

in the National Assessment of Educational Progress). These terms are interchangeably used in this

dissertation.

3 They refer to multiple choice question items which are scored dichotomously either “correct” (=1) or

“incorrect (=0).

4 They refer to constructed response items which have more than two (1 or 0) scoring categories.

4



due to small numbers of items per content area (Haberman, 2005; Monaghan, 2006;

Sinharay, Haberman, & Puhan, 2007).

There are two main problems with the practice of reporting for sub-scores by

number correct scores. One is the assumption behind this reporting practice that the score

for each content strand reflects achievement in the content strand area. Because typical

educational achievement test items require students to be “proficient” in more than one

ability dimension in order to provide a correct response, this assumption is difficult to

support. For example, algebra items in the early grades (grade 6, for example) typically

require computational ability as well as algebraic knowledge and skills. Proficiency in the

algebra content strand measured by the sub-score from “algebra” items according to a test

specification might reflect both computational ability and algebraic ability. Whether or

not reporting sub-scale score by content strand is a psychometrically valid procedure has

not been fully investigated. Some research efforts at improving subscore reporting by

addressing the problem of reporting number correct scores per content strand (in the case

of mathematics) or content area have been made by utilizing a Bayesian augmented

approach to address the reliability issues due to small number of items per sub-score

reporting areas or subscales (Thissen & Edwards, 2005; Edwards & Vevea, 2006; Yao &

Boughton, 2007). These researchers have tried to provide better estimates of subscale

scores than number-correct scores, either utilizing MCMC estimation procedures

(Edwards & Vevea, 2006; Yao & Boughton, 2007) or a multivariate generalization of

Kelly’s classic regressed estimate of the true score (Thissen & Edwards, 2005). However,

estimates of subscores by these approaches are still based on classification of items by

test specification while research shows that test items are not always classified as the



same content category as that specified by test specification. For example, Herman,

Webb, and Zuniga (2005) reported that the kappa coefficients for assignment of items to

content categories were .71 and .74 for faculty and teacher raters, respectively. This

suggests that items can be classified into different content categories than those specified

by test specification across different raters. Then, treating the classification of items into

content strands or categories by test specification as fixed truth becomes problematic.

Second, when mathematical ability is reported by content strand, there is no way

of measuring mathematical ability in terms of mathematical process dimensions such as

problem solving, mathematical reasoning, or communication etc., which has been defined

as one of the major goals of mathematics education (NCTM, 2000).5

1.3 Concerns Regarding Reporting Educational Achievement through Linked or

Equated Score Scales

Even if it is assumed that tests can measure student achievement accurately, the

question of whether improvement of student achievement can be validly inferred based

on test scores remains to be addressed. To interpret the increase or decrease in the

percentage of proficient students as improvement or regression in student achievement, it

is necessary to ensure the comparability of test scores across years. For example, if the

difficulty of tests varies across years, it will not be possible to compare the test scores

from different test forms even though tests across years are based on the same test

specifications.

 

5 Principles and Standardsfor School Mathematics (NCTM, 2000) presents five process standards for

school mathematics: Problem Solving, Reasoning and Proof, Communication, Connections, and

Representation. ‘
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If the same test is administered each year, test scores and thus percentage of

proficient students across years can be compared directly to measure educational

achievement. However, it is often not possible to administer the same test each year

because test items are released for the purpose of helping guide the educational system

and also to meet public interest and concern about the educational testing system. It is

claimed that tests consisting of different items are still measuring the same construct, so

that the test results can be compared. If two tests are very similar in contents and

constructs being measured, but differ a little in difficulty, test scores can be put on the

same metric through a statistical procedure called test equating. When there are multiple

test forms for security reasons, for example in high stakes tests such as the SAT or ACT6,

test scores from different forms can also be put on the same metric through test equating

so that test scores across forms can be compared directly.

The issue of validity of inferences on educational achievement based on test

scores has provided increased attention to the equating procedures. Kolen and Brennan

(2004) indicate that awareness of the importance of equating has increased among

measurement professionals and test users in response to arguments advanced by testing

critics in the context of the accountability movement in education.

Equating is defined as “a statistical process that is used to adjust scores on test

forms so that scores on the forms can be used interchangeably” (Kolen & Brennan,

2004). For test forms to be equated, they should be constructed based on the same test

specifications with the same construct(s) and contents as well as similar difficulty. If

 

6 SAT and ACT are standardized tests for college admissions in the United States. For more information

about SAT and ACT, refer to the websites of the testing programs, www.collcgcboardcom and

wwwactstudentorgfi 



equating is successfully done, test results can be validly compared, so that it is possible to

talk about score gains and thus improvement in educational achievement.

In the case of educational achievement tests, however, tests might need to be

changed across years to reflect change in curriculum frameworks or instructional

emphasis and practices. When tests across years change in format and content emphasis

in addition to difficulty, it is not possible to make test scores across years comparable

through test equating. Test equating presupposes the same, or at the least very similar,

constructs and the same format unless it is empirically proved that there is no format

effect. The reason why test equating in its rigorous sense might not be applied to

achievement tests scores across years is that construct(s) to be measured might change,

which is a violation of the assumption of test equating. Nevertheless, test scores from

different tests across years need to be compared, which in turn requires them to be on the

same metric “in a sense” as Kolen and Brennan indicate (2004).

This situation of possibly changing content coverage and test format presents

peculiar challenges to those who are working on educational testing and measurement

areas and also to educational researchers and policy makers. Educational researchers

often use test scores as a measure of educational achievement/leaming growth and policy

makers make policy decisions based on test scores. If test scores across years are not

comparable, evaluation of educational performance based on test scores cannot be valid

and thus policy decisions based on such educational research and evaluation cannot be

made correctly. Therefore, it is necessary to make sure that test scores and percentages of

“being proficient” are made comparable across years even when test scores cannot be



equated because of some differences in test format and contents, i.e., constructs being

measured.

Because equating requires strong assumptions to be met, as described later in this

work, researchers have developed different levels of linking. For example, depending on

the degree of rigor, the procedures for linking test scores from different tests or test forms

were classified in the past as calibration, projection, and moderation (Mislevy, 1992;

Linn, 1993). Recently, Holland and Dorans (2006) classified linking procedures as

predicting, scale aligning, and test equating. According to Holland and Doran’s

framework of linking and equating, linking of tests, i.e. test scores, which have similar

constructs and similar difficulty along with similar reliability, is classified as concordance

as one type of scale aligning.

In this study, test linking will refer to statistical procedures of “putting scores

from two or more test forms in the same scale when the linked test scores cannot meet

requirements of equating”, which is very similar to an equating procedure (Kolen &

Brennan, 2004). Therefore, problems related to equating design and procedures apply to

test linking design and procedures. The issues related to equating are discussed to provide

the context for this study comparing two different item response theory approaches to test

linking7.

With the increased application of item response theory (IRT) models in practical

testing programs from test construction to test reporting, IRT equating procedures also

have been increasingly developed and applied in test equating (Hambleton, 1989).

Currently typical IRT equating procedures are based on unidimensional item response

theory (UIRT) models. One important assumption behind UIRT equating is that multiple

 

7 From now on, linking will be used to refer to test linking as defined in this study.
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test forms to be equated are measuring only one construct or the same composite of

multiple dimensions, which is called the “unidimensionality assumption”.8 When the

assumption of unidimensionality does not hold, test data can be more adequately

interpreted by analyzing with multidimensional item response theory (MIRT) models

(Ackerman, 1994), which in turn suggests the need for MIRT equating.

MIRT is based on the assumption that “persons who take a test vary on a large

number of cognitive demands” (Reckase & Martineau, 2004). Many researchers in

educational measurement agree that many educational and psychological tests measure

two or more dimensions or constructs (Ackerman, Gierl, &Walker, 2003; Briggs &

Wilson, 2003). Ackerman (1994) argues that MIRT should be used to model the item-

examinee interaction when test data do not meet the unidimensionality assumption.

Reckase (in press) argues that the complexities of the interaction between test items and

examinees (i.e., the fact that examinees use multiple skills and knowledge when they

respond to items), raise the need for a model based on multiple dimensions. The fact that

educational achievement tests are measuring more than one construct and therefore the

probability of correctly responding the test items depends on more than one ability

dimension suggests both the limitations of UIRT models and the possible usefulness of

MIRT models.

One useful practical application of MIRT is the detailed analysis of content

structure (Miller & Hirsch, 1992; Reckase & Martineau, 2004; Reckase 2005; Martineau,

J. A., Mapuranga, R., & Ward, K., 2006). For example, Martineau, Mapuranga, and Ward

(2006) in their analysis of a mathematics achievement test identified four clusters of

 

8 The relationship between construct and dimension is somewhat complicated because dimension and

construct do not necessarily correspond. They do sometimes, but do not when a construct can be

constructed by a composite of more than one dimension.
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items which are similar to each other in measuring a similar composite of multiple

dimensions of mathematical ability. Martineau et al.’s work shows that classification of

items into content strands by test specification does not correspond to the content

structure identified by MIRT analyses. For example, one cluster identified and named as

“matching data to source” using MIRT included items from three content strands. Li’s

work on a state mathematics achievement test (2006) also showed that classification of

items by test specification does not explain the test structure identified through MIRT

analysis. These findings provide supporting evidence for the argument developed in the

previous section that reporting sub-scores by content strand is problematic.

Those studies document that typical mathematical achievement tests are not

unidimensional. They also suggest that MIRT analyses can provide good information on

what test scores really mean. If a test measures more than one ability dimension, it is

necessary to analyze the data through a MIRT model. The resulting implication of these

findings is that UIRT equating/linking to compare test results across years might be

problematic.

1.4 The Purpose of the Study

The purposes of this study were three-fold. First, this study intended to explore

what typical large-scale mathematics assessment tests are measuring and thus to provide

a better understanding of what test scores really mean using MIRT dimensionality

analyses of real data from a large-scale mathematics achievement assessment program.

This study also used MIRT analysis to explore whether mixed format tests might provide

different information on students’ achievement than dichotomous tests data. Previous

11



research conducted using a UIRT framework focused on identifying the difference in the

amount of information between multiple-choice (MC) items and constructed-response

(CR) items (Lukhele, Thissen, & Wainer, 1993; Donoghue, 1993). This study, on the

other hand, used MIRT dimensionality analysis to explore whether and how the two types

of items are different in terms of constructs they are measuring.

The second purpose of the study was to show the feasibility of conducting MIRT

linking for mixed format test forms through the analyses of real data. By developing and

illustrating MIRT linking procedures for mixed format test forms, this study intended to

propose the practical applicability of MIRT linking to educational achievement tests of

mixed format with CR items as well as MC items.

Third, this study explored the effects of selecting different linking approaches,

UIRT vs. MIRT, on the proficiency classification. Specifically, the change in proficiency

rate as measured by the percentage of students who were classified as proficient by UIRT

linking across two years was compared with the changes that resulted from two

approaches to proficiency classifications by MIRT linking. Because there is more than

one ability score in MIRT, there are basically two different types of approaches to

proficiency classification—conjunctive and compensatory. In the conjunctive approach,

each of the scores needs to be at or above a given cut-score. In the compensatory

approach, there are multiple ways of proficiency classification from the MIRT

framework, depending on the weights given to each score.

For these purposes, this study selected a mathematics assessment program being

administered in Ontario, Canada, as the data for the analysis because it provided a good

example of large-scale mathematics assessment program of mixed format tests.

12-



1.5 Research Questions

Specific research questions that this study intended to answer are as follows.

1. Can meaningfully interpretable dimensional structures (i.e., constructs) be identified

through MIRT dimensionality analysis?

2. Do multiple-choice items and constructed-response items measure different constructs,

as some researchers suggest?

3. Does the MIRT-linking approach provide an approach to sub-score reporting?

4. Are there any differences in linking results between the UIRT approach and the MIRT

approaches — compensatory and conjunctive — in terms of “educational” outcomes (i.e.,

improvement in mathematics achievement) measured as the increase in the percentage of

the students achieving a given proficiency level?

13



CHAPTER 2

THEORETICAL FRAMEWORK

Item response theory (IRT) is now widely being used in many testing programs

because of its practical advantages over classical test theory or true score theory in

solving practical measurement problems such as test equating, computer adaptive testing,

optimal test design, etc. (Lord, 1980). The basic idea of IRT is to model the probability of

correct response to an item as a function of ability level (i.e., ability estimate) and item

characteristics (i.e., item parameters such as item discrimination, item difficulty, and

pseudo guessing parameter). Item response theory can be classified either as

unidimensional or multidimensional depending on the assumption of dimensionality for

the response data. To provide the theoretical background for this study, unidimensional

item response theory (UIRT), multidimensional item response theory (MIRT), and

approaches and methods to equating/linking in the UIRT and the MIRT framework are

explained in this chapter.

2.1 Unidimensional Item Response Theory

2.1.1 Unidimensional item response theory models for dichotomous data

Unidimensional item response theory (UIRT) assumes that the probability of

getting an item correct can be modeled as a function of unidimensional ability. A

common UIRT model (three-parameter logistic model) for dichotomous data assumes

that the probability of correct response can be represented by the logistic function as

follows.
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P(Uij =1|9j,ai,bi,Cl-)=Ci +(1_Ci)1+
el'7ai(6j—bi) (2.1)

where 0,, b,, and c,- are item parameters characterizing an item 1', 6}- is a person

parameter indicating the level of ability being measured, and e is the mathematical

constant 2.7181828. . ., which is the base of natural logarithms (Lord, 1980).

Specifically, the parameter b,- is usually referred to as an index of item difiiculty

and represents the point on ability scale at which an examinee has a 50% probability of

getting an item correctly when the possibility of answering the item correctly by guessing

is zero. Parameter c,- is called the guessing parameter or the pseudo-chance score level. It

refers to the probability that a person with very low ability (6 = —00) will answer the item

correctly. When b,- = 6, the probability of answering an item is .5 irrespective of the value

of a if c; is zero as the Equation 2.1 shows. If c,- is greater than zero, an examinee with the

same ability ((9) as the item difficulty (b,) has higher than .5 probability of answering the

item correctly. The parameter a,- refers to item discrimination of item i, that is, how

successful an item is in discriminating or separating examinees at an ability level, say (90 ,

into different ability groups (i.e., a group of examinees with ability 00 or higher and the

group of examinees with an ability less than «90 (Hambleton, 1989)). It is proportional to

the slope at the point of inflection of the item characteristic curve (i.e., when b,- = 6). The

item discrimination parameter (0,) theoretically can range in value from the negative

infinity (—00) to the positive infinity (+ co ), but typical values are between 0 and 2.0.
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Items with negative discrimination are discarded because it means that low ability

examinees have higher probability of answering an item correctly. Both ability (6) and

difficulty (b) can range in value from negative infinity (— co) to positive infinity (+ co ),

with typical values from -3 to + 3. The model without the guessing parameter with

varying item discrimination values is called the two-parameter logistic IRT model. The

Rasch model assumes that item discriminations are constant at 1 and does not include ‘c’

in the model.

The following figure presents an item characteristic curve of an item with a = .9,

b = .5, c = .25. The item characteristics curve (ICC) clearly shows that the probability of

getting the item correct has a lower asymptote at .25 as ability decreases. When ability is

equal to item difficulty at .5, the probability of getting the item is .625 instead of .5 due to

the effect of the pseudo guessing parameter (c).

ICC
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Figure 2.1 An item characteristic curve
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2.1.2 Unidimensional item response theory models for polytomous data

While most test items on large scale standardized tests are dichotomous, that is,

two score categories of ‘0’ and ‘1’, polytomous items with more than two score

categories such as short-answer questions, constructed-response items, or essay questions

are increasingly widely being used. To model the interaction of persons and polytomous

items, a variety of models has been developed”. There are three models for polytomous

items which have been extended to multidimensional items: the partial credit model

(Masters, 1982), the generalized partial credit model (Muraki, 1992), and the graded

response model (Samejima, 1969). Because this study employed the generalized partial

credit (GPC) model for analysis, only the GPC model is described in detail along with

brief description of the partial credit model.

The partial credit model (Master, 1982; Masters & Wright, 1997) is one of the

simplest item response theory models for ordered categories data. It is appropriate for

open-ended items when the complete answers (i.e., full scores) require several

components to be accomplished and the overall score is given by counting the number of

components accomplished. The boundaries between adjacent scores are labeled as

thresholds and the model specifies the probability of a response in the categories above or

below the threshold selected. In this model, item discrimination is assumed to be constant

at 1 so the discrimination parameter, a, is not included in the model.

The generalized partial credit model (Muraki, 1992) is an extension of the partial

credit model proposed by Masters (1982). The extension is the addition of the

discrimination parameter, a, to the partial credit model. By the addition of the parameter,

variation in the discriminating power of items can be modeled. The score on an item is a

 

9 For a more detailed description of such models, refer to van der Linden and Hambleton, 1997.
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measure of performance of the task required for the item. That is, a higher score means

more accomplishment of the required task. As with the partial credit model, boundaries

(i.e., thresholds) are set between adjacent scores and an examinee will have a particular

probability of being on either side of a threshold. By dichotomizing the score scale for the

item, the model can specify the probability of being in each of the two resulting

categories. This procedure can be repeated for each threshold. After normalizing each

probability at each category, k, within an item i, Pikj (61-) so that ZPikj (91):], the

mathematical expression for the generalized partial credit model is as follows based on

Muraki (1992, 1997).

k

[2132149]. —b,. +d,, )]

u=l (2.2)

 P(u,.j =kl6.)=
J

where D is a scaling constant that makes the 6 ability scale put in the same metric as the

normal ogive model (D=1.7)

a,- is a slope parameter,

b,- is an item-location parameter,

k is the score on the item,

m,- is the total number of score categories for the item,

din is the threshold parameter for the threshold between scores u and u-l.

The parameter 1),- indicates the overall difficulty of the test item and the parameter a,-

indicates the overall discrimination power of the item. The discrimination power is

assumed to be the same at all thresholds, but a; may differ across items. The threshold

parameter, din, indicates where the likelihood of responses changes from being greater for
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response category k — 1 to being greater for response category k. For estimation purposes,

the sum of the rim-parameters is usually constrained to sum to 0 (Muraki, 1997).

2.2 Multidimensional Item Response Theory

Multidimensional item response theory (MIRT) models have been developed in

response to the need to more accurately model the complexities of the interaction

between persons and items (Reckase, 2005). It is not unusual to face test items which

require more than one type of ability or hypothetical construct to solve them. One such

example is a mathematical problem-solving test item which requires proficiency in both

mathematical reasoning and procedural knowledge or skills. While both mathematical

reasoning ability and procedural knowledge or skills can be considered as a component of

broad mathematical ability, they might not be highly correlated at every level of ability.

Therefore, the probability of correctly responding to the item will vary depending on

various combinations of proficiency on both constructs. While unidimensional item

response theory is limited in modeling more than one distinct ability dimension or

hypothetical construct, multidimensional item response theory can model the relationship

between more than one distinct ability dimension or hypothetical construct and

examinees’ different levels of proficiency across ability dimensions.

MIRT models are often classified into two types; compensatory and partially

compensatory (or non-compensatory) models. The former allows low levels on one

dimension to be compensated by high levels on another dimension by modeling the

probability of a correct response with a linear combination of6's. In the latter, the

compensation is limited because the probability of a correct response is modeled as a
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function of the product of probabilities for each ability dimension part. A low level on

one dimension greatly constrains the overall probability of a correct response.

Research on which model fits real data better is scant and it is not possible to

make any overall conclusion on the relative merits of two types of models (Reckase, in

press). Because estimation with the compensatory models is relatively easy and because

of the availability of computer programs such as NOHARM and TESTAFCT, however,

most research and applications on MIRT have been done based on the compensatory

models. '0

2.2.1 Multidimensional item response theory model for dichotomous data

A common compensatory MIRT model for dichotomous data is given as follows.

u-O"

ai6j +d,

Pru...=1Ia..d.,é;,c.>=c.+(1—c.> 8
1+

 

6595,- +61.- (2.3)

where Ug- is the score (0 or 1) for personj on item i and P (Uij=l) is the probability of a

correct response to items i by examinee j in a m-dimensional ability space. The form of

the equation is very similar to three parameter logistic UIRT model. The difference is that

.9

the a-parameter 0,- is now a vector of multiple a’s which are the item discriminates

along the coordinate axis and 6 is also a vector that tells the location of each person on

each ability dimension. As shown in the equation 2.3, d,- is a scalar parameter related to

difficulty of item and c is also still a scalar. The property of the linear combination of the

model can be shown by expanding the exponent part of e as follows.

 

'0 Partially compensatory models are not discussed because they are not directly relevant to this study. For

a more thorough treatment of MIRT, refer to Reckase (in press).
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Equation 2.4 shows that the exponent is a linear function of the elements of g

with the elements of the a-vector as slope parameters and the d parameter as an intercept

term. When the exponent is set to a certain constant value of k, all theta vectors which

produce k will give the same probability of a correct response. For example, for a test

item with a; = .5, a2 = 1.5, and d = -.75, both person A with 61 = 2.0 and 62 = -O.5 and

person B with 6, = -3 and 62 = 2 will have the same probability of a correct response to

the item with the value of 0.00 for the exponent ofe. This property of the model can be

shown with an equiprobable contour plot below.

    
Figure 2.2 Plot of 6-vectors that yield exponents of k = O for a test item with parameters

a; = .5, a2 =1.5, d= -.7
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The compensatory property of the model is also shown in the item response

surface (IRS) for an item. Item response surface shows the probability of a correct

response for a particular combination of thetas for a particular item. With the same

example item, the item response surface and equiprobable contour plots are shown below.
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Figure 2.3 Item response surface (IRS) and equiprobable contour plots (Source: Reckase,

in press)

2.2.2 Summary statistics of multidimensional item response theory

Researchers have developed a number of summary statistics that are helpful for

describing items within a MIRT model framework. To describe the power of an item to

separate the multidimensional space into two parts (i.e., abilities or those who respond

correctly to the item and those who do not), a statistic that is analogous to the
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unidimensional a-parameter, MDISC, was developed. The overall discriminating power

of an item, MDISC, is defined by the following equation (Reckase & McKinley, 1991).

(2.5)

 

where m is the number of dimensions in the ability space; and a”, is an element of the 51°,

vector. MDISC is related to the slope of the item response surface in the steepest

direction, that is, the direction of the best measurement of the item, and therefore

analogous to the unidimensional discrimination parameter (Carlson, 1987; Reckase &

McKinley, 1991). MDISC for the example item is given as 1.58 by Equation 2.5.

The graphical representation of the item vector of the same item is presented in Figure

2.4. The magnitude of MDISC is represented graphically as the length of the item vector

arrow .

 

  
    
 

6’1

Figure 2.4 Graphical representation of MDISC by the length of the item vector arrow of

the item with a1=0.5, a2 =1 .5, d=.75.
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Another important statistic for describing item characteristics using MIRT is the

direction of an item for the best measurement (i.e. best discrimination) in the latent ability

space. The discrimination of an item is best when the angle with coordinate axis k is

given by the following equation (Reckase & McKinley, 1991).

ark

aik = arccos ( WISCI. ) (2-6)

The angle for the best discrimination of an item defines the location (i.e.,

direction) of a vector of item discriminations of the item in the multidimensional ability

space. For the same example item, the angle for the best discrimination, a“ , is given as

72 degrees, which is the angle between the item vector and 61-axis. Similarity in the

directions of the vector for two or more items means that they are measuring a similar

combination of abilities for their best measurement in the multidimensional space.

Conversely, a difference in the directions of the item vectors means that those items are

measuring different combination of abilities. In Figure 2.5, the item vector of an item

with the similar direction as the example item is represented as dotted-dash line. The new

item has al=0.75, a2 =2.50, d=.75. The angle of the new item with the 61-axis is 73

degrees. Because of high discrimination values on both (11 and 612 , the new item vector

has a larger MDISC, as shown in the length of the new item vector.

When several items are measuring a similar combination of abilities, the direction

of the best measurement for the set of items is called the reference composite. Reference

composite was originally developed by Wang (1985). Wang proved (1985, 1986) that the

unidimensional item response theory scale is defined by the first eigenvector of the a'a
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matrix which corresponds to the largest Eigen-value of the matrix, where a is the matrix

of discrimination parameters for the compensatory MIRT model. The scale is a kind of

average direction for the item vectors and the unidimensional 65 are the values projected

onto the average direction. Wang labeled the unidimensional 6 that is estimated in this

way as the reference composite for the test.

   

Figure 2.5 Graphical representations of two items with similar direction of best

measurement.

In compensatory MIRT models, the reference composite often refers to an

average direction for a set of items which are clustered together through cluster analysis.

Figure 2.6 shows the arrows representing three items with similar direction of best

measurement — dotted line — and the bold arrow representing the reference composite in a

three dimensional 6 space.
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Figure 2.6 Item vectors and reference composite representing the item vectors

The angle between the reference composite and the coordinate axes can be

determined by taking the arccosine of the elements of the eigenvector. In this example,

the reference composite has an angle of approximately 46° with the 6, axis, 46° with the

6; axis, and 78° with the 63 axis.

Multidimensional difficulty (MDIFF) is graphically represented as the distance of

the point of maximum slope from the origin (Figure 2.7) and its mathematical expression

is as follows (Reckase, 1985).

_ di

MDIFF, =W (2.7)
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Figure 2.7 Item vectors with MDIFF of zero and a positive value

In Figure 2.7, the dotted arrow is an item vector which has MDIFF of zero, i.e.,

beginning on the origin and the distance of the item vector with a solid line from the

origin indicates the magnitude of MDIFF for the item. The interpretation of MDIFF is

similar to that of the difficulty parameter in the unidimensional model. The magnitude of

the MDIFF of an item is the distance of the item from the origin. If the starting point of

the item vector is located in quadrant III, it has a negative value.

In summary, the full description of an item in a multidimensional space is given

a.
1k

by the direction of best measurement ( ark = arccos ( 1WD15C, ) ), the discrimination in

that direction (MDISC), and the distance of the point of the best discrimination from the

origin (i.e., multidimensional difficulty (MDIFF)) (Reckase, 2005). In a multidimensional
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space, item and test characteristics are represented as a surface instead of a curve, as in

UIRT.

2.2.3 Multidimensional item response theory model(s) for polytomous data

For polytomous data, several MIRT models have been proposed. Reckase (in

press) describes the MIRT extensions of the generalized partial credit, partial credit, and

graded response models. Reckase indicates that there is no MIRT version of the partially

compensatory model proposed for the polytomous case.

In the multidimensional extension of the generalized partial credit model

(MGPC), ability estimates and item discrimination estimates are represented as vectors to

describe separate values for each ability dimension, but the threshold parameter is

assumed to be constant across ability dimensions at each score category. Because this

study employed the MGPC model for analysis, only the MGPC model is described.

Reckase’s presentation of the model below is a slight variation of the model given

in Yao and Schwarz (2006).
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where ,6)“ is the threshold parameter for score category u,

,6,-0 is defined to be 0,

and all other symbols have their previously defined meaning.

The item response surfaces for the MGPC model for test data which can be

represented in a space with two coordinate dimensions are given in Figure 2.8 as
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presented by Reckase (in press). The test item represented here has scores from 0 to 3.

The item parameters for the model are ai = [1.2 .7] and [3m = 0, -2.5, -1.5, .5.
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Figure 2.8 The item response surfaces for the MGPC model (Source: Reckase, in press)

The intersections between the surfaces for adjacent score categories are represented as a

straight line in the 9-plane. In general, the line consists of the set of points in the 0-plane

where the probabilities of obtaining the adjacent scores are the same (Reckase, in press).

Reckase indicates that MGPC can be simplified in a number of ways so that they can

have the special properties of the Rasch model (i.e., observable sufficient statistics). One

such model has been presented by Kelderman and Rijkes (1994).
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2.3 Linking and Equating

Equating can be considered as the most rigorous linking procedure. Because

equating presupposes scale linking in both item parameters and ability estimates,

discussion of the theory and method of equating is directly applicable to linking design

and method. For this reason, theory and method of equating are presented with special

attention to the relationship between scale linking and equating.

2.3.1 Unidimensional item response theory and test linking/equating

Two important characteristics of item response theory compared to classical test

theory are invariance of item parameters and scale indeterminacy. Item parameters in

item response theory remain the same irrespective of either the ability distribution of the

group who take the tests or the overall difficulty level of the tests taken. That is, in

theory, item parameters are invariant across groups (Lord, 1980). On the other hand, in

classical test theory, item difficulty and item discrimination indices to evaluate the

quality of items and thus of tests vary depending on the groups or overall test difficulty.

In classical test theory, for example, if a group of test takers are homogeneous in their

ability measured, most items on a test can be very easy when a high ability group is

taking the test or very difficult if a very low ability group is taking the test. In this

situation, the test items do not discriminate either of the two groups of examinees well. If

test takers are heterogeneous, test items will discriminate examinees well, and difficulty

of items can decrease or increase.

However, item difficulty in item response theory is assumed to be the same for

persons with the same ability across different groups in the population. That is, the
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probability of correctly responding to an item is the same for persons with the same

ability irrespective of which tests they take if the tests are designed to measure the same

latent trait, i.e., construct, or the same combination of them.

Also, while examinees’ true scores in classical test theory will increase when they

take easier tests, ability estimated through IRT models remains the same whatever

combination of item sets they respond to. In one- and two-parameter IRT models, for

example, an item difficulty parameter (b) is the point on the ability (6) scale at which an

examinee has a 50% probability of answering the item correctly. Therefore, when test

items become easier, the probability of correct response to the items for the same ability

examinees will increase, but higher probability of correct response, that is, increased test

scores, does not mean increased ability—invariance of ability parameters. In IRT,

population invariance of item parameters is assumed to hold if data fit the model.

However, if the origin and unit of the ability scale change, the invariance assumption

cannot hold unless corresponding changes are made to the item parameters. This raises

the need to fix the origin and unit of the ability scale.

Item response function in Equation 2.1 is expressed as a function ofa,- (6 — bi) ,

where i refers to an item. If we add the same constant to each 6and at the same time to

every b), the quantity of a,- (6 — by) remains the same and so does the item response

function, i.e. 3(6). This shows that the choice of origin for ability scale is purely

arbitrary (Lord, 1980). In the same fashion, the choice of unit for measuring ability is also

purely arbitrary. Typically, the statistical procedures used by IRT computer programs

calibrate parameters so that mean and standard deviation of ability estimates are 0 and l.
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This means that the scales of the parameters set up to estimate them are applicable to only

the data analyzed. That is, it is possible that two persons with the same ability have

different ability scores when they take different sets of items because item parameter

estimates of the same items from different calibrations are not the same. However, this is

because abilities were measured using different metrics, so the different values for the

same items need to be put on the same metric to make test scores from different tests or

test forms comparable.

The procedure for putting item parameters on the same metric is sometimes called

scaling, linking, or calibrating. In this study, the procedures to put different estimates of

items parameters of the same items across different test forms on the same metric has

been referred to as scale linking. The procedure of estimating item parameters will be

called “calibrating”. Scaling is used to refer to the process of associating numbers with

the performance of test takers as Petersen, Kolen and Hoover define (1989). Equating

refers to the whole procedure of making ability scores or reported scores from different

test forms comparable, as already defined.

Test equating is conducted to produce exchangeable scores on different test forms

which are assumed to be designed to measure the same construct or constructs, typically

by the same test specification. The two characteristics of IRT discussed above, i.e.,

invariance of IRT parameters and scale indeterminacy, define the alternatives for IRT

equating, depending on the equating design.

2.3.2 Equating design and methods

There are several designs for test equating. One of the commonly used designs for

IRT equating is non-equivalent group common item design. Especially in educational
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testing situations, groups who take different test forms cannot be assumed as equivalent.

In fact, equivalence of groups cannot be assumed unless groups are selected completely

at random. For this reason, and because it' is easy to administer common items on

different test forms, non-equivalent group common item design is one of the mostly

widely used methods in IRT test equating. When the non-equivalent group common item

design is used, there are basically three possible ways to approach equating.

2. 3. 2. 1 Concurrent calibration

In concurrent calibration equating design, all examinee response data from separate

test administrations using different test forms with some common items are calibrated in

a single run. When the data are calibrated concurrently, item parameters estimates and

ability estimates are already on the same metric, so it is possible to compare ability scores

directly. In this case, scale transformation, i.e. linking, is not necessary.

2.3.2.2 Fixed common item parameters (FCIP)

When item parameter estimates for the common items are available from one test data

set or calibration, those parameters can be used to put the item parameters from the other

tests on the same metric as the metric for the previous test data. This is done by fixing the

item parameter estimates for the common items as the values calibrated from the previous

test data set when the test data for the later administration are calibrated. This places all

the item parameter estimates for the later test data set on the same metric as the previous

one. Jodoin, Keller, and Swaminathan (2003) call this approach as “fixed common item

parameter calibration equating design” (FCIP). Their research suggested that selection of

the linking calibration method makes a difference in proficiency classification, but they

cannot say which method is more accurate "because their findings are based on the
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analysis of empirical data. In practical educational testing situations, the contemporary

test results are compared with the previous ones, so the previous tests are used as the base

test. When FCIP linking method is used, there is no further linking/equating procedure

for item parameters or ability estimates because they are already on the same metric.

2.3.2.3 Linking after separate calibrationsfor dichotomous data

When response data from different test forms, i.e., different test administration, are

calibrated separately, it is necessary to take procedures to put the item parameters on the

same metric because the origin and unit of item parameters from the separate calibrations

are different, as already discussed. Linking or scale transformation to put the item

parameters on the same metric can be conducted in several ways, but they can be

classified in two categories, moment methods or characteristic curve (CC) methods (Kim,

2004). There are two commonly used moment methods—mean/sigma and mean/mean.

Two common CC methods are the Haebara approach and the Stocking and Lord

approach (Kolen & Brennan, 2004).

When there are different sets of item parameters for the common items from the

separate calibrations, they can be linearly transformed using the proper formula because

the same items should have the same parameters, as the assumption of population

invariance of parameters suggests. A simple example of a linear transformation is the

F=32+C*5/9, which is used for restating a temperature measured on the Celsius scale to

one expressed in Fahrenheit.

In the case of 3PL logistic model, the relationship between two separate scales from

separate calibrations is as follows. (Kolen & Brennan, 2004)

6J. = A6,, + B (2.9)
l
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a . =—’J: A (2.10)

in = Ablj +3 (211)

And CJj = Clj

where an, bJj, and CJ!- are the item parameters for item j on scale J and 011-, b1]- , and

C,1- are the item parameters for item j on scale I. The pseudo guessing parameter or lower

asymptote parameter is independent of scale transformation. Equations 2.9 to 2.11

express the relationship between scales by two abilities and two items. The relationship in

terms of groups of items or people can be expressed as follows.

 

 

A = 0(1),) (2.12a)

0(bl)

#(aJ)
: ____. 2.12b

#(al) ( )

_ C(91)
— 0091) (2.12c)

B = ,u(bJ)— A,u(b, ), and (2.13a)

= Me. ) — Ame.) (2.131»

As shown by the equations 2.12a to 2.13b, the constants, A and B, for scale

transformation can be computed from the relationship between IRT parameters of two

scales and using these constants, A and B, scale transformation can be done. There are

several methods for scale transformation or linking, which are described below.
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2.3.2.3. I. The mean/mean and mean/sigma methods

In mean/mean method, which was originally described by Loyd and Hoover (1980),

the mean of the a-parameter estimates for the common items is used in place of the

parameters in equation (2.12b) to estimate the A-constant. Then, the mean of the b-

parameter estimates of the common items is used in place of the parameters in equation

(2.13a) to estimate the B-constant (Kolen & Brennan, 2004).

In mean/sigma method, which was originally described by Marco (1977), the

means and standard deviations of the b—parameter estimates from the common items is

used in place of the parameters in equations (2.12a) and (2.13b) (Kolen & Brennan,

2004)

2. 3.2.3.2. Characteristic curve transformation methods

The procedures developed by Stocking and Lord (1983) and Haebara (1980) are

characteristic curve transformation methods. Characteristic curve transformation methods

involve finding the slope (A) and intercept (B) of a linear scale transformation function so

as to minimize the discrepancy between characteristic curves using parameter estimates

on the target scale and characteristic curves using parameter estimates on the transformed

scale by this linear function. (Kim & Hanson, 2002)

a. Haebara approach

The function used by Haebara (1980) to express the difference between two item

characteristic curves is the sum of the squared difference between the item characteristic

curves for each item for examinees of a particular ability. The difference between each

item characteristic curve on the two scales is squared and summed (Kolen & Brennan,

2004)
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b. Stocking and Lord approach

In contrast to the Haebara approach, the Stocking and Lord approach uses the sum of the

squared differences for all common items as criterion. In this approach, the

transformation constants, A and B, are chosen to minimize the weighted sum of squared

distances between two test characteristics curves from the common items on two test

forms.

2. 3.2.4 Polytomous IRT models and equating ofmixedformat tests

Linking procedures for polytomous items have been developed by extending the

linking procedures developed under dichotomous IRT models. For example, Baker

(1992, 1993) extended the Stocking-Lord procedure to Samejima’s graded response

model (GRM) and Cohen and Kim (1998) extended the mean/mean and mean/sigma

procedures to the GRM. For Muraki’s (1992) generalized partial credit model (GPCM),

formulas to extend minimum chi-square, Haebara, and Stocking-Lord procedures were

proposed by Hattori (1998)”.

When test data consist of both dichotomous and polytomous items, the first

condition to be considered in linking/equating mixed format test forms is the

dimensionality of test structure. If the tests can be considered to meet a unidimensionality

assumption, all three equating design approaches discussed above can be applied. Under

the three approaches, there are two additional options. That is, test data can be calibrated

separately by format or jointly across different formats. When mixed format data can be

analyzed under UIRT models, simultaneous calibration is more useful when a score scale

as a summed score from each format is required and calibration by format will be useful

 

” Recited from Kim, S. (2004)
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when scores for each format are reported separately in addition to a summed score (Kim,

2004).

As explained already, if concurrent calibrations or item parameter estimates from

the base test forms can be used as fixed for the calibration of data to be equated, no

further linking procedures are required when ability scores are compared. If separate

calibrations are used for mixed format tests, two separate sets of item parameter estimates

should be placed on a common scale. For this, Li, Lissitz, and Yang (1999) proposed an

extended version of the Stocking-Lord linking procedures for mixed format tests, for

which the three-parameter logistic model and the GPCM were used. Tate (2000) also

presented linking procedures for mixed format tests for multiple-choice items and

constructed-response items by extending the mean/sigma and Stocking-Lord linking

procedures.

2.3.2.5 Comparison oflinking procedures

For dichotomous IRT models, research comparing the characteristic curve

methods and moments methods seems to agree on the better performance of the former

(Kolen & Brennan, 2004). Kim (2004) reports the same finding for mixed format test

equating. When scale transformation methods are compared to the concurrent calibration

method, the research findings are more favorable for concurrent calibration (Kim &

Cohen, 1998; Kim, 2004). Kolen and Brennan (2004) indicate that previous studies

suggest that concurrent calibration method might be less robust to the violation of

unidimensionality assumption. They recommend separate estimations using the test

characteristic curve methods.
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2.3.3 MIRT linking and reference composites

In addition to two types of indeterminacy (i.e., the origin and the unit discussed

for UIRT) there is the third type of indeterminacy in MIRT - rotational indeterminacy.

The orientation of the axes of the coordinate system defined by each calibration is

different. The goal of MIRT linking/equating procedures is to find transformations that

will convert a set of item parameter estimates from one data set to the estimates from

another data set. The comparable transformations for abilities can be determined using

the transformation matrix for the common items.

The first attempt to deal with multidimensionality in IRT linking was made by

Hirsch (1988, 1989). Later, other researchers have worked on MIRT linking methods (Li

& Lissitz, 2000; Oshima, Davey, & Lee, 2000; Min, 2003). Li and Lissitz (2000) resolve

the three indeterminacy problems by using a translation vector m, a scalar dilation

parameter k, and orthogonal Procrustes rotation matrix T, respectively. Identifying a

limitation of the scalar dilation parameter proposed by Li and Lissitz, Min (2003)

developed a MIRT equating procedure using a diagonal dilation matrix that allows for

differential dilation/compression of the scales of the various dimensions (Reckase &

Martineau, 2004). Reckase and Martineau (2004) found that Min’s approach to MIRT

equating brings an infeasible burden of computation when dimensionality is high. To

correct this weakness of Min’s approach, they proposed using non-orthogonal Procrustes

transformation.

Reckase (in press) proposed a more general approach than previously published

methods by extending the methods based on work by Martineau (2004) and Reckase and

Martineau (2004). Reckase proposes transforming the calibrations of items to be on the
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same scale using reference composites consisting of items measuring same constructs or

sub-constructs. The first step proposed by Reckase is to determine the rotation matrix for

the coordinate axes. The rotation matrix is given by the following equation.

R0t= (a'a a“)l a'a ab (2.14)

where ab is the n x m matrix of base form discrimination parameters that are the target for

the transformation, a0 is the n x m matrix of discrimination parameters for the same items

on the alternate form, and Rot is the m x m rotation matrix for the discrimination

parameters.

Then, the d-parameters from the alternate form are transformed to the metric of

the base form using the following equation.

Trans = a, (a', ab)1 a'b (dd-db) (2.15)

Where (1;, is the n x 1 vector of d parameter for the base form, do is the n x 1 vector of d-

parameters for the alternate form, and Trans is the n x 1 transformation vector for the d-

parameters.

Last, the transformation of the estimates of6 from the alternate form to the base

form metric is given by the equation (2.16).

6 b = Rot-16", (a'b 21),)l a'b(da-db) (2.16)

where 6'0 is a l x m vector matrix of estimates from the alternate form calibration and

6 b is the 1 x m parameter estimate vector after transformation to the coordinate system

from the base form.

The point is that the probability of answering an item correctly should be the same

before and after transformation (i.e., linking) through translating and rotation. When
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ab = aaT

A

db =da +aTm

6b =T'16'a—m

_ A. A ...l A '

the probability after the transformation remains the same, as the following equations

show.

A A

P : abab'+db

= aT(T’l6'—m) + d0 + aTm

= a6'—aTm + da + aTm

= a6'+da

Reckase indicates that the transformations using the equations presented here can

be used for multidimensional generalizations of horizontal equating. The procedures

described here are useful when linking two different test results after separate

calibrations.

In MIRT linking, the FCIP linking method which was described in the UIRT

linking section has not been tried. One reason might be the absence of a program which

can perform the FCIP MIRT linking. Another reason is that MIRT linking has been

applied mostly in vertical linking context (Martineau, 2004; Yon, 2006; Li, 2006). In this

study there was no need for scale transformation because item parameters were put on the

same metric through the FCIP linking. It is possible to apply the procedure described

above after putting the common items on the same metric through the FCIP linking or the

concurrent calibration.
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Every linking method has its own advantages and shortcomings. The FCIP

method is expected to produce relatively small measurement error because it skips one

step in the estimation process. Jordin, Keller, and Swaminathan (2003) suggested that the

FCIP method is relatively more accurate, through on the basis of a study of empirical

data, but they could not provide any information on relative performance of different

approaches in terms of recovery of true parameters because they did not conduct a

simulation study. A recent study reports little difference between concurrent calibration

and FCIP linking/equating method in terms of item recovery based on simulated data

(Taherbhai & Seo, 2007).
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CHAPTER 3

RESEARCH DESIGN, DATA, AND METHODS

This chapter describes the research design, data, and methods used for this study. The

research design is briefly described, followed by the description of the data. Then each

procedure for the study described in the research design is explained in detail.

3.1 Research Design Overview

The data for this study were from the grade 6 assessment tests in mathematics for

the province of Ontario, Canada. The procedures in this study can be broadly classified

into three parts; 1) UIRT linking to compare proficiency rates based on unidimensional

ability between 2005 and 2006; 2) MIRT linking to compare proficiency rates based on

multidimensional abilities between 2005 and 2006; 3) comparing proficiency rate change

from the UIRT linking approach with two proficiency rate changes from the MIRT

linking approach between 2005 and 2006.

In the first part of the study, the 2005 test result was linked to the 2006 test result

through the fixed common item parameter (FCIP) UIRT linking method. The procedure

and rationale for the selection of the linking method are described in detail below. By

linking two years’ test data, the change in the proficiency rate (i.e., the percentage of

students who are at or above proficiency between two years) was explored.

The second part of the study, MIRT linking, consisted of three stages. In the first

stage, MIRT linking for two year’s test data was conducted using the same FCIP method.

The multidimensional ability structure of the data was explored and 2005 test data were
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put on the same scale as the 2006 test data through FCIP linking. In the second stage,

MIRT cluster analyses of the data from the two tests were conducted. In addition, a

review of the content of test items was performed by the item review committee”. In this

step of the study, three “reference composites” were identified and they were interpreted

as constructs being measured by the tests. The third stage of the MIRT linking consisted

of projecting multidimensional ability onto the reference composites. Ability scores

estimated on multiple dimensions were projected on each reference composite. This

approach resulted in construct-level ability scores that could be used for proficiency

classification.

The third part of the study consisted of comparing the proficiency rate change

from UIRT linking with the two proficiency rate results obtained from the two different

approaches to MIRT proficiency classification, compensatory and conjunctive.

3.2 Data and Samples

This study analyzed 2005 and 2006 grade 6 mathematics test data. In 1995,

Ontario province in Canada enacted legislation to establish the Educational Quality and

Accountability Office (EQAO) for the purpose of providing “accurate, objective and

clear information about student achievement and the quality of publicly funded

education in Ontario”13. The major role of EQAO was to establish and conduct a

provincial testing program for students in Ontario’s English or French language schools.

The main purpose of the testing program is “to provide accurate and valid data about

student performance.” EQAO administered its first annual assessment in the 2000-2001

 

'2 The item review committee is explained in Methods section below.

'3 Retrieved on Feb. 2007 from http://www.eqao.com/AboutEQAO/GeneralQuestions.aspx?Lang=E

44



academic year. This study analyzed only tests for English-language schools, excluding

tests administered in the French-language schools.

The assessment framework was developed by EQAO based on the province-wide

mathematics curriculum framework, the Ontario Curriculum (Jackson, 2007).‘4 Overall

and specific expectations are organized into five content strands—Number Sense and

Numeration, Measurement, Geometry and Spatial Sense, Patterning and Algebra, and

Data Management and Probability. This mathematics content area classification

corresponds to the five content strand classification in Principles and Standards for

School Mathematics (PSSM) (NCTM, 2000) and many other US. state mathematics

curriculum frameworks. The assessment framework also specifies learning expectations

in mathematical processes. They are problem solving, reasoning and proving, reflecting,

selecting tools and computational strategies, connecting, representing, and

communicating.

The 2005 test consists of 42 items; 32 multiple-choice items, 5 short-answer

items”, and 5 open-response items”. The 2006 test consists of 36 items; 28 multiple-

choice items and 8 open-response test items. Total number of the students was 132,021

for the 2005 test and 136,653 for the 2006 test. While the two tests were developed based

on a similar assessment framework, test specifications were different, as shown by the

different formats of the two tests.

 

'4 Ontario grade 6 mathematics curriculum can be downloaded from

http://www.edu.gov.on.ca/eng/curriculum/elementary/math6ex/

'5 Short-answer items are open-ended items requesting short answers. These items are scored “0” or

'6 Open-response items are open-ended items requesting extended answers. This type of items is often

called as constructed-response items in the United States. Therefore, open-response items in Ontario

assessments are described as constructed-response items later in this chapter.
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For the purposes of linking the two years’ test data and field-testing items for the

next year’s test, five field-test items—four multiple-choice items and one open-

response—were administered to each student when they took the 2005 test. Of the 36

operational items in the 2006 test, 34 items were from the field-tested items in 2005. Not

all field-tested items were used in the 2006 operational test. The 34 items were used as

common anchor items for linking. Two open-response items in the 2006 test were

translated from French operational test items for French-speaking schools.

Field-test items were administered using matrix sampling to minimize the number

of items administered to each student. The relationship between this sampling method

and procedures used in this study is described below. Because some field-tested items

were excluded from the 2006 test because of low psychometric quality, each student in

2005 contributed zero to four items to the response data used as anchor items while all

students had five field-tested items. There was no anchor item administered to all of the

2005 students, which will be illustrated in Table 3.1. This study was constrained by this

real data structure as described in detail below.

3.3 Procedures of the study

This part describes procedures for the study, the decisions made to accommodate

the real data structure, and the reasons and the rationales for changes made during the

process of conducting the research whenever necessary.

3.3.1. Selection of linking method and computer software programs

First, for the purpose of comparison, it was decided that the same linking

procedure should be applied to both UIRT and MIRT linking. The linking method
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originally planned for this research study was scale-linking using common items after

separate calibrations. For UIRT linking, PARSCALE 4 (Muraki & Bock, 2002), an IRT

computer software program for mixed format tests, was selected because many testing

companies are adopting the program for IRT analyses of mixed format test data. After

separate calibrations, two test scales were planned to be linked using the STUIRT

programl7 (Kim & Kolen, 2004a) and the ability scores were designed to be linked

through the POLYEQUATE program18 (Kolen, 2004a). For MIRT linking, it was

planned to adopt an oblique Procrustes transformation method after separate MIRT

calibrations using the BMIRT program, a program for MIRT calibration of mixed format

tests. Because BMIRT uses the Markov Chain Monte Carlo (MCMC) procedure for

estimation and thus calibrating data takes a long time, only five random sample data sets

for each year were used for replications.

The sample size of at least 5000 was considered to be necessary for stable

estimation of MIRT parameters. Working on five random samples of the full data (RSD)

is equivalent to conducting five replications of linking of the 2005 test results with the

2006 test results.

The original plan for this linking study as described above was made before the

real data were available. Close examination of the real data suggested that changing

original study plan was necessary. The data structure constrained the choice of linking

method and the size of the RSD sets. Because of the matrix sampling design for the field

test items of the 2005 test, the number of Cases for some score categories on the

 

‘7 STUIRT is a computer program for implementing the four IRT scale transformation methods extended

by Kim and Lee (2004) for use with mixed-format tests as well as single-format tests (Kim and Kolen,

2004b).

'3 Program POLYEQUATE is a Fortran 77 program that conducts item response theory (IRT) true and

observed score equating using dichotomous and polytomous IRT models. (Kolen, M. J., 2004b)
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constructed-response (CR) items was too small for stable calibration. The smallest

number of respondents for such items was 32 for data sets with 5000 cases. This means

there were too many purposeful missing values due to data collection design—more than

90% missing values for anchor items. The calibration results from PARSCALE for the

2005 RSD sets were expected to be unstable. For this reason, a decision was made to

adopt the FCIP linking method instead of scale transformation after separate calibration.

FCIP linking was judged as reasonable and practical because it was being used for

Operational equating by EQAO. Also, MIRT linking through FCIP would be possible

using the BMIRTanchor program”.

After the change of linking method was made, the sample size of the RSDs was

also changed. Because of small number of respondents to constructed-response items,

there were some response categories with no responses. The PARSCALE program does

not calibrate polytomous data with response categories with zero frequencies. One

solution often taken in this situation is merging or collapsing two or more response

categories. This approach was not taken because the research question of whether

multiple-choice items and constructed-response items are measuring the same construct

would not be answered appropriately. Instead of merging response categories, it was

decided to analyze larger size RSDs. Practical considerations of the time required to run

BMIRT and BMIRTanchor constrained the size of RSDs as well. It was expected that

10,000 sample data sets would allow running PARSCALE without spending too much

time for MIRT calibration using BMIRT and for MIRT linking using BMIRTanchor.

 

'9 There were 8 different versions of BMIRT program which were designed to be used for different

purposes when this study was conducted. In this study, BMIRT28 for MIRT calibration and BMIRTanchor

for FCIP MIRT linking were used. ‘
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From the entire response data of two year’s tests, 13 RSD sets of 10,000 were sampled

for each test.

3.3.2 Selecting random samples data sets for the study

For both UIRT and MIRT linking, 13 random samples data (RSD) sets of 10,000

were sampled without replacement for each year. In the case of 2006 test data, RSD sets

were selected without any difficulty using MATLAB. However, selecting RSD sets of the

2005 data with anchor items was a very complicated process because of the matrix

sampling design for the testing program. To make sure that each RSD set includes the

same proportion of the same anchor group, i.e., a group of students who took the same

anchor items, the entire test data had to be divided into distinct groups with the same set

of anchor items. The classification of the test data into the same anchor items groups was

made using the SAS program. Using SAS, the data structure was explored based on the

missing data pattern and 22 distinct anchor groups with different combinations of anchor

items were identified. Each group had zero to four anchor items. To decide the size of

each anchor group within each RSD set, the total number of each anchor group was

divided into 13 so that adding all samples from 22 distinct anchor groups produced data

sets of 10,000 each. From each anchor group, 13 data sets were selected using MATLAB.

Then, 13 RSD sets of 10,000 were created by combining the 22 anchor group samples.

From the 13 RSD sets from year 2005, only 6 RSD sets could be used for PARSCALE

calibration because other RSD sets had empty response categories. Among the six 2005

RSD sets, five RSD sets were used for this study.

The field-test items for the 22 distinct groups and the number of samples from

each anchor group per RSD are reported in Table 3.1. Among the 34 anchor items, 25
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items were administered to one group and 9 items were administered to two groups. The

combinations of the field test items for the 22 distinct groups are reported in Table 3.2. In

Table 3.2, column G indicates the distinct anchor group and column I indicates the

number of items administered to each anchor group. The next 34 columns are for the 34

anchor items. The table shows how matrix sampling works. An X inside a cell denotes

that that anchor group had that item and a blank space indicates the item was not

presented. Items not presented are intentionally missing data. While missing was a result

of sampling design, it still presents a problem for estimation.

Table 3.1 Number of cases for each anchor group in each RSD

 

Anchor Group 1 83

Anchor Group 2 58

Anchor Group 3 37

Anchor Group 4 90

Anchor Group 5 58

Anchor Group 6 54

Anchor Group 7 557

Anchor Group 8 541

Anchor Group 9 556

Anchor Group 10 543

Anchor Group 11 558

Anchor Group 12 630

Anchor Group 13 620

Anchor Group 14 624

Anchor Group 15 630

Anchor Group 16 621

Anchor Group 17 628

Anchor Group 18 517

Anchor Group 19 528

Anchor Group 20 614

Anchor Group 21 551

Anchor Group 22 612

RSD 10000
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3.3.3. UIRT linking

As explained in the previous chapter, item parameters for the common anchor

items are fixed as pre-calibrated estimates from a base or reference data set and all the

other items of the data set to be linked are estimated on the same scale as the fixed

common items so that ability scores from two data sets are put on the same scale.

For this study, the 2006 test data were treated as the reference data and the 2005

test data were linked to the 2006 test data. The 2006 test data were expected to produce

much more stable item parameters for the 34 common anchor items compared to the 2005

test data because the 34 common items have responses from 10,000 examinees for the

2006 test, but from only 68 to 657 samples for the 2005 test. RSD sets for the 2005 test

data were matched with five RSD sets for the 2006 test so that 5 distinct pairs of RSD

sets were made. Each of the paired RSD sets was linked using FCIP linking method.

The specific procedures taken for UIRT linking are as follows. First, RSD sets

generated through MATLAB were saved as files for PARSCALE calibration. Then, five

random samples data sets of 10,000 each of the 2006 test were calibrated and abilities

were estimated. Third, RSD501A20 was calibrated so that item parameter file produced

could be used for FCIP linking. For FCIP linking, three files are needed for calibration of

each 2005 RSD set; data file, item parameter file, and NF file to indicate “not-presented”

items. To calibrate each 2005 RSD set as fixed on the 2006 scale, five 2005 RSD sets

were calibrated with fixed item parameters for the common items as estimated from

calibrating 2006 RSD sets.

 

20 In this study, there are three types of RSD sets; the 2006 test, the 2005 test, and the 2005 test with anchor

items or common items. To distinguish the 2005 test and the 2005 test with anchor items, the latter was

labeled as RSD501A to RSDSOSA. After linking of the RSD2005A with the 2006 matched RSD sets, the

2005 RSD sets were labeled as RSD501 to RSD505 without A.
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By fixing item parameters for the field test items for the 2005 test data, the

resulting calibrated item parameters for the 2005 test data are on the same metric as the

2006 test data, so estimated abilities for the 2005 test data are also on the same scale as

the one for the 2006 test calibration. This means that abilities estimated for both years

were on the same metric so they could become comparable.

For this study, 80% of 2005 students were arbitrarily selected as the proportion

assumed to have achieved the proficiency level or higher when applying a cut score

produced through a standard setting procedure. The cut score, which was expressed as a 6

value, for the proficiency level in 2005 was obtained at the 20th percentile. This cut-point

score was applied to the 2006 test data to get a proficiency rate in 2006 for each RSD set.

This cut score was applied to obtain the percentage of the students who passed the cut

score for proficiency level in 2006 and thus to calculate the change of proficiency rates

between 2005 and 2006. The same procedure was applied to each RSD set and the

average of proficiency change was calculated to be compared with MIRT results. When

MIRT linking was being conducted, it was found that ability distribution changed across

the two years. After MIRT linking was completed, one more cut-point, at the 50th

percentile, was applied to explore the effects of the location of cut-point in ability

distribution on the change of proficiency rates.

3.3.4. MIRT linking

3.3.4.1. MIRT linking — FCIP linking on ability dimension

For dimensionality analysis, two years’test data were analyzed using BMIRT

(Bayesian Multivariate Item Response Theory) program (Yao, 2003). BMIRT is the only

software program currently available which can estimate MIRT parameters for both
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dichotomous and polytomous data. The program can implement the multidimensional

two-parameter partial credit (M-2PPC) model and the multidimensional three-parameter

logistic (M-3PL) model concurrently so that it can be used for mixed format test data.

The program estimates the item, examinee, and population distribution parameters by

implementing Markov chain Monte Carlo (MCMC) methods using the Metropolis-

Hastings sampling algorithm. The program implements both exploratory and

confirmatory MIRT analyses. In exploratory analyses, every item is assumed to be loaded

onto all dimensions. However, one item must be selected to anchor each dimension to

remove rotational indeterminacy. Confirmatory analyses work in a similar way as the

usual confirmatory factor analyses by fixing the dimension of sensitivity for each item

and setting zero loadings for the other dimensions—i.e., simple structure.

To explore test data structure—i.e., dimensional structure—exploratory data

analyses were conducted using BMIRT. To get a stationary MCMC chain, several

different options of iteration and bum-in, 10,000/5000, 15,000/5000, 20,000/10,000,

25,000/10,000, and 30,000/10,000 options were tried. After examining standard

deviations and parameter tracing files, the 30,000/10,000 option was used for all MIRT

analyses.

The choice of population ability correlation is arbitrary, but it serves to fix the

scale. Different population variance and covariance options were tried by changing the

values a little bit in each calibration run, using a small number of iterations (5000/ 1000).

The population correlation was set as .36 by proposing .15, .42, and .15 as values for

ability prior covariance, ability proposal variance, and ability proposal covariance

respectively. This decision also was made based on the examination of acceptance rate
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following the recommendation on acceptance rate by Yao, the BMIRT program

developer.

After deciding on the calibration options, three different dimensional solutions

were explored, from two to four dimensions. In this examination of dimensional

structure, not only model fit indices reported by the BMIRT program — such as Akaike’s

(1987) information criterion (AIC), BIC, and difference chi-square — were considered,

but also loading structures. Model fit indices show that the two-dimensional solution has

the best fit in terms of fit indices. However, model fit indices—such as AIC and BIC

values—were not considered as the sole criterion for the choice of the dimension.

Preliminary cluster analyses of item parameters calibrated from different dimensional

solutions were conducted and content of test items clustered together were examined to

find out if cluster analyses results produce meaningfully interpretable clusters. Based on

this preliminary analysis, the three-dimensional solution was selected for further analyses

because the solution produced three relatively sensible item clusters.

After the decision on calibration options for BMIRT was made, five 2006 random

sample data sets were calibrated. A conservative burn-in length of 10,000 and a total of

30,000 iterations were employed. Approximate BMIRT running time for the 10,000

(samples) x 36 (items) data set on a Window-based Pentium ®1.78 GHz desktop machine

for a single run was about twelve hours. By running the program with an upgraded

machine, the run time could be reduced about half. Approximate BMIRT running time

for the 10,000 (samples) x 36 (items) data set on a Windows-based IP Intel® Core ““2

CPU T5300@1.78 GHz laptop machine for a single run was about six hours and 10

minutes.
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The priors for items parameters were set as follows; ya = 1.5 with a normal

distribution, and ya = 0.0 with a normal distribution, and for c parameters a = 6 and

b = 16 for the beta distribution, beta (a, b) following the solution proposed by Yao and

Schwartz (2006).

With the options for BMIRT running as described, first five 2006 RSD sets were

calibrated. After getting item parameters from each run, the item parameters and loading

structures were compared. Because loading structures and mean values of item

parameters across five RSD sets were not consistent, more RSD sets were calibrated to

get more stable estimates results. After running 12 RSD sets among 13, five RSD sets

showed relatively consistent loading structures and similar item parameter estimates.

These five RSD sets were considered to have produced relatively stable estimates and

thus selected for the linking study.

After getting item parameters from each run, the item parameters estimated from

BMIRT were used as fixed item parameters to run the 2005 RSD sets with both

operational test items and field test items. For this MIRT FCIP linking, the

BMIRTanchor program was used. BMIRTanchor estimates item parameters based on the

scale of the fixed item parameters and also estimates ability on the same metric of the

fixed item parameters.

To run the BMIRTanchor, four input files need to be prepared. For each run, a

control file, an item response data file, item parameter file for all items—items to be

estimated plus items with fixed parameters—and an ability scale score (6 scale score) file

are needed. BMIRTanchor does not need a separate “NP” file for not-presented items. By

giving value “f” for not-presented items, BMIRTanchor recognizes them as not-presented
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items. The ability score files as input files were obtained by running BMIRT. To prepare

input item parameter (1P) files to run BMIRTanchor, the result of RSD501A was used. It

was expected that item parameters of 2005 operational test items would be estimated

regardless of the values provided in an input item parameter file, as in PARSCALE. So,

the same values of 42 items for the 2005 operation test items were used with changed

values of common item parameters from each 2006 RSD set calibration.

Examination of item parameter estimates of 2005 RSD sets obtained by running

BMIRTanchor suggested strong effects of the values of 42 items given in the input IP

files. When the same estimates for the items to be estimated (i.e., the 2005 operational

test items) were used in the input IP files, three anchor items had exactly the same

estimates. Based on this finding, all 2005 RSD sets were calibrated to get their own

estimates of 42 operational test items. Four more input item parameter files were

prepared by running BMIRT. Using new IP files, four more MIRT FCIP linking

calibrations were conducted by running BMIRTanchor.

A simulation study to check the precision of BMIRT estimation was conducted.

While PARSCALE has been widely used in testing industry and psychometric research

community, BMIRT is a relatively new program. There are some research results which

report the reliability of BMIRT estimation through simulation studies (Yao & Schwartz,

2006; Yao & Boughton, 2007), but it has not been reported if it also has been used in

practical applications. The simulation study was conducted on 28 multiple-choice items

from the 2006 test because there was no program available to generate simulated data for
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MIRT polytomous response data.21 First, response data for 28 multiple-choice items by

10,000 random samples from the 2006 test data were calibrated on BMIRT with the same

prior options which were used in this study. Using item parameters calibrated by BMIRT

as true parameters, 10,000-sample simulated response data were generated from a

multivariate normal distribution with mean vector and variance/covariance matrix of the

ability estimation data from BMIRT. The simulated data were calibrated using the same

options on BMIRT and the item parameter estimates from simulated data were compared

with the true item parameters to check item recovery ability of BMIRT.

3.3.4. 2. Dimensionality analyses/cluster analyses

After the 2005 test data and the 2006 test data are linked through the FCIP linking

method, hierarchical cluster analyses (HCA) was used to explore the test structure.

Cluster analysis is a statistical method for segmenting or grouping a collection of objects

such as observations, individuals, cases, etc. into relatively homogeneous subsets or

clusters so that those within each cluster are more similar to each other than to objects

grouped in different clusters, based on the characteristics under consideration.

Hierarchical cluster analysis employs more than a single step of partition to form clusters.

While there are several algorithms which are commonly used for cluster analysis, Ward’s

(1963) method was used for cluster analyses for this study. Ward proposed a clustering

procedure so that the information loss associated with each grouping is minimized.

Information loss is defined by Ward in terms of an error sum of squares criterion.

The hierarchical cluster analyses (HCA) in MIRT use the angular distance

between the directions of the best measurement of items, which is converted from

 

2‘ There might be programs for generating simulated data of MIRT polytomous items being used by

individual researchers, but they were not available to the researcher and developing the program for the

purpose was beyond the goal of this study.
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estimated multidimensional discrimination (MDISC) parameter estimates. Application of

cluster analysis to MIRT dimensional structure was first proposed by Miller and Hirsch

(1992). They used angular distance converted from MDISC as a measure of proximity for

clustering. The angles between the directions of item vectors were used as a similarity

measure. Kim (2001) showed that Ward’s method with the angular distance yielded

stable classifications under various test conditions including mixed test format for MIRT

cluster analyses.

Hierarchical cluster analysis for each random sample data set, a total of 10 RSD

sets, from five cluster analyses for each year, was conducted using a MATLAB program,

MIRTCLUST”. MIRTCLUST provides a cluster diagram for a set of items (n = 36) in a

d-dimensional space (d = 3) based on the angle between the items. The five cluster

diagrams for the 2006 five RSD sets are presented below (Figure 3.1 to Figure 3.5).

 

22 MIRTCLUST was written by Reckase in 2001.
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Figure 3.1 Cluster diagram ofRSD 601
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Figure 3.2 Cluster diagram ofRSD 602
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Figure 3.3 Cluster diagram ofRSD 603
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Figure 3.4 Cluster diagram ofRSD 604
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Figure 3.5 Cluster diagram of RSD 605
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As shown in the cluster diagrams, three relatively distinct clusters were identified

for all five 2006 RSD sets. The clustering was similar across the five RSD sets. For

example, eight constructed response (CR) items, item 8 to item 11 and item 27 to item

30, were clustered into one cluster in all five RSD sets, even though there was one

additional item, 19, in RSD601 and RSD602. From close examination of cluster diagrams

and the values of discrimination parameters, it was found that items in one cluster—the

left side cluster in the case of RSD605—have similarly high loadings on 61 and 62. The

second group of items clustered together had high loading on 61, and the third group of

items clustered together was CR items and had high loadings on 63. The three groups of

items were notated as cluster 1, 2, or 3 (7“1 column in Table 3.3). When an item was

classified into the same cluster in the all five RSD sets, as the case of item 1 into cluster
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2, the rows of the items were shaded and the final clustering group for the 2006 test data

was bolded and italicized When there was a discrepancy across RSD sets, not just cluster

diagram but also loading structure was examined. Item 19 presented the biggest problem

in making a decision. Cluster analyses did not present a possible solution. Examination of

loading structure suggested that the item is close to items in cluster 2.

After the table for the 2006 data was prepared, the same procedure was applied to

classify the 2005 test data. Through the cluster analyses using MATLAB, five cluster

diagrams were produced and the same table of clustering (Table 3.4) was created in the

same way.

Table 3.4 Cluster number of each item for R505 and for the 2005

 

Item Type Item No 501 502 503 504 505 2005
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Table 3.4 (cont’d)

MC 23 2 2 2 2 2 2

MC 24 2 2 2 2 2 2

MC 25 1 3 3 1 3 1

MC 26 l 1 1 1 1 1

MC 27 1 1 1 1 1 1

MC 28 2 2 2 2 2 2

MC 29 1 2 1 1 2 1

CR 30 3 3 3 3 3 3

CR 31 3 3 3 3 3 3

SA 32 3 3 3 3 3 3

SA 33 3 1 3 2 2 3

MC 34 1 1 1 1 1 1

MC 35 1 2 1 1 2 1

MC 36 1 1 1 1 1 1

MC 37 1 1 3 1 1 1

MC 38 2 2 2 2 2 2

MC 39 1 2 1 1 1 1

MC 40 1 l 1 1 1 1

MC 41 2 1 3 2 2 2

MC 42 2 1 3 1 2 2   
 

As the cluster diagrams, Figures 3.6 to 3.10, show, items were clustered into three

relatively distinct groups for all five 2005 RSD sets. Depending on whether it is possible

to identify meaningful constructs corresponding to clusters, the number of clusters can be

selected differently. Overall it seems that the 2005 test data allow not only three-cluster

solution but also four-cluster solution, which might present measurement of more specific

constructs. In this study, selection of the number of clusters was made with a substantial

consideration of the number of constructs identified through the cluster analysis of the

2006 test data. As the cluster diagrams suggest, there were more discrepancies of cluster

classifications across the 2005 RSD sets. This was expected because the 2005 RSD set

was linked with the 2006 RSD set from 2006 test framework by fixing the scale as the

2006 scale. The final decision was made in the similar way to the 2006 data as described.
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Figure 3.6 Cluster diagram for fixed RSD501

Fixed RSD 501

 

80 l-

50 ._

aoT l I

l l l

l
._.C » l[*I’

Li

I

. ! I . . : I l ' l _ l l‘ 1 l J ‘ l l L ‘ ' i1 1“ I i |'- l ' J 1" I 1

162814 82421182342194138 1 637 526352040222939 236 33427 9151025 433 712323130111317

Figure 3.7 Cluster diagram for fixed RSD502
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Figure 3.8 Cluster diagram for fixed RSD503
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Figure 3.9 Cluster diagram for fixed RSD504

 

 

Fixed RSD504

150I

100 j~

50 l

I -, 1

_-,__, I _L_._
I , 1 .

l
l l

z-III4LI-I'I ' I131;l l . _=_-, . . ‘1 71,. _.. . L H._# L_1 I 1 l __1__I L,,,._

14222935 124 821162838 4194118234233 236 3202627 5343940 63715 731123230111317 91025

-7 -fi

l ‘ l '

67



Figure 3.10 Cluster diagram for fixed RSD505
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Unlike the 2006 test, there were two multiple-choice items (7 and 17) clustered

with cluster 3 items, which had high values on 63-—mostly constructed-response or short-

answer items. Discussion of the relationship between 6 dimensions, mathematical ability

constructs, which were identified as a result of the item review committee activity, and

some sample items, are provided in the next section.

3. 3. 4. 3. Item review committee

Once cluster analyses were complete, the item review committee was convened.

The item review committee consisted of four doctoral students with a mathematics

education major. The committee members were recruited from the mathematics

education learning community at Michigan State University. All of the committee

members had experience teaching and working with upper elementary to middle school
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students”. The committee meeting was held in mid August, 2007 at Michigan State

University and continued for five and half hours in total.

Following the researcher’s introduction to the study and cluster analysis results,

cluster diagrams and the tables of clusters along with real test items and test

specifications were provided to the committee. Each member reviewed items in terms of

content and process standards. It was requested that each member consider what

mathematical ability might be employed for students to answer the item correctly from

the students’ point of view.

After completing a review of individual items—a total 78 items (36 from the 2006

test and 42 from the 2005 test)—two groups of two members each discussed constructs

measured by the items assigned to the same cluster. First, naming of the clusters formed

by items from the 2006 test was attempted. Next, the groups considered whether these

names could be applied to the 2005 test clustering. Each group made its own decision on

the meaning of the clusters identified through MIRT cluster analyses. After within-group

discussion, results from the two groups were compared and discussed to reach a

consensus of the meanings of 6 dimensions and the clusters identified. Three identified

clusters were judged to be meaningfully interpretable and three mathematical constructs

being measured in common by the items within each cluster were determined based on

the committee discussion. Brief descriptions of the constructs identified were prepared by

the researcher based on the committee discussion. The procedures and results of the item

review committee discussion and decision of the constructs and their meanings are

summarized as below.

 

23Kosze Lee, loo-Young Park, Violeta Yurita, and Marcy Wood at Michigan State University served on the

Item Review Committee.
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First, items grouped as cluster 1 had high a-parameters on 61, and 61 was

identified as computational ability and/or knowledge of simple concepts. Most of the

items in cluster 1 could be considered to require number sense and number operations.

Items in cluster 2 had high a-parameters on 61 and 62, and 62 was identified as

mathematical thinking or reasoning ability. The items in cluster 2 were judged to require

both computational ability and certain level of mathematical reasoning. These items

required more than one step of solution and setting up a strategy to solve the problem.

These items were different from typical routine problem solving questions in that they do

not allow direct application of routine problem solving methods and therefore need

setting up a problem solving strategy to solve the items. The items in cluster 3 had higher

a-parameters on 63 compared to 61 and 62, 63 was identified as communication and/or

representation abilities. The items in cluster 3 were judged to require communication

and/or representation abilities. Table 3.5 presents a brief summary description of each 6

dimension.

Table 3.5 Description of 6 dimensions

 

61 Computation, number sense, simple concept, straightforward

62 Mathematical thinking or reasoning; slightly complicated concepts

63 Communication; representation
 

Second, the mathematical construct measured through the items in cluster lwas

named as “problem solving”—a combination of 62 and 62 as described in Table 3.5. Item

31 in the 2006 test is a typical problem solving item which requires both computational
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ability and ability to think mathematically to set up a strategy of solution”. Item 31 is

presented below as an example item measuring problem solving construct.

 

31. In a hockey arena, the first row has 276 seats, the second row has 288 seats and the

third row has 300 seats. Each row after this continues to increase by the same number.

If the arena has a total of 6 rows, how many seats are in the arena?

3 1836

b 1176

c 972

d 312

 

To answer this question correctly, 3 problem-solving strategy needs to be set up

because several steps are required to achieve a solution—the question cannot be solved

by the application of simple procedural knowledge. Students need to (1) compute the

number of seats by which each row increases by subtraction; (2) compute the number of

seats for rows 4, 5, and 6 respectively by addition; and (3) add the number of seats of all

six rows to get the total number of the seats in the arena. Setting up a problem-solving

strategy requires more than computations. It needs mathematical thinking or reasoning to

determine which computational procedures are to be applied and when to apply them.

This item requires relatively high abilities on both 61 and 62 and relatively low ability on

63.

The mathematical construct measured by the items in cluster 2 was named as

“procedural knowledge”. An example item in this construct category is presented below.

 

2‘ The three items presented in this dissertation were represented with the permission of EQAO. All

question items for the 2005 test and the 2006 test are provided as Appendix attachments.
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1. Which is the most appropriate unit of measurement to describe the area of the

floor a gym?

km2
c
a
p
o
-
9
:

n 3

 

Item 1 in 2006 test presented above asks for the most appropriate unit of

measurement to describe the area of the floor of a gym. While this item has been

classified as measurement content area item by test specification, it does need simple

knowledge and understanding of a simple mathematical concept, e.g. a measurement unit.

It does need high ability on 61 and lower ability on both 62 and 63,.

Third, the mathematical construct measured by items in cluster 3 was named as

communication and representation. One example item for this construct is presented

below. Item 27 requires high ability on 63_and less ability on 62, and lowest ability on 62.

The item requires ability to represent given data for an appropriate communication of the

information given in the data.

 

27. Ranjit makes the chart below to record the amount of money collected during a

fundraising event.

 

Day Monday Tuesday Wednesday Thursday Friday
 

 

Amount of $50 $125 $75 $25 $175

Money Collected       
 

Make a broken-line graph to represent the data. Remember to include all titles and

labels.
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Explain your choice of scale.

  
 

The classification of items based on the three mathematical constructs for the

2006 test is presented in Table 3.6.

Table 3.6 Assignment of items to constructs: 2006

 

 

 

 

 

 

Item No 601 605 606 607 612 2006

1 PK PK PK PK ' PK PK

2 PK PK PK PK PK PK

3 PS PS PK P5 P5 P5

4 PS PS PS PS P5 PS

5 PK PK PK PK PK PK  

73



Table 3.6 (cont’d)
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

6 PS PS PS PS P5 P5

7 PS PS PS PS PS PS

8 CR CR CR CR CR CR

9 CR CR CR CR CR CR

10 CR CR CR CR CR CR

11 CR CR CR CR CR CR

12 PS PS P5 P5 P5 P5

13 PK PS PS PS PK PS

14 PK PK PK PK PK PK

15 PK PK PK PK PK PK

16 PS PS PS PS P5 P5

17 PK PK PK PK PK PK

18 PS PS PK PK PS PK

19 PS PS PK PK PK PK

20 PK PK PK PK PK PK

21 PK PK PK PK PK PK

22 PK PK PK PK PK PK

23 CR CR PK PS PK PK

24 PS PS PK PK PK PK

25 PS PS PS PS P5 P5

26 PS PS PS PS PS PS

27 CR CR CR CR CR CR

28 CR CR CR CR CR CR

29 CR CR CR CR CR CR

30 CR CR CR CR CR CR

31 PS PS PS PS P5 P5

32 P5 P5 P5 PS P5 P5

33 PS PS PK PK PS PS

34 PK PK PK PK PK PK

35 P5 P5 P5 P5 P5 P5

36 PS PS PS PS PS PS
 

MC refers to multiple choice questions.

SA refers to short answer question.

CR refers to constructed response questions.
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FCIP linking was conducted with the 2006 test as a reference test, which means

that ability space for the 2005 test data was specified as the same ability space as the

2006 test data. Whether this was a feasible approach needs to be examined. First, the

decision was made based on a statistical basis. As already explained, the data collection

structure made estimation of the anchor items from the 2005 test less stable compared to

the opposite direction. But, there is another practical implication of this approach. If tests

are expected to measure current students’ learning in accordance with the current

curriculum framework and instructional approach, which are not expected to remain

unchanged, comparison of students’ learning across years from the current framework

would be more meaningful. The classification of items based on mathematical constructs

for the 2005 test is presented in Table 3.7.

Table 3.7 Assignment of items to constructs: 2005

 

 

   

Item Item

Type No 501 502 503 504 505 2005

MC 1 Ps ' PK PK "'Ps PK PK

MC 2 PS Ps PS PS P5 P5

MC 3 P5 P5 PS P5 P5 P5

MC 4 CR PS PK PK PK PK

MC 5 P5 P5 P5 P5 P5 P5

MC 6 PS PS PK P5 P5 PS

MC 7 CR PS CR CR CR CR

MC 8 PK Ps PK PK PK PK

SA 9 PS PS CR Ps CR Ps

SA 10 PS CR CR P5 P5 P5

CR 11 CR CR CR CR CR CR

CR 12 CR CR CR CR CR CR

CR 13 CR CR CR CR CR CR

MC 14 PK PK PK PK PK PK

MC 15 P5 P5 CR PS P5 P5

MC 16 PK PK PK PK PK PK

MC 17 CR CR CR CR CR CR

MC 18 PK PK CR PK PK PK
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MC 34 P5 P5 PS P5 P5 P5

MC 35 P5 PK P5 P5 PK Ps

MC 36 P5 P5 P5 PS PS Ps

MC 37‘ P5 P5 CR ,. P5 P5 P5

.~MC' . ‘ .38 .3 ‘ IX. '5 . .‘; EK'a 73' &PIC'TVL... 'PKT- 35k .. ‘9’ 8K 2*!

MC 39 PS PK P5 P5 P5 P5

MC 40 P5 P5 P5_ PS Ps PS 7

KMC .. 51,” “we? f Ps—v- ” “CR” yak #3,. PK 1% MK?

1_Mc* ;' 42- . i"P=K= a; - 3,155; '* cg} - g“? "‘t- REL. ‘PK_§5_    
MC refers to multiple choice questions.

SA refers to short answer question.

CR refers to constructed-response questions.

The constructs identified above can be interpreted psychometrically as the best

measurement of the items as a composite of abilities and/or skills required for correct

responses within the ability space defined as three ability dimensions. The direction of

the best measurement of a cluster of items is called a reference composite, as already

explained. The UIRT approach presents onlyione reference composite for a whole test.

The MIRT approach allows finer distinctions, dividing a broadly defined domain such as

mathematical ability into several constructs—for example, problem solving, procedural
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knowledge, and communication and representation, as in the case of this study. How the

direction of each reference composite was determined are discussed in the next section.

3.3.4. 4. Determining reference composites

Table 3.8 reports the discrimination parameter estimates for three ability

dimensions for each item for one 2006 RSD set. For the purpose of illustration, items

were rearranged so that items in the same construct can be presented together. PK items

have the highest discrimination parameter estimates on 62, and PS items usually high on

both 0; and 62 and CR items high on 03.

For the purpose of explanation, the a-matrix of the construct PK consisting of the

first 14 items will be denoted as RC (reference composite) 1, that for PS as RC2, and for

CR as RC3. It was shown that the unidimensional item response theory scale is defined

by the first eigenvector of the a'a matrix which corresponds to the largest eigenvalues of

the matrix (Wang, 1985), where a is the matrix of discrimination parameters for the

compensatory MIRT model.

Table 3.8 Discriminations and RC classification of a 2006 RSD set

 

 

  

a1 82 33 RC

0.922 0.331 0.320 PK

1.017 0.265 0.279 PK

1.055 0.284 0.555 PK

14 0.776 0.526 0.299 PK

15 2.038 0.000 0.000 PK

17 1.048 0.651 0.302 PK

18 1.136 0.909 0.425 PK

19 0.840 0.432 0.247 PK

20 0.895 0.327 0.230 PK

21 1.425 0.403 0.466 PK

22 1.220 0.321 0.268 PK

23 0.867 0.473 0.480 PK
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Table 3.8 (cont’d)

 

 

24 0.716 0.408 0.251 PK

34 1.353 0.567 0.462 PK

0.522 0.488 0.343 PS

0.266 0.546 0.228 PS

1.016 0.868 0.259 PS

0.880 0.938 0.246 PS

12 0.871 0.783 0.321 PS

13 0.637 0.389 0.253 PS

16 0.410 1.238 0.227 PS

25 0.280 1.207 0.214 PS

26 0.226 0.473 0.205 PS

31 1.121 1.041 0.388 PS

32 0.804 0.779 0.281 PS

33 1.642 1.368 0.385 PS

35 0.916 1.421 0.219 PS

36 1.111 1.251 0.000 PS

0.268 0.202 0.433 CR

0.575 0.208 0.602 CR

10 0.334 0.374 0.691 CR

11 0.270 0.387 0.519 CR

27 0.339 0.211 0.449 CR

28 0.217 0.201 0.314 CR

29 0.278 0.287 0.548 CR

30 0.329 0.359 0.644 CR  
 

To find a rotation matrix for RC1, RCl'RCI was calculated first. RCl'RCl

produced the following matrix.

18.2575 6.0855 4.8171

6.0855 3.0567 2.1231

4.8171 2.1231 1.7575

Each diagonal value in the matrix is the sum of the squared a-elements for each ability

dimension of the RCI-matrix. The off diagonal values are the sums of the cross-products

of the a-elements from different dimensions. The eigenvalues for this matrix are
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0.1727, 1.1283, and 21.7706, which sum is 23.0717. This sum of the eigenvalues is the

same as the sum of the diagonal elements. The eigenvector that corresponds to the largest

.9110

eigenvalue is .3250

.2538

As explained in Reckase (in press), the sum of the squared elements of the eigenvector is

equal to 1, so the elements have the properties of direction cosines. These direction

cosines give the orientation of the reference composite with the coordinate axes of the

ability space specified in this study.

The angle between the reference composite and the coordinate axes can be

determined by taking the arccosine of the elements of the eigenvector (Reckase, ibid). In

this example, the reference composite has an angle of approximately 24° with the 6; axis,

71° with the 62 axis and 75° with the 63 axis, suggesting the reference composite is most

strongly related to dimension 1. Applying the same procedure to RC2 and RC3 produces

an angle of approximately 50° with the 0; axis, 42° with the 6’; axis and 79° with the 63

axis for RC2 suggesting the reference composite is strongly related to both dimension 2

and dimension 3; and an angle of approximately 61° with the 6, axis, 66° with the 6’;

axis and 39° with the 63 axis for RC3 suggesting the reference composite is most strongly

related to dimension 3. Once the directions of reference composites are determined in this

way, the coordinate system can be rotated so that the direction of reference composites

are aligned with the axis 1 of the rotated system and ability on a reference composite can

be measured as a distance along the axis 1 in the new coordinate system. This procedure

is explained in the next section.
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3.3.4.5 Projecting Ability at Reference Composites as Mathematical Constructs

In the MIRT approach, it is assumed that each item requires more than one ability

or proficiency to correctly answer the item. MIRT analysis typically identifies more than

one ability dimension, i.e., ability coordinate axis. Then, an ability space being measured

is specified by these statistically identified ability coordinate axes. If these statistically

identified coordinate axes correspond to meaningful constructs under interest, abilities

measured by these coordinate axes will indicate abilities on constructs of interest.

However, ability coordinates do not necessarily correspond to meaningful constructs, as

indicated by Reckase (2006). For this reason, MIRT cluster analysis was conducted to

identify meaningful constructs as in this study. Through hierarchical cluster analyses and

careful examination of test contents by content experts, researchers have identified

meaningfully interpretable constructs (Martineau et al., 2006; Li, 2006).

If statistically identified ability coordinate axes can be considered as meaningfully

interpretable constructs, it would be more useful to measure ability on constructs than on

statistically identified coordinate axes. If ability on constructs can be measured, learning

growth also can be traced on the constructs rather than on the coordinate axes.

In the case of Li’s study (2006), the ability coordinate axes were assumed to

correspond to the constructs identified through MIRT hierarchical cluster analysis and

abilities measured at the coordinate axes were used as construct abilities. When a

discrimination loading structure is close to a simple structure, meaning that only one

dimension has high loadings, with close to zero loadings at other dimensions, treating

ability coordinates as corresponding to constructs would be acceptable. However, when

the loading structure is not close to a simple structure, treating an ability coordinate axis
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as if it is a construct would result in more measurement error than necessary in measuring

constructs. If it is possible to measure ability at the construct level even when ability

coordinates do not correspond to constructs identified through MIRT cluster analyses,

learning growth at the construct level can be observed and linking also could be

conducted at the construct ability level.

Recently, Reckase (in press) showed a way of measuring ability in the direction

given by a vector of direction cosines of an item, which is the best measurement as a

composite of multiple abilities and/or skills of the item in a multiple ability space. For

example, if an item has the best measurement in the direction of 30 degrees from

coordinate axis 1 in a two-dimensional case, the direction of the best measurement of the

item can be aligned with a new coordinate axis 1 by rotating the current coordinate axis 1

by 30 degrees counter-clockwise. Then, the new coordinate axis 1 is aligned with the

direction of the best measurement of the item. In this way, distances along the rotated

coordinate axis 1. now become a direct measure of the best measurement of the item.

When ability space is specified by more than two coordinate axes, matching up the

direction of the best measurement of an item is achieved through multiple rotations, the

number of dimension minus 1.

The same procedure developed by Reckase can be applied to reference

composites so that coordinate axes are aligned with reference composites in a new

coordinate system in the ability space specified. Reckase also (in press) shows that the

invariant property of MIRT model holds after multiple rotations with an example of one

item. The specific procedures for rotating reference composites to align the reference
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composites with the coordinate axes and thus identify ability at reference composite (i.e.,

construct abilities) are explained below.

Conversion of coordinates in an ability space to a different set of rotated

coordinate axes is done by multiplication of the initial coordinates by a rotation matrix.

For the two-dimensional case, the rotation matrix is given by

cosa sin a

Rot = , .

— sma cos a

where a is the number of degrees of rotation in the clockwise direction. To get the

rotation matrix in the counter-clockwise direction, negative values of a are used.

Determining angles of rotation in a higher dimensional space than two-

dimensional case is much more challenging. Reckase (in press) shows that it is useful to

separate a particular rotation into a series of rotations around each of the orthogonal

coordinate axes and then to get the full rotation as the product of each of the separate

rotation matrices. In general, the angle of rotation needed in each of the 0,, BV-planes is

given by

71, = arcco = arcco

  
Both item and person parameters afier rotation are obtained by post-multiplying

the a and 0 matrices by the rotation matrix, a Rot and 0 Rot.
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The rotation matrix as a product of each of the separate rotation matrices for the

above example, 2006 RSD, in three-dimensional space under study is given by

0.9110 — 0.3360 — 0.2390

0.3250 0.9418 — 0.0853

0.2538 0 0.9673

The results of the application of the rotation to the a-matrix are given in Table

3.9. There are some important results about the a-parameters after rotation. First, each

item in cluster 1—the items shaded—has predominantly high loadings on a,. This is a

result of rotating the 6,-axis to align with the direction of RC1. When an item has the

very similar direction to RC1, it has close to a zero discrimination parameter estimate for

the other ability dimensions. While most of items are on a direction very similar to RC1,

some items with a non-zero discrimination parameter estimate on the other two

dimensions are not. I

A second result is that the first a-parameter for each item is now very similar to

the multidimensional discrimination for the item, which is presented in the 6th column

(A), because the discrimination along RC1 is the most discriminating direction. When an

item has close to zero discrimination parameter estimates on a; and a3, the value of a1 is

very close to A as in the case of item lor 20 (bolded and italicized).

Table 3.9 Discriminations and MDISC (A) after rotation

Item RC a1 a; 33 A

 

 

1 1 1.03 0.00 0.06 1.03

2 1 1.08 -0.09 0.00 1.09

5 1 1.19 -0.09 0.26 1.23

14 1 0.95 0.24 0.06 0.98

15 1 1.86 -0.68 -0.49 2.04

17 1 1.24 0.26 -0.01 1.27

18 1 1.44 0.47 0.06 1.51

19 1 0.97 0.12 0.00 0.98
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Table 3.9 (cont’d)

 

20 1 0.98 0.01 -0.02 0.98

21 1 1.55 -0.10 0.08 1.55

22 1 1.28 -0.11 -0.06 1.29

23 1 1.07 0.15 0.22 1.10

24 1 0.85 0.14 0.04 0.86

34 1 1.53 0.08 0.08 1.54

3 2 0.72 0.28 0.17 0.79

4 2 0.48 0.43 0.11 0.65

6 2 1.27 0.48 -0.07 1.36

7 2 1.17 0.59 -0.05 1.31

12 2 1.13 0.44 0.04 1.21

13 2 0.77 0.15 0.06 0.79

16 2 0.83 1.03 0.02 1.32

25 2 0.70 1.04 0.04 1.26

26 2 0.41 0.37 0.10 0.56

31 2 1.46 0.60 0.02 1.58

32 2 1.06 0.46 0.01 1.15

33 2 2.04 0.74 -0.14 2.17

35 2 1.35 1.03 -0.13 1.71

36 2 1.42 0.81 -0.37 1.67

8 3 0.49 0.08 0.34 0.60

9 3 0.34 0.12 0.23 0.43

10 3 0.42 0.10 0.34 0.55

11 3 0.74 0.00 0.43 0.86

27 3 0.60 0.24 0.56 0.85

28 3 0.50 0.27 0.40 0.70

29 3 0.49 0.18 0.44 0.68

30 3 0.58 0.23 0.51 0.81
 

The same rotation matrix was used to rotate the ability matrix onto the RC1

direction so that ability after rotation could be expressed as ability on RC1 by post-

multiplying the 0 matrix.

As an illustration, ability scores of 10 students on original ability dimensions and

ability scores after rotating to RC1 are presented in Table 3.10. The values of the first

column of the 0 matrix after rotation (in bold) are the ability scores for the first reference

composite.
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Table 3.10 Coordinates of person locations before and after rotation

 

 

 

  

Before rotation After rotation

01 02 03 01 02 03

1 0.466 0.316 -0.514 0.3968 0.141 -0.6355

2 -0.413 -1.202 -0.86 -0.9852 -0.9933 -0.6306

3 -1.504 -O.708 -1.017 -1.8584 -0.1614 -0.5639

4 -1.19 ~1.856 —1.308 -2.0193 -1.3482 -0.8225

5 0.811 0.307 0.552 0.9787 0.0166 0.3139

6 0.292 0.858 -0.192 0.4962 0.71 -0.3287

7 0.755 0.702 0.982 1.1652 0.4075 0.7095

8 0.957 0.281 -0.144 0.9266 -0.0569 -0.392

9 -1.642 -0.721 -1.518 -2.1155 -0.1273 -1.0144

10 -0.098 0.26 0.484 0.1181 0.2778 0.4694

 

Because three reference composites were identified, three rotation matrices were

made, applying the same procedures explained above. The original ability matrix was

transformed three times using the three rotation matrices. After these procedures, the

fully rotated ability matrix, which is aligned with reference composites, was made by

taking values of the first column for each rotated ability matrix. A part of the fully rotated

ability matrix is presented in Table 3.11 with an example of 10 students.

Table 3.11 Fully rotated ability matrix

 

 

6’1 02 93

1 0.3968 0.4381 -0.0458

2 -0.9852 -1.3184 -1.3566

3 -1.8584 -1.6853 -1.8014

4 -2.0193 -2.3881 -2.3448

5 0.9787 0.854 0.9437

6 0.4962 0.788 0.3417

7 1.1652 1.1913 1.4116

8 0.9266 0.7982 0.4632

9 -2.1155 -1.8779 -2.2618

10 0.1181 0.2203 0.4346 
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Once the full rotated matrices for all five 2006 RSD sets were made, the same

procedures were applied to the five 2005A RSD sets to get rotated ability scores so that

change of proficiency rate based on RC abilities between 2005 and 2006 could be

calculated. One adjustment was, however, made for the 2005 test data. Because two items

(items 10 and 25) had unreasonably high discrimination values of about 5, they were

considered as outliers and deleted from the analyses. By deleting two items, the direction

of three RCs of the 2005 data became more similar to that of 2006, suggesting that

reference composites from two years’ test data are compatible.

3. 3.4.6 MRTapproach to proficiency classification—compensatory vs. conjunctive

In the case of MIRT, there are three achievement areas, i.e., three constructs, to be

considered. Therefore, two approaches or models to proficiency classification can be

considered— compensatory and conjunctive. Earlier discussions on compensatory versus

conjunctive model to decision making can be found in Mehrens and Phillips (1989) in

relation to teacher licensure or in Jager (1991) in relation to school quality evaluation.

More recently, the two models have been discussed in the context ofNCLB

accountability system (Paulsen et al., 2002; Hill & DePascale, 2002; Abedi, 2004). All

these studies discuss and clarify the different results that different model selection to

NCLB Adequate Yearly Progress (AYP) decision making would bring about. In

proficiency classification, the compensatory approach assumes that achievement on one

construct can compensate for achievement on the other constructs. The conjunctive

approach to proficiency classification requires students to achieve “proficiency” in each

domain or construct.

86



The need for the conjunctive approach can be raised by those who are concerned

about the possibility that students can achieve proficiency even when they are not

proficient on some important domains or constructs. For example, if the cut-point for

proficiency is set at 80% correct score and there are 40% easy computational items, 40%

easy mathematical concept items, and 20% difficult problem solving items, students can

pass the cut-point even though they answer less than 50% of problem-solving items

correctly if they average 90% correct in the other areas. This is an extreme example, but

it illustrates the concern raised.

In a compensatory approach to proficiency classification, there is one additional

consideration—how to weight the three abilities. One possible approach is to consider the

weight of each construct as corresponding to the relative percent of raw scores for each

construct based on test specifications. Another approach is to consider the relative

importance of each construct. There were 14 multiple-choice items each for RC1 and

RC2 and 8 constructed-response items in RC3 in the case of the 2006 test. Because

constructed-response items had a 4 point scale, RC3 had a larger percentage of the raw

score than either RC1 or RC2. On the other hand, procedural knowledge (RC1) and

problem-solving abilities (RC2) were considered as important mathematical constructs as

communication and representation ability (RC3).

Based on this consideration, it was decided to give equal weight to each construct

in the compensatory approach. This decision was applied to the 2005 data because FCIP

linking was made with the 2006 test as the reference test. For the conjunctive approach,

three separate cut-points for each construct were set at both the 80th and 50th percentiles.
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Student who passed all of the three cut-points were classified as having achieved

proficiency.

3. 3.4. 7. Proficiency rate change

To compare the proficiency rate across years, the same standard, that is, the same

cut-point should be applied, assuming that scores across years are on the same scale. In

real situations, the cut-point for a proficiency level is set by a standard-setting process.

For the purpose of this study—comparing proficiency rates between 2005 and 2006—,

the proficiency rate was set at the 20th percentile in 2005, assuming that 80% of 2005

students achieved proficiency in the case the UIRT and MIRT compensatory approaches

to proficiency classification. The ability score, i.e., 0, at the 20th percentile was then

considered as the cut-point for proficiency. This ability score was applied to the 2006

data to get the proficiency rate in 2006. In addition to the 80 percent cut-point, the 50th

percentile cut point was also applied, to explore the effects of cut-points on proficiency

classification, as already described. In the conjunctive approach, the same percentile

criteria were applied to each construct.
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CHAPTER 4

RESULTS AND INTERPRETATION

This chapter describes the results of the study and provides the plausible

interpretations of the analysis results.

4.1 UIRT Linking

To evaluate educational performance across years using test scores, it is necessary

to link test scores fi‘om different tests so that results from different tests are put on a

common metric and thus can be compared. Unidimensional linking approaches assume

that tests are measuring the same unidimensional construct or a composite of common

constructs which can be considered unidimensional. As already explained, the procedure

for linking employed in this study was very similar to the fixed common item parameter

equating design. Other than assuming that two years’ tests are different forms of the same

test with difference only in difficulty, the basic linking procedure is the same as the

equating procedures described in the theoretical framework chapter.

4.1.1. Descriptive statistics of data

Descriptive statistics from the basic item analysis result and estimated

unidimensional item parameters for the whole response data set are reported in Table 4.1

(2005) and Table 4.2 (2006). Calibration of the data using PARSCALE was conducted

using the same options which were used by EQAO.25 When the 2005 test data were

calibrated, Item 8 had extreme difficulty and standard error, -15.77 and 37.353

 

25 The calibration options were as follows; CALIB PARTIAL, LOGISTIC, CYCLE= (500, 1, 1, l, l),

ITEMFIT=20, NEWTON=30, CR1T=0.0001, NQPT=40.
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respectively. The 2005 data were recalibrated again with the increased iterations to 1,000.

The increase in the number of iterations decreased the difficulty and standard error by

about half. The data were recalibrated again with the iterations set at 3,000, but the

difficulty and standard error stayed almost the same as in the calibration using 1,000

iterations. Because of its extreme value, the item 8 was dropped from the analyses. The

IRT item parameter estimates reported in Table 4.1 are from the calibration with 1,000

iterations. Parameter estimates for the other items were very similar to those from the

original calibration. IRT item parameter estimates and the classical test theory item

indices of the 2006 test are reported in Table 4.2.

Table 4.1 Item analysis result—item discrimination, item difficulty, and guessing

parameters in item response theory and classical test theory (2005 test, N=132,021)

 

 

 

IRT Item Parameters -- PARSCALE Results riltaesz‘icfirtaerst‘tettgzry

Item number Slope S.E. Location S.E. Guessifing S.E. P-Value Biserial

1 0.96 0.014 -0.92 0.022 0.24 0.01 0.77 0.47

2 0.86 0.011 -0.83 0.02 0.13 0.01 0.71 0.45

3 0.79 0.014 0.57 0.013 0.21 0.005 0.47 0.47

4 0.59 0.018 0.48 0.039 0.46 0.009 0.66 0.38

5 0.91 0.009 -0.42 0.011 0.04 0.005 0.59 0.27

6 0.79 0.013 -0.04 0.02 0.28 0.007 0.62 0.53

7 0.67 0.018 1.45 0.017 0.23 0.004 0.38 0.4

8 Deleted from the calibration

9 0.73 0.005 -0.41 0.006 0 0 0.56 0.26

10 1 0.007 -0.21 0.005 0 0 0.53 0.5

11 0.36 0.002 -0.9 0.005 0 0 2.29 0.58

12 0.32 0.002 -1.76 0.007 0 0 2.82 0.63

13 0.29 0.001 -0.82 0.006 0 0 1.97 0.57

14 0.8 0.013 0.29 0.014 0.19 0.005 0.51 0.55

15 0.87 0.015 0.83 0.011 0.18 0.004 0.4 0.42

16 0.75 0.01 -1.26 0.028 0.06 0.014 0.76 0.38

17 0.73 0.013 0.51 0.015 0.19 0.005 0.48 0.45

18 0.83 0.014 0.78 0.011 0.15 0.004 0.39 0.39

19 0.95 0.018 0.45 0.014 0.35 0.004 0.57 0.4

20 1.01 0.013 -0.32 0.013 0.18 0.006 0.63 0.37 
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Table 4.1 (cont’d)

21 0.75 0.012 -1.27 0.037 0.17 0.017 0.79 0.5

22 0.79 0.009 -1.63 0.026 0.04 0.015 0.82 0.41

23 0.6 0.01 -0.55 0.031 0.08 0.012 0.61 0.42

24 0.66 0.012 -0.51 0.035 0.27 0.012 0.69 0.42

25 0.91 0.012 —0.03 0.013 0.18 0.005 0.57 0.38

26 0.65 0.012 -0.17 0.028 0.21 0.01 0.61 0.46

27 0.89 0.015 0.78 0.01 0.18 0.004 0.4 0.39

28 0.72 0.012 -0.46 0.028 0.26 0.01 0.68 0.38

29 1 0.015 0.83 0.008 0.13 0.003 0.35 0.4

30 0.35 0.001 -0.66 0.006 0 0 1.81 0.41

31 0.41 0.002 -1.04 0.005 0 0 2.26 0.56

32 0.22 0.004 -1.46 0.026 0 0 0.62 0.65

33 0.79 0.007 -1.8 0.011 0 0 0.84 0.21

34 0.83 0.006 0.61 0.006 0 0 0.32 0.41

35 0.75 0.013 0.44 0.015 0.21 0.005 0.5 0.5

36 1.01 0.014 0.54 0.009 0.17 0.003 0.44 0.38

37 0.84 0.012 0.8 0.009 0.1 0.003 0.35 0.43

38 1.1 0.015 -0.77 0.017 0.29 0.008 0.77 0.42

39 1.1 0.012 -0.19 0.01 0.12 0.004 0.57 0.54

40 0.91 0.012 -0.91 0.02 0.15 0.01 0.74 0.46

41 0.61 0.013 0.23 0.027 0.21 0.009 0.54 0.36

42 1.01 0.015 0.26 0.012 0.26 0.004 0.55 0.44 
 

Table 4.2 Item analysis result -- item discrimination, item difficulty, and guessing

parameters in item response theory and classical test theory (2006 test, N=136,653)26

 

 

 

 

IRT item parameters -- PARSCALE results gzgicglaizgiheetrym

Item Slope S.E. Location S.E. Guessing S.E. P-Value Bi-serial

1 0.77 0.012 -0.895 0.037 0.243 0.016 0.812 0.35

2 0.74 0.010 0.124 0.017 0.096 0.007 0.562 0.29

3 0.64 0.011 0.015 0.030 ' 0.185 0.011 0.621 0.45

4 0.44 0.011 -0.111 0.064 0.140 0.018 0.615 0.25

5 0.94 0.019 1.441 0.011 0.204 0.003 0.353 0.34

6 1.03 0.013 -0.966 0.024 0.232 0.013 0.850 0.28

7 1.03 0.012 -0.912 0.020 0.151 0.012 0.821 0.37

8 0.47 0.002 71.827 0.006 0 0 0.775 0.52

9 0.31 0.002 -1.538 0.007 0 0 0.681 0.43

10 0.40 0.002 -1.537 0.006 0 0 0.731 0.52

 

26 In some items, guessing and standard errors of guessing parameter estimates are zero because they are

constructed response items.
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Table 4.2 (Cont’d)

11 0.62 0.002 -0.398 0.005 0 0 0.537 0.57

12 0.92 0.01 -0.447 0.015 0.074 0.008 0.697 0.36

13 0.62 0.01 -0.197 0.033 0.156 0.012 0.652 0.27

14 0.84 0.017 0.845 0.016 0.335 0.005 0.555 0.41

15 1.12 0.016 1.09 0.008 0.150 0.003 0.355 0.47

16 0.81 0.008 —1.064 0.021 0.003 0.011 0.791 0.49

17 0.95 0.018 0.888 0.013 0.310 0.004 0.524 0.38

18 1.13 0.016 -0.128 0.015 0.329 0.007 0.730 0.21

19 0.71 0.010 -0.065 0.020 0.080 0.008 0.599 0.43

20 0.74 0.012 -0.626 0.036 0.267 0.014 0.776 0.41

21 1.09 0.012 0.001 0.011 0.128 0.005 0.617 0.33

22 0.80 0.015 1.343 0.011 0.147 0.004 0.342 0.44

23 0.85 0.012 0.008 0.017 0.169 0.007 0.629 0.28

24 0.69 0.010 -0.142 0.024 0.122 0.010 0.634 0.42

25 0.75 0.010 -0.924 0.033 0.124 0.016 0.791 0.41

26 0.17 0.022 0 1.265 0 0.148 0.829 0.40

27 0.59 0.002 -0.755 0.006 0 0 0.658 0.52

28 0.53 0.003 -1.113 0.005 0 0 0.738 0.60

29 0.50 0.002 ~0.871 0.005 0 0 0.643 0.58

30 0.57 0.003 -0.441 0.005 p 0 0 0.582 0.58

31 1.23 0.016 0.300 0.01 0.223 0.004 0.591 0.35

32 0.92 0.013 -0.010 0.016 0.215 0.007 0.656 0.41

33 1.57 0.015 0.455 0.006 0.075 0.002 0.457 0.37

34 1.19 0.016 1.024 0.007 0.141 0.003 0.360 0.41

35 1.10 0.013 -0.522 0.016 0.190 0.008 0.766 0.56

36 1.16 0.015 -0.865 0.02 0.247 0.011 0.854 0.46  
Table 4.3 and Table 4.4 present the summary statistics for item parameters of the

2005 test and the 2006 test. Summary statistics after the 2005 test data were calibrated

with fixed parameters for the anchor items are presented in Table 4.5. When the 2005

test was linked with the 2006 test by fixing the item parameter estimates from the 2006

test calibration (Table 4.5), average item discrimination (slope) was very similar between

the two tests, but the average item difficulty (threshold) increased by .15, suggesting the

2005 test was more difficult than the 2006 test.
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Table 4.3 Summary statistics for parameter estimates (2005)

 

 

PARAMETER MEAN SD N

SLOPE 0.76 0.22 41

THRESHOLD -0.23 0.82 41

GUESSING 0.14 0.11 31
 

Table 4.4 Summary statistics for parameter estimates (2006)

 

 

PARAMETER MEAN SD N

SLOPE 0.80 0.29 36

THRESHOLD -0.25 0.81 36

GUESSING 0.18 0.08 27
 

Table 4.5 Summary statistics for parameter estimates (2005A)

 

 

PARAMETER MEAN 50 N

SLOPE 0.79 0.24 36

THRESHOLD 0.08 0.78 36

GUESSING 0.14 0.11 27
 

Table 4.6 and Table 4.7 present item parameter estimates by the item type. In both

the 2005 test and the 2006 test, item discrimination of multiple-choice items is higher

than that of constructed-response items. Short-answer items in the 2005 test have a little

lower discrimination on average.

Table 4.6 Item parameter estimates by item type for the 2005 test“

 

 

 

Mean Standard deviation

MC CR SA MC CR SA

Discrimination 0.86 0.36 0.75 0.16 0.05 0.31

Difficulty 0.11 -0.89 -0.48 0.71 0.41 0.93

Guessing 0.19 0.00 0.00 0.08 0.00 0.00
 

*MC refers to multiple choice items, CR to constructed-response items, and SA to short-answer items.
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Table 4.7 Item parameter estimates by item type for the 2006 test“

 

 

 

Mean Standard deviation

MC CR MC CR

discrimination 0.89 0.50 0.27 0.10

difficulty -0.01 -1.06 0.72 0.53

guessian 0.17 0.00 0.09 0.00
 

*MC refers to multiple choice items and CR to constructed-response items.

The information functions provided by PARSCALE suggest that polytomous

items provide more information overall. This finding confirms the results of previous

research, which suggests higher information in constructed-response items than multiple-

choice items (Donohue, 1993).

4.1.2. Proficiency rate change between year 2005 and year 2006

While the five pairs of random sample data sets with sample size of 10,000 were

linked in this study for the comparison of UIRT linking and MIRT linking, the whole

data sets were also linked through the FCIP method and change of proficiency rates was

explored for the UIRT linking to check the randomness of the RSD sets, i.e.,

representativeness of the samples in each RSD set”.

Mean, standard deviation, maximum and minimum (9 values for five RSD sets and

all students in 2005 are reported in Table 4.8. The reported statistics for the 2005 test are

based on the data linked to the 2006 data so that the statistics can be directly compared to

those for the 2006 data. 6 values in 2005 are from 0.015 to .186 lower than in 2006; .134

lower on average for RSD sets and .139 lower'for all students. However, there was no

statistically significant difference between 2005 RSD sets and their matched 2006 RSD

b
0

 

27 Because each RSD set was separately calibrated, they cannot be compared to each other directly.

Representativeness of samples mean how the samples represent (i.e., resemble) the population. The

similarity of descriptive statistics of RSD set with the parameters suggests a piece of evidence for the

representativeness of the samples.
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sets at a=0.01. Overall mean and standard deviations across five RSD sets are very close

to those for the all students in 2005. Even though there are some variations across the

RSD sets in each year, there was no statistically significant difference across the RSD

sets in both years. One interesting finding here is that ranges of 6 values in 2005 for both

the students in RSD sets and all students have been shrunken especially for students with

low 6 values. This shrinkage might be the result of estimation procedure rather than

changes in the ability distribution. This phenomenon is more salient for MIRT linking

case, which will be discussed in the MIRT linking result report section.

Table 4.8 Mean, standard deviation, maximum, and minimum of 0 for 2005 test data

 

 

501A 502A 503A 504A 505A Mean_RSD 2005A_AII

Mean -0.186 -0.167 -0.162 -0.140 -0.015 -0.134 -0.139

SD 1.020 1.003 1.002 0.990 0.959 0.995 0.990

Max 2.677 2.645 2.653 2.749 2.730 2.691 2.761

Min -3.369 -3.262 -3.338 -3.225 -3.246 -3.288 -3.350

 

As a way of checking the effects of distribution change, two different proficiency

cut-points were explored; the 20th percentile, assuming that 80% of 2005 students reached

the proficiency level, and the 50‘h percentile, assuming that 50% of 2005 students reached

the proficiency level. Proficiency rate changes are reported in Table 4.9 for each paired

RSD sets and for all students in 2005 and 2006.

Table 4.9 Cut scores for proficiency level and proficiency rates in 2006

 

 

 

All

501-601 502-602 503-603 504-604 505-605 Mean_R$D students

The 20th

percentile 0.8506 -0.8516 -0.8189 -0.8417 -0.8487 -0.8407 -0.8136

passing in

2006 79.93% 79.82% 79.41% 80.15% 80.1 7% 79.90% 79.37%

The 50th

percentile 0.0038 0.0109 0.0264 0.0148 0.0119 0.01356 0.0326

passing in

2006 51.53% 51.13% 50.70% 51.22% 50.98% 51.11% 50.54%
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When the proficiency cut point was set at the 20th percentile for 2005 students, the

proficiency rates in 2006 were 79.90% on average for the five 2005 RSD sets and

79.37% for the whole student data. This result suggests that the proficiency rate from

2005 to 2006 changed little when the proficiency level was set at the 20‘h percentile of the

20055tudents. The results of x2 test confirmed that there was no significant difference

between 2005 and 2006 across the five RSD sets (Table 4.10).

Table 4.10 x2 results_U|RT_20th Percentile

UlRT_20th percentile
 

 

X.

501-601 0.02

502-602 0.10

503-603 1.08

504-604 0.07

505-605 0.09
 

When the proficiency level was set at the 50th percentile, the result was similar

(Table 4.9). While RSD sets showed about 1% increase in the proficiency rate in 2006,

there was only .5% increase in the whole students’ data. The results of x2 test suggest that

only one RSD pair (501-601) among the five has statistically significant difference in

proficiency rate between 2005 and 2006. Overall, when students’ performances from two

years were linked through the unidimensional linking approach, the result suggests little

improvement of performance in 2006 compared to 2005 and the cut-point did not make

difference in the change of proficiency rates.
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Table 4.11 x2 results_UiRT_50th Percentile

UlRT_SOth percentile

x2

 

501-601 4.68

502-602 2.55

503-603 0.98

504-604 2.98

505-605 1.92
 

In this study, FCIP linking was conducted from 2006 to 2005, the opposite of the

usual direction, because of the test data structure with missing data for the 2005A test.

This means that students’ performance in 2005 was measured relative to the 2006

calibration. Students who were classified as proficient based on the 2005 test result could

fail to achieve the proficiency level when their proficiency was classified from the 2006

test scale. This can happen because estimates of item parameters from each separate

calibration might be a little different fiom those resulted from the FCIP linking, which in

turn can make a little different ability estimates for individual students. To check this

effect, the number and percentage of misclassifications for all students at the 20‘h

percentile cut-point was explored. Table 4.12 presents the proficiency rates from both

directions—from the 2005 test perspective and the 2006 test perspective. The result

suggests that inconsistency in proficiency classification as a group is almost the same

when linking in either direction but individual students might be advantaged or

disadvantaged depending on the direction in which linking occurs. Because the previous

year’s proficiency rate is determined prior to the next year, this result provides a

justification for adopting a reverse direction FCIP linking method.
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Table 4.12 Proficiency Classification by FCIP linking from both directions

 

Cumulative Cumulative

 

 

Passing Frequency Percent Frequency Percent

No-Pass on either 25460 19.28 25460 19.28

No pass on 2005 and pass on 2005A 941 0.71 26401 20

No pass on 2005A and pass on 2005 942 0.71 27343 20.71

Pass on both 104678 79.29 132021 100

4.2 MIRT Linking

4.2.1. Checking BMIRT estimation precision—a simulation study

While there is some research documenting the stability of BMIRT estimation

(Yao & Schwartz, 2005; Yao & Schwartz, 2006), the program is relatively new

(developed in 2003) and there is no research using the program other than by the program

developer and colleagues. To check the item parameter recovery ability of BMIRT, one

simulation study was conducted. The simulation was conducted for dichotomous data—

multiple-choice items—only because polytomous item-response-data generation in MIRT

framework was not available.

First, the response data for the 28 dichotomous items out of the 36 items in the

2006 test with 10,000 samples were calibrated by BMIRT. The estimates of the item

parameters calibrated were treated as “true” parameters. Using MATLAB, 10,000

simulated response strings (10,000 X 28) were generated from multivariate normal

distribution with the mean vector and variance/covariance matrix from the calibration.

Then, the simulated data were calibrated by BMIRT with the same prior options which

were used to calibrate the data. The result showed that BMIRT recovered item parameters

reasonably well. The “true” item parameters and the estimated item parameters from the

simulated data are reported in Table 4.13.
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Table 4.13 True item parameters and recovered item parameters

 

 

True_ Rec_ True_ Rec_ True_ Rec_ True_ Rec_ True_ Rec_

item a1 al a2 a2 a3 a3 b b c c

1 0.81 0.7 0.25 0.36 0.51 0.57 -1.46 -1.5 0.22 0.23

2 0.97 1.13 0.24 0.29 0.42 0.53 -0.1 -0.24 0.07 0.12

3 0.54 0.49 0.28 0.38 0.44 0.53 -0.3 -0.33 0.12 0.14

4 0.27 0.23 0.48 0.48 0.32 0.38 -0.27 -0.35 0.15 0.17

5 1.12 1.01 0.25 0.3 0.53 0.67 2.07 1.97 0.2 0.25

6 0.78 0.84 0.68 0.73 0.79 0.62 -2.27 -2.26 0.12 0.12

7 0.72 0.82 0.85 1.1 0.92 1.02 -2.09 -2.38 0.11 0.12

8 0.73 0.77 0.67 0.86 0.67 0.85 -1.05 -1.34 0.07 0.1

9 0.6 0.56 0.31 0.42 0.39 0.38 -0.48 -0.71 0.15 0.2

10 0.9 0.79 0.36 0.38 0.27 0.28 0.66 0.74 0.29 0.24

11 2.23 2.35 0 0 0 0 1.84 1.95 0.13 0.1

12 0.31 0.31 1 1.13 0.85 0.83 -1.84 -1.97 0.06 0.07

13 1.25 1.08 0.35 0.32 0.63 0.94 1.44 1.67 0.34 0.27

14 1.02 0.99 0.74 0.59 0.39 0.65 -0.8 -0.83 0.25 0.26

15 0.72 0.51 0.37 0.45 0.49 0.67 -0.35 -0.39 0.08 0.1

16 0.87 0.61 0.28 0.3 0.37 0.75 -1.11 -1.08 0.23 0.2

17 1.43 1.43 0.39 0.54 0.6 0.75 -0.45 -0.68 0.11 0.14

18 1.01 1.21 0.25 0.29 0.45 0.45 1.65 1.49 0.15 0.27

19 0.89 0.86 0.37 0.45 0.39 0.44 -0.32 -0.44 0.15 0.18

20 0.71 0.63 0.44 0.55 0.37 0.5 -0.44 -0.58 0.11 0.14

21 0.43 0.36 0.94 1.11 0.35 0.34 -1.51 -1.57 0.11 0.11

22 0.22 0.28 0.57 0.55 0.22 0.29 -1.58 -1.77 0.16 0.18

23 1.18 1.17 1.07 1.13 0.25 0.4 0.07 -0.11 0.2 0.23

24 1.05 1.09 0.75 0.83 0.25 0.35 -0.5 -0.65 0.19 0.23

25 1.5 1.6 1.27 1.32 0.4 0.48 0.65 0.56 0.07 0.1

26 1.39 1.35 0.45 0.53 0.39 0.43 1.55 1.43 0.12 0.17

27 0.92 0.8 1.44 1.31 0.33 0.41 -1.52 -1.33 0.18 0.16

28 1.05 1.03 1.52 1.63 0 0 -2.53 -2.45 0.21 0.2
 

Mean 0.92 0.89 0.59 0.66 0.43 0.52 -0.39 -0.47 0.16 0.17

50 0.428 0.461 0.391 0.402 0.217 0.249 1.286 1.31 0.069 0.06

Root mean squared error (RMSE) was calculated for each item and the means of

RMSE for three discriminations, difficulty, and guessing parameters are reported in Table

4.14. Table 4.15 reports the correlations between the true and the recovered item

99



parameters. Compared to the amount of RMSE usually reported in simulation studies”,

the RMSE values were evaluated as relatively small, which confirmed the item recovery

ability of BMIRT. The correlations between true item parameters and recovered ones by

BMIRT range from .99(b) to .86(c) (Table 4.14). Plots of a1(r =.97) and a3 (r =.89) are

presented in Figures 4.1 and 4.2 to graphically indicate the similarities between true

values and recovered ones.

Table 4.14 RMSE of item discriminations

 

a1 32 a3 b c

0.0850 0.0880 0.1052 0.1278 0.0306

 

 

Table 4.15 Correlations between the true and the recovered item parameters

 

a1_true a2_true 33_true b_true c_true
 

 

Pearson

a1_simu Correlation 0.97

0.00

aZ_simu Pearson Correlation 0.98

N

a3_simu Pearson Correlation 0.89

b_simu Pearson Correlation 0.99

c_true Pearson Correlation 0.86

* * Correlation is significant at the 0.01 level (2-tailed).

 

28 For example, Ball et a1. (2002) report about .14 to .20 of RMSE of each item for the 30 items test with

500 samples. The much smaller values of RMSE in this study seem to be due to the large sample size.
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Figure 4.1 Scatter plot of a recovered discrimination, a1, and true values
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Figure 4.2 Scatter plot of a recovered discrimination, a3, and true values
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4.2.2. MIRT calibration results

Five 2006 RSD sets were calibrated by running BMIRT with the same options as

described in the Methods chapter. Means of three discrimination values for each RSD set

and means and standard deviations of discriminations across the five RSD sets are

presented in Table 4.16. Overall discriminations across the five RSD sets for each

dimension are relatively similar.

Table 4.16 Mean of item discriminations for the 2006 R50 sets

 

a1 a2 a3

RSD601 0.84 0.58 0.34

R50602 0.85 0.60 0.35

R50603 0.78 0.64 0.33

R50604 0.82 0.64 0.32

R50605 0.79 0.58 0.34

Mean 0.82 0.61 0.34

SD 0.03 0.03 0.01

 

 

 

 

Table 4.17 reports MDISC for 36 items for the five RSD sets. Discriminations

range from 0.42 for Item 30 to 2.80 for Item 11. Overall, discriminations of constructed—

response items are low compared to those of the multiple-choice items, suggesting either

high or low MDIFF, which is analogous to difficulty in UIRT. When items are too

difficult or too easy, they do not discriminate well overall. Table 4.18 reports MDIFF for

the 36 items for the five 2006 RSD sets. Average MDIFF of the multiple-choice items (-

0.33) is much higher than that of the constructed-response items (-1.35). The difference

in MDIFF and MDSIC between MC items and CR items suggests the possibility that they

measure different constructs, which will be discussed in the cluster analysis report

section.
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Table 4.17 MDSIC for 36 items in 2006 Test

 

 

 

Item Item Type RSDGOl RS0602 RSD603 RSD604 RSD605

1 MC 1.04 1.17 1.01 1.07 1.03

2 MC 1.13 1.05 1.03 1.04 1.09

3 MC 0.81 0.84 0.74 0.93 0.79

4 MC 0.64 0.69 0.57 0.68 0.65

5 MC 1.35 1.45 1.17 1.21 1.23

6 MC 1.40 1.41 1.30 1.37 1.36

7 MC 1.42 1.45 1.50 1.34 1.31

8 CR 0. 62 0. 61 0. 61 0. 62 0. 60

9 CR 0.44 0.42 0.42 0.42 0.43

10 CR 0.55 0.57 0.54 0.57 0.55

11 CR 0.90 0. 90 0.90 0.86 0.86

12 MC 1.24 1.27 1.26 1.27 1.21

13 MC 0.80 0.73 0.83 0.79 0.79

14 MC 1.05 1.09 1.08 1.20 0.98

15 MC 2.27 2.51 2.39 2.80 2.04

16 MC 1.27 1.33 1.20 1.28 1.32

17 MC 1.39 1.28 1.36 1.28 1.27

18 MC 1.36 1.68 1.53 1.66 1.51

19 MC 0.97 0.94 0.95 0.99 0.98

20 MC 1.04 1.12 0.94 1.03 0.98

21 MC 1.61 1.70 1.40 1.47 1.55

22 MC 1.19 1.04 1.02 1.12 1.29

23 MC 1.14 1.03 1.12 1.00 1.10

24 MC 0.92 0.90 0.95 0.88 0.86

25 MC 1.14 1.28 1.19 1.25 1.26

26 MC 0.64 0.59 0.58 0.57 0.56

27 CR 0.85 0. 79 0.82 0.80 0. 85

28 CR 0.77 0. 75 0. 77 0. 72 0. 70

29 CR 0. 70 0. 73 0. 70 0.77 0. 68

30 CR 0.82 0. 85 0.84 0.81 0.81

31 MC 1.60 1.85 1.83 1.61 1.58

32 MC 1.35 1.38 1.25 1.38 1.15

33 MC 1.94 2.28 2.04 2.15 2.17

34 MC 1.59 1.68 1.66 1.51 1.54

35 MC 1.78 1.69 1.94 1.79 1.71

36 MC 1.91 1.91 1.84 1.84 1.67

Mean_all 1.16 1.19 1.15 1.17 1.12

Mean_MC 1.28 1.33 1.27 1.30 1.25

Mean_CR 0.71 0.70 0.70 0.70 0.68
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Table 4.18 MDIFF for 36 items in 2006 test

 

Item Item Type RSD601 RSD602 R50603 RS0604 RS0605

 

1 MC -1.36 -1.31 -1.64 -1.51 -1.56

2 MC -0.09 -0.08 -0.13 -0.1 -0.14

3 MC -0.14 -0.11 -0.33 -0.07 -0.24

4 MC -0.33 -0.02 -0.38 -0.35 -0.19

5 MC 1.54 1.56 1.55 1.63 1.59

6 MC -1.53 -1.57 -1.66 -1.62 -1.66

7 MC -1.42 -1.38 -1.31 -1.55 -1.49

8 CR -2.58 -2.51 -2.77 -2.53 -2.6

9 CR -2.14 -2.1 -2.16 -2.09 -2.15

10 CR -2.13 -2.05 -2.17 -2.11 -2.18

11 CR -0.66 -057 -0.63 -0.68 -0.71

12 MC -0.82 -0.82 -0.8 -0.8 -0.86

13 MC -0.61 -0.73 -0.4 -0.57 -0.55

14 MC 0.75 0.65 0.8 0.81 0.65

15 MC 0.83 0.8 0.78 0.86 0.86

16 MC -1.38 -1.32 -1.46 -1.37 -1.29

17 MC 0.95 0.75 0.79 0.92 0.82

18 MC -0.52 -0.27 0.49 -0.25 -0.35

19 MC -0.3 -0.28 -0.34 -0.3 -0.31

20 MC -0.88 -0.94 -1.26 -0.99 -1.17

21 MC -0.27 -0.17 -0.27 -0.27 -0.29

22 MC 1.43 1.57 1.55 1.45 1.37

23 MC -0.12 -0.28 -0.24 -0.35 -0.21

24 MC -0.48 -0.4 -0.41 -0.44 -0.54

25 MC -1.24 -1.07 -1.3 -1.2 -1.24

26 MC -2.38 -2.17 -2.43 -2.61 -2.68

27 CR -1.14 -1.16 -1.23 -1.16 -1.18

28 CR -1.62 -1.58 -1.59 -1.6 -1.68

29 CR -1.29 -1.24 -1.24 -1.23 -1.34

30 CR -0.73 -0.71 -0.74 -0.76 -0.76

31 MC 0.09 0.19 0.13 0.15 0.13

32 MC -0.29 -0.08 -0.24 -0.15 -0.45

33 MC 0.35 0.34 0.33 0.32 0.35

34 MC 1.01 1.04 0.99 1.03 1.07

35 MC -0.82 -0.89 -0.76 -0.73 -0.92

36 MC -1.25 -1.28 -1.28 -1.31 -1.46

Mean_all -0.60 -0.56 -0.63 -0.60 -0.65

Mean_MC -0.33 -0.30 -0.36 -0.33 -0.38

Mean_CR -1.35 —1.31 -1.38 -1.33 -1.39
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Correlations of MDSIC and MDIFF between the five RSD sets from the 2006 test

are in Table 4.19 and Table 4.20 respectively. Correlations of both MDISC and MDIFF

are very high. As expected from low MDSIC values for CR items, MDIFF of the items

were very high. This supports the random equivalence of the five 2006 RSD sets because

both MDISC and MDIFF between equivalent test forms are usually very high and

MDIFF are even higher.

Table 4.19 Correlations of MDSIC between RSD sets of the 2006 test

 

RSD601 RSD602 RSD603 RS0604 RS0605

RSD601 1

R50602 0.978 1

RSD603 0.9805 0.9748 1

RSD604 0.967 0.9783 0.9718 1

RSD605 0.9758 0.9751 0.9677 0.9575 1

 

 

Table 4.20 Correlations of MDIFF between RSD sets of the 2006 test

 

RSD601 RSD602 R50603 RS0604 R50605

RS0601 1

RSD602 0.9945 1

RS0603 0.9947 0.9914 1

RS0604 0.9962 0.9939 0.9943 1

RSD605 0.9956 0.9936 0.9942 0.9964 1

 

 

4.2.3 FCIP MIRT linking on ability dimension

Once item response data of the five 2006 RSD sets were calibrated by the BMIRT

program, the five 2005 RSD sets were linked through the FCIP linking method by

running the BMIRTanchor program on the data sets. Following the procedures described

in the Methods chapter, the five 2005 RSD sets were calibrated and then each 2005 RSD
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set was linked with its pre-matched 2006 RSD set with the anchor items fixed as the item

parameters of from each matched 2006 RSD set.

Item parameter summary statistics for the 42 items for the 2005 RSD sets—

RSD501A to RSDSOSA—afier the FCIP linking are reported in Table 4.21. Because the

parameter estimates of the 2005 test items and the 2006 test items are on the same metric

through the FCIP linking, the values of item discrimination of the 2005 test can be

compared directly with those of the 2006 test. The item discriminations of the three

dimensions from the 2006 test were 0.82, 0.61, and 0.34 each (Table 4.16). The average

item discriminations for the three dimensions in the 2005 RSD sets are overall much

higher than those from the 2006 test. Because item discrimination of the Item 10 and Item

25 were unreasonably high—about 6 and 5 each—these two items were deleted from the

further analyses. I

Table 4.21 Mean of item discriminations of 2005A RSD sets: 42 items

 

01 02 03

501A 1.15 1.08 0.69

502A 1.16 1.05 0.69

503A 1.22 1.02 0.72

504A 1.09 1.08 0.60

505A 1.10 0.98 0.74

Mean 1.14 1.04 0.69

SD 0.05 0.04 0.05

 

 

 

 

Mean of item discriminations for the three dimensions after deleting the two items

are reported in Table 4.22. The mean discrimination for a; changed little (from 1.14 to

1.17), that of a; decreased dramatically (from 1.04 to 0.59), and that of a3 increased

somewhat (from 0.60 to 0.81). Compared to the 2006 test (Table 4.15), a; and a3 are
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higher and a; are similar in the 2005 test. Mean discriminations in the 2006 test were

0.82, 0.61, and 0.34 respectively.

Table 4.22 Mean of item discriminations of 2005A RSD sets: 40 items

 

 

 

 

a1 02 a3

501A 1.17 0.60 0.87

502A 1.18 0.59 0.82

503A 1.24 0.60 0.80

504A 1.12 0.53 0.85

505A 1.13 0.61 0.73

Mean 1.17 0.59 0.81

SD 0.04 0.03 0.05
 

MDISC for the five 2005A RSD sets after deleting the two items are reported in

Table 4.23 below. As expected from high discrimination values for the 2005 test items

compared to those of the 2006 test, the average value ofMDSIC for the 2005 test items is

higher than that of the 2006 test items—1.65 in the 2005 test compared to 1.16 in the

2006 test. Discriminations in the 2005 test are also different by item type as in the 2006

test; highest for MC items (1.78) followed by SA items (1.59), and lowest for CR items

(0.92) suggesting lower MDIFF ofCR items than two other types of items.

Table 4.23 MDISC for 40 items in the 2005 test

 

 

Item Type RSDSOlA RSD502A RSDSO3A RSDSO4A RSDSOSA

1 MC 1.85 1.82 2.01 1.94 1.91

2 MC 255 2.27 2.46 2.13 2.10

3 MC 1.85 1.92 1.92 1.97 1.61

4 MC 1.15 1.02 0.95 1.11 1.09

5 MC 2.14 2.12 2.37 2.28 2.00

6 MC 1.65 1.82 1.62 1.39 1.54

7 MC 1.59 1.59 1.22 1.44 1.45

8 MC 0.91 0.92 1 0.91 0.84 0.85

9 5A 2.00 2.24 2.34 2.30 2.27

10 SA Deleted
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Table 4.23 (cont’d)

11 CR 1.23 1.17 1.25 1.22 1.40

12 CR 0.74 0.74 0.71 0.72 0.83

13 CR 0.70 0.72 0.77 0.71 0.69

14 MC 1.46 1.54 1.66 1.58 1.61

15 MC 2.23 1.59 1.93 1.84 1.87

16 MC 1.46 1.46 1.51 1.53 1.51

17 MC 1.70 1.52 1.53 1.61 1.78

18 MC 1.58 1.48 1.54 1.62 1.49

19 MC 1.87 1.66 1.76 1.54 1.61

20 MC 2.56 2.33 2.40 2.43 2.28

21 MC 1.52 1.56 1.53 1.45 1.42

22 MC 1.73 1.80 1.81 1.80 1.52

23 MC 1.16 1.17 1.20 1.15 1.11

24 MC 1.28 1.34 1.31 1.21 1.21

25 MC Deleted

26 MC 1.43 1.59 1.43 1.41 1.51

27 MC 2.80 3.22 2.99 2.84 2.27

28 MC 1.35 1.29 1.41 1.31 1.37

29 MC 2.21 2.19 , 2.42 2.13 1.97

30 CR 1.00 1.03 0.94 0.90 0.90

31 CR 0.87 0.94 0.87 0.83 0.89

32 SA 0.54 0.54 0.58 0.55 0.50

33 SA 1.51 1.53 1.67 1.42 1.53

34 SA 2.22 2.09 2.11 2.10 1.83

35 MC 1.84 1.65 1.78 1.60 1.50

36 MC 2.79 2.90 2.49 2.55 2.25

37 MC 1.86 1.87 2.20 1.97 1.83

8 MC 2.14 2.17 2.02 2.35 2.09

39 MC 2.58 2.35 2.53 2.27 2.46

40 MC 2.44 2.23 2.18 2.06 2.35

41 MC 1.11 1.11 1.54 1.05 1.23

42 MC 1.82 1.95 2.21 1.74 1.81
 

The mean MDISC of all items and by item type of each RSD set and across the

five 2005 RSD sets are reported in Table 4.24.
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Table 4.24 Mean of MDISC by item type across the 2005 RSD sets

 

 

Type RS0501A RSDSOZA RS0503A RSDSO4A RSDSOSA Mean SD

Mean_all 1.69 1.66 1.70 1.62 1.59 1.65 0.05

Mean_MC 1.83 1.79 1.83 1.75 1.70 1.78 0.06

Mean_SA 1.57 1.60 1.68 1.59 1.53 1.59 0.05

Mean_CR 0.91 0.92 0.91 0.88 0.94 0.91 0.02
 

The values of MDIFF of the 40 items after deleting Item 10 and Item 25 in the

2005 test items are overall lower than those of the 2006 test, with the mean of -0.08

compared to -0.61 in the 2006 test items (Table 4.25). CR items have the lowest MDIFF

values on average and MC items the highest MDIFF values. Overall, MDIFF values of

the 2005 test items are much higher than those of the 2006 test.

Table 4.25 MDIFF for 40 items in the 2005 test

 

 

Item Type RSDSOIA RS0501A RSDSOIA RSDSOIA RS0501A Mean SD

1 MC -0.68 -0.75 -0.64 -0.74 -0.68 -0.70 0.05

2 MC -0.45 -0.38 -0.39 -0.54 -0.54 -0.46 0.08

3 MC 0.49 0.62 0.47 0.45 0.54 0.51 0.07

4 MC 0.43 0.50 0.30 I 0.46 0.54 0.45 0.09

5 MC -0.19 -0.14 -0.15 -0.22 -0.24 -0.19 0.04

6 MC 0.05 0.20 0.09 -0.03 0.05 0.07 0.08

7 MC 1.38 1.42 1.28 1.42 1.19 1.34 0.10

8 MC -1.11 -1.09 -1.12 -1.08 -1.17 -1.11 0.04

9 SA -0.15 -0.09 -0.07 -0.16 -0.16 -0.13 0.04

11 CR -0.36 -0.37 -0.30 -0.37 -0.33 -0.35 0.03

12 CR -1.18 -1.16 -1.19 -1.26 -1.03 -1.16 0.08

13 CR -0.44 -0.40 -0.33 -0.43 -0.42 -0.40 0.04

14 MC 0.33 0.41 0.40 0.40 0.38 0.38 0.03

15 MC 0.64 0.85 0.80 0.77 0.76 0.76 0.08

16 MC -0.88 -0.92 -0.83 -0.90 -0.84 -0.87 0.04

17 MC 0.58 0.53 0.64 0.62 0.67 0.61 0.05

18 MC 0.84 0.90 0.88 0.87 0.93 0.88 0.03

19 MC 0.48 0.56 0.54 0.46 0.51 0.51 0.04

20 MC -0.15 -0.09 -0.15 -0.16 -0.17 -0.14 0.03

21 MC -0.85 -0.91 -0.83 -0.89 -0.91 -0.88 0.04

22 MC -1.11 -1.01 -1.00 -1.10 -1.18 -1.08 0.08
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Table 4.25 (cont’d)

 

 

23 MC -0.30 -0.25 -0.23 -0.24 -0.28 -0.26 0.03

24 MC -0.37 -0.17 -0.31 -0.37 -0.30 -0.30 0.08

26 MC -0.09 0.05 0.01 -0.08 -0.04 -0.03 0.06

27 MC 0.45 0.56 0.56 0.50 0.53 0.52 0.05

28 MC -0.26 -0.32 -0.24 -0.41 -0.20 -0.29 0.08

29 MC 0.75 0.85 0.76 0.88 0.88 0.82 0.06

30 CR -0.29 -0.23 -0.26 -0.33 -0.32 -0.29 0.04

31 CR -0.71 -0.59 -0.67 70.73 -0.70 -0.68 0.05

32 SA -0.93 -0.81 -0.76 -0.92 -0.95 -0.87 0.08

33 SA -1.47 -1.39 -1.30 -1.56 -1.44 -1.43 0.10

34 SA 0.46 0.56 0.52 0.51 0.58 0.53 0.05

35 MC 0.37 0.50 0.53 0.44 0.55 0.48 0.07

36 MC 0.46 0.50 0.46 0.44 0.48 0.47 0.02

37 MC 0.76 0.83 0.75 0.60 0.77 0.74 0.09

38 MC -0.71 -0.65 -0.68 -0.55 -0.70 -0.66 0.06

39 MC -0.04 -0.01 0.01 -0.05 -0.01 -0.02 0.02

40 MC -0.51 -0.53 -0.53 -0.57 -0.52 -0.53 0.02

41 MC 0.28 0.39 0.33 0.41 0.39 0.36 0.05

42 MC 0.40 0.47 0.41 0.35 0.35 0.40 0.05

Mean_all -0.10 -0.04 -0.06 -0.10 -0.08 -0.08 0.06

Mean_MC 0.03 0.09 0.07 0.04 0.06 0.06 0.06

Mean_SA -0.52 —0.43 -0.40 -0.53 -0.49 -0.48 0.07

Mean_CR -0.61 -0.55 -0.55 -0.62 -0.56 -0.58 0.05
 

The correlations of MDSIC and MDIFF of the 2005 test items across the five

RSD sets are presented in Tables 4.26 and 4.27. Again, the correlations of MDSIC and

MDIFF are very high.

Table 4.26 Correlations of MDISC between RSD sets of the 2005 test

 

RSDSOIA RSDSOZA RS0503A RSDSO4A RSDSOSA

RSDSOlA 1

RSDSOZA 0.9856 1

RSD503A 0.9857 0.9885 1

RS0504A 0.9865 0.9921 0.99 1

RSDSOSA 0.9738 0.9801 0.9812 0.9845 1
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Table 4.27 Correlations of MDIFF between RSD sets of the 2005 test

 

RSDSOlA RSDSOZA RSDSOBA RSDSO4A RSDSOSA

RSDSOlA 1

RSD502A 0.9955 1

RSD503A 0.9956 0.995 1

RSDSO4A 0.995 0.9929 0.9929 1

RSDSOSA 0.9943 0.9918 0.9929 0.9925 1

 

 

4.2.4 Dimensionality analyses/cluster analyses

The results of cluster analyses suggested that there are three relatively distinctive

clusters of items for both tests. These three clusters were identified as three constructs

through the item review committee activity as explained in the Methods chapter—C&R

(communication and representation), PK (procedural knowledge), and PS (problem

solving). The construct measured by each item along with the item type for the 2005 test

(40 items) is presented in Table 4.28. The table is arranged so that item type can be easily

compared for each construct. The question of whether constructed-response items are

measuring different construct than MC items was examined through dimensionality

analyses.

In the case of the 2005 test, all the five CR items measure the C&R construct, but

two MC items and one SA item are also included in this cluster. Three SA items are

distributed across three constructs, while most of the MC items are in either the PK or PS

construct, with two items in the C&R construct. Both of these items include graphical

representations in the questions. Understanding graphical representation is an important

ability necessary to solve the items. As shown in the loading structure, item

discriminations, on the right three columns, these items have high loadings on 63, as do

other items clustered in the R&C construct. This result suggests that item type or format
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is related to the constructs the items are measuring. This relationship is more salient in

the 2006 test (Table 4.27). In the case of the 2006 test, there is no MC item in C&R

construct category. However, this does not mean that MC items cannot measure certain

constructs, as shown in the example ofMC items in the C&R construct category in 2005.

An interesting result is that there are no CR items in either the PK or PS construct. This

seems to be related to economic considerations rather than the limitation of item type in

measuring construct. If PK or PS can be measured as well by MC items, it will be more

economical to use MC items than polytomous items. However, there might be the cases

that measuring specific knowledge/skills in the PK or PS needs polytomous items.

Table 4.28 Construct and item type for the 2005 test items

 

 

 

 

Item ”em N0 Construct Content" Item discrimination

Type strand a1 32 a3

CR 11 C&R DMP 0.21 0.31 1.2

CR 12 C&R 655 0.3 0.35 0.59

CR 30 C&R M 0.3 0.62 0.65

CR 31 C&R NS 0.45 0.47 0.59

CR 13 C&R PA 0.23 0.25 0.63

MC 7 C&R 655 0.88 0.77 0.86

MC 17 C&R DMP 0.65 0 1.5

SA 32 C&R 655 0.21 0.27 0.41

MC 21 PK DMP 1.39 0.28 0.45

MC 23 PK DMP 0.97 0.31 0.53

MC 29 PK DMP 1.9 0.98 0.42

MC 1 PK 655 1.67 0.74 0.44

MC 16 PK 655 1.36 0.3 0.5

MC 28 PK 655 1.23 0.29 0.44

MC 38 PK M 2.15 0 0

MC 42 PK M 1.41 0.73 1.03

MC 18 PK NS 1.24 0.53 0.72

MC 19 PK NS 1.34 0.66 0.76

MC 41 PK NS 0.87 0.53 0.61

MC 4 PK PA 0.8 0.43 0.54

MC 8 PK PA 0.76 0.31 0.32
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Table 4.28 (cont’d)

 

MC 14 PK PA 1.43 0.54 0.36

MC 24 PK PA 1.2 0.29 0.3

SA 33 PK PA 1.05 0.55 0.96

MC 5 PS DMP 1.64 1.36 0.46

MC 34 PS DMP 1.42 1.42 0.44

MC 40 PS DMP 1.74 1.38 0.33

MC 26 PS 655 1.05 0.93 0.4

MC 2 PS M ' 1.5 , 1.68 0.45

MC 15 PS M 1.15 1.2 0.87

MC 20 PS M 1.75 1.56 0.48

MC 3 PS NS 1.21 1.3 0.51

MC 6 PS NS 1.26 0.83 0.52

MC 22 PS NS 1.45 0.85 0.39

MC 27 P5 NS 1.59 2.28 0.41

MC 35 PS NS 1.36 0.87 0.4

MC 36 P5 NS 1.57 1.93 0.69

MC 37 PS PA 1.25 1.27 0.75

MC 39 PS PA 1.99 1.33 0.47

SA 9 PS NS 0.83 1.79 1.02
 

*These content strand classification is based on the assessment framework. DMP—Data Management and

Probability; GSS—Geometry and Spatial Sense; M—Measurement; NS—Number Sense; PA—Patterning

and Algebra
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Table 4.29 Construct and item type of the 2006 test items"

 

 

 

 

 

Item Item Content Item discrimination

type No Construct Strand a1 a2 33

CR 29 C&R PA 0.33 0.26 0.48

CR 30 C&R GSS 0.21 0.20 0.33

CR 31 C&R PA 0.26 0.23 0.43

CR 32 C&R M 0.58 0.22 0.60

CR 33 C&R M 0.37 0.35 0.61

CR 34 C&R PA 0.35 0.33 0.51

CR 35 C&R PA 0.32 0.26 0.54

CR 36 C&R DMP 0.35 0.34 0.70

MC 1 PK M 0.86 0.43 0.31

MC 2 PK M 0.91 ' 0.44 0.31

MC 5 PK NS 1.06 0.45 0.49

MC 10 PK DMP 0.78 0.59 0.29

MC 11 PK M 2.38 0.00 0.00

MC 13 PK DMP 1.02 0.42 0.41

MC 14 PK GA 1.43 0.60 0.47

MC 15 PK PA 0.71 0.62 0.27

MC 16 PK PA 0.89 0.48 0.29

MC 17 PK NS 1.25 0.56 0.55

MC 18 PK M 0.92 0.48 0.37

MC 19 PK NS 0.72 0.57 0.59

MC 20 PK NS 0.69 0.54 0.33

MC 26 PK DMP 1.44 0.68 0.36

MC 3 PS GSS 0.56 0.58 0.42

MC 4 PS NS 0.35 0.53 0.23

MC 6 PS DMP 0.67 1.19 0.34

MC 7 PS PA 0.82 1.19 0.31

MC 8 PS NS 0.84 0.96 0.29

MC 9 PS GSS 0.47 0.59 0.32

MC 12 PS DMP 0.64 0.97 0.25

MC 21 PS M 0.52 0.89 0.25

MC 22 PS M 0.24 0.41 0.22

MC 23 PS GSS 1.15 1.18 0.43

MC 24 PS GSS 0.87 0.85 0.28

MC 25 PS NS 1.75 1.14 0.56

MC 27 PS DMP 0.82 1.46 0.25

MC 28 PS NS 0.83 1.75 0.00
 

*These content strand classification is based on the assessment framework. DMP—Data Management and

Probability; GSS—-Geometry and Spatial Sense; M—Measurement; NS—Number Sense; PA—Patteming

and Algebra

114



4.2.5 From ability dimensions to reference composites as mathematical constructs

As explained in the Methods chapter, the direction of the reference composite

(RC) is determined by an eigenvector that corresponds to the largest eigenvalues of each

a’a matrix. From this eigenvector, angles from each ability coordinate axis were

determined. These three angles indicate the direction of reference composite in the ability

space. Each RSD has three eigenvectors corresponding to the three RCs. The angles of

each RC for all RSDs—five 2006 RSDs and five 2005A RSDs—are presented in Tables

4.30 to 4.32. While there are some variations across RSD sets, three angles of each RC

for each RSD are similar across RSD sets. The similarity of angles of each RC across

RSDs indicates that each RC across the five RSD sets measures a similar combination of

abilities. The angles of RCs for both tests will be very similar if the two tests measure the

same construct and were built on the same test specification. As shown in Table 4.29, for

example, there is some discrepancy in angles between the 2006 test and the 2005 test.

This is an expected result because the two tests were developed according to different test

specifications. However, the direction of each RC in the 2006 test is relatively close to

that in the 2005 test, allowing comparison of abilities on three constructs. If two tests

have the same constructs and the same test specification, the direction of RCs are

expected to be similar. This suggests that test equating applying RC approach will work

well.

Table 4.30

Angles for reference composite _PK

 

2006_RSD 2005A_RSD

601 602 603 604 605 501 502 503 504 505

21.02 21.31 23.37 22.27 24.35 26.53 26.12 26.94 23.82 28.94

73.86 74.63 70.49 70.37 71.03 74.19 73.02 72.01 72.88 73.81

76.89 75.60 77.64 79.92 75.30 69.27 70.76 70.64 73.95 66.70
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Table 4.31

Angles for reference composite 2_PS

 

2006_RSD 2005_RSD

601 602 603 604 605 501 502 503 504 505

49.95 50.42 54.64 52.24 49.85 48.45 45.34 42.18 49.57 42.41

42.10 41.41 37.53 40.15 42.19 45.27 48.55 51.59 43.45 51.40

79.17 79.76 79.02 78.35 79.18 75.27 74.92 75.24 76.78 75.16

 

 

 
 

Table 4.32

Angles for reference composite 3_C&R

 

2006_RSD 2005_RSD

601 602 603 604 605 501 502 503 504 505

59.90 60.97 61.24 54.94 61.26 59.57 60.40 59.88 60.82 64.20

65.12 66.08 62.77 66.67 65.91 67.96 65.75 70.87 69.88 70.80

40.90 39.22 41.60 44.24 39.11 39.08 39.97 36.82 36.64 33.06

 

 

 
 

From the eigenvectors of a'a, rotation matrixes for each RC were identified using

the procedures explained in the Methods chapter. Each RSD has three reference

composites. Therefore, for each RSD, there were three rotation matrixes to make ability

coordinate axes aligned with three reference composite coordinates after being rotated.

Rotation matrixes used for this study are presented in Tables 4.33 and 4.34.
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Table 4.33

2005A rotation matrices

 

 

 

 

 

 

   
 

 

 

 

 

 

 

RC1_PK RC2_PS RC3_C&R

R50501 0.895 -0.291 -0.339 0.663 -0.728 -0.174 0.507 -0.595 -0.624

0.273 0.957 -0.103 0.704 0.686 -0.185 0.375 0.804 -0.462

0.354 0 0.935 0.254 0 0.967 0.776 0 0.630

RSDSOZ 0.898 -0.309 -0.313 0.703 -0.686 -0.189 0.494 -0.639 -0.589

0.292 0.951 -0.102 0.662 0.728 -0.178 0.411 0.769 -0.49

0.330 0 0.944 0.260 0 0.966 0.766 0 0.642

RS0503 0.891 -0.328 -0.313 0.741 -0.643 -0.195 0.502 -0.547 -0.670

0.309 0.945 -0.109 0.621 0.767 -0.164 0.328 0.837 -0.438

0.332 0 0.943 0.255 0 0.967 0.801 0 0.599

RSD504 0.915 -0.306 -0.263 0.649 -0.746 -0.152 0.488 -0.577 -0.656

0.294 0.952 -0.085 0.726 0.666 -0.171 0.344 0.817 -0.463

0.276 0 0.961 0.229 0 0.974 0.802 0 0.597

RSDSOS 0.875 -0.304 -0.377 0.738 -0.646 -0.196 0.435 -0.603 -0.669

0.279 0.953 -0.120 0.624 0.764 -0.165 0.329 0.798 - 0.505

0.396 0 0.919 0.256 0 0.967 0.838 0 0.546

Table 4.34

2006 Rotation Matrices

RC1_PK RC2_PS RC3_C&R

RSD601 0.933 -0.285 -0.218 0.644 -0.756 -0.123 0.502 -0.643 -0.579

0.278 0.958 -0.065 0.742 0.655 -0.142 0.421 0.766 -0.486

0.227 0 0.974 0.188 0 0.982 0.756 0 0.655

RSD602 0.932 0274 -0.239 0.637 -0.762 0115 0.485 -0.641 -0.595

0.265 0.9618 -0.068 0.75 0.647 -0.136 0.405 0.768 -0.497

0.249 0 0.969 0.178 0 0.984 0.775 0 0.632

RSD603 0.918 -0.342 -0.201 0.579 -0.808 -0.112 0.481 -0.689 -0.542

0.334 0.940 -0.073 0.793 ‘ 0.590 0154 0.458 0.725 -0.515

0.214 0 0.977 0.191 0 0.982 0.748 0 0.664

R50604 0.925 -0.341 -0.165 0.612 -0.780 -0.126 0.574 -0.568 -0.590

0.336 0.94 -0.090 0.764 0.625 -0.158 0.396 0.823 -0.407

0.175 0 0.9850 0.202 0 0.979 0.716 0 0.698

RSD605 0.911 -0.336 -0.239 0.645 -0.754 -0.123 0.481 -0.648 -0.592

0.325 0.942 -0.085 0.741 0.656 -0.142 0.408 0.762 -0.502

0.254 0 0.967 0.188 0 0.982 0.776 0 0.631   
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By post-multiplying ability matrixes by the rotation matrixes presented below,

theta values on ability coordinate axes were translated into values on the rotated

coordinate axes which are aligned with each reference composite, i.e., each construct.

Using the same rotation matrixes, theta matrixes can be rotated so that the values are

aligned with the three RC coordinate axes.

4.2.6 Abilities on constructs as reference composites

The descriptive statistics—mean, standards deviation, minimum, and maximum—

for 0 coordinates on the three-dimensional ability space before rotation onto RC

coordinate axes are reported in Table 4.35.

 

 

 

 

 

 

Table 4.35

Mean, standard deviation, minimum and maximum of 0vectors before rotation

RSD Mean SD Min Max RSD Mean SD Min Max

501A 01 -0.043 0.818 -2.556 2.239 601 01 0.003 0.834 -3.017 2.227

02 0.080 0.607 -2.022 1.698 02 0.003 0.754 -2.86 1.941

63 -0.010 0.216 -0.709 0.792 03 0.004 0.766 -3.302 2.064

502A 91 -0.039 0.818 -2.59 2.244 602 (91 0.001 0.834 -2.768 2.209

02 0.082 0.632 -2.135 1.855 02 0.002 0.763 -2.615 1.904

63 0.073 0.223 -0.663 0.882 03 0.001 0.774 -3.284 2.16

503A 91 -0.044 0.808 -2.499 2.213 603 91 0.003 0.824 -3.021 2.175

(92 0.115 0.597 -1.802 1.722 02 0.004 0.776 -2.996 1.96

93 0.045 0.248 -0.795 0.881 93 0.004 0.760 -3.3 2.084

504A 01 -0.025 0.830 -2.56 2.293 604 91 0.006 0.826 -2.936 2.241

02 0.093 0.602 -1.891 1.685 62 0.007 0.765 -2.682 1.908

63 -0.068 0.203 -0.663 0.603 93 0.006 0.751 -3.201 1.995

505A 91 -0.029 0.865 -2.898 2.409 605 01 0.000 0.829 -3.004 2.206

92 0.106 0.569 -1.893 1.618 02 0.001 0.760 -2.859 1.858

63 -0.037 0.230 -0.828 0.782 03 0.000 0.768 -3.394 2.083 
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There are two important observations to be addressed from Table 4.35. First, the

means of 61, I92, and 63 across all 2006 RSDs are very close to zero because each RSD set

was calibrated separately. When the 2005 test was linked to the 2006 test by the FCIP

linking method, the mean of 01 of 2005 students was a little lower than that of 2006

students in all five RSD sets. In the case of 62, mean thetas of 2005 students were a little

higher than those of 2006 students in all five RSD sets. The difference in 63 was not

consistent across the five 2005 RSD sets. While the mean of 63 0f RSDSOZA and

RSD503A was higher than in their paired 2006 RSD sets—RSD602 and RSD603 each—

those of RSD501A, RSD 504A and RSDSOSA were a little lower than in 2006.

To check if these differences are statistically significant, t-tests were conducted.

All differences were statistically significant. However, the statistical significance might

be due to the large sample size—10,000. So, Cohen’s d was computed for each 0 to

check effect size for the difference between each paired 68, using the pooled variance

because variances were not equal. The results are reported in 4.36. As shown in Table

4.36, all effect sizes were negligible, suggesting little difference in abilities between the

2005 and the 2006 students.

Another important point is that standard deviations of 6 in the 2005 test data are

much smaller than those in the 2006 test data, especially in Dimension 3. This means that

the standard deviations shrank when the 2005 test data were linked to the 2006 test data

using FCIP, which was also observed in the UIRT FCIP linking.
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Table 4.36

Effect size of the difference in 05: Cohen’s d

 

 

 

 

 

RSD Pair by 0 Effect size

01_ 50181 - 60181 -0.025

02_ 501a2 - 601a2 0.02

03_ 50183 - 60183 -0.005

01_ 50281 - 60281 0.011

02_ 50282 - 60282 0.042

03_ 50283 - 60283 0.071

01_ 50381 - 60381 0.007

02_ 50382 - 60382 0.043

93_ 50383 - 60383 0.048

01__ 50481 - 60481 -0.024

02_ 50482 - 60482 0.025

e3_ 504a3 - 604.13 -0.047

01_ 50581 - 60581 -0.011

02_ 50582 - 60582 0.033

03_ 50583 - 60583 -0.01
 

To produce a full 6 matrix aligned with three reference composite coordinates,

each RSD set needs to be rotated three times using three rotation matrixes for three

reference composites. Applying the rotation matrixes reported above, three 6 coordinates

specifying the location of each student in the 6 space were translated into the values on

reference composite coordinate axes. When 6 coordinates were translated into the 6

values on construct coordinate axes (Table 4.37 and table 4.38), the pattern of difference

changed reflecting the fact that locations in the rotated ability space do not correspond to

locations identified in the ability space before rotation. Overall, 6values on constructs are

a little higher in 2005 than in 2006, suggesting different results in proficiency

classification change than in the UIRT linking case. Shrinkage of standard deviations in

the 2005 test data also occurred in construct abilities, but the degree of shrinkage is

smaller than in ability dimensions.
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Table 4.37 Mean, standard deviation, minimum and maximum of 6

vectors after rotation: 2005

 

 

 

 

 

 

Mean SD Min Max

RSD501 RC_61 -0.020 0.8767 -2.811 2.462

RC_62 0.026 0.9178 -3.099 2.663

RC_63 0.001 0.6308 -1.995 1.769

Rsosoz RC_01 0.013 0.8843 -2.854 2.524

RC_62 0.046 0.9312 -3159 2.727

RC_63 0.070 0.6241 -1.935 1.834

R50503 RC_61 0.012 0.8596 -2.633 2.441

Rc_02 0.050 0.9121 -2.838 2.661

RC_63 0.052 0.5414 -1.496 1.528

R50504 RC_61 -0.014 0.9230 -2.947 2.620

RC_62 0.036 0.9284 -3.073 2.713

RC_63 -0.035 0.6437 -2.039 1.795

RSDSOS RC_01 -0.011 0.8924 -3.019 2.524

RC_62 0.035 0.9426 -3.292 2.747

RC_63 -0.009 0.5551 -1.789 1.516
 

Table 4.38 Mean, standard deviation, minimum and maximum of 6 vectors after

rotation: 2006

 

 

 

 

 

 

Mean 50 Min Max

R50601 RC_61 0.004 1.0841 -4.360 3.048

RC_62 0.005 1.1453 -4.684 3.175

RC_63 0.006 1.1922 -5.213 3.436

RSD602 RC_61 0.002 1.0852 -4.065 3.020

RC_62 0.003 1.1383 -4.274 3.127

RC_63 0.002 1.1829 -4.888 3.378

R50603 RC_61 0.005 1.0943 -4.480 3.048

RC_62 0.006 1.1396 -4.753 3.126

RC_63 0.007 1.1947 -5.292 3.385

R50604 RC_61 0.009 1.0813 -4.134 3.038

RC_62 0.010 1.1491 -4.439 3.192

RC_63 0.010 1.1971 -4.958 3.429

RSD605 RC_61 0.001 1.1107 -4.516 3.127

RC_62 0.001 1.1462 -4.666 3.172

RC_63 0.001 1.1825 -5.231 3.420
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4.3 MIRT Approach to Proficiency Classification — Compensatory vs. Conjunctive

In the compensatory approach, a composite score as the equally weighted average

of three construct ability scores expressed as 6 was computed for proficiency

classification. The cut scores for the 20th percentile in the 2005 RSD sets were -.698,

-.668, -.635, -.729, and -.879 respectively (Table 4.39). When these out scores were

applied to the 2006 RSD sets matched with each 2005 RSD set, the proficiency rates in

2006 were 73.33%, 72.69%, 71.94%, 74.61%, and 78.18% each (Table 4.39). With

74.15% in average across the five paired RSD sets, proficiency rate decreased by about

6% in 2006 than in 2005. MIRT FCIP linking suggested that 2005 students performed

better than 2006 students, which is different from the UIRT FCIP linking results. x2 test

results showed that the difference in the proficiency rate is statistically significant for all

five RSD sets (Table 4.40).

Table 4. 39 Cut-point at the 20th percentile in 2005 and proficiency rate: 2006
 

 

 

Cut-point 2006 Proficiency rate

501a -0. 698 73.33%

502a -0.668 72.69%

5038 -0.635 71.94%

5048 -0. 729 74.62%

5058 -0.879 78.18%

Average 74.15%
 

Table 4.40 x2 results_MlRT_Compensatory_20th percentile

 

 

x2

501-601 124.34

502-602 147.95

503-603 177.93

504-604 82.50

505-605 10.01
 

122



When the same procedure was applied to the 50th percentile score in 2005 as a

cut-point, the change of the proficiency rates between 2005 and 2006 decreased

dramatically, showing almost similar performance between 2005 students and 2006

students (Table 4.41). Therefore, the discrepancy in proficiency rate difference between

2005 and 2006 decreased when the 50’h percentile cut-point was applied. The results of 12

tests confirmed that there is no statistically significant difference in the proficiency rate

between 2005 and 2006 (Table 4.42).

Table 4. 41 Cut-point at the 50th percentile in 2005 and proficiency rate: 2006

 

Cut-point 2006 Proficiency rate
 

 

5018 0.018 50.79%

5028 0.067 49.00%

5038 0.062 49.43%

5048 0.016 51.15%

5058 0.01 7 50.76%

Average 50.23%
 

Table 4.42 x2 results_MIRT_Compensatory__50th percentile

 

 

X

501-601 1.25

502-602 2.00

503-603 0.65

504-604 2.65

505-605 1.16
 

In the conjunctive approach to proficiency classification, the basic idea is that

proficiency level is set for each construct separately and students need to be proficient at

all of the three constructs to be classified to be proficient. The same two out points, the

20th percentile and the 50th percentile, were used as a cut-point for each construct.
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Therefore, overall proficiency rates in 2005 are lower than 50% when the 50’“ percentile

cut-point for each construct is applied and lower than 80% when the 20’“ percentile cut-

point for each construct is applied. To determine the proficiency rate in 2005 when cut-

points at the 20’“ percentile and at the 50’“ percentile for each construct are applied, first

cut scores for each construct at the 20’“ percentile and at the 50’“ percentile for the five

2005 RSD sets were identified. The cut-points for each construct at the 20’“ percentile

and the 50’“ percentile are presented in Table 4.43. As shown in the table, the cut-points

for the 20’“ percentile are somewhat similar, but those for the 50’“ percentile across five

RSD sets vary a little.

Table 4.43 Cut-scores for each construct at the 20’h and the 50’“ percentile in the

conjunctive approach: 2005

 

 

 

  

The 20th percentile The 50th percentile

RC1 RC2 RC3 RC1 RC2 RC3

RSDSOl -0.7864 -0.7688 -0.5579 -0.0046 0.0367 0.0156

RSDSOZ -0.7612 -0.7604 -0.4828 0.0392 0.0609 0.0874

RSDSO3 -0.7478 -0.7388 -0.4432 0.0318 0.0721 0.0666

R50504 -0.8257 -0.7763 -0.6059 0.0075 0.0467 -0.0207

RSD505 -0.8028 -0.7897 -0.519 0.0107 0.0516 0.0064
 

For comparison, the cut—points for each construct at the 20’“ percentile and the

50’“ percentile for the five 2006 RSD sets are presented in Table 4.44. As shown in the

table, the two cut-points, the 20’“ percentile and the 50’“ percentile, across five RSD sets

are very similar. While the means of construct ability were similar between 2005 and

2006 (Tables 4.37 and 4.38), the scores for each cut-point for each construct across the

five RSD sets are somewhat different between 2005 and 2006.
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Table 4.44 Cut-scores for each construct at the 20’“ and the 50’“ percentile in the

conjunctive approach: 2006

 

The 20th percentile The 50th percentile

RC1 RC2 RC3 RC1 RC2 RC3

R50601 -0.9402 -0.9828 -1.0082 0.0108 0.053 0.06

RSD602 -0.9221 -0.9603 -0.9847 0.0141 0.0481 0.0579

R50603 -0.925 0.948 -1.0009 0.0179 0.0554 0.0564

R50604 -0.9207 -0.9587 -1.0065 0.024 0.0662 0.059

RSD605 -0.9375 -0.9518 -0.9966 0.0201 0.0494 0.0518

 

 

  
 

As already explained, the same cut scores for the 2005 RSD sets were applied to

the matched 2006 RSD sets to obtain proficiency rates in 2006. The proficiency rates at

the 20’“ percentile and the 50’“ percentile when the 2005 cut-points were applied to the

2006 test results are presented in Table 4.45 and Table 4.46. When the 20’“ percentile cut-

point for each construct was applied, the’proficiency rates in 2005 across the five RSD

sets were about 77% in 2005 and 65% to 69% in 2006, resulting in an 8% to 12%

decrease in proficiency rate from 2005 to 2006.

Table 4.45 Proficiency rates at the 20’“ percentile: conjunctive classification

 

 

 

2005 and 2005 RSD pair 501-601 502-602 503-603 504-604 505-605

2005 77.04% 77.24% 76.84% 76.91% 76.58%

2006 67.16% 65.61% 64.77% 69.06% 66.71%

Chanfi(2006-2005) -9.88% 41.63% 42.07% 4.85% -9.87% 
 

When the 50’“ percentile cut-point for each construct was applied in the

conjunctive approach, the proficiency rates in 2005 across the five RSD sets were about

44% to 45% in 2005 and 43% to 46% in 2006 (Table 4.46). The proficiency rate change

from 2005 to 2006 was dramatically smaller compared to the 20’“ percentile. Except the

RSD502-RSD602 pair, 2006 showed little difference in proficiency rate.
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Table 4.46 Proficiency rates at the 50’“ percentile: conjunctive classification

 

 

 

 

2005 and 2005 RSD pair 501-601 502-602 503-603 504-604 505-605

2005 44.94% 45.49% 44.05% 45.00% 44.44%

2006 45.21% 42.97% 44.09% 46.23% 45.13%

Change (2006-2005) 0.27% -2.52% 0.04% 1.23% 0.69%

 

To check if the percentage change for each pair is statistically significant, x2 tests

were conducted. The result is reported in Table 4.47. The result shows that increase in

proficiency rate is statistically significant for only one RSD set.

Table 4.47 x2 results_MIRT_Conjunctive_50’“ percentile

 

 

x2

501-601 0.15

502-602 13.87

503-603 0.00

504-604 3.05

505-605 0.96
 

In the conjunctive approach to proficiency classification, students need to be

proficient at each construct being measured in order to be classified as proficient.

Because failing to achieve proficiency in any one of constructs results in “non-

proficiency” classification, the percentage of students who failed to achieve overall

proficiency when they are proficient in one or two constructs were also examined. The

relative percentages of students who passed cut-points in zero, one, two, and all of three

constructs are presented in Table 4.48 (2005) and Table 4.49 (2006).
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Table 4.48 Relative percentage by the number of proficient constructs: 2005

 

 

 

RSDSOl RSDSOZ R50503 R50504 RSDSOS

pass 0 17.07 17.12 16.90 16.91 16.64

20th percentile pass 1 2.94 3 .03 3.04 3.09 3.30

pass 2 2.92 2.61 3.22 3.09 3.48

pass all 77.07 77.24 76.84 76.91 76.58

pass 0 45.05 45.57 43.99 45.02 44.32

50th percentile pass 1 4.85 4.37 6.07 4.96 5.80

pass 2 5.16 4.57 5.89 5.02 5.44

pass all 44.94 45.49 44.05 45.00 44.44  
 

Table 4.49 Relative percentage by the number of proficient constructs: 2006

 

 

 

RSD601 R50602 RSD603 R50604 R50605

pass 0 21.62 21.34 22.02 20.84 21.33

50th percentile pass 1 4.09 4.94 4.48 3.58 3.86

pass 2 7.13 8.11 8.73 6.52 8.10

pass all 67.16 65.61 64.77 69.06 66.71

pass 0 43.67 44.51 45.09 43.39 43.97

20th percentile pass 1 6.00 6.27 5.44 5.49 5.60

pass 2 5.12 6.25 5.38 4.89 5.30

pass all 45.21 42.97 44.09 46.23 45.13
 

4.4 Comparison of Proficiency Rates Change between UIRT Approach, MIRT

Compensatory Approach, and MIRT Conjunctive Approach

As already discussed, to link the two years’ test data—2005 and 2006—the FCIP

linking method was employed. When the 20’“ percentile score was used as a cut-point for

proficiency, the three approaches to proficiency classification produced different results

(Table 4.48). In the UIRT linking approach, there was little change in proficiency rate

between 2005 and 2006, with a 0.1% decrease in proficiency rate in 2006 as compared to

2005. In the MIRT compensatory approach, there was 5.85% decrease in proficiency rate

in 2006 as compared to 2005. In the MIRT conjunctive approach, there was an even
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larger decrease of 10.26% in proficiency rate in 2006 as compared to 2005. When the

conjunctive approach is applied, it is harder to achieve proficiency because students must

be proficient on all of the three constructs.

Table 4.50 Comparison of proficiency rate change (%) by proficiency classification

approach at the 20’“ percentile

 

 

 

 

Proficiency 501 502 503 504- 505-

Classification approach -601 -602 -603 604 605 mean

2005 Proficiency rate 80.00 80.00 80.00 80.00 80.00 80.00

2006 Proficiency rate 79.93 79.82 79.41 80.15 80.17 79.90

UIRT Change (2006-2005) -0.07 -0.18 -0.59 0.15 0.17 -0.10

2005 Proficiency rate 80.00 80.00 80.00 80.00 80.00 80.00

MIRT 2006 Proficiency rate 73.33 72.69 71.94 74.62 78.18 74.15

compensatory Change ( 2006-2005) -6.67 -7.31 -8.06 -5.38 -1.82 -5.85

2005 Proficiency rate 77.04 77.24 76.84 76.91 76.58 76.92

MIRT 2006 Proficiency rate 67.16 65.61 64.77 69.06 66.71 66.66

conjunctive Change (2006-2005) -9.88 -11.63 -12.07 -7.85 -9.87 -10.26
 

Table 4.51 Comparison of proficiency rate change (%) by proficiency Classification

approach at the 50’“ percentile

 

 

 

 

Proficiency

Classification 501 502 503 504- 505-

approach -601 -602 -603 604 605 mean

2005 Proficiency rate 50.00 50.00 50.00 50.00 50.00 50.00

UIRT 2006 Proficiency rate 51.53 51.13 50. 70 51.22 50.98 51.11

Changg( 2006-2005) 1.53 1.13 0. 70 1.22 0.98 1.11

MIRT 2005 Proficiency rate 50.00 50.00 50.00 50.00 50.00 50.00

compensatory 2006 Proficiency rate 50. 79 9.00 49.43 51.15 50.76 50.23

Change (2006-2005) 0. 79 -1.00 -0.57 1.15 0. 76 0.23

MIRT 2005 Proficiency rate 44.94 45.49 44.05 45.00 44.44 44.78

conjunctive 2006 Proficiency rate 45.21 . 42.97 44.09 46.23 45.13 44.73

Charge (2006-2005) 0.27 -2.52 0.04 1.23 0.69 -0.06
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When the 50’h percentile score was set as the cut-score for proficiency, the three

different approaches to proficiency classification produced little the difference (Table

4.49). For the UIRT approach, there was a 1.11% increase in proficiency rate in 2006 as

compared to 2005, 0.23% of an increase for the MIRT compensatory approach, and little

change for the MIRT conjunctive approach. The difference in proficiency rate change

between the UIRT approach and the MIRT compensatory approaches can be explained as

follows.

In the UIRT approach, it is assumed that both tests are measuring a

unidimensional construct or a composite of the same constructs. As Wang (1985)

showed, when there are multiple ability dimensions, i.e., when a test is measuring

multiple constructs, the composite of abilities approximated by the UIRT approach is

determined by the statistical estimation algorithm. A single measure as the best

combination of multiple construct abilities is’determined by a given statistical criterion

such as least squares in regression. In other words, the single number reported for ability

is a composite of multiple abilities in the UIRT approach. It is a statistical composite that

does not support substantive interpretation of the reported score.

In contrast, for the MIRT approach, constructs are identified by considering

substantive meanings being measured by each item. In the MIRT approach, statistical

analysis of dimensionality—~MIRT calibration—the examination of dimensional structure

through hierarchical cluster analyses, the identification of substantial meaning of ability

dimensions statistically identified, and the identification of meaningful constructs in the

context of subject area being assessed make possible measuring construct abilities with

substantial meanings.
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The MIRT approach to proficiency classification requires the generation of

individual ability scores for each construct before calculating a single compensatory

composite score. Because there are separate scores for each construct, it is possible to get

the norm-referenced interpretation of performance on each construct measured. In the

compensatory approach, it is not possible to know what the score at each construct means

in the terms of criterion-referenced interpretation. When the conjunctive approach is

applied, however, it allows criterion-referenced interpretation for each construct.
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CHAPTER 5

SUMMARY, DISCUSSION, AND CONCLUSION

5.1 Summary of the Research

The major purpose of this study was to show educational policy implications of

psychometric decisions on educational measurement by exploring the effects of selecting

different linking approaches — UIRT linking vs. MIRT linking — on proficiency rate

changes across years. The result shows that different linking approaches and different

choices of proficiency classification models as a result of selecting different linking

approaches produce different conclusions on the educational progress inferred from

increased or decreased proficiency rates across years.

This study had two additional purposes. First, this study intended to explore the

feasibility of alternative approach to subscore reporting practices by identifying what

typical large-scale mathematics assessment tests are measuring. By conducting MIRT

dimensionality analyses of real data from a large-scale mathematics achievement

assessment program, this study identified three meaningfiJIIy interpretable constructs —

procedural knowledge, problem solving, and communication and representation. By

applying psychometric properties of the reference composite concepts to measuring

abilities on constructs identified through MIRT cluster analysis rather than on statistically

determined ability dimensions, this study documented the feasibility of measuring

abilities on educationally meaningful constructs. Measuring construct level abilities

provides an alternative approach to subscore reporting and to tracing growth of

mathematical abilities measured on construct level.
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Second, this study was designed to show the feasibility of conducting MIRT

linking for mixed format test forms through the analyses of real data. Some researchers

such as Traub (1993) have argued that different test items measure different constructs.

This study confirmed the argument through MIRT cluster analysis. By identifying which

item measures which construct, this study showed that constructed-response items

measure primarily the communication and representation construct and multiple-choice

items measure mainly procedural knowledge and problem solving. However, the

distinction is not absolute because there were several multiple-choice items identified as

measuring the communication and representation construct. This suggests that test format

constrains constructs intended to be measured at a certain level. When constructed-

response items measure different constructs which are difficult to measure through

multiple-choice items, mixed format tests are desirable to measure a full range of

important constructs. However, MIRT linking has been typically conducted using only

multiple choice items because of difficulty with conducting MIRT linking of mixed

format test forms. This study showed the feasibility and thus practical applicability of

MIRT linking of mixed format tests.

In this study, a fixed common item linking (FCIP) method was selected to link

two years’ test data in both the UIRT and MIRT linking approaches. Five random sample

data (RSD) sets of 10,000 samples were selected for the years 2005 and 2006 and each

RSD set of one year (2005) was linked to its matched RSD set of 2006. For an UIRT

approach, the PARSCALE program was employed. The two years’ test data were

calibrated separately by running PARSCALE and 2005 results were recalibrated by

fixing the common items with the item parameters calibrated in 2006 data. For MIRT
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linking, each RSD set was calibrated by running the BMIRT Program. To estimate

abilities for 2005 by fixing the common items as the item parameters calibrated in 2006

test data, the BMIRTanchor program was employed.

The specific procedures of conducting MIRT linking mixed format tests selected

in this study are as follows. First, five RSD sets from each year’s test data were selected

using the MATLAB program. Second, each RSD was calibrated separately by running

BMIRT. Each 2005 RSD set was recalibrated using BMIRTanchor by fixing the common

items with item parameters calibrated from the matched 2006 RSD. Third, MIRT cluster

analysis was conducted on each RSD set using MATLAB. Hierarchical cluster analysis

(HCA) using the Ward method was employed. Based on the results of HCA and the

loading structure of discrimination parameters, each item was assigned to one of three

clusters identified through HCA. Then, item review was conducted through an item

review committee activity. In the review committee, each item was reviewed by the

committee and the construct measured in common by each cluster was identified. Fifth,

reference composite (RC) for each construct was identified using the MATLAB program.

Each reference composite identified indicated the direction of the best measurement in

common of the items in each construct. From' the direction of each reference composite,

angles of each RC from each dimension were computed and the rotation matrix to align

the coordinate axis of the dimensions with each construct, i.e., the reference composite,

was obtained using MATLAB. By post-multiplying ability estimated on BMIRT (2006)

and on BMIRTanchor (2005) by the rotation matrix, construct abilities were computed.

After conducting UIRT linking and MIRT linking, proficiency rate change was

explored. Two cut-points for proficiency decision were selected — the 20’“ percentile and
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the 50’“ percentile, assuming that 80% of the students and 50% of the students in 2005

achieved proficiency in each case. In the UIRT approach, a single cut-score selected from

the 2005 results at each cut—point was applied to identify the rate of proficiency in each

matched 2006 RSD for each cut-point. In the MIRT approach, two classification

approaches were employed — compensatory and conjunctive. In the compensatory

approach, a single composite ability score for each student was calculated by applying the

pre-determined weight of each construct. The cut-point scores at the 20’“ percentile and

the 50’“ percentile were identified from the distribution of the composite ability scores. In

the conjunctive approach, two cut-point scores at the 20’“ percentile and the 50’“

percentile for each construct were identified from the separate ability distribution by

construct — resulting in three cut-point scores for each classification criterion. Three

separate cut-point scores were applied to obtain the proficiency rate for both years’

students. After conducting proficiency rate decision for each RSD per year for all three

classification approaches, the proficiency rate changes were compared.

5.2. Findings and Discussions

The major findings from this study and discussions are provided below.

First, three meaningfully interpretable constructs were identified. The three

constructs identified can be interpreted as mathematical constructs at the process level.

These constructs do not correspond to content area or content strand. While instruction

plan/schedules are made according to the content area to be covered, there are common

mathematical abilities to be expected for students to learn at the process levels across

content areas, as specified in the EQAO assessment framework or in NCTM Standards. It
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is possible to identify more minute constructs by dividing the test items into more

clusters. This means that the direction of the best measurement of each item in each

cluster is more similar to each other. The direction of the reference composite calculated

from these items is closer to each item, which means less measurement error in projecting

the best measurement of each item into the direction of the best measurement of a

reference composite. This in turn suggests that there would be more measurement error

involved in UIRT approach to calibration and linking.

Second, this study confirmed the findings from previous research that constructs

measured by constructed-response items are different from those by multiple-choice

items. In this study, it was found that constructed-response items measure mainly the

communication and representation construct and that multiple-choice items measure

mainly the procedural knowledge and problem solving constructs. However, this does not

suggest that it is not possible to measure a certain construct by a certain item type. This

study identified multiple-choice items which measured the communication and

representation construct. However, it seems that item type constrains the scope and range

of measurement. In terms of the amount of information by item type, it was found that

constructed-response items provide more information on average than multiple-choice

items. However, there were a couple of multiple-choice items which were comparable to

the best constructed-response items in terms of providing information. Constructed-

response items on the test studied here have more information for low ability students in

general. The lack of information about low ability students available from multiple-

choice items is partially due to the guessing parameter. This problem might be reduced
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when the guessing parameter can be modeled as a fimction of ability”, which is now

being tried (Martin, del Pino, & De Boeck, 2006).

Third, this study found that different linking approaches and different decision

approaches to proficiency classification produced different results. Overall, the UIRT

approach was favorable to the 2006 students. While there was little change in proficiency

rate between 2005 and 2006 using the UIRT approach, both the MIRT compensatory and

conjunctive approaches resulted in a decreased proficiency rate in 2006 compared to

2005 when the 20’“ percentile classification criterion was applied. When the 50’“

percentile classification criterion was applied the change in proficiency rate between two

years was not statistically significant. This result strongly suggests the importance of

selecting a linking method and a proficiency classification approach when evaluating

educational progress by the change of proficiency rate.

5.3. Educational Policy Implications and Conclusion

This study explored the effects of linking method and proficiency classification

criterion on the proficiency rate and thus on the evaluation of educational progress. The

results of this study suggest several ~policy implications in relation to the current

assessment policy, mathematics education, and educational measurement.

In relation to current assessment policy, three points can be made. First, this study

raises a question of the current practice of reporting sub-scores. Currently most of the

states reporting sub-score results report them by percent correct scores per content area,

for example, per content strand such as algebra in the case of mathematics. This study

shows that abilities required to solve the questions within a common content areas are not

 

’9 One example of those efforts is shown in Martin et al. (2006).
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the same. For example, out of eight items in Data Management and Probability (DMP)

content strand, three items measure the PS construct (problem solving), two measure the

PK construct (procedural knowledge), and two measure the C&R construct

(communication and representation). This means that abilities which students employ

when they solve the problems in the DMP content strand are multiple, raising a question

of the meaning of the percent correct score in DMP area.

The MIRT approach selected in this study presents a new possible approach to

sub-score reporting. The previous MIRT approach to sub-score reporting (for example,

Yao & Schwartz, 2006) focused on calculating sub-scores by content area by employing

a MIRT confirmatory analysis. This approach can be interpreted basically as the content-

perspective approach because items are assigned to dimensions as classified in test

specifications assuming each content area is measuring a separate ability construct.

Unlike the previous MIRT approach, the approach employed in this study can be

interpreted as measurement-perspective approach. The focus of the approach is given to

identifying constructs being measured in a test through both item content analysis and

statistical analysis. This approach is more aligned with the basic idea of the

multidimensional item response theory — each item needs more than one ability/skill. The

MIRT confirmatory approach enforces each ability dimension represented by a content

area on each item, which means each item belongs to one content area even when solving

the item requires knowledge and skills across content areas. If this approach is applied to

sub-score reporting, growth can be traced at each construct level and diagnostic

information for instruction can be effectively obtained, especially when content area level

achievement is available.
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Second, the results of this study raise a question of the validity of the current

UIRT linking approach to educational measurement by demonstrating the effects of

linking method selected on measuring educational achievement. Depending on selected

linking approach and proficiency classification approaches, inference on educational

progress based on the test results change. When UIRT linking suggests improvement of

educational achievement while MIRT linking results in little change in performance

across years, which results should be considered to portray learning growth more

accurately? Should we choose an approach which gives more “pleasant” results? Which

linking approach is better from the statistical point of view, i.e., which approach is more

accurate, can be identified by conducting a simulation study of linking and checking

measurement error involved with linking, which was not tried in this study. However,

which linking approach is better in terms of educational progress cannot be determined

solely on the statistical basis Especially when the difference in the measurement error

between the UIRT linking approach and MIRT linking is small, selection of a linking

approach and proficiency classification approach should be made based on educational

goals, which needs educational policy discourse.

Third, this study also documented the possible effects of standard setting on

proficiency classification. While no standard setting procedure was involved in this

study, it shows that different cut-points produced different results. Because the selection

of a given cut-point can make a difference in the proficiency rate, great effort is required

to ensure that a cut-point is psychometrically sound and substantially meaningful in terms

of criterion-referenced evaluation.
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In relation to mathematics assessment and education, this study showed that it is

possible to identify educationally meaningful mathematical constructs to be measured.

By providing a feasible method to measure ability on mathematical constructs, this study

presents a way to measure learning grth in mathematical constructs. If subscores are

reported by construct rather than content strand, it is possible to trace growth in

mathematical learning at mathematical construct level. By allowing measurement and

thus report of students’ learning at construct level, this study presents a way to provide

diagnostic information for mathematics teaching and learning. When mathematics

learning is measured in terms of mathematical constructs, it is possible to identify that

different assessments measure different mathematical constructs. In this case,

mathematical achievement measured from a UIRT approach can be redefined. This study

also suggests the limitation of typical standardized assessment consisting mainly

multiple-choice items by showing that test format constrains mathematical constructs to

be measured. This in turn raises a need to reconsider test development process in

mathematics assessment. Mathematics assessment should be developed considering

broad educational goals of mathematics education established through discourses and

consensus among mathematics educators, policy makers, and other interested parts in

society in general.

In relation to educational measurement and psychometrics, this study has several

implications. First, this study provides a sound psychometric method to check if two test

forms are measuring the same constructs. After linking item parameters from two (or

more) separate calibrations though scale transformation or after conducting the FCIP

linking or concurrent calibration, the direction of reference composite can be compared to
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determine how similar the direction of the best measurements of each corresponding

reference composite is. This approach allows linking ofmultiple forms at the same time.

Second, the MIRT linking approach using reference composite also provides an

effective and useful procedure to check construct shift and still measure growth on the

same constructs. This is especially useful when tests are constructed based on the similar

framework, but with different test specifications. If the directions of corresponding

reference composites identified are similar, the test scores from different tests can be

considered as comparable even though they are not constructed based on the same

assessment framework. If tests are meaSuring different constructs, it is not possible to

compare the results directly.

There are several areas which were not covered in this study, but deserve further

research. First, this study employed the FCIP MIRT linking, which has not been tried

often. Most MIRT linking has been conducted and studied using the oblique Procrustes

method (Gower & Dijksterhuis, 2004). Comparing two methods through a simulation

study will provide valuable information in evaluating psychometric qualities of two

approaches to MIRT linking.

Second, this study was applied to the “calibration” level of linking. By applying

the MIRT linking approach using reference composites, as in this study, to different

levels of linking, it will be possible to present richer information on what tests are

measuring and whether two scores from different tests are comparable.

Third, linking for this study was conducted using the 2006 test calibration as

reference data. If linking was done from the opposite direction, the result might have

been different. For the UIRT linking approach, direction might not be important. The
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comparison of proficiency classification using the entire data set shows a similar

mismatch from both approaches. For MIRT linking, however, the choice of the reference

year would have more effects especially when there was a substantial change in test

specification such as test format. This was not studied in this research, but it deserves

further research.

Psychometrics is not a perfect science. In applying psychometric theoretical

procedures to practical testing situations, human judgments are always involved. Human

judgment, however, should be based on sound scientific grounds, not political

considerations or practical convenience. Because data structure constrains the possible

approaches to linking or other psychometric applications, data collection design should

be carefully developed considering the effects of the design on the test results and their

implication to inferences made from the test results and policy decisions made based on

the inferences.
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Appendix A

EQAO Grade 6 Mathematics Test 2005

1. The triangle PQR has been transformed

to the position XYZ.

 --.n..-

 

 

 

 

 

 

  ______________________________

Vt'hat is a correct description of the

transformation?

a translation to the right by 2 units

and down by 2 units

[7 translation to the right by 4 units

and reflection about the horizontal

axis

a reflection about the horizontal axis

followed by reflection about the

vertical axis

cl translation to the right by 2 units

and reflection about the horizontal

axis
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2. L811 Ying and Sean love bike riding. They

take off from the same place, at the same

time. going in the same direction.

Lan Ying rides at a steady speed of

6 km/h, and Sean rides at a steady speed

of 4 km/h.

How far apart will they be in 3 hours?

a 6 km

b 12 km

a 18 km

01 30 km

3. Which set of values is represented by the

4 points on the number line?

I—x aura-taxi

1 1.2

 

a l.05,1.l,1.5,1.9

l7 1.01.1.10,1.13,1.17

1.1.1.11, 1.15.1.190

d 1.01.1.10, 1.12.1.5.
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Which pattern has this rule: decrease by

subtracting the same amount from each

term?

a

b

O

20, 10, 5, 2.5, 1.25

20.18.1614. 12

20, 25, 30, 40, 45

20, 40. 80, 160, 320

A circle is divided into sections of equal

size.

Green

Red

Red

Red

 

Yellow

Blue

 

Green

Red

What is the probability that the spinner

will stop on red?

1 out of4a

b 3 out of 8

O 3 out of4

d 1 out of 2
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6. Write 207.083 in expanded form.

a 200 + 7 + 0.08 + 0.003

b 20+7+0.8+0.3

200 + 7 + 0.08 + 0.030

d 200 + 7 -l- 0.8 + 0.003

7. Which triangle must have at least one

60° angle?

a

8 8

5

b

6

10

8

c

6 6

6

of none ofthe above
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5. The seating plan diagram shows how

the chairs need to be arranged for the

school concert. The pattern continues

toRowlS.

6

5

g 4 16 l7 18 19 20 21 22 23 24

g 3 9101112131415

2 45678

1 123

Which rule below can be used to find

the number of seats in each row?

8 There is an odd number of seats

in each row.

b Each row has more seats.

6 Each row has 2 more seats than

the row before it.

d There are 24 seats.

9. Sarah types 115 words in 5 minutes. Mary types 174 words in 8 minutes.

it Who types faster?

 

Show your work.

types faster.
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10. Jessica wants to pour 5 kg of sugar into smaller bags.

4 If each bag holds 250 grams, how many bags does she need?

 

Show your work.

lcssica needs ____ bags.   
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11. Iaspreel is wondering why she made the honour roll but her friend Cynthia did not. She

knows that an overall percentage of 80 or higher makes the honour roll. She is not sure if

the school uses the mean. median or mode to calculate the percentage.

Iaspreet's Marks

70 73 73 83 78 93 87 85 80

Cynthia's Marks

87 75 76 84 78 94 70 84 79

1* Determine whether the school uses the mean. median or mode to calculate the

overall percentage.

 

Show your work.

The school uses to calculate the overall percentage.  
 

12. Follow the instructions below to create a polygon. You will need a protractor and a mler.

Start with the line BC below.

1) At Point 11, use a protractor to create an angle of 30° with sides measuring 5 cm each.

2) label it AABC.

3) At Point C, create an angle of [50° and label it filiCD.

4) Connect Point I) to Point A with a S cm line to complete the polygon.

 

B= =C

What is the name of this type of polygon? 
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15. Sharon works at the local gym. She must buy number stickers to label the lockers in the

change rooms. Stickers are sold as individual dig'ts. There are 79 lockers, which will be

labelled l to 7').

III How many stickers of each digit should she buy?

 

Show your work
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14. Look at the figures and table of values

 

 

  

  

   

 

  

             

  

 

 

 

below.

Figure 1 Figure 2 Figure 3

Figure 1 2 3 4 8 9

Squares 3 6 9 12 24 27

Perimeter 8 14 20 26 ? ?

         
 

Which set of numbers represent the

perimeter of the 8th and 9th figures?

a 44, 50

b 48, 54

50, 56

6| 68, 76
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15. Look at the figures.

, 8 cm

I I

. r ‘1

1

ri

0 cm 5 cm 10 cm

Figure I Figure ll Figure lil

 

 

   

Which 2 figures have the same area?

a Figure I and Figure 11

b Figure I and Figure Ill

0 Figure II and Figure lll

d none of the above
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16. A rectangle is drawn on the first

quadrant of a Cartesian grid as shown.

The coordinates of Point B are given in

the diagram below.

..................................................................

 

   

 
 

If the rectangle is translated 4 units to

the right and 3 units up, the new

coordinates of Point B will be

a (3, 4)

b (4, 3)

(5. 5)

d (6, 4)
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17. Nine towns, A to I, are spread out in a

hilly region of the province. Their

snowfall data for the past year are shown

in a scatter plot.

What is the median annual snowfall for

this group of towns?

y

150 A

140 .. .

130 ..

120 ..

110 ..

100 .. o o o

90 -- o

80 .L

70 -- g

60 ..

50 .. 0A
n
n
u
a
l

S
n
o
w
f
a
l
l
(
c
m
)

30 .. o

20  
 

,
a
-

u
‘
h

0
+

.
1
1

I
"
.
.
.

q
.
.
-

n
“

=
4

_
q
p V R

Towns

80 cm

Q
“

m

85 cm

90 cm0

61 100 cm
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15. One of the numbers below meets the

following conditions:

19.

20.

It is a composite number.

It is between 22 and 32.

It has more than 4 factors.

It results in a prime number when

its digits are added.

Which number is it?

a 23

b 25

C 28

d 30

1f = 4, what is the value of

21 - (4 x )?

a 5

b 13

G 16

d 68

Nicholas works on his math project for

2 % hours on Monday, 1 % hours on

Wednesday and 3 hours on Thursday.

Vt’hat is the total time he works on his

math project, expressed in minutes?

a

b

C

235 minutes

360 minutes

361 minutes

435 minutes
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21. A school requires students to participate

in a team sport and play a musical

instrument.

You are offered basketball and soccer as

the team sports, and keyboard, drums

and clarinet as the musical instruments.

Which diagram below shows all the

possible choices for you?

a >
Soccer Basketball

/\
Keyboard Drums Clarinet Keyboard Drurns

>

>

Soccer Basketball

> >

Keyboard Drums Clarinet Keyboard Drums Clarinet

>

Sooner Basketball

>

Keyboard Drums Drums Clarinet

>

Soccer Hockey Basketball

Keyboard Dmms Drums Clarinet Keyboard Clarinet
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22. Kevin’s batting average this baseball

season is 0.346. Last season his batting

average was 0.297. How much higher

is Kevin's batting average this season?

a 0.049

b 0.051

c 0.059

d 0.643

25. The pictograph below shows the number

of students who chose different ice cream

flavours as their favourite.

 

Favourite Ice Cream Flavours

Vanilla ©©©©©©

Chocolate ©©©©©©©©

Strawberry ©©© Q

Butterscotch ©© @7

Chocolate Chip ©©©©©©@

Bubble Gum ©©©©@?

 

 

 

 

 

 

   
 

© represents 12 students

Which bar graph on the right best

represents this data?
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Chocolate

Strawberry

Ice Cream Flavours

   Butterscotch Chin ”Em

 

 

Vanilla

Vanilla

Vanilla

0

Stravilerry l
Chocol

Chocolate Butterscotch 01110

Ice Cream flavours

1 sumem Chocola

Chocolate Butterscotch 01110

Ice Cream flavours

   Strawberry

ice Cream flavours

“' Babble

Gill

i

te Bubble

Cunt 

Ciloc'olate "m

hocolate Butterscotch CW Cum
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24. Which of the following is true of all

three squares below?

 

1
S

.‘tl-lj‘

M ‘i . W T . F S

3 '. 7 0

10 1 I2 13 I1 15

1 1 I0 20 -. ..

Subtract 8 from the top left number

to get the bottom right number.

Add 8 to the top left number to get

the bottom right number.

Add 7 to the top left number to get

the bottom right number.

Subtract 7 from the top left number

to get the bottom right number.

25. A watermelon has a mass of 2.4 kg.

What is the mass expressed in g or mg?

a

b

0
A

240 g or 240 000 mg

2400 g or 2 400 000 mg

2 400 000 g or 2400 mg

0.0024 g or 0.000 002 4 mg
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26. The closest estimate of the angle

 

shown is

a 70° to 80°.

b 85° to 95°.

0 110° to 120°.

d 140° t0150°.

2'7. Simaya's Crade'G class has 25 students.

The teacher tells her that this is 4% of

the entire school's student population.

How many students are in her school?

a 100

b 150

600

d 625
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25. Which of the following descriptions is

correct?

 

 

 

 

  

 

  

 
—
a

— -
_
-
.
.
-
-

.
-
-
.
-
-

.
-
.
.
-
-

-
-
.
.

-
-
-
.
-

.
.
.
-
.
-
-

.
.
.
-
-
-

- - —

 

a The point (6, 2) is outside the circle

and outside the parallelogram.

b The point (6, 2) is inside the circle

and outside the parallelogram.

c The point (6, 2) is outside the circle

and inside the parallelogram.

d The point (6, 2) is inside the circle

and inside the parallelogram.
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29. A number cube is tossed and a coin is

flipped.

Using the tree diagram, determine which

of the following events is most likely to

occur.

Heads

1

<Tails

Heads

Tails

Heads

3

<Tails

Heads

4

<Taiis

Heads

Tails

Heads

6
<Tails

a Tails appears on the coin.

17 Heads appears on the coin, and

a 4 appears on the number cube.

A 3 appears on the ntunber cube.

d Heads appears on the coin, and

a 3 appears on the number cube.
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30. A department store's sales for one week are listed below.

 

 

 

 

 

Clothing $3240.00

Cosmetics $900.00

Hardware $2521.00

Appliances $583.00

Other $1011.00   
 

1: Estimate the total sales for the week.

 

Explain your estimation strategy.

My estimate is  
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51. Connor states that, for both diagrams, the shaded parts represent % of the whole figure.

 

  

 

 

1!! ls Connor correct?

 

lustify your answer.
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32. Lindsay is cutting triangles to use in making some paper crafts. She notices that some of

III

the triangles are exactly the same.

A

 

 

   
 

 

Find the congment triangles.

  

 

 

70°

 

 

Justify your answer.
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55. A. l. notices a pattern in the vertical posts and horizontal boards in his fence. He counts

the number of vertical posts, then subtracts one and multiplies by two to find the number

of horizontal boards.

1|! Fill in the table below to show the number of horizontal boards.

Number of

Vertical Posts

2

 

Number of Horizontal Boards

 

 

3

 

4
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54. Gary and Chris record the number of cars that pass their houses over 5 days.

The results are shown below.

Number oi Cars Passing Gary’s and Chris' Houses

N
u
m
b
e
r

o
f
C
a
r
s

 

Day

Gary says that each day the number of cars that pass his house is at least two times the

number of cars that pass Chris' house.

Is Cary correct?

 

Explain your answer.
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55. The triangle shown in the grid is rotated

about point 0 by 90° in a clockwise

direction.

'What is its new position?

   

 

Starting

Position

......-.---.-.-- -------------n-.-

 

a ...... GA

0:.......
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36.Andrew has $20 in nickels. He gives

$3.75 to his sister and $1.15 to his

grandma and he spends $0.65.

How many nickels does he have left?

a

b

c

d

57. l.

1

T
a
:

O

237

289

14.45

0.7225

22 333 _,,
 

22 + 333 " '

1

3

6

356

35.8mita types 5400 words per hour.

How many words does she type per

minute?

a 1.5 words per minute

[7 90 words per minute

6 60 words per minute

:1 5400 words per minute
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39. Which number best completes the

pattern below?

2, 5, 11, 23, 47, 95,

a 142

b 190

c 191

d 192

40. Mark does a survey on favourite

vegetables in his class. The graph

represents the response data.

Student Votes for Favourite Vegetables

Celery

Potatoes

Broccoli

Vs'hich vegetable was chosen by about

25% of the class?

a corn

1? peas

carrots

d potatoes
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41. What is the least common multiple for 6

and 10?

a 20

b 30

40

d 60

42. Alonzo's dad builds him a sandbox that

measures 2.5 m long. 2 m wide and

 

 

0.5 m deep.

“x, 10.5 m

"\..

o—V“

/
“a.

K“ 2.5 m
 

   

e——2m——»/

How much sand does Alonzo need to fill

his sandbox to the top?

a

b

5 m3

9 m3

2.5 m3

5.5 m3
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Appendix B

EQAO Grade 6 Mathematics Test 2006

n Which is the most appropriate unit of

measurement to describe the area of the floor of

a gym?

a km2

b cm3

m2 "

d m3

5 Joseph has a measuring wheel that clicks once

for every metre he walks- How many times will

the wheel click when Joseph walks 2.6 km?

a 2

b 26

c 260

d 2600 *
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3 Jacob draws most of an addition symbol

on the Cartesian plane below.

y

‘
N
W
&
U
I
O

 
01234515"

Which two ordered pairs represent the

location on the grid of the two points

that should be connected to complete

the addition symbol?

a (3, 4) and (4, 4)

b (4, 3) and (3, 3)

c (3, 4) and (4, 3)

d (4, 4) and (4, 3) *

n Germaine buys one hamburger, one

sandwich and two fruit salads.

 

 

 

 

 

  

Menu

Item Amount

Hamburger $3.50

Sandwich $2.75

Fruit Salad $1.60

Frozen Yogourt $3.00 
 

How much change should she receive

from $20.00?

a $9-15

1) $9.45

c $10-55 *

d $12.15

172



5 Which number, when placed in the box,

makes the following number sentence

true?

15-6x2+18+3=l:l

a

b

c

d

E The graph below shows grain used to

make cereal at a breakfast food factory.

Graln Used for Cereal

 

 

Based on the graph, which of the following

statements is true?

a The amount of wheat used is more

than the combined amount of corn

and oats.

The amount of corn used is more

than the combined amount of oats

and rice. '

The combined amount of wheat

and rice used is the same as the

combined amount of corn and

oats. *

The combined amount of oats and

rice used is the same as the amount

of wheat.
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Examine the input-output table shown

 

 

 

 

 

below.

Input Output

2 5

3 8

4 ‘l 1

6 1 7    
Which of these rules describes the data?

3 Multiply by 2 and add 1.

b Multiply by 4 and subtract 3.

Multiply by 2 and add 5.

d Multiply by 3 and subtract l.’

O

a Pie is served at a picnic. Each pie is made up of 6 equal pieces. Bradley records the number

of pieces each person cats in the table below.

 

 

Name Gurleen Max Ta-Shanya Stewart Brianne Adrian

Number of

Pieces Eaten 3 2 2 3 3 1

        
 

How many pies are eaten in total? Express your answer as a fraction.

 

Show your work.

They eat pies.  
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a Draw the three-dimensional figure that will be created when the following net is folded.

Show all vertices and edges.
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m A spinner has 12 equal-sized sections. The sections are labelled 1 through 12.

What is the probability that Frieda will spin a multiple of 3 on her first spin?

 

Explain how you know.

The probability is   
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m Susie wants to tile the floor ofher family’s rectangular play room. The tiles she plans to

use are 10 cm by 10 cm squares. A drawing of the room is shown below.

10m
 

5m

   

How many of the square tiles will Susie need to cover the floor of the play room?

 

Show your work.

Susie mu need tiles.   
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E The graph below shows the mean

daytime temperature for Windsor.

Mean Daytime Temperature tor Windsor

18

16

I
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Month

\Vhich month has a mean daytime

temperature that. is twice April’s?

a July

b August

c September *

d October
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E To pick teams. the gym teacher puts the

names of 8 boys and 6 girls in a bag, as

shown below. The table shows the names.

 

 
Boys Girls

Robert Jessica

Ivan Sarah

Hasan Preija

sMohamed Minon

Salvatore Sunetra

Kieran Ling

Paul

Manuel

    

 

The first 3 names picked at random from

the bag were Paul, Jessica and Sarah. The

names are not put back in. \Vhat is the

probability that the next name picked at

random will be a boy?

as

;.

bll

1

c7

8

drTr
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m The regular pentagon shown below has

72° rotational symmetry.

How many 72° rotations will it take to

return the vertices to their original

positions?

a l

b 2

c 4

d 5 *

E A rectangular wall is being built. The

table shows the dimensions of the wall

after each day.

Wall Dimensions

 

 

 

 

 

Day Height length

1 1 m 2 m

2 2 m 3 m

3 3 m 4 m

4 4 m 5 m      
If the pattern continues. what will the

perimeter of the wall be at the end of

Day 10?

a 42 m "

b 38 m

c 21 m

d 19 m
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E The following pattern increases by

following this rule: multiply the previous

term by 3 and add 1.

5,16, 49,148,...

What is the next term in the sequence?

a 159

b 218

c 444

d 445 *

Which of the following is a factor of 70 but is

not a prime number?

a 10“

b 7

c 4

d 2

a Four students calculate the volume of the shoe

box shown below.

 

15 cm 30 cm

  
 

20 cm

The following number sentences show the

students' calculations. \Vhich calculation is

correct?

a 15 cm X 20 cm = 300 cm2

b 20 cm x 30 cm = 600 cml

c 20 cm+30 cm+15cm=65 cm3

d 15 cm x 20 cm x 30 em = 9000 ems *
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w “'hich set is in order from least to

greatest?

3 1-153, 1.062, 0.13. 0.054

b 0.13, 0.054. 1.162, 1.153

c 0.054, 0.13. 1.153, 1.062

d 0.054. 0.13. 1.062. 1153*

E The results of a survey show that 30% of

the people surveyed read a newspaper

regularly. Which of the following

numbers is equitalent to 30%?

a 0-03

b 3-0

c i

(1 13—0 *

a A cube is shown below. It is 10 cm wide,

10 cm long and 10 cm high.

 

100m 

 -
-
-
—
—
—
-

P _c——-——————

  .' 100m

 

100m

What is the area of one of the faces of

the cube?

8 10 cm2

b 30 cm:

c 100 cm2 *

d 1000 cm2
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a Sam buys 4 items in a store. The mass of

each item is recorded below-

9000 mg, 400 g. 0.04 kg. 0-009 kg

\Vhich item has the greatest mass?

3

b

c

d

9000 mg

400 g *

0.04 kg

0-009 kg

E Which answer best describes the

transformation from AMPR to ARST?

 
Reflect about Point R-

Rotate % turn clockwise about

Point M-

Reflect about RM.

Rotate % turn about Point R. ‘

183



a A drawing of the back of an envelope is

shown below.

 

  
 

W'hich statement best describes the back

of the envelope?

an eight isosceles triangles

b four equilateral triangles

c a rectangle with two diagonals *

d a parallelogram surrounded by a

rectangle

E Cary needs to set up 144 chairs in rows.

Each row must have an equal number of

chairs. Which of the following could be

the method Cary uses to set up the

chairs?

a 14 rows of 10 chairs

b 12 rows of 14 chairs

c 6 rows of 21 chairs

d 8 rows of 18 chairs *
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a Jolnma is planning a survey of students

in her classroom. She wants to find their

favourite food for lunch at school.

Which of the following would be the

best question for Johnna to ask in her

survey?

a “What is your favourite food?”

b “What are your friends’ favourite

foods?"

c “What is your favourite food for

lunch at school?” *

d "What is your favourite food—a

sandwich or soup?"
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Ranjit makes the chart below to record the amount of money collected during a fundraising event.

 

Day Monday Tuesday Wednesday Thursday Friday

 

Amount of Money

Collected $50 $125 $75 $25 $175

       
 

Make a broken-line graph to represent the data. Remember to include all titles and labels.
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Explain your choice of scale.
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a A carpenter is replacing some missing steps at the front of Dena '5 house. The bottom three

steps are missing. He wants to use the same heights for the new steps as the old steps. The

carpenter measures the height from the ground to the top of each remaining step.

The fourth step is 66 cm from the ground.

The fifth step is 82.5 cm from the ground.

The sixth step is 99 cm from the ground.

 
' _____ .' 66 cm

  

Front at

House

 
99 cm 

82.5 cm
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The carpenter plans to make each step increase by the same amount.

What are the heights of the first. second and third steps?

 

Show or explain your work.

  
 

. . ‘9 . . .

a The rectangular ceiling of a room has an area of 36 m“. The ceiling needs 3 coats of paint.

. 3

Each can of paint covers 25 m'.

About how many cans of paint are needed to paint the ceiling?

 

Explain your thinking.

cans of paint are needed.  
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E Use two transformations of different types to move the triangle on the grid below to a new

position. Show both transformations and label M, N and P on the new figure.
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Explain your two transformations. using the correct name for each transformation.

 

  
 

mIn a hockey arena. the first row has 276

seats, the second row has 288 seats and

the third row has 300 seats. Each row

after this continues to increase by the

same number. If the arena has a total of

6 rows. how many seats are in the arena?

3 1836 *

b 1176

c 972

d 312
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aMs. Vanstone asks her students to draw a

rectangle and a square with the areas and

perimeters given below-

 

 

 

  

Rectangle Square

Area 12 cm2 25 cm2

Perimeter 16 cm 20 cm

   
Which shows two correct drawings?

 

   

 

   

 

   

 

   

 

 

   
   

 

 

a 4 cm

6 cm

2 cm 4 cm

5 cm

I) 4 cm

3 cm 5 cm

4.5 cm

c 5 cm

3 cm 4.5 cm

(1 5 cm

6 cm

2cm 5cm
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Twelve cubes measuring 3 cm by 3 cm

by 3 cm fit perfectly into the rectangular

prism shown below.

 

 

 

 
\
-
.
.
-
.
-
I
.
.

efifiy:
" I ..... ‘w‘gl.lfl‘: _-

“v 3cm yr.»

’ 3 cm

3 cm

What is the volume of the rectangular

prism in ems?

a 36 cm3

b 162 cm3

c 288 cm3

324 cms *

What value, when placed in the box,

would make the following equation

true?

6x

a

b

—4=56+6

10

11*

31

62
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a The same number is added to each term

in a pattern to get the value of the next

term. Below are the fourth, fifth and

sixth terms in the pattern.

95, 98, 101,

What are the first, second and third

terms in the pattern?

a 83,85,87

b 83.86.89

c 86,88,92

d 86.89.92‘

E Chloe‘s parents are buying a car.

They want to pick 1 colour at random

from 4 possible car colours. \Vhich

of the following methods should they

use?

a Flip a coin.

b Toss a 6-sided number cube with

1 through 6 on the faces.

c Use a spinner with 4 equal-sized

sections labelled with the 4

possible colours. *

d Pick one card from 10 cards with 1

of the 4 colours written on each

face.
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